1
|
Liao Z, Ji W, Yang C, Su J. TLR5M and TLR5S Synergistically Sense Flagellin in Early Endosome in Lamprey Petromyzon marinus, Switched by the N-Glycosylation Site N239. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:855-867. [PMID: 38231121 DOI: 10.4049/jimmunol.2300490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/28/2023] [Indexed: 01/18/2024]
Abstract
In mammals, TLR5 functions as a homodimer to recognize bacterial flagellin on the cytomembrane. The current investigations reveal the existence of two types of TLR5, a membrane-bound PmTLR5M, and a soluble variant PmTLR5S, in lamprey (Petromyzon marinus). Although both PmTLR5M and PmTLR5S can bind flagellin, only PmTLR5M is capable of eliciting a proinflammatory response, whereas PmTLR5S can detect the flagellin and facilitate the role of PmTLR5M in early endosomes. The trafficking chaperone UNC93B1 enhances the ligand-induced signaling via PmTLR5M or the combination of PmTLR5M and PmTLR5S. PmTLR5M recruits MyD88 as an adaptor. Furthermore, chimeric receptor studies demonstrate the indispensability of the intradomain of PmTLR5M in effective activation of the proinflammatory pathway upon flagellin stimulation, and the combination of PmTLR5S with a singular intradomain in both homodimer and heterodimer ectodomain arrangements can very significantly augment the immune response. Furthermore, the flagellin binding sites between PmTLR5M and PmTLR5S are conserved, which are essential for ligand binding and signal transduction. Moreover, investigations on N-linked glycosylation modifications reveal that the N239 site in PmTLR5M and PmTLR5S plays a switch role in both flagellin binding and immune responses. In addition, PmTLR5M exhibits the high-mannose-type and complex-type N-glycosylation modifications; however, PmTLR5S shows exclusive complex-type N-glycosylation modification. The key N239 site demonstrates complex-type N-glycosylation modification. The findings address the function and mechanism of TLR5 in ligand recognition, subcellular localization, and signaling pathway in lowest vertebrate and immune system transition species, highlight the regulatory role of N-glycosylation modification in TLRs, and augment immune evolutionary research on the TLR signaling pathway.
Collapse
Affiliation(s)
- Zhiwei Liao
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wei Ji
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Chunrong Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jianguo Su
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
2
|
Pergolizzi S, Fumia A, D'Angelo R, Mangano A, Lombardo GP, Giliberti A, Messina E, Alesci A, Lauriano ER. Expression and function of toll-like receptor 2 in vertebrate. Acta Histochem 2023; 125:152028. [PMID: 37075649 DOI: 10.1016/j.acthis.2023.152028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023]
Abstract
Toll-like receptors (TLRs) are essential for identifying and detecting pathogen-associated molecular patterns (PAMPs) produced by a variety of pathogens, including viruses and bacteria. Since TLR2 is the only TLR capable of creating functional heterodimers with more than two other TLR types, it is very important for vertebrate immunity. TLR2 not only broadens the variety of PAMPs that it can recognize but has also the potential to diversify the subsequent signaling cascades. TLR2 is ubiquitous, which is consistent with the wide variety of tasks and functions it serves. Immune cells, endothelial cells, and epithelial cells have all been found to express TLR2. This review aims to gather currently available information about the preservation of this intriguing immunological molecule in the phylum of vertebrates.
Collapse
Affiliation(s)
- Simona Pergolizzi
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Angelo Fumia
- Department of Clinical and Experimental Medicine, University of Messina, Padiglione C, A. O. U. Policlinico "G. Martino", 98124 Messina, Italy
| | - Roberta D'Angelo
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Angelica Mangano
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Giorgia Pia Lombardo
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Angelo Giliberti
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Emmanuele Messina
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy
| |
Collapse
|
3
|
Wu K, Xu J, Jia Z, Wang J, Wang Z, Feng J, Zhu X, Liu Q, Wang B, Li M, Pang Y, Zou J. Phylogeny and expression of ADAM10 and ADAM17 homologs in lamprey. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:321-334. [PMID: 36964830 DOI: 10.1007/s10695-023-01184-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 03/10/2023] [Indexed: 05/04/2023]
Abstract
The ADAMs (a disintegrin and metalloproteinase) play regulatory roles in cell adhesion, migration and proteolysis. To explore the origin and evolution of ADAMs, this study identified the homologs of adam10 and adam17 in Lampetra morii and Lampetra japonica. Sequence analysis revealed that they share the same genomic structures with their counterparts in jawed vertebrates. The putative proteins possess conserved motifs, including a furin cut site (RXXR) for precursor processing, an enzyme catalytic motif (HEXGEHXXGXXH) for hydrolysis, and a Ca2+-binding motif (CGNXXXEXGEXCD) for stabilizing protein structure. In addition, a substrate recognition domain is present at the membrane-proximal region of lamprey ADAM17. The cytoplasmic region of lamprey ADAM10 contains a potential threonine phosphorylation site which has been shown to be activated by protein kinase C (PKC) in mammals. Both the adam10 and adam17 genes were constitutively expressed in the brain, kidney, and gills and were differentially regulated in the primary blood leukocytes by lipopolysaccharide (LPS) and pokeweed mitogen (PWM). Adam10 was induced by LPS but not PWM; conversely, adam17 was induced by PWM but not LPS. Taken together, our results suggest that the activation pathways and functions of ADAM10 and ADAM17 are conserved in agnathans.
Collapse
Affiliation(s)
- Kaizheng Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, 201306, China
- International Research Center for Marine Biosciences at, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jing Xu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, 201306, China
- International Research Center for Marine Biosciences at, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhao Jia
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, 201306, China
- International Research Center for Marine Biosciences at, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Junya Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, 201306, China
- International Research Center for Marine Biosciences at, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zixuan Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, 201306, China
- International Research Center for Marine Biosciences at, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jianhua Feng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, 201306, China
- International Research Center for Marine Biosciences at, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaozhen Zhu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, 201306, China
- International Research Center for Marine Biosciences at, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Qin Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, 201306, China
- International Research Center for Marine Biosciences at, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Bangjie Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, 201306, China
- International Research Center for Marine Biosciences at, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Mingjie Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, 201306, China
- International Research Center for Marine Biosciences at, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yue Pang
- Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China.
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, 201306, China.
- International Research Center for Marine Biosciences at, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
4
|
Drury S, Claussen G, Zetterman A, Moriyama H, Moriyama EN, Zhang L. Evolution and emergence of primate-specific interferon regulatory factor 9. J Med Virol 2023; 95:e28521. [PMID: 36691924 PMCID: PMC10107944 DOI: 10.1002/jmv.28521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023]
Abstract
The binding of interferon (IFN) to its receptors leads to formation of IFN-stimulated gene factor 3 (ISGF3) complex that activates the transcription of cellular IFN-regulated genes. IFN regulatory factor 9 (IRF9, also called ISGF3γ or p48) is a key component of ISGF3. However, there is limited knowledge regarding the molecular evolution of IRF9 among vertebrates. In this study, we have identified the existence of the IRF9 gene in cartilaginous fish (sharks). Among primates, several isoforms unique to old world moneys and great apes are identified. These IRF9 isoforms are named as primate-specific IRF9 (PS-IRF9) to distinguish from canonical IRF9. PS-IRF9 originates from a unique exon usage and differential splicing in the IRF9 gene. Although the N-terminus are identical for all IRF9s, the C-terminal regions of the PS-IRF9 are completely different from canonical IRF9. In humans, two PS-IRF9s are identified and their RNA transcripts were detected in human primary peripheral blood mononuclear cells. In addition, human PS-IRF9 proteins were detected in human cell lines. Sharing the N-terminal exons with the canonical IRF9 proteins, PS-IRF9 is predicted to bind to the same DNA sequences as the canonical IRF9 proteins. As the C-terminal regions of IRFs are the determinants of IRF functions, PS-IRF9 may offer unique biological functions and represent a novel signaling molecule involved in the regulation of the IFN pathway in a primate-specific manner.
Collapse
Affiliation(s)
- Sam Drury
- School of Biological SciencesUniversity of NebraskaLincolnNebraskaUSA
| | - Grace Claussen
- School of Biological SciencesUniversity of NebraskaLincolnNebraskaUSA
| | - Allison Zetterman
- School of Biological SciencesUniversity of NebraskaLincolnNebraskaUSA
| | - Hideaki Moriyama
- School of Biological SciencesUniversity of NebraskaLincolnNebraskaUSA
| | - Etsuko N. Moriyama
- School of Biological SciencesUniversity of NebraskaLincolnNebraskaUSA
- Center for Plant Science InnovationUniversity of NebraskaLincolnNebraskaUSA
| | - Luwen Zhang
- School of Biological SciencesUniversity of NebraskaLincolnNebraskaUSA
- Nebraska Center for VirologyUniversity of NebraskaLincolnNebraskaUSA
| |
Collapse
|
5
|
Zhou Z, Ding S, Wang Y, Ren J, Zhang X, Li W, Zhang Q. Identification and characterization of Toll-like receptor 14d in Northeast Chinese lamprey ( Lethenteron morii). Front Immunol 2023; 14:1153628. [PMID: 37143659 PMCID: PMC10151648 DOI: 10.3389/fimmu.2023.1153628] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/17/2023] [Indexed: 05/06/2023] Open
Abstract
Toll-like receptors (TLRs) play an important role in innate immunity of defense against bacterial or viral pathogens. To study the biological characteristics and functions of the TLR genes, TLR14d was identified from Northeast Chinese lamprey (Lethenteron morii) and named LmTLR14d. LmTLR14d coding sequence (cds) is 3285 bp in length and encodes 1094 amino acids (aa). The results showed that LmTLR14d has the typical structure of TLR molecule, which contains the extracellular domain of leucine-rich repeats (LRR), transmembrane domain, and intracellular domain of Toll/interleukin-1 receptor (TIR). The phylogenetic tree showed that LmTLR14d is a homologous gene of TLR14/18 in bony fish. Quantitative real-time PCR (qPCR) revealed that LmTLR14d was expressed in various healthy tissues, including immune and non-immune tissues. Pseudomonas aeruginosa infection up-regulated LmTLR14d in the supraneural body (SB), gill, and kidney tissues of infected Northeast Chinese lamprey. Immunofluorescence results showed that LmTLR14d was located in the cytoplasm of HEK 293T cells in clusters, and its subcellular localization was determined by the TIR domain. The immunoprecipitation results showed that LmTLR14d could recruit L.morii MyD88 (LmMyD88) but not L.morii TRIF (LmTRIF). Dual luciferase reporter results showed that LmTLR14d significantly enhanced the activity of L.morii NF-κβ (LmNF-κβ) promoter. Furthermore, co-transfection of LmTLR14d with MyD88 significantly enhanced the L.morii NF-κβ (LmNF-κβ) promoter activity. LmTLR14d can induce the expression of inflammatory cytokine genes il-6 and tnf-α downstream of NF-κB signal. This study suggested that LmTLR14d might play an important role in the innate immune signal transduction process of lamprey and revealed the origin and function of teleost-specific TLR14.
Collapse
Affiliation(s)
- Zebin Zhou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Shaoqing Ding
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yaqian Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Janfeng Ren
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Xiangyang Zhang
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, United States
| | - Qinghua Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- *Correspondence: Qinghua Zhang,
| |
Collapse
|
6
|
Zhou ZB, Zhang MJ, He YY, Bao SC, Zhang XY, Li W, Zhang QH. Identification and functional characterization of an immune adapter molecular TRIF in Northeast Chinese lamprey (Lethenteron morii). FISH & SHELLFISH IMMUNOLOGY 2022; 124:454-461. [PMID: 35452833 DOI: 10.1016/j.fsi.2022.04.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
The TIR domain-containing adaptor inducing IFN-β (TRIF) is an adaptor molecule that plays a critical role in the Toll-like receptors (TLRs)-mediated innate immune signaling pathway. Lamprey, as the most primitive jawless vertebrate, rely mainly on innate immunity to defend against various pathogens infection. The function of TRIF in lamprey remains unknown. In this study, a homologous adaptor molecule TRIF, named LmTRIF, was identified in Northeast Chinese lamprey (Lethenteron morii). The LmTRIF coding sequence (cds) is 1242 bp in length and encodes 413 amino acids (aa). Domain analysis showed that LmTRIF is characterized with the classical TIR domain and a lack of TRAF6 binding motif. The results of evolutionary tree indicated that the relationship between LmTRIF and other homologous proteins was consistent with the position of lamprey in the species evolutionary history. The relative expression of LmTRIF was highest in the liver of larvae and in the gill of adults, respectively. Cellular immunofluorescence assays showed that LmTRIF was expressed in the cytoplasma in both mammalian cell line HEK 293T and the fish cell line EPC. The double luciferase reporter gene assay showed that the overexpression of LmTRIF promoted the activity of NF-κB, an immune transcription factor downstream of the classical TLR signaling pathway. In this study, we identified the TLR adaptor molecule TRIF from L. morii, a vertebrate more primitive than fish. Our results suggested an important role of LmTRIF in the innate immune signal transduction process of L. morii and is the basis for the origin and evolution of the TLR signaling pathway in the innate immune system in vertebrates.
Collapse
Affiliation(s)
- Ze-Bin Zhou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Meng-Jie Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Yuan-Yuan He
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Shi-Cheng Bao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiang-Yang Zhang
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, 48824, USA
| | - Qing-Hua Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
7
|
Orús-Alcalde A, Lu TM, Børve A, Hejnol A. The evolution of the metazoan Toll receptor family and its expression during protostome development. BMC Ecol Evol 2021; 21:208. [PMID: 34809567 PMCID: PMC8609888 DOI: 10.1186/s12862-021-01927-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 10/21/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Toll-like receptors (TLRs) play a crucial role in immunity and development. They contain leucine-rich repeat domains, one transmembrane domain, and one Toll/IL-1 receptor domain. TLRs have been classified into V-type/scc and P-type/mcc TLRs, based on differences in the leucine-rich repeat domain region. Although TLRs are widespread in animals, detailed phylogenetic studies of this gene family are lacking. Here we aim to uncover TLR evolution by conducting a survey and a phylogenetic analysis in species across Bilateria. To discriminate between their role in development and immunity we furthermore analyzed stage-specific transcriptomes of the ecdysozoans Priapulus caudatus and Hypsibius exemplaris, and the spiralians Crassostrea gigas and Terebratalia transversa. RESULTS We detected a low number of TLRs in ecdysozoan species, and multiple independent radiations within the Spiralia. V-type/scc and P-type/mcc type-receptors are present in cnidarians, protostomes and deuterostomes, and therefore they emerged early in TLR evolution, followed by a loss in xenacoelomorphs. Our phylogenetic analysis shows that TLRs cluster into three major clades: clade α is present in cnidarians, ecdysozoans, and spiralians; clade β in deuterostomes, ecdysozoans, and spiralians; and clade γ is only found in spiralians. Our stage-specific transcriptome and in situ hybridization analyses show that TLRs are expressed during development in all species analyzed, which indicates a broad role of TLRs during animal development. CONCLUSIONS Our findings suggest that a clade α TLR gene (TLR-Ca) and a clade β/γ TLR gene (TLR-Cβ/γ) were already present in the cnidarian-bilaterian common ancestor. However, although TLR-Ca was conserved in cnidarians, TLR-Cβ/γ was lost during the early evolution of these taxa. Moreover, TLR-Cβ/γ duplicated to generate TLR-Cβ and TLR-Cγ in the lineage to the last common protostome-deuterostome ancestor. TLR-Ca, TLR-Cβ and TLR-Cγ further expanded generating the three major TLR clades. While all three clades radiated in several spiralian lineages, specific TLRs clades have been presumably lost in other lineages. Furthermore, the expression of the majority of these genes during protostome ontogeny suggests a likely role in development.
Collapse
Affiliation(s)
- Andrea Orús-Alcalde
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Tsai-Ming Lu
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Aina Børve
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway.
- Department of Biological Sciences, University of Bergen, Bergen, Norway.
| |
Collapse
|
8
|
Tan M, Redmond AK, Dooley H, Nozu R, Sato K, Kuraku S, Koren S, Phillippy AM, Dove ADM, Read T. The whale shark genome reveals patterns of vertebrate gene family evolution. eLife 2021; 10:e65394. [PMID: 34409936 PMCID: PMC8455134 DOI: 10.7554/elife.65394] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 08/18/2021] [Indexed: 02/06/2023] Open
Abstract
Chondrichthyes (cartilaginous fishes) are fundamental for understanding vertebrate evolution, yet their genomes are understudied. We report long-read sequencing of the whale shark genome to generate the best gapless chondrichthyan genome assembly yet with higher contig contiguity than all other cartilaginous fish genomes, and studied vertebrate genomic evolution of ancestral gene families, immunity, and gigantism. We found a major increase in gene families at the origin of gnathostomes (jawed vertebrates) independent of their genome duplication. We studied vertebrate pathogen recognition receptors (PRRs), which are key in initiating innate immune defense, and found diverse patterns of gene family evolution, demonstrating that adaptive immunity in gnathostomes did not fully displace germline-encoded PRR innovation. We also discovered a new toll-like receptor (TLR29) and three NOD1 copies in the whale shark. We found chondrichthyan and giant vertebrate genomes had decreased substitution rates compared to other vertebrates, but gene family expansion rates varied among vertebrate giants, suggesting substitution and expansion rates of gene families are decoupled in vertebrate genomes. Finally, we found gene families that shifted in expansion rate in vertebrate giants were enriched for human cancer-related genes, consistent with gigantism requiring adaptations to suppress cancer.
Collapse
Affiliation(s)
- Milton Tan
- Illinois Natural History Survey at University of Illinois Urbana-ChampaignChampaignUnited States
| | | | - Helen Dooley
- University of Maryland School of Medicine, Institute of Marine & Environmental TechnologyBaltimoreUnited States
| | - Ryo Nozu
- Okinawa Churashima Research Center, Okinawa Churashima FoundationOkinawaJapan
| | - Keiichi Sato
- Okinawa Churashima Research Center, Okinawa Churashima FoundationOkinawaJapan
- Okinawa Churaumi Aquarium, MotobuOkinawaJapan
| | - Shigehiro Kuraku
- RIKEN Center for Biosystems Dynamics Research (BDR), RIKENKobeJapan
| | - Sergey Koren
- National Human Genome Research Institute, National Institutes of HealthBethesdaUnited States
| | - Adam M Phillippy
- National Human Genome Research Institute, National Institutes of HealthBethesdaUnited States
| | | | - Timothy Read
- Department of Infectious Diseases, Emory University School of MedicineAtlantaUnited States
| |
Collapse
|
9
|
Wang KL, Chen SN, Huo HJ, Nie P. Identification and expression analysis of sixteen Toll-like receptor genes, TLR1, TLR2a, TLR2b, TLR3, TLR5M, TLR5S, TLR7-9, TLR13a-c, TLR14, TLR21-23 in mandarin fish Siniperca chuatsi. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 121:104100. [PMID: 33862097 DOI: 10.1016/j.dci.2021.104100] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Toll-like receptors (TLRs), as a family of pattern recognition receptors (PRRs), possess specific pathogen-related molecular pattern (PAMP) recognition spectrum in inducing immune responses. In this study, sixteen TLRs were identified and characterized in mandarin fish (Siniperca chuatsi). All these TLRs consist of leucine-rich repeats (LRRs), a transmembrane domain and a Toll/interleukin-I receptor (TIR) domain, with the exception of TLR5S which lacks TIR domain, and they can be clustered into five branches, i.e. TLR1 subfamily, TLR3 subfamily, TLR5 subfamily, TLR7 subfamily and TLR11 subfamily in phylogenetic tree. These TLR genes were expressed in all tested tissues and had high expression levels in immune-related tissues such as head-kidney and spleen or mucosa-related tissues such as intestine and pyloric caecum. The transcripts of TLR2a, TLR2b, TLR3, TLR13a, TLR14, TLR22 and TLR23 were all significantly up-regulated after stimulation with poly(I:C); TLR1, TLR2a, TLR2b, TLR3, TLR5M, TLR5S, TLR13a and TLR13b transcripts were all significantly up-regulated after stimulation with PGN; and TLR2a, TLR2b, TLR5M, TLR5S, TLR7, TLR8, TLR9, TLR13c, TLR14 and TLR22 transcripts were all significantly up-regulated after stimulation with LPS in isolated head kidney lymphocytes of mandarin fish. The findings in this study may provide a valuable basis for functional study on TLR genes in mandarin fish.
Collapse
Affiliation(s)
- Kai Lun Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, And Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Shan Nan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, And Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.
| | - Hui Jun Huo
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong Province, 266237, China; School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China.
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, And Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong Province, 266237, China; School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China.
| |
Collapse
|
10
|
Duan X, Lv M, Liu A, Pang Y, Li Q, Su P, Gou M. Identification and evolution of transcription factors RHR gene family (NFAT and RBPJ) involving lamprey (Lethenteron reissneri) innate immunity. Mol Immunol 2021; 138:38-47. [PMID: 34332184 DOI: 10.1016/j.molimm.2021.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 10/20/2022]
Abstract
Nuclear factor of activated T cells (NFAT) and recombination signal binding protein (RBP) belong to the family of Rel homology region (RHR) transcription factors which regulate the expression of genes involved in different aspects of the immune response. To gain insights into the evolution and characterisation of RHR genes in lampreys, a jawless vertebrate, four RHR genes, including nuclear factor of activated T cells (NFAT) and recombination signal binding protein for immunoglobulin kappa J region (RBPJ), have been identified and cloned from the lamprey (Lethenteron reissneri) database. Evolutionary relationships of NFAT and RBPJ genes among different species were determined through molecular phylogenetic analysis. Motif, genetic structure, and tertiary structure analyses showed that NFATs and RBPJ are conserved and contain RHD and IPT domains. Moreover, synteny analysis showed that the neighbourhood genes of Lr-NFATs and Lr-RBPJ have undergone significant changes compared to jawed vertebrates. Real-time quantitative results demonstrated that the RHR gene family plays a significant role in immune defence. This study provides a new understanding of the origin and evolution of the RHR gene family in different species.
Collapse
Affiliation(s)
- Xuyuan Duan
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Menggang Lv
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Aijia Liu
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Yue Pang
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Qingwei Li
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Peng Su
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China.
| | - Meng Gou
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
11
|
Geng M, Hua Y, Liu Y, Quan J, Hu X, Su P, Li Y, Liu X, Li Q, Zhu T. Evolutionary history and functional characterization of Lj-TICAM-a and Lj-TICAM-b formed via lineage-specific tandem duplication in lamprey (Lampetra japonica). Genomics 2021; 113:2756-2768. [PMID: 34147633 DOI: 10.1016/j.ygeno.2021.06.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 05/06/2021] [Accepted: 06/06/2021] [Indexed: 02/06/2023]
Abstract
Toll/interleukin-1 receptor domain-containing adaptor molecule (TICAM) genes respond to infections. We identified TICAM-a and TICAM-b in Lampetra japonica and investigated their evolutionary history and potential function via comparative genomics and molecular evolution analyses. They are arranged in tandem and evolved from a multi-exon to a single-exon structure. Lj-TICAM-a and Lj-TICAM-b might be the ancestral gene of the vertebrate TICAM genes. Lj-TICAM-b arose via a lamprey-specific tandem duplication event. Both genes are expressed in many tissues during an immune response, and exhibit different responses to peptidoglycan, indicating their functional divergence. Simultaneous overexpression of both proteins activated nuclear factor κB expression and co-immunoprecipitation assays indicated that they might form a complex for signal transduction. However, unlike in mammals, the TICAM-dependent signaling pathway in lamprey might rely on TRAF3 rather than on TRAF6. These results suggest that both Lj-TICAM-a and Lj-TICAM-b play a role in host defenses.
Collapse
Affiliation(s)
- Ming Geng
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116081, China
| | - Yishan Hua
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116081, China
| | - Yu Liu
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116081, China
| | - Jian Quan
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116081, China
| | - Xueting Hu
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China
| | - Peng Su
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116081, China
| | - Yingying Li
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116081, China
| | - Xin Liu
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116081, China
| | - Qingwei Li
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116081, China.
| | - Ting Zhu
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116081, China.
| |
Collapse
|
12
|
Yang J, Zhou M, Zhong Y, Xu L, Zeng C, Zhao X, Zhang M. Gene duplication and adaptive evolution of Toll-like receptor genes in birds. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 119:103990. [PMID: 33422554 DOI: 10.1016/j.dci.2020.103990] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/27/2020] [Accepted: 12/27/2020] [Indexed: 06/12/2023]
Abstract
Toll-like receptors (TLRs) play an important role in innate immune through recognizes pathogens. In order to reveal the evolutionary patterns and adaptive evolution of avian TLRs, we examined 66 representative bird species in 26 orders. Phylogenetic results indicated that TLR1A and TLR1B may have differentiated functionally. Evolutionary analysis showed that the TLR genes in birds under strong Purification selection (0.165-0.4265). A total of 126 common positively selected codons were identified in 10 TLR genes of avian, and most sites were located in the extracellular leucine-rich repeat (LRR) functional domains, and both environment and feeding habits were external factors driving the evolution of avian TLR genes. Environmental pressures had a greater effect on TLR1B, TLR2B, TLR3 and TLR4, while feeding habits were active in affecting TLR2A, TLR2B, TLR15 and TLR21. Our data suggested that TLR genes have been subjected to different selective pressures in the diversification of birds and that these changes enabled them to respond differently to pathogens from diverse sources.
Collapse
Affiliation(s)
- Jiandong Yang
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Southwest China Wildlife Rsources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, PR China.
| | - Ming Zhou
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu, 611130, China; Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Yun Zhong
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Liqun Xu
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Changjun Zeng
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoling Zhao
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ming Zhang
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
13
|
Quan J, Geng M, Hu X, Feng S, Liu Y, Hui F, Li M, Liu J, Su P, Liu X, Li Q, Zhu T. Molecular evolution and expression pattern of Toll-like receptor 3 from the lamprey Lampetra japonica. Acta Biochim Biophys Sin (Shanghai) 2021; 53:258-261. [PMID: 33346339 DOI: 10.1093/abbs/gmaa153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jian Quan
- College of Life Science, Liaoning Normal University, Dalian 116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116081, China
| | - Ming Geng
- College of Life Science, Liaoning Normal University, Dalian 116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116081, China
| | - Xueting Hu
- College of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Shaoshu Feng
- College of Life Science, Liaoning Normal University, Dalian 116081, China
- Shuangqiao Primary School, Zhengzhou 450044, China
| | - Yu Liu
- College of Life Science, Liaoning Normal University, Dalian 116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116081, China
| | - Fan Hui
- College of Life Science, Liaoning Normal University, Dalian 116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116081, China
| | - Meiao Li
- College of Life Science, Liaoning Normal University, Dalian 116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116081, China
| | - Jinzhao Liu
- College of Life Science, Liaoning Normal University, Dalian 116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116081, China
| | - Peng Su
- College of Life Science, Liaoning Normal University, Dalian 116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116081, China
| | - Xin Liu
- College of Life Science, Liaoning Normal University, Dalian 116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116081, China
| | - Qingwei Li
- College of Life Science, Liaoning Normal University, Dalian 116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116081, China
| | - Ting Zhu
- College of Life Science, Liaoning Normal University, Dalian 116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116081, China
| |
Collapse
|
14
|
Wang X, Chen X, Dobrev D, Li N. The crosstalk between cardiomyocyte calcium and inflammasome signaling pathways in atrial fibrillation. Pflugers Arch 2021; 473:389-405. [PMID: 33511453 DOI: 10.1007/s00424-021-02515-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/14/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023]
Abstract
Atrial fibrillation (AF) is the most frequent arrhythmia in adults. The prevalence and incidence of AF is going to increase substantially over the next few decades. Because AF increases the risk of stroke, heart failure, dementia, and others, it severely impacts the quality of life, morbidity, and mortality. Although the pathogenesis of AF is multifaceted and complex, focal ectopic activity and reentry are considered as the fundamental proarrhythmic mechanisms underlying AF development. Over the past 2 decades, large amount of evidence points to the key role of intracellular Ca2+ dysregulation in both initiation and maintenance of AF. More recently, emerging evidence reveal that NLRP3 (NACHT, LRR, PYD domain-containing 3) inflammasome pathway contributes to the substrate of both triggered activity and reentry, ultimately promoting AF. In this article, we review the current state of knowledge on Ca2+ signaling and NLRP3 inflammasome activity in AF. We also discuss the potential crosstalk between these two quintessential contributors to AF promotion.
Collapse
Affiliation(s)
- Xiaolei Wang
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, TX, USA
| | - Xiaohui Chen
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, TX, USA
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Na Li
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, TX, USA. .,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA. .,Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
15
|
The immune system of jawless vertebrates: insights into the prototype of the adaptive immune system. Immunogenetics 2020; 73:5-16. [PMID: 33159554 DOI: 10.1007/s00251-020-01182-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 10/23/2020] [Indexed: 01/23/2023]
Abstract
Jawless vertebrates diverged from an ancestor of jawed vertebrates approximately 550 million years ago. They mount adaptive immune responses to repetitive antigenic challenges, despite lacking major histocompatibility complex molecules, immunoglobulins, T cell receptors, and recombination-activating genes. Instead of B cell and T cell receptors, agnathan lymphocytes express unique antigen receptors named variable lymphocyte receptors (VLRs), which generate diversity through a gene conversion-like mechanism. Although gnathostome antigen receptors and VLRs are structurally unrelated, jawed and jawless vertebrates share essential features of lymphocyte-based adaptive immunity, including the expression of a single type of receptor on each lymphocyte, clonal expansion of antigen-stimulated lymphocytes, and the dichotomy of cellular and humoral immunity, indicating that the backbone of the adaptive immune system was established in a common ancestor of all vertebrates. Furthermore, recent evidence indicates that, unlike previously thought, agnathans have a unique classical pathway of complement activation where VLRB molecules act as antibodies instead of immunoglobulins. It seems likely that the last common ancestor of all vertebrates had an adaptive immune system resembling that of jawless vertebrates, suggesting that, as opposed to jawed vertebrates, agnathans have retained the prototype of vertebrate adaptive immunity.
Collapse
|
16
|
Hillion S, Arleevskaya MI, Blanco P, Bordron A, Brooks WH, Cesbron JY, Kaveri S, Vivier E, Renaudineau Y. The Innate Part of the Adaptive Immune System. Clin Rev Allergy Immunol 2020; 58:151-154. [PMID: 31154567 DOI: 10.1007/s12016-019-08740-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The innate immune response provides a first line of defense against common microorganisms and, for more complex and/or recurring situations where pathogens must be eliminated, an adaptive immune response has emerged and evolved to provide better protection against subsequent infections. However, such dichotomy has to be reevaluated because innate B cells (e.g., B1 and marginal zone B cells) and the newly described innate lymphoid cells (iLC) have been found to exhibit innate-like properties, such as antigen internalization, regulatory B cell functions, and helper T cell activities. In addition, the production and function of natural antibodies (nAbs) by innate B cells and their capacity to activate the classical complement pathway constitute additional important mechanisms at the junction of innate and adaptive immunity as well as the recent integration of platelets into the innate immune spectrum. There is no doubt that these mechanisms present an advantage in immunity and homeostasis particularly during the first years of life, but arguments are arising to consider that these precursors may have detrimental effects in a variety of autoimmune/inflammatory diseases, allergies and cancers, as well as in response to immunotherapy. Accordingly, and as presented in this special issue of Clinical Reviews in Allergy and Immunology, a better comprehension of the key molecular and cellular actors implicated at the crossroads of the innate and adaptive immune response represents a new challenge in our understanding of the immunological and immunopathological responses.
Collapse
Affiliation(s)
- Sophie Hillion
- UMR1227, Lymphocytes B et Autoimmunité, Univ Brest, Brest, France.,Laboratoire d'Immunologie et Immunothérapie, CHU de Brest, Brest, France
| | | | - Patrick Blanco
- Laboratoire d'Immunologie et Immunogénétique, CHU Bordeaux, Bordeaux, France
| | - Anne Bordron
- UMR1227, Lymphocytes B et Autoimmunité, Univ Brest, Brest, France
| | - Wesley H Brooks
- Department of Chemistry, University of South Florida, Tampa, FL, USA
| | | | - Srini Kaveri
- INSERM, Université Paris Descartes, Sorbonne, Paris, France
| | - Eric Vivier
- INSERM, CNRS, Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Marseille, France
| | - Yves Renaudineau
- UMR1227, Lymphocytes B et Autoimmunité, Univ Brest, Brest, France. .,Central Research Laboratory, Kazan Federal University, Kazan, Russia. .,Laboratory of Immunology and Immunotherapy, Brest University Medical School Hospital, BP 824, F-29609, Brest, France.
| |
Collapse
|
17
|
Li Q, Cui K, Wu M, Xu D, Mai K, Ai Q. Polyunsaturated Fatty Acids Influence LPS-Induced Inflammation of Fish Macrophages Through Differential Modulation of Pathogen Recognition and p38 MAPK/NF-κB Signaling. Front Immunol 2020; 11:559332. [PMID: 33123132 PMCID: PMC7572853 DOI: 10.3389/fimmu.2020.559332] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/17/2020] [Indexed: 01/18/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) not only serve as essential nutrients but also function as modulators of the immune response in marine fish. However, their immunomodulatory mechanism is poorly understood given that the underlying regulation of the innate immune response in fish has not been fully elucidated. Hence, study of the innate immunity of fish could help elucidate the mechanism by which PUFAs affect the fish immune response. Here, we used combined transcriptome analysis and in vitro experimentation to study the mechanism of LPS-induced inflammation. Transcriptome profiling indicated that LPS elicited strong pro-inflammatory responses featuring high expression levels of pathogen recognition receptors (PRRs) and cytokines along with the activation of NF-κB and MAPK signaling pathways. The transcription factor p65 alone could increase the transcription of IL1β by binding to the promoter of IL1β, and this promoting effect disappeared after mutation or deletion of its binding sites. We then examined the effects of PUFAs on the levels of gene expression and the abundance of proteins of critical kinases associated with LPS-induced inflammation. We found that LA exerts pro-inflammatory response while ALA, EPA, and DHA induced anti-inflammatory effects by modulating the expression of PRRs, phosphorylation of IKK and p38, and the nuclear translocation of p65. Overall, this study advances our understanding of the regulatory mechanisms by which PUFAs regulate LPS-induced inflammation in a non-model fish species.
Collapse
Affiliation(s)
- Qingfei Li
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & Key Laboratory of Mariculture (Ministry of Education), College of Fisheries, Ocean University of China, Qingdao, China
| | - Kun Cui
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & Key Laboratory of Mariculture (Ministry of Education), College of Fisheries, Ocean University of China, Qingdao, China
| | - Mengjiao Wu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & Key Laboratory of Mariculture (Ministry of Education), College of Fisheries, Ocean University of China, Qingdao, China
| | - Dan Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & Key Laboratory of Mariculture (Ministry of Education), College of Fisheries, Ocean University of China, Qingdao, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & Key Laboratory of Mariculture (Ministry of Education), College of Fisheries, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & Key Laboratory of Mariculture (Ministry of Education), College of Fisheries, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
18
|
Li Q, Wu M, Cui K, Zhu S, Mai K, Ai Q. Characterization of antiviral immune response induced by poly(I:C) in macrophages of farmed large yellow croaker (Larimichthys crocea). FISH & SHELLFISH IMMUNOLOGY 2020; 104:663-672. [PMID: 32497725 DOI: 10.1016/j.fsi.2020.05.066] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
Fish tend to rely more on their innate immunity to executing defense against viral infection by inducing antiviral gene production. However, the expression pattern and underlying mechanism of fish antiviral responses have yet to be fully defined. In the present study, an in vitro viral infection model was established by exposing head kidney-derived macrophages of large yellow croaker to virus analog, poly(I:C). Transcriptome analysis indicated that poly(I:C) appeared to induce potent antiviral activity featuring dominant interferon a3 (IFNa3) expression through activation of toll-like receptors (TLRs)/TIR-domain-containing adapter-inducing interferon-β (TRIF) and retinoic acid-inducible gene I-like receptors (RLRs)/mitochondrial antiviral signaling protein (MAVS) pathways. Inhibition of nuclear factor κB (NF-κB) and stimulator of interferon genes (STING)/interferon regulatory factor 3 (IRF3) pathways diminished the expression of IFNa3. Mechanistically, transcription factors including p65 and IRF3 could promote expression of IRF3, and activated IRF3 alone further increased the transcriptional activity of IFNa3. We also characterized the promoter of IFNa3 with direct IRF3 binding site which was sufficient to render the transcription of IFNa3. This effect was attenuated after deletion or mutation of the IRF3 binding sites. Taken together, our findings illustrate the distinct transcriptional profiling of fish macrophages triggered by poly(I:C). Also, this work provides new insights into the molecular mechanism underpinning coordinated activation of pathogen recognition and signaling transduction in the antiviral responses of non-model fish species.
Collapse
Affiliation(s)
- Qingfei Li
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & Key Laboratory of Mariculture (Ministry of Education), College of Fisheries, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, People's Republic of China
| | - Mengjiao Wu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & Key Laboratory of Mariculture (Ministry of Education), College of Fisheries, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, People's Republic of China
| | - Kun Cui
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & Key Laboratory of Mariculture (Ministry of Education), College of Fisheries, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, People's Republic of China
| | - Si Zhu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & Key Laboratory of Mariculture (Ministry of Education), College of Fisheries, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, People's Republic of China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & Key Laboratory of Mariculture (Ministry of Education), College of Fisheries, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, People's Republic of China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & Key Laboratory of Mariculture (Ministry of Education), College of Fisheries, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, People's Republic of China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong, 266237, People's Republic of China.
| |
Collapse
|
19
|
A Toll-Spätzle Pathway in the Immune Response of Bombyx mori. INSECTS 2020; 11:insects11090586. [PMID: 32882853 PMCID: PMC7564906 DOI: 10.3390/insects11090586] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 01/12/2023]
Abstract
The Toll-Spätzle pathway is a crucial defense mechanism in insect innate immunity, it plays an important role in fighting against pathogens through the regulation of antimicrobial peptide gene expression. Although Toll and Spätzle (Spz) genes have been identified in Bombyx mori, little is known regarding the specific Spz and Toll genes members involved in innate immunity. There is also limited direct evidence of the interaction between Spz and Toll. In this study, the dual-luciferase reporter assay results showed that BmToll11 and BmToll9-1 could activate both drosomycin and diptericin promoters in S2 cells. Furthermore, BmToll11, BmToll9-1, and five BmSpzs genes were found to be significantly upregulated in B. mori infected by Escherichia coli and Staphylococcus aureus. Additionally, the yeast two-hybrid assay results confirmed that BmSpz2, but not other BmSpzs, could interact with both BmToll11 and BmToll9-1. These findings suggest that the activated BmSpz2 can bind with BmToll11 and BmToll9-1 to induce the expression of AMPs after the silkworm is infected by pathogens.
Collapse
|
20
|
Angeletti M, Hsu WLN, Majo N, Moriyama H, Moriyama EN, Zhang L. Adaptations of Interferon Regulatory Factor 3 with Transition from Terrestrial to Aquatic Life. Sci Rep 2020; 10:4508. [PMID: 32161340 PMCID: PMC7066157 DOI: 10.1038/s41598-020-61365-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 02/10/2020] [Indexed: 01/19/2023] Open
Abstract
Interferon regulatory factor 3 (IRF3) and IRF7 are closely related IRF members and the major factors for the induction of interferons, a key component in vertebrate innate immunity. However, there is limited knowledge regarding the evolution and adaptation of those IRFs to the environments. Two unique motifs in IRF3 and 7 were identified. One motif, GASSL, is highly conserved throughout the evolution of IRF3 and 7 and located in the signal response domain. Another motif, DPHK, is in the DNA-binding domain. The ancestral protein of IRF3 and 7 seemed to possess the DPHK motif. In the ray-finned fish lineage, while the DPHK is maintained in IRF7, the motif in IRF3 is changed to NPHK with a D → N amino acid substitution. The D → N substitution are also found in amphibian IRF3 but not in amphibian IRF7. Terrestrial animals such as reptiles and mammals predominantly use DPHK sequences in both IRF3 and 7. However, the D → N substitution in IRF3 DPHK is again found in cetaceans such as whales and dolphins as well as in marsupials. These observations suggest that the D → N substitutions in the IRF3 DPHK motif is likely to be associated with vertebrate's adaptations to aquatic environments and other environmental changes.
Collapse
Affiliation(s)
- Monica Angeletti
- School of Biological Sciences, University of Nebraska, Lincoln, NE, 68588, USA
| | - Wan-Ling Nicole Hsu
- School of Biological Sciences, University of Nebraska, Lincoln, NE, 68588, USA
- Department of Biostatistics, University of Washington, Washington, USA
| | - Nashaat Majo
- School of Biological Sciences, University of Nebraska, Lincoln, NE, 68588, USA
| | - Hideaki Moriyama
- School of Biological Sciences, University of Nebraska, Lincoln, NE, 68588, USA
| | - Etsuko N Moriyama
- School of Biological Sciences, University of Nebraska, Lincoln, NE, 68588, USA.
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, 68588, USA.
| | - Luwen Zhang
- School of Biological Sciences, University of Nebraska, Lincoln, NE, 68588, USA.
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE, 68583, USA.
| |
Collapse
|
21
|
Zhou Z, Ding S, He Y, Ren J, Li W, Zhang Q. Northeast Chinese lamprey (Lethenteron morii) MyD88: Identification, expression, and functional characterization. FISH & SHELLFISH IMMUNOLOGY 2019; 94:539-547. [PMID: 31533084 DOI: 10.1016/j.fsi.2019.09.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/05/2019] [Accepted: 09/14/2019] [Indexed: 06/10/2023]
Abstract
Myeloid differentiation factor 88 (MyD88) is a key adaptor of Toll-like receptors (TLR), an important pattern recognition receptor of the innate immune system. To study the origin and evolution of the vertebrate TLR signaling pathway in innate immune systems, we analyzed the biological characteristics and functions of the MyD88 gene in Northeast Chinese lamprey (Lethenteron morii) using PCR amplification, real-time PCR analysis, dual luciferase reporter gene assay, immunofluorescence assay, and other methods. Bioinformatics analysis showed that LmMyD88 has a modular structure consisting of Toll/IL-1R domain (TIR) and death domain (DD), which is typical of the MyD88 family. A phylogenetic tree showed that the homology of LmMyD88 was consistent with the phylogenetic status of lampreys. Tissue expression analysis indicated that the mRNA expression was expressed in some normal tissues of larval and adult L. morii. Real-time PCR analysis showed that the expression of LmMyD88 in tissues, such as gill and kidney, of the adult increased significantly after infection by Pseudomonas aeruginosa. Subcellular localization results showed that LmMyD88 was expressed in the nucleus, cytoplasm, and other parts. A dual luciferase reporter assay indicated that LmMyD88 activated nuclear factor kappa B downstream of the TLR signaling pathway. This study suggested that LmMyD88 might play an important role in the innate immune signal transduction process of L. morii.
Collapse
Affiliation(s)
- Zebin Zhou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Shaoqing Ding
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Yuanyuan He
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Jianfeng Ren
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, 48824, USA
| | - Qinghua Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
22
|
The Vertebrate TLR Supergene Family Evolved Dynamically by Gene Gain/Loss and Positive Selection Revealing a Host–Pathogen Arms Race in Birds. DIVERSITY-BASEL 2019. [DOI: 10.3390/d11080131] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The vertebrate toll-like receptor (TLRs) supergene family is a first-line immune defense against viral and non-viral pathogens. Here, comparative evolutionary-genomics of 79 vertebrate species (8 mammals, 48 birds, 11 reptiles, 1 amphibian, and 11 fishes) revealed differential gain/loss of 26 TLRs, including 6 (TLR3, TLR7, TLR8, TLR14, TLR21, and TLR22) that originated early in vertebrate evolution before the diversification of Agnatha and Gnathostomata. Subsequent dynamic gene gain/loss led to lineage-specific diversification with TLR repertoires ranging from 8 subfamilies in birds to 20 in fishes. Lineage-specific loss of TLR8-9 and TLR13 in birds and gains of TLR6 and TLR10-12 in mammals and TLR19-20 and TLR23-27 in fishes. Among avian species, 5–10% of the sites were under positive selection (PS) (omega 1.5–2.5) with radical amino-acid changes likely affecting TLR structure/functionality. In non-viral TLR4 the 20 PS sites (posterior probability PP > 0.99) likely increased ability to cope with diversified ligands (e.g., lipopolysaccharide and lipoteichoic). For viral TLR7, 23 PS sites (PP > 0.99) possibly improved recognition of highly variable viral ssRNAs. Rapid evolution of the TLR supergene family reflects the host–pathogen arms race and the coevolution of ligands/receptors, which follows the premise that birds have been important vectors of zoonotic pathogens and reservoirs for viruses.
Collapse
|
23
|
Liu H, Huo L, Yu Q, Ge D, Chi C, Lv Z, Wang T. Molecular insights of a novel cephalopod toll-like receptor homologue in Sepiella japonica, revealing its function under the stress of aquatic pathogenic bacteria. FISH & SHELLFISH IMMUNOLOGY 2019; 90:297-307. [PMID: 31059811 DOI: 10.1016/j.fsi.2019.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/01/2019] [Accepted: 05/03/2019] [Indexed: 06/09/2023]
Abstract
Toll-like receptors (TLRs) play an important role in defense response to pathogens in mollusk. In this study the first TLR from Sepiella japonica (named as SjTLR) was functionally characterized, and its full-length cDNA consisted of 3914bp (GenBank accession no. AQY56780.1) including an open reading frame of 3582bp, encoding a putative protein of 1193 amino acids. Its theoretical molecular weight was 137.87 KDa and the predicted isoelectric point was 3.69. The derived amino acids sequence comprised of an extracellular domain including 26 amino acids signal peptide and eleven leucine-rich repeats (LRR), capped with LRRCT and LRRNT followed by transmembrane domain and cytoplasmic Toll/IL-1R domain (TIR). In addition, 12 potential N-linked glycosylation sites were present in the ectodomain to influence protein trafficking, surface presentation and ligand recognition. Multiple sequence alignment and phylogenetic analysis revealed that SjTLR shared the highest similarity to that of Euprymna scolopes and they fell into the same clade. Real-time PCR showed SjTLR expressed constitutively in all tested tissues, including gill, liver, brain, muscle, intestine, heart, lobus opticus and stomach, but showed different expression levels with genders. The highest expression was in the liver, and the lowest was in stomach for both genders. The functional domain region sequences encoding LRRs domain protein and TIR domain containing protein (TcpB) were expressed in BL21(DE3) respectively and purified with Ni-NAT Superflow resin conforming to the expected molecular weight. The cellular localization of SjTLR in HEK293 cells was conducted and plasma membrane localization was detected. SjLRRs internalization upon the activation of LPS was also observed, and dramatic redistribution of SjLRRs in the cytoplasm with distinct perinuclear accumulation was found. After SjTLR transfection Toll/NF-κB signaling pathway was active in HEK293 treated with LPS and TNFɑ. The nuclear related genes may also be activated by NF-κB in the nucleus, and the corresponding mRNA was transferred through the intracellular signal transduction pathway, so that IL-6 cytokines could be synthesized and released. After infection by Vibrio parahemolyticus and Aeromonas hydrophila the expression of SjTLR were upregulated with time-dependent manner. These findings might be valuable for understanding the innate immune signaling pathways of S.japonica and enabling future studies on host-pathogen interactions.
Collapse
Affiliation(s)
- Huihui Liu
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Liping Huo
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Qiuhan Yu
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Delong Ge
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Changfeng Chi
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China.
| | - Zhenming Lv
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Tianming Wang
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| |
Collapse
|
24
|
Comparative study on pattern recognition receptors in non-teleost ray-finned fishes and their evolutionary significance in primitive vertebrates. SCIENCE CHINA-LIFE SCIENCES 2019; 62:566-578. [PMID: 30929190 DOI: 10.1007/s11427-019-9481-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 11/28/2018] [Indexed: 12/11/2022]
Abstract
Pattern recognition receptors (PRRs) play important roles in innate immunity system and trigger the specific pathogen recognition by detecting the pathogen-associated molecular patterns. The main four PRRs components including Toll-like receptors (TLRs), RIG-I-like receptors (RLRs), NOD-like receptors (NLRs) and C-type lectin receptors (CLRs) were surveyed in the five genomes of non-teleost ray-finned fishes (NTR) including bichir (Polypterus senegalus), American paddlefish (Polyodon spathula), alligator gar (Atractosteus spatula), spotted gar (Lepisosteus oculatus) and bowfin (Amia calva), representing all the four major basal groups of ray-finned fishes. The result indicates that all the four PRRs components have been well established in these NTR fishes. In the RLR-MAVS signal pathway, which detects intracellular RNA ligands to induce production of type I interferons (IFNs), the MAVS was lost in bichir particularly. Also, the essential genes of recognition of Lipopolysaccharide (LPS) commonly in mammals like MD2, LY96 and LBP could not be identified in NTR fishes. It is speculated that TLR4 in NTR fishes may act as a cooperator with other PRRs and has a different pathway of recognizing LPS compared with that in mammals. In addition, we provide a survey of NLR and CLR in NTR fishes. The CLRs results suggest that Group V receptors are absent in fishes and Group II and VI receptors are well established in the early vertebrate evolution. Our comprehensive research of PRRs involving NTR fishes provides a new insight into PRR evolution in primitive vertebrate.
Collapse
|
25
|
Wu M, Guo L, Zhu KC, Guo HY, Liu BS, Zhang N, Jiang SG, Zhang DC. Molecular characterization of toll-like receptor 14 from golden pompano Trachinotus ovatus (Linnaeus, 1758) and its expression response to three types of pathogen-associated molecular patterns. Comp Biochem Physiol B Biochem Mol Biol 2019; 232:1-10. [PMID: 30825647 DOI: 10.1016/j.cbpb.2019.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/22/2019] [Accepted: 02/22/2019] [Indexed: 01/17/2023]
Abstract
Toll-like receptors (TLRs) play crucial roles in the host immune system, including recognizing invading pathogenic microbes and triggering immune reactions. Toll-like receptor 14 (TLR14) has been identified in several fish species, but its function requires further study. In this study, TLR14 (designed as ToTLR14) from golden pompano (Trachinotus ovatus), was characterized and investigated its expression responses to three types of pathogen-associated molecular patterns. The full-length ToTLR14 cDNA was 3191 bp, and the deduced protein consisted of 876 amino acids. The ToTLR14 protein included 5 leucine rich repeat (LRR) domains, a C-terminal LRR domain in the extracellular region, a transmembrane domain and a Toll/interleukin (IL)-1 receptor (TIR) domain in the cytoplasmic region, which fits with the typical TLR domain architecture. The genomic organization of ToTLR14 was also identified and consisted of four introns and five exons. The predicted promoter region of ToTLR14 contained several putative transcription factor binding sites. Phylogenetic analysis showed that ToTLR14 was clustered into the TLR1 subfamily clade. Quantitative real-time (qRT-PCR) analysis indicated that ToTLR14 were ubiquitously expressed in all examined tissues, with higher mRNA levels observed in the skin, kidney and intestine, while the lowest level was detected in the stomach. After injection with polyinosinic:polycytidylic acid [poly(I:C)], flagellin or lipopolysaccharides (LPS), the expression level of ToTLR14 mRNA were significantly upregulated in various tissues of golden pompano. These results indicate that ToTLR14 may play an important role in systemic as well as mucosal defence after viral and bacterial stimulation.
Collapse
Affiliation(s)
- Meng Wu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, 510300 Guangzhou, Guangdong Province, China; College of Fisheries and Life Science, Shanghai Ocean University, 200090 Shanghai, China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China
| | - Liang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, 510300 Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China
| | - Ke-Cheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, 510300 Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China
| | - Hua-Yang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, 510300 Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China
| | - Bao-Suo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, 510300 Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China
| | - Nan Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, 510300 Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China
| | - Shi-Gui Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, 510300 Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China
| | - Dian-Chang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, 510300 Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China.
| |
Collapse
|
26
|
Li C, Wang D, Guan X, Liu S, Su P, Li Q, Pang Y. HMGB1 from Lampetra japonica promotes inflammatory activation in supraneural body cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 92:50-59. [PMID: 30423344 DOI: 10.1016/j.dci.2018.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 11/08/2018] [Accepted: 11/08/2018] [Indexed: 06/09/2023]
Abstract
High mobility group box protein 1 (HMGB1) acts as a potent proinflammatory cytokine that involves in the pathogenesis of diverse inflammatory and infectious disorders. In previous study, we identified a homolog of HMGB1 in the Lampetra japonica(L-HMGB1), and further revealed that L-HMGB1 was able to induce the production of tumor necrosis factor-α (TNF-α) in activated human acute monocytic leukemia cells. However, the role of L-HMGB1 played in lamprey was unknown. Here, we found that L-HMGB1 was located in the cytoplasm of lamprey leukocytes and supraneural body (SB) cells. Importantly, we demonstrated that L-HMGB1 participated in activation of various key molecules in inflammation signaling pathway. LPS also promoted the release of L-HMGB1 from SB cells similar to Hu-HMGB1, and then extracellular L-HMGB1 in turn induced the release of cytokines. This study revealed that the synergistic action of LPS and L-HMGB1 played a crucial role in inflammation in lamprey. Our results suggested that lampreys used L-HMGB1 to activate their innate immunity for the purpose of pathogen defense.
Collapse
Affiliation(s)
- Changzhi Li
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Dong Wang
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Xin Guan
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Shuang Liu
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Peng Su
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Qingwei Li
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China.
| | - Yue Pang
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China.
| |
Collapse
|
27
|
Chen Y, Aweya JJ, Sun W, Wei X, Gong Y, Ma H, Zhang Y, Wen X, Li S. SpToll1 and SpToll2 modulate the expression of antimicrobial peptides in Scylla paramamosain. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 87:124-136. [PMID: 29935285 DOI: 10.1016/j.dci.2018.06.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 06/16/2018] [Accepted: 06/16/2018] [Indexed: 06/08/2023]
Abstract
Tolls and Toll-like receptors (TLRs) were the first pattern recognition receptors (PRRs) identified to play key roles in host innate immunity. However, relatively little is known about other types of Toll-like receptors in Scylla paramamosain, although a Toll-like receptor (SpToll1) has recently been cloned. In this study, we cloned and characterized another novel Toll-like receptor 2 (SpToll2) from S. paramamosain. The full-length cDNA of SpToll2 is 3391 bp with a 2646 bp open reading frame (ORF) encoding a putative protein of 881 amino acids, and predicted to contain six extracellular leucine-rich repeat (LRR) domains, a transmembrane domain and an intracellular Toll/IL-1 receptor (TIR) domain. Phylogenetic analysis revealed that SpToll2 clustered with Drosophila Toll1, and shared high homology with PtToll4. Real-time qPCR analysis showed that SpToll2 was widely expressed in all tissues tested, with the highest level found in hemocytes and hepatopancreas while the lowest in heart and muscle. The transcript levels of both SpToll1 and SpToll2 in mud crabs hemocytes was induced following challenge with Vibrio parahaemolyticus, Staphylococcus aureus, Polyinosinic: polycytidylic acid (Poly I:C) and white spot syndrome virus (WSSV). In addition, recombinant SpToll1-LRR and SpToll2-LRR proteins could bind to V. parahaemolyticus, S. aureus, Escherichia coli, and Beta Streptococcus. In order to study the signaling pathway of AMPs' expression in mud crab, RNA interference were used to test the expression of SpAMPs after the challenges with V. parahaemolyticus or S. aureus. The data suggested that SpToll1and SpToll2 could regulate the transcripts of several AMPs and four immune related mediators (SpMyD88, SpTube, SpPelle and SpTRAF6) at different scale. While silencing of SpToll1 post pathogens challenge attenuated the expression of SpHistin, SpALF1 and SpALF5 in mud crab's hemocytes, depletion of SpToll2 post pathogens challenge inhibited the expression of SpALF1-6, SpGRP, SpArasin and SpHyastastin. Furthermore, the results of overexpression assay also showed SpToll1 and SpToll2 could enhance the promoter activities of SpALFs in mud crab. Taken together, these results indicated that SpToll1 and SpToll2 might play important roles in host defense against pathogen invasions in S. paramamosain.
Collapse
Affiliation(s)
- Yan Chen
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Marine Biology Institute, Shantou University, Shantou 515063, China
| | - Jude Juventus Aweya
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Marine Biology Institute, Shantou University, Shantou 515063, China
| | - Wanwei Sun
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Marine Biology Institute, Shantou University, Shantou 515063, China
| | - Xiaoyuan Wei
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Marine Biology Institute, Shantou University, Shantou 515063, China
| | - Yi Gong
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Marine Biology Institute, Shantou University, Shantou 515063, China
| | - Hongyu Ma
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Marine Biology Institute, Shantou University, Shantou 515063, China
| | - Yueling Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Marine Biology Institute, Shantou University, Shantou 515063, China
| | - Xiaobo Wen
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Marine Biology Institute, Shantou University, Shantou 515063, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Marine Biology Institute, Shantou University, Shantou 515063, China.
| |
Collapse
|
28
|
Nie L, Cai SY, Shao JZ, Chen J. Toll-Like Receptors, Associated Biological Roles, and Signaling Networks in Non-Mammals. Front Immunol 2018; 9:1523. [PMID: 30034391 PMCID: PMC6043800 DOI: 10.3389/fimmu.2018.01523] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/19/2018] [Indexed: 01/18/2023] Open
Abstract
The innate immune system is the first line of defense against pathogens, which is initiated by the recognition of pathogen-associated molecular patterns (PAMPs) and endogenous damage-associated molecular patterns (DAMPs) by pattern recognition receptors (PRRs). Among all the PRRs identified, the toll-like receptors (TLRs) are the most ancient class, with the most extensive spectrum of pathogen recognition. Since the first discovery of Toll in Drosophila melanogaster, numerous TLRs have been identified across a wide range of invertebrate and vertebrate species. It seems that TLRs, the signaling pathways that they initiate, or related adaptor proteins are essentially conserved in a wide variety of organisms, from Porifera to mammals. Molecular structure analysis indicates that most TLR homologs share similar domain patterns and that some vital participants of TLR signaling co-evolved with TLRs themselves. However, functional specification and emergence of new signaling pathways, as well as adaptors, did occur during evolution. In addition, ambiguities and gaps in knowledge still exist regarding the TLR network, especially in lower organisms. Hence, a systematic review from the comparative angle regarding this tremendous signaling system and the scenario of evolutionary pattern across Animalia is needed. In the current review, we present overview and possible evolutionary patterns of TLRs in non-mammals, hoping that this will provide clues for further investigations in this field.
Collapse
Affiliation(s)
- Li Nie
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Shi-Yu Cai
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Jian-Zhong Shao
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
29
|
Genomic evidence of gene duplication and adaptive evolution of Toll like receptors (TLR2 and TLR4) in reptiles. Int J Biol Macromol 2018; 109:698-703. [DOI: 10.1016/j.ijbiomac.2017.12.123] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 12/31/2022]
|
30
|
Du K, Zhong Z, Fang C, Dai W, Shen Y, Gan X, He S. Ancient duplications and functional divergence in the interferon regulatory factors of vertebrates provide insights into the evolution of vertebrate immune systems. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 81:324-333. [PMID: 29253557 DOI: 10.1016/j.dci.2017.12.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/14/2017] [Accepted: 12/14/2017] [Indexed: 06/07/2023]
Abstract
Interferon regulatory factors (IRFs) were first discovered as transcription factors that regulate the transcription of human interferon (IFN)-β. Increasing evidence shows that they might be important players involved in Adaptive immune system (AIS) evolution. Although numbers of IRFs have been identified in chordates, the evolutionary history and functional diversity of this gene family during the early evolution of vertebrates have remained obscure. Using IRF HMM profile and HMMER searches, we identified 148 IRFs in 11 vertebrates and 4 protochordates. For them, we reconstructed the phylogenetic relationships, determined the synteny conservation, investigated the profile of natural selection, and analyzed the expression patterns in four "living fossil" vertebrates: lamprey, elephant shark, coelacanth and bichir. The results from phylogeny and synteny analysis imply that vertebrate IRFs evolved from three predecessors, instead of four as suggested in a previous study, as results from an ancient duplication followed by special expansions and lost during the vertebrate evolution. The profile of natural selection and expression reveals functional dynamics during the process. Together, they suggest that the 2nd whole-genome duplication (2WGD) provided raw materials for innovation in the IRF family, and that the birth of type-I IFN might be an important factor inducing the establishment of IRF-mediated immune networks. As a member involved in the AIS evolution, IRF provide insights into the process and mechanism involved in the complexity and novelties of vertebrate immune systems.
Collapse
Affiliation(s)
- Kang Du
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zaixuan Zhong
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chengchi Fang
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wei Dai
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yanjun Shen
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaoni Gan
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China.
| | - Shunping He
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China.
| |
Collapse
|
31
|
Su P, Liu X, Pang Y, Liu C, Li R, Zhang Q, Liang H, Wang H, Li Q. The archaic roles of the lamprey NF-κB (lj-NF-κB) in innate immune responses. Mol Immunol 2017; 92:21-27. [PMID: 29031044 DOI: 10.1016/j.molimm.2017.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/30/2017] [Accepted: 10/02/2017] [Indexed: 11/27/2022]
Abstract
The nuclear factor-kappa B (NF-κB) is a pleiotropic transcription factor regulating the expression of genes involved in various biological processes including the immune response and inflammation. Lamprey is regarded as a key species to provide meaningful clues for understanding the evolution of immune system; nevertheless, no information about lamprey NF-κB is reported. Thus, we have characterized a NF-κB homolog in lamprey (lj-NF-κB) for the deeper understanding of the role it played in lamprey immune system. The sequence and 3D structure analyses demonstrate that lj-NF-κB contained a Rel homology domain (RHD) and seven ankyrin repeats domains (ANKs), which would exhibit functional similarities to NF-κB superfamily proteins. This hypothesis was further proved by experiments. We found that the RHD of lj-NF-κB could interact with a mammalian κB response element, translocate to the nucleus to modulate gene (IL-6, IL-1β and TNF-α) expression, and the nuclear localization signals (NLS) was essential for the nuclear translocation. Furthermore, the ANKs of lj-NF-κB are the inhibition signal for the RHD of lj-NF-κB. The present results allow us to surmise that the lj-NF-κB should play a key role in immune response of lamprey, and the function of NF-κB has been maintained during evolution.
Collapse
Affiliation(s)
- Peng Su
- College of Life Science, Liaoning Normal University, Dalian 116082, China; Lamprey Research Center, Liaoning Normal University, Dalian 116082, China
| | - Xin Liu
- College of Life Science, Liaoning Normal University, Dalian 116082, China; Lamprey Research Center, Liaoning Normal University, Dalian 116082, China
| | - Yue Pang
- College of Life Science, Liaoning Normal University, Dalian 116082, China; Lamprey Research Center, Liaoning Normal University, Dalian 116082, China
| | - Chang Liu
- College of Life Science, Liaoning Normal University, Dalian 116082, China; Lamprey Research Center, Liaoning Normal University, Dalian 116082, China
| | - Ranran Li
- College of Life Science, Liaoning Normal University, Dalian 116082, China; Lamprey Research Center, Liaoning Normal University, Dalian 116082, China
| | - Qiong Zhang
- College of Life Science, Liaoning Normal University, Dalian 116082, China; Lamprey Research Center, Liaoning Normal University, Dalian 116082, China
| | - Hongfang Liang
- College of Life Science, Liaoning Normal University, Dalian 116082, China; Lamprey Research Center, Liaoning Normal University, Dalian 116082, China
| | - Hao Wang
- College of Life Science, Liaoning Normal University, Dalian 116082, China; Lamprey Research Center, Liaoning Normal University, Dalian 116082, China
| | - Qingwei Li
- College of Life Science, Liaoning Normal University, Dalian 116082, China; Lamprey Research Center, Liaoning Normal University, Dalian 116082, China.
| |
Collapse
|
32
|
Sun JJ, Xu S, He ZH, Shi XZ, Zhao XF, Wang JX. Activation of Toll Pathway Is Different between Kuruma Shrimp and Drosophila. Front Immunol 2017; 8:1151. [PMID: 28979261 PMCID: PMC5611483 DOI: 10.3389/fimmu.2017.01151] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/31/2017] [Indexed: 01/03/2023] Open
Abstract
The Toll pathway is essential for inducing an immune response to defend against bacterial invasion in vertebrates and invertebrates. Although Toll receptors and the transcription factor Dorsal were identified in different shrimp, relatively little is known about how the Toll pathway is activated or the function of the pathway in shrimp antibacterial immunity. In this study, three Tolls (Toll1–3) and the Dorsal were identified in Marsupenaeus japonicus. The Toll pathway can be activated by Gram-positive (G+) and Gram-negative (G−) bacterial infection. Unlike Toll binding to Spätzle in Drosophila, shrimp Tolls could directly bind to pathogen-associated molecular patterns from G+ and G− bacteria, resulting in Dorsal translocation into nucleus to regulate the expression of different antibacterial peptides (AMPs) in the clearance of infected bacteria. These findings suggest that shrimp Tolls are pattern recognition receptors and the Toll pathway in shrimp is different from the Drosophila Toll pathway but identical with the mammalian Toll-like receptor pathway in its activation and antibacterial functions.
Collapse
Affiliation(s)
- Jie-Jie Sun
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, China
| | - Sen Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, China
| | - Zhong-Hua He
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, China
| | - Xiu-Zhen Shi
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, China
| |
Collapse
|
33
|
Liu F, Su B, Fu Q, Shang M, Gao C, Tan F, Li C. Identification, characterization and expression analysis of TLR5 in the mucosal tissues of turbot (Scophthalmus maximus L.) following bacterial challenge. FISH & SHELLFISH IMMUNOLOGY 2017; 68:272-279. [PMID: 28705722 DOI: 10.1016/j.fsi.2017.07.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/01/2017] [Accepted: 07/08/2017] [Indexed: 06/07/2023]
Abstract
TLRs (Toll-like receptors) are very important pathogen pattern recognition receptors, which control the host immune responses against pathogens through recognition of molecular patterns specific to microorganisms. In this regard, investigation of the turbot TLRs could help to understand the immune responses for pathogen recognition. Here, transcripts of two TLR5 (TLR5a and TLR5b) were captured, and their protein structures were also predicted. Meanwhile, we characterized their expression patterns with emphasis on mucosal barriers following different bacterial infection. The phylogenetic analysis revealed the turbot TLR5 genes showed the closest relationship to Paralichthys olivaceus. These two TLR5 genes were ubiquitously expressed in healthy tissues although expression levels varied among the tested tissues. In addition, the two copies of turbot TLR5 showed different expression patterns after bacterial infections. After Vibrio anguillarum infection, TLR5a was generally up-regulated in intestine and skin while down-regulated in gill, while TLR5b showed a general down-regulation in mucosal tissues. After Streptococcus iniae infection, the TLR5a was down-regulated at 2 h while generally up-regulated after 4 h in mucosal tissues. Interestingly, the TLR5b was up-regulated in intestine while down-regulated in skin and gill after Streptococcus iniae infection. These findings suggested a possible irreplaceable role of TLR5 in the immune responses to the infections of a broad range of pathogens that include Gram-negative and Gram-positive bacteria. Future studies should apply the bacteriological and immune-histochemical techniques to study the main sites on the mucosal tissue for bacteria entry and identify the ligand specificity of the turbot TLRs after challenge.
Collapse
Affiliation(s)
- Fengqiao Liu
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Baofeng Su
- National and Local Joint Engineering Laboratory of Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; Ministry of Agriculture Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Qiang Fu
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Mei Shang
- National and Local Joint Engineering Laboratory of Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; Ministry of Agriculture Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Chengbin Gao
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Fenghua Tan
- School of International Education and Exchange, Qingdao Agricultural University, Qingdao 266109, China
| | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
34
|
Li S, Wang G, Liu D, Liu Q, Hu G. Cloning and expression analysis of a Toll-like receptor 21 (TLR21) gene from turbot, Scophthalmus maximus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 73:163-168. [PMID: 28359672 DOI: 10.1016/j.dci.2017.03.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 06/07/2023]
Abstract
Toll-like receptor 21 (TLR21) is a non-mammalian TLR recognizing unmethylated CpG DNA and considered as a functional homolog of mammalian TLR9. In the present study, a TLR21 gene was cloned from turbot, Scophthalmus maximus, its immune responsive expression was subsequently studied in vivo. The turbot (Sm)TLR21 gene is an intronless gene with a length of 3527 bp and encodes a peptide of 984 amino acids. The deduced protein possesses a signal peptide sequence, a leucine-rich repeat (LRR) domain composed of 16 LRR motifs, a transmembrane (TM) region and a Toll/interleukin-1 receptor (TIR) domain. Phylogenetic analysis grouped it with other teleost TLR21s. Quantitative real-time PCR (qPCR) analysis demonstrated the constitutive expression of SmTLR21 mRNA in all twelve examined tissues with higher levels in the lymphomyeloid-rich tissues like spleen and head kidney. Further, upon stimulation with polyinosinic: polycytidylic acid [poly(I:C)], turbot reddish body iridovirus (TRBIV) and CpG oligodeoxynucleotides (CpG-ODN) 2395, the SmTLR21 mRNA expression was up-regulated in the gills, head kidney, spleen and muscle. The maximum increases of SmTLR21 transcript levels ranged from 1.3 to 8.1-fold and appeared at 3 h to 5 day post-injection depending on different organs and stimuli. These findings suggest that SmTLR21 may play an important role in the immune responses to the infections of a broad range of pathogens that include RNA and DNA viruses and bacteria.
Collapse
Affiliation(s)
- Song Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Guanjie Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Dahai Liu
- First Institute of Oceanography, State Oceanic Administration of China, Qingdao 266061, China
| | - Qiuming Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Guobin Hu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
35
|
Takagi M, Takakubo Y, Pajarinen J, Naganuma Y, Oki H, Maruyama M, Goodman SB. Danger of frustrated sensors: Role of Toll-like receptors and NOD-like receptors in aseptic and septic inflammations around total hip replacements. J Orthop Translat 2017; 10:68-85. [PMID: 29130033 PMCID: PMC5676564 DOI: 10.1016/j.jot.2017.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The innate immune sensors, Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), can recognize not only exogenous pathogen-associated molecular patterns (PAMPs), but also endogenous molecules created upon tissue injury, sterile inflammation, and degeneration. Endogenous ligands are called damage-associated molecular patterns (DAMPs), and include endogenous molecules released from activated and necrotic cells as well as damaged extracellular matrix. TLRs and NLRs can interact with various ligands derived from PAMPs and DAMPs, leading to activation and/or modulation of intracellular signalling pathways. Intensive research on the innate immune sensors, TLRs and NLRs, has brought new insights into the pathogenesis of not only various infectious and rheumatic diseases, but also aseptic foreign body granuloma and septic inflammation of failed total hip replacements (THRs). In this review, recent knowledge is summarized on the innate immune system, including TLRs and NLRs and their danger signals, with special reference to their possible role in the adverse local host response to THRs. Translational potential of this article: A clear understanding of the roles of Toll-like receptors and NOD-like receptors in aseptic and septic loosening of joint replacements will facilitate potential strategies to mitigate these events, thereby extending the longevity of implants in humans.
Collapse
Affiliation(s)
- Michiaki Takagi
- Department of Orthopaedic Surgery, Yamagata University Faculty of Medicine, Yamagata City, Yamagata, Japan
| | - Yuya Takakubo
- Department of Orthopaedic Surgery, Yamagata University Faculty of Medicine, Yamagata City, Yamagata, Japan
| | - Jukka Pajarinen
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Yasushi Naganuma
- Department of Orthopaedic Surgery, Yamagata University Faculty of Medicine, Yamagata City, Yamagata, Japan
| | - Hiroharu Oki
- Department of Orthopaedic Surgery, Yamagata University Faculty of Medicine, Yamagata City, Yamagata, Japan
| | - Masahiro Maruyama
- Department of Orthopaedic Surgery, Yamagata University Faculty of Medicine, Yamagata City, Yamagata, Japan.,Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| |
Collapse
|
36
|
Newmark H, Dantoft W, Ghazal P. Evolutionary Origin of the Interferon-Immune Metabolic Axis: The Sterol-Vitamin D Link. Front Immunol 2017; 8:62. [PMID: 28232830 PMCID: PMC5298971 DOI: 10.3389/fimmu.2017.00062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/16/2017] [Indexed: 12/24/2022] Open
Abstract
In vertebrate animals, the sterol metabolic network is emerging as a central player in immunity and inflammation. Upon infection, flux in the network is acutely moderated by the interferon (IFN) response through direct molecular and bi-directional communications. How sterol metabolism became linked to IFN control and for what purpose is not obvious. Here, we deliberate on the origins of these connections based on a systematic review of the literature. A narrative synthesis of publications that met eligibility criteria allowed us to trace an evolutionary path and functional connections between cholesterol metabolism and immunity. The synthesis supports an ancestral link between toxic levels of cholesterol-like products and the vitamin D receptor (VDR). VDR is an ancient nuclear hormone receptor that was originally involved in the recognition and detoxification of xenobiotic marine biotoxins exhibiting planar sterol ring scaffolds present in aquatic environments. Coadaptation of this receptor with the acquisition of sterol biosynthesis and IFNs in vertebrate animals set a stage for repurposing and linking a preexisting host-protection mechanism of harmful xenobiotics to become an important regulator in three key interlinked biological processes: bone development, immunity, and calcium homeostasis. We put forward the hypothesis that sterol metabolites, especially oxysterols, have acted as evolutionary drivers in immunity and may represent the first example of small-molecule metabolites linked to the adaptive coevolution and diversification of host metabolic and immune regulatory pathways.
Collapse
Affiliation(s)
- Harry Newmark
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh , Edinburgh , UK
| | - Widad Dantoft
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh , Edinburgh , UK
| | - Peter Ghazal
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh , Edinburgh , UK
| |
Collapse
|
37
|
Li Y, Li Y, Cao X, Jin X, Jin T. Pattern recognition receptors in zebrafish provide functional and evolutionary insight into innate immune signaling pathways. Cell Mol Immunol 2017; 14:80-89. [PMID: 27721456 PMCID: PMC5214946 DOI: 10.1038/cmi.2016.50] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 08/04/2016] [Accepted: 08/04/2016] [Indexed: 12/28/2022] Open
Abstract
Pattern recognition receptors (PRRs) and their signaling pathways have essential roles in recognizing various components of pathogens as well as damaged cells and triggering inflammatory responses that eliminate invading microorganisms and damaged cells. The zebrafish relies heavily on these primary defense mechanisms against pathogens. Here, we review the major PRR signaling pathways in the zebrafish innate immune system and compare these signaling pathways in zebrafish and humans to reveal their evolutionary relationship and better understand their innate immune defense mechanisms.
Collapse
Affiliation(s)
- Yajuan Li
- Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yuelong Li
- Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xiaocong Cao
- Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xiangyu Jin
- Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Tengchuan Jin
- Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| |
Collapse
|
38
|
Ahn DH, Kang S, Park H. Transcriptome analysis of immune response genes induced by pathogen agonists in the Antarctic bullhead notothen Notothenia coriiceps. FISH & SHELLFISH IMMUNOLOGY 2016; 55:315-322. [PMID: 27276114 DOI: 10.1016/j.fsi.2016.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/17/2016] [Accepted: 06/04/2016] [Indexed: 06/06/2023]
Abstract
Fish are a representative population of lower vertebrates that serve as an essential link to early vertebrate evolution, and this has fueled academic interest in studying ancient vertebrate immune defense mechanisms in teleosts. Notothenia coriiceps, a typical Antarctic notothenioid teleost, has evolved to adapt to the cold and thermally stable Antarctic sea. In this study, we examined adaptive signaling pathways and immune responses to bacterial and viral pathogenic exposure in N. coriiceps. Using RNA sequencing, we investigated transcriptional differences in the liver tissues of N. coriiceps challenged with two pathogen-mimicking agonists, a bacterial ligand (heat-killed Escherichia coli, HKEB) and a viral ligand (polyinosinic:polycytidylic acid, Poly I:C). We found that 567 unique genes were up-regulated two-fold in the HKEB-exposed group, whereas 392 unique genes, including 124 immune-relevant genes, were up-regulated two-fold in the Poly I:C-exposed group. A KEGG pathway analysis of the 124 immune-relevant genes revealed that they exhibited major features of antigen processing and presentation bacterial ligand exposure, but they were down-regulated after viral ligand exposure. A quantitative real time RT-PCR analysis revealed that TNFα and TNF2, major inducers of apoptosis, were highly up-regulated after exposure to the viral ligand but not the bacterial ligand. The results suggest that the bacterial and viral ligands up-regulate inducers of different immune mechanisms in N. coriiceps liver tissue. N. coriiceps has an immune response defense strategy that uses antigen presentation against bacterial infection, but it may use a different defense, such as TNF-mediated apoptosis, against viral infection. The specific immune responses of N. coriiceps may be adaptations to the Antarctic environment and pathogens. These results will help define the characteristics of Antarctic fish and increase our understanding of their immune response mechanisms.
Collapse
Affiliation(s)
- Do-Hwan Ahn
- Division of Polar Life Sciences, Korea Polar Research Institute, Yeonsu-gu, Incheon, 21990, South Korea
| | - Seunghyun Kang
- Division of Polar Life Sciences, Korea Polar Research Institute, Yeonsu-gu, Incheon, 21990, South Korea
| | - Hyun Park
- Division of Polar Life Sciences, Korea Polar Research Institute, Yeonsu-gu, Incheon, 21990, South Korea; Polar Sciences, University of Science & Technology, Yuseong-gu, Daejeon, 34113, South Korea.
| |
Collapse
|
39
|
Han Y, Liu X, Shi B, Xiao R, Gou M, Wang H, Li Q. Identification and characterisation of the immune response properties of Lampetra japonica BLNK. Sci Rep 2016; 6:25308. [PMID: 27126461 PMCID: PMC4850452 DOI: 10.1038/srep25308] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 04/14/2016] [Indexed: 01/01/2023] Open
Abstract
B cell linker protein (BLNK) is a central linker protein involved in B cell signal transduction in jawed vertebrates. In a previous study, we have reported the identification of a BLNK homolog named Lj-BLNK in lampreys. In this study, a 336 bp cDNA fragment encoding the Lj-BLNK Src homology 2 (SH2) domain was cloned into the vector pET-28a(+) and overexpressed in Escherichia coli BL21. The recombinant fragment of Lj-BLNK (rLj-BLNK) was purifiedby His-Bind affinity chromatography, and polyclonal antibodies against rLj-BLNK were raised in male New Zealand rabbits. Fluorescenceactivated cell sorting (FACS) analysisrevealed that Lj-BLNK was expressed in approximately 48% of the lymphocyte-like cells of control lampreys, and a significant increase in Lj-BLNK expression was observed in lampreys stimulated with lipopolysaccharide (LPS). Western blotting analysis showed that variable lymphocyte receptor B (VLRB) and Lj-BLNKwere distributed in the same immune-relevant tissues, and the levels of both were upregulated in supraneural myeloid bodies and lymphocyte-like cells after LPS stimulation. Immunofluorescence demonstrated that Lj-BLNK was localized in VLRB(+) lymphocyte-like cells. These results indicate that the Lj-BLNK protein identified in lampreys might play an important role in the VLRB-mediated adaptive immune response.
Collapse
Affiliation(s)
- Yinglun Han
- College of Life Science, Liaoning Normal University, Dalian 116029, China.,Lamprey Research Center, Liaoning Normal University, Dalian 116029, China
| | - Xin Liu
- College of Life Science, Liaoning Normal University, Dalian 116029, China.,Lamprey Research Center, Liaoning Normal University, Dalian 116029, China
| | - Biyue Shi
- College of Life Science, Liaoning Normal University, Dalian 116029, China.,Lamprey Research Center, Liaoning Normal University, Dalian 116029, China
| | - Rong Xiao
- College of Life Science, Liaoning Normal University, Dalian 116029, China.,Lamprey Research Center, Liaoning Normal University, Dalian 116029, China
| | - Meng Gou
- College of Life Science, Liaoning Normal University, Dalian 116029, China.,Lamprey Research Center, Liaoning Normal University, Dalian 116029, China
| | - Hao Wang
- College of Life Science, Liaoning Normal University, Dalian 116029, China.,Lamprey Research Center, Liaoning Normal University, Dalian 116029, China
| | - Qingwei Li
- College of Life Science, Liaoning Normal University, Dalian 116029, China.,Lamprey Research Center, Liaoning Normal University, Dalian 116029, China
| |
Collapse
|
40
|
Reptile Toll-like receptor 5 unveils adaptive evolution of bacterial flagellin recognition. Sci Rep 2016; 6:19046. [PMID: 26738735 PMCID: PMC4703953 DOI: 10.1038/srep19046] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/27/2015] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptors (TLR) are ancient innate immune receptors crucial for immune homeostasis and protection against infection. TLRs are present in mammals, birds, amphibians and fish but have not been functionally characterized in reptiles despite the central position of this animal class in vertebrate evolution. Here we report the cloning, characterization, and function of TLR5 of the reptile Anolis carolinensis (Green Anole lizard). The receptor (acTLR5) displays the typical TLR protein architecture with 22 extracellular leucine rich repeats flanked by a N- and C-terminal leucine rich repeat domain, a membrane-spanning region, and an intracellular TIR domain. The receptor is phylogenetically most similar to TLR5 of birds and most distant to fish TLR5. Transcript analysis revealed acTLR5 expression in multiple lizard tissues. Stimulation of acTLR5 with TLR ligands demonstrated unique responsiveness towards bacterial flagellin in both reptile and human cells. Comparison of acTLR5 and human TLR5 using purified flagellins revealed differential sensitivity to Pseudomonas but not Salmonella flagellin, indicating development of species-specific flagellin recognition during the divergent evolution of mammals and reptiles. Our discovery of reptile TLR5 fills the evolutionary gap regarding TLR conservation across vertebrates and provides novel insights in functional evolution of host-microbe interactions.
Collapse
|
41
|
Han Q, Das S, Hirano M, Holland SJ, McCurley N, Guo P, Rosenberg CS, Boehm T, Cooper MD. Characterization of Lamprey IL-17 Family Members and Their Receptors. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:5440-51. [PMID: 26491201 PMCID: PMC4655163 DOI: 10.4049/jimmunol.1500892] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 09/22/2015] [Indexed: 01/13/2023]
Abstract
IL-17 is an ancient cytokine implicated in a variety of immune defense reactions. We identified five members of the sea lamprey IL-17 family (IL-17D.1, IL-17D.2, IL-17E, IL-17B, and IL-17C) and six IL-17R genes (IL-17RA.1, IL-17RA.2, IL-17RA.3, IL-17RF, IL-17RE/RC, and IL-17RD), determined their relationship with mammalian orthologs, and examined their expression patterns and potential interactions to explore their roles in innate and adaptive immunity. The most highly expressed IL-17 family member is IL-17D.1 (mammalian IL-17D like), which was found to be preferentially expressed by epithelial cells of skin, intestine, and gills and by the two types of lamprey T-like cells. IL-17D.1 binding to rIL-17RA.1 and to the surface of IL-17RA.1-expressing B-like cells and monocytes of lamprey larvae was demonstrated, and treatment of lamprey blood cells with rIL-17D.1 protein enhanced transcription of genes expressed by the B-like cells. These findings suggest a potential role for IL-17 in coordinating the interactions between T-like cells and other cells of the adaptive and innate immune systems in jawless vertebrates.
Collapse
Affiliation(s)
- Qifeng Han
- Emory Vaccine Center, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322; and
| | - Sabyasachi Das
- Emory Vaccine Center, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322; and
| | - Masayuki Hirano
- Emory Vaccine Center, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322; and
| | - Stephen J Holland
- Department of Developmental Immunology, Max-Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Nathanael McCurley
- Emory Vaccine Center, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322; and
| | - Peng Guo
- Emory Vaccine Center, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322; and
| | - Charles S Rosenberg
- Emory Vaccine Center, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322; and
| | - Thomas Boehm
- Department of Developmental Immunology, Max-Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Max D Cooper
- Emory Vaccine Center, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322; and
| |
Collapse
|
42
|
Huang L, Fan Y, Zhou Y, Jiang N, Liu W, Meng Y, Zeng L. Cloning, sequence analysis and expression profiles of Toll-like receptor 7 from Chinese giant salamander Andrias davidianus. Comp Biochem Physiol B Biochem Mol Biol 2015; 184:52-7. [PMID: 25754925 DOI: 10.1016/j.cbpb.2015.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 02/17/2015] [Accepted: 02/26/2015] [Indexed: 02/02/2023]
Abstract
The Chinese giant salamander, Andrias davidianus, is the largest extant amphibian species in the world, which is of significance due to its specific position in the evolutionary history of vertebrates. Currently, limited information about the innate immune system of this animal is known. In this study, the toll-like receptor 7 (TLR7), designated CgsTLR7, was cloned from Chinese giant salamander, A. davidianus. The full-length cDNA of CgsTLR7 is 3747 bp, with an open reading frame of 3150 bp, encoding 1049 amino acids. The TLR family motifs, including the leucine-rich repeat (LRR) and Toll/interleukin (IL)-1 receptor (TIR) domain are conserved in CgsTLR7, which includes 19 LRRs and a TIR domain. The predicted amino acid sequence of CgsTLR7 has 71%, 65%, 63% and 55% identity with turtle, chicken, human and fugu TLR7 homologues, respectively. Phylogenetic analysis showed that CgsTLR7 is closest to that of frog TLR7 among the examined species. Quantitative real-time PCR analysis revealed broad expression of CgsTLR7 in tissues from apparently healthy Chinese giant salamanders with the highest expression in the liver and the lowest expression in the intestine. The mRNA expression was up-regulated and reached a peak level in the kidney, liver and spleen at 12 h, 24 h and 48 h after infecting the animals with the giant salamander iridovirus (GSIV), respectively. These results suggest that CgsTLR7 has a conserved gene structure and might play an important role in immune regulation against viral infections in the Chinese giant salamander.
Collapse
Affiliation(s)
- Lili Huang
- College of Fisheries and Biosciences, Shanghai Ocean University, Shanghai 201306, China
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China
| | - Nan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China
| | - Wenzhi Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China
| | - Yan Meng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China
| | - Lingbing Zeng
- College of Fisheries and Biosciences, Shanghai Ocean University, Shanghai 201306, China; Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China.
| |
Collapse
|
43
|
Buckley KM, Rast JP. Diversity of animal immune receptors and the origins of recognition complexity in the deuterostomes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 49:179-189. [PMID: 25450907 DOI: 10.1016/j.dci.2014.10.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/01/2014] [Accepted: 10/20/2014] [Indexed: 06/04/2023]
Abstract
Invertebrate animals are characterized by extraordinary diversity in terms of body plan, life history and life span. The past impression that invertebrate immune responses are controlled by relatively simple innate systems is increasingly contradicted by genomic analyses that reveal significant evolutionary novelty and complexity. One accessible measure of this complexity is the multiplicity of genes encoding homologs of pattern recognition receptors. These multigene families vary significantly in size, and their sequence character suggests that they vary in function. At the same time, certain aspects of downstream signaling appear to be conserved. Here, we analyze five major classes of immune recognition receptors from newly available animal genome sequences. These include the Toll-like receptors (TLR), Nod-like receptors (NLR), SRCR domain scavenger receptors, peptidoglycan recognition proteins (PGRP), and Gram negative binding proteins (GNBP). We discuss innate immune complexity in the invertebrate deuterostomes, which was first recognized in sea urchins, within the wider context of emerging genomic information across animal phyla.
Collapse
MESH Headings
- Animals
- Biodiversity
- Evolution, Molecular
- Genetic Variation
- Genome/genetics
- Immunity, Innate/genetics
- Immunity, Innate/immunology
- Invertebrates/classification
- Invertebrates/genetics
- Invertebrates/immunology
- Multigene Family/genetics
- Multigene Family/immunology
- Phylogeny
- Receptors, Immunologic/classification
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Receptors, Pattern Recognition/genetics
- Receptors, Pattern Recognition/immunology
- Receptors, Scavenger/genetics
- Receptors, Scavenger/immunology
- Species Specificity
- Toll-Like Receptors/genetics
- Toll-Like Receptors/immunology
Collapse
Affiliation(s)
- Katherine M Buckley
- Department of Immunology and Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Sunnybrook Research Institute, Toronto, ON, Canada.
| | - Jonathan P Rast
- Department of Immunology and Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
44
|
Lee PT, Zou J, Holland JW, Martin SAM, Collet B, Kanellos T, Secombes CJ. Identification and characterisation of TLR18-21 genes in Atlantic salmon (Salmo salar). FISH & SHELLFISH IMMUNOLOGY 2014; 41:549-559. [PMID: 25450999 DOI: 10.1016/j.fsi.2014.10.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/01/2014] [Accepted: 10/04/2014] [Indexed: 06/04/2023]
Abstract
Teleost fish possess many types of toll-like receptor (TLR) some of which exist in other vertebrate groups and some that do not (ie so-called "fish-specific" TLRs). In this study, we identified in Atlantic salmon (Salmo salar) whole-genome shotgun (WGS) contigs seven TLRs that are not found in mammals, including six types of fish-specific TLRs (one TLR18, one TLR19, and four TLR20 members (two of which are putative soluble forms (s)) and one TLR21. Phylogenetic analysis revealed that teleost TLR19-21 are closely related with murine TLR11-TLR13, whilst teleost TLR18 groups with mammalian TLR1, 2, 6 and 10. A typical TLR protein domain structure was found in all these TLRs with the exception of TLR20b(s) and TLR20c(s). TLR-GFP expression plasmids transfected into SHK-1 cells showed that salmon TLR19, TLR20a and TLR20d were preferentially localised to the intracellular compartment. Real time PCR analysis suggested that salmon TLR19-TLR21 are mainly expressed in immune related organs, such as spleen, head kidney and gills, while TLR18 transcripts are more abundant in muscle. In vitro stimulation of primary head kidney cells with type I IFN, IFNγ and IL-1β had no impact on TLR expression. Infectious salmon anaemia virus (ISAV) infection, in vivo, down-regulated TLR20a, TLR20b(s), TLR20d and TLR21 in infected salmon kidney tissue. In contrast, up-regulation of TLR19 and TLR20a expression was found in posterior kidney in rainbow trout with clinical proliferative kidney disease (PKD).
Collapse
Affiliation(s)
- P T Lee
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| | - J Zou
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - J W Holland
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - S A M Martin
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - B Collet
- Marine Scotland, 375 Victoria Road, Aberdeen AB11 9DB, UK
| | - T Kanellos
- Zoetis International Service, 23-25 Avenue du Dr. Lannelongue 75668 Paris Cedex 14, France
| | - C J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| |
Collapse
|
45
|
Zhang J, Kong X, Zhou C, Li L, Nie G, Li X. Toll-like receptor recognition of bacteria in fish: ligand specificity and signal pathways. FISH & SHELLFISH IMMUNOLOGY 2014; 41:380-8. [PMID: 25241605 DOI: 10.1016/j.fsi.2014.09.022] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 09/05/2014] [Accepted: 09/14/2014] [Indexed: 05/22/2023]
Abstract
Pattern recognition receptors (PRRs) recognize the conserved molecular structure of pathogens and trigger the signaling pathways that activate immune cells in response to pathogen infection. Toll-like receptors (TLRs) are the first and best characterized innate immune receptors. To date, at least 20 TLR types (TLR1, 2, 3, 4, 5M, 5S, 7, 8, 9, 13, 14, 18, 19, 20, 21, 22, 23, 24, 25, and 26) have been found in more than a dozen of fish species. However, of the TLRs identified in fish, direct evidence of ligand specificity has only been shown for TLR2, TLR3, TLR5M, TLR5S, TLR9, TLR21, and TLR22. Some studies have suggested that TLR2, TLR5M, TLR5S, TLR9, and TLR21 could specifically recognize PAMPs from bacteria. In addition, other TLRs including TLR1, TLR4, TLR14, TLR18, and TLR25 may also be sensors of bacteria. TLR signaling pathways in fish exhibit some particular features different from that in mammals. In this review, the ligand specificity and signal pathways of TLRs that recognize bacteria in fish are summarized. References for further studies on the specificity for recognizing bacteria using TLRs and the following reactions triggered are discussed. In-depth studies should be continuously performed to identify the ligand specificity of all TLRs in fish, particularly non-mammalian TLRs, and their signaling pathways. The discovery of TLRs and their functions will contribute to the understanding of disease resistance mechanisms in fish and provide new insights for drug intervention to manipulate immune responses.
Collapse
Affiliation(s)
- Jie Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; College of Life Science, Henan Normal University, Xinxiang 453007, PR China
| | - Xianghui Kong
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China.
| | - Chuanjiang Zhou
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Li Li
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Guoxing Nie
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Xuejun Li
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| |
Collapse
|
46
|
Priyathilaka TT, Elvitigala DAS, Whang I, Lim BS, Jeong HB, Yeo SY, Choi CY, Lee J. Molecular characterization and transcriptional analysis of non-mammalian type Toll like receptor (TLR21) from rock bream (Oplegnathus fasciatus). Gene 2014; 553:105-16. [PMID: 25300254 DOI: 10.1016/j.gene.2014.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 10/03/2014] [Accepted: 10/05/2014] [Indexed: 01/02/2023]
Abstract
Toll-like receptors (TLRs) are a large family of pattern recognition receptors, which are involved in triggering host immune responses against various pathogens by detecting their evolutionarily conserved pathogen associated molecular patterns (PAMPs). TLR21 is a non-mammalian type TLR, which recognizes unmethylated CpG DNA, and is considered as a functional homolog of mammalian TLR9. In this study, we attempted to identify and characterize a novel TLR21 counterpart from rock bream (Oplegnathus fasciatus) designated as RbTLR21, at molecular level. The complete coding sequence of RbTLR21 was 2919bp in length, which encodes a polypeptide of 973 amino acids with a predicted molecular mass of 112kDa and a theoretical isoelectric point of 8.6. The structure of the deduced RbTLR21 protein is similar to that of the members of typical TLR family, and includes the ectodomain, which consists of 16 leucine rich repeats (LRRs), a transmembrane domain, and a cytoplasmic Toll/interleukin-1 receptor (TIR) domain. According to the pairwise sequence analysis data, RbTLR21 was homologous to that of the orange-spotted grouper (Epinephelus coioides) with 76.9% amino acid identity. Furthermore, our phylogenetic analysis revealed that RbTLR21 is closely related to E. coioides TLR21. The RbTLR21 was ubiquitously expressed in all the tissues tested, but the highest expression was found in spleen. Additionally, upon stimulation with Streptococcus iniae, rock bream iridovirus (RBIV), and Edwardsiella tarda, RbTLR21 mRNA was significantly up-regulated in spleen tissues. Collectively, our findings suggest that RbTLR21 is indeed an ortholog of the TLR21 family and may be important in mounting host immune responses against pathogenic infections.
Collapse
Affiliation(s)
- Thanthrige Thiunuwan Priyathilaka
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea
| | - Don Anushka Sandaruwan Elvitigala
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea
| | - Ilson Whang
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea
| | - Bong-Soo Lim
- Fish Vaccine Research Center, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea
| | - Hyung-Bok Jeong
- Fish Vaccine Research Center, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea
| | - Sang-Yeob Yeo
- Department of Biotechnology, Division of Applied Chemistry & Biotechnology, Hanbat National University, Daejeon 305-719, Republic of Korea
| | - Cheol Young Choi
- Division of Marine Environment and Bioscience, Korea Maritime University, Busan 606-791, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea.
| |
Collapse
|
47
|
Ahn DH, Shin SC, Park H. Characterization of Toll-like receptor gene expression and the pathogen agonist response in the antarctic bullhead notothen Notothenia coriiceps. Immunogenetics 2014; 66:563-73. [PMID: 25073429 DOI: 10.1007/s00251-014-0792-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 07/22/2014] [Indexed: 12/28/2022]
Abstract
Notothenia coriiceps, a typical Antarctic notothenioid teleost, has evolved to adapt to the extreme Antarctic marine environment. We previously reported an extensive analysis of the Antarctic notothenioid transcriptome. In this study, we focused on a key component of the innate immune system, the Toll-like receptors (TLRs). We cloned the full-length sequence of 12 TLRs of N. coriiceps. The N. coriiceps transcriptome for TLR homologue (ncTLR) genes encode a typical TLR structure, with multiple extracellular leucine-rich regions and an intracellular Toll/IL-1 receptor (TIR) domain. Using phylogenetic analysis, we established that all of the cloned ncTLR genes could be classified into the same orthologous clade with other teleost TLRs. ncTLRs were widely expressed in various organs, with the highest expression levels observed in immune-related tissues, such as the skin, spleen, and kidney. A subset of the ncTLR genes was expressed at higher levels in fish exposed to pathogen-mimicking agonists, heat-killed Escherichia coli, and polyinosinic-polycytidylic acid (poly(I:C)). However, the mechanism involved in the upregulation of TLR expression following pathogen exposure in fish is currently unknown. Further research is required to elucidate these mechanisms and to thereby increase our understanding of vertebrate immune system evolution.
Collapse
Affiliation(s)
- Do Hwan Ahn
- Division of Polar Life Sciences, Korea Polar Research Institute, Yeonsu-gu, Incheon, 406-840, South Korea
| | | | | |
Collapse
|
48
|
Ren Q, Lan JF, Zhong X, Song XJ, Ma F, Hui KM, Wang W, Yu XQ, Wang JX. A novel Toll like receptor with two TIR domains (HcToll-2) is involved in regulation of antimicrobial peptide gene expression of Hyriopsis cumingii. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 45:198-208. [PMID: 24631579 DOI: 10.1016/j.dci.2014.02.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 02/19/2014] [Accepted: 02/28/2014] [Indexed: 06/03/2023]
Abstract
Animal Toll-like receptors (TLRs) are involved in innate immunity. Toll proteins are generally transmembrane proteins. In this study, an atypical Toll-like receptor (HcToll-2) was identified from the triangle-shell pearl mussel Hyriopsis cumingii, which belongs to phylum Mollusca. Unlike the typical Toll like receptors with extracellular leucine-rich repeats (LRRs), transmembrane, and intracellular Toll/interleukin-1 receptor (TIR) domains, HcToll-2 has two homologous TIR domains located at the C-terminal (designated as HcTIR1 and HcTIR2) and lacks a transmembrane domain. Phylogenetic analysis showed that HcTIR1 was clustered with TIR of sea anemone Toll, and HcTIR2 was clustered with TIR of Drosophila Toll. HcToll-2 mRNA could be detected in the hepatopancreas and was upregulated after challenge with Escherichia coli and Staphylococcus aureus. Recombinant HcLRR protein with GST tag could bind to bacteria and also to LPS and PGN. Over-expression of both HcTIR1 and HcTIR2 induced drosomycin genes in Drosophila S2 cells. RNAi analysis showed that HcToll-2 was required for the expression of theromacin, which is a cysteine-rich antimicrobial peptide (AMP) gene. This research is the first report of an atypical Toll-like receptor HcToll-2 involved in antibacterial immunity through induction of AMP expression.
Collapse
Affiliation(s)
- Qian Ren
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, PR China.
| | - Jiang-Feng Lan
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education/Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, PR China
| | - Xue Zhong
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, 5007 Rockhill Road, Kansas City, MO 64110, USA
| | - Xiao-Jun Song
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, PR China
| | - Fei Ma
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, PR China
| | - Kai-Min Hui
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, PR China
| | - Wen Wang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, PR China
| | - Xiao-Qiang Yu
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, 5007 Rockhill Road, Kansas City, MO 64110, USA.
| | - Jin-Xing Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education/Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, PR China.
| |
Collapse
|
49
|
Pietretti D, Wiegertjes GF. Ligand specificities of Toll-like receptors in fish: indications from infection studies. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 43:205-222. [PMID: 23981328 DOI: 10.1016/j.dci.2013.08.010] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/13/2013] [Accepted: 08/13/2013] [Indexed: 06/02/2023]
Abstract
Toll like receptors (TLRs) are present in many different fish families from several different orders, including cyprinid, salmonid, perciform, pleuronectiform and gadiform representatives, with at least some conserved properties among these species. However, low conservation of the leucine-rich repeat ectodomain hinders predictions of ligand specificities of fish TLRs based on sequence information only. We review the presence of a TLR genes, and changes in their gene expression profiles as result of infection, in the context of different fish orders and fish families. The application of RT-qPCR and availability of increasing numbers of fish genomes has led to numerous gene expression studies, including studies on TLR gene expression, providing the most complete dataset to date. Induced changes of gene expression may provide (in)direct evidence for the involvement of a particular TLR in the reaction to a pathogen. Especially when findings are consistent across different studies on the same fish species or consistent across different fish species, up-regulation of TLR gene expression could be a first indication of functional relevance. We discuss TLR1, TLR2, TLR4, TLR5 and TLR9 as presumed sensors of bacterial ligands and discuss as presumed sensors of viral ligands TLR3 and TLR22, TLR7 and TLR8. More functional studies are needed before conclusions on ligands specific to (groups of) fish TLRs can be drawn, certainly true for studies on non-mammalian TLRs. Future studies on the conservation of function of accessory molecules, in conjunction with TLR molecules, may bring new insight into the function of fish TLRs.
Collapse
Affiliation(s)
- Danilo Pietretti
- Cell Biology and Immunology Group, Wageningen Institute of Animal Sciences, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands
| | - Geert F Wiegertjes
- Cell Biology and Immunology Group, Wageningen Institute of Animal Sciences, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands.
| |
Collapse
|
50
|
Nair S, Michaelsen-Preusse K, Finsterbusch K, Stegemann-Koniszewski S, Bruder D, Grashoff M, Korte M, Köster M, Kalinke U, Hauser H, Kröger A. Interferon regulatory factor-1 protects from fatal neurotropic infection with vesicular stomatitis virus by specific inhibition of viral replication in neurons. PLoS Pathog 2014; 10:e1003999. [PMID: 24675692 PMCID: PMC3968136 DOI: 10.1371/journal.ppat.1003999] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 01/30/2014] [Indexed: 01/08/2023] Open
Abstract
The innate immune system protects cells against invading viral pathogens by the auto- and paracrine action of type I interferon (IFN). In addition, the interferon regulatory factor (IRF)-1 can induce alternative intrinsic antiviral responses. Although both, type I IFN and IRF-1 mediate their antiviral action by inducing overlapping subsets of IFN stimulated genes, the functional role of this alternative antiviral action of IRF-1 in context of viral infections in vivo remains unknown. Here, we report that IRF-1 is essential to counteract the neuropathology of vesicular stomatitis virus (VSV). IFN- and IRF-1-dependent antiviral responses act sequentially to create a layered antiviral protection program against VSV infections. Upon intranasal infection, VSV is cleared in the presence or absence of IRF-1 in peripheral organs, but IRF-1−/− mice continue to propagate the virus in the brain and succumb. Although rapid IFN induction leads to a decline in VSV titers early on, viral replication is re-enforced in the brains of IRF-1−/− mice. While IFN provides short-term protection, IRF-1 is induced with delayed kinetics and controls viral replication at later stages of infection. IRF-1 has no influence on viral entry but inhibits viral replication in neurons and viral spread through the CNS, which leads to fatal inflammatory responses in the CNS. These data support a temporal, non-redundant antiviral function of type I IFN and IRF-1, the latter playing a crucial role in late time points of VSV infection in the brain. IRFs are a family of transcription factors that play a key role in viral defense. Apart from their function in the adaptive immune system, recent work revealed that several IRFs contribute to antiviral response independent of secreted IFN. IRFs have been developed earlier in evolution than IFN and are regarded as precursor of today's IFN system, acting only on an intrinsic level. IRF-1 by itself exhibits antiviral effects that are exerted by the induction of a set of genes that overlaps the set of IFN-induced genes (ISGs). Our data show that IRF-1 contributes decisively for the protection of mice from neurotropic Vesicular stomatitis virus (VSV), a virus similar to rabies virus. Mice, deficient in IRF-1, are highly vulnerable to VSV infection and succumb with signs of encephalitis. Although type I IFN action is a prerequisite for survival from the infection, IRF-1 becomes increasingly crucial in neuronal tissue at a time point where clearance of the virus has not been achieved. The data highlight the importance of IRF-1 as an antiviral agent that acts in combination with the IFN system.
Collapse
Affiliation(s)
- Sharmila Nair
- Research Group Innate Immunity and Infection, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Katja Finsterbusch
- Research Group Innate Immunity and Infection, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Dunja Bruder
- Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Infection Immunology Group, Department of Medical Microbiology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Martina Grashoff
- Research Group Innate Immunity and Infection, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Martin Korte
- Department of Cellular Neurobiology, Technical University Braunschweig, Braunschweig, Germany
- Research Group Neuroinflammation and Neurodegeneration, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Mario Köster
- Department of Gene Regulation and Differentiation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Hannover, Germany
| | - Hansjörg Hauser
- Department of Gene Regulation and Differentiation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Andrea Kröger
- Research Group Innate Immunity and Infection, Helmholtz Centre for Infection Research, Braunschweig, Germany
- * E-mail:
| |
Collapse
|