1
|
Miiro A, Odume ON, Nyakairu GW, Odongo S, Matovu H, Drago Kato C, Špánik I, Sillanpaä M, Mubiru E, Ssebugere P. Per- and poly-fluoroalkyl substances in aquatic ecosystems and wastewater treatment works in Africa: Occurrence, ecological implications, and future perspectives. CHEMOSPHERE 2024; 367:143590. [PMID: 39433094 DOI: 10.1016/j.chemosphere.2024.143590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
The increasing levels of industrialization and urbanization have led to the generation of significant amounts of wastewater and waste products, often containing chemicals like per- and poly-fluoroalkyl substances (PFASs) commonly found in consumer products. PFASs are known for their persistence, ubiquity, and ecotoxicological impacts, raising concerns about potential harm to ecosystems. This paper reports the occurrence and evaluates the ecological risks of PFASs in aquatic ecosystems and wastewater treatment works (WWTWs) across Africa. We reviewed 32 papers published in the period 2009-2024 and identified a total of 35 PFAS compounds in surface waters, wastewater, sediments, fish, crocodiles, and invertebrates. Much of the reported studies came from South Africa, followed by Kenya and Nigeria. PFAS concentrations in Africa were <0.7-390.0 ng L-1 in surface waters, 0.05-772 ng g-1 dw in sediments, and <0.2-832 ng L-1 in wastewater, while the highest levels in fish and invertebrates were 460.7 and 35.5 ng g-1 ww, respectively. The PFAS levels were in the same range of data as those reported globally. However, the high concentrations of PFASs in sediments and wastewater suggest areas of point contamination and a growing risk to aquatic ecosystems from effluent discharges. Calculated risk quotients suggested that, in Africa, organisms in river systems face greater risks due to exposure to PFASs compared to those in lakes, while marine organisms might face higher risks compared to freshwater organisms. Future studies should focus on PFAS contamination sources, especially WWTWs, as emerging sources of PFASs in aquatic systems.
Collapse
Affiliation(s)
- Ashirafu Miiro
- Institute for Water Research, Rhodes University, P.O Box 94, Makhanda, South Africa; Department of Chemistry, Makerere University, P.O Box 7062, Kampala, Uganda
| | | | | | - Silver Odongo
- Department of Chemistry, Makerere University, P.O Box 7062, Kampala, Uganda
| | - Henry Matovu
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Charles Drago Kato
- School of Biosecurity, Biotechnical & Laboratory Sciences, College of Veterinary Medicine, Animal Resources & Biosecurity, Makerere University, P.O Box 7062, Kampala, Uganda
| | - Ivan Špánik
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinskeho 9, 812 37, Bratislava, Slovakia
| | - Mika Sillanpaä
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O Box 17011, Doornfontein, 2028, South Africa; Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha Uni-versity, Chennai, Tamil Nadu, 602105, India; Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India; Functional Materials Group, Gulf University for Science and Technology, Mubarak Al-Abdullah, 32093, Kuwait, Kuwait
| | - Edward Mubiru
- Department of Chemistry, Makerere University, P.O Box 7062, Kampala, Uganda
| | - Patrick Ssebugere
- Department of Chemistry, Makerere University, P.O Box 7062, Kampala, Uganda.
| |
Collapse
|
2
|
Huang Y, Chen W, Gan Y, Liu X, Tian Y, Zhang J, Li F. Prenatal exposure to per- and polyfluoroalkyl substances, genetic factors, and autistic traits: Evidence from the Shanghai birth cohort. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135857. [PMID: 39383700 DOI: 10.1016/j.jhazmat.2024.135857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/07/2024] [Accepted: 09/14/2024] [Indexed: 10/11/2024]
Abstract
The epidemiological evidence regarding prenatal PFAS exposure and its interaction with genetic factors on the autistic traits risk is unclear. This study included 1610 mother-child pairs from the Shanghai Birth Cohort (SBC). Ten PFAS were quantified in blood serum collected in the first trimester. Child autistic traits were evaluated at age 4 using a Chinese version of the social responsiveness scale-short form (SRS-SF). We calculated the polygenic risk score (PRS) to evaluate the cumulative genetic effects of autism. Additive interaction models were established to explore whether genetic susceptibility modified the effects of prenatal PFAS exposure. After adjusting for confounders, we found prenatal PFOA exposure was associated with an increased risk of autistic traits in children (OR, 3.05; 95 % CI, 1.14-7.58), and the increased risk associated with PFOA was mitigated among women who reported pre-pregnancy folic acid supplementation. Additionally, an increased risk of autistic traits was observed in children with higher levels of prenatal PFHxS exposure and a high PRS (p for interaction = 0.021). Our findings suggest prenatal PFAS exposure may increase the risk of autistic traits in children, especially in those with a high genetic risk. Further research is warranted to confirm this association and explore the underlying mechanisms.
Collapse
Affiliation(s)
- Yun Huang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiran Chen
- Department of Developmental and Behavioral Pediatric and Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuexin Gan
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Liu
- Department of Developmental and Behavioral Pediatric and Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Tian
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Fei Li
- Department of Developmental and Behavioral Pediatric and Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Adewuyi A, Li Q. Emergency of per- and polyfluoroalkyl substances in drinking water: Status, regulation, and mitigation strategies in developing countries. ECO-ENVIRONMENT & HEALTH 2024; 3:355-368. [PMID: 39281067 PMCID: PMC11399586 DOI: 10.1016/j.eehl.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/24/2024] [Accepted: 05/21/2024] [Indexed: 09/18/2024]
Abstract
The detection of per- and polyfluoroalkyl substances (PFAS) in water presents a significant challenge for developing countries, requiring urgent attention. This review focuses on understanding the emergence of PFAS in drinking water, health concerns, and removal strategies for PFAS in water systems in developing countries. This review indicates the need for more studies to be conducted in many developing nations due to limited information on the environmental status and fate of PFAS. The health consequences of PFAS in water are enormous and cannot be overemphasized. Efforts are ongoing to legislate a national standard for PFAS in drinking water. Currently, there are few known mitigation efforts from African countries, in contrast to several developing nations in Asia. Therefore, there is an urgent need to develop economically viable techniques that could be integrated into large-scale operations to remove PFAS from water systems in the region. However, despite the success achieved with removing long-chain PFAS from water, more studies are required on strategies for eliminating short-chain moieties in water.
Collapse
Affiliation(s)
- Adewale Adewuyi
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
- Department of Civil and Environmental Engineering, Rice University, Houston, TX 77005, USA
| | - Qilin Li
- Department of Civil and Environmental Engineering, Rice University, Houston, TX 77005, USA
- NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Rice University, Houston, TX 77005, USA
- Department of Materials Science and Nano Engineering, Rice University, Houston, TX 77005, USA
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA
| |
Collapse
|
4
|
Keawmanee S, Piyaviriyakul P, Boontanon N, Waiyarat S, Sukeesan S, Kongpran J, Boontanon SK. Concentration and health risk assessment of per- and polyfluoroalkyl substances in cosmetic and personal care products. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2024; 59:551-561. [PMID: 39138893 DOI: 10.1080/03601234.2024.2384234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 07/21/2024] [Indexed: 08/15/2024]
Abstract
Per and polyfluoroalkyl substances (PFAS) are toxicologically concerning because of their potential to bioaccumulate and their persistence in the environment and the human body. We determined PFAS levels in cosmetic and personal care products and assessed their health risks. We investigated the trends in concentrations and types of PFAS contaminants in cosmetic and personal care products before and after perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) were added to the list of persistent organic pollutants. The total PFAS concentration ranged from 1.98 to 706.75 ng g-1. The hazard quotients (HQs) for PFOA, PFOS and perfluorobutanesulfonic acid (PFBS) were lower than 1, indicating no appreciable risk to consumers. Assuming the simultaneous use of all product types and the worst-case scenario for calculations, perfluoroalkyl carboxylic acids and perfluoroalkane sulfonic acids (PFSAs) also had hazard indices lower than 1. We found that adverse effects are unlikely to occur when each type of cosmetic is used separately, or even when all product types are used together. Nevertheless, the persistence and bioaccumulation characteristics of additional PFAS present in cosmetics continue to be a cause for concern. Further research is necessary to investigate the long-term impacts of using such cosmetics and the associated risks to human health.
Collapse
Affiliation(s)
- Sasipin Keawmanee
- Department of Civil and Environmental Engineering, Faculty of Engineering, Graduate Program in Environmental and Water Resources Engineering, Mahidol University, Nakhon Pathom, Thailand
| | - Pitchaya Piyaviriyakul
- Department of Civil and Environmental Engineering, Faculty of Engineering, Graduate Program in Environmental and Water Resources Engineering, Mahidol University, Nakhon Pathom, Thailand
| | - Narin Boontanon
- Faculty of Environment and Resource Studies, Mahidol University, Nakhon Pathom, Thailand
| | - Sonthinee Waiyarat
- Department of Civil and Environmental Engineering, Faculty of Engineering, Graduate Program in Environmental and Water Resources Engineering, Mahidol University, Nakhon Pathom, Thailand
- College of Creative Agriculture for Society, Srinakharinwirot University, Nakhon Nayok, Thailand
| | - Suratsawadee Sukeesan
- Department of Civil and Environmental Engineering, Faculty of Engineering, Graduate Program in Environmental and Water Resources Engineering, Mahidol University, Nakhon Pathom, Thailand
- Department of Marine Science, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| | - Jira Kongpran
- Department of Environmental Health and Technology, School of Public Health, Walailak University, Nakhon Si Thammarat, Thailand
| | - Suwanna Kitpati Boontanon
- Department of Civil and Environmental Engineering, Faculty of Engineering, Graduate Program in Environmental and Water Resources Engineering, Mahidol University, Nakhon Pathom, Thailand
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan
| |
Collapse
|
5
|
Wang Y, Yin D, Sun X, Zhang W, Ma H, Huang J, Yang C, Wang J, Geng Q. Perfluoroalkyl sulfonate induces cardiomyocyte apoptosis via endoplasmic reticulum stress activation and autophagy flux inhibition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172582. [PMID: 38649052 DOI: 10.1016/j.scitotenv.2024.172582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Perfluoroalkyl sulfonate (PFOS) is a commonly used chemical compound that often found in materials such as waterproofing agents, food packaging, and fire retardants. Known for its stability and persistence in the environment, PFOS can enter the human body through various pathways, including water and the food chain, raising concerns about its potential harm to human health. Previous studies have suggested a cardiac toxicity of PFOS, but the specific cellular mechanisms remained unclear. Here, by using AC16 cardiomyocyte as a model to investigate the molecular mechanisms potential the cardiac toxicity of PFOS. Our findings revealed that PFOS exposure reduced cell viability and induces apoptosis in human cardiomyocyte. Proteomic analysis and molecular biological techniques showed that the Endoplasmic Reticulum (ER) stress-related pathways were activated, while the cellular autophagy flux was inhibited in PFOS-exposed cells. Subsequently, we employed strategies such as autophagy activation and ER stress inhibition to alleviate the PFOS-induced apoptosis in AC16 cells. These results collectively suggest that PFOS-induced ER stress activation and autophagy flux inhibition contribute to cardiomyocyte apoptosis, providing new insights into the mechanisms of PFOS-induced cardiomyocyte toxicity.
Collapse
Affiliation(s)
- Yuanhao Wang
- Department of Geriatrics, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Da Yin
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen People's Hospital, The First Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Xin Sun
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen People's Hospital, The First Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Wei Zhang
- Department of Geriatrics, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Huan Ma
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No.106 Zhongshan Er Road, Guangzhou, Guangdong, China
| | - Jingnan Huang
- Department of Geriatrics, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Chuanbin Yang
- Department of Geriatrics, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China.
| | - Jigang Wang
- Department of Geriatrics, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China; State Key Laboratory for Quality Esurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Qingshan Geng
- Department of Geriatrics, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China.
| |
Collapse
|
6
|
Ou J, Song Y, Zhong X, Dai L, Chen J, Zhang W, Yang C, Wang J, Zhang W. Perfluorooctanoic acid induces Leydig cell injury via inhibition of autophagosomes formation and activation of endoplasmic reticulum stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:169861. [PMID: 38185161 DOI: 10.1016/j.scitotenv.2023.169861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/29/2023] [Accepted: 12/31/2023] [Indexed: 01/09/2024]
Abstract
Perfluorooctanoic acid (PFOA) is a man-made chemical broadly distributed in various ecological environment and human bodies, which poses potential health risks. Its toxicity, especially the male reproduction toxicity has drawn increasing attention due to declining birth rates in recent years. However, how PFOA induces male reproductive toxicity remains unclear. Here, we characterize PFOA-induced cell injury and reveal the underlying mechanism in mouse Leydig cells, which are critical to spermatogenesis in the testes. We show that PFOA induces cell injury as evidenced by reduced cell viability, cell morphology changes and apoptosis induction. RNA-sequencing analysis reveals that PFOA-induced cell injury is correlated with compromised autophagy and activated endoplasmic reticulum (ER) stress, two conserved biological processes required for regulating cellular homeostasis. Mechanistic analysis shows that PFOA inhibits autophagosomes formation, and activation of autophagy rescues PFOA-induced apoptosis. Additionally, PFOA activates ER stress, and pharmacological inhibition of ER stress attenuates PFOA-induced cell injury. Taken together, these results demonstrate that PFOA induces cell injury through inhibition of autophagosomes formation and induction of ER stress in Leydig cells. Thus, our study sheds light on the cellular mechanisms of PFOA-induced Leydig cell injury, which may be suggestive to human male reproductive health risk assessment and prevention from PFOA exposure-induced reproductive toxicity.
Collapse
Affiliation(s)
- Jinhuan Ou
- Shenzhen Institute of Respiratory Disease, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital; the First Affiliated Hospital of South University of Science and Technology of China; the Second Affiliated Hospital of Jinan University, Shenzhen, China
| | - Yali Song
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan 523125, Guangdong, China
| | - Xiaoru Zhong
- Shenzhen Institute of Respiratory Disease, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital; the First Affiliated Hospital of South University of Science and Technology of China; the Second Affiliated Hospital of Jinan University, Shenzhen, China
| | - Lingyun Dai
- Shenzhen Institute of Respiratory Disease, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital; the First Affiliated Hospital of South University of Science and Technology of China; the Second Affiliated Hospital of Jinan University, Shenzhen, China
| | - Junhui Chen
- Shenzhen Institute of Respiratory Disease, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital; the First Affiliated Hospital of South University of Science and Technology of China; the Second Affiliated Hospital of Jinan University, Shenzhen, China
| | - Wenqiao Zhang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou 646000, China
| | - Chuanbin Yang
- Shenzhen Institute of Respiratory Disease, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital; the First Affiliated Hospital of South University of Science and Technology of China; the Second Affiliated Hospital of Jinan University, Shenzhen, China.
| | - Jigang Wang
- Shenzhen Institute of Respiratory Disease, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital; the First Affiliated Hospital of South University of Science and Technology of China; the Second Affiliated Hospital of Jinan University, Shenzhen, China; Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan 523125, Guangdong, China; Department of Oncology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou 646000, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Wei Zhang
- Shenzhen Institute of Respiratory Disease, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital; the First Affiliated Hospital of South University of Science and Technology of China; the Second Affiliated Hospital of Jinan University, Shenzhen, China.
| |
Collapse
|
7
|
Chen Z, Chen Z, Gao S, Shi J, Li X, Sun F. PFOS exposure destroys the integrity of the blood-testis barrier (BTB) through PI3K/AKT/mTOR-mediated autophagy. Reprod Biol 2024; 24:100846. [PMID: 38160586 DOI: 10.1016/j.repbio.2023.100846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/20/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Perfluorooctanesulfonate or perfluorooctane sulfonic acid (PFOS), a type of perfluorinated compound, is mainly found in consumer products. Exposure to PFOS could cause male reproductive toxicity by causing injury to the blood-testis barrier (BTB). However, the specific mechanisms through which PFOS affects male reproduction remain unclear. The mammalian target of rapamycin (mTOR) is a vital protein kinase that is believed to be a central regulator of autophagy. In this study, we established in vivo and in vitro models to explore the effects of PFOS on the BTB, autophagy, and the regulatory role of the mTOR signaling pathway. Adult mice were developmentally exposed to 0, 0.5, 5, and 10 mg/kg/day PFOS for five weeks. Thereafter, their testicular morphology, sperm counts, serum testosterone, expression of BTB-related proteins, and autophagy-related proteins were evaluated. Additionally, TM4 cells (a mouse Sertoli cell line) were used to delineate the molecular mechanisms that mediate the effects of PFOS on BTB. Our results demonstrated that exposure to PFOS induced BTB injury and autophagy, as evidenced by increased expression of autophagy-related proteins, accumulation of autophagosomes, observed through representative electron micrographs, and decreased activity of the PI3K/AKT/mTOR pathway. Moreover, treatment with chloroquine, an autophagy inhibitor, alleviated the effects of PFOS on the integrity of TM4 cells in the BTB and the PI3K/AKT/mTOR pathway. Overall, this study highlights that exposure to PFOS destroys the integrity of the BTB through PI3K/AKT/mTOR-mediated autophagy.
Collapse
Affiliation(s)
- Zifeng Chen
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong 226001, China
| | - Zhengru Chen
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong 226001, China
| | - Sheng Gao
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong 226001, China
| | - Jie Shi
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong 226001, China
| | - Xinyao Li
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong 226001, China
| | - Fei Sun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong 226001, China.
| |
Collapse
|
8
|
Antonopoulou M, Spyrou A, Tzamaria A, Efthimiou I, Triantafyllidis V. Current state of knowledge of environmental occurrence, toxic effects, and advanced treatment of PFOS and PFOA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169332. [PMID: 38123090 DOI: 10.1016/j.scitotenv.2023.169332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are anthropogenic synthetic compounds, with high chemical and thermal stability and a persistent, stable and bioaccumulative nature that renders them a potential hazard for the environment, its organisms, and humans alike. Perfluorooctane sulfonic acid (PFOS) and Perfluorooctanoic acid (PFOA) are the most well-known substances of this category and even though they are phased out from production they are still highly detectable in several environmental matrices. As a result, they have been spread globally in water sources, soil and biota exerting toxic and detrimental effects. Therefore, up and coming technologies, namely advanced oxidation processes (AOPs) and advanced reduction processes (ARPs) are being tested for their implementation in the degradation of these pollutants. Thus, the present review compiles the current knowledge on the occurrence of PFOS and PFOA in the environment, the various toxic effects they have induced in different organisms as well as the ability of AOPs and ARPs to diminish and/or eliminate them from the environment.
Collapse
Affiliation(s)
- Maria Antonopoulou
- Department of Sustainable Agriculture, University of Patras, 30131 Agrinio, Greece.
| | - Alexandra Spyrou
- Department of Sustainable Agriculture, University of Patras, 30131 Agrinio, Greece
| | - Anna Tzamaria
- Department of Sustainable Agriculture, University of Patras, 30131 Agrinio, Greece
| | - Ioanna Efthimiou
- Department of Biology, Section of Genetics Cell Biology and Development, University of Patras, 26500 Patras, Greece
| | | |
Collapse
|
9
|
Li J, Liang E, Xu X, Xu N. Occurrence, mass loading, and post-control temporal trend of legacy perfluoroalkyl substances (PFASs) in the middle and lower Yangtze River. MARINE POLLUTION BULLETIN 2024; 199:115966. [PMID: 38150975 DOI: 10.1016/j.marpolbul.2023.115966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/25/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
Present study focused on per- and polyfluoroalkyl substances (PFASs) occurrence in dry and wet seasons in the middle and lower Yangtze River (YZR) and changing temporal trends after years of control. Results revealed that perfluorooctanoic acid (PFOA) was 75 % of total PFAS concentrations (∑11PFASs). ∑11PFASs were ranged 0.20-28.49 ng/L and 1.17-112.84 μg/kg in water and sediment. The logKoc of perfluoroalkyl carboxylic acids was positive with the carbon chain length (p < 0.05, r2 = 0.78). A meta-analysis of results from 16 peer-reviewed publications about PFASs in the YZR showed that fluorochemical industries strongly influenced the high PFAS levels in the detected scenes. PFOA was still the primary pollutant. Individual PFAS in the lower reach was higher than those in the middle reach. The mass loading of PFASs imported into the sea was 10.80 t/y. This study will help develop effective approaches for controlling emerging pollutants in the YZR.
Collapse
Affiliation(s)
- Jie Li
- Environment Research Institute, Shandong University, Qingdao 266237, China; Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China; College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China.
| | - Enhang Liang
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Xuming Xu
- Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Nan Xu
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
10
|
Shittu AR, Iwaloye OF, Ojewole AE, Rabiu AG, Amechi MO, Herve OF. The effects of per- and polyfluoroalkyl substances on environmental and human microorganisms and their potential for bioremediation. Arh Hig Rada Toksikol 2023; 74:167-178. [PMID: 37791672 PMCID: PMC10549896 DOI: 10.2478/aiht-2023-74-3708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/01/2023] [Accepted: 08/01/2023] [Indexed: 10/05/2023] Open
Abstract
Utilised in a variety of consumer products, per- and polyfluoroalkyl substances (PFAS) are major environmental contaminants that accumulate in living organisms due to their highly hydrophobic, lipophobic, heat-resistant, and non-biodegradable properties. This review summarizes their effects on microbial populations in soils, aquatic and biogeochemical systems, and the human microbiome. Specific microbes are insensitive to and even thrive with PFAS contamination, such as Escherichia coli and the Proteobacteria in soil and aquatic environments, while some bacterial species, such as Actinobacteria and Chloroflexi, are sensitive and drop in population. Some bacterial species, in turn, have shown success in PFAS bioremediation, such as Acidimicrobium sp. and Pseudomonas parafulva.
Collapse
Affiliation(s)
- Adenike R. Shittu
- Bowling Green State University College of Arts and Sciences, Department of Biological Sciences, Bowling Green, OH, USA
| | - Opeoluwa F. Iwaloye
- Bowling Green State University College of Arts and Sciences, Department of Biological Sciences, Bowling Green, OH, USA
| | - Akinloye E. Ojewole
- Southern Illinois University, Department of Environmental Sciences, Edwardsville, IL, USA
| | - Akeem G. Rabiu
- University of Ibadan, Department of Microbiology, Ibadan, Nigeria
| | - Miracle O. Amechi
- University of Louisville, Department of Chemistry, Louisville, KY, USA
| | - Ouambo F. Herve
- Chantal Biya International Reference Centre, Laboratory of Vaccinology, Yaounde, Cameroon
| |
Collapse
|
11
|
Kang P, Zhao Y, Zuo C, Cai Y, Shen C, Ji B, Wei T. The unheeded inherent connections and overlap between microplastics and poly- and perfluoroalkyl substances: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163028. [PMID: 36963676 DOI: 10.1016/j.scitotenv.2023.163028] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/11/2023] [Accepted: 03/20/2023] [Indexed: 05/13/2023]
Abstract
Microplastics (MPs) and poly- and perfluoroalkyl substances (PFASs) are receiving global attention due to their widespread presences and considerable level in the environment. Although the occurrence and fate of MPs and PFASs alone have been extensively studied, little was known about their unheeded connection and overlap between the two. Therefore, this review attempts to reveal it for the purpose of providing a new view from joint consideration of the two in the future studies. Initially, the critically examined data on the co-sources and existence of MPs and PFASs are summarized. Surprisingly, some products could be co-source of MPs and PFASs which are general in daily life while the distribution of the two is primary influenced by the human activity. Then, their interactions are reviewed based on the fact that PFASs can be sorbed onto MPs which are regarded as a vector of contaminations. The electrostatic interaction and hydrophobic contact are the predominant sorption mechanisms and could be influenced by environmental factors and properties of MPs and PFASs. The effects of MPs on the transport of PFASs in the environments, especially in aquatic environments are then discussed. Additionally, the current state of knowledge on the combined toxicity of MPs and PFASs are presented. Finally, the existing problems and future perspectives are outlined at the end of the review. This review provides an advanced understanding of the overlap, interaction and toxic effects of MPs and PFASs co-existing in the environment.
Collapse
Affiliation(s)
- Peiying Kang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Yaqian Zhao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, PR China.
| | - Chenxin Zuo
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Yamei Cai
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Cheng Shen
- Zhejiang Province Key Laboratory of Recycling and Ecological Treatment of Waste Biomass, School of Environment and Natural Resources, Zhejiang University of Science & Technology, Hangzhou, Zhejiang 310023, PR China
| | - Bin Ji
- School of Civil Engineering, Yantai University, Yantai 264005, PR China
| | - Ting Wei
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, PR China; Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Madrid, Spain
| |
Collapse
|
12
|
Zheng Y, Bao M, Yao Y, Zhao M, Chen H, Sun H, Sun C, Zhao H, Pan Y. Discovery of 35 novel classes of per- and polyfluoroalkyl substances in representative commercial fluorinated products in China. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131780. [PMID: 37290352 DOI: 10.1016/j.jhazmat.2023.131780] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/28/2023] [Accepted: 06/03/2023] [Indexed: 06/10/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have received increasing scientific and regulatory attention due to their global distribution and health hazards. However, little is known about the PFAS composition of fluorinated products commercially available in China. In this study, a sensitive and robust analytical method was proposed for the comprehensive characterization of PFAS in aqueous film-forming foam and fluorocarbon surfactants in the domestic market based on liquid chromatography-high resolution mass spectrometry in full scan acquisition mode followed by parallel reaction monitoring mode. Consequently, a total of 102 PFAS from 59 classes were elucidated, of which 35 classes are reported for the first time, including 27 classes of anionic, seven classes of zwitterionic, and one class of cationic PFAS. The anionic-type products are mainly C6 fluorotelomerization-based (FT-based) PFAS. Perfluorooctanoic acid and perfluorooctane sulfonate are negligible, while some known electrochemical fluorination-based long-chain precursors in zwitterionic products are worthy of concern because of their high abundance and potential degradation. New precursors detected in zwitterionic products are FT-based PFAS, for example, 6:2 FTSAPr-AHOE and 6:2 FTSAPr-diMeAmPrC. The structural elucidation of PFAS in commercial products facilitates a better assessment of human exposure and environmental release.
Collapse
Affiliation(s)
- Yuanyuan Zheng
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Mian Bao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Maosen Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Cuirong Sun
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Hongzhi Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, China.
| |
Collapse
|
13
|
Zhao Z, Zheng X, Han Z, Yang S, Zhang H, Lin T, Zhou C. Response mechanisms of Chlorella sorokiniana to microplastics and PFOA stress: Photosynthesis, oxidative stress, extracellular polymeric substances and antioxidant system. CHEMOSPHERE 2023; 323:138256. [PMID: 36858114 DOI: 10.1016/j.chemosphere.2023.138256] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/31/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Co-pollution of microplastics and per- and polyfluoroalkyl substances (PFAS) is prevailing in the aquatic environment. However, the risks of coexisting microplastics and PFAS on organisms remain unknown. This study investigated the response mechanisms of Chlorella sorokiniana (C. sorokiniana) under polystyrene microplastics (PS-MPs) and perfluorooctanoic acid (PFOA) stress, including toxicity and defense mechanisms. C. sorokiniana was exposed to PS-MPs (10 mg/L) and PFOA (0.05, 0.5, and 5 mg/L) and their mixtures for 96 h, respectively. We found that the dominant toxicity mechanism of PFOA and PS-MPs to C. sorokiniana was dissimilar. PS-MPs mainly inhibited photosynthesis through shading effect, while PFOA mainly induced oxidative stress by reactive oxygen species. The co-exposure of PFOA and PS-MPs aggravated biotoxicity (maximum inhibition rate: 27.27 ± 2.44%), such as photosynthesis inhibition, physical damage, and oxidative stress, compared with individuals. To alleviate toxicity, C. sorokiniana activated defense mechanisms. Extracellular polymeric substances were the first barrier to protect cells, the effect on its secretion was ordered PS-MPs+5PFOA > PS-MPs > 5PFOA, and IBRv2 values were 2.37, 1.35, 1.11, respectively. Antioxidant system was thought of second defense pathway, the influence order of treatment groups was PS-MPs+5PFOA > 5PFOA > PS-MPs, and its IBRv2 values were 2.89, 1.69, 0.25, respectively. Our findings provide valuable information on the complex impacts of PFOA and PS-MPs, which facilitate the ecological risk assessment of multiple pollutants.
Collapse
Affiliation(s)
- Zhilin Zhao
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Xiaoying Zheng
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China.
| | - Zongshuo Han
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Shanshan Yang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Huijie Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Tao Lin
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Chao Zhou
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
14
|
Giglioli S, Colombo L, Azzellino A. Cluster and multivariate analysis to study the diffuse contamination of emerging per- and polyfluoroalkyl substances (PFAS) in the Veneto Region plain (North-eastern Italy). CHEMOSPHERE 2023; 319:137916. [PMID: 36706810 DOI: 10.1016/j.chemosphere.2023.137916] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
In recent years, per- and polyfluoroalkyl substances (PFAS) have emerged as major pollutants of concern. This study considered a real case of superficial and groundwater contamination caused by a set of 15 persistent, carcinogenic, and bioaccumulative compounds. The study area is the Veneto Region floodplain in Italy, where a huge contamination mainly caused by a persistent spill-over from a former chemical factory was discovered in 2013. The contamination path studied in 2013 followed mainly two directions: the first towards east, to the city of Vicenza, and the second following the course of Chiampo and Agno streams, southwards. To identify the major patterns of contamination, a Factor Analysis (PCA) in conjunction with a Cluster Analysis (CA) was performed. The reviewed dataset is composed by PFAS concentration values collected from 2013 to 2021 in groundwater, superficial waters, in natural sources, and in proximity to three industrial discharges, throughout a 3600 km2 area. The CA results were cross-referenced with the water table interpolation, yielding a match between the groundwater flow directions and the observed patterns of the two main plumes. The persistence of pollutants was finally investigated by analyzing distances between the former chemical factory, an industrial wastewater collector which lies along Chiampo and Agno valleys that host residential and industrial areas, and the other sampling points collected in the dataset. The findings confirmed the importance of assessing anthropic background levels of contamination and highlighted the necessity to include the PFAS issue in a national health-based drinking water quality guideline.
Collapse
Affiliation(s)
- Sara Giglioli
- Department of Civil and Environmental Engineering, Politecnico di Milano, 20133, Milano, Italy.
| | - Loris Colombo
- Department of Civil and Environmental Engineering, Politecnico di Milano, 20133, Milano, Italy.
| | - Arianna Azzellino
- Department of Civil and Environmental Engineering, Politecnico di Milano, 20133, Milano, Italy.
| |
Collapse
|
15
|
Abudayyak M, Karaman EF, Guler ZR, Ozden S. Effects of perfluorooctanoic acid on endoplasmic reticulum stress and lipid metabolism-related genes in human pancreatic cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 98:104083. [PMID: 36804611 DOI: 10.1016/j.etap.2023.104083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 01/24/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Perfluorooctanoic acid (PFOA) is environmentally persistent and has been classified by The International Cancer Research Agency (IARC) as a possible human pancreatic carcinogen. In this study, the epigenetic alteration, the changes in the expression levels of endoplasmic reticulum stress-related and metabolism-related genes, as well as DNA methyltransferase expression were investigated using RT-PCR and ELISA assays. PFOA induced a significant increase in the methylation ratio (5-mC%), impacted DNA methylation maintenance gene expression and decreased lipid metabolism-related genes except for PPARγ (≥ 13-fold increase). While PFOA induced the expression of ATF4 (≥ 5.41-folds), CHOP (≥ 5.41-folds) genes, it inhibited the expression of ATF6 (≥ 67.2%), GRP78 (≥ 64.3%), Elf2α (≥ 95.8%), IRE1 (≥ 95.5%), and PERK (≥ 91.7%) genes. It is thought that epigenetic mechanisms together with disruption in the glucose-lipid metabolism and changes in endoplasmic reticulum stress-related genes may play a key role in PFOA-induced pancreatic toxicity.
Collapse
Affiliation(s)
- Mahmoud Abudayyak
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Ecem Fatma Karaman
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Biruni University, Istanbul, Turkey
| | - Zeynep Rana Guler
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey; Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Turkey
| | - Sibel Ozden
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
16
|
Zhou J, Yan J, Qi X, Wang M, Yang M. Development of a new matrix-certified reference material for accurate measurement of PFOA and PFOS in oyster meat powder. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
17
|
Liu D, Yan S, Wang P, Chen Q, Liu Y, Cui J, Liang Y, Ren S, Gao Y. Perfluorooctanoic acid (PFOA) exposure in relation to the kidneys: A review of current available literature. Front Physiol 2023; 14:1103141. [PMID: 36776978 PMCID: PMC9909492 DOI: 10.3389/fphys.2023.1103141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/16/2023] [Indexed: 01/27/2023] Open
Abstract
Perfluorooctanoic acid is an artificial and non-degradable chemical. It is widely used due to its stable nature. It can enter the human body through food, drinking water, inhalation of household dust and contact with products containing perfluorooctanoic acid. It accumulates in the human body, causing potential harmful effects on human health. Based on the biodegradability and bioaccumulation of perfluorooctanoic acid in the human body, there are increasing concerns about the adverse effects of perfluorooctanoic acid exposure on kidneys. Research shows that kidney is the main accumulation organ of Perfluorooctanoic acid, and Perfluorooctanoic acid can cause nephrotoxicity and produce adverse effects on kidney function, but the exact mechanism is still unknown. In this review, we summarize the relationship between Perfluorooctanoic acid exposure and kidney health, evaluate risks more clearly, and provide a theoretical basis for subsequent research.
Collapse
Affiliation(s)
- Dongge Liu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Shuqi Yan
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Pingwei Wang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Qianqian Chen
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Yanping Liu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Jiajing Cui
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Yujun Liang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Shuping Ren
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Ying Gao
- Department of Endocrinology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
18
|
Dong B, Wu J, Zhuang Y, Wang F, Zhang Y, Zhang X, Zheng H, Yang L, Peng L. Trace Analysis Method Based on UPLC-MS/MS for the Determination of (C2-C18) Per-and Polyfluoroalkyl Substances and Its Application to Tap Water and Bottled Water. Anal Chem 2023; 95:695-702. [PMID: 36598765 DOI: 10.1021/acs.analchem.2c02436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
As the usage of long-chain perfluoroalkyl and polyfluoroalkyl substances (PFASs) may be gradually restricted, short-chain and even ultra-short-chain PFASs have been widely produced and used, which has put forward new requirements for the simultaneous analysis of the above substances. Using solid phase extraction two-fraction elution and ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS), an experimental method was established for the simultaneous analysis of ultrashort-chain, short-chain, and long-chain PFASs and the precursor perfluorohexanesulfonamide (FHxSA) in low-concentration water, such as tap water and bottled water. By optimizing the volume of methanol in the first-fraction elution, the concentration of ammonia in the second-fraction elution, and the concentration of ammonium acetate in the mobile phase, the high recovery and low detection limit (0.01-3 ng/L) were obtained. In addition, this method was used to measure nine tap water samples and six bottled water samples for validation, and the results showed that the concentration of PFASs in bottled water was lower than that in tap water. This study first reported the trifluoroacetic acid concentration in bottled water (6.61 ± 9.60 ng/L), which was lower than that in tap water (1712 ± 174 ng/L). The main substances in tap water and bottled water are both ultrashort-chain PFASs (C2-C3), accounting for more than 50%. There are few reports on the simultaneous analysis of ultrashort-chain, short-chain, and long-chain PFASs (C2-C18) and the precursor FHxSA in low-concentration water samples, and the new method can be further developed for different environmental media.
Collapse
Affiliation(s)
- Bingqi Dong
- The MOE Key Laboratory of Resource and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Jing Wu
- Institute of Transport Energy and Environment, Beijing Jiaotong University, Beijing 100044, China.,School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Yiru Zhuang
- The MOE Key Laboratory of Resource and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Fan Wang
- The MOE Key Laboratory of Resource and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Yueling Zhang
- The MOE Key Laboratory of Resource and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Xiaona Zhang
- Hebei Center for Disease Control and Prevention, Shijiazhuang 050021, China
| | - Hui Zheng
- Hebei Center for Disease Control and Prevention, Shijiazhuang 050021, China
| | - Lixin Yang
- Hebei Center for Disease Control and Prevention, Shijiazhuang 050021, China
| | - Lin Peng
- Institute of Transport Energy and Environment, Beijing Jiaotong University, Beijing 100044, China.,School of Environment, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
19
|
Zhou M, Zhao F, Chen M, Yu Q, Liu P, Wu K, Wang H, Liu Y, Wang Q, Liu X, Wu Y, Gong Z. Exposure and Health Risk Assessment of Per- and Polyfluoroalkyl Substances in Crayfish from the Middle and Lower Reaches of the Yangtze River. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:825-835. [PMID: 36583663 DOI: 10.1021/acs.jafc.2c06365] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a novel class of emerging persistent organic pollutants (POPs) owing to their environmental persistence and bioaccumulation. Red swamp crayfish is a major source of exposure to PFASs, while the dietary intake of PFASs from crayfish is still unclear. We investigated the concentrations of PFASs in 130 batches of crayfish and 100 environmental samples from Middle and Lower Reaches of the Yangtze River Delta. Seven Perfluoroalkyl carboxylic acids (PFCAs), 3 Perfluoroalkyl sulfonates (PFSAs), and 6:2 Cl-PFESA were analyzed by ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Meanwhile, PFASs exposure levels were examined concretely in four tissues of crayfish and different circulation links. The average daily intake (ADI) risk model was used to evaluate the human health risk of consuming crayfish and suggested that the risk of PFASs exposure is at a low level.
Collapse
Affiliation(s)
- Mengxin Zhou
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan430023, Hubei, People's Republic of China
| | - Fang Zhao
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan430023, Hubei, People's Republic of China
| | - Mengyuan Chen
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan430023, Hubei, People's Republic of China
| | - QingQing Yu
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan430023, Hubei, People's Republic of China
| | - PinPin Liu
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan430023, Hubei, People's Republic of China
| | - Kejia Wu
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan430023, Hubei, People's Republic of China
| | - Hong Wang
- Wuhan Institute for Food and Cosmetic Control, Wuhan430030, Hubei, China
| | - Yan Liu
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan430023, Hubei, People's Republic of China
| | - Qiao Wang
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan430023, Hubei, People's Republic of China
| | - Xin Liu
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan430023, Hubei, People's Republic of China
| | - Yongning Wu
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan430023, Hubei, People's Republic of China
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing100021, China
| | - Zhiyong Gong
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan430023, Hubei, People's Republic of China
| |
Collapse
|
20
|
Johnson GR, Brusseau ML, Carroll KC, Tick GR, Duncan CM. Global distributions, source-type dependencies, and concentration ranges of per- and polyfluoroalkyl substances in groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156602. [PMID: 35690215 PMCID: PMC9653090 DOI: 10.1016/j.scitotenv.2022.156602] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/06/2022] [Accepted: 06/06/2022] [Indexed: 04/13/2023]
Abstract
A meta-analysis was conducted of published literature reporting concentrations of per- and polyfluoroalkyl substances (PFAS) in groundwater for sites distributed in 20 countries across the globe. Data for >35 PFAS were aggregated from 96 reports published from 1999 to 2021. The final data set comprises approximately 21,000 data points after removal of time-series and duplicate samples as well as non-detects. The reported concentrations range over many orders of magnitude, from ng/L to mg/L levels. Distinct differences in concentration ranges are observed between sites located within or near sources versus those that are not. Perfluorooctanoic acid (PFOA), ranging from <0.03 ng/L to ~7 mg/L, and perfluorooctanesulfonic acid (PFOS), ranging from 0.01 ng/L to ~5 mg/L, were the two most reported PFAS. The highest PFAS concentration in groundwater is ~15 mg/L reported for the replacement-PFAS 6:2 fluorotelomer sulfonate (6:2 FTS). Maximum reported groundwater concentrations for PFOA and PFOS were compared to concentrations reported for soils, surface waters, marine waters, and precipitation. Soil concentrations are generally significantly higher than those reported for the other media. This accrues to soil being the primary entry point for PFAS release into the environment for many sites, as well as the generally significantly greater retention capacity of soil compared to the other media. The presence of PFAS has been reported for all media in all regions tested, including areas that are far removed from specific PFAS sources. This gives rise to the existence of a "background" concentration of PFAS that must be accounted for in both regional and site-specific risk assessments. The presence of this background is a reflection of the large-scale use of PFAS, their general recalcitrance, and the action of long-range transport processes that distribute PFAS across regional and global scales. This ubiquitous distribution has the potential to significantly impact the quality and availability of water resources in many regions. In addition, the pervasive presence of PFAS in the environment engenders concerns for impacts to ecosystem and human health.
Collapse
|
21
|
Mohammadi A, Dobaradaran S, Schmidt TC, Malakootian M, Spitz J. Emerging contaminants migration from pipes used in drinking water distribution systems: a review of the scientific literature. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:75134-75160. [PMID: 36127528 DOI: 10.1007/s11356-022-23085-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
Migration of emerging contaminants (ECs) from pipes into water is a global concern due to potential human health effects. Nevertheless, a review of migration ECs from pipes into water distribution systems is presently lacking. This paper reviews, the reported occurrence migration of ECs from pipes into water distribution systems in the world. Furthermore, the results related to ECs migration from pipes into water distribution systems, their probable sources, and their hazards are discussed. The present manuscript considered the existing reports on migration of five main categories of ECs including microplastics (MPs), bisphenol A (BPA), phthalates, nonylphenol (NP), perfluoroalkyl, and polyfluoroalkyl substances (PFAS) from distribution network into tap water. A focus on tap water in published literature suggests that pipes type used had an important role on levels of ECs migration in water during transport and storage of water. For comparison, tap drinking water in contact with polymer pipes had the highest mean concentrations of reviewed contaminants. Polyvinyl chloride (PVC), polyamide (PA), polypropylene (PP), polyethylene (PE), and polyethylene terephthalate (PET) were the most frequently detected types of microplastics (MPs) in tap water. Based on the risk assessment analysis of ECs, levels of perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluorohexane sulfonate (PFHxS), and perfluorooctane sulfonate (PFOS) were above 1, indicating a potential non-carcinogenic health risk to consumers. Finally, there are still scientific gaps on occurrence and migration of ECs from pipes used in distribution systems, and this needs more in-depth studies to evaluate their exposure hazards on human health.
Collapse
Affiliation(s)
- Azam Mohammadi
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran.
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany.
- Systems Environmental Health and Energy Research Center, Boostan 19 Alley, Imam Khomeini Street, Bushehr, 7514763448, Iran.
| | - Torsten C Schmidt
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
- IWW Water Centre, Moritzstraße 26, 45476, Mülheim an der Ruhr, Germany
- Centre for Water and Environmental Research (ZWU) Universitätsstraße 5, 45141, Essen, Germany
| | - Mohammad Malakootian
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Jörg Spitz
- Akademie Für Menschliche Medizin GmbH, Krauskopfallee 27, 65388, Schlangenbad, Germany
| |
Collapse
|
22
|
Zhou YT, Li R, Li SH, Ma X, Liu L, Niu D, Duan X. Perfluorooctanoic acid (PFOA) exposure affects early embryonic development and offspring oocyte quality via inducing mitochondrial dysfunction. ENVIRONMENT INTERNATIONAL 2022; 167:107413. [PMID: 35863238 DOI: 10.1016/j.envint.2022.107413] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a synthetic perfluorinated compound that is extensively used as an integral surfactant in commercial production. Owing to its hydrophilicity and persistence, PFOA can accumulate in living organisms and induce severe disease in animals and humans. It has been reported that PFOA exposure can affect ovarian function and induce reproductive toxicity; however, the effects and potential mechanism of PFOA exposure during gestation on early embryonic development and offspring remain unclear. This study found that PFOA exposure in vitro disrupted spindle assembly and chromosome alignment during the first cleavage of early mouse embryos, which impacted early embryonic cleavage and blastocyst formation. Moreover, PFOA exposure caused mitochondrial dysfunction and oxidative stress by inducing aberrant Ca2+ levels, liquid drops(LDs), and mitochondrial membrane potential in the 2-cell stage. Furthermore, we found that PFOA exposure resulted in DNA damage, autophagy, and apoptosis in 2-cell stage by inhibiting SOD2 function. Gestational exposure to PFOA significantly increased ovarian apoptosis and disrupted follicle development in F1 offspring. In addition, oocyte maturation competence was decreased in F1 offspring. Finally, single-cell transcriptome analysis revealed that PFOA-induced oocyte deterioration was caused by mitochondrial dysfunction and apoptosis in the F1 offspring. In summary, our results indicated that gestational exposure to PFOA had potential toxic effects on ovarian function and led to a higher incidence of meiotic defects in F1 female offspring.
Collapse
Affiliation(s)
- Yu-Ting Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, China
| | - Rui Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, China
| | - Si-Hong Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, China
| | - Xiang Ma
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, China
| | - Lu Liu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, China
| | - Dong Niu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Xing Duan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
23
|
Wang Q, Huang J, Liu S, Wang C, Jin Y, Lai H, Tu W. Aberrant hepatic lipid metabolism associated with gut microbiota dysbiosis triggers hepatotoxicity of novel PFOS alternatives in adult zebrafish. ENVIRONMENT INTERNATIONAL 2022; 166:107351. [PMID: 35738203 DOI: 10.1016/j.envint.2022.107351] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 05/23/2023]
Abstract
Perfluorooctane sulfonate (PFOS) has been reported to induce hepatotoxicity in wildlife and humans. Novel PFOS alternatives have been widely used following restrictions on PFOS, but little is known about their potential toxicity. Here, the first comprehensive investigation on the chronic hepatotoxicity and underlying molecular mechanisms of PFOS, 6:2Cl-PFESA (F-53B), and sodium p-perfluorous nonenoxybenzene sulfonate (OBS) was carried out on adult zebrafish through a histopathological examination, biochemical measurement, and multi-omics analysis. PFOS and its alternatives caused changes in liver histopathology and liver function indices in the order of F-53B > PFOS > OBS, which was consistent with their concentration in the liver. In silico modeling and transcriptional profiles suggested that the aberrant hepatic lipid metabolism induced by F-53B and PFOS was initiated by the action on peroxisome proliferator-activated receptor γ (PPARγ), which triggered changes in downstream genes transcription and led to an imbalance between lipid synthesis and expenditure. Gut microbiome analysis provided another novel mechanistic perspective that changes in the abundance of Legionella, Ralstonia, Brevundimonas, Alphaproteobacteria, Plesiomonas, and Hyphomicrobium might link to alterations in the PPAR pathway based on their significant correlation. This study provides insight into the molecular mechanisms of hepatotoxicity induced by PFOS and its novel alternatives and highlights the need for concern about their environmental exposure risks.
Collapse
Affiliation(s)
- Qiyu Wang
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Jing Huang
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China; School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shuai Liu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Caiyun Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Hong Lai
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Wenqing Tu
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
24
|
Jiao E, Zhu Z, Yin D, Qiu Y, Kärrman A, Yeung LWY. A pilot study on extractable organofluorine and per- and polyfluoroalkyl substances (PFAS) in water from drinking water treatment plants around Taihu Lake, China: what is missed by target PFAS analysis? ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1060-1070. [PMID: 35687097 DOI: 10.1039/d2em00073c] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have raised concerns due to their worldwide occurrence and adverse effects on both the environment and humans as well as posing challenges for monitoring. Further collection of information is required for a better understanding of their occurrence and the unknown fractions of the extractable organofluorine (EOF) not explained by commonly monitored target PFAS. In this study, eight pairs of raw and treated water were collected from drinking water treatment plants (DWTPs) around Taihu Lake in China and analyzed for EOF and 34 target PFAS. Mass balance analysis of organofluorine revealed that at least 68% of EOF could not be explained by target PFAS. Relatively higher total target concentrations were observed in 4 DWTPs (D1 to D4) when compared to other samples with the highest sum concentration up to 189 ng L-1. PFOA, PFOS and PFHxS were the abundant compounds. Suspect screening analysis identified 10 emerging PFAS (e.g., H-PFAAs, H-PFESAs and OBS) in addition to target PFAS in raw or treated water. The ratios PFBA/PFOA and PFBS/PFOS between previous and current studies showed significant replacements of short-chain to long-chain PFAS. The ratios of the measured PFAS concentrations to the guideline values showed that some of the treated drinking water exceeds guideline values, appealing for efforts on drinking water safety guarantee.
Collapse
Affiliation(s)
- Enmiao Jiao
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, China.
| | - Zhiliang Zhu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, China.
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, China.
| | - Yanling Qiu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, China.
| | - Anna Kärrman
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Sweden.
| | - Leo W Y Yeung
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Sweden.
| |
Collapse
|
25
|
Huang Z, Liu P, Lin X, Xing Y, Zhou Y, Luo Y, Lee HK. Cucurbit(n)uril-functionalized magnetic composite for the dispersive solid-phase extraction of perfluoroalkyl and polyfluoroalkyl substances in environmental samples with determination by ultra-high performance liquid chromatography coupled to Orbitrap high-resolution mass spectrometry. J Chromatogr A 2022; 1674:463151. [DOI: 10.1016/j.chroma.2022.463151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 10/18/2022]
|
26
|
Perfluoroalkyl Substances (PFASs) in Rivers and Drinking Waters from Qingdao, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095722. [PMID: 35565116 PMCID: PMC9104605 DOI: 10.3390/ijerph19095722] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 01/25/2023]
Abstract
Perfluoroalkyl substances (PFASs) in rivers; drinking water sources (reservoirs and groundwater); and various types of drinking waters (tap waters, barreled pure waters, and bottled mineral waters) in Qingdao, Eastern China were quantified by high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS). The total concentrations of PFASs (ΣPFASs) in the river waters ranged from 28.3 to 292.2 ng/L, averaging 108 ± 70.7 ng/L. PFBS was the most abundant compound, with a maximum concentration of 256.8 ng/L, followed by PFOA (maximum concentration: 72.4 ng/L) and PFBA (maximum concentration: 41.6 ng/L). High levels of PFASs were found in rivers in the suburban and rural areas. The estimated annual mass loading of the total PFASs to Jiaozhou Bay (JZB) was 5.9 tons. The PFASs in the drinking water reservoirs were relatively low. The ΣPFASs in the tap water ranged from 20.5 ng/L to 29.9 ng/L. Differences in the PFAS levels and composition profiles were found among barreled water at different market sites and for different brands of mineral water products. The sequence of the contamination levels of the waters related to drinking water was reservoir water > tap water > barrel water > groundwater > bottled mineral water. The PFASs in drinking water may not pose a serious risk to the drinking water consumers of Qingdao City.
Collapse
|
27
|
Wang YQ, Hu LX, Liu T, Zhao JH, Yang YY, Liu YS, Ying GG. Per- and polyfluoralkyl substances (PFAS) in drinking water system: Target and non-target screening and removal assessment. ENVIRONMENT INTERNATIONAL 2022; 163:107219. [PMID: 35405506 DOI: 10.1016/j.envint.2022.107219] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
The massive use and the persistence of per- and polyfluoroalkyl substances (PFAS) have led to their frequent detection in aquatic environments, which may further threaten drinking water safety. So far, our knowledge about the occurrence of PFAS in drinking water system is still very limited. Here we investigated the occurrence and removal of PFAS in a drinking water system using non-target, suspect and target screening strategies. Sampling was performed in three seasons in the drinking water system including a water source, two drinking water treatment plants, and tap water in five households. The results showed detection of 17 homologous series with 51 homologues in non-target screening and 50 potential PFAS detected in suspect screening. Probable structures were proposed for 15 PFAS with high confidence levels (the first three of the five levels), with seven of them being reported for the first time in drinking water system. Semi-quantification was performed on seven homologous series based on target PFAS, the estimated total concentrations for non-target PFAS ranged between 4.10 and 17.6 ng/L. Nine out of 50 target PFAS were found and precisely quantified (<LOQ-13.4 ng/L) with predominance of perfluorocarboxylic acids (PFCA) and perfluorosulfonic acids (PFSA). All target and non-target PFAS were detected in tap water with similar concentrations in all three seasons. Removal efficiency for the detected PFAS in each processing unit was almost zero, indicating the recalcitrance of these chemicals to the conventional treatment process. The findings from this study clearly show the wide presence of PFAS in the whole drinking water treatment process, and suggest an urgent need for effective removal technology for this group of chemicals.
Collapse
Affiliation(s)
- Yu-Qing Wang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Li-Xin Hu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Ting Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jia-Hui Zhao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Yuan-Yuan Yang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
28
|
Cao H, Zhang W, Wang C, Liang Y, Sun H. Photodegradation of F-53B in aqueous solutions through an UV/Iodide system. CHEMOSPHERE 2022; 292:133436. [PMID: 34968513 DOI: 10.1016/j.chemosphere.2021.133436] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Advanced reduction by strong reducing hydrated electrons is a promising approach to degrade per- and polyfluoroalkyl substances (PFAS). This research aimed to investigate the effectiveness of UV/Iodide system for 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA, F-53B) degradation in aqueous solutions. Results from this work demonstrated that UV irradiation with an addition of 0.3 mM KI resulted in 55.99% degradation of F-53B within 15 min and almost 100% within 2 h. The defluorination efficiency of F-53B in the UV/Iodide system was 2.6 times higher than that in the sole UV system after 2 h of irradiation. The degradation efficiency of F-53B was not significantly affected by air purging. The defluorination efficiency with air bubbling, however, was 14.57% lower than that with nitrogen purging. The photodegradation of F-53B in the UV/Iodide system could be well described by a pseudo-first-order kinetic model. Degradation rate constant of F-53B correlated positively with the initial concentration. At 20 μg/L, the pseudo-first-order rate constant was 5.641 × 10-2 min-1 and the half-life was 12.29 min. Higher initial concentration also required less energy input to achieve the same degradation efficiency. The detection and identification of degradation intermediates implied that destruction of F-53B started from dechlorination and followed by continuously "flaking off" CF2 units.
Collapse
Affiliation(s)
- Huimin Cao
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China; Department of Environmental and Sustainable Engineering, University at Albany, SUNY, Albany, NY, 12222, USA
| | - Weilan Zhang
- Department of Environmental and Sustainable Engineering, University at Albany, SUNY, Albany, NY, 12222, USA
| | - Cuiping Wang
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China.
| | - Yanna Liang
- Department of Environmental and Sustainable Engineering, University at Albany, SUNY, Albany, NY, 12222, USA.
| | - Hongwen Sun
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| |
Collapse
|
29
|
Wang Q, Song X, Wei C, Ding D, Tang Z, Tu X, Chen X, Wang S. Distribution, source identification and health risk assessment of PFASs in groundwater from Jiangxi Province, China. CHEMOSPHERE 2022; 291:132946. [PMID: 34800501 DOI: 10.1016/j.chemosphere.2021.132946] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
There is an urgent need to investigate on the distribution and fate of short-chain analogues and emerging per- and polyfluoroalkyl substances (PFASs) in groundwater, and little research on their source apportionment and health risks through the drinking water exposure pathway has been carried out. In present study, the concentration and source of 22 PFASs, including five alternatives: 6:2 fluorotelomer sulfonate (6:2 FTS), potassium 9-chlorohexadecafluoro-3-oxanonane-1-sulfonate (F-53B), hexafluoropropylene oxide trimer acid (HFPO-TA), hexafluoropropylene oxide dimer acid (HFPO-DA) and ammonium 4, 8-dioxa-3H-perfluorononanoate (ADONA), were analyzed in 88 groundwater samples from wells in Jiangxi Province, southeastern China. The total PFASs concentration (Σ18PFASs) in groundwater varied from 1.27 to 381.00 ng/L (mean 47.60 ng/L). Short-chain perfluorobutanoic acid (PFBA) and perfluoropentanoic acid (PFPeA) were the most abundant perfluorinated carboxylic acids (PFCAs), and short-chain perfluorobutanesulfonate (PFBS) was the most abundant perfluorinated sulfonic acids (PFSAs) in groundwater samples. The quantitative source apportionment by nonnegative matrix/tensor factorization coupled with k-means clustering (NMFk) model suggested that short-chain homologues and emerging alternatives have been used as substitutes for legacy PFOS and PFOA. Furthermore, the human risk assessment results showed that the estimated daily intakes (EDIs) for short-chain PFCAs were higher than that of PFOA, whereas the EDIs of PFBS, 6:2 FTS and F-53B were comparable to that of PFOS.
Collapse
Affiliation(s)
- Qing Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xin Song
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changlong Wei
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Da Ding
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, China
| | - Zhiwen Tang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangming Tu
- Agricultural Ecology and Resources Protection Station of Jiangxi Province, Nanchang, 330046, China
| | - Xing Chen
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Shenghui Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; Northwest Normal University, Lanzhou, 730070, China
| |
Collapse
|
30
|
Kurwadkar S, Dane J, Kanel SR, Nadagouda MN, Cawdrey RW, Ambade B, Struckhoff GC, Wilkin R. Per- and polyfluoroalkyl substances in water and wastewater: A critical review of their global occurrence and distribution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151003. [PMID: 34695467 PMCID: PMC10184764 DOI: 10.1016/j.scitotenv.2021.151003] [Citation(s) in RCA: 224] [Impact Index Per Article: 112.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 05/17/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a family of fluorinated organic compounds of anthropogenic origin. Due to their unique chemical properties, widespread production, environmental distribution, long-term persistence, bioaccumulative potential, and associated risks for human health, PFAS have been classified as persistent organic pollutants of significant concern. Scientific evidence from the last several decades suggests that their widespread occurrence in the environment correlates with adverse effects on human health and ecology. The presence of PFAS in the aquatic environment demonstrates a close link between the anthroposphere and the hydrological cycle, and concentrations of PFAS in surface and groundwater range in value along the ng L-1-μg L-1 scale. Here, we critically reviewed the research published in the last decade on the global occurrence and distribution of PFAS in the aquatic environment. Ours is the first paper to critically evaluate the occurrence of PFAS at the continental scale and the evolving global regulatory responses to manage and mitigate the adverse human health risks posed by PFAS. The review reports that PFAS are widespread despite being phased out-they have been detected in different continents irrespective of the level of industrial development. Their occurrence far from the potential sources suggests that long-range atmospheric transport is an important pathway of PFAS distribution. Recently, several studies have investigated the health impacts of PFAS exposure-they have been detected in biota, drinking water, food, air, and human serum. In response to the emerging information about PFAS toxicity, several countries have provided administrative guidelines for PFAS in water, including Canada, the United Kingdom, Sweden, Norway, Germany, and Australia. In the US, additional regulatory measures are under consideration. Further, many PFAS have now been listed as persistent organic pollutants. This comprehensive review provides crucial baseline information on the global occurrence, distribution, and regulatory framework of PFAS.
Collapse
Affiliation(s)
- Sudarshan Kurwadkar
- Department of Civil and Environmental Engineering, California State University, 800 N. State College Blvd., Fullerton, CA 92831, USA; Center for Environmental Solutions and Emergency Response, U.S. Environmental Protection Agency, 919 Kerr Research Drive, Ada, OK 74820, USA.
| | - Jason Dane
- Department of Civil and Environmental Engineering, California State University, 800 N. State College Blvd., Fullerton, CA 92831, USA
| | - Sushil R Kanel
- Department of Chemistry, Wright State University, 3640 Colonel Glen Highway, Dayton, OH 45435, USA; Pegasus Technical Services, Inc., 46 E. Hollister Street, Cincinnati, OH 45219, USA
| | - Mallikarjuna N Nadagouda
- Center for Environmental Solutions and Emergency Response, U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268, USA
| | - Ryan W Cawdrey
- Department of Civil and Environmental Engineering, California State University, 800 N. State College Blvd., Fullerton, CA 92831, USA
| | - Balram Ambade
- Department of Chemistry, National Institute of Technology, Jamshedpur 831014, Jharkhand, India
| | - Garrett C Struckhoff
- Department of Civil and Environmental Engineering, California State University, 800 N. State College Blvd., Fullerton, CA 92831, USA
| | - Richard Wilkin
- Center for Environmental Solutions and Emergency Response, U.S. Environmental Protection Agency, 919 Kerr Research Drive, Ada, OK 74820, USA.
| |
Collapse
|
31
|
Li J, Quan X, Lei S, Chen G, Hong J, Huang Z, Wang Q, Song W, Yang X. LncRNA MEG3 alleviates PFOS induced placental cell growth inhibition through its derived miR-770 targeting PTX3. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118542. [PMID: 34801623 DOI: 10.1016/j.envpol.2021.118542] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/14/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Perfluorooctane sulfonic acid (PFOS) is a persistent environmental pollutant. Exposure to PFOS has been associated with abnormal fetal development. The long non-coding RNA (lncRNA) has been showed to play a role in fetal growth restriction (FGR), preeclampsia (PE) and other pregnancy complications. Whether the lncRNA contributes to PFOS-induced toxicity in the placenta remains unknown. In this study, we investigated the function of lncRNA MEG3 and its derived miR-770 in PFOS-induced placental toxicity. Pregnant mice received gavage administration of different concentrations of PFOS (0.5, 2.5, and 12.5 mg/kg/day) from GD0 to GD17, and HTR-8/SVneo cells were treated with PFOS in the concentrations of 0, 10-1, 1, 10 μM. We found that expression levels of miR-770 and its host gene MEG3 were reduced in mice placentas and HTR-8/SVneo cells with exposure of PFOS. A significant hypermethylation was observed at MEG3 promoter in placentas of mice gestational-treated with PFOS. We also confirmed that MEG3 and miR-770 overexpression alleviated the cell growth inhibition induced by PFOS. Furthermore, PTX3 (Pentraxin 3) was identified as the direct target of miR-770 and it was enhanced after PFOS exposure. In summary, our results suggested that MEG3 alleviate PFOS-induced placental cell inhibition through MEG3/miR-770/PTX3 axis.
Collapse
Affiliation(s)
- Jing Li
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, Jiangsu, 221002, China.
| | - Xiaojie Quan
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, Jiangsu, 221002, China
| | - Saifei Lei
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Gang Chen
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, Jiangsu, 221002, China
| | - Jiawei Hong
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, Jiangsu, 221002, China
| | - Zhenyao Huang
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, Jiangsu, 221002, China
| | - Qi Wang
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, Jiangsu, 221002, China
| | - Weiyi Song
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, Jiangsu, 221002, China
| | - Xinxin Yang
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, Jiangsu, 221002, China
| |
Collapse
|
32
|
Hua Z, Yu L, Liu X, Zhang Y, Ma Y, Lu Y, Wang Y, Yang Y, Xue H. Perfluoroalkyl acids in surface sediments from the lower Yangtze River: Occurrence, distribution, sources, inventory, and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149332. [PMID: 34375265 DOI: 10.1016/j.scitotenv.2021.149332] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/24/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
In this study, the occurrence, spatial distribution, potential sources, mass inventory, and ecological risk assessment of perfluoroalkyl acids (PFAAs) in surface sediments from the lower Yangtze River were investigated based on field and laboratory assays conducted in November 2019. The total concentrations of 13 target PFAAs (∑PFAAs) ranged from 13.83 to 20.33 ng/g dw, and perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS) were predominant in the surface sediments with average concentrations of 2.89 and 4.07 ng/g dw, respectively. The ∑PFAAs concentrations in pore-water ranged from 23.30 to 58.81 ng/L, and PFOA and PFOS were predominant with mean concentrations of 6.29 and 5.04 ng/L, respectively. The profiles of PFAAs composition in surface sediments showed limited difference. Results of fugacity model revealed that PFOS was in relative equilibrium, whereas PFOA exhibited a diffusion trend from sediments to water body. Correlation analysis and positive matrix factorization demonstrated that the main sources of ∑PFAAs were electroplating and fast-food packaging, degradation products and textile, mixed sources, and PFOA-based products. The mass inventory of ∑PFAAs was estimated to be 1680.72 kg, and the results of ecological risk assessments based on equilibrium partition and species sensitivity distribution methods suggested that the hazards of PFAAs in sediments to local aquatic organisms are low. However, the evaluation methods and control measures of PFAAs in surface sediments are still limited, requiring further research.
Collapse
Affiliation(s)
- Zulin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Liang Yu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Xiaodong Liu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Yuan Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yixin Ma
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Ying Lu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yifan Wang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yundong Yang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Hongqin Xue
- School of Civil Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| |
Collapse
|
33
|
Stanic B, Petrovic J, Basica B, Kaisarevic S, Schirmer K, Andric N. Characterization of the ERK1/2 phosphorylation profile in human and fish liver cells upon exposure to chemicals of environmental concern. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 88:103749. [PMID: 34547448 DOI: 10.1016/j.etap.2021.103749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
We developed phospho-ERK1/2 ELISA for human and rainbow trout liver cells, employing HepG2 and RTL-W1 cell lines as models. The assay was applied to detect changes in ERK1/2 activity for nine chemicals, added over a wide concentration range and time points. Cell viability was measured to separate ERK1/2 regulation from cytotoxicity. Perfluorooctane sulfonate and carbendazim did not change ERK1/2 activity; influence on ERK1/2 due to cytotoxicity was indicated for tributyltin and cypermethrin. Mancozeb, benzo[a]pyrene, and bisphenol A stimulated ERK1/2 up to ∼2- (HepG2) and 1.5 (RTL-W1)-fold, though the kinetics differed between chemicals and cell lines. Bisphenol A and benzo[a]pyrene were the most potent concentration-wise, altering ERK1/2 activity in pM (HepG2) to nM (RTL-W1) range. While atrazine and ibuprofen increased ERK1/2 activity by ∼2-fold in HepG2, they did not initiate an appreciable response in RTL-W1. This assay proved to be a sensitive, medium- to high-throughput tool for detecting unrecognized ERK1/2-disrupting chemicals.
Collapse
Affiliation(s)
- Bojana Stanic
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia
| | - Jelena Petrovic
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia
| | - Branka Basica
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia
| | - Sonja Kaisarevic
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia
| | - Kristin Schirmer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland; ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zürich, Switzerland; EPF Lausanne, School of Architecture, Civil and Environmental Engineering, 1015 Lausanne, Switzerland
| | - Nebojsa Andric
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia.
| |
Collapse
|
34
|
Tran T, Abrell L, Brusseau ML, Chorover J. Iron-activated persulfate oxidation degrades aqueous Perfluorooctanoic acid (PFOA) at ambient temperature. CHEMOSPHERE 2021; 281:130824. [PMID: 34044301 DOI: 10.1016/j.chemosphere.2021.130824] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/21/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Perfluorooctanoic acid (PFOA, C8HF15O2) is an industrial surfactant that is highly resistant to natural breakdown processes such as those mediated by heat, hydrolysis, photolysis, and biodegradation. Many efforts have been developed to breakdown PFOA to less harmful species due to its widespread human exposure and potential toxicity. However, these methods require high temperature or specialized equipment with serious disadvantages of high energy cost for long-term use. We investigated the effectiveness of PFOA degradation by ferrous iron-activated persulfate oxidation (IAPO) under various aqueous geochemical conditions. Approximately 64% of PFOA (initial concentration = 1.64 μmol L-1) was degraded after 4 h under illuminated anoxic conditions at ambient temperature. This degradation rate and magnitude support the potential use of IAPO as a novel inexpensive and environmentally friendly method to remediate PFOA in soil and groundwater.
Collapse
Affiliation(s)
- Thien Tran
- Arizona Laboratory for Emerging Contaminants, The University of Arizona, Gould-Simpson Building #828 & 848, 1040 East 4th Street, Tucson, AZ, 85721, United States; Department of Environmental Science, The University of Arizona, 1177 E. 4th Street, P.O. Box 210038, Tucson, AZ, 85721, United States.
| | - Leif Abrell
- Arizona Laboratory for Emerging Contaminants, The University of Arizona, Gould-Simpson Building #828 & 848, 1040 East 4th Street, Tucson, AZ, 85721, United States; Department of Environmental Science, The University of Arizona, 1177 E. 4th Street, P.O. Box 210038, Tucson, AZ, 85721, United States.
| | - Mark L Brusseau
- Department of Environmental Science, The University of Arizona, 1177 E. 4th Street, P.O. Box 210038, Tucson, AZ, 85721, United States.
| | - Jon Chorover
- Arizona Laboratory for Emerging Contaminants, The University of Arizona, Gould-Simpson Building #828 & 848, 1040 East 4th Street, Tucson, AZ, 85721, United States; Department of Environmental Science, The University of Arizona, 1177 E. 4th Street, P.O. Box 210038, Tucson, AZ, 85721, United States.
| |
Collapse
|
35
|
Zhang H, Lu H, Yu L, Yuan J, Qin S, Li C, Ge RS, Chen H, Ye L. Effects of gestational exposure to perfluorooctane sulfonate on the lung development of offspring rats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:115535. [PMID: 33223333 DOI: 10.1016/j.envpol.2020.115535] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/05/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is a man-made fluorosurfactant widely used in industry and consumer products. Previous studies with rats suggested that gestational exposure to PFOS may affect the lung development in the offspring. The mechanism, however, is still unknown. In the present study, we have exposed 24 pregnant SD rats from gestational day 12-18 to different doses of PFOS (0, 1 or 5 mg/kg BW/day). The lungs of the offspring were analyzed at postnatal days 1, 3, 7 and 14. PFOS treatment appeared to reduce the alveolar numbers, resulting in simplified alveolar structure and thickened alveolar septa. Also, PFOS treated animals had increased lung inflammation with up-regulated inflammasome associated proteins NLRP3, ASC, Caspase-1 and GSDMD and increased inflammatory cytokines IL-18 and IL-1β. At the same time, HIF-1α and VEGFA were significantly down-regulated. Since HIF-1α and VEGFA are critical factors promoting alveolar development and pulmonary angiogenesis, these results suggested that PFOS may also affect lung development by inhibiting HIF-1α and VEGFA expression. Our results here indicate that gestational exposure to PFOS may affect lung development in the offspring with pathological characteristics similar to bronchopulmonary dysplasia (BPD), a severe lung developmental defect. The results also suggest that environmental factors such as PFOS may contribute to the increasing incidence of developmental lung diseases, such as BPD, by elevating lung inflammation and inhibiting lung development.
Collapse
Affiliation(s)
- Huishan Zhang
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing, 100034, China; Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Hemin Lu
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing, 100034, China
| | - Lin Yu
- Department of Pediatrics, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Jiexin Yuan
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Shan Qin
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing, 100034, China
| | - Cong Li
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing, 100034, China
| | - Ren-Shan Ge
- Department of Anesthesiology, Perioperative Medicine, Zhejiang Province Key Lab of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Haolin Chen
- Department of Anesthesiology, Perioperative Medicine, Zhejiang Province Key Lab of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| | - Leping Ye
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing, 100034, China.
| |
Collapse
|
36
|
Lava R, Calore F, Mazzola M, Moretto CG, Pretto U, Salmaso P, Bizzotto A, Carvutto R, Acerbi M, Tommasi J, Marcomini A. Groundwater contamination by fluorinated aromatics: Benzotrifluoride and its derivatives. CHEMOSPHERE 2021; 265:129029. [PMID: 33277002 DOI: 10.1016/j.chemosphere.2020.129029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/27/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
Benzotrifluoride (BTF) and its derivatives (BTFs) were found in the groundwater of the Veneto region (Italy) as a result of industrial contamination dating back to the 1970s. In the first survey, BTF and 6 BTFs were identified, out of which 4-chloro-3nitrobenzotrifluoride (3N4CBTF) was the only quantified analyte (concentration up to 1 mg L-1) and was used to trace the contamination plume. A survey carried out in 2008-2009 after the development of more suitable analytical procedures based on GC-MS, allowed to determine 4 new derivatives in addition to BTF and BTFs previously identified, with the most abundant compounds found at concentrations up to 11.9 μg L-1 and 7.2 μg L-1 respectively. A systematic monitoring program for the evaluation of persistence and distribution of fluorinated compounds was carried out in 2013-2018, and new data about the BTF and BTFs occurrence and distribution were gathered. Additional BTFs were identified and high concentrations of individual BTFs were recorded near the contamination source (e.g. 20.3 μg L-1 of 4-chloro-3-nitrobenzotrifluoride in 2017) as well as at large distance (e.g. 22.4 μg L-1 of 3N4CBTF and 12.5 μg L-1 of 4-chlorobenzotrifluoride in 2018). The results of BTFs monitoring campaigns carried out in 2008-2009 and 2017-2018 are compared and related to the historical data to assess the overall occurrence and distribution of BTFs contamination over a time range of ∼40 years. Remarkably, BTFs were still found (2018) at μg L-1 range. Spatial and temporal occurrence of BTF and BTFs in groundwater has been assessed for the first time.
Collapse
Affiliation(s)
- Roberto Lava
- Veneto East Regional Laboratory Department ARPAV (Environmental Prevention and Protection Agency of Veneto Region), Via Lissa 6, Mestre Venice, 30174, Italy; Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino 155, Mestre Venice, 30172, Italy
| | - Francesco Calore
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino 155, Mestre Venice, 30172, Italy
| | - Massimo Mazzola
- Regional Department for Safety of the Territory ARPAV (Environmental Prevention and Protection Agency of Veneto Region), Via Zamenhof 353, Vicenza, 36100, Italy
| | - Carlo Giovanni Moretto
- Inland Water Observatory ARPAV (Environmental Prevention and Protection Agency of Veneto Region), Via Rezzonico 41, Padua, 35131, Italy
| | - Ugo Pretto
- Provincial Department ARPAV (Environmental Prevention and Protection Agency of Veneto Region), Via Zamenhof 353, Vicenza, 36100, Italy
| | - Paola Salmaso
- Provincial Department ARPAV (Environmental Prevention and Protection Agency of Veneto Region), Via Zamenhof 353, Vicenza, 36100, Italy
| | - Alessandro Bizzotto
- Provincial Department ARPAV (Environmental Prevention and Protection Agency of Veneto Region), Via Zamenhof 353, Vicenza, 36100, Italy
| | - Rosi Carvutto
- Veneto West Regional Laboratory Department ARPAV (Environmental Prevention and Protection Agency of Veneto Region), Via Dominutti 8, Verona, 37135, Italy
| | - Mauro Acerbi
- Veneto West Regional Laboratory Department ARPAV (Environmental Prevention and Protection Agency of Veneto Region), Via Dominutti 8, Verona, 37135, Italy
| | - Jgor Tommasi
- Veneto West Regional Laboratory Department ARPAV (Environmental Prevention and Protection Agency of Veneto Region), Via Dominutti 8, Verona, 37135, Italy
| | - Antonio Marcomini
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino 155, Mestre Venice, 30172, Italy.
| |
Collapse
|
37
|
Perfluorooctanesulfonate (PFOS), Its Occurrence, Fate, Transport and Removal in Various Environmental Media: A Review. CONTAMINANTS IN DRINKING AND WASTEWATER SOURCES 2021. [DOI: 10.1007/978-981-15-4599-3_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
38
|
Kleywegt S, Raby M, McGill S, Helm P. The impact of risk management measures on the concentrations of per- and polyfluoroalkyl substances in source and treated drinking waters in Ontario, Canada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:141195. [PMID: 32805563 DOI: 10.1016/j.scitotenv.2020.141195] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
Risk management measures (RMMs) are a broad set of tools used in global treaties and national regulations to manage, ban or restrict the use of toxic chemicals. Per- and polyfluoroalkyl substances (PFAS) are a group of chemicals that are persistent, bioaccumulate, biomagnify and are inherently toxic to the environment and human health. For these reasons global RMMs have been imposed on the manufacture and use of select PFAS. To evaluate the occurrence and potential current risk of PFAS in the Ontario environment, PFAS were quantitatively measured in source waters pre- (2005-2007) and post- (2012-2016, 2018-2019) implementation of RMMs. Source water samples were collected pre- (n = 105), and post-RMMs (n = 326) from lake, river and groundwater and analyzed for up to 14 PFAS. Pre-RMMs, the most frequently detected PFAS in source water were perfluorooctanoic acid (PFOA; 83%) and perfluorooctane sulfonate (PFOS; 76%) followed by perfluorohexane sulfonate (PFHxS; 47%) and the maximum ∑PFAS10 was 42.1 ng/L. Post-RMMs, the maximum ∑PFAS10 (which includes PFOS) was statistically significantly reduced to 15.5 ng/L, well below the Federal Environmental Quality Guidelines for PFOS. To evaluate post-RMMs risk to human health, 226 drinking water samples were collected from 25 drinking water systems with conventional and advanced treatment. All individual (or ∑PFAS) concentrations are well below current and proposed Health advisory levels or regulatory guidelines/standards for PFAS in drinking water with calculated Risk Quotients (RQ) <0.02. This survey indicates that the implementation of RMMs for select PFAS have made a significant difference to the concentrations detected in source waters in Ontario, Canada.
Collapse
Affiliation(s)
- Sonya Kleywegt
- Ontario Ministry of the Environment, Conservation and Parks, ON, Canada.
| | - Melanie Raby
- Ontario Ministry of the Environment, Conservation and Parks, ON, Canada
| | - Stephanie McGill
- Ontario Ministry of the Environment, Conservation and Parks, ON, Canada
| | - Paul Helm
- Ontario Ministry of the Environment, Conservation and Parks, ON, Canada
| |
Collapse
|
39
|
Sinclair GM, Long SM, Jones OAH. What are the effects of PFAS exposure at environmentally relevant concentrations? CHEMOSPHERE 2020; 258:127340. [PMID: 32563917 DOI: 10.1016/j.chemosphere.2020.127340] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/13/2020] [Accepted: 06/05/2020] [Indexed: 05/05/2023]
Abstract
The group of synthetic chemicals known as poly and per-fluoroalkyl substances (PFAS) are currently of high concern to environmental regulators and the public due to their widespread occurrence, resistance to degradation and reported toxicity. However, little data exists on the effects of exposure to PFAS at environmentally relevant concentrations and this hampers the effective management of these compounds. This paper reviews current research on the occurrence and ecotoxicology of PFAS at environmentally relevant doses to assess their potential biological impacts. Hazard Quotient (HQ) analysis was undertaken as part of this assessment. Most PFAS detected in the environment were found to have a HQ risk value of <1 meaning their reported concentrations are below their predicted no effect concentration. This indicates many reported toxic effects of PFAS are, theoretically, unlikely to occur outside the laboratory. However, lack of information on new PFAS as well as their precursors and degradation products, coupled with lack of knowledge of their mixture toxicity means our understanding of the risks of PFAS is incomplete, especially in regard to sub-lethal and/or chronic effects. It is proposed that the development of molecular markers for PFAS exposure are needed to aid in the development of environmental PFAS regulations that are effective in fully protecting the environment.
Collapse
Affiliation(s)
- Georgia M Sinclair
- Aquatic Environmental Stress Research Group (AQUEST), School of Science, RMIT University, Bundoora West Campus, PO Box 71, Bundoora, Victoria, 3083, Australia; Australian Centre for Research on Separation Science (ACROSS), School of Science, RMIT University, Bundoora West Campus, PO Box 71, Bundoora, Victoria, 3083, Australia
| | - Sara M Long
- Aquatic Environmental Stress Research Group (AQUEST), School of Science, RMIT University, Bundoora West Campus, PO Box 71, Bundoora, Victoria, 3083, Australia
| | - Oliver A H Jones
- Australian Centre for Research on Separation Science (ACROSS), School of Science, RMIT University, Bundoora West Campus, PO Box 71, Bundoora, Victoria, 3083, Australia.
| |
Collapse
|
40
|
Bonato M, Corrà F, Bellio M, Guidolin L, Tallandini L, Irato P, Santovito G. PFAS Environmental Pollution and Antioxidant Responses: An Overview of the Impact on Human Field. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E8020. [PMID: 33143342 PMCID: PMC7663035 DOI: 10.3390/ijerph17218020] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 01/09/2023]
Abstract
Due to their unique properties, perfluorinated substances (PFAS) are widely used in multiple industrial and commercial applications, but they are toxic for animals, humans included. This review presents some available data on the PFAS environmental distribution in the world, and in particular in Europe and in the Veneto region of Italy, where it has become a serious problem for human health. The consumption of contaminated food and drinking water is considered one of the major source of exposure for humans. Worldwide epidemiological studies report the negative effects that PFAS have on human health, due to environmental pollution, including infertility, steroid hormone perturbation, thyroid, liver and kidney disorders, and metabolic disfunctions. In vitro and in vivo researches correlated PFAS exposure to oxidative stress effects (in mammals as well as in other vertebrates of human interest), produced by a PFAS-induced increase of reactive oxygen species formation. The cellular antioxidant defense system is activated by PFAS, but it is only partially able to avoid the oxidative damage to biomolecules.
Collapse
Affiliation(s)
| | | | | | | | | | - Paola Irato
- Department of Biology, University of Padova, 35131 Padova, Italy; (M.B.); (F.C.); (M.B.); (L.G.); (L.T.)
| | - Gianfranco Santovito
- Department of Biology, University of Padova, 35131 Padova, Italy; (M.B.); (F.C.); (M.B.); (L.G.); (L.T.)
| |
Collapse
|
41
|
Wang Y, Sha W, Wang H, Howard AG, Tsilimigras MCB, Zhang J, Su C, Wang Z, Zhang B, Fodor AA, Gordon-Larsen P. Urbanization in China is associated with pronounced perturbation of plasma metabolites. Metabolomics 2020; 16:103. [PMID: 32951074 PMCID: PMC7707273 DOI: 10.1007/s11306-020-01724-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/12/2020] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Urbanization is associated with major changes in environmental and lifestyle exposures that may influence metabolic signatures. OBJECTIVES We investigated cross-sectional urban and rural differences in plasma metabolome analyzed by liquid chromatography/mass spectrometry platform in 500 Chinese adults aged 25-68 years from two neighboring southern Chinese provinces. METHODS We first examined the overall metabolome differences by urban and rural residential location, using Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) and random forest classification. We then tested the association between urbanization status and individual metabolites using a linear regression adjusting for age, sex, and province and conducted pathway analysis (Fisher's exact test) to identify metabolic pathways differed by urbanization status. RESULTS We observed distinct overall metabolome by urbanization status in OPLS-DA and random forest classification. Using linear regression, out of a total of 1108 unique metabolite features identified in this sample, we found that 266 metabolites were differed by urbanization status (positive false discovery rate-adjusted p-value, q-value < 0.05). For example, the following metabolites were positively associated with urbanization status: caffeine metabolites from xanthine metabolism, hazardous pollutants like 4-hydroxychlorothalonil and perfluorooctanesulfonate, and metabolites implicated in cardiometabolic diseases, such as branched-chain amino acids. In pathway analysis, we found that xanthine metabolism pathways differed by urbanization status (q-value = 1.64E-04). CONCLUSION We detected profound differences in host metabolites by urbanization status. Urban residents were characterized by metabolites signaling caffeine metabolism and toxic pollutants and metabolites on known pathways to cardiometabolic disease risks, compared to their rural counterparts. Our findings highlight the importance of considering urbanization in metabolomics analysis.
Collapse
Affiliation(s)
- Yiqing Wang
- Department of Nutrition, Gillings School of Global Public Health & School of Medicine, University of North Carolina at Chapel Hill (UNC-Chapel Hill), Chapel Hill, NC, USA
| | - Wei Sha
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
- Department of Cancer Biostatistics, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Huijun Wang
- Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, China
| | - Annie Green Howard
- Carolina Population Center, UNC-Chapel Hill, Chapel Hill, NC, USA
- Department of Biostatistics, Gillings School of Global Public Health, UNC-Chapel Hill, Chapel Hill, NC, USA
| | - Matthew C B Tsilimigras
- Department of Nutrition, Gillings School of Global Public Health & School of Medicine, University of North Carolina at Chapel Hill (UNC-Chapel Hill), Chapel Hill, NC, USA
- Carolina Population Center, UNC-Chapel Hill, Chapel Hill, NC, USA
- Department of Epidemiology, Gillings School of Global Public Health, UNC-Chapel Hill, Chapel Hill, NC, USA
| | - Jiguo Zhang
- Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, China
| | - Chang Su
- Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, China
| | - Zhihong Wang
- Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, China
| | - Bing Zhang
- Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, China
| | - Anthony A Fodor
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Penny Gordon-Larsen
- Department of Nutrition, Gillings School of Global Public Health & School of Medicine, University of North Carolina at Chapel Hill (UNC-Chapel Hill), Chapel Hill, NC, USA.
- Carolina Population Center, UNC-Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
42
|
Ding N, Harlow SD, Randolph Jr JF, Loch-Caruso R, Park SK. Perfluoroalkyl and polyfluoroalkyl substances (PFAS) and their effects on the ovary. Hum Reprod Update 2020; 26:724-752. [PMID: 32476019 PMCID: PMC7456353 DOI: 10.1093/humupd/dmaa018] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/03/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are found widespread in drinking water, foods, food packaging materials and other consumer products. Several PFAS have been identified as endocrine-disrupting chemicals based on their ability to interfere with normal reproductive function and hormonal signalling. Experimental models and epidemiologic studies suggest that PFAS exposures target the ovary and represent major risks for women's health. OBJECTIVE AND RATIONALE This review summarises human population and toxicological studies on the association between PFAS exposure and ovarian function. SEARCH METHODS A comprehensive review was performed by searching PubMed. Search terms included an extensive list of PFAS and health terms ranging from general keywords (e.g. ovarian, reproductive, follicle, oocyte) to specific keywords (including menarche, menstrual cycle, menopause, primary ovarian insufficiency/premature ovarian failure, steroid hormones), based on the authors' knowledge of the topic and key terms. OUTCOMES Clinical evidence demonstrates the presence of PFAS in follicular fluid and their ability to pass through the blood-follicle barrier. Although some studies found no evidence associating PFAS exposure with disruption in ovarian function, numerous epidemiologic studies, mostly with cross-sectional study designs, have identified associations of higher PFAS exposure with later menarche, irregular menstrual cycles, longer cycle length, earlier age of menopause and reduced levels of oestrogens and androgens. Adverse effects of PFAS on ovarian folliculogenesis and steroidogenesis have been confirmed in experimental models. Based on laboratory research findings, PFAS could diminish ovarian reserve and reduce endogenous hormone synthesis through activating peroxisome proliferator-activated receptors, disrupting gap junction intercellular communication between oocyte and granulosa cells, inducing thyroid hormone deficiency, antagonising ovarian enzyme activities involved in ovarian steroidogenesis or inhibiting kisspeptin signalling in the hypothalamus. WIDER IMPLICATIONS The published literature supports associations between PFAS exposure and adverse reproductive outcomes; however, the evidence remains insufficient to infer a causal relationship between PFAS exposure and ovarian disorders. Thus, more research is warranted. PFAS are of significant concern because these chemicals are ubiquitous and persistent in the environment and in humans. Moreover, susceptible groups, such as foetuses and pregnant women, may be exposed to harmful combinations of chemicals that include PFAS. However, the role environmental exposures play in reproductive disorders has received little attention by the medical community. To better understand the potential risk of PFAS on human ovarian function, additional experimental studies using PFAS doses equivalent to the exposure levels found in the general human population and mixtures of compounds are required. Prospective investigations in human populations are also warranted to ensure the temporality of PFAS exposure and health endpoints and to minimise the possibility of reverse causality.
Collapse
Affiliation(s)
- Ning Ding
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Siobán D Harlow
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - John F Randolph Jr
- Department of Obstetrics and Gynecology, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rita Loch-Caruso
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sung Kyun Park
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
43
|
Jin Q, Liu H, Wei X, Li W, Chen J, Yang W, Qian S, Yao J, Wang X. Dam operation altered profiles of per- and polyfluoroalkyl substances in reservoir. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122523. [PMID: 32197204 DOI: 10.1016/j.jhazmat.2020.122523] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 03/07/2020] [Accepted: 03/11/2020] [Indexed: 06/10/2023]
Abstract
Information on the impact of dam operation on per- and polyfluoroalkyl substances (PFASs) distribution in reservoirs is very limited. In the present study, water, riparian soils and floating wastes samples were collected from the Three Gorges Reservoir, China during the storage and the discharge periods to characterize the PFASs distribution. The total PFASs concentrations of water samples in the storage period (50.4-146 ng/L) were 4.7 times higher than those in the discharge period (1.40-38.6 ng/L). The main types of PFASs in water samples changed from PFOA in the discharge period to short-chain species in the storage period. The main analogues in riparian soils and floating wastes were PFOA and PFOS. Wastes contributed little to PFASs mass in the reservoir, while PFASs accumulated in soils accounted for 49.7 % of the total mass when the riparian zone was submerged during the storage period. Changes in profiles of PFASs caused by dam operation suggested that the potential water safety and the shift of riparian soils between source and sink of PFASs may vary with the annual operation cycle of dam. The water resources protection in reservoirs needs strategies that consider the variation of dam operation cycle.
Collapse
Affiliation(s)
- Qiu Jin
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China; State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Huazu Liu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; Department of Ecological Sciences and Engineering, Chongqing University, Chongqing 400045, China
| | - Xiaoxiao Wei
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; Department of Environmental Engineering, Chongqing University, Chongqing 400045, China
| | - Wei Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; Department of Ecological Sciences and Engineering, Chongqing University, Chongqing 400045, China.
| | - Jing Chen
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Wei Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; Department of Ecological Sciences and Engineering, Chongqing University, Chongqing 400045, China
| | - Shenhua Qian
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; Department of Ecological Sciences and Engineering, Chongqing University, Chongqing 400045, China
| | - Jingmei Yao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; Department of Ecological Sciences and Engineering, Chongqing University, Chongqing 400045, China
| | - Xiaoming Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; Department of Environmental Engineering, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
44
|
Liu H, Pan Y, Jin S, Li Y, Zhao L, Sun X, Cui Q, Zhang B, Zheng T, Xia W, Zhou A, Campana AM, Dai J, Xu S. Associations of per-/polyfluoroalkyl substances with glucocorticoids and progestogens in newborns. ENVIRONMENT INTERNATIONAL 2020; 140:105636. [PMID: 32474218 DOI: 10.1016/j.envint.2020.105636] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 02/01/2020] [Accepted: 03/03/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Exposure to per-/polyfluoroalkyl substances (PFASs) can disrupt endocrine hormones in humans. Prior studies have focused on the harmful effects of the two traditional per-/polyfluoroalkyl substances (PFASs), perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA). Other PFASs, used as the replacements of PFOS and PFOA, are widely and increasingly detected in humans. Whether these replacements influence glucocorticoids and progestogens in newborns remains unknown. OBJECTIVE To investigate the associations between exposures of PFOS, PFOA and their replacements and glucocorticoids and progestogens in newborns. METHODS We measured the concentrations of 13 PFASs, 3 glucocorticoids (11-deoxycortisol, cortisol and cortisone) and 2 progestogens [progesterone, 17-hydroxyprogesterone (17OHP)] in the cord sera of 374 neonates in a birth cohort from Wuhan, China, between 2013 and 2014. We evaluated the associations of each PFAS with glucocorticoids and progestogens using multiple linear regression models, and multiple comparisons were additionally corrected via false discovery rates (FDR). RESULTS Out of the 13 PFASs, 9 were detected in over 95% of cord sera. The Chinese specific PFOS replacement - 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA, trade name F-53B) was positively associated with 13.13% change in cortisol in girls (95% CI = 4.47%, 22.52%, for each IQR increase in 6:2 Cl-PFESA). Seven PFASs had positive associations with the precursor of cortisol, namely 11-deoxycortisol (percent change ranged from 6.41% to 11.24%, for each IQR increase in PFASs). Perfluorobutane sulfonate (PFBS) in cord sera was positively associated with progesterone in the linear model, whereas PFOS and perfluorohexane sulfonate (PFHxS) levels were associated with progesterone in the quartile models. No PFASs were related to 17OHP or cortisone. CONCLUSIONS In this study, PFOS, PFOA and/or their replacements were positively associated with progesterone, cortisol and 11-deoxycortisol in newborns. These results suggested that not only PFOS and PFOA, but also other PFASs have potential impacts on glucocorticoids and progestogens in newborns.
Collapse
Affiliation(s)
- Hongxiu Liu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, PR China; State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, PR China
| | - Yitao Pan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Shuna Jin
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, PR China; State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, PR China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, PR China; State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, PR China
| | - Liuqing Zhao
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, PR China; State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, PR China
| | - Xiaojie Sun
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, PR China; State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, PR China
| | - Qianqian Cui
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Bin Zhang
- Women and Children Medical and Healthcare Center of Wuhan, Wuhan 430000, Hubei, PR China
| | - Tongzhang Zheng
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI 02912, United States
| | - Wei Xia
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, PR China; State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, PR China
| | - Aifen Zhou
- Women and Children Medical and Healthcare Center of Wuhan, Wuhan 430000, Hubei, PR China
| | | | - Jiayin Dai
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China.
| | - Shunqing Xu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, PR China; State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, PR China.
| |
Collapse
|
45
|
Zhang L, Sun W, Chen H, Tian F, Cai W. Transcriptome analysis of acute exposure of the Manila clam, Ruditapes philippinarum to perfluorooctane sulfonate (PFOS). Comp Biochem Physiol C Toxicol Pharmacol 2020; 231:108736. [PMID: 32142923 DOI: 10.1016/j.cbpc.2020.108736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 12/23/2022]
Abstract
Perfluorooctane sulfonate (PFOS) is an increasingly important environmental pollutant, which has been detected almost everywhere in the environment. Despite the widespread presence of PFOS, much less notice is taken of its toxicology effects on marine bivalves. Thus, the transcriptome response to PFOS treatment (nominal concentration of 20 mg/L) in hepatopancreas of a sentinel organism, Ruditapes philippinarum was examined. Compared with the control group, 32,149 unigenes were up-regulated and 26,958 unigenes down-regulated. Notably, significant gene expression changes were found in carbohydrate metabolism, energy metabolism, amino acid metabolism, lipid metabolism and protein biosynthesis, indicating the metabolic disruptions caused by PFOS in R. philippinarum. Additionally, numerous other differentially expressed genes were involved in immune system, antioxidant defense system and detoxification metabolism. In summary, transcriptome profiling of R. philippinarum after exposure to PFOS provided molecular support for our current understanding of the detrimental toxicity of PFOS on marine bivalves.
Collapse
Affiliation(s)
- Linbao Zhang
- Scientific Observing and Experimental Station of South China Sea Fishery Resources & Environments, Ministry of Agriculture, Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China.
| | - Wei Sun
- Scientific Observing and Experimental Station of South China Sea Fishery Resources & Environments, Ministry of Agriculture, Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Haigang Chen
- Scientific Observing and Experimental Station of South China Sea Fishery Resources & Environments, Ministry of Agriculture, Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Fei Tian
- Scientific Observing and Experimental Station of South China Sea Fishery Resources & Environments, Ministry of Agriculture, Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Wengui Cai
- Scientific Observing and Experimental Station of South China Sea Fishery Resources & Environments, Ministry of Agriculture, Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| |
Collapse
|
46
|
Thomaidi VS, Tsahouridou A, Matsoukas C, Stasinakis AS, Petreas M, Kalantzi OI. Risk assessment of PFASs in drinking water using a probabilistic risk quotient methodology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 712:136485. [PMID: 31927447 DOI: 10.1016/j.scitotenv.2019.136485] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/14/2019] [Accepted: 12/31/2019] [Indexed: 05/15/2023]
Abstract
We evaluated health risks associated with perfluorinated and polyfluorinated alkyl substances (PFASs) found in drinking water applying human risk assessment (HRA) methodology. Using data on worldwide occurrence of PFASs in drinking water and recent guidelines for PFASs in drinking water, we applied four scenarios based on different toxicological threshold values to calculate age-dependent risk quotients (RQ) for different PFASs. The mean concentrations of the most frequently detected compounds (PFOS and PFOA) were highest in North America (99.2 and 30.7 ng L-1, respectively), and lowest in Asia (PFOS: 3.0 ng L-1) and Europe (PFOA: 4.87 ng L-1). Using HRA methodology and maximum reported concentrations, only PFOS and PFOA, examined individually, showed any threat to human health. Specifically, calculations with the average and maximum concentrations of PFOS showed RQ values higher than 0.2 or 1, respectively, for some age groups under specific scenarios. Similarly, using maximum PFOA concentrations, a RQ equal to 0.2 for infants up to 3 months was calculated under scenario 4. Regional differences on RQ values were observed when PFOS concentrations from Europe, North America and Asia were used. Estimation of the human health risk due to mixtures of PFASs using average concentrations showed that the RQmix was higher than 0.2 for infants up to 3 months (scenario 3) and infants and children up to 6 years old (scenario 4). More importantly, evaluation of the guideline values set by the EU and the Health Advisory Levels issued by the USEPA resulted (under some scenarios) in RQ values higher than 0.2 for PFOS and PFOA for specific age groups, indicating that further discussion is needed for the monitoring and prioritization of these compounds.
Collapse
Affiliation(s)
- V S Thomaidi
- Department of Environment, University of the Aegean, Mytilene 81100, Greece
| | - A Tsahouridou
- Department of Environment, University of the Aegean, Mytilene 81100, Greece
| | - C Matsoukas
- Department of Environment, University of the Aegean, Mytilene 81100, Greece
| | - A S Stasinakis
- Department of Environment, University of the Aegean, Mytilene 81100, Greece.
| | - M Petreas
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, Berkeley, CA, USA
| | - O I Kalantzi
- Department of Environment, University of the Aegean, Mytilene 81100, Greece
| |
Collapse
|
47
|
Yang Y, Yang M, Zheng Z, Zhang X. Highly effective adsorption removal of perfluorooctanoic acid (PFOA) from aqueous solution using calcined layer-like Mg-Al hydrotalcites nanosheets. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:13396-13408. [PMID: 32026363 DOI: 10.1007/s11356-020-07892-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
To study the influence factors of calcined layer-like Mg-Al hydrotalcites nanosheets adsorbing perfluorooctanoic acid (PFOA) in aqueous solution, Mg-Al hydrotalcite (HMA) nanosheets were prepared by one-step hydrothermal synthesis. The effect of calcination temperature on adsorption properties and structure of HMA (CHMA-x, x means different calcination temperature) was investigated. The prepared samples were systematically characterized by the Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TG), X-ray diffraction (XRD), scanning electronic microscopy (SEM), and nitrogen adsorption-desorption isotherms. The adsorption isotherms and kinetics showed the adsorption equilibrium reached within 2 h, and the factors, such as adsorption dosage, pH, and cycles were investigated. It was found that CHMA with 600 °C displayed a uniformly morphology, higher surface area about 106.3 m2/g, and excellent adsorption properties (1969 mg/g). The equilibrium adsorption data perfectly fitted to the pseudo-second-order kinetic model (R2 = 0.999) and the Freundlich model (R2 = 0.994). The main mechanism of CHMA adsorbing PFOA might be the "memory effect." This study provided a new insight to prepare highly effective adsorbents in water treatment.
Collapse
Affiliation(s)
- Yiqiong Yang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Minhui Yang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Zenghui Zheng
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xiaodong Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
48
|
Franco ME, Sutherland GE, Fernandez-Luna MT, Lavado R. Altered expression and activity of phase I and II biotransformation enzymes in human liver cells by perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS). Toxicology 2020; 430:152339. [DOI: 10.1016/j.tox.2019.152339] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 11/26/2019] [Accepted: 12/02/2019] [Indexed: 01/19/2023]
|
49
|
Ünlü Endirlik B, Bakır E, Boşgelmez İİ, Eken A, Narin İ, Gürbay A. Assessment of perfluoroalkyl substances levels in tap and bottled water samples from Turkey. CHEMOSPHERE 2019; 235:1162-1171. [PMID: 31561307 DOI: 10.1016/j.chemosphere.2019.06.228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/28/2019] [Accepted: 06/30/2019] [Indexed: 05/05/2023]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) draw considerable attention for their potential toxic effects in humans and environment. Drinking water is accepted as one of the major exposure pathways for PFASs. In this study, we measured concentrations of 10 perfluoroalkyl substances in 94 tap water samples collected in two different sampling periods (August 2017 and February 2018) from 33 provinces of Turkey, as well as in 26 different brands of plastic and glass-bottled water samples sold in supermarkets in Turkey. Perfluorohexanoic acid (PFHxA), perfluorobutane sulfonate (PFBS) and perfluoropentanoic acid (PFPeA) were the most frequently detected PFASs in the samples of tap waters. The maximum concentrations in tap waters were measured as 2.90, 2.37, 2.18, 2.04, and 1.93 ng/L, for PFHxA, perfluorooctanoic acid (PFOA), perfluorohexane sulfonate (PFHxS), perfluorooctane sulfonate (PFOS), and perfluorobutanoic acid (PFBA), respectively. The most abundant perfluorinated chemical in tap water samples was PFBA with 17%, followed by PFOS (13%), PFBS (12%), perfluoroheptanoic acid (PFHpA) (11%), PFHxA (11%), and PFOA (11%). The total PFASs concentration in tap water ranged from 0.08 to 11.27 ng/L. As regards bottled waters, the concentrations of PFASs were generally lower than those in tap water samples. These results revealed that tap water samples in Turkey might be considered generally safe based on the established guidelines around the world. However, due to their persistence and potential to accumulate and reach higher concentrations in the environment, careful monitoring of PFASs in all types of water is critical.
Collapse
Affiliation(s)
- Burcu Ünlü Endirlik
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Erciyes University, 38280, Kayseri, Turkey.
| | - Elçin Bakır
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Erciyes University, 38280, Kayseri, Turkey
| | - İffet İpek Boşgelmez
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Erciyes University, 38280, Kayseri, Turkey; Ziya Eren Drug Application and Research Center, Erciyes University, 38280, Kayseri, Turkey
| | - Ayşe Eken
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Erciyes University, 38280, Kayseri, Turkey
| | - İbrahim Narin
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, 38280, Kayseri, Turkey
| | - Aylin Gürbay
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, 06100, Ankara, Turkey
| |
Collapse
|
50
|
Ao J, Yuan T, Xia H, Ma Y, Shen Z, Shi R, Tian Y, Zhang J, Ding W, Gao L, Zhao X, Yu X. Characteristic and human exposure risk assessment of per- and polyfluoroalkyl substances: A study based on indoor dust and drinking water in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:112873. [PMID: 31369910 DOI: 10.1016/j.envpol.2019.07.041] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/19/2019] [Accepted: 07/09/2019] [Indexed: 05/12/2023]
Abstract
Per- and polyfluoroalkyl Substances (PFAS) are ubiquitous in the environmental matrix, and their eco-toxicity on wide life and health risks on humans arising concerns. Due to the information gap, current risk assessments of PFAS ignore the indoor exposure pathway such as indoor dust and the different sources of drinking water. We collected and analyzed 168 indoor dust and 27 drinking water samples (including tap water, filtered water and bottled water). The mean concentrations of six typical PFAS measured in indoor dust and drinking water are in the range of 15.13-491.07 ng g-1 and 0.31-4.14 ng L-1, respectively. For drinking water, PFOA and PFOS were the dominant compounds, while PFHxS was the most abundant in indoor dust. Short-chain PFAS concentrations were higher than long-chain PFAS in both drinking water and indoor dust. Higher concentration of PFAS was observed in tap water and filtered water than bottled water. The total daily intake (TDI) of six PFAS are 20.67-52.97 ng kg-1 d-1 for infants, children, teenagers, and adults. As to children, teenagers, and adults, perfluorooctanoate (PFOA) is the major compound, accounting for 72.9-74.7% of the total daily intake. And PFOA (38.7%) and perfluorooctane sulfonate (PFOS, 42.2%) are the dominant PFAS for infants. The quantitative proportions of exposure sources are firstly revealed in this study, which in the order of foodstuff > indoor dust > drinking water > indoor air. Although the contribution to the PFAS intake of drinking water and indoor dust was not predominant (<9%), the health risks caused by long-term exposure need our attention. The hazard quotient (HQ) values of total PFAS were in the range of 0.154-0.498, which suggesting the relatively lower exposure risk in Chinese population. This study provides important reference to understand PFAS exposure status other than foodstuff.
Collapse
Affiliation(s)
- Junjie Ao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; MOE and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Tao Yuan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Hui Xia
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuning Ma
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhemin Shen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Rong Shi
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ying Tian
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jun Zhang
- MOE and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Wenjin Ding
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Li Gao
- School of Resource and Environment, Ningxia University, Yinchuan, 750021, China
| | - Xiaodong Zhao
- Shanghai Center for Systems Biomedicine, Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaodan Yu
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| |
Collapse
|