1
|
Sánchez-Thomas R, Hernández-Garnica M, Granados-Rivas JC, Saavedra E, Peñalosa-Castro I, Rodríguez-Enríquez S, Moreno-Sánchez R. Intertwining of Cellular Osmotic Stress Handling Mechanisms and Heavy Metal Accumulation. Mol Biotechnol 2024:10.1007/s12033-024-01351-y. [PMID: 39690277 DOI: 10.1007/s12033-024-01351-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024]
Abstract
Osmoregulation mechanisms are engaged in the detoxification and accumulation of heavy metals in plants, microalgae and other microorganisms. The present review paper analyzes osmotic resistance organisms and their heavy metal accumulation mechanisms closely related to osmoregulation. In prokaryotic and eukaryotic microorganisms, such as the green algae-like protist Euglena, osmotic and heavy metal stresses share similar cell responses and mechanisms. Likewise, some plants have developed specific mechanisms associated to water stress induced by salinity, flooding, or drought, which are also activated under heavy metal stress. Thus, synthesis of osmo-metabolites and strategies to maintain stable the intracellular water content under heavy metal exposure induce a state of apparent drought by blocking the water maintenance systems. Heavy metals affect the cellular redox state, triggering signaling pathways for intracellular water maintenance, which are mediated by the concentration of reactive oxygen species. Hence, cellular responses and mechanisms associated with osmotic stress, once fully elucidated, represent new opportunities to improve mechanistic strategies for bioremediation of heavy metal-polluted sites.
Collapse
Affiliation(s)
- Rosina Sánchez-Thomas
- Departamento de Bioquímica, Instituto Nacional de Cardiología, 14080, Mexico City, Mexico
| | | | - Juan Carlos Granados-Rivas
- Carrera de Biología, Laboratorio de Control Metabólico, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Ixtacala, Hab Los Reyes Ixtacala Barrio de los Árboles/Barrio de los Héroes, 54090, Tlalnepantla, Mexico
| | - Emma Saavedra
- Departamento de Bioquímica, Instituto Nacional de Cardiología, 14080, Mexico City, Mexico
| | - Ignacio Peñalosa-Castro
- Carrera de Biología, Laboratorio de Control Metabólico, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Ixtacala, Hab Los Reyes Ixtacala Barrio de los Árboles/Barrio de los Héroes, 54090, Tlalnepantla, Mexico
| | - Sara Rodríguez-Enríquez
- Carrera de Medico Cirujano, Laboratorio de Control Metabólico, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Ixtacala, Hab Los Reyes Ixtacala Barrio de los Árboles/Barrio de los Héroes, 54090, Tlalnepantla, Mexico.
| | - Rafael Moreno-Sánchez
- Carrera de Biología, Laboratorio de Control Metabólico, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Ixtacala, Hab Los Reyes Ixtacala Barrio de los Árboles/Barrio de los Héroes, 54090, Tlalnepantla, Mexico.
| |
Collapse
|
2
|
Lieberman-Cribbin W, Martinez-Morata I, Domingo-Relloso A, Umans JG, Cole SA, O’Leary M, Grau-Perez M, Pichler G, Devereux RB, Nigra AE, Kupsco A, Navas-Acien A. Relationship Between Urinary Uranium and Cardiac Geometry and Left Ventricular Function: The Strong Heart Study. JACC. ADVANCES 2024; 3:101408. [PMID: 39640231 PMCID: PMC11617505 DOI: 10.1016/j.jacadv.2024.101408] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/24/2024] [Accepted: 10/01/2024] [Indexed: 12/07/2024]
Abstract
Background Uranium is a potentially cardiotoxic, nonessential element commonly found in drinking water throughout the United States. Objectives The purpose of this study was to evaluate if urinary uranium concentrations were associated with measures of cardiac geometry and function among American Indian young adults from the Strong Heart Family Study. Methods Urinary uranium was measured among 1,332 participants free of diabetes, cardiovascular disease, and <50 years of age at baseline (2001-2003). Transthoracic echocardiography and blood pressure were assessed at baseline and at a follow-up visit (2006-2009). We estimated adjusted mean differences in cardiac geometry and function measures at baseline and follow-up using linear mixed-effect models with a random intercept and slope over time. Results Median (interquartile range) uranium was 0.029 (0.045) μg/g creatinine. In fully adjusted cross-sectional models, a log-doubling of urinary uranium was positively associated with left ventricular (LV) mass index (mean difference: 0.49 g/m2, 95% CI: 0.07-0.92 g/m2), left atrial systolic diameter (0.01 cm/m2, 0.01-0.02 cm/m2), and stroke volume (0.66 mL, 0.25-1.08 mL) at baseline. Prospectively, uranium was associated with increases in left atrial diameter (0.01 cm/m2, 0.01-0.02 cm/m2), pulse pressure (0.28 mm Hg, 0.05-0.52 mm Hg), and incident LV hypertrophy (odds ratio: 1.25, 95% confidence interval: 1.06, 1.48). Conclusions Urinary uranium levels were adversely associated with measures of cardiac geometry and LV function among American Indian adults, including increases in pulse pressure and LV hypertrophy. These findings support the need to determine the potential long-term subclinical and clinical cardiovascular effects of chronic uranium exposure, and the need for future strategies to reduce exposure.
Collapse
Affiliation(s)
- Wil Lieberman-Cribbin
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Irene Martinez-Morata
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Arce Domingo-Relloso
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York, USA
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Jason G. Umans
- Georgetown-Howard Universities Center for Clinical and Translational Science, Washington DC, USA
- MedStar Health Research Institute, Hyattsville, Maryland, USA
| | - Shelley A. Cole
- Population Health Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Marcia O’Leary
- Missouri Breaks Industries Research, Cheyenne River Sioux Tribe, Eagle Butte, South Dakota, USA
| | - Maria Grau-Perez
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York, USA
- Big data and Artificial Intelligence Unit, Biomedical Research Institute INCLIVA, Valencia, Spain
- Department of Statistics and Operational Research, University of Valencia, Valencia, Spain
| | - Gernot Pichler
- Department of Cardiology and Karl Landsteiner Institute for Cardiovascular and Critical Care Research, Clinic Floridsdorf, Vienna, Austria
| | - Richard B. Devereux
- Division of Cardiology, Weill Cornell Medical College, New York, New York, USA
| | - Anne E. Nigra
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Allison Kupsco
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York, USA
| |
Collapse
|
3
|
Hu B, He X, Zhou J, Zhang H, Dai Y, Wang Z, Jiang Y, Zhang Y, Zhang P, Shi Z. Spatial pattern, source apportionment, and source-oriented health risk quantifying of heavy metals in farmland soils of southern China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1119. [PMID: 39470897 DOI: 10.1007/s10661-024-13273-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/16/2024] [Indexed: 11/01/2024]
Abstract
The contamination of heavy metal has permeated many parts of China, especially in densely populated and industrialized southern China. This study focused on the degree of pollution in farmland soil heavy metals (HMs), and its spatial distribution characteristics and source apportionment. Meanwhile, we conducted an evaluation of the health risks attributed to soil HMs and analyzed the factors that impact them. We found that the distribution of five heavy metals is mainly concentrated in the east-central and southern parts of the study area. Specifically, Cd and Hg have high levels of pollution and present potential ecological risks. The pollution sources of five HMs were analyzed utilizing positive matrix factorization. The results revealed that the contribution of different sources keeps the following order: natural source (42.42%), agricultural activities (29.93%), industrial pollution source (20.49%), and atmospheric deposition pollution (7.16%). The non-carcinogenic risks to residents were acceptable, whereas the carcinogenic risks were relatively high. Children and the elderly are more vulnerable to the negative effects of Cr, As. Using structural equation modeling, we found soil property is a vital factor affecting soil contamination, with the soil organic matter and cation exchange capacity having a relatively greater impact on heavy metals pollution. Our study provides some data reference and guidance for soil ecological protection and restoration.
Collapse
Affiliation(s)
- Bifeng Hu
- Department of Land Resource Management, School of Public Finance and Public Administration, Jiangxi University of Finance and Economics, Nanchang, 330013, China
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiangyu He
- Department of Land Resource Management, School of Public Finance and Public Administration, Jiangxi University of Finance and Economics, Nanchang, 330013, China
| | - Jiumao Zhou
- The Ninth Brigade of Jiangxi Geological Bureau, Nanchang, 330027, China
| | - Hong Zhang
- The Ninth Brigade of Jiangxi Geological Bureau, Nanchang, 330027, China
| | - Yeming Dai
- The Ninth Brigade of Jiangxi Geological Bureau, Nanchang, 330027, China
| | - Zhige Wang
- Institute of Agricultural Remote Sensing and Information Technology Application, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing, 100084, China
| | - Yefeng Jiang
- Academy of Land Resource and Environment, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yangzhu Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Pengbo Zhang
- Hunan University of Finance and Economics, Changsha, 410205, China.
| | - Zhou Shi
- Institute of Agricultural Remote Sensing and Information Technology Application, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
4
|
Wang X, You J, Tang J, Li X, Wang R, Li Y, Bai Y, Wang M, Zheng S. Interaction between non-alcoholic fatty liver disease and obesity on the risk of developing cardiovascular diseases. Sci Rep 2024; 14:24024. [PMID: 39402185 PMCID: PMC11473819 DOI: 10.1038/s41598-024-74841-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/30/2024] [Indexed: 10/17/2024] Open
Abstract
BACKGROUNDS This investigation seeks to explore the correlation between nonalcoholic fatty liver disease (NAFLD) and cardiovascular diseases (CVDs), and to to provide evidence for the prevention and treatment of CVDs. METHODS This study utilized data from the Jinchang cohort platform, including 19,399 participants without pre-existing major CVDs. Based on the general population and gender stratification, Cox models were used to analyze the risk of NAFLD for CVDs. The combined effect of NAFLD and different obesity indicators on CVDs was analyzed by additive and multiplicative interaction models and subgroups. RESULTS There were 3129 NAFLD patients out of 19399 subjects, and 723 (23.11%) of them had the CVD. After adjusting for multiple confounding factors, the Cox model revealed a 1.17-fold increase in the risk of CVDs among patients with NAFLD compared to those without NAFLD. Moreover, there was no notable disparity in CVDs risk among most NAFLD patients at the same level of obesity. The results indicated no additive interaction between NAFLD and obesity concerning CVDs risk, but rather a positive multiplicative interaction. Using the normal population as a reference, it was found that people with both obesity and NAFLD significantly increased the risk of developing CVDs, with HRs and 95% CIs of 1.790 (1.508, 2.126), 1.356 (1.213, 1.517), and 1.807 (1.503, 2.174), respectively, for BMI, WC, and the combination of BMI and WC. CONCLUSIONS NAFLD and obesity are independent risk factors for CVDs. The synergy of obesity and NAFLD implies that NAFLD patients should control weight gain. Larger BMI and WC values may increase the CVDs risk for NAFLD patients, especially women.
Collapse
Affiliation(s)
- Xue Wang
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Jinlong You
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Jing Tang
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Xiuqian Li
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Rui Wang
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Yuanyuan Li
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Yana Bai
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Minzhen Wang
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou, 730000, China.
| | - Shan Zheng
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
5
|
Omidi S, Teiri H, Mohammadi F, Hajizadeh Y. Accumulation of heavy metals in the leaves of different tree species and its association with the levels of atmospheric PM 2.5-bond heavy metals in Isfahan. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024:1-11. [PMID: 39394952 DOI: 10.1080/15226514.2024.2413414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
This study aimed to biomonitor air pollution by measuring heavy metals (HMs) accumulation levels in the leaves of common urban trees, Cupressus arizonica Greene, Melia azedarach L., Morus alba L. and Buxus colchica in different regions of Isfahan. Their association with the levels of PM2.5 and PM2.5-bond HMs was also investigated. PM2.5 were collected on a glass-fiber filter and measured by gravimetric method. The HM contents of the PM2.5 and tree leaves were extracted and analyzed by ICP-OES. The average PM2.5 concentrations in ambient air of all areas varied from 52.34 to 103.96 μg/m3. The mean HMs levels in the leaves were in the following orderZn(31.2) > Cu(11.04) > Pb(4.38) > Ni(4.01) > Cr(3.03) > Co(0.61) > Cd(0.04) (μg/g). The highest level of HMs was detected in the leaves of Morus alba L., followed by Buxus colchica, Melia azedarach L. and Cupressus arizonica Greene. There was a significant correlation between the amounts of Pb and Cu in tree leaves and those in ambient PM2.5 (p value ≤ 0.05). In conclusion, tree leaves can be used as a suitable bioindicator in the evaluation of air pollution. Morus alba L. compared to the other species can be confidently used for green space development.
Collapse
Affiliation(s)
- Saadat Omidi
- Student Research Committee, Faculty of health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hakimeh Teiri
- Department of Environmental Health Engineering, Faculty of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Research Institute for Primordial Prevention of Non-Communicable Diseases, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farzaneh Mohammadi
- Department of Environmental Health Engineering, Faculty of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Research Institute for Primordial Prevention of Non-Communicable Diseases, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yaghoub Hajizadeh
- Department of Environmental Health Engineering, Faculty of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Research Institute for Primordial Prevention of Non-Communicable Diseases, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
6
|
Huang H, Wang J, Zheng Y, Bai W, Ma Y, Zhao X. Synthesis and application of bismuth nanoparticle-loaded longan porous carbon for simultaneous electrochemical determination of Pb(II) and cd(II) in seafoods. Food Chem 2024; 452:139572. [PMID: 38733686 DOI: 10.1016/j.foodchem.2024.139572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
The discarded longan shell-derived porous carbon material (LPC) served as a scaffold for synthesizing bismuth nanoparticle-loaded longan porous carbon nanocomposite (BiNPs@LPC) via a hydrothermal method. Then BiNPs@LPC was utilized to modify screen-printed carbon electrodes (SPCE) for simultaneous detection of Pb(II) and Cd(II) by square wave anodic stripping voltammetry (SWASV). The material was thoroughly characterized by scanning electron microscopy, X-ray diffraction, Raman spectra, Brunauer-Emmett-Teller analysis, electrochemical impedance spectroscopy and cyclic voltammetry. BiNPs@LPC exhibited abundant porous structures, high surface area, and numerous active sites, which could improve significantly response sensitivity. Under optimal conditions, the peak currents of Pb(II) and Cd(II) exhibited favorable linear relationships with the concentration within a range of 0.1-150 μg L-1, with detection limits (S/N = 3) of 0.02 μg L-1 and 0.03 μg L-1, respectively. BiNPs@LPC/SPCE demonstrated remarkable selectivity, stability and repeatability. The proposed method was successfully applied for the detection of Pb(II) and Cd(II) in seafoods achieving satisfying recovery of 97.8%-108.3% and 96.7%-106.4%. These excellent test properties were coupled with convenience for batch preparation of the modified electrodes, highlighting its potential for practical applications in heavy metal detection of real samples.
Collapse
Affiliation(s)
- Hongkai Huang
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jiahao Wang
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yuqing Zheng
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Weidong Bai
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Ya Ma
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Xiaojuan Zhao
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| |
Collapse
|
7
|
Chao TH, Lin TH, Cheng CI, Wu YW, Ueng KC, Wu YJ, Lin WW, Leu HB, Cheng HM, Huang CC, Wu CC, Lin CF, Chang WT, Pan WH, Chen PR, Ting KH, Su CH, Chu CS, Chien KL, Yen HW, Wang YC, Su TC, Liu PY, Chang HY, Chen PW, Juang JMJ, Lu YW, Lin PL, Wang CP, Ko YS, Chiang CE, Hou CJY, Wang TD, Lin YH, Huang PH, Chen WJ. 2024 Guidelines of the Taiwan Society of Cardiology on the Primary Prevention of Atherosclerotic Cardiovascular Disease --- Part I. ACTA CARDIOLOGICA SINICA 2024; 40:479-543. [PMID: 39308649 PMCID: PMC11413940 DOI: 10.6515/acs.202409_40(5).20240724a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/24/2024] [Indexed: 09/25/2024]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is one of the leading causes of death worldwide and in Taiwan. It is highly prevalent and has a tremendous impact on global health. Therefore, the Taiwan Society of Cardiology developed these best-evidence preventive guidelines for decision-making in clinical practice involving aspects of primordial prevention including national policies, promotion of health education, primary prevention of clinical risk factors, and management and control of clinical risk factors. These guidelines cover the full spectrum of ASCVD, including chronic coronary syndrome, acute coronary syndrome, cerebrovascular disease, peripheral artery disease, and aortic aneurysm. In order to enhance medical education and health promotion not only for physicians but also for the general public, we propose a slogan (2H2L) for the primary prevention of ASCVD on the basis of the essential role of healthy dietary pattern and lifestyles: "Healthy Diet and Healthy Lifestyles to Help Your Life and Save Your Lives". We also propose an acronym of the modifiable risk factors/enhancers and relevant strategies to facilitate memory: " ABC2D2EFG-I'M2 ACE": Adiposity, Blood pressure, Cholesterol and Cigarette smoking, Diabetes mellitus and Dietary pattern, Exercise, Frailty, Gout/hyperuricemia, Inflammation/infection, Metabolic syndrome and Metabolic dysfunction-associated fatty liver disease, Atmosphere (environment), Chronic kidney disease, and Easy life (sleep well and no stress). Some imaging studies can be risk enhancers. Some risk factors/clinical conditions are deemed to be preventable, and healthy dietary pattern, physical activity, and body weight control remain the cornerstone of the preventive strategy.
Collapse
Affiliation(s)
- Ting-Hsing Chao
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan
- Division of Cardiology, Department of Internal Medicine, Chung-Shan Medical University Hospital; School of Medicine, Chung Shan Medical University, Taichung
| | - Tsung-Hsien Lin
- Division of Cardiology, Department of Internal Medicine Kaohsiung Medical University Hospital
- Faculty of Medicine and Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University
| | - Cheng-I Cheng
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung; School of Medicine, College of Medicine, Chang Gung University, Taoyuan
| | - Yen-Wen Wu
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City
- School of Medicine, National Yang Ming Chiao Tung University, Taipei
- Graduate Institute of Medicine, Yuan Ze University, Taoyuan
| | - Kwo-Chang Ueng
- Division of Cardiology, Department of Internal Medicine, Chung-Shan Medical University Hospital; School of Medicine, Chung Shan Medical University, Taichung
| | - Yih-Jer Wu
- Department of Medicine and Institute of Biomedical Sciences, MacKay Medical College, New Taipei City
- Cardiovascular Center, Department of Internal Medicine, MacKay Memorial Hospital, Taipei
| | - Wei-Wen Lin
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung
| | - Hsing-Ban Leu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei
- Cardiovascular Research Center, National Yang Ming Chiao Tung University
- Healthcare and Management Center
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital
| | - Hao-Min Cheng
- Ph.D. Program of Interdisciplinary Medicine (PIM), National Yang Ming Chiao Tung University College of Medicine; Division of Faculty Development; Center for Evidence-based Medicine, Taipei Veterans General Hospital; Institute of Public Health; Institute of Health and Welfare Policy, National Yang Ming Chiao Tung University College of Medicine
| | - Chin-Chou Huang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei
| | - Chih-Cheng Wu
- Center of Quality Management, National Taiwan University Hospital Hsinchu Branch, Hsinchu; College of Medicine, National Taiwan University, Taipei; Institute of Biomedical Engineering, National Tsing-Hua University, Hsinchu; Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan
| | - Chao-Feng Lin
- Department of Medicine, MacKay Medical College, New Taipei City; Department of Cardiology, MacKay Memorial Hospital, Taipei
| | - Wei-Ting Chang
- School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine and Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung; Division of Cardiology, Department of Internal Medicine, Chi Mei Medical Center, Tainan
| | - Wen-Han Pan
- Institute of Biomedical Sciences, Academia Sinica, Taipei; Institute of Population Health Sciences, National Health Research Institutes, Miaoli; and Institute of Biochemistry and Biotechnology, National Taiwan University
| | - Pey-Rong Chen
- Department of Dietetics, National Taiwan University Hospital, Taipei
| | - Ke-Hsin Ting
- Division of Cardiology, Department of Internal Medicine, Yunlin Christian Hospital, Yunlin
| | - Chun-Hung Su
- Division of Cardiology, Department of Internal Medicine, Chung-Shan Medical University Hospital; School of Medicine, Chung Shan Medical University, Taichung
| | - Chih-Sheng Chu
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung
| | - Kuo-Liong Chien
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University; Department of Internal Medicine, National Taiwan University Hospital and College of Medicine; Population Health Research Center, National Taiwan University, Taipei
| | - Hsueh-Wei Yen
- Division of Cardiology, Department of Internal Medicine Kaohsiung Medical University Hospital
| | - Yu-Chen Wang
- Division of Cardiology, Asia University Hospital; Department of Medical Laboratory Science and Biotechnology, Asia University; Division of Cardiology, China Medical University College of Medicine and Hospital, Taichung
| | - Ta-Chen Su
- Cardiovascular Center, Department of Internal Medicine, National Taiwan University Hospital
- Department of Environmental and Occupational Medicine, National Taiwan University College of Medicine
| | - Pang-Yen Liu
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center
| | - Hsien-Yuan Chang
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan
| | - Po-Wei Chen
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan
| | - Jyh-Ming Jimmy Juang
- Heart Failure Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine, and National Taiwan University Hospital
| | - Ya-Wen Lu
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung
- Cardiovascular Research Center, National Yang Ming Chiao Tung University
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei
| | - Po-Lin Lin
- Division of Cardiology, Department of Internal Medicine, Hsinchu MacKay Memorial Hospital, Hsinchu
| | - Chao-Ping Wang
- Division of Cardiology, E-Da Hospital; School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung
| | - Yu-Shien Ko
- Cardiovascular Division, Chang Gung Memorial Hospital; College of Medicine, Chang Gung University, Taoyuan
| | - Chern-En Chiang
- General Clinical Research Center and Division of Cardiology, Taipei Veterans General Hospital and National Yang Ming Chiao Tung University
| | - Charles Jia-Yin Hou
- Cardiovascular Center, Department of Internal Medicine, MacKay Memorial Hospital, Taipei
| | - Tzung-Dau Wang
- Cardiovascular Center and Divisions of Hospital Medicine and Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine
| | - Yen-Hung Lin
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei
| | - Po-Hsun Huang
- Cardiovascular Research Center, National Yang Ming Chiao Tung University
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital
| | - Wen-Jone Chen
- Department of Internal Medicine, Min-Sheng General Hospital, Taoyuan; Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
8
|
Sivakumar B, Kurian GA. Investigating the temporal link between PM 2.5 exposure and acceleration of myocardial ischemia reperfusion injury: Emphasizing the hazardous presence of metals in inhaled air. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124113. [PMID: 38734051 DOI: 10.1016/j.envpol.2024.124113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/12/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
Exposure to PM2.5 is widely acknowledged to induce cardiotoxic effects, leading to decreased myocardial tolerance to revascularization procedures and subsequent ischemia reperfusion injury (IR). However, the temporal relationship between PM2.5 exposure and vulnerability to IR, along with the underlying mechanisms, remains unclear and is the focus of this study. Female Wistar rats were exposed to PM2.5 at a concentration of 250 μg/m³ for 3 h daily over varying durations (7, 14, and 21 days), followed by IR induction. Our results demonstrated a significant increase in cardiac injury, as evidenced by increased infarct size and elevated cardiac injury markers, starting from day 14 of PM2.5 exposure, accompanied by declined cardiac function. These adverse effects were associated with apoptosis and impaired mitochondrial function, including reduced bioenergetics, mitochondrial DNA copy number and quality control mechanisms, along with inactivation of the PI3K/AKT/AMPK signalling pathways. Furthermore, analysis of myocardial tissue revealed elevated metal accumulation, particularly within mitochondria. Chelation of PM2.5 -associated metals using EDTA significantly mitigated the toxic effects on cardiac IR pathology, as confirmed in both rat myocardium and H9c2 cells. These findings suggest that metals in PM2.5 play a crucial role in inducing cardiotoxicity, impairing myocardial resilience to stress through mitochondrial accumulation and dysfunction.
Collapse
Affiliation(s)
- Bhavana Sivakumar
- Vascular Biology lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - Gino A Kurian
- Vascular Biology lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India; School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur-613401, Tamil Nadu, India.
| |
Collapse
|
9
|
Yim G, Margetaki K, Romano ME, Kippler M, Vafeiadi M, Roumeliotaki T, Bempi V, Farzan SF, Chatzi L, Howe CG. Metal mixture exposures and serum lipid levels in childhood: the Rhea mother-child cohort in Greece. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:688-698. [PMID: 38698271 PMCID: PMC11559660 DOI: 10.1038/s41370-024-00674-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND Growing evidence suggests that cardiovascular disease develops over the lifetime, often beginning in childhood. Metal exposures have been associated with cardiovascular disease and important risk factors, including dyslipidemia, but prior studies have largely focused on adult populations and single metal exposures. OBJECTIVE To investigate the individual and joint impacts of multiple metal exposures on lipid levels during childhood. METHODS This cross-sectional study included 291 4-year-old children from the Rhea Cohort Study in Heraklion, Greece. Seven metals (manganese, cobalt, selenium, molybdenum, cadmium, mercury, and lead) were measured in whole blood using inductively coupled plasma mass spectrometry. Serum lipid levels included total cholesterol, triglycerides, high-density lipoprotein (HDL) cholesterol, and low-density lipoprotein (LDL) cholesterol. To determine the joint and individual impacts of child metal exposures (log2-transformed) on lipid levels, Bayesian kernel machine regression (BKMR) was employed as the primary multi-pollutant approach. Potential effect modification by child sex and childhood environmental tobacco smoke exposure was also evaluated. RESULTS BKMR identified a positive association between the metal mixture and both total and LDL cholesterol. Of the seven metals examined, selenium (median 90.6 [IQR = 83.6, 96.5] µg/L) was assigned the highest posterior inclusion probability for both total and LDL cholesterol. A difference in LDL cholesterol of 8.22 mg/dL (95% CI = 1.85, 14.59) was observed when blood selenium was set to its 75th versus 25th percentile, holding all other metals at their median values. In stratified analyses, the positive association between selenium and LDL cholesterol was only observed among boys or among children exposed to environmental tobacco smoke during childhood. IMPACT STATEMENT Growing evidence indicates that cardiovascular events in adulthood are the consequence of the lifelong atherosclerotic process that begins in childhood. Therefore, public health interventions targeting childhood cardiovascular risk factors may have a particularly profound impact on reducing the burden of cardiovascular disease. Although growing evidence supports that both essential and nonessential metals contribute to cardiovascular disease and risk factors, such as dyslipidemia, prior studies have mainly focused on single metal exposures in adult populations. To address this research gap, the current study investigated the joint impacts of multiple metal exposures on lipid concentrations in early childhood.
Collapse
Affiliation(s)
- Gyeyoon Yim
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Dartmouth College, Lebanon, NH, USA.
| | - Katerina Margetaki
- Clinic of Preventive Medicine and Nutrition, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Megan E Romano
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Dartmouth College, Lebanon, NH, USA
| | - Maria Kippler
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Theano Roumeliotaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Vicky Bempi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Shohreh F Farzan
- Department of Population and Public Health Sciences, Division of Environmental Health, University of Southern California, Los Angeles, CA, USA
| | - Leda Chatzi
- Department of Population and Public Health Sciences, Division of Environmental Health, University of Southern California, Los Angeles, CA, USA
| | - Caitlin G Howe
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Dartmouth College, Lebanon, NH, USA
| |
Collapse
|
10
|
Abstract
Heavy metals are harmful environmental pollutants that have attracted widespread attention due to their health hazards to human cardiovascular disease. Heavy metals, including lead, cadmium, mercury, arsenic, and chromium, are found in various sources such as air, water, soil, food, and industrial products. Recent research strongly suggests a connection between cardiovascular disease and exposure to toxic heavy metals. Epidemiological, basic, and clinical studies have revealed that heavy metals can promote the production of reactive oxygen species, which can then exacerbate reactive oxygen species generation and induce inflammation, resulting in endothelial dysfunction, lipid metabolism distribution, disruption of ion homeostasis, and epigenetic changes. Over time, heavy metal exposure eventually results in an increased risk of hypertension, arrhythmia, and atherosclerosis. Strengthening public health prevention and the application of chelation or antioxidants, such as vitamins and beta-carotene, along with minerals, such as selenium and zinc, can diminish the burden of cardiovascular disease attributable to metal exposure.
Collapse
Affiliation(s)
- Ziwei Pan
- Key Laboratory of Combined Multi Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China (Z.P., P.L.)
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China (Z.P., P.L.)
| | - Tingyu Gong
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China (T.G.)
| | - Ping Liang
- Key Laboratory of Combined Multi Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China (Z.P., P.L.)
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China (Z.P., P.L.)
| |
Collapse
|
11
|
Onyeso OK, Ugwu AK, Adandom HC, Damag S, Onyeso KM, Abugu JO, Aruma OE, Odole AC, Awosoga OA, Ezema CI. Impact of welding occupation on serum aluminium level and its association with physical health, cognitive function, and quality of life: a cross-sectional study. Int Arch Occup Environ Health 2024; 97:133-144. [PMID: 38110550 DOI: 10.1007/s00420-023-02038-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/28/2023] [Indexed: 12/20/2023]
Abstract
OBJECTIVE There is an occupational health concern about welders' inhalation of toxic aluminium fumes. We investigated whether serum aluminium level (SAL) and demographic variables can significantly predict physical health parameters, cognition, and quality of life (QoL) among welders. METHODS The cross-sectional study involved 100 age- and location-matched men (50 welders and 50 non-welders). SAL obtained using a graphite furnace atomic absorption spectrometer, and data collected using blood pressure and body mass index (BMI) apparatuses, biodata form, pain rating scale, General Practitioner Assessment of Cognition, WHOQoL-BREF, and Nordic musculoskeletal symptoms (MSS) questionnaire were analysed using independent samples t test, chi-square, Pearson's correlation, and hierarchical linear regression. RESULTS Welders had significantly higher SAL (mean difference [MD] = 1.77 µg/L, p < 0.001), lower QoL (MD = 3.92, p = 0.039), and higher prevalence of MSS on the neck (χ2 = 10.187, p = 0.001), shoulder (χ2 = 9.007, p = 0.003), upper back (χ2 = 6.832, p = 0.009), and knee (χ2 = 12.190, p < 0.001) than non-welders. There was a significant bivariate association between SAL, systolic blood pressure (β = 0.313, p = 0.002), and BMI (β = 0.279, p = 0.005), but not pain intensity, cognition, or QoL. SAL remained a significant predictor of systolic blood pressure after adjustment for physical health and QoL parameters (β = 0.191, p = 0.044). The association between SAL and social QoL became significant after adjustment for physical health and other QoL domains (β = - 0.210, p = 0.032) and demographic variables (β = - 0.233, p = 0.046). CONCLUSION Welders had significantly higher SAL, musculoskeletal symptoms, blood pressure, and lower QoL than non-welders. SAL was associated with adverse physical health parameters and social-related QoL, not cognition. We recommend routine aluminium bioavailability and physical health checks among welders.
Collapse
Affiliation(s)
- Ogochukwu Kelechi Onyeso
- Department of Medical Rehabilitation, Faculty of Health Sciences and Technology, College of Medicine, University of Nigeria, Nsukka, Enugu State, Nigeria.
- Faculty of Health Sciences, University of Lethbridge, Lethbridge, AB, Canada.
| | - Arinze Kingsley Ugwu
- Department of Medical Rehabilitation, Faculty of Health Sciences and Technology, College of Medicine, University of Nigeria, Nsukka, Enugu State, Nigeria
| | | | - Suha Damag
- Faculty of Health Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Kelechi Mirabel Onyeso
- Department of Estate Management, Faculty of Environmental Sciences, University of Nigeria, Nsukka, Enugu, Nigeria
| | - James Okechukwu Abugu
- Department of Marketing, Faculty of Business Administration, University of Nigeria, Nsukka, Enugu, Nigeria
| | - Okwukweka Emmanuela Aruma
- Department of Applied Biology and Biotechnology, Faculty of Applied Natural Sciences, Enugu State University of Science and Technology, Enugu, Nigeria
| | - Adesola Christiana Odole
- Department of Physiotherapy, Faculty of Clinical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | | | - Charles Ikechukwu Ezema
- Department of Medical Rehabilitation, Faculty of Health Sciences and Technology, College of Medicine, University of Nigeria, Nsukka, Enugu State, Nigeria
| |
Collapse
|
12
|
Archundia D, Prado-Pano B, Molina-Freaner F. Potentially toxic elements in soil-plant-water-animal continuum in a mining area from Northwestern Mexico: animal exposure pathways and health risks for children. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:99. [PMID: 38403801 DOI: 10.1007/s10653-024-01902-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/05/2024] [Indexed: 02/27/2024]
Abstract
Mining increases environmental concentrations of potentially toxic elements (PTEs) accumulating in organisms and spreading in the human food chain-their presence in milk is of great human health concern. Pathways were identified by which these elements reach raw milk from farms within a mining area in Northwestern Mexico; health risks for dairy cattle and children were also evaluated. Water from river and cattle waterers, as well as, soils showed that PTE concentrations generally below the Mexican and international limits; cattle forage concentrations were above the World Health Organization limits. Al, Mg, Mo, Ni and Zn were recorded in raw milk samples from the mining area, showing that Cd, Co, Cr, Cu, Pb and V are transferred from soil to plants but not accumulated in raw milk. Zn concentrations in raw milk exceeded the permissible limit; milk from farms without mining operations (comparison site) showed the presence of Al, Cr and Cu. In cattle tail hair, PTE did not correlate with raw milk concentrations. Metal accumulation in milk was higher through water consumption than that accumulated through forage consumption. Daily intakes (DI) of Al, Mg and Zn in cows could represent a risk for their health. The observed biotransference was higher than in other parts of Mexico, and the calculated DI and hazard quotients indicate no adverse health effects for children. However, the hazard Index values indicate that exposure to multiple PTE represents a risk for children. Management measures should be performed to control the cumulative risks to protect young children's health.
Collapse
Affiliation(s)
- Denisse Archundia
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), 03940, Mexico City, CDMX, Mexico.
- Instituto de Geología, Universidad Nacional Autónoma de México, 04510, Coyoacán, CDMX, Mexico.
| | - Blanca Prado-Pano
- Instituto de Geología, Universidad Nacional Autónoma de México, 04510, Coyoacán, CDMX, Mexico
| | - Francisco Molina-Freaner
- Instituto de Ecología, Departamento de Ecología de la Biodiversidad, Universidad Nacional Autónoma de México, 83250, Hermosillo, Sonora, Mexico
| |
Collapse
|
13
|
Shibeeb S, Abdallah A, Shi Z. Blood Homocysteine Levels Mediate the Association Between Blood Lead Levels and Cardiovascular Mortality. Cardiovasc Toxicol 2024; 24:62-70. [PMID: 38231351 PMCID: PMC10838245 DOI: 10.1007/s12012-023-09819-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/02/2023] [Indexed: 01/18/2024]
Abstract
Lead is a heavy, toxic metal and its exposure to humans can lead to increased risk of cardiovascular disease development and mortality. Lead exposure has been shown to induce hyperhomocysteinemia (HHCy) which may be a major pathogenic risk for the risk of CVDs. The aim of this study was to investigate whether homocysteine (Hcy) mediates the effect of lead on cardiovascular mortality. A total of 17,915 adults aged ≥ 20 who participated in the National Health and Nutrition Examination Survey (1999 to 2006). Information on mortality was ascertained via probabilistic matching to the death certificates from the National Death Index recorded up to December 31, 2015. Cox proportional hazards regression was performed to assess the association between blood lead levels and mortality. Mediation via Hcy was examined using a logit model. During a mean follow-up of 11.6 years, the incidences of CVD mortality were 0.73, 2.18, 3.03 and 4.94 per 1000 person-years across quarterlies of blood lead levels from low to high. Following multivariable adjustment, blood lead levels were strongly associated with CVD mortality in all mortality models (p-trend < 0.001). This association remained statistically significant after further adjusting for quartiles of homocysteine (model 3; HR 1.38 (95% CI 1.01-1.89) p-trend < 0.001). Furthermore, blood lead levels increased the odds of CVD mortality via homocysteine (indirect effect) (OR 1.42 (95% CI 1.30-1.55)), demonstrating the mediatory effect of homocysteine. This the first study that demonstrates that increased homocysteine mediates nearly half of CVD mortality related to blood lead levels.
Collapse
Affiliation(s)
- Sapha Shibeeb
- School of Health and Biomedical Sciences, RMIT University, PO Box 71, Bundoora, Melbourne, VIC, 3083, Australia.
| | - Atiyeh Abdallah
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Zumin Shi
- Human Nutrition Department, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
14
|
Jan S, Mishra AK, Bhat MA, Bhat MA, Jan AT. Pollutants in aquatic system: a frontier perspective of emerging threat and strategies to solve the crisis for safe drinking water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:113242-113279. [PMID: 37864686 DOI: 10.1007/s11356-023-30302-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 10/03/2023] [Indexed: 10/23/2023]
Abstract
Water is an indispensable natural resource and is the most vital substance for the existence of life on earth. However, due to anthropogenic activities, it is being polluted at an alarming rate which has led to serious concern about water shortage across the world. Moreover, toxic contaminants released into water bodies from various industrial and domestic activities negatively affect aquatic and terrestrial organisms and cause serious diseases such as cancer, renal problems, gastroenteritis, diarrhea, and nausea in humans. Therefore, water treatments that can eliminate toxins are very crucial. Unfortunately, pollution treatment remains a difficulty when four broad considerations are taken into account: effectiveness, reusability, environmental friendliness, and affordability. In this situation, protecting water from contamination or creating affordable remedial techniques has become a serious issue. Although traditional wastewater treatment technologies have existed since antiquity, they are both expensive and inefficient. Nowadays, advanced sustainable technical approaches are being created to replace traditional wastewater treatment processes. The present study reviews the sources, toxicity, and possible remediation techniques of the water contaminants.
Collapse
Affiliation(s)
- Saima Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, 185234, J&K, India
| | | | - Mujtaba Aamir Bhat
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, 185234, J&K, India
| | - Mudasir Ahmad Bhat
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, 185234, J&K, India
| | - Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, 185234, J&K, India.
| |
Collapse
|
15
|
Das S, Sultana KW, Ndhlala AR, Mondal M, Chandra I. Heavy Metal Pollution in the Environment and Its Impact on Health: Exploring Green Technology for Remediation. ENVIRONMENTAL HEALTH INSIGHTS 2023; 17:11786302231201259. [PMID: 37808962 PMCID: PMC10559720 DOI: 10.1177/11786302231201259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/29/2023] [Indexed: 10/10/2023]
Abstract
Along with expanding urbanization and industrialization, environmental pollution which negatively affects the surroundings, has been rising quickly. As a result, induces heavy metal contamination which poses a serious threat to living organisms of aquatic and soil ecosystems. Therefore, they are a need to ameliorate the effects cost by cost pollution on the environment. In this review, we explore methods employed to mitigate the effects caused by heavy metals on the environment. Many techniques employed to manage environmental pollution are tedious and very costly, necessitating the use of alternative management strategies to resolve this challenge. In this concept, bioremediation is viewed as a future technique, due to its environmental friendliness and cost-effective measures aligned with sustainable or climate-smart agriculture to manage contaminants in the environment. The technique involves the use of living entities such as bacteria, fungi, and plants to deteriorate toxic substances from the rhizosphere. Currently, bioremediation is thought to be the most practical, dependable, environmentally benign, and long-lasting solution. Although bioremediation involves different techniques, they are still a need to find the most efficient method for removing toxic substances from the environment. This review focuses on the origins of heavy metal pollution, delves into cost-effective and green technological approaches for eliminating heavy metal pollutants from the environment, and discusses the impact of these pollutants on human health.
Collapse
Affiliation(s)
- Sumanta Das
- Department of Biotechnology, The University of Burdwan, Burdwan, West Bengal, India
| | - Kaniz Wahida Sultana
- Department of Biotechnology, The University of Burdwan, Burdwan, West Bengal, India
| | - Ashwell R Ndhlala
- Department of Plant Production, Soil Science and Agricultural Engineering, Green Biotechnologies Research Centre of Excellence, University of Limpopo, Sovenga, South Africa
| | - Moupriya Mondal
- Department of Biotechnology, The University of Burdwan, Burdwan, West Bengal, India
| | - Indrani Chandra
- Department of Biotechnology, The University of Burdwan, Burdwan, West Bengal, India
| |
Collapse
|
16
|
Schiavo B, Meza-Figueroa D, Vizuete-Jaramillo E, Robles-Morua A, Angulo-Molina A, Reyes-Castro PA, Inguaggiato C, Gonzalez-Grijalva B, Pedroza-Montero M. Oxidative potential of metal-polluted urban dust as a potential environmental stressor for chronic diseases. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:3229-3250. [PMID: 36197533 DOI: 10.1007/s10653-022-01403-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/21/2022] [Indexed: 06/01/2023]
Abstract
Oxidative stress (OS) associated with metals in urban dust has become a public health concern. Chronic diseases linked to general inflammation are particularly affected by OS. This research analyzes the spatial distribution of metals associated with OS, the urban dust´s oxidative potential (OP), and the occurrence of diseases whose treatments are affected by OS. We collected 70 urban dust samples during pre- and post-monsoon seasons to achieve this. We analyzed particle size distribution and morphology by scanning electron microscopy, as well as metal(loid)s by portable X-ray fluorescence, and OP of dust in artificial lysosomal fluid by using an ascorbic acid depletion assay. Our results show that the mean concentration of Fe, Pb, As, Cr, Cu, and V in pre-monsoon was 83,984.6, 98.4, 23.5, 165.8, 301.3, and 141.9 mg kg-1, while during post-monsoon was 50,638.8, 73.9, 16.7, 124.3, 178.9, and 133.5 mg kg-1, respectively. Impoverished areas with the highest presence of cardiovascular, cancer, diabetes, and respiratory diseases coincide with contaminated areas where young adults live. We identified significant differences in the OP between seasons. OP increases during the pre-monsoon (from 7.8 to 237.5 nmol AA min-1) compared to the post-monsoon season (from 1.6 to 163.2 nmol AA min-1). OP values are much higher than measured standards corresponding to contaminated soil and urban particulate matter, which means that additional sources beside metals cause the elevated OP. The results show no risk from chronic exposure to metals; however, our results highlight the importance of studying dust as an environmental factor that may potentially increase oxidative stress.
Collapse
Affiliation(s)
- Benedetto Schiavo
- Instituto de Geofísica, Universidad Nacional Autónoma de México, 04150, Mexico City, Mexico.
| | - Diana Meza-Figueroa
- Departamento de Geología, Universidad de Sonora, Rosales y Encinas, 83000, Hermosillo, Sonora, Mexico.
| | - Efrain Vizuete-Jaramillo
- Departamento de Ciencias del Agua y del Medio Ambiente, Instituto Tecnológico de Sonora, Ciudad Obregón, Mexico
| | - Agustin Robles-Morua
- Departamento de Ciencias del Agua y del Medio Ambiente, Instituto Tecnológico de Sonora, Ciudad Obregón, Mexico
| | - Aracely Angulo-Molina
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Rosales y Encinas, 83000, Hermosillo, Sonora, Mexico
| | - Pablo A Reyes-Castro
- Centro de Estudios en Salud y Sociedad, El Colegio de Sonora, Hermosillo, Mexico
| | - Claudio Inguaggiato
- Departamento de Geología, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Ensenada, Mexico
| | - Belem Gonzalez-Grijalva
- Departamento de Geología, Universidad de Sonora, Rosales y Encinas, 83000, Hermosillo, Sonora, Mexico
| | - Martin Pedroza-Montero
- Departamento de Investigación en Física, Universidad de Sonora, Rosales y Encinas, 83000, Hermosillo, Sonora, Mexico
| |
Collapse
|
17
|
Haidar Z, Fatema K, Shoily SS, Sajib AA. Disease-associated metabolic pathways affected by heavy metals and metalloid. Toxicol Rep 2023; 10:554-570. [PMID: 37396849 PMCID: PMC10313886 DOI: 10.1016/j.toxrep.2023.04.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/21/2023] [Accepted: 04/23/2023] [Indexed: 07/04/2023] Open
Abstract
Increased exposure to environmental heavy metals and metalloids and their associated toxicities has become a major threat to human health. Hence, the association of these metals and metalloids with chronic, age-related metabolic disorders has gained much interest. The underlying molecular mechanisms that mediate these effects are often complex and incompletely understood. In this review, we summarize the currently known disease-associated metabolic and signaling pathways that are altered following different heavy metals and metalloids exposure, alongside a brief summary of the mechanisms of their impacts. The main focus of this study is to explore how these affected pathways are associated with chronic multifactorial diseases including diabetes, cardiovascular diseases, cancer, neurodegeneration, inflammation, and allergic responses upon exposure to arsenic (As), cadmium (Cd), chromium (Cr), iron (Fe), mercury (Hg), nickel (Ni), and vanadium (V). Although there is considerable overlap among the different heavy metals and metalloids-affected cellular pathways, these affect distinct metabolic pathways as well. The common pathways may be explored further to find common targets for treatment of the associated pathologic conditions.
Collapse
|
18
|
Badeenezhad A, Parseh I, Veisi A, Rostami S, Ghelichi-Ghojogh M, Badfar G, Abbasi F. Short-term exposure to some heavy metals carried with PM 10 and cardiovascular system biomarkers during dust storm. Sci Rep 2023; 13:6146. [PMID: 37061544 PMCID: PMC10105359 DOI: 10.1038/s41598-023-31978-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/21/2023] [Indexed: 04/17/2023] Open
Abstract
This study aimed to evaluate the effect of short-term exposure to heavy metals (HM) extracted from PM10 on CB in workers' population in an outdoor space located in southern Iran during a dust storm. At first, 44 healthy and non-smoking workers were selected. Then PM10 and Blood samples were collected before and after the dust storm. Finally, HMs associated with PM10 measured by ICP-MS and its effect on the CB, including fibrinogen, CRP, TNF-α, and BP were estimated by ANOVA, Pearson correlation, and Odd Ratio (OR) in SPSS23. Based on the results, the concentration of PM10 and extracted HM such as Cr, As, and Cd was higher than the WHO/EPA standards in dust storms they increased the CB and BP remarkably. Moreover, the level of fibrinogen, blood pressure (BP) and TNF-α in dust storms were higher than in normal conditions (p < 0.05, OR > 3). In addition, As and Cd decreased fibrinogen concentration and systolic BP, respectively. Whereas, TNF-α was associated with concentration of Pb (R = - 0.85) on normal days. Consequently, the HM on PM10 such as As, interferes with the level of investigated CB. These results considered a potential risk for the residents in the southern regions of Iran.
Collapse
Affiliation(s)
- Ahmad Badeenezhad
- Department of Environmental Health Engineering, School of Medical Sciences, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Iman Parseh
- Department of Environmental Health Engineering, School of Medical Sciences, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Ali Veisi
- Department of Physiology, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Saeid Rostami
- Environmental Health Engineering, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Gholamreza Badfar
- Department of Pediatrics, Abuzar Children's Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fariba Abbasi
- Environmental Health Engineering, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
19
|
Debrah JK, Dinis MAP. Chemical characteristics of bottom ash from biomedical waste incinerators in Ghana. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:568. [PMID: 37058242 PMCID: PMC10102684 DOI: 10.1007/s10661-023-11132-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 03/12/2023] [Indexed: 05/19/2023]
Abstract
Biomedical waste (BMW) incineration is the most used alternative disposal method in developing countries, such as Ghana. The improper disposal of incinerator-generated bottom ash (BA) is a significant concern due to the hazardous nature of waste. A study was conducted at Tema Hospital (TGH) and Asuogyaman Hospital (VRAH) incinerator sites. The BA samples were sent to the Council for Scientific and Industrial Research, Institute of Industrial Research, Ghana. The BA samples were weighed with fisher analytical balance, ground, and sieved with standard grade meshes of 120, 100, and 80 to determine the BA particle size distribution. The chemical composition and heavy metals were analysed using X-ray fluorescence spectrometry (XRF) and atomic absorption spectroscopy (AAS) techniques. The results indicated the chemical composition of the analysed BA samples was CaCO3 (49.90%), CaO (27.96%) and MgCO3 (6.02%) for TGH and CaCO3 (48.30%), CaO (27.07%), and SiO2 (6.10%) for VRAH, respectively. The mean concentration (M) (kg m-3) and standard deviation (SD) for TGH in the BA were 7.082 ± 0.478 (Ti), 4.657 ± 0.127 (Zn) and 4.271 ± 1.263 (Fe), while that of VRAH consisted of 10.469 ± 1.588 (Ti), 7.896 ± 2.154 (Fe) and 4.389 ± 0.371 (Zn). Therefore, the heavy metals' mean concentration at the BA is above the WHO permissible limits of soil, i.e., 0.056 kg m-3 (Ti), 0.085 kg m-3 (Pb), 0.100 kg m-3 (Cr) and 0.036 kg m-3 (Cu). Furthermore, the heavy metal mean concentrations of TGH and VRAH present in the BA analysed samples were ranked in descending order: Ti > Zn > Fe and Ti > Fe > Zn, respectively. It is therefore recommended that BA must be properly disposed of because of the hazardous nature of heavy metals present in the analysed samples, which are able to cause environmental and public health issues.
Collapse
Affiliation(s)
- Justice Kofi Debrah
- Faculty of Science and Technology, University Fernando Pessoa (UFP), Praça 9 de Abril 349, 4249-004, Porto, Portugal.
| | - Maria Alzira Pimenta Dinis
- UFP Energy, Environment and Health Research Unit (FP-ENAS), University Fernando Pessoa (UFP), Praça 9 de Abril 349, 4249-004, Porto, Portugal.
| |
Collapse
|
20
|
El‐Kersh K, Hopkins CD, Wu X, Rai SN, Cave MC, Smith MR, Go Y, Jones DP, Cai L, Huang J. Metallomics in pulmonary arterial hypertension patients. Pulm Circ 2023; 13:e12202. [PMID: 36824690 PMCID: PMC9941844 DOI: 10.1002/pul2.12202] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/18/2022] [Accepted: 02/06/2023] [Indexed: 02/13/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) prevalence is increasing worldwide, and the prognosis is poor with 5-year survival < 50% in high risk patients. The relationship between metal exposure/essential metal dyshomeostasis and PAH/right ventricular dysfunction is less investigated. The aim of this study is to investigate vegetable consumptions and metal levels between PAH patients and controls. This was a prospective, single center pilot study. Questionnaires were completed by all study subjects (20 PAH patients and 10 healthy controls) on smoking, metal exposure risks, metal supplements, and vegetable consumptions. Blood and urine samples were collected to measure 25 metal levels in blood, plasma, and urine using an X Series II quadrupole inductively coupled plasma mass spectrometry. Statistical analysis was conducted using SAS 9.5 and results with p value < 0.05 were considered significant. Vegetables consumptions (broccoli risk ratio [RR] = 0.4, CI = (0.2, 0.9)], cabbage [RR = 0.2, CI = (0.1, 0.8)], and brussel sprouts [RR = 0.2, CI = (0.1, 0.5)]) are associated with less risks of PAH. In the plasma samples, silver (p < 0.001), and copper (p = 0.002) levels were significantly higher in PAH patients. There was significant positive correlation between cardiac output and cardiac index with plasma levels of silver (r = 0.665, p = 0.001 and r = 0.678 p = 0.001), respectively. There was significant correlation between mixed venous saturation, 6-min walk distance, and last BNP with plasma levels of chromium (r = -0.520, p = 0.022; r = -0.55, p = 0.014; r = 0.463, p = 0.039), respectively. In conclusion, there are significant differences between PAH and control groups in terms of vegetable consumptions and metal concentrations. Silver and chromium levels are correlated with clinical indicators of PAH severities.
Collapse
Affiliation(s)
- Karim El‐Kersh
- Division of Pulmonary Critical Care and Sleep Medicine, Department of Internal MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - C. Danielle Hopkins
- Department of Anesthesiology and Perioperative MedicineUniversity of Louisville School of MedicineLouisvilleKentuckyUSA
| | - Xiaoyong Wu
- Department of Environmental HealthUniversity of CincinnatiCincinnatiOhioUSA
| | - Shesh N. Rai
- Department of Environmental HealthUniversity of CincinnatiCincinnatiOhioUSA
| | - Matthew C. Cave
- Division of Gastroenterology, Hepatology, and Nutrition, Department of MedicineUniversity of Louisville School of MedicineLouisvilleKentuckyUSA
- The Center for Integrative Environmental Health SciencesUniversity of LouisvilleLouisvilleKentuckyUSA
- Department of Pharmacology and ToxicologyUniversity of Louisville School of MedicineLouisvilleKentucky
- Department of Biochemistry and Molecular GeneticsUniversity of Louisville School of MedicineLouisvilleKentuckyUSA
- The Transplant Program at UofL Health — Jewish Hospital Trager Transplant CenterLouisvilleKentuckyUSA
| | - M. Ryan Smith
- Division of Pulmonary, Allergy and Critical Care MedicineEmory UniversityAtlantaGeorgiaUSA
| | - Young‐Mi Go
- Division of Pulmonary, Allergy and Critical Care MedicineEmory UniversityAtlantaGeorgiaUSA
| | - Dean P. Jones
- Division of Pulmonary, Allergy and Critical Care MedicineEmory UniversityAtlantaGeorgiaUSA
| | - Lu Cai
- The Center for Integrative Environmental Health SciencesUniversity of LouisvilleLouisvilleKentuckyUSA
- Department of Pharmacology and ToxicologyUniversity of Louisville School of MedicineLouisvilleKentucky
- Department of Pediatrics, Pediatric Research InstituteUniversity of Louisville School of MedicineLouisvilleKentuckyUSA
- Department of Radiation OncologyUniversity of Louisville School of MedicineLouisvilleKentuckyUSA
| | - Jiapeng Huang
- Department of Anesthesiology and Perioperative MedicineUniversity of Louisville School of MedicineLouisvilleKentuckyUSA
- The Center for Integrative Environmental Health SciencesUniversity of LouisvilleLouisvilleKentuckyUSA
- Department of Pharmacology and ToxicologyUniversity of Louisville School of MedicineLouisvilleKentucky
- The Transplant Program at UofL Health — Jewish Hospital Trager Transplant CenterLouisvilleKentuckyUSA
- Department of Cardiovascular and Thoracic Surgery, Cardiovascular Innovation InstituteUniversity of Louisville School of MedicineLouisvilleKentuckyUSA
- Division of Infectious Diseases, Department of Medicine, Center of Excellence for Research in infectious DiseasesUniversity of LouisvilleLouisvilleKentuckyUSA
| |
Collapse
|
21
|
Wang K, Mao Y, Liu Z, Li Y, Li Z, Sun Y, Ding Y, Liu X, Hong J, Xu D, Zhang J. Association of Blood Heavy Metal Exposure with Atherosclerotic Cardiovascular Disease (ASCVD) Among White Adults: Evidence from NHANES 1999-2018. Biol Trace Elem Res 2022:10.1007/s12011-022-03537-4. [PMID: 36542304 DOI: 10.1007/s12011-022-03537-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Cardiovascular diseases (CVD) are main public health concerns highly prevalent in industrialized societies where human health is threatened by a series of environmental pollutants, particularly heavy metal contaminants. We aimed to find out if blood heavy metals are associated with the 10-year risk of atherosclerotic cardiovascular disease (ASCVD) in a nationally representative sample of US adults. We analyzed the cross-sectional data on blood heavy metals of 3268 non-Hispanic white participants aged 40-79 years from the National Health and Nutrition Examination Survey (NHANES) 1999-2018. We introduced a risk estimation algorithm, namely the 2013 Pooled Cohort Equations (PCE), to assess the risk for ASCVD over a 10-year period. The 10-year risk for ASCVD was categorized as either reduced risk (< 7.5% risk) or elevated risk (≥ 7.5% risk). Blood lead, cadmium, and mercury were distributed into four quartiles. We used weighted multivariate logistic regression models and restricted cubic spline (RCS) regression to detect the association of blood heavy metal exposure with 10-year ASCVD risk. Following the adjustment of covariates, the adjusted odds ratios (ORs) with 95% confidence intervals (CIs) for elevated 10-year ASCVD risk for participants from the highest quartiles were 4.50 (2.88-7.02), 2.59 (1.68-4.00), and 1.06 (0.66-1.71) for blood cadmium, lead, and mercury compared to the lowest quartiles, respectively. The RCS plot demonstrated that blood cadmium was linearly and positively associated with 10-year ASCVD risk (P for nonlinearity = 0.112). According to our findings, non-Hispanic whites aged 40-79 years had a greater 10-year ASCVD risk as their blood lead and cadmium levels increased. Consequently, when establishing approaches for ASCVD prevention, blood heavy metals should be considered.
Collapse
Affiliation(s)
- Kai Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Yukang Mao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215000, Jiangsu, China
| | - Zheng Liu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Yansong Li
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Zhongming Li
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Yan Sun
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Yinzhang Ding
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Xianling Liu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Jian Hong
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Di Xu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.
| | - Jing Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
22
|
Ma L, Huo X, Yang A, Yu S, Ke H, Zhang M, Bai Y. Metal Exposure, Smoking, and the Risk of COPD: A Nested Case-Control Study in a Chinese Occupational Population. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191710896. [PMID: 36078612 PMCID: PMC9518333 DOI: 10.3390/ijerph191710896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/21/2022] [Accepted: 08/30/2022] [Indexed: 05/17/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) was the third leading cause of death worldwide in 2019, with a significant disease burden. We conducted a nested case-control study using data from the China Metal-Exposed Workers Cohort Study (Jinchang Cohort) and assessed the associations of exposure to metals and tobacco smoking with the risk of COPD. We used the logistic regression model and the interaction multiplication model to assess the independent and combined effects of heavy metal and smoke exposure on COPD. The cumulative incidence of COPD was 1.04% in 21,560 participants during a median of two years of follow-up. The risk of COPD was significantly elevated with an increase in the amount of tobacco smoked daily (p < 0.05), the number of years of smoking (ptrend < 0.05), and the number of packs of cigarettes smoked per year (ptrend < 0.01). Compared with the low metal exposure group, the adjusted OR was 1.22 (95% CI: 0.85-1.76) in the medium exposure group (mining/production workers) and 1.50 (95% CI: 1.03-2.18) in the high exposure group; smoking and metal exposure had a combined effect on the incidence of COPD (pinteraction < 0.01), with an OR of 4.60 for those with >40 pack-years of smoking who also had the highest metal exposures. Both exposures to metals and smoking were associated with the risk of COPD, and there was an interaction between the two exposures for the risk of COPD.
Collapse
Affiliation(s)
- Li Ma
- School of Public Health, Lanzhou University, Lanzhou 730000, China
- Correspondence: (L.M.); (Y.B.); Tel.: +86-931-8915191 (L.M.); +86-931-8915526 (Y.B.)
| | - Xinxin Huo
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Aimin Yang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Shuxia Yu
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Hongxia Ke
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Mingxia Zhang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Yana Bai
- School of Public Health, Lanzhou University, Lanzhou 730000, China
- Correspondence: (L.M.); (Y.B.); Tel.: +86-931-8915191 (L.M.); +86-931-8915526 (Y.B.)
| |
Collapse
|
23
|
Wang Y, Armijos RX, Weigel MM. Dietary Inflammatory Index and Cardiometabolic Risk in Ecuadorian School-Age Children. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2022:1-10. [PMID: 35980812 DOI: 10.1080/27697061.2022.2113177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Cardiometabolic diseases and metabolic syndrome (MetS) are becoming increasingly prevalent in low- and middle-income countries (LMICs). Cardiometabolic diseases and MetS are closely associated with low-grade systemic inflammation, which may be modified by diet. Previous studies have focused on the association of dietary inflammation with MetS and cardiometabolic risk in adult populations, but few studies have examined this issue in children, especially in LMICs. METHODS We conducted a cross-sectional study to explore the association of dietary inflammation with cardiometabolic risk components and MetS in urban Ecuadorian children aged 6-12 years old (n = 276). A semi-quantitative food frequency questionnaire (FFQ) was used to collect data on child dietary intake. Dietary inflammation was evaluated using an energy-adjusted Dietary Inflammatory Index (DII), divided into quartiles. Data were also collected on cardiometabolic risk indicators including blood lipids, blood pressure (BP), blood glucose, body mass index, and waist circumference. Data were analyzed using multivariable linear and logistic regression. RESULTS Child DII scores ranged from -4.87 (most anti-inflammatory) to 4.75 (most pro-inflammatory). We transformed the continuous scores into quartiles (Q): Q1 was the most anti-inflammatory (-4.87 to -3.35), Q2 was anti-inflammatory (-3.34 to -1.45), Q3 was pro-inflammatory (-1.44 to 1.08), and Q4 was the most pro-inflammatory (1.09 to 4.75). In the covariate-adjusted model, DII scores were positively associated with total blood cholesterol (p = 0.027), triglycerides (p = 0.034), and diastolic BP (p = 0.013). In addition, for every one-unit increase in DII score, MetS increased by 1.20 in the covariate-adjusted model (95% CI = 1.01,1.43). CONCLUSIONS The findings suggest that more pro-inflammatory diets may contribute to poorer cardiometabolic health in school-age children. This is important because even small increases in child blood pressure, blood cholesterol, and glucose levels over time can damage health and lead to earlier progression to conditions such as hypertension and atherosclerosis.
Collapse
Affiliation(s)
- Yankun Wang
- Department of Environmental & Occupational Health, Indiana University-Bloomington School of Public Health, Bloomington, Indiana, USA
- Global Environmental Health Research Lab, Indiana University-Bloomington School of Public Health, Bloomington, Indiana, USA
| | - Rodrigo X Armijos
- Department of Environmental & Occupational Health, Indiana University-Bloomington School of Public Health, Bloomington, Indiana, USA
- Global Environmental Health Research Lab, Indiana University-Bloomington School of Public Health, Bloomington, Indiana, USA
| | - Mary-Margaret Weigel
- Department of Environmental & Occupational Health, Indiana University-Bloomington School of Public Health, Bloomington, Indiana, USA
- Global Environmental Health Research Lab, Indiana University-Bloomington School of Public Health, Bloomington, Indiana, USA
| |
Collapse
|
24
|
Wu JX, Lau ATY, Xu YM. Indoor Secondary Pollutants Cannot Be Ignored: Third-Hand Smoke. TOXICS 2022; 10:363. [PMID: 35878269 PMCID: PMC9316611 DOI: 10.3390/toxics10070363] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 02/05/2023]
Abstract
Smoking has been recognized by the World Health Organization (WHO) as the fifth highest threat to humanity. Smoking, a leading disease promoter, is a major risk factor for non-communicable diseases (NCDs) such as cancer, cardiovascular disease, diabetes, and chronic respiratory diseases. NCDs account for 63% of all deaths worldwide. Passive smoking is also a health risk. Globally, more than a third of all people are regularly exposed to harmful smoke. Air pollution is a common global problem in which pollutants emitted into the atmosphere undergo a series of physical or chemical reactions to produce various oxidation products, which are often referred to as secondary pollutants. Secondary pollutants include ozone (O3), sulfur trioxide (SO3), nitrogen dioxide (NO2), and respirable particulate matter (PM). It is worth mentioning that third-hand smoke (THS), formed by the reaction of nicotine with second-hand smoke (SHS) caused by indoor O3 or nitrous acid (HONO), is a major indoor secondary pollutant that cannot be ignored. As a form of indoor air pollution that is relatively difficult to avoid, THS exists in any corner of the environment where smokers live. In this paper, we summarize the important research progress on the main components, detection, and toxicity of THS and look forward to future research directions. Scientific understanding of THS and its hazards will facilitate smoking bans in indoor and public places and raise public concern for how to prevent and remove THS.
Collapse
Affiliation(s)
- Jia-Xun Wu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | | | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
25
|
Comparison of the Concentrations of Heavy Metals in PM2.5 Analyzed in Three Different Global Research Institutions Using X-ray Fluorescence. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This inter-lab study aimed to evaluate the comparability of heavy metal concentrations in the same samples using three X-ray fluorescence spectrometers (XRFs) in three different global re-search institutions, namely a collaboration lab between Soonchunhyang University (Asan, Korea). and PAN (a branch of Malvern PANalytical, Seoul, Korea), RTI (Research Triangle Institute, NC, U.S.A), and Aerosol laboratory in Harvard University, Boston, U.S.A. Indoor air filter samples were collected from 8 homes using 3 filters in each household (n = 24) of individuals with asthma, and the same filter samples were sequentially analyzed separately in the collaboration lab Soonchunhyang-PAN, Harvard University, and RTI. Results showed the detection rates of most heavy metals (n = 25 metals) across the three institutions to be approximately 90%. Of the 25 metals, 16 showed coefficient of determination (R²) 0.7 or higher (10 components had 0.9 or higher) implying high correlation among institutions. Therefore, this study demonstrated XRF as a useful device, ensuring reproducibility and compatibility in the measurement of heavy metals in PM2.5, collected from indoor air filters of asthmatics’ residents.
Collapse
|
26
|
Yang J, Chan K, Choi C, Yang A, Lo K. Identifying Effects of Urinary Metals on Type 2 Diabetes in U.S. Adults: Cross-Sectional Analysis of National Health and Nutrition Examination Survey 2011-2016. Nutrients 2022; 14:1552. [PMID: 35458113 PMCID: PMC9031490 DOI: 10.3390/nu14081552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 12/19/2022] Open
Abstract
Growing evidence supports the associations of metal exposures with risk of type 2 diabetes (T2D), but the methodological limitations overlook the complexity of relationships within the metal mixtures. We identified and estimated the single and combined effects of urinary metals and their interactions with prevalence of T2D among 3078 participants in the NHANES 2011-2016. We analyzed 15 urinary metals and identified eight metals by elastic-net regression model for further analysis of the prevalence of T2D. Bayesian kernel machine regression and the weighted quantile sum (WQS) regression models identified four metals that had greater importance in T2D, namely cobalt (Co), tin (Sn), uranium (U) and strontium (Sr). The overall OR of T2D was 1.05 (95% CI: 1.01-1.08) for the positive effects and 1.00 (95% CI: 0.98-1.02) for the negative effect in the WQS models. We observed positive (Poverall = 0.008 and Pnon-linear = 0.100 for Co, Poverall = 0.011 and Pnon-linear = 0.138 for Sn) and inverse (Poverall = 0.001, Pnon-linear = 0.209 for Sr) linear dose-response relationships with T2D by restricted cubic spline analysis. Both additive and multiplicative interactions were found in urinary Sn and Sr. In conclusion, urinary Co, Sn, U and Sr played important roles in the development of T2D. The levels of Sn might modify the effect of Sr on T2D risk.
Collapse
Affiliation(s)
- Jingli Yang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Kayue Chan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Cheukling Choi
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Aimin Yang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kenneth Lo
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
27
|
Yim G, Wang Y, Howe CG, Romano ME. Exposure to Metal Mixtures in Association with Cardiovascular Risk Factors and Outcomes: A Scoping Review. TOXICS 2022; 10:toxics10030116. [PMID: 35324741 PMCID: PMC8955637 DOI: 10.3390/toxics10030116] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 12/18/2022]
Abstract
Since the National Institute of Environmental Health Sciences (NIEHS) declared conducting combined exposure research as a priority area, literature on chemical mixtures has grown dramatically. However, a systematic evaluation of the current literature investigating the impacts of metal mixtures on cardiovascular disease (CVD) risk factors and outcomes has thus far not been performed. This scoping review aims to summarize published epidemiology literature on the cardiotoxicity of exposure to multiple metals. We performed systematic searches of MEDLINE (PubMed), Scopus, and Web of Science to identify peer-reviewed studies employing statistical mixture analysis methods to evaluate the impact of metal mixtures on CVD risk factors and outcomes among nonoccupationally exposed populations. The search was limited to papers published on or after 1998, when the first dedicated funding for mixtures research was granted by NIEHS, through 1 October 2021. Twenty-nine original research studies were identified for review. A notable increase in relevant mixtures publications was observed starting in 2019. The majority of eligible studies were conducted in the United States (n = 10) and China (n = 9). Sample sizes ranged from 127 to 10,818. Many of the included studies were cross-sectional in design. Four primary focus areas included: (i) blood pressure and/or diagnosis of hypertension (n = 15), (ii) risk of preeclampsia (n = 3), (iii) dyslipidemia and/or serum lipid markers (n = 5), and (iv) CVD outcomes, including stroke incidence or coronary heart disease (n = 8). The most frequently investigated metals included cadmium, lead, arsenic, and cobalt, which were typically measured in blood (n = 15). The most commonly utilized multipollutant analysis approaches were Bayesian kernel machine regression (BKMR), weighted quantile sum regression (WQSR), and principal component analysis (PCA). To our knowledge, this is the first scoping review to assess exposure to metal mixtures in relation to CVD risk factors and outcomes. Recommendations for future studies evaluating the associations of exposure to metal mixtures with risk of CVDs and related risk factors include extending environmental mixtures epidemiologic studies to populations with wider metals exposure ranges, including other CVD risk factors or outcomes outside hypertension or dyslipidemia, using repeated measurement of metals to detect windows of susceptibility, and further examining the impacts of potential effect modifiers and confounding factors, such as fish and seafood intake.
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW With cardiovascular disease (CVD) being the top cause of deaths worldwide, it is important to ensure healthy cardiovascular aging through enhanced understanding and prevention of adverse health effects exerted by external factors. This review aims to provide an updated understanding of environmental influences on cardiovascular aging, by summarizing epidemiological and mechanistic evidence for the cardiovascular health impact of major environmental stressors, including air pollution, endocrine-disrupting chemicals (EDCs), metals, and climate change. RECENT FINDINGS Recent studies generally support positive associations of exposure to multiple chemical environmental stressors (air pollution, EDCs, toxic metals) and extreme temperatures with increased risks of cardiovascular mortality and morbidity in the population. Environmental stressors have also been associated with a number of cardiovascular aging-related subclinical changes including biomarkers in the population, which are supported by evidence from relevant experimental studies. The elderly and patients are the most vulnerable demographic groups to majority environmental stressors. Future studies should account for the totality of individuals' exposome in addition to single chemical pollutants or environmental factors. Specific factors most responsible for the observed health effects related to cardiovascular aging remain to be elucidated.
Collapse
Affiliation(s)
- Yang Lan
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Yanta District, Xi'an City, Shaanxi Province, 710061, People's Republic of China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Yanta District, Xi'an City, Shaanxi Province, 710061, People's Republic of China.
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China.
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China.
| |
Collapse
|
29
|
Rahman HH, Niemann D, Munson-McGee SH. Environmental exposure to metals and the risk of high blood pressure: a cross-sectional study from NHANES 2015-2016. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:531-542. [PMID: 34331653 DOI: 10.1007/s11356-021-15726-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Exposure to metal pollution can be caused from inhalation, ingestion, or absorption from air, water, or food. Chronic exposure to trace amounts of metals can lead to high blood pressure, or hypertension, and other chronic diseases. The rationale of our study was to determine if there was a correlation between nineteen forms of urinary metal concentrations and high blood pressure, defined as ≥ 130 mm Hg systolic or ≥ 80 mm Hg diastolic, in the adult US population, to understand the possible impacts of metal exposure on humans. Five types of urinary arsenic species and fourteen types of urinary metals were studied to examine their correlation with high blood pressure. We used the dataset from the 2015-2016 National Health and Nutrition Examination Survey (NHANES) for the study. A specialized complex survey design analysis package was used in analyzing the NHANES data. We used pairwise t tests and the logit regression models to study the correlation between urinary arsenic (five types) and urinary metal (fourteen types) concentrations and high blood pressure. The total study population analyzed included 4037 adults aged 20 years and older, of whom 57.9% of males and 51.7% of females had high blood pressure. Urinary arsenous acid (OR: 2.053, 95% CI: 1.045, 4.035), tin (OR: 1.983, 95% CI: 1.169, 3.364), and cesium (OR: 2.176, 95% CI: 1.013, 4.675) were associated with increased odds of high blood pressure. The other four types of urinary arsenic and twelve types of urinary metals were not associated with high blood pressure. Our results determined that exposure to environmental metals such as arsenous acid, tin, and cesium can be associated with high blood pressure. Further investigation is suggested to support our findings.
Collapse
Affiliation(s)
- Humairat H Rahman
- Department of Public Health Sciences, New Mexico State University, Las Cruces, NM, 88003-1231, USA.
| | | | | |
Collapse
|
30
|
Disorders of the Reproductive Health of Cattle as a Response to Exposure to Toxic Metals. BIOLOGY 2021; 10:biology10090882. [PMID: 34571759 PMCID: PMC8467698 DOI: 10.3390/biology10090882] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/29/2021] [Accepted: 09/03/2021] [Indexed: 12/24/2022]
Abstract
The aim of this review is to comprehensively present disorders of the reproductive system in cattle exposed to contact with toxic metals. Toxic metals are a common environmental pollutant and can come from mines, smelters, fossil fuel combustion, or volcanic eruptions. Metals have the ability to bioaccumulate in living organisms, thus contaminating the food chain and may pose a threat to humans. They accumulate mainly in the liver and kidneys, but also in muscles and fat tissue. Toxic metals such as lead (Pb), arsenic (As), mercury (Hg), and cadmium (Cd) have a negative impact on the fertility of animals; they can lead to abortions, premature calving, or oocyte dysfunction. Moreover, in the male reproductive system, they disrupt spermatogenesis, and cause apoptosis of sperm and oxidative damage. The main source of exposure of livestock to toxic metals is through the consumption of feed or contaminated water. It is important to monitor the level of heavy metals in animal products to prevent human poisoning. Toxic metal biomonitoring can be performed by testing urine, blood, milk, plasma, or hair. Chromium (Cr), arsenic (As), and cadmium (Cd) are excreted in the urine, while lead can be detected by examining the blood of animals, while in milk, arsenic (As), cadmium (Cd), nickel (Ni), and lead (Pb) can be detected. Moreover, toxic metals do not biodegrade in the environment. To purify soil and waters, remediation methods, e.g., biological or chemical, should be used.
Collapse
|
31
|
Wan H, Wang B, Cui Y, Wang Y, Zhang K, Chen C, Xia F, Ye L, Wang L, Wang N, Lu Y. Low-level lead exposure promotes hepatic gluconeogenesis and contributes to the elevation of fasting glucose level. CHEMOSPHERE 2021; 276:130111. [PMID: 33691221 DOI: 10.1016/j.chemosphere.2021.130111] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/28/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Lead (Pb) is considered an endocrine-disrupting chemical. However, few studies have investigated the effects of low-level Pb exposure on plasma glucose levels. Herein, we aimed to investigate whether low-level Pb exposure causes elevated plasma glucose levels and the possible mechanisms involved. METHODS We conducted a cross-sectional study of 5747 participants from 16 sites in China. The participants underwent measurements of anthropometric factors, blood lead level (BLL) and fasting plasma glucose (FPG). Wistar rats were exposed to 0.05% Pb through drinking water or fed with a high-fat diet (HFD) for 28 weeks. The relevant parameters of glucose homeostasis, hepatic glucose production (HGP) and gene expression levels of hepatic gluconeogenesis enzymes, including phosphoenolpyruvate carboxy kinase (PEPCK), glucose-6-phosphatase (G6PC) and fructose-1,6-bisphosphatase (FBP1), were measured. In addition, gene expression levels of gluconeogenesis enzymes were also measured in HepG2 cells administered with different concentrations of lead acetate for 24 h. RESULTS In humans, after adjusting for confounders, the odds of having High_FPG (≥5.6 mmol/L) were significantly increased by 25% in the participants in the fourth BLL quartile (OR 1.25, 95% CI 1.05, 1.49). In the animals exposed to 0.05% Pb, FPG, HGP and hepatic gene expression levels of PEPCK, G6PC and FBP1 were increased. In addition, the mRNA expression levels of PEPCK, G6PC and FBP1 in HepG2 cells were also increased in response to Pb exposure. CONCLUSIONS These findings support the possibility that low-level Pb exposure may increase HGP by affecting key enzymes of hepatic gluconeogenesis, eventually resulting in impaired FPG and hyperglycemia.
Collapse
Affiliation(s)
- Heng Wan
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Bin Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yuke Cui
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yuying Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Kun Zhang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Chi Chen
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Fangzhen Xia
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Lin Ye
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Li Wang
- Department of Nephrology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| | - Ningjian Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China; Institute and Department of Endocrinology and Metabolism, Huangpu Branch, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| | - Yingli Lu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China; Institute and Department of Endocrinology and Metabolism, Huangpu Branch, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| |
Collapse
|
32
|
Wang Y, Armijos RX, Xun P, Weigel MM. Dietary Inflammatory Index and Cardiometabolic Risk in Ecuadorian Women. Nutrients 2021; 13:nu13082640. [PMID: 34444800 PMCID: PMC8400965 DOI: 10.3390/nu13082640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022] Open
Abstract
Low-grade systemic inflammation is implicated in metabolic syndrome (MetS) and cardiometabolic diseases. Diet is hypothesized to be an important low-grade inflammation modifier. However, few studies have examined the association of dietary inflammation with MetS and cardiometabolic risk in Latin American populations and their findings are inconsistent. Our cross-sectional study examined the association of dietary inflammatory potential with MetS and cardiometabolic risk components in 276 urban Ecuadorian women. Dietary inflammation was evaluated using an energy-adjusted Dietary Inflammatory Index (E-DII), divided into quartiles (Q). E-DII scores ranged from −4.89 (most anti-inflammatory) to 4.45 (most pro-inflammatory). Participants in the most pro-inflammatory (Q4) compared to the least inflammatory E-DII quartile (Q1) had a 4.4 increased adjusted odds for MetS (95% C.I. = 2.0, 9.63; p < 0.001). Every one-unit increase in E-DII was associated with a 1.4 increase in MetS (95% CI = 1.22, 1.52; p < 0.001). In other adjusted models, the most pro-inflammatory E-DII quartile (Q4) was positively associated with total blood cholesterol and triglycerides (p < 0.001), LDL-c (p = 0.007), diastolic blood pressure (p< 0.002), mean arterial pressure (p < 0.006), waist circumference (p < 0.008), and Framingham risk score (p < 0.001). However, the previously identified associations with pulse wave velocity and BMI were no longer evident in the models. These findings suggest that more pro-inflammatory diets may contribute to poorer cardiometabolic health. Promoting healthier diets with a lower inflammatory potential may help to prevent or slow development of cardiometabolic disorders.
Collapse
Affiliation(s)
- Yankun Wang
- Department of Environmental & Occupational Health, Indiana University-Bloomington School of Public Health, Bloomington, IN 47405, USA; (Y.W.); (R.X.A.)
- Global Environmental Health Research Laboratory, Indiana University-Bloomington School of Public Health, Bloomington, IN 47405, USA
| | - Rodrigo X. Armijos
- Department of Environmental & Occupational Health, Indiana University-Bloomington School of Public Health, Bloomington, IN 47405, USA; (Y.W.); (R.X.A.)
- Global Environmental Health Research Laboratory, Indiana University-Bloomington School of Public Health, Bloomington, IN 47405, USA
- Center for Latin American & Caribbean Studies, Indiana University-Bloomington, Bloomington, IN 47405, USA
| | - Pengcheng Xun
- Department of Epidemiology and Biostatistics, Indiana University-Bloomington School of Public Health, Bloomington, IN 47405, USA;
- Atara Biotherapeutics, Thousand Oaks, CA 91320, USA
| | - Mary Margaret Weigel
- Department of Environmental & Occupational Health, Indiana University-Bloomington School of Public Health, Bloomington, IN 47405, USA; (Y.W.); (R.X.A.)
- Global Environmental Health Research Laboratory, Indiana University-Bloomington School of Public Health, Bloomington, IN 47405, USA
- Center for Latin American & Caribbean Studies, Indiana University-Bloomington, Bloomington, IN 47405, USA
- Correspondence: ; Tel.: +812-856-4930
| |
Collapse
|
33
|
El-Sikaily A, Helal M. Environmental pollution and diabetes mellitus. World J Meta-Anal 2021; 9:234-256. [DOI: 10.13105/wjma.v9.i3.234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/17/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus (DM) is a chromic metabolic disease that affects a large segment of the population worldwide. Physical inactivity, poor nutrition, and genetic predisposition are main risk factors for disease development. In the last decade, it was clear to the scientific community that DM development is linked to a novel disease inducer that was later defined as diabetogenic factors of pollution and endocrine disrupting agents. Environmental pollution is exponentially increasing in uncontrolled manner in several countries. Environmental pollutants are of diverse nature and toxicities, including polyaromatic hydrocarbons (PAHs), pesticides, and heavy metals. In the current review, we shed light on the impact of each class of these pollutants and the underlined molecular mechanism of diabetes induction and biological toxicities. Finally, a brief overview about the connection between coronavirus disease 2019 and diabetes pandemics is presented.
Collapse
Affiliation(s)
- Amany El-Sikaily
- National Institute of Oceanography and Fisheries (NIOF), Cairo 21513, Egypt
| | - Mohamed Helal
- National Institute of Oceanography and Fisheries (NIOF), Cairo 21513, Egypt
| |
Collapse
|
34
|
Chrysochou E, Kanellopoulos PG, Koukoulakis KG, Sakellari A, Karavoltsos S, Minaidis M, Bakeas E. Heart Failure and PAHs, OHPAHs, and Trace Elements Levels in Human Serum: Results from a Preliminary Pilot Study in Greek Population and the Possible Impact of Air Pollution. Molecules 2021; 26:3207. [PMID: 34071927 PMCID: PMC8199329 DOI: 10.3390/molecules26113207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 01/14/2023] Open
Abstract
Cardiovascular diseases (CVDs) have been associated with environmental pollutants. The scope of this study is to assess any potential relation of polycyclic aromatic hydrocarbons (PAHs), their hydroxylated derivatives, and trace elements with heart failure via their direct determination in human serum of Greek citizens residing in different areas. Therefore, we analyzed 131 samples including cases (heart failure patients) and controls (healthy donors), and the respective demographic data were collected. Significantly higher concentrations (p < 0.05) were observed in cases' serum regarding most of the examined PAHs and their derivatives with phenanthrene, fluorene, and fluoranthene being the most abundant (median of >50 μg L-1). Among the examined trace elements, As, Cd, Cu, Hg, Ni, and Pb were measured at statistically higher concentrations (p < 0.05) in cases' samples, with only Cr being significantly higher in controls. The potential impact of environmental factors such as smoking and area of residence has been evaluated. Specific PAHs and trace elements could be possibly related with heart failure development. Atmospheric degradation and smoking habit appeared to have a significant impact on the analytes' serum concentrations. PCA-logistic regression analysis could possibly reveal common mechanisms among the analytes enhancing the hypothesis that they may pose a significant risk for CVD development.
Collapse
Affiliation(s)
- Eirini Chrysochou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece; (E.C.); (P.G.K.); (K.G.K.)
| | - Panagiotis Georgios Kanellopoulos
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece; (E.C.); (P.G.K.); (K.G.K.)
| | - Konstantinos G. Koukoulakis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece; (E.C.); (P.G.K.); (K.G.K.)
| | - Aikaterini Sakellari
- Laboratory of Environmental Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece; (A.S.); (S.K.)
| | - Sotirios Karavoltsos
- Laboratory of Environmental Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece; (A.S.); (S.K.)
| | | | - Evangelos Bakeas
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece; (E.C.); (P.G.K.); (K.G.K.)
| |
Collapse
|
35
|
Narita K, Amiya E. Social and environmental risks as contributors to the clinical course of heart failure. Heart Fail Rev 2021; 27:1001-1016. [PMID: 33945055 DOI: 10.1007/s10741-021-10116-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 11/28/2022]
Abstract
Heart failure is a major contributor to healthcare expenditures. Many clinical risk factors for the development and exacerbation of heart failure had been reported, including diabetes, renal dysfunction, and respiratory disease. In addition to these clinical parameters, the effects of social factors, such as occupation or lifestyle, and environmental factors may have a great impact on disease development and progression of heart failure. However, the current understanding of social and environmental factors as contributors to the clinical course of heart failure is insufficient. To present the knowledge of these factors to date, this comprehensive review of the literature sought to identify the major contributors to heart failure within this context. Social factors for the risk of heart failure included occupation and lifestyle, specifically in terms of the effects of specific occupations, occupational exposure to toxicities, work style, and sleep deprivation. Socioeconomic factors focused on income and education level, social status, the neighborhood environment, and marital status. Environmental factors included traffic and noise, air pollution, and other climate factors. In addition, psychological stress and behavior traits were investigated. The development of heart failure may be closely related to these factors; therefore, these data should be summarized for the context to improve their effects on patients with heart failure. The present study reviews the literature to summarize these influences.
Collapse
Affiliation(s)
- Koichi Narita
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, 113-8655, Tokyo, Japan
| | - Eisuke Amiya
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, 113-8655, Tokyo, Japan. .,Department of Therapeutic Strategy for Heart Failure, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, 113-8655, Tokyo, Japan.
| |
Collapse
|
36
|
El-Mahdy MA, Mahgoup EM, Ewees MG, Eid MS, Abdelghany TM, Zweier JL. Long-term electronic cigarette exposure induces cardiovascular dysfunction similar to tobacco cigarettes: role of nicotine and exposure duration. Am J Physiol Heart Circ Physiol 2021; 320:H2112-H2129. [PMID: 33606584 DOI: 10.1152/ajpheart.00997.2020] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Electronic cigarette (e-cig) vaping (ECV) has been proposed as a safer alternative to tobacco cigarette smoking (TCS); however, this remains controversial due to a lack of long-term comparative studies. Therefore, we developed a chronic mouse exposure model that mimics human vaping and allows comparison with TCS. Longitudinal studies were performed to evaluate alterations in cardiovascular function with TCS and ECV exposure durations of up to 60 wk. For ECV, e-cig liquid with box-mod were used and for TCS, 3R4F-cigarettes. C57/BL6 male mice were exposed 2 h/day, 5 days/wk to TCS, ECV, or air control. The role of vape nicotine levels was evaluated using e-cig-liquids with 0, 6, or 24 mg/mL nicotine. Following 16-wk exposure, increased constriction to phenylephrine and impaired endothelium-dependent and endothelium-independent vasodilation were observed in aortic segents, paralleling the onset of systemic hypertension, with elevations in systemic vascular resistance. Following 32 wk, TCS and ECV induced cardiac hypertrophy. All of these abnormalities further increased out to 60 wk of exposure, with elevated heart weight and aortic thickness along with increased superoxide production in vessels and cardiac tissues of both ECV and TCS mice. While ECV-induced abnormalities were seen in the absence of nicotine, these occurred earlier and were more severe with higher nicotine exposure. Thus, long-term vaping of e-cig can induce cardiovascular disease similar to TCS, and the severity of this toxicity increases with exposure duration and vape nicotine content.NEW & NOTEWORTHY A chronic mouse exposure model that mimics human e-cigarette vaping and allows comparison with tobacco cigarette smoking was developed and utilized to perform longitudinal studies of alterations in cardiovascular function. E-cigarette exposure led to the onset of cardiovascular disease similar to that with tobacco cigarette smoking. Impaired endothelium-dependent and endothelium-independent vasodilation with increased adrenergic vasoconstriction were observed, paralleling the onset of systemic hypertension and subsequent cardiac hypertrophy. This cardiovascular toxicity was dependent on exposure duration and nicotine dose.
Collapse
Affiliation(s)
- Mohamed A El-Mahdy
- Center for Environmental and Smoking Induced Disease and Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Elsayed M Mahgoup
- Center for Environmental and Smoking Induced Disease and Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio.,Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Mohamed G Ewees
- Center for Environmental and Smoking Induced Disease and Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Mahmoud S Eid
- Center for Environmental and Smoking Induced Disease and Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Tamer M Abdelghany
- Center for Environmental and Smoking Induced Disease and Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Jay L Zweier
- Center for Environmental and Smoking Induced Disease and Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio
| |
Collapse
|
37
|
Affiliation(s)
- Hui Wang
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Zhi-Cheng Jing
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| |
Collapse
|
38
|
Kirichuk AA, Skalny AA, Rusakov AI, Tinkov AA, Skalny AV. Arsenic, cadmium, mercury, and lead levels in hair and urine in first-year RUDN University students of different geographic origins. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:34348-34356. [PMID: 32557050 DOI: 10.1007/s11356-020-09683-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/10/2020] [Indexed: 05/27/2023]
Abstract
The objective of the present study was to assess the markers of arsenic, cadmium, mercury, and lead exposure in first-year RUDN University students of different geographic origins. A total of 274 first-year students of the RUDN University originating from Russia (n = 65), Asia (n = 57), Middle East (n = 84), Africa (n = 40), and Latin America (n = 28) were enrolled in the present study. Evaluation of As, Cd, Hg, and Pb levels in urine and hair was performed using inductively coupled plasma-mass spectrometry. The obtained data demonstrate that hair As levels in foreign students exceed that in Russian examinees. The highest Cd and Pb levels were detected in subjects from Africa and Latin America, whereas hair Hg content was significantly higher in Latin America students. Urinary Cd levels in foreign students exceeded those in Russian counterparts. In turn, the highest Hg concentration in urine was revealed in students originating from Middle East and especially Latin America. Urinary Pb levels were found to be the highest in students from Africa. Multiple regression analysis demonstrated that Asian, African, and Latin American origins were considered as a significant predictor of hair Hg content. Higher urinary Hg levels were associated with Asia, Middle East, and Latin American origins. Prior habitation in Africa and Asia was considered as predictor of higher hair Pb and urinary Cd levels. The observed difference may be indicative of geographic difference in toxic metal exposure patterns.
Collapse
Affiliation(s)
- Anatoly A Kirichuk
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia, 117198
| | - Andrey A Skalny
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia, 117198
| | | | - Alexey A Tinkov
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia, 117198
- Yaroslavl State University, Yaroslavl, Russia, 150003
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia, 119146
| | - Anatoly V Skalny
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia, 117198.
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia, 119146.
- Federal Research Centre of Biological Systems and Agro-technologies of the Russian Academy of Sciences, Orenburg, Russia, 460000.
| |
Collapse
|