1
|
Horakova O, Janovska P, Irodenko I, Buresova J, van der Stelt I, Stanic S, Haasova E, Shekhar N, Kobets T, Keijer J, Zouhar P, Rossmeisl M, Kopecky J, Bardova K. Postnatal surge of adipose-secreted leptin is a robust predictor of fat mass trajectory in mice. Am J Physiol Endocrinol Metab 2024; 327:E729-E745. [PMID: 39441238 DOI: 10.1152/ajpendo.00237.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/03/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024]
Abstract
The transient postnatal increase in circulating leptin levels, known as leptin surge, may increase later susceptibility to diet-induced obesity in rodents. However, the source of leptin during the surge needs to be better characterized, and the long-term effects of leptin are contradictory. Characterization of the interaction of leptin with the genetic background, sex, and other factors is required. Here, we focused on the impact of circulating leptin levels and several related variables, measured in 2- and 4-wk-old i) obesity-prone C57BL/6 (B6) and ii) obesity-resistant A/J mice. In total, 264 mice of both sexes were used. Posttranscriptionally controlled leptin secretion from subcutaneous white adipose tissue, the largest adipose tissue depot in mice pups, was the primary determinant of plasma leptin levels. When the animals were randomly assigned standard chow or high-fat diet (HFD) between 12 and 24 wk of age, the obesogenic effect of HFD feeding was observed in B6 but not A/J mice. Only leptin levels at 2 wk, i.e., close to the maximum in the postnatal leptin surge, correlated with both body weight (BW) trajectory throughout the life and adiposity of the 24-wk-old mice. Leptin surge explained 13 and 7% of the variance in BW and adiposity of B6 mice, and 9 and 35% of the variance in these parameters in A/J mice, with a minor role of sex. Our results prove the positive correlation between the leptin surge and adiposity in adulthood, reflecting the fundamental biological role of leptin. This role could be compromised in subjects with obesity.NEW & NOTEWORTHY The postnatal surge in circulating leptin levels in mice reflects particularly posttranscriptionally controlled release of this hormone from subcutaneous white adipose tissue. Leptinemia in 2-wk-old pups predicts both body weight and adiposity in adult mice fed a high-fat diet. The extent of these effects depends on genetically determined differences in propensity to obesity between C57BL/6 and A/J mice. The leptin effect on adiposity is compromised in the obesity-prone C57BL/6 mice.
Collapse
Affiliation(s)
- Olga Horakova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petra Janovska
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ilaria Irodenko
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jana Buresova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Inge van der Stelt
- Department of Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Sara Stanic
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Eliska Haasova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Nivasini Shekhar
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tatyana Kobets
- Metabolomics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jaap Keijer
- Department of Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Petr Zouhar
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Rossmeisl
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Kopecky
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Kristina Bardova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
2
|
Lin CL, Yu NC, Wu HC, Liu YC, Chiu IY, Lin WC, Chien WC. Associated factors of low muscle mass in community-dwelling patients with type 2 diabetes. Medicine (Baltimore) 2024; 103:e38629. [PMID: 38905419 PMCID: PMC11191938 DOI: 10.1097/md.0000000000038629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/29/2024] [Indexed: 06/23/2024] Open
Abstract
This study aims to analyze the prevalence of low muscle mass (LMM) and its associated factors among community-dwelling patients with type 2 diabetes (T2D). A retrospective design was employed to analyze the body composition of 2404 adults with T2D aged 18 years and older. LMM was defined as a skeletal muscle index < 7.0 kg/m2 for males and skeletal muscle index < 5.7 kg/m2 for females by bioelectrical impedance analyzer (InBody 770, Korea). Multivariable logistic regression was used to identify the factors related to LMM. The overall prevalence of LMM was 28%. After adjusting for multivariate odds ratios, factors significantly associated with LMM in patients with diabetes include being older than 75 years, female, having a body mass index of <18 kg/m2, and increased percent body fat. We recommend regular LMM evaluations for T2D patients with the previously mentioned characteristics as part of diabetes care.
Collapse
Affiliation(s)
- Chia-Ling Lin
- Department of Nursing, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | | | - Hsueh-Ching Wu
- Department of Nursing, Hsin Sheng Junior College of Medical Care and Management, Taoyuan, Taiwan
| | | | | | | | - Wu-Chien Chien
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
- Department of Medical Research, Tri-Service General Hospital, Taipei, Taiwan
| |
Collapse
|
3
|
Qiu S, Li C, Zhu J, Guo Z. Associations between the TyG index and the ɑ-Klotho protein in middle-aged and older population relevant to diabetes mellitus in NHANES 2007-2016. Lipids Health Dis 2024; 23:188. [PMID: 38907289 PMCID: PMC11191244 DOI: 10.1186/s12944-024-02172-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/31/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND The anti-aging protein Klotho has diverse functions in antioxidative stress and energy metabolism through several pathways. While it has been reported that α-Klotho is downregulated in patients with insulin resistance (IR), the association between Klotho and IR is complex and controversial. The triglyceride-glucose (TyG) index has provided a practical method for assessing IR. With this in mind, our study aimed to investigate the relationship between the TyG index and soluble α-Klotho protein levels in US populations, both with and without diabetes mellitus. METHODS This cross-sectional study analyzed data from middle-aged and older participants in the National Health and Nutrition Examination Survey (NHANES) conducted between 2007 and 2016. The participants were divided into two groups based on their diabetes mellitus status: those with diabetes and those without diabetes. To evaluate the relationship between the TyG index and the concentration of the α-Klotho protein in each group, a series of survey-weighted multivariable linear regression models were employed. Furthermore, to examine the association between these two variables, multivariable-adjusted restricted cubic spline curves and subgroup analysis were generated. RESULTS The study involved 6,439 adults aged 40 years or older, with a mean age of 57.8 ± 10.9 years. Among them, 1577 (24.5%) had diabetes mellitus. A subgroup analysis indicated that the presence of diabetes significantly affected the relationship between the TyG index and the α-Klotho level. After considering all covariables, regression analysis of the participants without diabetes revealed that the α-Klotho concentration decreased by 32.35 pg/ml (95% CI: -50.07, -14.64) with each one unit increase in TyG (p < 0.001). The decline in α-Klotho levels with elevated TyG was more pronounced in the female population. In patients with diabetes mellitus, a non-linear association between the TyG index and α-Klotho was observed. There was no significant correlation observed between the two when TyG index were below 9.7. However, there was an increase in klotho levels of 106.44 pg/ml for each unit increase in TyG index above 9.7 (95% CI: 28.13, 184.74) (p = 0.008). CONCLUSION Our findings suggested that the presence of diabetes may influence the relationship between the TyG index and soluble α-Klotho. Furthermore, there seem to be sex differences in individuals without diabetes. Further studies are necessary to validate these findings.
Collapse
Affiliation(s)
- Shujuan Qiu
- Department of Nephrology, Affiliated Hospital of Shandong Second Medical University, No. 2428, Yuhe Road, Quiwen District, Weifang, 261041, Shandong, China.
| | - Chunlei Li
- Department of Nephrology, Affiliated Hospital of Shandong Second Medical University, No. 2428, Yuhe Road, Quiwen District, Weifang, 261041, Shandong, China
| | - Jinhua Zhu
- Zhucheng Nanhu Community Health Service Center, No. 2000, Tourism Road, South Lake Ecological Economic Development District, Zhucheng, 262200, Shandong, China
| | - Zhentao Guo
- Department of Nephrology, Affiliated Hospital of Shandong Second Medical University, No. 2428, Yuhe Road, Quiwen District, Weifang, 261041, Shandong, China
| |
Collapse
|
4
|
Fourman LT, Lima JG, Simha V, Cappa M, Alyaarubi S, Montenegro R, Akinci B, Santini F. A rapid action plan to improve diagnosis and management of lipodystrophy syndromes. Front Endocrinol (Lausanne) 2024; 15:1383318. [PMID: 38952397 PMCID: PMC11215967 DOI: 10.3389/fendo.2024.1383318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/13/2024] [Indexed: 07/03/2024] Open
Abstract
Introduction Lipodystrophy syndromes are rare diseases that can present with a broad range of symptoms. Delays in diagnosis are common, which in turn, may predispose to the development of severe metabolic complications and end-organ damage. Many patients with lipodystrophy syndromes are only diagnosed after significant metabolic abnormalities arise. Prompt action by clinical teams may improve disease outcomes in lipodystrophy syndromes. The aim of the Rapid Action Plan is to serve as a set of recommendations from experts that can support clinicians with limited experience in lipodystrophy syndromes. Methods The Rapid Action Plan was developed using insights gathered through a series of advisory meetings with clinical experts in lipodystrophy syndromes. A skeleton template was used to facilitate interviews. A consensus document was developed, reviewed, and approved by all experts. Results Lipodystrophy is a clinical diagnosis. The Rapid Action Plan discusses tools that can help diagnose lipodystrophy syndromes. The roles of clinical and family history, physical exam, patient and family member photos, routine blood tests, leptin levels, skinfold measurements, imaging studies, and genetic testing are explored. Additional topics such as communicating the diagnosis to the patients/families and patient referrals are covered. A set of recommendations regarding screening and monitoring for metabolic diseases and end-organ abnormalities is presented. Finally, the treatment of lipodystrophy syndromes is reviewed. Discussion The Rapid Action Plan may assist clinical teams with the prompt diagnosis and holistic work-up and management of patients with lipodystrophy syndromes, which may improve outcomes for patients with this rare disease.
Collapse
Affiliation(s)
- Lindsay T. Fourman
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Josivan Gomes Lima
- Hospital Universitário Onofre Lopes, Departamento de Clinica Medica, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Vinaya Simha
- Division of Endocrinology, Mayo Clinic, Rochester, MN, United States
| | - Marco Cappa
- Research Area for Innovative Therapies in Endocrinopathies Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Saif Alyaarubi
- Pediatric Endocrinology, Oman Medical Specialty Board, Muscat, Oman
| | - Renan Montenegro
- Brazilian Group for the Study of Inherited and Acquired Lipodystrophies (BRAZLIPO), Clinical Research Unit, Walter Cantidio University Hospital, Federal University of Ceará/Ebserh, Fortaleza, Brazil
| | - Baris Akinci
- Dokuz Eylul University Health Campus Technopark (DEPARK), Dokuz Eylul University, Izmir, Türkiye
- Department of Research Programs, Technological Research, Izmir Biomedicine and Genome Center (IBG), Izmir, Türkiye
| | - Ferruccio Santini
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Pisa, Italy
| |
Collapse
|
5
|
Vigouroux C, Mosbah H, Vatier C. Leptin replacement therapy in the management of lipodystrophy syndromes. ANNALES D'ENDOCRINOLOGIE 2024; 85:201-204. [PMID: 38871500 DOI: 10.1016/j.ando.2024.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Lipodystrophy syndromes are rare diseases of genetic or acquired origin, characterized by quantitative and qualitative defects in adipose tissue. The metabolic consequences of lipodystrophy syndromes, such as insulin resistant diabetes, hypertriglyceridemia and hepatic steatosis, are frequently very difficult to treat, resulting in significant risks of acute and/or chronic complications and of decreased quality of life. The production of leptin by lipodystrophic adipose tissue is decreased, more severely in generalized forms of lipodystrophy, where adipose tissue is absent from almost all body fat depots, than in partial forms of the disease, where lipoatrophy affects only some parts of the body and can be associated with increased body fat in other anatomical regions. Several lines of evidence in preclinical and clinical models have shown that leptin replacement therapy could improve the metabolic complications of lipodystrophy syndromes. Metreleptin, a recombinant leptin analogue, was approved as an orphan drug to treat the metabolic complications of leptin deficiency in patients with generalized lipodystrophy in the USA or with either generalized or partial lipodystrophy in Japan and Europe. In this brief review, we will discuss the benefits and limitations of this therapy, and the new expectations arising from the recent development of a therapeutic monoclonal antibody able to activate the leptin receptor.
Collapse
Affiliation(s)
- Corinne Vigouroux
- Service d'endocrinologie, diabétologie et endocrinologie de la reproduction, centre national de référence des pathologies rares de l'insulino-secrétion et de l'insulino-sensibilité (PRISIS), hôpital Saint-Antoine, Assistance publique-Hôpitaux de Paris, Paris, France; Centre de recherche Saint-Antoine, institut hospitalo-universitaire de cardio-métabolisme et nutrition (ICAN), Sorbonne université, Inserm UMR_S 938, Paris, France.
| | - Héléna Mosbah
- Centre de recherche Saint-Antoine, institut hospitalo-universitaire de cardio-métabolisme et nutrition (ICAN), Sorbonne université, Inserm UMR_S 938, Paris, France; Service endocrinologie, diabétologie, nutrition, centre de compétence PRISIS, CHU La Milétrie, Poitiers, France; Université Paris Cité, ECEVE UMR 1123, Inserm, Paris, France
| | - Camille Vatier
- Service d'endocrinologie, diabétologie et endocrinologie de la reproduction, centre national de référence des pathologies rares de l'insulino-secrétion et de l'insulino-sensibilité (PRISIS), hôpital Saint-Antoine, Assistance publique-Hôpitaux de Paris, Paris, France; Centre de recherche Saint-Antoine, institut hospitalo-universitaire de cardio-métabolisme et nutrition (ICAN), Sorbonne université, Inserm UMR_S 938, Paris, France
| |
Collapse
|
6
|
Wei S, Nguyen TT, Zhang Y, Ryu D, Gariani K. Sarcopenic obesity: epidemiology, pathophysiology, cardiovascular disease, mortality, and management. Front Endocrinol (Lausanne) 2023; 14:1185221. [PMID: 37455897 PMCID: PMC10344359 DOI: 10.3389/fendo.2023.1185221] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
Sarcopenic obesity is defined as the coexistence of sarcopenia and obesity in the same individual, characterized by of the co-presence of body fat accumulation and muscle loss. This condition is currently a major concern as it is associated with frailty and disabilities such as cardiovascular disease, fractures, dementia, cancer, and increased all-cause mortality. Particularly, older individuals remain at risk of sarcopenic obesity. Progress at several levels is needed to improve the global prognostic outlook for this condition, including the elaboration and implementation of a more uniform definition that may favor the identification and specification of prevalence by age group. Furthermore, improvements in the understanding of the pathogenesis of sarcopenic obesity may lead to the development of more specific therapeutic interventions to improve prognosis. We reviewed the knowledge on sarcopenic obesity and its associations with cardiovascular diseases and mortality.
Collapse
Affiliation(s)
- Shibo Wei
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Thanh T. Nguyen
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Yan Zhang
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Dongryeol Ryu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Karim Gariani
- Division of Endocrinology, Diabetes, Nutrition and Therapeutic Patient Education, Department of Medical Specialties, Geneva University Hospitals, Geneva, Switzerland
- Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
7
|
Vasamsetti SB, Natarajan N, Sadaf S, Florentin J, Dutta P. Regulation of cardiovascular health and disease by visceral adipose tissue-derived metabolic hormones. J Physiol 2023; 601:2099-2120. [PMID: 35661362 PMCID: PMC9722993 DOI: 10.1113/jp282728] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/04/2022] [Indexed: 11/08/2022] Open
Abstract
Visceral adipose tissue (VAT) is a metabolic organ known to regulate fat mass, and glucose and nutrient homeostasis. VAT is an active endocrine gland that synthesizes and secretes numerous bioactive mediators called 'adipocytokines/adipokines' into systemic circulation. These adipocytokines act on organs of metabolic importance like the liver and skeletal muscle. Multiple preclinical and in vitro studies showed strong evidence of the roles of adipocytokines in the regulation of metabolic disorders like diabetes, obesity and insulin resistance. Adipocytokines, such as adiponectin and omentin, are anti-inflammatory and have been shown to prevent atherogenesis by increasing nitric oxide (NO) production by the endothelium, suppressing endothelium-derived inflammation and decreasing foam cell formation. By inhibiting differentiation of vascular smooth muscle cells (VSMC) into osteoblasts, adiponectin and omentin prevent vascular calcification. On the other hand, adipocytokines like leptin and resistin induce inflammation and endothelial dysfunction that leads to vasoconstriction. By promoting VSMC migration and proliferation, extracellular matrix degradation and inflammatory polarization of macrophages, leptin and resistin increase the risk of atherosclerotic plaque vulnerability and rupture. Additionally, the plasma concentrations of these adipocytokines alter in ageing, rendering older humans vulnerable to cardiovascular disease. The disturbances in the normal physiological concentrations of these adipocytokines secreted by VAT under pathological conditions impede the normal functions of various organs and affect cardiovascular health. These adipokines could be used for both diagnostic and therapeutic purposes in cardiovascular disease.
Collapse
Affiliation(s)
- Sathish Babu Vasamsetti
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA 15213
- Pittsburgh VA Medical Center-University Drive, University Drive C, Pittsburgh, PA, USA
| | - Niranjana Natarajan
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA 15213
| | - Samreen Sadaf
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA 15213
- Pittsburgh VA Medical Center-University Drive, University Drive C, Pittsburgh, PA, USA
| | - Jonathan Florentin
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA 15213
| | - Partha Dutta
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA 15213
- Pittsburgh VA Medical Center-University Drive, University Drive C, Pittsburgh, PA, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA, 15213
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA, 15213
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
8
|
He K, Nie L, Ali T, Liu Z, Li W, Gao R, Zhang Z, Liu J, Dai Z, Xie Y, Zhang Z, Liu G, Dong M, Yu ZJ, Li S, Yang X. Adiponectin deficiency accelerates brain aging via mitochondria-associated neuroinflammation. Immun Ageing 2023; 20:15. [PMID: 37005686 PMCID: PMC10067304 DOI: 10.1186/s12979-023-00339-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 03/10/2023] [Indexed: 04/04/2023]
Abstract
BACKGROUND A wide spectrum of changes occurs in the brain with age, from molecular to morphological aspects, and inflammation accompanied by mitochondria dysfunction is one of the significant factors associated with age. Adiponectin (APN), an essential adipokine in glucose and lipid metabolism, is involved in the aging; however, its role in brain aging has not been adequately explored. Here, we aimed to explore the relationship between APN deficiency and brain aging using multiple biochemical and pharmacological methods to probe APN in humans, KO mice, primary microglia, and BV2 cells. RESULTS We found that declining APN levels in aged human subjects correlated with dysregulated cytokine levels, while APN KO mice exhibited accelerated aging accompanied by learning and memory deficits, anxiety-like behaviors, neuroinflammation, and immunosenescence. APN-deficient mice displayed aggravated mitochondrial dysfunction and HDAC1 upregulation. In BV2 cells, the APN receptor agonist AdipoRon alleviated the mitochondrial deficits and aging markers induced by rotenone or antimycin A. HDAC1 antagonism by Compound 60 (Cpd 60) improved mitochondrial dysfunction and age-related inflammation, as validated in D-galactose-treated APN KO mice. CONCLUSION These findings indicate that APN is a critical regulator of brain aging by preventing neuroinflammation associated with mitochondrial impairment via HDAC1 signaling.
Collapse
Affiliation(s)
- Kaiwu He
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Lulin Nie
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Tahir Ali
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zizhen Liu
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Weifen Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Ruyan Gao
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zena Zhang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Jianjun Liu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Zhongliang Dai
- Department of Anesthesiology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, 518020, Guangdong, China
- Department of Anesthesiology, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
- Shenzhen Engineering Research Center of Anesthesiology, Shenzhen, 518020, Guangdong, China
| | - Yongmei Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Zaijun Zhang
- Institute of New Drug Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Gongping Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Dong
- Guangzhou International Bio Island, Guangzhou, 510005, Guangdong Province, China
| | - Zhi-Jian Yu
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, The 6Th Affiliated Hospital of Shenzhen University Health Science, Center. No 89, Taoyuan Road, Nanshan District, Shenzhen, 518052, China.
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
- Campbell Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| | - Xifei Yang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China.
| |
Collapse
|
9
|
Nutritional Biomarkers and Heart Rate Variability in Patients with Subacute Stroke. Nutrients 2022; 14:nu14245320. [PMID: 36558479 PMCID: PMC9784051 DOI: 10.3390/nu14245320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Malnutrition and autonomic dysfunction are associated with poor outcomes, mortality, and psychological problems after stroke. Relevant laboratory biomarkers include serum albumin, prealbumin, and transferrin. Heart rate variability (HRV), a noninvasive measurement, can objectively measure autonomic nervous system (ANS) function. The relationship between HRV and nutritional biomarkers in stroke patients has not been studied. This study aimed to examine the relationship between nutritional biomarkers and HRV parameters in stroke patients. We retrospectively recruited 426 patients with subacute stroke who were examined for nutritional biomarkers, such as serum albumin, prealbumin, and transferrin, and underwent 24 h ambulatory Holter electrocardiography. Patients were divided into groups according to their nutritional biomarker status. Differences in HRV parameters between nutritional biomarker-deficient and normal groups were assessed. Pearson's correlation and multiple regression analyses were used to verify the relationship between HRV parameters and nutritional biomarkers. HRV parameters were significantly lower in the nutritional biomarker-deficient groups. In addition, there was a significant association between HRV parameters and nutritional biomarkers. Serum albumin, prealbumin, and transferrin levels were associated with ANS function, as measured by HRV, and their deficiency may be a predictive factor for the severity of ANS dysfunction in stroke patients.
Collapse
|
10
|
Yoo MC, Won CW, Soh Y. Association of high body mass index, waist circumference, and body fat percentage with sarcopenia in older women. BMC Geriatr 2022; 22:937. [PMID: 36471279 PMCID: PMC9724283 DOI: 10.1186/s12877-022-03643-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Age-related obesity and body composition changes include loss of muscle mass and increased body fat. This study aimed to investigate sex differences in the impact of sarcopenia, defined by the Asian Working Group for Sarcopenia (AWGS), on obesity in Korean older adults. METHODS In this 2-year longitudinal study, 3014 participants were excluded based on AWGS sarcopenia parameters (if any one of the sarcopenic parameter criteria was satisfied), including low handgrip strength (HGS), low appendicular skeletal muscle mass index (ASMI), and low short physical performance battery (SPPB). A total of 926 non-sarcopenic participants were recruited for the study. The obese and non-obese groups were compared according to the sarcopenia parameters. The following variables were selected for obesity analysis: body mass index (BMI), waist circumference (WC), and body fat percentage. Unadjusted and fully adjusted logistic regression analyses were performed for each variable to predict sarcopenia and sarcopenic obesity according to sex. RESULTS Among the sarcopenia parameters, reduction in ASMI was significantly lower in the obese group with high WC and percentage of body fat (PBF) in both men and women (P < 0.01). Multivariable analysis revealed that different obesity parameters were associated with AWGS criteria: women in the high BMI group presented significantly lower ASMI and sarcopenia (ASMI, OR = 0.289, 95% CI = 0.174-0.480; sarcopenia, OR = 0.152, 95% CI = 0.048-0.483). Women in the high WC group had significantly lower ASMI and sarcopenia (ASMI, OR = 0.307, 95% CI = 0.189-0.500; sarcopenia, OR = 0.262, 95% CI = 0.106-0.649). Women in the high PBF group had a lower incidence of sarcopenia (OR = 0.214, 95% CI = 0.068-0.278). CONCLUSIONS Our study identified that high BMI had a protective effect on the reduction of muscle mass in men and women. However, obesity parameters including BMI, WC, and PBF were positively correlated with a lower incidence of sarcopenia only in women. Obesity in older women may have a protective effect in reducing ASMI and the incidence of sarcopenia.
Collapse
Affiliation(s)
- Myung Chul Yoo
- grid.411231.40000 0001 0357 1464Department of Physical Medicine and Rehabilitation, Kyung Hee University Medical Center, 23 Kyungheedae-ro, Dongdaemoon-gu, Seoul, 02447 Republic of Korea ,grid.289247.20000 0001 2171 7818Department of Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Chang Won Won
- grid.411231.40000 0001 0357 1464Department of Family Medicine, Kyung Hee University Medical Center, 23 Kyungheedae-ro, Dongdaemoon-gu, Seoul, 02447 South Korea
| | - Yunsoo Soh
- grid.411231.40000 0001 0357 1464Department of Physical Medicine and Rehabilitation, Kyung Hee University Medical Center, 23 Kyungheedae-ro, Dongdaemoon-gu, Seoul, 02447 Republic of Korea
| |
Collapse
|
11
|
Li Y, Wang H, Chen H, Liao Y, Gou S, Yan Q, Zhuang Z, Li H, Wang J, Suo Y, Lan T, Liu Y, Zhao Y, Zou Q, Nie T, Hui X, Lai L, Wu D, Fan N. Generation of a genetically modified pig model with CREBRF R457Q variant. FASEB J 2022; 36:e22611. [PMID: 36250915 DOI: 10.1096/fj.202201117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/03/2022] [Indexed: 11/11/2022]
Abstract
Obesity is among the strongest risk factors for type 2 diabetes (T2D). The CREBRF missense allele rs373863828 (p. Arg457Gln, p. R457Q) is associated with increased body mass index but reduced risk of T2D in people of Pacific ancestry. To investigate the functional consequences of the CREBRF variant, we introduced the corresponding human mutation R457Q into the porcine genome. The CREBRFR457Q pigs displayed dramatically increased fat deposition, which was mainly distributed in subcutaneous adipose tissue other than visceral adipose tissue. The CREBRFR457Q variant promoted preadipocyte differentiation. The increased differentiation capacity of precursor adipocytes conferred pigs the unique histological phenotype that adipocytes had a smaller size but a greater number in subcutaneous adipose tissue (SAT) of CREBRFR457Q variant pigs. In addition, in SAT of CREBRFR457Q pigs, the contents of the peroxidative metabolites 4-hydroxy-nonenal and malondialdehyde were significantly decreased, while the activity of antioxidant enzymes, such as glutathione peroxidase, superoxide dismutase, and catalase, was increased, which was in accordance with the declined level of the reactive oxygen species (ROS) in CREBRFR457Q pigs. Together, these data supported a causal role of the CREBRFR457Q variant in the pathogenesis of obesity, partly via adipocyte hyperplasia, and further suggested that reduced oxidative stress in adipose tissue may mediate the relative metabolic protection afforded by this variant despite the related obesity.
Collapse
Affiliation(s)
- Yingying Li
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Hai Wang
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Huangyao Chen
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Yuan Liao
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Shixue Gou
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Quanmei Yan
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zhenpeng Zhuang
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Hao Li
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Jiaowei Wang
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Yangyang Suo
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Ting Lan
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Yang Liu
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Yu Zhao
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Qingjian Zou
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
| | - Tao Nie
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaoyan Hui
- School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong SAR
| | - Liangxue Lai
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.,Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
| | - Donghai Wu
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Nana Fan
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| |
Collapse
|
12
|
Zamboni M, Mazzali G, Brunelli A, Saatchi T, Urbani S, Giani A, Rossi AP, Zoico E, Fantin F. The Role of Crosstalk between Adipose Cells and Myocytes in the Pathogenesis of Sarcopenic Obesity in the Elderly. Cells 2022; 11:3361. [PMID: 36359757 PMCID: PMC9655977 DOI: 10.3390/cells11213361] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/08/2022] [Accepted: 10/14/2022] [Indexed: 11/15/2023] Open
Abstract
As a result of aging, body composition changes, with a decline in muscle mass and an increase in adipose tissue (AT), which reallocates from subcutaneous to visceral depots and stores ectopically in the liver, heart and muscles. Furthermore, with aging, muscle and AT, both of which have recognized endocrine activity, become dysfunctional and contribute, in the case of positive energy balance, to the development of sarcopenic obesity (SO). SO is defined as the co-existence of excess adiposity and low muscle mass and function, and its prevalence increases with age. SO is strongly associated with greater morbidity and mortality. The pathogenesis of SO is complex and multifactorial. This review focuses mainly on the role of crosstalk between age-related dysfunctional adipose and muscle cells as one of the mechanisms leading to SO. A better understanding of this mechanisms may be useful for development of prevention strategies and treatments aimed at reducing the occurrence of SO.
Collapse
Affiliation(s)
- Mauro Zamboni
- Geriatrics Division, Department of Surgery, Dentistry, Pediatric and Gynecology, Healthy Aging Center, University of Verona, 37126 Verona, Italy
| | - Gloria Mazzali
- Geriatrics Division, Department of Medicine, University of Verona, 37126 Verona, Italy
| | - Anna Brunelli
- Geriatrics Division, Department of Surgery, Dentistry, Pediatric and Gynecology, Healthy Aging Center, University of Verona, 37126 Verona, Italy
| | - Tanaz Saatchi
- Geriatrics Division, Department of Surgery, Dentistry, Pediatric and Gynecology, Healthy Aging Center, University of Verona, 37126 Verona, Italy
| | - Silvia Urbani
- Geriatrics Division, Department of Surgery, Dentistry, Pediatric and Gynecology, Healthy Aging Center, University of Verona, 37126 Verona, Italy
| | - Anna Giani
- Geriatrics Division, Department of Surgery, Dentistry, Pediatric and Gynecology, Healthy Aging Center, University of Verona, 37126 Verona, Italy
| | - Andrea P. Rossi
- Geriatrics Division, Department of Medicine, AULSS2, Ospedale Ca’Foncello, 31100 Treviso, Italy
| | - Elena Zoico
- Geriatrics Division, Department of Medicine, University of Verona, 37126 Verona, Italy
| | - Francesco Fantin
- Geriatrics Division, Department of Medicine, University of Verona, 37126 Verona, Italy
| |
Collapse
|
13
|
Ranea-Robles P, Lund J, Clemmensen C. The physiology of experimental overfeeding in animals. Mol Metab 2022; 64:101573. [PMID: 35970448 PMCID: PMC9440064 DOI: 10.1016/j.molmet.2022.101573] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/04/2022] [Accepted: 08/07/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Body weight is defended by strong homeostatic forces. Several of the key biological mechanisms that counteract weight loss have been unraveled over the last decades. In contrast, the mechanisms that protect body weight and fat mass from becoming too high remain largely unknown. Understanding this aspect of energy balance regulation holds great promise for curbing the obesity epidemic. Decoding the physiological and molecular pathways that defend against weight gain can be achieved by an intervention referred to as 'experimental overfeeding'. SCOPE OF THE REVIEW In this review, we define experimental overfeeding and summarize the studies that have been conducted on animals. This field of research shows that experimental overfeeding induces a potent and prolonged hypophagic response that seems to be conserved across species and mediated by unidentified endocrine factors. In addition, the literature shows that experimental overfeeding can be used to model the development of non-alcoholic steatohepatitis and that forced intragastric infusion of surplus calories lowers survival from infections. Finally, we highlight studies indicating that experimental overfeeding can be employed to study the transgenerational effects of a positive energy balance and how dietary composition and macronutrient content might impact energy homeostasis and obesity development in animals. MAJOR CONCLUSIONS Experimental overfeeding of animals is a powerful yet underappreciated method to investigate the defense mechanisms against weight gain. This intervention also represents an alternative approach for studying the pathophysiology of metabolic liver diseases and the links between energy balance and infection biology. Future research in this field could help uncover why humans respond differently to an obesogenic environment and reveal novel pathways with therapeutic potential against obesity and cardiometabolic disorders.
Collapse
Affiliation(s)
- Pablo Ranea-Robles
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Jens Lund
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Christoffer Clemmensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
14
|
Nutritional and Nutrition-Related Biomarkers as Prognostic Factors of Sarcopenia, and Their Role in Disease Progression. Diseases 2022; 10:diseases10030042. [PMID: 35892736 PMCID: PMC9326750 DOI: 10.3390/diseases10030042] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/25/2022] Open
Abstract
Due to the multifactorial pathogenesis of sarcopenia, it is crucial to identify biomarkers that are risk factors for sarcopenia, and which therefore have a prognostic function. Aim: This narrative review aims to define a set of biomarkers associated with nutrition and sarcopenia. These biomarkers could contribute to individualized monitoring and enable preventive and therapeutic methods. Methods: Two electronic databases, PubMed and Google Scholar, were used. The search strategy was based on a controlled vocabulary (MeSH) and includes studies published up to February 2022. Discussion: Higher levels of serum uric acid are associated with higher handgrip strength and better muscle function in elderly people and, thus, may slow the progression of sarcopenia. Leptin, an adipokine secreted by adipose tissue, promotes the production of pro-inflammatory cytokines, which in turn lead to sarcopenia. This makes leptin a significant indirect biomarker for physical disability and sarcopenic obesity. Additionally, creatinine is a reliable biomarker for muscle mass status because of its easy accessibility and cost-effectiveness. Vitamin D status acts as a useful biomarker for predicting total mortality, hip fractures, early death, and the development of sarcopenia. Therefore, there is an increasing interest in dietary antioxidants and their effects on age-related losses of muscle mass and function. On the other hand, 3-Methylhistidine is a valuable biomarker for detecting increased muscle catabolism, as it is excreted through urine during muscle degradation. In addition, IGF-1, whose concentration in plasma is stimulated by food intake, is associated with the loss of skeletal muscle mass, which probably plays a crucial role in the progression of sarcopenia. Conclusions: Many nutritional biomarkers were found to be associated with sarcopenia, and can therefore be used as prognostic indexes and risk factors. Nutrition plays an important role in the prevention and management of sarcopenia, affecting muscle mass, strength, and function in elderly people.
Collapse
|
15
|
Choi S, Chon J, Lee SA, Yoo MC, Yun Y, Chung SJ, Kim M, Lee ET, Kyu Choi M, Won CW, Soh Y. Central obesity is associated with lower prevalence of sarcopenia in older women, but not in men: a cross-sectional study. BMC Geriatr 2022; 22:406. [PMID: 35534812 PMCID: PMC9082840 DOI: 10.1186/s12877-022-03102-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/28/2022] [Indexed: 12/15/2022] Open
Abstract
Background Obesity is a chronic disease that causes various medical health problems, increases morbidity, and reduces the quality of life. Obesity (especially central obesity) in older adults is expected to act with the development of sarcopenia. However, the relationship between obesity, central obesity, and sarcopenia remains controversial. This study aimed to investigate the impact of obesity on sarcopenia. Methods In this cross-sectional study, we used data from the Korean Frailty and Aging Cohort Study; 1,827 community-dwelling older adults (883 men and 944 women) aged 70–84 years were recruited. The Asian Working Group for Sarcopenia (AWGS) criteria were used to evaluate sarcopenia. Subjects with a low appendicular skeletal muscle mass index (ASMI; men: < 7.0 kg/m2, women: < 5.4 kg/m2) and either low handgrip strength (HGS; men: < 28 kg, women: < 18 kg) or low Short Physical Performance Battery (SPPB; ≤ 9) were diagnosed with sarcopenia. Obesity was defined as a body mass index (BMI) of ≥ 25 kg/m2, while central obesity was defined as WC measurements of ≥ 90 cm in men and ≥ 85 cm in women. Logistic regression analyses were performed to evaluate the impact of obesity and central obesity on sarcopenia and the parameters of sacropenia. Results In both sexes, the obese group, defined based on the BMI, had a significantly low prevalence of low ASMI (odds ratio [OR] = 0.14, 95% confidence interval CI = 0.10–0.20 in men, OR = 0.17, 95% CI = 0.12–0.25 in women) and sarcopenia (OR = 0.28, 95% CI = 0.16–0.50 in men, OR = 0.17, 95% CI = 0.08–0.35 in women) in the multivariable logistic regression analysis. In women, the central obese group had a low prevalence of sarcopenia (OR = 0.46, 95% CI = 0.27–0.77) in the multivariable logistic regression analysis. Meanwhile, the obese group had a significantly higher prevalence of low SPPB in women (OR = 1.75, 95% CI = 1.18–2.59). Conclusions Obesity may have a protective effect on low ASMI and sarcopenia, as defined by the AWGS criteria. Central obesity was associated with a low prevalence of sarcopenia in women only. However, obesity did not have a positive impact on functional parameters of sarcopenia including muscle strength and physical performance.
Collapse
Affiliation(s)
- Seongmin Choi
- Department of Physical Medicine and Rehabilitation, Kyung Hee University Medical Center, 23 Kyungheedae-ro, Dongdaemoon-gu, Seoul, 02447, Republic of Korea
| | - Jinmann Chon
- Department of Physical Medicine and Rehabilitation, Kyung Hee University Medical Center, 23 Kyungheedae-ro, Dongdaemoon-gu, Seoul, 02447, Republic of Korea
| | - Seung Ah Lee
- Department of Physical Medicine and Rehabilitation, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| | - Myung Chul Yoo
- Department of Physical Medicine and Rehabilitation, Kyung Hee University Medical Center, 23 Kyungheedae-ro, Dongdaemoon-gu, Seoul, 02447, Republic of Korea
| | - Yeocheon Yun
- Department of Physical Medicine and Rehabilitation, Kyung Hee University Medical Center, 23 Kyungheedae-ro, Dongdaemoon-gu, Seoul, 02447, Republic of Korea
| | - Sung Joon Chung
- Department of Physical Medicine and Rehabilitation, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| | - Minjung Kim
- Department of Physical Medicine and Rehabilitation, Kyung Hee University Medical Center, 23 Kyungheedae-ro, Dongdaemoon-gu, Seoul, 02447, Republic of Korea
| | - Eun Taek Lee
- Department of Physical Medicine and Rehabilitation, Kyung Hee University Medical Center, 23 Kyungheedae-ro, Dongdaemoon-gu, Seoul, 02447, Republic of Korea
| | - Min Kyu Choi
- Department of Physical Medicine and Rehabilitation, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| | - Chang Won Won
- Department of Family Medicine, Kyung Hee University Medical Center, 23 Kyungheedae-ro, Dongdaemoon-gu, Seoul, 02447, Republic of Korea.
| | - Yunsoo Soh
- Department of Physical Medicine and Rehabilitation, Kyung Hee University Medical Center, 23 Kyungheedae-ro, Dongdaemoon-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
16
|
Miljkovic I, Cvejkus R, An P, Thyagarajan B, Christensen K, Wojczynski M, Schupf N, Zmuda JM. Low Risk for Developing Diabetes Among the Offspring of Individuals With Exceptional Longevity and Their Spouses. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2022; 3:753986. [PMID: 36992755 PMCID: PMC10012150 DOI: 10.3389/fcdhc.2022.753986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022]
Abstract
Little is known about the risk of type 2 diabetes (T2D) among the offspring of individuals with exceptional longevity. We determined the incidence of and potential risk and protective factors for T2D among the offspring of probands and offspring’s spouses (mean age=60 years, range 32-88 years) in the Long Life Family Study (LLFS), a multicenter cohort study of 583 two-generation families with a clustering of healthy aging and exceptional longevity. Incident T2D was defined as fasting serum glucose ≥126 mg/dl, or HbA1c of ≥6.5%, or self-reported with doctor diagnosis of T2D, or the use of anti-diabetic medication during a mean follow-up 7.9 ± 1.1 years. Among offspring (n=1105) and spouses (n=328) aged 45-64 years without T2D at baseline visit, the annual incident rate of T2D was 3.6 and 3.0 per 1000 person-years, respectively, while among offspring (n=444) and spouses (n=153) aged 65+ years without T2D at baseline, the annual incident rate of T2D was 7.2 and 7.4 per 1000 person-years, respectively. By comparison, the annual incident rate of T2D per 1000 person-years in the U.S. general population was 9.9 among those aged 45-64, and 8.8 among those aged 65+ years (2018 National Health Interview Survey). Baseline BMI, waist circumference, and fasting serum triglycerides were positively associated with incident T2D, whereas fasting serum HDL-C, adiponectin, and sex hormone binding globulin were protective against incident T2D among the offspring (all P<0.05). Similar associations were observed among their spouses (all P<0.05, except sex hormone binding globulin). In addition, we observed that among spouses, but not offspring, fasting serum interleukin 6 and insulin-like growth factor 1 were positively associated with incident T2D (P<0.05 for both). Our study suggests that both offspring of long-living individuals and their spouses, especially middle-aged, share a similar low risk for developing T2D as compared with the general population. Our findings also raise the possibility that distinct biological risk and protective factors may contribute to T2D risk among offspring of long-lived individuals when compared with their spouses. Future studies are needed to identify the mechanisms underlying low T2D risk among the offspring of individuals with exceptional longevity, and also among their spouses.
Collapse
Affiliation(s)
- Iva Miljkovic
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
- *Correspondence: Iva Miljkovic,
| | - Ryan Cvejkus
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ping An
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Kaare Christensen
- Department of Epidemiology, Biostatistics and Biodemography, Danish Aging Research Center, University of Southern Denmark, Odense, Denmark
| | - Mary Wojczynski
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Nicole Schupf
- Taub Institute, Columbia University, New York, NY, United States
| | - Joseph M. Zmuda
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
17
|
Priyadarsini N, Nanda P, Devi S, Mohapatra S. Sarcopenia: An Age-Related Multifactorial Disorder. Curr Aging Sci 2022; 15:209-217. [PMID: 35249518 DOI: 10.2174/1874609815666220304194539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 11/22/2022]
Abstract
Sarcopenia is an emerging clinical entity characterized by a gradual decline in skeletal muscle mass and strength that accompanies the normal aging process. It has been noted that sarcopenia is associated with various adverse health outcomes in the geriatric population like prolonged hospital admission, disability, poor quality of life, frailty, and mortality. Factors involved in the development of age-related sarcopenia include anorexia, alteration in the hormone levels, decreased neural innervation, low blood flow to the muscles, cytokine dysregulation, altered mitochondrial activity, genomic instability, intracellular proteolysis, and insulin resistance. Understanding the mechanism may help develop efficient preventive and therapeutic strategies which can improve the quality of life in elderly individuals. Thus, the objective of the present article is to review the literature regarding the mechanism involved in the development of sarcopenia in aged individuals.
Collapse
Affiliation(s)
- Nibedita Priyadarsini
- Department of Physiology, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Pranati Nanda
- Department of Physiology, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Sujata Devi
- Department of Medicine, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Subarna Mohapatra
- Department of Physiology, All India Institute of Medical Sciences, Bhubaneswar, India
| |
Collapse
|
18
|
Association between Soluble α-Klotho Protein and Metabolic Syndrome in the Adult Population. Biomolecules 2022; 12:biom12010070. [PMID: 35053218 PMCID: PMC8773684 DOI: 10.3390/biom12010070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/02/2022] [Accepted: 01/03/2022] [Indexed: 01/08/2023] Open
Abstract
Klotho protein is an anti-aging protein and plays multiple roles in ion-regulation, anti-oxidative stress, and energy metabolism through various pathways. Metabolic syndrome is a combination of multiple conditions that compose of multiple risk factors of cardiovascular disease and type 2 diabetes. Gene regulation and protein expression are discovered associated with metabolic syndrome. We aimed to figure out the correlation between Klotho protein and metabolic syndrome in generally healthy adults. A cross-sectional study of 9976 respondents ≥ 18 years old from the US National Health and Nutrition Examination Survey (2007-2012) by utilizing their soluble Klotho protein concentrations. Multivariate linear regression models were used to analyze the effect of soluble Klotho protein on the prevalence of metabolic syndrome. Soluble Klotho protein concentration was inversely correlated with the presence of metabolic syndromes (p = 0.013) and numbers of components that met the definition of metabolic syndrome (p < 0.05). The concentration of Soluble Klotho protein was negatively associated with abdominal obesity and high triglyceride (TG) in the adjusted model (p < 0.05). Soluble Klotho protein is correlated with changing metabolic syndrome components in adults, especially central obesity and high TG levels. Despite conventional function as co-factor with fibroblast growth factor-23 (FGF23) that regulates phosphate and vitamin D homeostasis, FGF23-independent soluble Klotho protein may act on multiple signal pathways in different organs and tissue in roles of anti-aging and protection from metabolic syndrome.
Collapse
|
19
|
Campos JTADM, Oliveira MSD, Soares LP, Medeiros KAD, Campos LRDS, Lima JG. DNA repair-related genes and adipogenesis: Lessons from congenital lipodystrophies. Genet Mol Biol 2022; 45:e20220086. [DOI: 10.1590/1678-4685-gmb-2022-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 09/20/2022] [Indexed: 11/09/2022] Open
|
20
|
Muratsu J, Kamide K, Fujimoto T, Takeya Y, Sugimoto K, Taniyama Y, Morishima A, Sakaguchi K, Matsuzawa Y, Rakugi H. The Combination of High Levels of Adiponectin and Insulin Resistance Are Affected by Aging in Non-Obese Old Peoples. Front Endocrinol (Lausanne) 2021; 12:805244. [PMID: 35069451 PMCID: PMC8777034 DOI: 10.3389/fendo.2021.805244] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/15/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Adipokine dysregulation is a key feature of insulin resistance and a metabolic syndrome associated with obesity. Low adiponectin levels are associated with higher risks of cardiovascular diseases (CVD). However, high adiponectin levels have also been associated with increased all-cause and cardiovascular mortality in the elderly. This adiponectin paradox has yet to be clarified, which has hindered our understanding of the biological role of adiponectin. Adipokine dysregulation and insulin resistance are also associated with energy-deprivation conditions, such as frailty in old age. The objective of this study was to investigate the association between plasma adiponectin and insulin resistance using the homeostasis model assessment for insulin resistance (HOMA-IR) classified by age. In particular, we sought to determine the factors of the subjects associated with both high adiponectin levels and HOMA-IR (H-adiponectin/H-HOMA) and high adiponectin levels and low HOMA-IR (H-adiponectin/L-HOMA). METHODS The eligible subjects in this cross-sectional study were 33,216 individuals who had undergone health checkups at the Physical Checkup Center of Sumitomo Hospital between April 2008 and December 2018. After excluding 26,371 individuals who were under 60 years old, 529 who had been taking medications for diabetes mellitus, and 690 with missing data, the present study included 5,673 (3,467 males, 2,206 females) subjects with no missing data. The relationship between serum adiponectin levels and HOMA-IR was assessed using logistic regression models adjusted by clinically relevant factors. RESULTS In the multivariable logistic regression analysis, age and low BMI were shown to positively correlate with the characteristics of H-adiponectin/H-HOMA. In females, systolic blood pressure was also shown to be an associated factor. CONCLUSION In conclusion, this study showed that aging or a low BMI may contribute to high adiponectin levels and insulin resistance.
Collapse
Affiliation(s)
- Jun Muratsu
- Department of Nephrology and Hypertension, Sumitomo Hospital, Osaka, Japan
- Department of Nephrology, Rinku General Medical Center, Izumisano City, Japan
- *Correspondence: Jun Muratsu,
| | - Kei Kamide
- Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takashi Fujimoto
- Department of Nephrology and Hypertension, Sumitomo Hospital, Osaka, Japan
| | - Yasushi Takeya
- Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ken Sugimoto
- Department of General and Geriatric Medicine, Kawasaki Medical School General Medical Center, Okayama, Japan
| | - Yoshiaki Taniyama
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Atsuyuki Morishima
- Department of Nephrology and Hypertension, Sumitomo Hospital, Osaka, Japan
| | | | - Yuji Matsuzawa
- Department of Nephrology and Hypertension, Sumitomo Hospital, Osaka, Japan
| | - Hiromi Rakugi
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
21
|
Priego T, Martín AI, González-Hedström D, Granado M, López-Calderón A. Role of hormones in sarcopenia. VITAMINS AND HORMONES 2021; 115:535-570. [PMID: 33706961 DOI: 10.1016/bs.vh.2020.12.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aging involves numerous changes in body composition that include a decrease in skeletal muscle mass. The gradual reduction in muscle mass is associated with a simultaneous decrease in muscle strength, which leads to reduced mobility, fragility and loss of independence. This process called sarcopenia is secondary to several factors such as sedentary lifestyle, inadequate nutrition, chronic inflammatory state and neurological alterations. However, the endocrine changes associated with aging seem to be of special importance in the development of sarcopenia. On one hand, advancing age is associated with a decreased secretion of the main hormones that stimulate skeletal muscle mass and function (growth hormone, insulin-like growth factor 1 (IGFI), testosterone and estradiol). On the other hand, the alteration of the IGF-I signaling along with decreased insulin sensitivity also have an important impact on myogenesis. Other hormones that decline with aging such as the adrenal-derived dehydroepiandrosterone, thyroid hormones and vitamin D seem to also be involved in sarcopenia. Adipokines released by adipose tissue show important changes during aging and can affect muscle physiology and metabolism. In addition, catabolic hormones such as cortisol and angiotensin II can accelerate aged-induced muscle atrophy, as they are involved in muscle wasting and their levels increase with age. The role played by all of these hormones and the possible use of some of them as therapeutic tools for treating sarcopenia will be discussed.
Collapse
Affiliation(s)
- T Priego
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - A I Martín
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - D González-Hedström
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Pharmactive Biotech Products S.L. Parque Científico de Madrid. Avenida del Doctor Severo Ochoa, 37 Local 4J, 28108 Alcobendas, Madrid, Spain
| | - M Granado
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; CIBER Fisiopatología de la Obesidad y Nutrición. Instituto de Salud Carlos III, Madrid, Spain
| | - A López-Calderón
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
22
|
Zamboni M, Nori N, Brunelli A, Zoico E. How does adipose tissue contribute to inflammageing? Exp Gerontol 2020; 143:111162. [PMID: 33253807 DOI: 10.1016/j.exger.2020.111162] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/09/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
Across aging, white adipose tissue (WAT) undergoes significant changes in quantity and distribution, with an increase in visceral adipose tissue, ectopic fat deposition and a decline in gluteofemoral subcutaneous depot. In particular, WAT becomes dysfunctional with an increase in production of inflammatory peptides and a decline of those with anti-inflammatory activity and infiltration of inflammatory cells. Moreover, dysfunction of WAT is characterized by preadipocyte differentiation decline, increased oxidative stress and mitochondrial dysfunction, reduction in vascularization and hypoxia, increased fibrosis and senescent cell accumulation. WAT changes represent an important hallmark of the aging process and may be responsible for the systemic pro-inflammatory state ("inflammageing") typical of aging itself, leading to age-related metabolic alterations. This review focuses on mechanisms linking age-related WAT changes to inflammageing.
Collapse
Affiliation(s)
- Mauro Zamboni
- Division of Geriatric Medicine, Department of Surgery, Dentistry, Pediatric and Gynecology, University of Verona, Verona, Italy.
| | - Nicole Nori
- Division of Geriatric Medicine, Department of Medicine, University of Verona, Verona, Italy
| | - Anna Brunelli
- Division of Geriatric Medicine, Department of Medicine, University of Verona, Verona, Italy
| | - Elena Zoico
- Division of Geriatric Medicine, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
23
|
Vishvanath L, Gupta RK. Contribution of adipogenesis to healthy adipose tissue expansion in obesity. J Clin Invest 2020; 129:4022-4031. [PMID: 31573549 DOI: 10.1172/jci129191] [Citation(s) in RCA: 352] [Impact Index Per Article: 70.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The manner in which white adipose tissue (WAT) expands and remodels directly impacts the risk of developing metabolic syndrome in obesity. Preferential accumulation of visceral WAT is associated with increased risk for insulin resistance, whereas subcutaneous WAT expansion is protective. Moreover, pathologic WAT remodeling, typically characterized by adipocyte hypertrophy, chronic inflammation, and fibrosis, is associated with insulin resistance. Healthy WAT expansion, observed in the "metabolically healthy" obese, is generally associated with the presence of smaller and more numerous adipocytes, along with lower degrees of inflammation and fibrosis. Here, we highlight recent human and rodent studies that support the notion that the ability to recruit new fat cells through adipogenesis is a critical determinant of healthy adipose tissue distribution and remodeling in obesity. Furthermore, we discuss recent advances in our understanding of the identity of tissue-resident progenitor populations in WAT made possible through single-cell RNA sequencing analysis. A better understanding of adipose stem cell biology and adipogenesis may lead to novel strategies to uncouple obesity from metabolic disease.
Collapse
|
24
|
Abstract
The Klotho proteins, αKlotho and βKlotho, are essential components of endocrine fibroblast growth factor (FGF) receptor complexes, as they are required for the high-affinity binding of FGF19, FGF21 and FGF23 to their cognate FGF receptors (FGFRs). Collectively, these proteins form a unique endocrine system that governs multiple metabolic processes in mammals. FGF19 is a satiety hormone that is secreted from the intestine on ingestion of food and binds the βKlotho-FGFR4 complex in hepatocytes to promote metabolic responses to feeding. By contrast, under fasting conditions, the liver secretes the starvation hormone FGF21, which induces metabolic responses to fasting and stress responses through the activation of the hypothalamus-pituitary-adrenal axis and the sympathetic nervous system following binding to the βKlotho-FGFR1c complex in adipocytes and the suprachiasmatic nucleus, respectively. Finally, FGF23 is secreted by osteocytes in response to phosphate intake and binds to αKlotho-FGFR complexes, which are expressed most abundantly in renal tubules, to regulate mineral metabolism. Growing evidence suggests that the FGF-Klotho endocrine system also has a crucial role in the pathophysiology of ageing-related disorders, including diabetes, cancer, arteriosclerosis and chronic kidney disease. Therefore, targeting the FGF-Klotho endocrine axes might have therapeutic benefit in multiple systems; investigation of the crystal structures of FGF-Klotho-FGFR complexes is paving the way for the development of drugs that can regulate these axes.
Collapse
Affiliation(s)
- Makoto Kuro-O
- Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan. .,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
25
|
Combined exercise and calorie restriction therapies restore contractile and mitochondrial functions in skeletal muscle of obese–insulin resistant rats. Nutrition 2019; 62:74-84. [DOI: 10.1016/j.nut.2018.11.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 01/25/2023]
|
26
|
Rubio-Ruiz ME, Guarner-Lans V, Pérez-Torres I, Soto ME. Mechanisms Underlying Metabolic Syndrome-Related Sarcopenia and Possible Therapeutic Measures. Int J Mol Sci 2019; 20:ijms20030647. [PMID: 30717377 PMCID: PMC6387003 DOI: 10.3390/ijms20030647] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 12/15/2022] Open
Abstract
Although there are several reviews that report the interrelationship between sarcopenia and obesity and insulin resistance, the relation between sarcopenia and the other signs that compose the metabolic syndrome (MetS) has not been extensively revised. Here, we review the mechanisms underlying MetS-related sarcopenia and discuss the possible therapeutic measures proposed. A vicious cycle between the loss of muscle and the accumulation of intramuscular fat might be associated with MetS via a complex interplay of factors including nutritional intake, physical activity, body fat, oxidative stress, proinflammatory cytokines, insulin resistance, hormonal changes, and mitochondrial dysfunction. The enormous differences in lipid storage capacities between the two genders and elevated amounts of endogenous fat having lipotoxic effects that lead to the loss of muscle mass are discussed. The important repercussions of MetS-related sarcopenia on other illnesses that lead to increased disability, morbidity, and mortality are also addressed. Additional research is needed to better understand the pathophysiology of MetS-related sarcopenia and its consequences. Although there is currently no consensus on the treatment, lifestyle changes including diet and power exercise seem to be the best options.
Collapse
Affiliation(s)
- María Esther Rubio-Ruiz
- Department of Physiology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico.
| | - Verónica Guarner-Lans
- Department of Physiology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico.
| | - Israel Pérez-Torres
- Department of Pathology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico.
| | - María Elena Soto
- Department of Immunology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico.
| |
Collapse
|
27
|
Weight Gain and Liver Steatosis in Patients with Inflammatory Bowel Diseases. Nutrients 2019; 11:nu11020303. [PMID: 30717085 PMCID: PMC6412993 DOI: 10.3390/nu11020303] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 12/13/2022] Open
Abstract
Background and Aim: Most studies focused on the benefits of weight loss on hepatic steatosis and no studies have been specifically designed to assess the role of weight gain on the development of liver steatosis in patients affected by inflammatory bowel diseases. The aim of this study was to analyse the relation between weight change over time and liver steatosis in patients with inflammatory bowel diseases. Methods: We retrospectively evaluated a population of 89 ambulatory patients in clinical remission or affected by mild disease, as determined from disease activity indices, with at least one follow-up visit. Transient elastography was used to quantify liver steatosis. Results: A total of 49 individuals (55%) were overweight/obese at baseline. A significant difference in weight change was found between participants that improved, were stable and worsened, over a mean follow-up of four years. (−1.0 kg ± 4; 2.5 kg ± 6; and 5.4 kg ± 5; respectively, p = 0.009). We found a greater probability of worsening in the hepatic fat content in individuals who gained more than 6% of body weight than in those gaining less than this value (log–rank (Mantel–Cox) χ2 test = 9.85; df = 1; p = 0.002). Conclusions: A body weight gain of 6% increases the probability of deterioration in liver steatosis over a period of four years in patients with inflammatory bowel diseases. Weight gain prevention with lifestyle interventions may be the cornerstone treatment of these patients.
Collapse
|
28
|
Arai Y, Kamide K, Hirose N. Adipokines and Aging: Findings From Centenarians and the Very Old. Front Endocrinol (Lausanne) 2019; 10:142. [PMID: 30923512 PMCID: PMC6426744 DOI: 10.3389/fendo.2019.00142] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/15/2019] [Indexed: 12/16/2022] Open
Abstract
Adipose tissue, which was once considered as a simple energy storage depot, is now recognized as an active endocrine organ that regulates the whole-body energy homeostasis by secreting hundreds of bioactive substances termed adipokines. Dysregulation of adipokines is a key feature of insulin resistance and a metabolic syndrome associated with obesity. Adipokine dysregulation and insulin resistance are also associated with energy-deprivation conditions, such as frailty in old age. Previous studies have demonstrated that preserved insulin sensitivity and low prevalence of diabetes are the metabolic peculiarities of centenarians, suggesting the possible role of adipokine homeostasis in healthy longevity. Among the numerous adipokines, adiponectin is regarded as unique and salutary, showing negative correlations with several age- and obesity-related metabolic disturbances and a positive correlation with longevity and insulin sensitivity among centenarians. However, large-scale epidemiological studies have implied the opposite aspect of this adipokine as a prognostic factor for all-cause and cardiovascular mortality in patients with heart failure or kidney disease. In this review, the clinical significance of adiponectin was comparatively addressed in centenarians and the very old, in terms of frailty, cardiovascular risk, and mortality.
Collapse
Affiliation(s)
- Yasumichi Arai
- Center for Supercentenarian Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Kei Kamide
- School of Allied Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Nobuyoshi Hirose
- Center for Supercentenarian Medical Research, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
29
|
Jaikumkao K, Pongchaidecha A, Chueakula N, Thongnak LO, Wanchai K, Chatsudthipong V, Chattipakorn N, Lungkaphin A. Dapagliflozin, a sodium-glucose co-transporter-2 inhibitor, slows the progression of renal complications through the suppression of renal inflammation, endoplasmic reticulum stress and apoptosis in prediabetic rats. Diabetes Obes Metab 2018; 20:2617-2626. [PMID: 29923295 DOI: 10.1111/dom.13441] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 06/05/2018] [Accepted: 06/15/2018] [Indexed: 12/13/2022]
Abstract
AIM To evaluate the renoprotective roles of dapagliflozin in prediabetic rats in order to elucidate the effects of this sodium-glucose co-transporter-2 (SGLT2) inhibitor on the renal complications associated with metabolic dysfunction in diet-induced obesity. METHODS Obesity was induced by feeding a high-fat diet (HFD) to male Wistar rats for 16 weeks. HFD-fed rats were treated with dapagliflozin (1 mg/kg/d) or metformin (30 mg/kg/d) by oral gavage for 4 weeks after insulin resistance had been established. The metabolic characteristics and renal function associated with lipid accumulation, inflammation, fibrosis, endoplasmic reticulum (ER) stress and apoptosis in the renal tissue were examined. RESULTS The results showed that HFD-fed rats developed both obesity and impaired renal function, along with increased renal triglyceride accumulation. Importantly, dapagliflozin had greater efficacy in improving renal function and reducing both body weight and visceral fat accumulation than metformin treatment. Dapagliflozin and metformin were found to have similar effects regarding the suppression of renal triglycerides, superoxide dismutase (SOD) expression and malondialdehyde (MDA) levels, subsequently leading to a decrease in renal inflammation and fibrosis. Renal ER stress and apoptosis were increased in HFD-fed rats and were effectively reduced after administration of dapagliflozin. The expression of renal SGLT2 was not affected by administration of dapagliflozin or metformin. CONCLUSION Collectively, these findings indicate that dapagliflozin exerts renoprotective effects by alleviating obesity-induced renal inflammation, fibrosis, ER stress, apoptosis and lipid accumulation in the prediabetic condition.
Collapse
Affiliation(s)
- Krit Jaikumkao
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Anchalee Pongchaidecha
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nuttawud Chueakula
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - La-Ongdao Thongnak
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Keerati Wanchai
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- School of Medicine, Mae Fah Luang University, Chiang Rai, Thailand
| | | | - Nipon Chattipakorn
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Research and Training Centre, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Anusorn Lungkaphin
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Centre for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
30
|
Chronic palmitic acid-induced lipotoxicity correlates with defective trafficking of ATP sensitive potassium channels in pancreatic β cells. J Nutr Biochem 2018; 59:37-48. [DOI: 10.1016/j.jnutbio.2018.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/13/2018] [Accepted: 05/10/2018] [Indexed: 01/09/2023]
|
31
|
Choi SR, Lim JH, Kim MY, Kim EN, Kim Y, Choi BS, Kim YS, Kim HW, Lim KM, Kim MJ, Park CW. Adiponectin receptor agonist AdipoRon decreased ceramide, and lipotoxicity, and ameliorated diabetic nephropathy. Metabolism 2018; 85:348-360. [PMID: 29462574 DOI: 10.1016/j.metabol.2018.02.004] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/15/2018] [Accepted: 02/10/2018] [Indexed: 01/16/2023]
Abstract
BACKGROUND Adiponectin is known to take part in the regulation of energy metabolism. AdipoRon, an orally-active synthetic adiponectin agonist, binds to both adiponectin receptors (AdipoR)1/R2 and ameliorates diabetic complications. Among the lipid metabolites, the ceramide subspecies of sphingolipids have been linked to features of lipotoxicity, including inflammation, cell death, and insulin resistance. We investigated the role of AdipoRon in the prevention and development of type 2 diabetic nephropathy. METHODS AdipoRon (30 mg/kg) was mixed into the standard chow diet and provided to db/db mice (db + AdipoRon, n = 8) and age-matched male db/m mice (dm + AdipoRon, n = 8) from 17 weeks of age for 4 weeks. Control db/db (db cont, n = 8) and db/m mice (dm cont, n = 8) were fed a normal diet of mouse chow. RESULTS AdipoRon-fed db/db mice showed a decreased amount of albuminuria and lipid accumulation in the kidney with no significant changes in serum adiponectin, glucose, and body weight. Restoring expression of adiponectin receptor-1 and -2 in the renal cortex was observed in db/db mice with AdipoRon administration. Consistent up-regulation of phospho-Thr172 AMP-dependent kinase (AMPK), peroxisome proliferative-activated receptor α (PPARα), phospho-Thr473 Akt, phospho-Ser79Acetyl-CoA carboxylase (ACC), and phospho-Ser1177 endothelial NO synthase (eNOS), and down-regulation of protein phosphatase 2A (PP2A), sterol regulatory element-binding protein-1c (SREBP-1c), and inducible nitric oxide synthase (iNOS) were associated within the same group. AdipoRon lowered cellular ceramide levels by activation of acid ceramidase, which normalized ceramide to sphingosine-1 phosphate (S1P) ratio. In glomerular endothelial cells (GECs) and podocytes, AdipoRon treatment markedly decreased palmitate-induced lipotoxicity, which ultimately ameliorated oxidative stress and apoptosis. CONCLUSIONS AdipoRon may prevent lipotoxicity in the kidney particularly in both GECs and podocytes through an improvement in lipid metabolism, as shown by the ratio of ceramide to sphingosines, and further contribute to prevent deterioration of renal function, independent of the systemic effects of adiponectin. The reduction in oxidative stress and apoptosis by AdipoRon provides protection against renal damage, thereby ameliorating endothelial dysfunction in type 2 diabetic nephropathy.
Collapse
Affiliation(s)
- Sun Ryoung Choi
- Division of Nephrology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| | - Ji Hee Lim
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea; Division of Nephrology, Department of Internal Medicine, Institute for Aging and Metabolic Diseases, Seoul St. Mary's Hospital, Seoul, Korea
| | - Min Young Kim
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea; Division of Nephrology, Department of Internal Medicine, Institute for Aging and Metabolic Diseases, Seoul St. Mary's Hospital, Seoul, Korea
| | - Eun Nim Kim
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea; Division of Nephrology, Department of Internal Medicine, Institute for Aging and Metabolic Diseases, Seoul St. Mary's Hospital, Seoul, Korea
| | - Yaeni Kim
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea; Division of Nephrology, Department of Internal Medicine, Institute for Aging and Metabolic Diseases, Seoul St. Mary's Hospital, Seoul, Korea
| | - Beom Soon Choi
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea; Division of Nephrology, Department of Internal Medicine, Institute for Aging and Metabolic Diseases, Seoul St. Mary's Hospital, Seoul, Korea
| | - Yong-Soo Kim
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea; Division of Nephrology, Department of Internal Medicine, Institute for Aging and Metabolic Diseases, Seoul St. Mary's Hospital, Seoul, Korea
| | - Hye Won Kim
- Department of Rehabilitation, College of Medicine, the Catholic University of Korea, Seoul, Republic of Korea
| | - Kyung-Min Lim
- College of Pharmacology, Ewha Womans University, Seoul, Republic of Korea
| | - Min Jeong Kim
- College of Pharmacology, Ewha Womans University, Seoul, Republic of Korea
| | - Cheol Whee Park
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea; Division of Nephrology, Department of Internal Medicine, Institute for Aging and Metabolic Diseases, Seoul St. Mary's Hospital, Seoul, Korea.
| |
Collapse
|
32
|
TAKAYAMA M, AZUMA K, SHIMIZU-HIROTA R, MAKINO K, SEINO T, YOSHIDA T, KASHIWAGI K, HIROSE H, INOUE N, IWAO Y. Sarcopenic obesity is associated with osteopenia among Japanese elderly women: A cross-sectional study from comprehensive health checkups. ACTA ACUST UNITED AC 2018. [DOI: 10.7143/jhep.45.573] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
| | - Koichiro AZUMA
- Institute for Integrated Sports Medicine, Keio University School of Medicine
| | | | - Kanako MAKINO
- Center for Preventive Medicine, Keio University Hospital
| | - Takashi SEINO
- Center for Preventive Medicine, Keio University Hospital
| | | | | | - Hiroshi HIROSE
- Center for Preventive Medicine, Keio University Hospital
- Health Center, Keio University
| | - Nagamu INOUE
- Center for Preventive Medicine, Keio University Hospital
| | - Yasushi IWAO
- Center for Preventive Medicine, Keio University Hospital
| |
Collapse
|
33
|
Crescenzo R, Cigliano L, Mazzoli A, Cancelliere R, Carotenuto R, Tussellino M, Liverini G, Iossa S. Early Effects of a Low Fat, Fructose-Rich Diet on Liver Metabolism, Insulin Signaling, and Oxidative Stress in Young and Adult Rats. Front Physiol 2018; 9:411. [PMID: 29755364 PMCID: PMC5932594 DOI: 10.3389/fphys.2018.00411] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 04/04/2018] [Indexed: 12/18/2022] Open
Abstract
The increase in the use of refined food, which is rich in fructose, is of particular concern in children and adolescents, since the total caloric intake and the prevalence of metabolic syndrome are increasing continuously in these populations. Nevertheless, the effects of high fructose diet have been mostly investigated in adults, by focusing on the effect of a long-term fructose intake. Notably, some reports evidenced that even short-term fructose intake exerts detrimental effects on metabolism. Therefore, the aim of this study was to compare the metabolic changes induced by the fructose-rich diet in rats of different age, i.e., young (30 days old) and adult (90 days old) rats. The fructose-rich diet increased whole body lipid content in adult, but not in young rats. The analysis of liver markers of inflammation suggests that different mechanisms depending on the age might be activated after the fructose-rich diet. In fact, a pro-inflammatory gene-expression analysis showed just a minor activation of macrophages in young rats compared to adult rats, while other markers of low-grade metabolic inflammation (TNF-alpha, myeloperoxidase, lipocalin, haptoglobin) significantly increased. Inflammation was associated with oxidative damage to hepatic lipids in young and adult rats, while increased levels of hepatic nitrotyrosine and ceramides were detected only in young rats. Interestingly, fructose-induced hepatic insulin resistance was evident in young but not in adult rats, while whole body insulin sensitivity decreased both in fructose-fed young and adult rats. Taken together, the present data indicate that young rats do not increase their body lipids but are exposed to metabolic perturbations, such as hepatic insulin resistance and hepatic oxidative stress, in line with the finding that increased fructose intake may be an important predictor of metabolic risk in young people, independently of weight status. These results indicate the need of corrective nutritional interventions for young people and adults as well for the prevention of fructose-induced metabolic alterations.
Collapse
Affiliation(s)
| | - Luisa Cigliano
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Arianna Mazzoli
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Rosa Cancelliere
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Rosa Carotenuto
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | - Giovanna Liverini
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Susanna Iossa
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
34
|
Yeast Cells Exposed to Exogenous Palmitoleic Acid Either Adapt to Stress and Survive or Commit to Regulated Liponecrosis and Die. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3074769. [PMID: 29636840 PMCID: PMC5831759 DOI: 10.1155/2018/3074769] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 11/27/2017] [Accepted: 12/20/2017] [Indexed: 12/11/2022]
Abstract
A disturbed homeostasis of cellular lipids and the resulting lipotoxicity are considered to be key contributors to many human pathologies, including obesity, metabolic syndrome, type 2 diabetes, cardiovascular diseases, and cancer. The yeast Saccharomyces cerevisiae has been successfully used for uncovering molecular mechanisms through which impaired lipid metabolism causes lipotoxicity and elicits different forms of regulated cell death. Here, we discuss mechanisms of the “liponecrotic” mode of regulated cell death in S. cerevisiae. This mode of regulated cell death can be initiated in response to a brief treatment of yeast with exogenous palmitoleic acid. Such treatment prompts the incorporation of exogenously added palmitoleic acid into phospholipids and neutral lipids. This orchestrates a global remodeling of lipid metabolism and transfer in the endoplasmic reticulum, mitochondria, lipid droplets, and the plasma membrane. Certain features of such remodeling play essential roles either in committing yeast to liponecrosis or in executing this mode of regulated cell death. We also outline four processes through which yeast cells actively resist liponecrosis by adapting to the cellular stress imposed by palmitoleic acid and maintaining viability. These prosurvival cellular processes are confined in the endoplasmic reticulum, lipid droplets, peroxisomes, autophagosomes, vacuoles, and the cytosol.
Collapse
|
35
|
Larrañaga-Vera A, Lamuedra A, Pérez-Baos S, Prieto-Potin I, Peña L, Herrero-Beaumont G, Largo R. Increased synovial lipodystrophy induced by high fat diet aggravates synovitis in experimental osteoarthritis. Arthritis Res Ther 2017; 19:264. [PMID: 29191221 PMCID: PMC5709929 DOI: 10.1186/s13075-017-1473-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/13/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Metabolic syndrome (MetS) may be associated with knee osteoarthritis (OA), but the association between the individual components and OA are not well-understood. We aimed to study the effect of hypercholesterolemia on synovial inflammation in knee OA. METHODS OA was surgically induced in rabbits fed with standard diet (OA group, n = 10) or in rabbits fed with high fat diet (OA-HFD, n = 10). Healthy rabbits receiving standard diet (Control, n = 10) or fed with HFD (HFD, n = 6) were also monitored. Twelve weeks after OA induction, synovial membranes were isolated and processed for studies. RESULTS Animals fed HFD showed higher levels of total serum cholesterol, triglycerides and C-reactive protein than control rabbits. Twelve weeks after OA induction, synovial membrane inflammation and macrophage infiltration were increased in rabbits with OA, particularly in the OA-HFD group. Extensive decrease of synovial adipose tissue area, adipocyte size and perilipin-1A synthesis were observed in the OA-HFD group in comparison to the OA and control groups. The HFD further increased the proinflammatory mediators IL-1β, IL-6 and TNF in the OA synovium. However, the synovial gene expression of adipokines, such as leptin and adiponectin, were markedly decreased in the rabbits with OA, especially in the OA-HFD group, in correlation with adipose tissue loss. However, circulating leptin was upregulated in the HFD and OA-HFD groups. CONCLUSION Our results indicate that a HFD is an aggravating factor worsening synovial membrane inflammation during OA, guided by increased infiltration of macrophages and removal of the adipose tissue, together with a remarkable presence of proinflammatory factors. Synovial adipocytes and dyslipemia could probably play pivotal roles in OA joint deterioration in patients with MetS, supporting that the link between obesity and OA transcends mechanical loading.
Collapse
Affiliation(s)
- Ane Larrañaga-Vera
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz UAM, Avda. Reyes Católicos, 2, Madrid, 28040, Spain
| | - Ana Lamuedra
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz UAM, Avda. Reyes Católicos, 2, Madrid, 28040, Spain
| | - Sandra Pérez-Baos
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz UAM, Avda. Reyes Católicos, 2, Madrid, 28040, Spain
| | - Ivan Prieto-Potin
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz UAM, Avda. Reyes Católicos, 2, Madrid, 28040, Spain
| | - Leticia Peña
- Clinical Analysis Department, HU-Fundación Jiménez Díaz, Madrid, Spain
| | - Gabriel Herrero-Beaumont
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz UAM, Avda. Reyes Católicos, 2, Madrid, 28040, Spain.
| | - Raquel Largo
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz UAM, Avda. Reyes Católicos, 2, Madrid, 28040, Spain
| |
Collapse
|
36
|
Bipolar Disorder and Immune Dysfunction: Epidemiological Findings, Proposed Pathophysiology and Clinical Implications. Brain Sci 2017; 7:brainsci7110144. [PMID: 29084144 PMCID: PMC5704151 DOI: 10.3390/brainsci7110144] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 10/25/2017] [Accepted: 10/27/2017] [Indexed: 12/22/2022] Open
Abstract
Bipolar disorder (BD) is strongly associated with immune dysfunction. Replicated epidemiological studies have demonstrated that BD has high rates of inflammatory medical comorbidities, including autoimmune disorders, chronic infections, cardiovascular disease and metabolic disorders. Cytokine studies have demonstrated that BD is associated with chronic low-grade inflammation with further increases in pro-inflammatory cytokine levels during mood episodes. Several mechanisms have been identified to explain the bidirectional relationship between BD and immune dysfunction. Key mechanisms include cytokine-induced monoamine changes, increased oxidative stress, pathological microglial over-activation, hypothalamic-pituitary-adrenal (HPA) axis over-activation, alterations of the microbiome-gut-brain axis and sleep-related immune changes. The inflammatory-mood pathway presents several potential novel targets in the treatment of BD. Several proof-of-concept clinical trials have shown a positive effect of anti-inflammatory agents in the treatment of BD; however, further research is needed to determine the clinical utility of these treatments. Immune dysfunction is likely to only play a role in a subset of BD patients and as such, future clinical trials should also strive to identify which specific group(s) of BD patients may benefit from anti-inflammatory treatments.
Collapse
|
37
|
Maffetone PB, Rivera-Dominguez I, Laursen PB. Overfat and Underfat: New Terms and Definitions Long Overdue. Front Public Health 2017; 4:279. [PMID: 28097119 PMCID: PMC5206235 DOI: 10.3389/fpubh.2016.00279] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 12/06/2016] [Indexed: 12/25/2022] Open
Abstract
For the first time in human history, the number of obese people worldwide now exceeds those who are underweight. However, it is possible that there is an even more serious problem-an overfat pandemic comprised of people who exhibit metabolic health impairments associated with excess fat mass relative to lean body mass. Many overfat individuals, however, are not necessarily classified clinically as overweight or obese, despite the common use of body mass index as the clinical classifier of obesity and overweight. The well-documented obesity epidemic may merely be the tip of the overfat iceberg. The counterpart to the overfat condition is the underfat state, also a common and dangerous health circumstance associated with chronic illness and starvation. Currently (and paradoxically), high rates of obesity and overweight development coexist with undernutrition in developing countries. Studies in cognitive linguistics suggest that accurate, useful, and unintimidating terminology regarding abnormal body fat conditions could help increase a person's awareness of their situation, helping the process of implementing prevention and simple remedies. Our contention is that promoting the terms "overfat" and "underfat" to describe body composition states to the point where they enter into common usage may help in creating substantive improvements in world health.
Collapse
Affiliation(s)
| | | | - Paul B. Laursen
- Sports Performance Research Institute New Zealand (SPRINZ), AUT University, Auckland, New Zealand
| |
Collapse
|
38
|
TAKAYAMA M, AZUMA K, HAYASHI K, SHIMIZU-HIROTA R, MAKINO K, BESSHO R, YOSHIDA T, KASHIWAGI K, HIROSE H, INOUE N, IWAO Y. Relationship between sarcopenic obesity and metabolic syndrome among Japanese elderly who underwent a comprehensive health checkup. ACTA ACUST UNITED AC 2017. [DOI: 10.7143/jhep.44.587] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
| | - Koichiro AZUMA
- Institute for Integrated Sports Medicine, Keio University School of Medicine
| | - Kaori HAYASHI
- Center for Preventive Medicine, Keio University Hospital
- Department of Internal Medicine, Keio University School of Medicine
| | | | - Kanako MAKINO
- Center for Preventive Medicine, Keio University Hospital
| | - Rieko BESSHO
- Center for Preventive Medicine, Keio University Hospital
| | | | | | - Hiroshi HIROSE
- Center for Preventive Medicine, Keio University Hospital
- Health Center, Keio University
| | - Nagamu INOUE
- Center for Preventive Medicine, Keio University Hospital
| | - Yasushi IWAO
- Center for Preventive Medicine, Keio University Hospital
| |
Collapse
|
39
|
Thiagarajan D, Ananthakrishnan R, Zhang J, O'Shea KM, Quadri N, Li Q, Sas K, Jing X, Rosario R, Pennathur S, Schmidt AM, Ramasamy R. Aldose Reductase Acts as a Selective Derepressor of PPARγ and the Retinoic Acid Receptor. Cell Rep 2016; 15:181-196. [PMID: 27052179 DOI: 10.1016/j.celrep.2016.02.086] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 01/13/2016] [Accepted: 02/24/2016] [Indexed: 01/04/2023] Open
Abstract
Histone deacetylase 3 (HDAC3), a chromatin-modifying enzyme, requires association with the deacetylase-containing domain (DAD) of the nuclear receptor corepressors NCOR1 and SMRT for its stability and activity. Here, we show that aldose reductase (AR), the rate-limiting enzyme of the polyol pathway, competes with HDAC3 to bind the NCOR1/SMRT DAD. Increased AR expression leads to HDAC3 degradation followed by increased PPARγ signaling, resulting in lipid accumulation in the heart. AR also downregulates expression of nuclear corepressor complex cofactors including Gps2 and Tblr1, thus affecting activity of the nuclear corepressor complex itself. Though AR reduces HDAC3-corepressor complex formation, it specifically derepresses the retinoic acid receptor (RAR), but not other nuclear receptors such as the thyroid receptor (TR) and liver X receptor (LXR). In summary, this work defines a distinct role for AR in lipid and retinoid metabolism through HDAC3 regulation and consequent derepression of PPARγ and RAR.
Collapse
Affiliation(s)
- Devi Thiagarajan
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, NY 10016, USA
| | - Radha Ananthakrishnan
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, NY 10016, USA
| | - Jinghua Zhang
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, NY 10016, USA
| | - Karen M O'Shea
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, NY 10016, USA
| | - Nosirudeen Quadri
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, NY 10016, USA
| | - Qing Li
- Columbia University Medical Center, New York, NY 10032, USA
| | - Kelli Sas
- Division of Nephrology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Xiao Jing
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, NY 10016, USA
| | - Rosa Rosario
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, NY 10016, USA
| | - Subramaniam Pennathur
- Division of Nephrology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ann Marie Schmidt
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, NY 10016, USA
| | - Ravichandran Ramasamy
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
40
|
Mapping inflammation onto mood: Inflammatory mediators of anhedonia. Neurosci Biobehav Rev 2016; 64:148-66. [PMID: 26915929 DOI: 10.1016/j.neubiorev.2016.02.017] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 11/30/2015] [Accepted: 02/18/2016] [Indexed: 12/20/2022]
Abstract
Evidence supports inflammatory involvement in mood and cognitive symptoms across psychiatric, neurological and medical disorders; however, inflammation is not a sensitive or specific characteristic of these diagnoses. The National Institute of Mental Health Research Domain Criteria (RDoC) ask for a shift away from symptom-based diagnoses toward a transdiagnostic neurobiological focus in the study of brain illnesses. The RDoC matrix may provide a useful framework for integrating the effects of inflammation on brain function. Based on preclinical and clinical findings, relevant relationships span negative and positive valence systems, cognitive systems, systems for social processes and arousal/regulatory systems. As an exemplar, we consider the psychopathological domain of anhedonia, conceptualizing the relevance of inflammation (e.g., cellular immunity) and downstream processes (e.g., indoleamine 2,3-dioxygenase activation and oxidative inactivation of tetrahydrobiopterin) across RDoC units of analysis (e.g., catecholamine neurotransmitter molecules, nucleus accumbens medium spiny neuronal cells, dopaminergic mesolimbic and mesocortical reward circuits, animal paradigms, etc.). We discuss implications across illnesses affecting the brain, including infection, major depressive disorder, stroke, Alzheimer's disease and type 2 diabetes.
Collapse
|
41
|
Pimentel GD, Contreras C, López M. Fatty Acids and Hypothalamic Dysfunction in Obesity. HANDBOOK OF LIPIDS IN HUMAN FUNCTION 2016:557-582. [DOI: 10.1016/b978-1-63067-036-8.00021-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
42
|
Wang H, Qu H, Deng H. Plasma HMGB-1 Levels in Subjects with Obesity and Type 2 Diabetes: A Cross-Sectional Study in China. PLoS One 2015; 10:e0136564. [PMID: 26317615 PMCID: PMC4552731 DOI: 10.1371/journal.pone.0136564] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/05/2015] [Indexed: 12/22/2022] Open
Abstract
Object To detect the levels of plasma High-Mobility Group Box-1(HMGB1) in Chinese subject with obesity and type 2 diabetes mellitus (T2DM), and to investigate the correlations between plasma HMGB1 concentration and parameters of body fat, insulin resistance (IR) metabolism and inflammation. Methods This study recruited 79 normal glucose tolerance (NGT) subjects and 76 newly diagnosed T2DM patients. NGT and T2DM groups were divided into normal weight (NW) and obese (OB)subgroups respectively. Anthropometric parameters such as height, weight, waist circumference, hip circumference and blood pressure were measured. Plasma concentrations of HMGB1, IL-6, fasting plasma glucose (FPG), 2 hours post challenge plasma glucose (2hPG), serum lipid, glycated hemoglobin (HbA1C) and fasting insulin (FINS) were examined. The homeostasis model assessment (HOMA) was performed to assess IR status. Results Plasma HMGB1 levels were higher in T2DM group than that in NGT group. The concentrations of serum HMGB1 were also higher in subjects with OB than those in subjects with NW both in NGT and T2DM groups. Plasma levels of HMGB1 were positively correlated with waist hip ratio (WHR), blood pressure, FPG, FINS, HOMA-IR, TG, IL-6 and negatively correlated with HOMA-βand high-density lipoprotein-cholesterol (HDL-c) independent of age, gender and BMI. Plasma levels of HMGB1 were significantly correlated with diabetes in fully adjusted models. Conclusion Plasma HMGB1 levels were increased in Chinese subjects with pure T2DM, which might be caused by IR. Serum HMGB1 participated in the pathological process of obesity and T2DM via its proinflammatory effect.
Collapse
Affiliation(s)
- Hang Wang
- M.D. Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hua Qu
- M.D. Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huacong Deng
- M.D. Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
43
|
Ye R, Wang M, Wang QA, Scherer PE. Adiponectin-mediated antilipotoxic effects in regenerating pancreatic islets. Endocrinology 2015; 156:2019-28. [PMID: 25815422 PMCID: PMC4430619 DOI: 10.1210/en.2015-1066] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Pathways that stimulate β-cell regeneration remain of great clinical interest, yet effective therapeutic avenues that promote survival or reconstitution of β-cell mass remain elusive. Using a mouse model with inducible β-cell apoptosis followed by adiponectin-mediated regeneration, we aimed to identify key molecules boosting β-cell viability. In the regenerating pancreatic islets, we examined changes within the transcriptome and observed an extensive up-regulation of genes encoding proteins involved in lipid transport and metabolism. The most prominent targets were further confirmed by quantitative PCR and immunofluorescence. Among the upstream regulators predicted by pathway analysis of the transcriptome, we detected enhanced levels of 2 key transcription factors, Hepatocyte Nuclear Factor 4α and Peroxisome Proliferator-Activated Receptorα. Our data suggest that improving pancreatic islet lipid metabolism as an important antilipotoxic phenomenon to boost β-cell regeneration. This is primarily mediated by the adipokine adiponectin that exerts its action on both the beta-cell directly as well as on the adipocyte. Adiponectin induces lipid metabolism gene expression in regenerating islets through Hepatocyte Nuclear Factor 4α and Peroxisome Proliferator-Activated Receptorα. Adiponectin also modulates leptin levels via preserving adipose tissue mass in the insulinopenic state.
Collapse
Affiliation(s)
- Risheng Ye
- Touchstone Diabetes Center (R.Y., Q.A.W., P.E.S.), Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas 75390; Hamon Center for Therapeutic Oncology Research (M.W.), The University of Texas Southwestern Medical Center, Dallas, Texas 75390; and Department of Cell Biology (P.E.S.), The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | | | | | | |
Collapse
|
44
|
Abstract
In the last decade there has been increasing focus on body fat distribution, rather than on the degree of obesity. More recently, great interest has also been dedicated to ectopic fat deposition in overnourished individuals that reflects a failure of the system of intracellular lipid homeostasis, which, in normal conditions, prevents lipotoxicity in the organs, by confining lipid overload to cells specifically designed to store large quantities of surplus calories, the white adipocytes. Consequently, excess body weight leads to fat infiltration of multiple organs including liver, pancreas, skeletal muscle, and heart thus forming "ectopic fat". Although overfeeding is considered the main predictor of ectopic fat deposition, other factors may be also involved. The purpose of this review is to evaluate the current available data on the predictors of ectopic fat deposition in humans.
Collapse
Affiliation(s)
- Mauro Zamboni
- Section of Geriatrics, Department of Medicine, University of Verona, Verona, Italy.
| | - Andrea P Rossi
- Section of Geriatrics, Department of Medicine, University of Verona, Verona, Italy.
| | - Francesco Fantin
- Section of Geriatrics, Department of Medicine, University of Verona, Verona, Italy.
| | - Simona L Budui
- Section of Geriatrics, Department of Medicine, University of Verona, Verona, Italy.
| | - Elena Zoico
- Section of Geriatrics, Department of Medicine, University of Verona, Verona, Italy.
| | - Giulia A Zamboni
- Institute od Radiology, University Hospital GB Rossi, Verona, Italy.
| | - Gloria Mazzali
- Section of Geriatrics, Department of Medicine, University of Verona, Verona, Italy.
| |
Collapse
|
45
|
Carter S, Caron A, Richard D, Picard F. Role of leptin resistance in the development of obesity in older patients. Clin Interv Aging 2013; 8:829-44. [PMID: 23869170 PMCID: PMC3706252 DOI: 10.2147/cia.s36367] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Obesity is a global epidemic associated with aging-like cellular processes; in both aging and obesity, resistance to hormones such as insulin and leptin can be observed. Leptin is a circulating hormone/cytokine with central and peripheral effects that is released mainly by subcutaneous white adipose tissue. Centrally, leptin controls food intake, energy expenditure, and fat distribution, whereas it controls (among several others) insulin sensitivity, free fatty acids (FFAs) oxidation, and lipolysis in the periphery. Aging is associated with important changes in both the distribution and the composition of adipose tissue. Fat is redistributed from the subcutaneous to the visceral depot and increased inflammation participates in adipocyte dysfunction. This redistribution of adipose tissue in favor of visceral fat influences negatively both longevity and healthy aging as shown in numerous animal models. These modifications observed during aging are also associated with leptin resistance. This resistance blunts normal central and peripheral functions of leptin, which leads to a decrease in neuroendocrine function and insulin sensitivity, an imbalance in energy regulation, and disturbances in lipid metabolism. Here, we review how age-related leptin resistance triggers metabolic disturbances and affects the longevity of obese patients. Furthermore, we discuss the potential impacts of leptin resistance on the decline of brown adipose tissue thermogenesis observed in elderly individuals.
Collapse
Affiliation(s)
- Sophie Carter
- Faculty of Pharmacy, Department of Anatomy and Physiology, Université Laval, Québec, QC, Canada
| | | | | | | |
Collapse
|
46
|
Le Stunff H, Coant N, Migrenne S, Magnan C. Targeting lipid sensing in the central nervous system: new therapy against the development of obesity and type 2 diabetes. Expert Opin Ther Targets 2013; 17:545-55. [PMID: 23379938 DOI: 10.1517/14728222.2013.768233] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The hypothalamus plays a major role in the control of energy balance, by sensing circulating lipids. Several studies conducted over the past decade suggest that disruption of lipid sensing can lead to hypothalamic lipotoxicity, thereby contributing to the development of various diseases, such as obesity and type 2 diabetes. AREAS COVERED The physiological role of 'lipid sensing' as a regulator of neuronal activity involved in the regulation of energy homeostasis will be reviewed. Next, the emerging evidence that alterations of hypothalamic systems that regulate energy balance during overnutrition can lead to the development of obesity and associated pathologies such as type 2 diabetes will be described. EXPERT OPINION Several studies have highlighted the role of malonyl-CoA and PKCθ and also autophagy within the hypothalamus as signals of nutrient abundance by critical neurons regulating food intake. Besides the physiological role of hypothalamic lipid sensing, it has been shown that overnutrition can also induce hypothalamic lipotoxicity through an inflammatory process. In conclusion, lipid toxicity could be the starting point of perturbations of the central control of energy balance which will favor the appearance of obesity and type 2 diabetes. Lipid sensing in the hypothalamus could be considered as a potential target for anti-obesity/diabetic strategies.
Collapse
Affiliation(s)
- Hervé Le Stunff
- Unité Biologie Fonctionnelle et Adaptative - EAC CNRS 4413, Équipe Homéostasie Energétique et RéGulation nerveuse et Endocrine (HERGE), Université PARIS DIDEROT (7) , Bâtiment BUFFON - 5ème étage - pièce 504A, 4, rue Marie-Andrée Lagroua Weill-Halle, 75205 Paris Cedex 13 , France.
| | | | | | | |
Collapse
|
47
|
Sakuma K, Yamaguchi A. Sarcopenic obesity and endocrinal adaptation with age. Int J Endocrinol 2013; 2013:204164. [PMID: 23690769 PMCID: PMC3639625 DOI: 10.1155/2013/204164] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/01/2013] [Indexed: 02/06/2023] Open
Abstract
In normal aging, changes in the body composition occur that result in a shift toward decreased muscle mass and increased fat mass. The loss of muscle mass that occurs with aging is termed sarcopenia and is an important cause of frailty, disability, and loss of independence in older adults. Age-related changes in the body composition as well as the increased prevalence of obesity determine a combination of excess weight and reduced muscle mass or strength, recently defined as sarcopenic obesity. Weight gain increases total/abdominal fat, which, in turn, elicits inflammation and fatty infiltration in muscle. Sarcopenic obesity appears to be linked with the upregulation of TNF-α, interleukin (IL)-6, leptin, and myostatin and the downregulation of adiponectin and IL-15. Multiple combined exercise and mild caloric restriction markedly attenuate the symptoms of sarcopenic obesity. Intriguingly, the inhibition of myostatin induced by gene manipulation or neutralizing antibody ameliorates sarcopenic obesity via increased skeletal muscle mass and improved glucose homeostasis. In this review, we describe the possible influence of endocrinal changes with age on sarcopenic obesity.
Collapse
Affiliation(s)
- Kunihiro Sakuma
- Research Center for Physical Fitness, Sports and Health, Toyohashi University of Technology, 1-1 Hibarigaoka, Tenpaku-cho, Toyohashi 441-8580, Japan
- *Kunihiro Sakuma:
| | - Akihiko Yamaguchi
- School of Dentistry, Health Sciences University of Hokkaido, Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| |
Collapse
|
48
|
Gray SL, Shaw AC, Gagne AX, Chan HM. Chronic exposure to PCBs (Aroclor 1254) exacerbates obesity-induced insulin resistance and hyperinsulinemia in mice. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2013; 76:701-15. [PMID: 23980837 DOI: 10.1080/15287394.2013.796503] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Evidence from recent epidemiological studies has emerged implicating exposure to environmental toxicants as a novel risk factor for the development of type 2 diabetes (T2D) and the metabolic syndrome in the general population. Humans and other organisms in high trophic levels of the food chain consume persistent organic pollutants (POP) through their diet. Few experimental studies demonstrating cause and effect are available and evidence for a direct association between accumulation of POP and T2D is preliminary; however, the possibility exists that lipophilic chemicals that accumulate in fatty tissue may disrupt cellular function and metabolic homeostasis. Chronic exposure of diabetes-prone C57B/6 mice to a polychlorinated biphenyl (PCB) mixture (Aroclor 1254, 36 mg/kg/wk, 20 wk) alone or in combination with high-fat diet impairs carbohydrate metabolism was compared to vehicle-treated control animals. Specifically, PBC exposure was found to produce hyperinsulinemia in both lean and diet-induced obese mice and exacerbated whole-body insulin resistance in obese mice. These changes in carbohydrate metabolism in response to Aroclor 1254 occurred without marked effect on body weight in both lean and obese mice. Our results demonstrate a causative association between PCB exposure and obesity-induced insulin resistance and hyperinsulinemia independent of body weight changes, an observation that contributes to a growing body of evidence suggesting that exposure to environmental pollutants represents a novel risk factor contributing to the diabetes epidemic.
Collapse
Affiliation(s)
- Sarah L Gray
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada.
| | | | | | | |
Collapse
|
49
|
Abstract
It is well known that any quantitative (energy and protein levels) and qualitative (nature of the diet, nutrient dynamic) changes in the feeding of animals affect metabolism. Energy expenditure and feed efficiency at the whole-body level, nutrient partitioning between and within tissues and organs and, ultimately, tissue and organ characteristics are the major regulated traits with consequences on the quality of the meat and milk produced. Recent progress in biology has brought to light important biological mechanisms which explain these observations: for instance, regulation by the nutrients of gene expression or of key metabolic enzyme activity, interaction and sometimes cross-regulation or competition between nutrients to provide free energy (ATP) to living cells, indirect action of nutrients through a complex hormonal action, and, particularly in herbivores, interactions between trans-fatty acids produced in the rumen and tissue metabolism. One of the main targets of this nutritional regulation is a modification of tissue insulin sensitivity and hence of insulin action. In addition, the nutritional control of mitochondrial activity (and hence of nutrient catabolism) is another major mechanism by which nutrients may affect body composition and tissue characteristics. These regulations are of great importance in the most metabolically active tissues (the digestive tract and the liver) and may have undesirable (i.e. diabetes and obesity in humans) or desirable consequences (such as the production of fatty liver by ducks and geese, and the production of fatty and hence tasty meat or milk with an adapted fatty acid profile).
Collapse
|
50
|
Streeper RS, Grueter CA, Salomonis N, Cases S, Levin MC, Koliwad SK, Zhou P, Hirschey MD, Verdin E, Farese RV. Deficiency of the lipid synthesis enzyme, DGAT1, extends longevity in mice. Aging (Albany NY) 2012; 4:13-27. [PMID: 22291164 PMCID: PMC3292902 DOI: 10.18632/aging.100424] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Accepted: 01/28/2012] [Indexed: 12/17/2022]
Abstract
Calorie restriction results in leanness, which is linked to metabolic conditions that favor longevity. We show here that deficiency of the triglyceride synthesis enzyme acyl CoA:diacylglycerol acyltransferase 1 (DGAT1), which promotes leanness, also extends longevity without limiting food intake. Female DGAT1-deficient mice were protected from age-related increases in body fat, tissue triglycerides, and inflammation in white adipose tissue. This protection was accompanied by increased mean and maximal life spans of ~25% and ~10%, respectively. Middle-agedDgat1-/- mice exhibited several features associated with longevity, including decreased levels of circulating insulin growth factor 1 (IGF1) and reduced fecundity. Thus, deletion of DGAT1 in mice provides a model of leanness and extended lifespan that is independent of calorie restriction.
Collapse
Affiliation(s)
- Ryan S. Streeper
- Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA
- Cardiovascular Research Institute, San Francisco, California, USA
| | - Carrie A. Grueter
- Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA
| | - Nathan Salomonis
- Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA
| | - Sylvaine Cases
- Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA
| | - Malin C. Levin
- Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA
| | - Suneil K. Koliwad
- Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA
- Cardiovascular Research Institute, San Francisco, California, USA
- Department of Medicine, University of California, San Francisco, California, USA
| | - Ping Zhou
- Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA
| | - Matthew D. Hirschey
- Gladstone Institute of Virology and Immunology, San Francisco, California, USA
| | - Eric Verdin
- Gladstone Institute of Virology and Immunology, San Francisco, California, USA
- Department of Medicine, University of California, San Francisco, California, USA
| | - Robert V. Farese
- Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA
- Cardiovascular Research Institute, San Francisco, California, USA
- Department of Medicine, University of California, San Francisco, California, USA
- Departments of Biochemistry and Biophysics, University of California, San Francisco, California, USA
| |
Collapse
|