1
|
Wang Z, Zhu H, Xiong W. Metabolism and metabolomics in senescence, aging, and age-related diseases: a multiscale perspective. Front Med 2025:10.1007/s11684-024-1116-0. [PMID: 39821730 DOI: 10.1007/s11684-024-1116-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/04/2024] [Indexed: 01/19/2025]
Abstract
The pursuit of healthy aging has long rendered aging and senescence captivating. Age-related ailments, such as cardiovascular diseases, diabetes, and neurodegenerative disorders, pose significant threats to individuals. Recent studies have shed light on the intricate mechanisms encompassing genetics, epigenetics, transcriptomics, and metabolomics in the processes of senescence and aging, as well as the establishment of age-related pathologies. Amidst these underlying mechanisms governing aging and related pathology metabolism assumes a pivotal role that holds promise for intervention and therapeutics. The advancements in metabolomics techniques and analysis methods have significantly propelled the study of senescence and aging, particularly with the aid of multiscale metabolomics which has facilitated the discovery of metabolic markers and therapeutic potentials. This review provides an overview of senescence and aging, emphasizing the crucial role metabolism plays in the aging process as well as age-related diseases.
Collapse
Affiliation(s)
- Ziyi Wang
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Hongying Zhu
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
- Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230088, China.
- CAS Key Laboratory of Brain Function and Disease, Hefei, 230026, China.
- Anhui Province Key Laboratory of Biomedical Aging Research, Hefei, 230026, China.
| | - Wei Xiong
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
- Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230088, China.
- CAS Key Laboratory of Brain Function and Disease, Hefei, 230026, China.
- Anhui Province Key Laboratory of Biomedical Aging Research, Hefei, 230026, China.
| |
Collapse
|
2
|
Guillermier C, Kumar NV, Bracken RC, Alvarez D, O'Keefe J, Gurkar A, Brown JD, Steinhauser ML. Nanoscale imaging of DNA-RNA identifies transcriptional plasticity at heterochromatin. Life Sci Alliance 2024; 7:e202402849. [PMID: 39288993 PMCID: PMC11408601 DOI: 10.26508/lsa.202402849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024] Open
Abstract
The three-dimensional structure of DNA is a biophysical determinant of transcription. The density of chromatin condensation is one determinant of transcriptional output. Chromatin condensation is generally viewed as enforcing transcriptional suppression, and therefore, transcriptional output should be inversely proportional to DNA compaction. We coupled stable isotope tracers with multi-isotope imaging mass spectrometry to quantify and image nanovolumetric relationships between DNA density and newly made RNA within individual nuclei. Proliferative cell lines and cycling cells in the murine small intestine unexpectedly demonstrated no consistent relationship between DNA density and newly made RNA, even though localized examples of this phenomenon were detected at nuclear-cytoplasmic transitions. In contrast, non-dividing hepatocytes demonstrated global reduction in newly made RNA and an inverse relationship between DNA density and transcription, driven by DNA condensates at the nuclear periphery devoid of newly made RNA. Collectively, these data support an evolving model of transcriptional plasticity that extends at least to a subset of chromatin at the extreme of condensation as expected of heterochromatin.
Collapse
Affiliation(s)
- Christelle Guillermier
- Center for NanoImaging, Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Naveen Vg Kumar
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ronan C Bracken
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Diana Alvarez
- Division of Geriatric Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John O'Keefe
- Center for NanoImaging, Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Aditi Gurkar
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Geriatric Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jonathan D Brown
- Cardiovascular Division, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Matthew L Steinhauser
- Center for NanoImaging, Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Cardiovascular Division, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Zhang C, Ren T, Zhao X, Su Y, Wang Q, Zhang T, He B, Chen Y, Wu LY, Sun L, Zhang B, Xia Z. Biologically informed machine learning modeling of immune cells to reveal physiological and pathological aging process. Immun Ageing 2024; 21:74. [PMID: 39449067 PMCID: PMC11515583 DOI: 10.1186/s12979-024-00479-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
The immune system undergoes progressive functional remodeling from neonatal stages to old age. Therefore, understanding how aging shapes immune cell function is vital for precise treatment of patients at different life stages. Here, we constructed the first transcriptomic atlas of immune cells encompassing human lifespan, ranging from newborns to supercentenarians, and comprehensively examined gene expression signatures involving cell signaling, metabolism, differentiation, and functions in all cell types to investigate immune aging changes. By comparing immune cell composition among different age groups, HLA highly expressing NK cells and CD83 positive B cells were identified with high percentages exclusively in the teenager (Tg) group, whereas unknown_T cells were exclusively enriched in the supercentenarian (Sc) group. Notably, we found that the biological age (BA) of pediatric COVID-19 patients with multisystem inflammatory syndrome accelerated aging according to their chronological age (CA). Besides, we proved that inflammatory shift- myeloid abundance and signature correlate with the progression of complications in Kawasaki disease (KD). The shift- myeloid signature was also found to be associated with KD treatment resistance, and effective therapies improve treatment outcomes by reducing this signaling. Finally, based on those age-related immune cell compositions, we developed a novel BA prediction model PHARE ( https://xiazlab.org/phare/ ), which can apply to both scRNA-seq and bulk RNA-seq data. Using this model, we found patients with coronary artery disease (CAD) also exhibit accelerated aging compared to healthy individuals. Overall, our study revealed changes in immune cell proportions and function associated with aging, both in health and disease, and provided a novel tool for successfully capturing features that accelerate or delay aging.
Collapse
Affiliation(s)
- Cangang Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Tao Ren
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaofan Zhao
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Qianhao Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Tianzhe Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Boxiao He
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yabing Chen
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Ling-Yun Wu
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lina Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China.
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China.
| | - Zheng Xia
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA.
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
- Center for Biomedical Data Science, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
4
|
Müller A, Klena N, Pang S, Garcia LEG, Topcheva O, Aurrecoechea Duran S, Sulaymankhil D, Seliskar M, Mziaut H, Schöniger E, Friedland D, Kipke N, Kretschmar S, Münster C, Weitz J, Distler M, Kurth T, Schmidt D, Hess HF, Xu CS, Pigino G, Solimena M. Structure, interaction and nervous connectivity of beta cell primary cilia. Nat Commun 2024; 15:9168. [PMID: 39448638 PMCID: PMC11502866 DOI: 10.1038/s41467-024-53348-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
Primary cilia are sensory organelles present in many cell types, partaking in various signaling processes. Primary cilia of pancreatic beta cells play pivotal roles in paracrine signaling and their dysfunction is linked to diabetes. Yet, the structural basis for their functions is unclear. We present three-dimensional reconstructions of beta cell primary cilia by electron and expansion microscopy. These cilia are spatially confined within deep ciliary pockets or narrow spaces between cells, lack motility components and display an unstructured axoneme organization. Furthermore, we observe a plethora of beta cell cilia-cilia and cilia-cell interactions with other islet and non-islet cells. Most remarkably, we have identified and characterized axo-ciliary synapses between beta cell cilia and the cholinergic islet innervation. These findings highlight the beta cell cilia's role in islet connectivity, pointing at their function in integrating islet intrinsic and extrinsic signals and contribute to understanding their significance in health and diabetes.
Collapse
Affiliation(s)
- Andreas Müller
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany.
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Munich, University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Dresden, Germany.
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.
| | | | - Song Pang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Yale School of Medicine, New Haven, CT, USA
| | - Leticia Elizabeth Galicia Garcia
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Munich, University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- DFG Cluster of Excellence "Physics of Life", TU Dresden, Dresden, Germany
| | - Oleksandra Topcheva
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Munich, University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Solange Aurrecoechea Duran
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Munich, University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Davud Sulaymankhil
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Munich, University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Department of Chemical Engineering, Cooper Union, New York City, NY, USA
| | - Monika Seliskar
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Munich, University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Hassan Mziaut
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Munich, University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Eyke Schöniger
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Munich, University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Daniela Friedland
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Munich, University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Nicole Kipke
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Munich, University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Susanne Kretschmar
- Center for Molecular and Cellular Bioengineering (CMCB), Technology Platform, Core Facility Electron Microscopy and Histology, TU Dresden, Dresden, Germany
| | - Carla Münster
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Munich, University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Jürgen Weitz
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Medical Faculty, TU Dresden, Dresden, Germany
| | - Marius Distler
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Medical Faculty, TU Dresden, Dresden, Germany
| | - Thomas Kurth
- Center for Molecular and Cellular Bioengineering (CMCB), Technology Platform, Core Facility Electron Microscopy and Histology, TU Dresden, Dresden, Germany
| | - Deborah Schmidt
- HELMHOLTZ IMAGING, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Harald F Hess
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - C Shan Xu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | | | - Michele Solimena
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany.
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Munich, University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Dresden, Germany.
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.
- DFG Cluster of Excellence "Physics of Life", TU Dresden, Dresden, Germany.
| |
Collapse
|
5
|
Dos Santos C, Cambraia A, Shrestha S, Cutler M, Cottam M, Perkins G, Lev-Ram V, Roy B, Acree C, Kim KY, Deerinck T, Dean D, Cartailler JP, MacDonald PE, Hetzer M, Ellisman M, Arrojo E Drigo R. Calorie restriction increases insulin sensitivity to promote beta cell homeostasis and longevity in mice. Nat Commun 2024; 15:9063. [PMID: 39433757 PMCID: PMC11493975 DOI: 10.1038/s41467-024-53127-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/27/2024] [Indexed: 10/23/2024] Open
Abstract
Caloric restriction (CR) can extend the organism life- and health-span by improving glucose homeostasis. How CR affects the structure-function of pancreatic beta cells remains unknown. We used single nucleus transcriptomics to show that CR increases the expression of genes for beta cell identity, protein processing, and organelle homeostasis. Gene regulatory network analysis reveal that CR activates transcription factors important for beta cell identity and homeostasis, while imaging metabolomics demonstrates that beta cells upon CR are more energetically competent. In fact, high-resolution microscopy show that CR reduces beta cell mitophagy to increase mitochondria mass and the potential for ATP generation. However, CR beta cells have impaired adaptive proliferation in response to high fat diet feeding. Finally, we show that long-term CR delays the onset of beta cell aging hallmarks and promotes cell longevity by reducing beta cell turnover. Therefore, CR could be a feasible approach to preserve compromised beta cell structure-function during aging and diabetes.
Collapse
Affiliation(s)
- Cristiane Dos Santos
- Vanderbilt University, Department of Molecular Physiology and Biophysics, Nashville, La Jolla, TN, USA
| | - Amanda Cambraia
- Vanderbilt University, Department of Molecular Physiology and Biophysics, Nashville, La Jolla, TN, USA
| | - Shristi Shrestha
- Vanderbilt University, Department of Molecular Physiology and Biophysics, Nashville, La Jolla, TN, USA
| | - Melanie Cutler
- Vanderbilt University, Department of Molecular Physiology and Biophysics, Nashville, La Jolla, TN, USA
| | - Matthew Cottam
- Vanderbilt University, Department of Molecular Physiology and Biophysics, Nashville, La Jolla, TN, USA
| | - Guy Perkins
- National Center for Imaging and Microscopy Research, University of California San Diego, La Jolla, CA, USA
| | - Varda Lev-Ram
- National Center for Imaging and Microscopy Research, University of California San Diego, La Jolla, CA, USA
| | - Birbickram Roy
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Christopher Acree
- Vanderbilt University, Department of Molecular Physiology and Biophysics, Nashville, La Jolla, TN, USA
| | - Keun-Young Kim
- National Center for Imaging and Microscopy Research, University of California San Diego, La Jolla, CA, USA
| | - Thomas Deerinck
- National Center for Imaging and Microscopy Research, University of California San Diego, La Jolla, CA, USA
| | - Danielle Dean
- Vanderbilt University, Department of Molecular Physiology and Biophysics, Nashville, La Jolla, TN, USA
| | - Jean Philippe Cartailler
- Vanderbilt University, Department of Molecular Physiology and Biophysics, Nashville, La Jolla, TN, USA
| | - Patrick E MacDonald
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Martin Hetzer
- Institute of Science and Technology Austria (ISTA), Vienna, Austria
| | - Mark Ellisman
- National Center for Imaging and Microscopy Research, University of California San Diego, La Jolla, CA, USA
| | - Rafael Arrojo E Drigo
- Vanderbilt University, Department of Molecular Physiology and Biophysics, Nashville, La Jolla, TN, USA.
| |
Collapse
|
6
|
Mathisen AF, Legøy TA, Larsen U, Unger L, Abadpour S, Paulo JA, Scholz H, Ghila L, Chera S. The age-dependent regulation of pancreatic islet landscape is fueled by a HNF1a-immune signaling loop. Mech Ageing Dev 2024; 220:111951. [PMID: 38825059 DOI: 10.1016/j.mad.2024.111951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/30/2024] [Accepted: 05/21/2024] [Indexed: 06/04/2024]
Abstract
Animal longevity is a function of global vital organ functionality and, consequently, a complex polygenic trait. Yet, monogenic regulators controlling overall or organ-specific ageing exist, owing their conservation to their function in growth and development. Here, by using pathway analysis combined with wet-biology methods on several dynamic timelines, we identified Hnf1a as a novel master regulator of the maturation and ageing in the adult pancreatic islet during the first year of life. Conditional transgenic mice bearing suboptimal levels of this transcription factor in the pancreatic islets displayed age-dependent changes, with a profile echoing precocious maturation. Additionally, the comparative pathway analysis revealed a link between Hnf1a age-dependent regulation and immune signaling, which was confirmed in the ageing timeline of an overly immunodeficient mouse model. Last, the global proteome analysis of human islets spanning three decades of life largely backed the age-specific regulation observed in mice. Collectively, our results suggest a novel role of Hnf1a as a monogenic regulator of the maturation and ageing process in the pancreatic islet via a direct or indirect regulatory loop with immune signaling.
Collapse
Affiliation(s)
- Andreas Frøslev Mathisen
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Thomas Aga Legøy
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ulrik Larsen
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Lucas Unger
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Shadab Abadpour
- Hybrid Technology Hub-Centre of Excellence, Faculty of Medicine, University of Oslo, Norway; Institute for Surgical Research, Department of Transplant Medicine, Oslo University Hospital, Oslo, Norway
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Hanne Scholz
- Hybrid Technology Hub-Centre of Excellence, Faculty of Medicine, University of Oslo, Norway; Institute for Surgical Research, Department of Transplant Medicine, Oslo University Hospital, Oslo, Norway
| | - Luiza Ghila
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Simona Chera
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway.
| |
Collapse
|
7
|
Sande-Melon M, Bergemann D, Fernández-Lajarín M, González-Rosa JM, Cox AG. Development of a hepatic cryoinjury model to study liver regeneration. Development 2024; 151:dev203124. [PMID: 38975841 PMCID: PMC11318111 DOI: 10.1242/dev.203124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/20/2024] [Indexed: 07/09/2024]
Abstract
The liver is a remarkable organ that can regenerate in response to injury. Depending on the extent of injury, the liver can undergo compensatory hyperplasia or fibrosis. Despite decades of research, the molecular mechanisms underlying these processes are poorly understood. Here, we developed a new model to study liver regeneration based on cryoinjury. To visualise liver regeneration at cellular resolution, we adapted the CUBIC tissue-clearing approach. Hepatic cryoinjury induced a localised necrotic and apoptotic lesion characterised by inflammation and infiltration of innate immune cells. After this initial phase, we observed fibrosis, which resolved as regeneration re-established homeostasis in 30 days. Importantly, this approach enables the comparison of healthy and injured parenchyma within an individual animal, providing unique advantages to previous models. In summary, the hepatic cryoinjury model provides a fast and reproducible method for studying the cellular and molecular pathways underpinning fibrosis and liver regeneration.
Collapse
Affiliation(s)
- Marcos Sande-Melon
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - David Bergemann
- Cardiovascular Research Centre, Massachusetts General Hospital Research Institute, Charlestown Navy Yard Campus, 149, 13th Street, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Miriam Fernández-Lajarín
- Cardiovascular Research Centre, Massachusetts General Hospital Research Institute, Charlestown Navy Yard Campus, 149, 13th Street, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
- Biology Department, Morrissey College of Arts and Sciences, Boston College, Chestnut Hill, MA 02467, USA
| | - Juan Manuel González-Rosa
- Cardiovascular Research Centre, Massachusetts General Hospital Research Institute, Charlestown Navy Yard Campus, 149, 13th Street, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
- Biology Department, Morrissey College of Arts and Sciences, Boston College, Chestnut Hill, MA 02467, USA
| | - Andrew G. Cox
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria 3000, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, Victoria 3000, Australia
| |
Collapse
|
8
|
Toledo MP, Xie G, Wang YJ. Comprehensive Characterization of Islet Remodeling in Development and in Diabetes Using Mass Cytometry. Endocrinology 2024; 165:bqae094. [PMID: 39058908 DOI: 10.1210/endocr/bqae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/11/2024] [Accepted: 07/25/2024] [Indexed: 07/28/2024]
Abstract
The pancreatic islet is the functional and structural unit of the pancreatic endocrine portion. Islet remodeling occurs in both normal development and pathogenesis of type 1 (T1D) and type 2 diabetes (T2D). However, accurately quantifying changes in islet cellular makeup and hormone expressions poses significant challenges due to large intra- and inter-donor heterogeneity and the limited scalability of traditional methods such as immunostaining. The cytometry by time-of-flight (CyTOF) technology enables simultaneous quantification of more than 30 protein markers at single-cell resolution in a high-throughput fashion. Moreover, with distinct DNA and viability markers, single live cells can be explicitly selected in CyTOF. Here, leveraging the CyTOF data generated by the Human Pancreas Analysis Program, we characterized more than 12 million islet cells from 71 donors. Our data revealed continued age-related changes in islet endocrine cell compositions, but the maturity of endocrine cells is reached by 3 years of age. We also observed significant changes in beta cell numbers and key protein expressions, along with a significant increase in bihormonal cells in T1D donors. In contrast, T2D donors exhibited minimal islet remodeling events. Our data shine a light on the islet dynamics during development and diabetes pathogenesis and suggest divergent pathogenesis processes of T1D and T2D. Our comprehensive approach not only elucidates islet plasticity but also establishes a foundation for integrated CyTOF analysis in islet biology and beyond.
Collapse
Affiliation(s)
- Maria Pilar Toledo
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Gengqiang Xie
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Yue J Wang
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
9
|
Chernysheva МB, Ruchko ЕS, Karimova МV, Vorotelyak ЕA, Vasiliev АV. Development, regeneration, and physiological expansion of functional β-cells: Cellular sources and regulators. Front Cell Dev Biol 2024; 12:1424278. [PMID: 39045459 PMCID: PMC11263198 DOI: 10.3389/fcell.2024.1424278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/18/2024] [Indexed: 07/25/2024] Open
Abstract
Pancreatic regeneration is a complex process observed in both normal and pathological conditions. The aim of this review is to provide a comprehensive understanding of the emergence of a functionally active population of insulin-secreting β-cells in the adult pancreas. The renewal of β-cells is governed by a multifaceted interaction between cellular sources of genetic and epigenetic factors. Understanding the development and heterogeneity of β-cell populations is crucial for functional β-cell regeneration. The functional mass of pancreatic β-cells increases in situations such as pregnancy and obesity. However, the specific markers of mature β-cell populations and postnatal pancreatic progenitors capable of increasing self-reproduction in these conditions remain to be elucidated. The capacity to regenerate the β-cell population through various pathways, including the proliferation of pre-existing β-cells, β-cell neogenesis, differentiation of β-cells from a population of progenitor cells, and transdifferentiation of non-β-cells into β-cells, reveals crucial molecular mechanisms for identifying cellular sources and inducers of functional cell renewal. This provides an opportunity to identify specific cellular sources and mechanisms of regeneration, which could have clinical applications in treating various pathologies, including in vitro cell-based technologies, and deepen our understanding of regeneration in different physiological conditions.
Collapse
Affiliation(s)
- М. B. Chernysheva
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Moscow, Russia
| | - Е. S. Ruchko
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Moscow, Russia
| | - М. V. Karimova
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Moscow, Russia
- Department of Biology and Biotechnologies Charles Darwin, The Sapienza University of Rome, Rome, Italy
| | - Е. A. Vorotelyak
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Moscow, Russia
| | - А. V. Vasiliev
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Moscow, Russia
| |
Collapse
|
10
|
Rampazzo Morelli N, Pipella J, Thompson PJ. Establishing evidence for immune surveillance of β-cell senescence. Trends Endocrinol Metab 2024; 35:576-585. [PMID: 38307810 DOI: 10.1016/j.tem.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 02/04/2024]
Abstract
Cellular senescence is a programmed state of cell cycle arrest that involves a complex immunogenic secretome, eliciting immune surveillance and senescent cell clearance. Recent work has shown that a subpopulation of pancreatic β-cells becomes senescent in the context of diabetes; however, it is not known whether these cells are normally subject to immune surveillance. In this opinion article, we advance the hypothesis that immune surveillance of β-cells undergoing a senescence stress response normally limits their accumulation during aging and that the breakdown of these mechanisms is a driver of senescent β-cell accumulation in diabetes. Elucidation and therapeutic activation of immune surveillance mechanisms in the pancreas holds promise for the improvement of approaches to target stressed senescent β-cells in the treatment of diabetes.
Collapse
Affiliation(s)
- Nayara Rampazzo Morelli
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada; Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jasmine Pipella
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada; Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Peter J Thompson
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada; Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
11
|
Sande-Melon M, Bergemann D, Fernández-Lajarín M, González-Rosa JM, Cox AG. Development of a hepatic cryoinjury model to study liver regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.24.550437. [PMID: 38948752 PMCID: PMC11212901 DOI: 10.1101/2023.07.24.550437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The liver is a remarkable organ that can regenerate in response to injury. Depending on the extent of injury, the liver can undergo compensatory hyperplasia or fibrosis. Despite decades of research, the molecular mechanisms underlying these processes are poorly understood. Here, we developed a new model to study liver regeneration based on cryoinjury. To visualise liver regeneration at cellular resolution, we adapted the CUBIC tissue-clearing approach. Hepatic cryoinjury induced a localised necrotic and apoptotic lesion characterised by inflammation and infiltration of innate immune cells. Following this initial phase, we observed fibrosis, which resolved as regeneration re-established homeostasis in 30 days. Importantly, this approach enables the comparison of healthy and injured parenchyma with an individual animal, providing unique advantages to previous models. In summary, the hepatic cryoinjury model provides a fast and reproducible method for studying the cellular and molecular pathways underpinning fibrosis and liver regeneration.
Collapse
Affiliation(s)
- Marcos Sande-Melon
- Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, 3000, Australia
| | - David Bergemann
- Cardiovascular Research Centre, Massachusetts General Hospital Research Institute, Charlestown Navy Yard Campus, 149, 13 Street, 02129 MA, USA
- Harvard Medical School
| | - Miriam Fernández-Lajarín
- Cardiovascular Research Centre, Massachusetts General Hospital Research Institute, Charlestown Navy Yard Campus, 149, 13 Street, 02129 MA, USA
- Harvard Medical School
- Biology Department, Morrissey College of Arts and Sciences, Boston College, Chestnut Hill, MA 02467
| | - Juan Manuel González-Rosa
- Cardiovascular Research Centre, Massachusetts General Hospital Research Institute, Charlestown Navy Yard Campus, 149, 13 Street, 02129 MA, USA
- Harvard Medical School
- Biology Department, Morrissey College of Arts and Sciences, Boston College, Chestnut Hill, MA 02467
| | - Andrew G. Cox
- Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, 3000, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, Victoria, 3000, Australia
| |
Collapse
|
12
|
Li R, Yang T, Zhang M, Ren K, Li J, Sato I, Yi SQ. A new histopathological phenomenon: Pancreatic islet cell loss in the elderly population. Dig Liver Dis 2024; 56:1039-1045. [PMID: 38065700 DOI: 10.1016/j.dld.2023.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 05/28/2024]
Abstract
BACKGROUND We observed the phenomenon of pancreatic islet cell loss (ICL) in our previous histopathological study. Multiple studies have reported that a decrease in β-cells is correlated with diabetes or chronic pancreatitis. Few studies have reported ICL in a healthy population. METHODS Thirty-three pancreatic tissue samples were obtained from cadavers (age: 65-104 years) who had never been diagnosed with any pancreatic diseases before death. The pancreatic body sections were used for an immunohistochemical study of pancreatic islet cells, and area calculations were performed using ImageJ to determine the degree of ICL and islet cell proportions. RESULTS The proportion of β-cells showed a downward trend as the degree of ICL increased (r=-0.414, P = 0.011), and the proportion of women with severe ICL was significantly higher than that of men with severe ICL (P = 0.016). The probability of severe ICL decreased with age in the population over 70 years of age (P = 0.069, linear correlation). Severe ICL may be associated with higher pancreatic intraepithelial neoplasia lesions (P = 0.059). CONCLUSION The phenomenon of ICL in the elderly population was mainly due to pancreatic β-cell reduction. It may be one of the direct causes of age-related diabetes.
Collapse
Affiliation(s)
- Rujia Li
- Department of Frontier Health Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 116-8551 Tokyo, Japan
| | - Ting Yang
- Department of Frontier Health Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 116-8551 Tokyo, Japan
| | - Mingshou Zhang
- Department of Frontier Health Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 116-8551 Tokyo, Japan
| | - Ke Ren
- Faculty of Physical Education, Qu Jing Normal University, Yun Nan, China
| | - Jun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Iwao Sato
- Department of Anatomy, Tokyo Medical University, Tokyo, Japan
| | - Shuang-Qin Yi
- Department of Frontier Health Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 116-8551 Tokyo, Japan.
| |
Collapse
|
13
|
Tkacz M, Zgutka K, Tomasiak P, Tarnowski M. Responses of Endothelial Progenitor Cells to Chronic and Acute Physical Activity in Healthy Individuals. Int J Mol Sci 2024; 25:6085. [PMID: 38892272 PMCID: PMC11173310 DOI: 10.3390/ijms25116085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Endothelial progenitor cells (EPCs) are circulating cells of various origins that possess the capacity for renewing and regenerating the endothelial lining of blood vessels. During physical activity, in response to factors such as hypoxia, changes in osmotic pressure, and mechanical forces, endothelial cells undergo intense physiological stress that results in endothelial damage. Circulating EPCs participate in blood vessel repair and vascular healing mainly through paracrine signalling. Furthermore, physical activity may play an important role in mobilising this important cell population. In this narrative review, we summarise the current knowledge on the biology of EPCs, including their characteristics, assessment, and mobilisation in response to both chronic and acute physical activity in healthy individuals.
Collapse
Affiliation(s)
- Marta Tkacz
- Department of Physiology in Health Sciences, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Zolnierska 48, 70-210 Szczecin, Poland
| | - Katarzyna Zgutka
- Department of Physiology in Health Sciences, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Zolnierska 48, 70-210 Szczecin, Poland
| | - Patrycja Tomasiak
- Institute of Physical Culture Sciences, University of Szczecin, 70-453 Szczecin, Poland
| | - Maciej Tarnowski
- Department of Physiology in Health Sciences, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Zolnierska 48, 70-210 Szczecin, Poland
- Institute of Physical Culture Sciences, University of Szczecin, 70-453 Szczecin, Poland
| |
Collapse
|
14
|
Dobner S, Tóth F, de Rooij LPMH. A high-resolution view of the heterogeneous aging endothelium. Angiogenesis 2024; 27:129-145. [PMID: 38324119 PMCID: PMC11021252 DOI: 10.1007/s10456-023-09904-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/28/2023] [Indexed: 02/08/2024]
Abstract
Vascular endothelial cell (EC) aging has a strong impact on tissue perfusion and overall cardiovascular health. While studies confined to the investigation of aging-associated vascular readouts in one or a few tissues have already drastically expanded our understanding of EC aging, single-cell omics and other high-resolution profiling technologies have started to illuminate the intricate molecular changes underlying endothelial aging across diverse tissues and vascular beds at scale. In this review, we provide an overview of recent insights into the heterogeneous adaptations of the aging vascular endothelium. We address critical questions regarding tissue-specific and universal responses of the endothelium to the aging process, EC turnover dynamics throughout lifespan, and the differential susceptibility of ECs to acquiring aging-associated traits. In doing so, we underscore the transformative potential of single-cell approaches in advancing our comprehension of endothelial aging, essential to foster the development of future innovative therapeutic strategies for aging-associated vascular conditions.
Collapse
Affiliation(s)
- Sarah Dobner
- The CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Fanni Tóth
- The CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Laura P M H de Rooij
- The CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
15
|
E Drigo RA, Habashy A, Acree C, Kim KY, Deerinck T, Patterson E, Lantier L, McGuinness O, Ellisman M. Mesoscale Metabolic Channeling Revealed by Multimodal Microscopy. RESEARCH SQUARE 2024:rs.3.rs-4096781. [PMID: 38699373 PMCID: PMC11065083 DOI: 10.21203/rs.3.rs-4096781/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Metabolic homeostasis within cells and tissues requires engagement of catabolic and anabolic pathways consuming nutrients needed to generate energy to drive these and other subcellular processes. However, the current understanding of cell homeostasis and metabolism, including how cells utilize nutrients, comes largely from tissue and cell models analyzed after fractionation. These bulk strategies do not reveal the spatial characteristics of cell metabolism at the single cell level, and how these aspects relate to the location of cells and organelles within the complexity of the tissue they reside within. Here we pioneer the use of high-resolution electron and stable isotope microscopy (MIMS-EM) to quantitatively map the fate of nutrient-derived 13C atoms at subcellular scale. When combined with machine-learning image segmentation, our approach allows us to establish the cellular and organellar spatial pattern of glucose 13C flux in hepatocytes in situ. We applied network analysis algorithms to chart the landscape of organelle-organelle contact networks and identified subpopulations of mitochondria and lipid droplets that have distinct organelle interactions and 13C enrichment levels. In addition, we revealed a new relationship between the initiation of glycogenesis and proximity of lipid droplets. Our results establish MIMS-EM as a new tool for tracking and quantifying nutrient metabolism at the subcellular scale, and to identify the spatial channeling of nutrient-derived atoms in the context of organelle-organelle interactions in situ.
Collapse
|
16
|
de Magalhães JP. Distinguishing between driver and passenger mechanisms of aging. Nat Genet 2024; 56:204-211. [PMID: 38242993 DOI: 10.1038/s41588-023-01627-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/28/2023] [Indexed: 01/21/2024]
Abstract
Understanding why we age is a long-standing question, and many mechanistic theories of aging have been proposed. Owing to limitations in studying the aging process, including a lack of adequate quantitative measurements, its mechanistic basis remains a subject of debate. Here, I explore theories of aging from the perspective of causal relationships. Many aging-related changes have been observed and touted as drivers of aging, including molecular changes in the genome, telomeres, mitochondria, epigenome and proteins and cellular changes affecting stem cells, the immune system and senescent cell buildup. Determining which changes are drivers and not passengers of aging remains a challenge, however, and I discuss how animal models and human genetic studies have been used empirically to infer causality. Overall, our understanding of the drivers of human aging is still inadequate; yet with a global aging population, elucidating the causes of aging has the potential to revolutionize biomedical research.
Collapse
Affiliation(s)
- João Pedro de Magalhães
- Genomics of Ageing and Rejuvenation Lab, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.
| |
Collapse
|
17
|
Brewer KK, Brewer KM, Terry TT, Caspary T, Vaisse C, Berbari NF. Postnatal Dynamic Ciliary ARL13B and ADCY3 Localization in the Mouse Brain. Cells 2024; 13:259. [PMID: 38334651 PMCID: PMC10854790 DOI: 10.3390/cells13030259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/10/2024] Open
Abstract
Primary cilia are hair-like structures found on nearly all mammalian cell types, including cells in the developing and adult brain. A diverse set of receptors and signaling proteins localize within cilia to regulate many physiological and developmental pathways, including the Hedgehog (Hh) pathway. Defects in cilia structure, protein localization, and function lead to genetic disorders called ciliopathies, which present with various clinical features that include several neurodevelopmental phenotypes and hyperphagia-associated obesity. Despite their dysfunction being implicated in several disease states, understanding their roles in central nervous system (CNS) development and signaling has proven challenging. We hypothesize that dynamic changes to ciliary protein composition contribute to this challenge and may reflect unrecognized diversity of CNS cilia. The proteins ARL13B and ADCY3 are established markers of cilia in the brain. ARL13B is a regulatory GTPase important for regulating cilia structure, protein trafficking, and Hh signaling, and ADCY3 is a ciliary adenylyl cyclase. Here, we examine the ciliary localization of ARL13B and ADCY3 in the perinatal and adult mouse brain. We define changes in the proportion of cilia enriched for ARL13B and ADCY3 depending on brain region and age. Furthermore, we identify distinct lengths of cilia within specific brain regions of male and female mice. ARL13B+ cilia become relatively rare with age in many brain regions, including the hypothalamic feeding centers, while ADCY3 becomes a prominent cilia marker in the mature adult brain. It is important to understand the endogenous localization patterns of these proteins throughout development and under different physiological conditions as these common cilia markers may be more dynamic than initially expected. Understanding regional- and developmental-associated cilia protein composition signatures and physiological condition cilia dynamic changes in the CNS may reveal the molecular mechanisms associated with the features commonly observed in ciliopathy models and ciliopathies, like obesity and diabetes.
Collapse
Affiliation(s)
- Katlyn K. Brewer
- Department of Biology, Indiana University-Indianapolis, 723 W. Michigan St., Indianapolis, IN 46202, USA; (K.K.B.); (K.M.B.)
| | - Kathryn M. Brewer
- Department of Biology, Indiana University-Indianapolis, 723 W. Michigan St., Indianapolis, IN 46202, USA; (K.K.B.); (K.M.B.)
| | - Tiffany T. Terry
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (T.T.T.); (T.C.)
| | - Tamara Caspary
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (T.T.T.); (T.C.)
| | - Christian Vaisse
- Diabetes Center and Department of Medicine, University of California San Francisco, San Francisco, CA 92697, USA;
| | - Nicolas F. Berbari
- Department of Biology, Indiana University-Indianapolis, 723 W. Michigan St., Indianapolis, IN 46202, USA; (K.K.B.); (K.M.B.)
- Stark Neurosciences Research Institute, Indiana University-Indianapolis, Indianapolis, IN 46202, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
18
|
Wang Z, Zhu H, Xiong W. Advances in mass spectrometry-based multi-scale metabolomic methodologies and their applications in biological and clinical investigations. Sci Bull (Beijing) 2023; 68:2268-2284. [PMID: 37666722 DOI: 10.1016/j.scib.2023.08.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/25/2023] [Accepted: 08/22/2023] [Indexed: 09/06/2023]
Abstract
Metabolomics is a nascent field of inquiry that emerged in the late 20th century. It encompasses the comprehensive profiling of metabolites across a spectrum of organisms, ranging from bacteria and cells to tissues. The rapid evolution of analytical methods and data analysis has greatly accelerated progress in this dynamic discipline over recent decades. Sophisticated techniques such as liquid chromatograph mass spectrometry (MS), gas chromatograph MS, capillary electrophoresis MS, and nuclear magnetic resonance serve as the cornerstone of metabolomic analysis. Building upon these methods, a plethora of modifications and combinations have emerged to propel the advancement of metabolomics. Despite this progress, scrutinizing metabolism at the single-cell or single-organelle level remains an arduous task over the decades. Some of the most thrilling advancements, such as single-cell and single-organelle metabolic profiling techniques, offer profound insights into the intricate mechanisms within cells and organelles. This allows for a comprehensive study of metabolic heterogeneity and its pivotal role in multiple biological processes. The progress made in MS imaging has enabled high-resolution in situ metabolic profiling of tissue sections and even individual cells. Spatial reconstruction techniques enable the direct representation of metabolic distribution and alteration in three-dimensional space. The application of novel metabolomic techniques has led to significant breakthroughs in biological and clinical studies, including the discovery of novel metabolic pathways, determination of cell fate in differentiation, anti-aging intervention through modulating metabolism, metabolomics-based clinicopathologic analysis, and surgical decision-making based on on-site intraoperative metabolic analysis. This review presents a comprehensive overview of both conventional and innovative metabolomic techniques, highlighting their applications in groundbreaking biological and clinical studies.
Collapse
Affiliation(s)
- Ziyi Wang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Hongying Zhu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China; Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China; CAS Key Laboratory of Brain Function and Disease, Hefei 230026, China; Anhui Province Key Laboratory of Biomedical Aging Research, Hefei 230026, China.
| | - Wei Xiong
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China; Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China; CAS Key Laboratory of Brain Function and Disease, Hefei 230026, China; Anhui Province Key Laboratory of Biomedical Aging Research, Hefei 230026, China.
| |
Collapse
|
19
|
dos Santos C, Shrestha S, Cottam M, Perkins G, Lev-Ram V, Roy B, Acree C, Kim KY, Deerinck T, Cutler M, Dean D, Cartailler JP, MacDonald PE, Hetzer M, Ellisman M, Drigo RAE. Caloric restriction promotes beta cell longevity and delays aging and senescence by enhancing cell identity and homeostasis mechanisms. RESEARCH SQUARE 2023:rs.3.rs-3311459. [PMID: 37790446 PMCID: PMC10543285 DOI: 10.21203/rs.3.rs-3311459/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Caloric restriction (CR) extends organismal lifespan and health span by improving glucose homeostasis mechanisms. How CR affects organellar structure and function of pancreatic beta cells over the lifetime of the animal remains unknown. Here, we used single nucleus transcriptomics to show that CR increases the expression of genes for beta cell identity, protein processing, and organelle homeostasis. Gene regulatory network analysis link this transcriptional phenotype to transcription factors involved in beta cell identity (Mafa) and homeostasis (Atf6). Imaging metabolomics further demonstrates that CR beta cells are more energetically competent. In fact, high-resolution light and electron microscopy indicates that CR reduces beta cell mitophagy and increases mitochondria mass, increasing mitochondrial ATP generation. Finally, we show that long-term CR delays the onset of beta cell aging and senescence to promote longevity by reducing beta cell turnover. Therefore, CR could be a feasible approach to preserve compromised beta cells during aging and diabetes.
Collapse
Affiliation(s)
- Cristiane dos Santos
- Vanderbilt University, Department of Molecular Physiology and Biophysics, Nashville, TN USA
| | - Shristi Shrestha
- Vanderbilt University, Department of Molecular Physiology and Biophysics, Nashville, TN USA
| | - Matthew Cottam
- Vanderbilt University, Department of Molecular Physiology and Biophysics, Nashville, TN USA
| | - Guy Perkins
- National Center for Imaging and Microscopy Research, University of California San Diego, La Jolla, CA USA
| | - Varda Lev-Ram
- University of California San Diego, Department of Pharmacology, School of Medicine. La Jolla, CA USA
| | - Birbickram Roy
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Canada
| | - Christopher Acree
- Vanderbilt University, Department of Molecular Physiology and Biophysics, Nashville, TN USA
| | - Keun-Young Kim
- National Center for Imaging and Microscopy Research, University of California San Diego, La Jolla, CA USA
| | - Thomas Deerinck
- National Center for Imaging and Microscopy Research, University of California San Diego, La Jolla, CA USA
| | - Melanie Cutler
- Vanderbilt University, Department of Molecular Physiology and Biophysics, Nashville, TN USA
| | - Danielle Dean
- Vanderbilt University, Department of Molecular Physiology and Biophysics, Nashville, TN USA
| | | | - Patrick E. MacDonald
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Canada
| | - Martin Hetzer
- Institute of Science and Technology Austria (ISTA), Vienna, Austria
| | - Mark Ellisman
- National Center for Imaging and Microscopy Research, University of California San Diego, La Jolla, CA USA
| | - Rafael Arrojo e Drigo
- Vanderbilt University, Department of Molecular Physiology and Biophysics, Nashville, TN USA
| |
Collapse
|
20
|
Owen BM, Phie J, Huynh J, Needham S, Fraser C. Evaluation of quantitative biomarkers of aging in human PBMCs. FRONTIERS IN AGING 2023; 4:1260502. [PMID: 37780865 PMCID: PMC10540680 DOI: 10.3389/fragi.2023.1260502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023]
Abstract
Functional decline with age contributes significantly to the burden of disease in developed countries. There is growing interest in the development of therapeutic interventions which slow or even reverse aging. Time and cost constraints prohibit the testing of a large number of interventions for health and lifespan extension in model organisms. Cell-based models of aging could enable high throughput testing of potential interventions. Despite extensive reports in the literature of cell properties that correlate with donor age, few are robustly observed across different laboratories. This casts doubt on the extent that aging signatures are captured in cultured cells. We tested molecular changes previously reported to correlate with donor age in peripheral blood mononuclear cells (PBMCs) and evaluated their suitability for inclusion in a panel of functional aging measures. The tested measures spanned several pathways implicated in aging including epigenetic changes, apoptosis, proteostasis, and intracellular communication. Surprisingly, only two markers correlated with donor age. DNA methylation age accurately predicted donor age confirming this is a robust aging biomarker. Additionally, the apoptotic marker CD95 correlated with donor age but only within subsets of PBMCs. To demonstrate cellular rejuvenation in response to a treatment will require integration of multiple read-outs of cell function. However, building a panel of measures to detect aging in cells is challenging and further research is needed to identify robust predictors of age in humans.
Collapse
|
21
|
Abstract
Orchestration of protein production and degradation and the regulation of protein lifetimes play a central role in many basic biological processes. Nearly all mammalian proteins are replenished by protein turnover in waves of synthesis and degradation. Protein lifetimes in vivo are typically measured in days, but a small number of extremely long-lived proteins (ELLPs) persist for months or even years. ELLPs are rare in all tissues but are enriched in tissues containing terminally differentiated post-mitotic cells and extracellular matrix. Consistently, emerging evidence suggests that the cochlea may be particularly enriched in ELLPs. Damage to ELLPs in specialized cell types, such as crystallin in the lens cells of the eye, causes organ failure such as cataracts. Similarly, damage to cochlear ELLPs is likely to occur with many insults, including acoustic overstimulation, drugs, anoxia, and antibiotics, and may play an underappreciated role in hearing loss. Furthermore, hampered protein degradation may contribute to acquired hearing loss. In this review, I highlight our knowledge of the lifetimes of cochlear proteins with an emphasis on ELLPs and the potential contribution that impaired cochlear protein degradation has on acquired hearing loss and the emerging relevance of ELLPs.
Collapse
Affiliation(s)
- Jeffrey N Savas
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
22
|
Dos Santos C, Shrestha S, Cottam M, Perkins G, Lev-Ram V, Roy B, Acree C, Kim KY, Deerinck T, Cutler M, Dean D, Cartailler JP, MacDonald PE, Hetzer M, Ellisman M, E Drigo RA. Caloric restriction promotes beta cell longevity and delays aging and senescence by enhancing cell identity and homeostasis mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.23.554369. [PMID: 37662336 PMCID: PMC10473730 DOI: 10.1101/2023.08.23.554369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Caloric restriction (CR) extends organismal lifespan and health span by improving glucose homeostasis mechanisms. How CR affects organellar structure and function of pancreatic beta cells over the lifetime of the animal remains unknown. Here, we used single nucleus transcriptomics to show that CR increases the expression of genes for beta cell identity, protein processing, and organelle homeostasis. Gene regulatory network analysis link this transcriptional phenotype to transcription factors involved in beta cell identity (Mafa) and homeostasis (Atf6). Imaging metabolomics further demonstrates that CR beta cells are more energetically competent. In fact, high-resolution light and electron microscopy indicates that CR reduces beta cell mitophagy and increases mitochondria mass, increasing mitochondrial ATP generation. Finally, we show that long-term CR delays the onset of beta cell aging and senescence to promote longevity by reducing beta cell turnover. Therefore, CR could be a feasible approach to preserve compromised beta cells during aging and diabetes.
Collapse
Affiliation(s)
- Cristiane Dos Santos
- Vanderbilt University, Department of Molecular Physiology and Biophysics, Nashville, TN USA
| | - Shristi Shrestha
- Vanderbilt University, Department of Molecular Physiology and Biophysics, Nashville, TN USA
| | - Matthew Cottam
- Vanderbilt University, Department of Molecular Physiology and Biophysics, Nashville, TN USA
| | - Guy Perkins
- National Center for Imaging and Microscopy Research, University of California San Diego, La Jolla, CA USA
| | - Varda Lev-Ram
- University of California San Diego, Department of Pharmacology, School of Medicine. La Jolla, CA USA
| | - Birbickram Roy
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Canada
| | - Christopher Acree
- Vanderbilt University, Department of Molecular Physiology and Biophysics, Nashville, TN USA
| | - Keun-Young Kim
- National Center for Imaging and Microscopy Research, University of California San Diego, La Jolla, CA USA
| | - Thomas Deerinck
- National Center for Imaging and Microscopy Research, University of California San Diego, La Jolla, CA USA
| | - Melanie Cutler
- Vanderbilt University, Department of Molecular Physiology and Biophysics, Nashville, TN USA
| | - Danielle Dean
- Vanderbilt University, Department of Molecular Physiology and Biophysics, Nashville, TN USA
| | | | - Patrick E MacDonald
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Canada
| | - Martin Hetzer
- Institute of Science and Technology Austria (ISTA), Vienna, Austria
| | - Mark Ellisman
- National Center for Imaging and Microscopy Research, University of California San Diego, La Jolla, CA USA
| | - Rafael Arrojo E Drigo
- Vanderbilt University, Department of Molecular Physiology and Biophysics, Nashville, TN USA
| |
Collapse
|
23
|
Pettway YD, Saunders DC, Brissova M. The human α cell in health and disease. J Endocrinol 2023; 258:e220298. [PMID: 37114672 PMCID: PMC10428003 DOI: 10.1530/joe-22-0298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/27/2023] [Indexed: 04/29/2023]
Abstract
In commemoration of 100 years since the discovery of glucagon, we review current knowledge about the human α cell. Alpha cells make up 30-40% of human islet endocrine cells and play a major role in regulating whole-body glucose homeostasis, largely through the direct actions of their main secretory product - glucagon - on peripheral organs. Additionally, glucagon and other secretory products of α cells, namely acetylcholine, glutamate, and glucagon-like peptide-1, have been shown to play an indirect role in the modulation of glucose homeostasis through autocrine and paracrine interactions within the islet. Studies of glucagon's role as a counterregulatory hormone have revealed additional important functions of the α cell, including the regulation of multiple aspects of energy metabolism outside that of glucose. At the molecular level, human α cells are defined by the expression of conserved islet-enriched transcription factors and various enriched signature genes, many of which have currently unknown cellular functions. Despite these common threads, notable heterogeneity exists amongst human α cell gene expression and function. Even greater differences are noted at the inter-species level, underscoring the importance of further study of α cell physiology in the human context. Finally, studies on α cell morphology and function in type 1 and type 2 diabetes, as well as other forms of metabolic stress, reveal a key contribution of α cell dysfunction to dysregulated glucose homeostasis in disease pathogenesis, making targeting the α cell an important focus for improving treatment.
Collapse
Affiliation(s)
- Yasminye D. Pettway
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, 37232, USA
| | - Diane C. Saunders
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, 37232, USA
| | - Marcela Brissova
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, 37232, USA
| |
Collapse
|
24
|
Weir GC, Bonner-Weir S. Induction of remission in diabetes by lowering blood glucose. Front Endocrinol (Lausanne) 2023; 14:1213954. [PMID: 37409234 PMCID: PMC10318898 DOI: 10.3389/fendo.2023.1213954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/29/2023] [Indexed: 07/07/2023] Open
Abstract
As diabetes continues to grow as major health problem, there has been great progress in understanding the important role of pancreatic beta-cells in its pathogenesis. Diabetes develops when the normal interplay between insulin secretion and the insulin sensitivity of target tissues is disrupted. With type 2 diabetes (T2D), glucose levels start to rise when beta-cells are unable to meet the demands of insulin resistance. For type 1 diabetes (T1D) glucose levels rise as beta-cells are killed off by autoimmunity. In both cases the increased glucose levels have a toxic effect on beta-cells. This process, called glucose toxicity, has a major inhibitory effect on insulin secretion. This beta-cell dysfunction can be reversed by therapies that reduce glucose levels. Thus, it is becoming increasingly apparent that an opportunity exists to produce a complete or partial remission for T2D, both of which will provide health benefit.
Collapse
Affiliation(s)
- Gordon C. Weir
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, United States
| | | |
Collapse
|
25
|
Dror E, Fagnocchi L, Wegert V, Apostle S, Grimaldi B, Gruber T, Panzeri I, Heyne S, Höffler KD, Kreiner V, Ching R, Tsai-Hsiu Lu T, Semwal A, Johnson B, Senapati P, Lempradl A, Schones D, Imhof A, Shen H, Pospisilik JA. Epigenetic dosage identifies two major and functionally distinct β cell subtypes. Cell Metab 2023; 35:821-836.e7. [PMID: 36948185 PMCID: PMC10160009 DOI: 10.1016/j.cmet.2023.03.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 01/17/2023] [Accepted: 03/08/2023] [Indexed: 03/24/2023]
Abstract
The mechanisms that specify and stabilize cell subtypes remain poorly understood. Here, we identify two major subtypes of pancreatic β cells based on histone mark heterogeneity (βHI and βLO). βHI cells exhibit ∼4-fold higher levels of H3K27me3, distinct chromatin organization and compaction, and a specific transcriptional pattern. βHI and βLO cells also differ in size, morphology, cytosolic and nuclear ultrastructure, epigenomes, cell surface marker expression, and function, and can be FACS separated into CD24+ and CD24- fractions. Functionally, βHI cells have increased mitochondrial mass, activity, and insulin secretion in vivo and ex vivo. Partial loss of function indicates that H3K27me3 dosage regulates βHI/βLO ratio in vivo, suggesting that control of β cell subtype identity and ratio is at least partially uncoupled. Both subtypes are conserved in humans, with βHI cells enriched in humans with type 2 diabetes. Thus, epigenetic dosage is a novel regulator of cell subtype specification and identifies two functionally distinct β cell subtypes.
Collapse
Affiliation(s)
- Erez Dror
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany.
| | - Luca Fagnocchi
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Vanessa Wegert
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany; Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Stefanos Apostle
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Brooke Grimaldi
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Tim Gruber
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Ilaria Panzeri
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany; Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Steffen Heyne
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Kira Daniela Höffler
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Victor Kreiner
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Reagan Ching
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Tess Tsai-Hsiu Lu
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Ayush Semwal
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Ben Johnson
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Parijat Senapati
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Adelheid Lempradl
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany; Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Dustin Schones
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Axel Imhof
- Biomedical Center Munich, Ludwig Maximilian University of Munich, 82152 Planegg-Martinsried, Germany
| | - Hui Shen
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - John Andrew Pospisilik
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany; Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
26
|
Hasper J, Welle K, Hryhorenko J, Ghaemmaghami S, Buchwalter A. Turnover and replication analysis by isotope labeling (TRAIL) reveals the influence of tissue context on protein and organelle lifetimes. Mol Syst Biol 2023; 19:e11393. [PMID: 36929723 PMCID: PMC10090950 DOI: 10.15252/msb.202211393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 03/18/2023] Open
Abstract
The lifespans of proteins range from minutes to years within mammalian tissues. Protein lifespan is relevant to organismal aging, as long-lived proteins accrue damage over time. It is unclear how protein lifetime is shaped by tissue context, where both cell turnover and proteolytic degradation contribute to protein turnover. We develop turnover and replication analysis by 15 N isotope labeling (TRAIL) to quantify protein and cell lifetimes with high precision and demonstrate that cell turnover, sequence-encoded features, and environmental factors modulate protein lifespan across tissues. Cell and protein turnover flux are comparable in proliferative tissues, while protein turnover outpaces cell turnover in slowly proliferative tissues. Physicochemical features such as hydrophobicity, charge, and disorder influence protein turnover in slowly proliferative tissues, but protein turnover is much less sequence-selective in highly proliferative tissues. Protein lifetimes vary nonrandomly across tissues after correcting for cell turnover. Multiprotein complexes such as the ribosome have consistent lifetimes across tissues, while mitochondria, peroxisomes, and lipid droplets have variable lifetimes. TRAIL can be used to explore how environment, aging, and disease affect tissue homeostasis.
Collapse
Affiliation(s)
- John Hasper
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Kevin Welle
- University of Rochester Mass Spectrometry Resource Laboratory, Rochester, NY, USA
| | - Jennifer Hryhorenko
- University of Rochester Mass Spectrometry Resource Laboratory, Rochester, NY, USA
| | - Sina Ghaemmaghami
- University of Rochester Mass Spectrometry Resource Laboratory, Rochester, NY, USA.,Department of Biology, University of Rochester, Rochester, NY, USA
| | - Abigail Buchwalter
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA.,Department of Physiology, University of California, San Francisco, San Francisco, CA, USA.,Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
27
|
Ung CY, Correia C, Billadeau DD, Zhu S, Li H. Manifold epigenetics: A conceptual model that guides engineering strategies to improve whole-body regenerative health. Front Cell Dev Biol 2023; 11:1122422. [PMID: 36866271 PMCID: PMC9971008 DOI: 10.3389/fcell.2023.1122422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
Despite the promising advances in regenerative medicine, there is a critical need for improved therapies. For example, delaying aging and improving healthspan is an imminent societal challenge. Our ability to identify biological cues as well as communications between cells and organs are keys to enhance regenerative health and improve patient care. Epigenetics represents one of the major biological mechanisms involving in tissue regeneration, and therefore can be viewed as a systemic (body-wide) control. However, how epigenetic regulations concertedly lead to the development of biological memories at the whole-body level remains unclear. Here, we review the evolving definitions of epigenetics and identify missing links. We then propose our Manifold Epigenetic Model (MEMo) as a conceptual framework to explain how epigenetic memory arises and discuss what strategies can be applied to manipulate the body-wide memory. In summary we provide a conceptual roadmap for the development of new engineering approaches to improve regenerative health.
Collapse
Affiliation(s)
- Choong Yong Ung
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Cristina Correia
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | | | - Shizhen Zhu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
28
|
Fornasiero EF, Savas JN. Determining and interpreting protein lifetimes in mammalian tissues. Trends Biochem Sci 2023; 48:106-118. [PMID: 36163144 PMCID: PMC9868050 DOI: 10.1016/j.tibs.2022.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 01/26/2023]
Abstract
The orchestration of protein production and degradation, and the regulation of protein lifetimes, play a central role in the majority of biological processes. Recent advances in proteomics have enabled the estimation of protein half-lives for thousands of proteins in vivo. What is the utility of these measurements, and how can they be leveraged to interpret the proteome changes occurring during development, aging, and disease? This opinion article summarizes leading technical approaches and highlights their strengths and weaknesses. We also disambiguate frequently used terminology, illustrate recent mechanistic insights, and provide guidance for interpreting and validating protein turnover measurements. Overall, protein lifetimes, coupled to estimates of protein levels, are essential for obtaining a deep understanding of mammalian biology and the basic processes defining life itself.
Collapse
Affiliation(s)
- Eugenio F Fornasiero
- Department of Neuro-Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany.
| | - Jeffrey N Savas
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
29
|
Handyside B, Ismail AM, Zhang L, Yates B, Xie L, Sihn CR, Murphy R, Bouwman T, Kim CK, De Angelis R, Karim OA, McIntosh NL, Doss MX, Shroff S, Pungor E, Bhat VS, Bullens S, Bunting S, Fong S. Vector genome loss and epigenetic modifications mediate decline in transgene expression of AAV5 vectors produced in mammalian and insect cells. Mol Ther 2022; 30:3570-3586. [PMID: 36348622 PMCID: PMC9734079 DOI: 10.1016/j.ymthe.2022.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Recombinant adeno-associated virus (rAAV) vectors are often produced in HEK293 or Spodoptera frugiperda (Sf)-based cell lines. We compared expression profiles of "oversized" (∼5,000 bp) and "standard-sized" (4,600 bp) rAAV5-human α1-antitrypsin (rAAV5-hA1AT) vectors manufactured in HEK293 or Sf cells and investigated molecular mechanisms mediating expression decline. C57BL/6 mice received 6 × 1013 vg/kg of vector, and blood and liver samples were collected through week 57. For all vectors, peak expression (weeks 12-24) declined by 50% to week 57. For Sf- and HEK293-produced oversized vectors, serum hA1AT was initially comparable, but in weeks 12-57, Sf vectors provided significantly higher expression. For HEK293 oversized vectors, liver genomes decreased continuously through week 57 and significantly correlated with A1AT protein. In RNA-sequencing analysis, HEK293 vector-treated mice had significantly higher inflammatory responses in liver at 12 weeks compared with Sf vector- and vehicle-treated mice. Thus, HEK293 vector genome loss led to decreased transgene protein. For Sf-produced vectors, genomes did not decrease from peak expression. Instead, vector genome accessibility significantly decreased from peak to week 57 and correlated with transgene RNA. Vector DNA interactions with active histone marks (H3K27ac/H3K4me3) were significantly reduced from peak to week 57, suggesting that epigenetic regulation impacts transgene expression of Sf-produced vectors.
Collapse
Affiliation(s)
- Britta Handyside
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | | | - Lening Zhang
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Bridget Yates
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Lin Xie
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Choong-Ryoul Sihn
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Ryan Murphy
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Taren Bouwman
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Chan Kyu Kim
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | | | - Omair A. Karim
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | | | | | - Shilpa Shroff
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Erno Pungor
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Vikas S. Bhat
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Sherry Bullens
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Stuart Bunting
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Sylvia Fong
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA,Corresponding author: Sylvia Fong, BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA.
| |
Collapse
|
30
|
Abstract
Age is the key risk factor for diseases and disabilities of the elderly. Efforts to tackle age-related diseases and increase healthspan have suggested targeting the ageing process itself to 'rejuvenate' physiological functioning. However, achieving this aim requires measures of biological age and rates of ageing at the molecular level. Spurred by recent advances in high-throughput omics technologies, a new generation of tools to measure biological ageing now enables the quantitative characterization of ageing at molecular resolution. Epigenomic, transcriptomic, proteomic and metabolomic data can be harnessed with machine learning to build 'ageing clocks' with demonstrated capacity to identify new biomarkers of biological ageing.
Collapse
Affiliation(s)
- Jarod Rutledge
- Department of Genetics, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Paul F. Glenn Center for the Biology of Ageing, Stanford University School of Medicine, Stanford, CA, USA
| | - Hamilton Oh
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Paul F. Glenn Center for the Biology of Ageing, Stanford University School of Medicine, Stanford, CA, USA
- Graduate Program in Stem Cell and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Tony Wyss-Coray
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
- Paul F. Glenn Center for the Biology of Ageing, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
31
|
Goode RA, Hum JM, Kalwat MA. Therapeutic Strategies Targeting Pancreatic Islet β-Cell Proliferation, Regeneration, and Replacement. Endocrinology 2022; 164:6836713. [PMID: 36412119 PMCID: PMC9923807 DOI: 10.1210/endocr/bqac193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
Diabetes results from insufficient insulin production by pancreatic islet β-cells or a loss of β-cells themselves. Restoration of regulated insulin production is a predominant goal of translational diabetes research. Here, we provide a brief overview of recent advances in the fields of β-cell proliferation, regeneration, and replacement. The discovery of therapeutic targets and associated small molecules has been enabled by improved understanding of β-cell development and cell cycle regulation, as well as advanced high-throughput screening methodologies. Important findings in β-cell transdifferentiation, neogenesis, and stem cell differentiation have nucleated multiple promising therapeutic strategies. In particular, clinical trials are underway using in vitro-generated β-like cells from human pluripotent stem cells. Significant challenges remain for each of these strategies, but continued support for efforts in these research areas will be critical for the generation of distinct diabetes therapies.
Collapse
Affiliation(s)
- Roy A Goode
- Division of Biomedical Sciences, College of Osteopathic Medicine, Marian University, Indianapolis, IN, USA
| | - Julia M Hum
- Division of Biomedical Sciences, College of Osteopathic Medicine, Marian University, Indianapolis, IN, USA
| | - Michael A Kalwat
- Correspondence: Michael A. Kalwat, PhD, Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, 1210 Waterway Blvd, Suite 2000, Indianapolis, IN 46202, USA. or
| |
Collapse
|
32
|
Gilgenkrantz H. [The liver remains a young organ even in old age !]. Med Sci (Paris) 2022; 38:864-866. [PMID: 36448888 DOI: 10.1051/medsci/2022137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Affiliation(s)
- Hélène Gilgenkrantz
- Centre de recherche sur l'inflammation, Inserm U1149, Faculté de médecine Bichat, Paris, France
| |
Collapse
|
33
|
Fundamental roles for inter-organelle communication in aging. Biochem Soc Trans 2022; 50:1389-1402. [PMID: 36305642 PMCID: PMC9704535 DOI: 10.1042/bst20220519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/27/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022]
Abstract
Advances in public health have nearly doubled life expectancy over the last century, but this demographic shift has also changed the landscape of human illness. Today, chronic and age-dependent diseases dominate the leading causes of morbidity and mortality worldwide. Targeting the underlying molecular, genetic and cell biological drivers of the aging process itself appears to be an increasingly viable strategy for developing therapeutics against these diseases of aging. Towards this end, one of the most exciting developments in cell biology over the last decade is the explosion of research into organelle contact sites and related mechanisms of inter-organelle communication. Identification of the molecular mediators of inter-organelle tethering and signaling is now allowing the field to investigate the consequences of aberrant organelle interactions, which frequently seem to correlate with age-onset pathophysiology. This review introduces the major cellular roles for inter-organelle interactions, including the regulation of organelle morphology, the transfer of ions, lipids and other metabolites, and the formation of hubs for nutrient and stress signaling. We explore how these interactions are disrupted in aging and present findings that modulation of inter-organelle communication is a promising avenue for promoting longevity. Through this review, we propose that the maintenance of inter-organelle interactions is a pillar of healthy aging. Learning how to target the cellular mechanisms for sensing and controlling inter-organelle communication is a key next hurdle for geroscience.
Collapse
|
34
|
Shrestha S, Erikson G, Lyon J, Spigelman AF, Bautista A, Manning Fox JE, dos Santos C, Shokhirev M, Cartailler JP, Hetzer MW, MacDonald PE, Arrojo e Drigo R. Aging compromises human islet beta cell function and identity by decreasing transcription factor activity and inducing ER stress. SCIENCE ADVANCES 2022; 8:eabo3932. [PMID: 36197983 PMCID: PMC9534504 DOI: 10.1126/sciadv.abo3932] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/17/2022] [Indexed: 05/02/2023]
Abstract
Pancreatic islet beta cells are essential for maintaining glucose homeostasis. To understand the impact of aging on beta cells, we performed meta-analysis of single-cell RNA sequencing datasets, transcription factor (TF) regulon analysis, high-resolution confocal microscopy, and measured insulin secretion from nondiabetic donors spanning most of the human life span. This revealed the range of molecular and functional changes that occur during beta cell aging, including the transcriptional deregulation that associates with cellular immaturity and reorganization of beta cell TF networks, increased gene transcription rates, and reduced glucose-stimulated insulin release. These alterations associate with activation of endoplasmic reticulum (ER) stress and autophagy pathways. We propose that a chronic state of ER stress undermines old beta cell structure function to increase the risk of beta cell failure and type 2 diabetes onset as humans age.
Collapse
Affiliation(s)
- Shristi Shrestha
- Creative Data Solutions, Vanderbilt Center for Stem Cell Biology, Nashville, TN 37232, USA
| | - Galina Erikson
- Integrative Genomics and Bioinformatics Core, Salk Institute of Biological Studies, La Jolla, CA 92037, USA
| | - James Lyon
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta T6G2E1, Canada
| | - Aliya F. Spigelman
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta T6G2E1, Canada
| | - Austin Bautista
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta T6G2E1, Canada
| | - Jocelyn E. Manning Fox
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta T6G2E1, Canada
| | - Cristiane dos Santos
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Maxim Shokhirev
- Integrative Genomics and Bioinformatics Core, Salk Institute of Biological Studies, La Jolla, CA 92037, USA
| | | | - Martin W. Hetzer
- Molecular and Cell Biology Laboratory, Salk Institute of Biological Studies, La Jolla, CA 92037, USA
| | - Patrick E. MacDonald
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta T6G2E1, Canada
| | - Rafael Arrojo e Drigo
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
35
|
Young mice administered adult doses of AAV5-hFVIII-SQ achieve therapeutic factor VIII expression into adulthood. MOLECULAR THERAPY - METHODS & CLINICAL DEVELOPMENT 2022; 26:519-531. [PMID: 36092364 PMCID: PMC9440360 DOI: 10.1016/j.omtm.2022.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/09/2022] [Indexed: 11/28/2022]
Abstract
Valoctocogene roxaparvovec (AAV5-hFVIII-SQ) gene transfer provided reduced bleeding for adult clinical trial participants with severe hemophilia A. However, pediatric outcomes are unknown. Using a mouse model of hemophilia A, we investigated the effect of vector dose and age at treatment on transgene production and persistence. We dosed AAV5-hFVIII-SQ to neonatal and adult mice based on body weight or at a fixed dose and assessed human factor VIII-SQ variant (hFVIII-SQ) expression through 16 weeks. AAV5-hFVIII-SQ dosed per body weight in neonatal mice did not result in meaningful plasma hFVIII-SQ protein levels in adulthood. When treated with the same total vector genomes per mouse as adult mice, neonates maintained hFVIII-SQ expression into adulthood, although plasma levels were 3- to 4-fold lower versus mice dosed as adults. Mice <1 week old initially exhibited high hFVIII-SQ plasma levels and maintained meaningful levels into adulthood, despite a partial decline potentially due to age-related body mass and blood volume increases. Spatial transduction patterns differed between mice dosed as neonates versus adults. No features of hepatotoxicity or endoplasmic reticulum stress were observed with dosing at any age. These data suggest that young mice require the same total vector genomes as adult mice to sustain hFVIII-SQ plasma levels.
Collapse
|
36
|
Ventura-Antunes L, Dasgupta OM, Herculano-Houzel S. Resting Rates of Blood Flow and Glucose Use per Neuron Are Proportional to Number of Endothelial Cells Available per Neuron Across Sites in the Rat Brain. Front Integr Neurosci 2022; 16:821850. [PMID: 35757100 PMCID: PMC9226568 DOI: 10.3389/fnint.2022.821850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/07/2022] [Indexed: 11/24/2022] Open
Abstract
We report in a companion paper that in the mouse brain, in contrast to the 1,000-fold variation in local neuronal densities across sites, capillary density (measured both as capillary volume fraction and as density of endothelial cells) show very little variation, of the order of only fourfold. Here we confirm that finding in the rat brain and, using published rates of local blood flow and glucose use at rest, proceed to show that what small variation exists in capillary density across sites in the rat brain is strongly and linearly correlated to variations in local rates of brain metabolism at rest. Crucially, we show that such variations in local capillary density and brain metabolism are not correlated with local variations in neuronal density, which contradicts expectations that use-dependent self-organization would cause brain sites with more neurons to have higher capillary densities due to higher energetic demands. In fact, we show that the ratio of endothelial cells per neuron serves as a linear indicator of average blood flow and glucose use per neuron at rest, and both increase as neuronal density decreases across sites. In other words, because of the relatively tiny variation in capillary densities compared to the large variation in neuronal densities, the anatomical infrastructure of the brain is such that those sites with fewer neurons have more energy supplied per neuron, which matches a higher average rate of energy use per neuron, compared to sites with more neurons. Taken together, our data support the interpretation that resting brain metabolism is not demand-based, but rather limited by its capillary supply, and raise multiple implications for the differential vulnerability of diverse brain areas to disease and aging.
Collapse
Affiliation(s)
- Lissa Ventura-Antunes
- Department of Psychology, Vanderbilt University, Nashville, TN, United States.,Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | | | - Suzana Herculano-Houzel
- Department of Psychology, Vanderbilt University, Nashville, TN, United States.,Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
37
|
Mellinger AL, Muddiman DC, Gamcsik MP. Highlighting Functional Mass Spectrometry Imaging Methods in Bioanalysis. J Proteome Res 2022; 21:1800-1807. [PMID: 35749637 DOI: 10.1021/acs.jproteome.2c00220] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Most mass spectrometry imaging (MSI) methods provide a molecular map of tissue content but little information on tissue function. Mapping tissue function is possible using several well-known examples of "functional imaging" such as positron emission tomography and functional magnetic resonance imaging that can provide the spatial distribution of time-dependent biological processes. These functional imaging methods represent the net output of molecular networks influenced by local tissue environments that are difficult to predict from molecular/cellular content alone. However, for decades, MSI methods have also been demonstrated to provide functional imaging data on a variety of biological processes. In fact, MSI exceeds some of the classic functional imaging methods, demonstrating the ability to provide functional data from the nanoscale (subcellular) to whole tissue or organ level. This Perspective highlights several examples of how different MSI ionization and detection technologies can provide unprecedented detailed spatial maps of time-dependent biological processes, namely, nucleic acid synthesis, lipid metabolism, bioenergetics, and protein metabolism. By classifying various MSI methods under the umbrella of "functional MSI", we hope to draw attention to both the unique capabilities and accessibility with the aim of expanding this underappreciated field to include new approaches and applications.
Collapse
Affiliation(s)
- Allyson L Mellinger
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - David C Muddiman
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States.,Molecular Education, Technology and Research Innovation Center (METRIC), North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Michael P Gamcsik
- UNC/NCSU Joint Department of Biomedical Engineering, Raleigh, North Carolina 27695, United States
| |
Collapse
|
38
|
Tudurí E, Soriano S, Almagro L, Montanya E, Alonso-Magdalena P, Nadal Á, Quesada I. The pancreatic β-cell in ageing: Implications in age-related diabetes. Ageing Res Rev 2022; 80:101674. [PMID: 35724861 DOI: 10.1016/j.arr.2022.101674] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/07/2022] [Accepted: 06/14/2022] [Indexed: 11/15/2022]
Abstract
The prevalence of type 2 diabetes (T2D) and impaired glucose tolerance (IGT) increases with ageing. T2D generally results from progressive impairment of the pancreatic islets to adapt β-cell mass and function in the setting of insulin resistance and increased insulin demand. Several studies have shown an age-related decline in peripheral insulin sensitivity. However, a precise understanding of the pancreatic β-cell response in ageing is still lacking. In this review, we summarize the age-related alterations, adaptations and/or failures of β-cells at the molecular, morphological and functional levels in mouse and human. Age-associated alterations include processes such as β-cell proliferation, apoptosis and cell identity that can influence β-cell mass. Age-related changes also affect β-cell function at distinct steps including electrical activity, Ca2+ signaling and insulin secretion, among others. We will consider the potential impact of these alterations and those mediated by senescence pathways on β-cells and their implications in age-related T2D. Finally, given the great diversity of results in the field of β-cell ageing, we will discuss the sources of this heterogeneity. A better understanding of β-cell biology during ageing, particularly at older ages, will improve our insight into the contribution of β-cells to age-associated T2D and may boost new therapeutic strategies.
Collapse
Affiliation(s)
- Eva Tudurí
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain; Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain; Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain.
| | - Sergi Soriano
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain; Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Lucía Almagro
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain
| | - Eduard Montanya
- Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain; Department of Clinical Sciences, University of Barcelona, Barcelona, Spain; Bellvitge Hospital-IDIBELL, Barcelona, Spain, University of Barcelona, Barcelona, Spain
| | - Paloma Alonso-Magdalena
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain; Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Ángel Nadal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain; Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Ivan Quesada
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain; Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain.
| |
Collapse
|
39
|
Heinke P, Rost F, Rode J, Trus P, Simonova I, Lázár E, Feddema J, Welsch T, Alkass K, Salehpour M, Zimmermann A, Seehofer D, Possnert G, Damm G, Druid H, Brusch L, Bergmann O. Diploid hepatocytes drive physiological liver renewal in adult humans. Cell Syst 2022; 13:499-507.e12. [PMID: 35649419 DOI: 10.1016/j.cels.2022.05.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 02/19/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022]
Abstract
Physiological liver cell replacement is central to maintaining the organ's high metabolic activity, although its characteristics are difficult to study in humans. Using retrospective radiocarbon (14C) birth dating of cells, we report that human hepatocytes show continuous and lifelong turnover, allowing the liver to remain a young organ (average age <3 years). Hepatocyte renewal is highly dependent on the ploidy level. Diploid hepatocytes show more than 7-fold higher annual birth rates than polyploid hepatocytes. These observations support the view that physiological liver cell renewal in humans is mainly dependent on diploid hepatocytes, whereas polyploid cells are compromised in their ability to divide. Moreover, cellular transitions between diploid and polyploid hepatocytes are limited under homeostatic conditions. With these findings, we present an integrated model of homeostatic liver cell generation in humans that provides fundamental insights into liver cell turnover dynamics.
Collapse
Affiliation(s)
- Paula Heinke
- Center for Regenerative Therapies, Technische Universität Dresden, 01307 Dresden, Germany
| | - Fabian Rost
- Center for Regenerative Therapies, Technische Universität Dresden, 01307 Dresden, Germany; Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany; Centre for Information Services and High Performance Computing, Technische Universität Dresden, 01187 Dresden, Germany
| | - Julian Rode
- Centre for Information Services and High Performance Computing, Technische Universität Dresden, 01187 Dresden, Germany
| | - Palina Trus
- Center for Regenerative Therapies, Technische Universität Dresden, 01307 Dresden, Germany
| | - Irina Simonova
- Center for Regenerative Therapies, Technische Universität Dresden, 01307 Dresden, Germany
| | - Enikő Lázár
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Joshua Feddema
- Center for Regenerative Therapies, Technische Universität Dresden, 01307 Dresden, Germany
| | - Thilo Welsch
- Visceral-, Thoracic- and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Kanar Alkass
- Department of Oncology-Pathology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Mehran Salehpour
- Department of Physics and Astronomy, Applied Nuclear Physics, Ion Physics, Uppsala University, 75120 Uppsala, Sweden
| | - Andrea Zimmermann
- Department of Hepatobiliary Surgery and Visceral Transplantation, University of Leipzig, 04103 Leipzig, Germany; Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, 04103 Leipzig, Germany
| | - Daniel Seehofer
- Department of Hepatobiliary Surgery and Visceral Transplantation, University of Leipzig, 04103 Leipzig, Germany; Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, 04103 Leipzig, Germany
| | - Göran Possnert
- Department of Physics and Astronomy, Applied Nuclear Physics, Ion Physics, Uppsala University, 75120 Uppsala, Sweden
| | - Georg Damm
- Department of Hepatobiliary Surgery and Visceral Transplantation, University of Leipzig, 04103 Leipzig, Germany; Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, 04103 Leipzig, Germany
| | - Henrik Druid
- Department of Oncology-Pathology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Lutz Brusch
- Centre for Information Services and High Performance Computing, Technische Universität Dresden, 01187 Dresden, Germany
| | - Olaf Bergmann
- Center for Regenerative Therapies, Technische Universität Dresden, 01307 Dresden, Germany; Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
40
|
Solary E, Abou-Zeid N, Calvo F. Ageing and cancer: a research gap to fill. Mol Oncol 2022; 16:3220-3237. [PMID: 35503718 PMCID: PMC9490141 DOI: 10.1002/1878-0261.13222] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/01/2022] [Accepted: 05/02/2022] [Indexed: 12/03/2022] Open
Abstract
The complex mechanisms of ageing biology are increasingly understood. Interventions to reduce or delay ageing‐associated diseases are emerging. Cancer is one of the diseases promoted by tissue ageing. A clockwise mutational signature is identified in many tumours. Ageing might be a modifiable cancer risk factor. To reduce the incidence of ageing‐related cancer and to detect the disease at earlier stages, we need to understand better the links between ageing and tumours. When a cancer is established, geriatric assessment and measures of biological age might help to generate evidence‐based therapeutic recommendations. In this approach, patients and caregivers would include the respective weight to give to the quality of life and survival in the therapeutic choices. The increasing burden of cancer in older patients requires new generations of researchers and geriatric oncologists to be trained, to properly address disease complexity in a multidisciplinary manner, and to reduce health inequities in this population of patients. In this review, we propose a series of research challenges to tackle in the next few years to better prevent, detect and treat cancer in older patients while preserving their quality of life.
Collapse
Affiliation(s)
- Eric Solary
- Fondation « Association pour la Recherche sur le Cancer », Villejuif, France.,Université Paris Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France.,Gustave Roussy Cancer Center, INSERM U1287, Villejuif, France
| | - Nancy Abou-Zeid
- Fondation « Association pour la Recherche sur le Cancer », Villejuif, France
| | - Fabien Calvo
- Fondation « Association pour la Recherche sur le Cancer », Villejuif, France.,Université de Paris, Paris, France
| |
Collapse
|
41
|
Polyploidy as a Fundamental Phenomenon in Evolution, Development, Adaptation and Diseases. Int J Mol Sci 2022; 23:ijms23073542. [PMID: 35408902 PMCID: PMC8998937 DOI: 10.3390/ijms23073542] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/02/2023] Open
Abstract
DNA replication during cell proliferation is 'vertical' copying, which reproduces an initial amount of genetic information. Polyploidy, which results from whole-genome duplication, is a fundamental complement to vertical copying. Both organismal and cell polyploidy can emerge via premature cell cycle exit or via cell-cell fusion, the latter giving rise to polyploid hybrid organisms and epigenetic hybrids of somatic cells. Polyploidy-related increase in biological plasticity, adaptation, and stress resistance manifests in evolution, development, regeneration, aging, oncogenesis, and cardiovascular diseases. Despite the prevalence in nature and importance for medicine, agri- and aquaculture, biological processes and epigenetic mechanisms underlying these fundamental features largely remain unknown. The evolutionarily conserved features of polyploidy include activation of transcription, response to stress, DNA damage and hypoxia, and induction of programs of morphogenesis, unicellularity, and longevity, suggesting that these common features confer adaptive plasticity, viability, and stress resistance to polyploid cells and organisms. By increasing cell viability, polyploidization can provide survival under stressful conditions where diploid cells cannot survive. However, in somatic cells it occurs at the expense of specific function, thus promoting developmental programming of adult cardiovascular diseases and increasing the risk of cancer. Notably, genes arising via evolutionary polyploidization are heavily involved in cancer and other diseases. Ploidy-related changes of gene expression presumably originate from chromatin modifications and the derepression of bivalent genes. The provided evidence elucidates the role of polyploidy in evolution, development, aging, and carcinogenesis, and may contribute to the development of new strategies for promoting regeneration and preventing cardiovascular diseases and cancer.
Collapse
|
42
|
Magalhaes-Novais S, Blecha J, Naraine R, Mikesova J, Abaffy P, Pecinova A, Milosevic M, Bohuslavova R, Prochazka J, Khan S, Novotna E, Sindelka R, Machan R, Dewerchin M, Vlcak E, Kalucka J, Stemberkova Hubackova S, Benda A, Goveia J, Mracek T, Barinka C, Carmeliet P, Neuzil J, Rohlenova K, Rohlena J. Mitochondrial respiration supports autophagy to provide stress resistance during quiescence. Autophagy 2022; 18:2409-2426. [PMID: 35258392 PMCID: PMC9542673 DOI: 10.1080/15548627.2022.2038898] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Mitochondrial oxidative phosphorylation (OXPHOS) generates ATP, but OXPHOS also supports biosynthesis during proliferation. In contrast, the role of OXPHOS during quiescence, beyond ATP production, is not well understood. Using mouse models of inducible OXPHOS deficiency in all cell types or specifically in the vascular endothelium that negligibly relies on OXPHOS-derived ATP, we show that selectively during quiescence OXPHOS provides oxidative stress resistance by supporting macroautophagy/autophagy. Mechanistically, OXPHOS constitutively generates low levels of endogenous ROS that induce autophagy via attenuation of ATG4B activity, which provides protection from ROS insult. Physiologically, the OXPHOS-autophagy system (i) protects healthy tissue from toxicity of ROS-based anticancer therapy, and (ii) provides ROS resistance in the endothelium, ameliorating systemic LPS-induced inflammation as well as inflammatory bowel disease. Hence, cells acquired mitochondria during evolution to profit from oxidative metabolism, but also built in an autophagy-based ROS-induced protective mechanism to guard against oxidative stress associated with OXPHOS function during quiescence. Abbreviations: AMPK: AMP-activated protein kinase; AOX: alternative oxidase; Baf A: bafilomycin A1; CI, respiratory complexes I; DCF-DA: 2′,7′-dichlordihydrofluorescein diacetate; DHE: dihydroethidium; DSS: dextran sodium sulfate; ΔΨmi: mitochondrial inner membrane potential; EdU: 5-ethynyl-2’-deoxyuridine; ETC: electron transport chain; FA: formaldehyde; HUVEC; human umbilical cord endothelial cells; IBD: inflammatory bowel disease; LC3B: microtubule associated protein 1 light chain 3 beta; LPS: lipopolysaccharide; MEFs: mouse embryonic fibroblasts; MTORC1: mechanistic target of rapamycin kinase complex 1; mtDNA: mitochondrial DNA; NAC: N-acetyl cysteine; OXPHOS: oxidative phosphorylation; PCs: proliferating cells; PE: phosphatidylethanolamine; PEITC: phenethyl isothiocyanate; QCs: quiescent cells; ROS: reactive oxygen species; PLA2: phospholipase A2, WB: western blot.
Collapse
Affiliation(s)
- Silvia Magalhaes-Novais
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan Blecha
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Ravindra Naraine
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Jana Mikesova
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Pavel Abaffy
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Alena Pecinova
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Mirko Milosevic
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Romana Bohuslavova
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Jan Prochazka
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Shawez Khan
- VIB-KU Leuven Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Eliska Novotna
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Radek Sindelka
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Radek Machan
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Mieke Dewerchin
- VIB-KU Leuven Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Erik Vlcak
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Joanna Kalucka
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus C, Denmark
| | - Sona Stemberkova Hubackova
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic.,Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Ales Benda
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Jermaine Goveia
- VIB-KU Leuven Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Tomas Mracek
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Cyril Barinka
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Peter Carmeliet
- VIB-KU Leuven Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium.,Department of Biomedicine, Aarhus University, Aarhus, Denmark.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, P. R. China
| | - Jiri Neuzil
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic.,School of Medical Science, Griffith University, Southport, Qld, Australia
| | - Katerina Rohlenova
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic.,VIB-KU Leuven Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Jakub Rohlena
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| |
Collapse
|
43
|
Bartolomé A, Suda N, Yu J, Zhu C, Son J, Ding H, Califano A, Accili D, Pajvani UB. Notch-mediated Ephrin signaling disrupts islet architecture and β cell function. JCI Insight 2022; 7:157694. [PMID: 35167496 PMCID: PMC8986078 DOI: 10.1172/jci.insight.157694] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/09/2022] [Indexed: 11/23/2022] Open
Abstract
Altered islet architecture is associated with β cell dysfunction and type 2 diabetes (T2D) progression, but molecular effectors of islet spatial organization remain mostly unknown. Although Notch signaling is known to regulate pancreatic development, we observed “reactivated” β cell Notch activity in obese mouse models. To test the repercussions and reversibility of Notch effects, we generated doxycycline-dependent, β cell–specific Notch gain-of-function mice. As predicted, we found that Notch activation in postnatal β cells impaired glucose-stimulated insulin secretion and glucose intolerance, but we observed a surprising remnant glucose intolerance after doxycycline withdrawal and cessation of Notch activity, associated with a marked disruption of normal islet architecture. Transcriptomic screening of Notch-active islets revealed increased Ephrin signaling. Commensurately, exposure to Ephrin ligands increased β cell repulsion and impaired murine and human pseudoislet formation. Consistent with our mouse data, Notch and Ephrin signaling were increased in metabolically inflexible β cells in patients with T2D. These studies suggest that β cell Notch/Ephrin signaling can permanently alter islet architecture during a morphogenetic window in early life.
Collapse
Affiliation(s)
- Alberto Bartolomé
- Departamento de Fisiopatología Endocrina y del Sistema Nervioso, IIBm Alberto Sols (CSIC/UAM), Madrid, Spain
| | - Nina Suda
- Department of Medicine, Columbia University, New York, United States of America
| | - Junjie Yu
- Department of Medicine, Columbia University, New York, United States of America
| | - Changyu Zhu
- Department of Medicine, Columbia University, New York, United States of America
| | - Jinsook Son
- Department of Medicine, Columbia University, New York, United States of America
| | - Hongxu Ding
- Systems Biology, Columbia University College of Physicians & Surgeons, New York, United States of America
| | - Andrea Califano
- Systems Biology, Columbia University College of Physicians & Surgeons, New York, United States of America
| | - Domenico Accili
- Department of Medicine, Columbia University, New York, United States of America
| | - Utpal B Pajvani
- Department of Medicine, Columbia University, New York, United States of America
| |
Collapse
|
44
|
Pablos M, Casanueva-Álvarez E, González-Casimiro CM, Merino B, Perdomo G, Cózar-Castellano I. Primary Cilia in Pancreatic β- and α-Cells: Time to Revisit the Role of Insulin-Degrading Enzyme. Front Endocrinol (Lausanne) 2022; 13:922825. [PMID: 35832432 PMCID: PMC9271624 DOI: 10.3389/fendo.2022.922825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/24/2022] [Indexed: 12/25/2022] Open
Abstract
The primary cilium is a narrow organelle located at the surface of the cell in contact with the extracellular environment. Once underappreciated, now is thought to efficiently sense external environmental cues and mediate cell-to-cell communication, because many receptors, ion channels, and signaling molecules are highly or differentially expressed in primary cilium. Rare genetic disorders that affect cilia integrity and function, such as Bardet-Biedl syndrome and Alström syndrome, have awoken interest in studying the biology of cilium. In this review, we discuss recent evidence suggesting emerging roles of primary cilium and cilia-mediated signaling pathways in the regulation of pancreatic β- and α-cell functions, and its implications in regulating glucose homeostasis.
Collapse
Affiliation(s)
- Marta Pablos
- Department of Biochemistry, Molecular Biology and Physiology, School of Medicine, University of Valladolid, Valladolid, Spain
- *Correspondence: Marta Pablos,
| | - Elena Casanueva-Álvarez
- Unidad de Excelencia Instituto de Biología y Genética Molecular, University of Valladolid Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Carlos M. González-Casimiro
- Unidad de Excelencia Instituto de Biología y Genética Molecular, University of Valladolid Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Beatriz Merino
- Unidad de Excelencia Instituto de Biología y Genética Molecular, University of Valladolid Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Germán Perdomo
- Unidad de Excelencia Instituto de Biología y Genética Molecular, University of Valladolid Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Irene Cózar-Castellano
- Department of Biochemistry, Molecular Biology and Physiology, School of Medicine, University of Valladolid, Valladolid, Spain
- Unidad de Excelencia Instituto de Biología y Genética Molecular, University of Valladolid Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| |
Collapse
|
45
|
Krishna S, Arrojo E Drigo R, Capitanio JS, Ramachandra R, Ellisman M, Hetzer MW. Identification of long-lived proteins in the mitochondria reveals increased stability of the electron transport chain. Dev Cell 2021; 56:2952-2965.e9. [PMID: 34715012 DOI: 10.1016/j.devcel.2021.10.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 07/28/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022]
Abstract
In order to combat molecular damage, most cellular proteins undergo rapid turnover. We have previously identified large nuclear protein assemblies that can persist for years in post-mitotic tissues and are subject to age-related decline. Here, we report that mitochondria can be long lived in the mouse brain and reveal that specific mitochondrial proteins have half-lives longer than the average proteome. These mitochondrial long-lived proteins (mitoLLPs) are core components of the electron transport chain (ETC) and display increased longevity in respiratory supercomplexes. We find that COX7C, a mitoLLP that forms a stable contact site between complexes I and IV, is required for complex IV and supercomplex assembly. Remarkably, even upon depletion of COX7C transcripts, ETC function is maintained for days, effectively uncoupling mitochondrial function from ongoing transcription of its mitoLLPs. Our results suggest that modulating protein longevity within the ETC is critical for mitochondrial proteome maintenance and the robustness of mitochondrial function.
Collapse
Affiliation(s)
- Shefali Krishna
- Molecular and Cell Biology Laboratory (MCBL), Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Rafael Arrojo E Drigo
- Molecular and Cell Biology Laboratory (MCBL), Salk Institute for Biological Studies, La Jolla, CA 92037, USA; National Center for Microscopy and Imaging Research (NCMIR), University of California, San Diego School of Medicine (UCSD), La Jolla, CA 92093, USA
| | - Juliana S Capitanio
- Molecular and Cell Biology Laboratory (MCBL), Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Ranjan Ramachandra
- National Center for Microscopy and Imaging Research (NCMIR), University of California, San Diego School of Medicine (UCSD), La Jolla, CA 92093, USA; Department of Neurosciences, University of California, San Diego School of Medicine (UCSD), La Jolla, CA 92093, USA
| | - Mark Ellisman
- National Center for Microscopy and Imaging Research (NCMIR), University of California, San Diego School of Medicine (UCSD), La Jolla, CA 92093, USA; Department of Neurosciences, University of California, San Diego School of Medicine (UCSD), La Jolla, CA 92093, USA
| | - Martin W Hetzer
- Molecular and Cell Biology Laboratory (MCBL), Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
46
|
Valencia-Morales MDP, Sanchez-Flores A, Colín-Castelán D, Alvarado-Caudillo Y, Fragoso-Bargas N, López-González G, Peña-López T, Ramírez-Nava M, de la Rocha C, Rodríguez-Ríos D, Lund G, Zaina S. Somatic Genetic Mosaicism in the Apolipoprotein E-null Mouse Aorta. Thromb Haemost 2021; 121:1541-1553. [PMID: 33677828 DOI: 10.1055/a-1414-4840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In addition to genetic and epigenetic inheritance, somatic variation may contribute to cardiovascular disease (CVD) risk. CVD-associated somatic mutations have been reported in human clonal hematopoiesis, but evidence in the atheroma is lacking. To probe for somatic variation in atherosclerosis, we sought single-nucleotide private variants (PVs) in whole-exome sequencing (WES) data of aorta, liver, and skeletal muscle of two C57BL/6J coisogenic male ApoE null/wild-type (WT) sibling pairs, and RNA-seq data of one of the two pairs. Relative to the C57BL/6 reference genome, we identified 9 and 11 ApoE null aorta- and liver-specific PVs that were shared by all WES and RNA-seq datasets. Corresponding PVs in WT sibling aorta and liver were 1 and 0, respectively, and not overlapping with ApoE null PVs. Pyrosequencing analysis of 4 representative PVs in 17 ApoE null aortas and livers confirmed tissue-specific shifts toward the alternative allele, in addition to significant deviations from mendelian allele ratios. Notably, all aorta and liver PVs were present in the dbSNP database and were predominantly transition mutations within atherosclerosis-related genes. The majority of PVs were in discrete clusters approximately 3 Mb and 65 to 73 Mb away from hypermutable immunoglobin loci in chromosome 6. These features were largely shared with previously reported CVD-associated somatic mutations in human clonal hematopoiesis. The observation that SNPs exhibit tissue-specific somatic DNA mosaicism in ApoE null mice is potentially relevant for genetic association study design. The proximity of PVs to hypermutable loci suggests testable mechanistic hypotheses.
Collapse
Affiliation(s)
- María Del Pilar Valencia-Morales
- Department of Genetic Engineering, CINVESTAV Irapuato Unit, Irapuato, Mexico
- Department of Developmental Genetics and Molecular Physiology, "Unidad Universitaria de Secuenciación Masiva y Bioinformática", Biotechnology Institute, UNAM, Cuernavaca, Mexico
| | - Alejandro Sanchez-Flores
- "Unidad Universitaria de Secuenciación Masiva y Bioinformática", Biotechnology Institute, UNAM, Cuernavaca, Mexico
| | | | | | | | - Gladys López-González
- Bachelor's Degree in Nutrition Programme, Division of Health Sciences, Leon Campus, University of Guanajuato, Leon, Mexico
| | - Tania Peña-López
- Department of Medical Sciences, Leon Campus, University of Guanajuato, Leon, Mexico
| | - Magda Ramírez-Nava
- Bachelor's Degree in Nutrition Programme, Division of Health Sciences, Leon Campus, University of Guanajuato, Leon, Mexico
| | - Carmen de la Rocha
- Department of Genetic Engineering, CINVESTAV Irapuato Unit, Irapuato, Mexico
| | | | - Gertrud Lund
- Department of Genetic Engineering, CINVESTAV Irapuato Unit, Irapuato, Mexico
| | - Silvio Zaina
- Department of Medical Sciences, Leon Campus, University of Guanajuato, Leon, Mexico
| |
Collapse
|
47
|
Weir GC, Butler PC, Bonner-Weir S. The β-cell glucose toxicity hypothesis: Attractive but difficult to prove. Metabolism 2021; 124:154870. [PMID: 34480921 PMCID: PMC8530963 DOI: 10.1016/j.metabol.2021.154870] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/11/2021] [Accepted: 08/25/2021] [Indexed: 12/16/2022]
Abstract
β cells in the hyperglycemic environment of diabetes have marked changes in phenotype and function that are largely reversible if glucose levels can be returned to normal. A leading hypothesis is that these changes are caused by the elevated glucose levels leading to the concept of glucose toxicity. Support for the glucose toxicity hypothesis is largely circumstantial, but little progress has been made in defining the responsible mechanisms. Then questions emerge that are difficult to answer. In the very earliest stages of diabetes development, there is a dramatic loss of glucose-induced first-phase insulin release (FPIR) with only trivial elevations of blood glucose levels. A related question is how impaired insulin action on target tissues such as liver, muscle and fat can cause increased insulin secretion. The existence of a sophisticated feedback mechanism between insulin secretion and insulin action on peripheral tissues driven by glucose has been postulated, but it has been difficult to measure increases in blood glucose levels that might have been expected. These complexities force us to challenge the simplicity of the glucose toxicity hypothesis and feedback mechanisms. It may turn out that glucose is somehow driving all of these changes, but we must develop new questions and experimental approaches to test the hypothesis.
Collapse
Affiliation(s)
- Gordon C Weir
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
| | - Peter C Butler
- Larry l. Hillblom Islet Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Susan Bonner-Weir
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
48
|
Chambers SE, Pathak V, Pedrini E, Soret L, Gendron N, Guerin CL, Stitt AW, Smadja DM, Medina RJ. Current concepts on endothelial stem cells definition, location, and markers. Stem Cells Transl Med 2021; 10 Suppl 2:S54-S61. [PMID: 34724714 PMCID: PMC8560200 DOI: 10.1002/sctm.21-0022] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/12/2021] [Accepted: 03/25/2021] [Indexed: 12/20/2022] Open
Abstract
Ischemic vascular disease is a major cause of mortality and morbidity worldwide, and regeneration of blood vessels in perfusion-deficient tissues is a worthwhile therapeutic goal. The idea of delivering endothelial stem/progenitor cells to repair damaged vasculature, reperfuse hypoxic tissue, prevent cell death, and consequently diminish tissue inflammation and fibrosis has a strong scientific basis and clinical value. Various labs have proposed endothelial stem/progenitor cell candidates. This has created confusion, as there are profound differences between these cell definitions based on isolation methodology, characterization, and reparative biology. Here, a stricter definition based on stem cell biology principles is proposed. Although preclinical studies have often been promising, results from clinical trials have been highly contradictory and served to highlight multiple challenges associated with disappointing therapeutic benefit. This article reviews recent accomplishments in the field and discusses current difficulties when developing endothelial stem cell therapies. Emerging evidence that disputes the classic view of the bone marrow as the source for these cells and supports the vascular wall as the niche for these tissue-resident endothelial stem cells is considered. In addition, novel markers to identify endothelial stem cells, including CD157, EPCR, and CD31low VEGFR2low IL33+ Sox9+ , are described.
Collapse
Affiliation(s)
- Sarah E.J. Chambers
- Wellcome‐Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University BelfastBelfastUK
| | - Varun Pathak
- Wellcome‐Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University BelfastBelfastUK
| | - Edoardo Pedrini
- Wellcome‐Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University BelfastBelfastUK
| | - Lou Soret
- Université de ParisInnovative Therapies in Haemostasis, INSERMParisFrance
- Hematology department and Biosurgical research lab (Carpentier Foundation)Assistance Publique Hôpitaux de Paris.Centre‐Université de Paris (APHP‐CUP)ParisFrance
| | - Nicolas Gendron
- Université de ParisInnovative Therapies in Haemostasis, INSERMParisFrance
- Hematology department and Biosurgical research lab (Carpentier Foundation)Assistance Publique Hôpitaux de Paris.Centre‐Université de Paris (APHP‐CUP)ParisFrance
| | - Coralie L. Guerin
- Université de ParisInnovative Therapies in Haemostasis, INSERMParisFrance
- Cytometry Platform, Institut CurieParisFrance
| | - Alan W. Stitt
- Wellcome‐Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University BelfastBelfastUK
| | - David M. Smadja
- Université de ParisInnovative Therapies in Haemostasis, INSERMParisFrance
- Hematology department and Biosurgical research lab (Carpentier Foundation)Assistance Publique Hôpitaux de Paris.Centre‐Université de Paris (APHP‐CUP)ParisFrance
| | - Reinhold J. Medina
- Wellcome‐Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University BelfastBelfastUK
| |
Collapse
|
49
|
Cell-Cell Communication Networks in Tissue: Toward Quantitatively Linking Structure with Function. ACTA ACUST UNITED AC 2021; 27. [PMID: 34693081 DOI: 10.1016/j.coisb.2021.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Forefront techniques for molecular interrogation of mammalian tissues, such as multiplexed tissue imaging, intravital microscopy, and single-cell RNA sequencing (scRNAseq), can combine to quantify cell-type abundance, co-localization, and global levels of receptors and their ligands. Nonetheless, it remains challenging to translate these various quantities into a more comprehensive understanding of how cell-cell communication networks dynamically operate. Therefore, construction of computational models for network-level functions - including niche-dependent actions, homeostasis, and multi-scale coordination - will be valuable for productively integrating the battery of experimental approaches. Here, we review recent progress in understanding cell-cell communication networks in tissue. Featured examples include ligand-receptor dissection of immunosuppressive and mitogenic signaling in the tumor microenvironment. As a future direction, we highlight an unmet potential to bridge high-level statistical approaches with low-level physicochemical mechanisms.
Collapse
|
50
|
Wolf AM. The tumor suppression theory of aging. Mech Ageing Dev 2021; 200:111583. [PMID: 34637937 DOI: 10.1016/j.mad.2021.111583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 01/10/2023]
Abstract
Despite continued increases in human life expectancy, the factors determining the rate of human biological aging remain unknown. Without understanding the molecular mechanisms underlying aging, efforts to prevent aging are unlikely to succeed. The tumor suppression theory of aging introduced here proposes somatic mutation as the proximal cause of aging, but postulates that oncogenic transformation and clonal expansion, not functional impairment, are the relevant consequences of somatic mutation. Obesity and caloric restriction accelerate and decelerate aging due to their effect on cell proliferation, during which most mutations arise. Most phenotypes of aging are merely tumor-suppressive mechanisms that evolved to limit malignant growth, the dominant age-related cause of death in early and middle life. Cancer limits life span for most long-lived mammals, a phenomenon known as Peto's paradox. Its conservation across species demonstrates that mutation is a fundamental but hard limit on mammalian longevity. Cell senescence and apoptosis and differentiation induced by oncogenes, telomere shortening or DNA damage evolved as a second line of defense to limit the tumorigenic potential of clonally expanding cells, but accumulating senescent cells, senescence-associated secretory phenotypes and stem cell exhaustion eventually cause tissue dysfunction and the majority, if not most, phenotypes of aging.
Collapse
Affiliation(s)
- Alexander M Wolf
- Laboratory for Morphological and Biomolecular Imaging, Faculty of Medicine, Nippon Medical School, Sendagi 1-1-5, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|