1
|
Lin KA, Su CC, Lee KI, Liu SH, Fang KM, Tang CH, Lia WC, Kuo CY, Chang KC, Huang CF, Chen YW, Yang CY. The herbicide 2,4-dichlorophenoxyacetic acid induces pancreatic β-cell death via oxidative stress-activated AMPKα signal downstream-regulated apoptotic pathway. Toxicol Lett 2025; 405:16-29. [PMID: 39921193 DOI: 10.1016/j.toxlet.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 01/07/2025] [Accepted: 01/31/2025] [Indexed: 02/10/2025]
Abstract
2,4-Dichlorophenoxyacetic acid (2,4-D) is one of commonly and widely used organic herbicides in agriculture. It has been reported that 2,4-D can induce adverse effects in mammalian cells. Epidemiological and animal studies have indicated that exposure to 2,4-D is associated with poorer glycemic control and impaired pancreatic β-cell function. However, limited information is available on 2,4-D-induced toxicological effects in β-cells, with the underlying toxicological mechanisms remains unclear. Herein, our results showed that 2,4-D exposure (30-500 μg/mL) significantly reduced cell viability, induced mitochondria dysfunction (including the mitochondrial membrane potential (MMP) loss, the increase in cytosolic cytochrome c release, and the change in Bcl-2 and Bax protein expression), and triggered apoptotic events (including the increased population of apoptotic cells, caspase-3 activity, and caspase-3/-7 and PAPR activation) in RIN-m5F β-cells, accompanied with insulin secretion inhibition. Exposure of cells to 2,4-D could also evoke JNK, ERK1/2, p38, and AMP-activated protein kinase (AMPK)α activation as well as reactive oxygen species (ROS) generation. Pretreatment of cells with compound C (an AMPK inhibitor) and the antioxidantN-acetylcysteine (NAC), but not that SP600125/PD98059/SB203580 (the inhibitors of JNK/ERK/p38, respectively), obviously attenuated the 2,4-D-triggered AMPKα phosphorylation, MMP loss, apoptotic events, and insulin secretion dysfunction,as similar effects with the transfection with AMPKα1-specific siRNA. Of note, buffering the ROS production with NAC obviously prevented the 2,4-D-induced ROS generation as well as AMPKα activation, but the either compound C and AMPKα1-specific siRNA transfection could not effectively reduce 2,4-D-induced ROS generation. Collectively, these findings indicate that the induction of oxidative stress-activated AMPKα signaling is a crucial mechanism underlying 2,4-D-triggered mitochondria-dependent apoptosis, ultimately leading to β-cell death.
Collapse
Affiliation(s)
- Ken-An Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 404, Taiwan
| | - Chin-Chuan Su
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua County 500, Taiwan; Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Kuan-I Lee
- Department of Emergency, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Kai-Min Fang
- Department of Otolaryngology, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 404, Taiwan
| | - Wei-Cheng Lia
- Department of Emergency, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan
| | - Chun-Ying Kuo
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua County 500, Taiwan
| | - Kai-Chih Chang
- Center for Digestive Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Chun-Fa Huang
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan; Department of Nursing, College of Medical and Health Science, Asia University, Taichung 413, Taiwan
| | - Ya-Wen Chen
- Department of Physiology, School of Medicine, College of Medicine, China Medical University, Taichung 404, Taiwan.
| | - Ching-Yao Yang
- Department of Surgery, College of Medicine, National Taiwan University, Taipei 100, Taiwan; Department of Surgery, National Taiwan University Hospital, Taipei 100, Taiwan.
| |
Collapse
|
2
|
Zheng GJ, Fang ZE, Zhou BY, Zuo L, Chen X, Liu ML, Yu L, Jing CX, Hao G. DNA methylation in the association between pesticide exposures and type 2 diabetes. World J Diabetes 2025; 16:99200. [PMID: 39959275 PMCID: PMC11718482 DOI: 10.4239/wjd.v16.i2.99200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/30/2024] [Accepted: 11/21/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Numerous epidemiological studies have found that pesticide exposure is associated with the incidence of type 2 diabetes (T2D); however, the underlying mechanisms remain unknown. DNA methylation may play a role in this process. AIM To identify the genes associated with pesticide exposure and T2D by reviewing the current literature. METHODS We systematically searched PubMed and Embase for relevant studies that examined the association between pesticide exposure and DNA methylation, and studies on DNA methylation and T2D through January 15, 2024. RESULTS We identified six genes (Alu, CABLES1, CDH1, PDX1, PTEN, PTPRN2) related to pesticide exposure and T2D. We also suggested future research directions to better define the role of DNA methylation in the association between pesticide exposure and T2D. CONCLUSION DNA methylation of specific genes may play a vital role in the association between pesticide exposure and T2D.
Collapse
Affiliation(s)
- Guang-Jun Zheng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Zheng-Er Fang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Bi-Ying Zhou
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Lei Zuo
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Xia Chen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Ming-Liang Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Lei Yu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Chun-Xia Jing
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
- Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Guang Hao
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510632, Guangdong Province, China
| |
Collapse
|
3
|
Chen Y, Deng Y, Wu M, Ma P, Pan W, Chen W, Zhao L, Huang X. Impact of pesticides exposure and type 2 diabetes risk: a systematic review and meta-analysis. Endocrine 2025; 87:448-458. [PMID: 39384693 DOI: 10.1007/s12020-024-04067-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
OBJECTIVE We conducted a systematic review and meta-analysis of observational studies that assessed the relationship between pesticides exposure and type 2 diabetes. We also examined the presence of heterogeneity and biases across the available studies. METHODS We conducted a comprehensive literature search of peer-reviewed studies published from 2011 to 2023, without language limitations. A random-effects model was employed to calculate the overall odds ratio (OR) and its corresponding 95% confidence interval (CI). RESULTS We included 19 studies (n = 12 case-control and n = 7 cross-sectional) for a total of 45,813 participants in our analysis. Our findings revealed a notable correlation between pesticide exposure and type 2 diabetes (non-specific definition) when not limiting pesticide types (OR: 1.19, 95% CI: 1.11-1.28). Subgroup analysis identified associations between pyrethroid (OR: 1.17, 95% CI: 1.05-1.30) and type 2 diabetes, as well as between organochlorine (OR: 1.26, 95% CI: 1.11-1.43) and type 2 diabetes. However, no statistically significant association was observed between herbicide exposure and the onset of type 2 diabetes (OR: 1.26, 95% CI: 0.91-1.75). In the elderly group, pesticide exposure significantly heightened the risk of type 2 diabetes (OR: 1.25, 95% CI: 1.14-1.38), with no statistically significant heterogeneity among studies (I2 = 14.2%, p = 0.323). CONCLUSIONS Pesticide (organochlorine and pyrethroid) exposure constitutes a risk factor for type 2 diabetes.
Collapse
Affiliation(s)
- Yang Chen
- Department of Toxicology, School of Public Health, Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Yaqin Deng
- Department of Toxicology, School of Public Health, Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Minjia Wu
- Department of Toxicology, School of Public Health, Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Peixuan Ma
- Department of Toxicology, School of Public Health, Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Wen Pan
- Department of Toxicology, School of Public Health, Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Weiqi Chen
- Department of Toxicology, School of Public Health, Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Lina Zhao
- School of Public Health, Wuhan University, Wuhan, China
| | - Xiaowei Huang
- Department of Toxicology, School of Public Health, Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China.
| |
Collapse
|
4
|
Zhu X, Chen C, Liu Q, Zhu Z, Wu X, Zhang Y. Multiple pesticide exposure and impaired glucose regulation in U.S. non-diabetic population. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125519. [PMID: 39672370 DOI: 10.1016/j.envpol.2024.125519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 12/15/2024]
Abstract
Prediabetes is a serious metabolic disorder that is often overlooked and 70% of individuals with prediabetes would eventually develop type 2 diabetes. The diabetogenic effects of pesticides have been reported in toxicological studies but their association with prediabetes is rarely investigated. We aimed to evaluate the association between pesticide exposure and impaired glucose regulation (IGR), including prediabetes (defined as impaired fasting glucose [IFG] and/or impaired glucose tolerance [IGT]) and insulin resistance, in a general U.S. non-diabetic population. Three classes of urinary pesticides, including organophosphorus pesticides (OPs), pyrethroid, and herbicides were measured. Generalized linear regression, restricted cubic spline, and Bayesian kernel machine regression (BKMR) models were combined to evaluate their associations. 3,5,6-trichloropyridinol (TCPY) was positively associated with prediabetes and IGT (highest vs lowest TCPY quartile: prediabetes: OR: 1.97, 95% CI: 1.18, 3.31; IGT: OR: 2.03, 95% CI: 1.14, 3.66) in a linear dose-response manner (P for nonlinear<0.05). Another two metabolites of OPs, malathion dicarboxylic acid (MDCA) diacid and para-nitrophenol (PNP), were found to increase the odds ratio of insulin resistance (PNP: OR: 1.22, 95% CI: 1.05, 1.42; MDCA: OR: 1.36, 95% CI: 1.08, 1.70) with linear dose-response curves (P for nonlinear<0.05). Considering mutual exposure to multiple pesticides, TCPY, MDCA, and PNP made the most contributions in the mixture exposure and IGR. No obvious interactions among pesticides were found in the multiple exposure settings. The odds ratio of TCPY exposure and prediabetes was increased with advancing age but not related to body mass index (BMI). The results remained robust in sensitivity analysis with restricted participants without abnormal urinary creatinine and unsteady glucose or insulin levels. Our findings suggested the close relationship between OPs and impaired glucose regulation, especially in older adults, which provides insights into the prevention of diabetes at the earlier stage.
Collapse
Affiliation(s)
- Xingdi Zhu
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China; First School of Clinical Medicine, Nanjing Medical University, Nanjing, 211100, China
| | - Congxin Chen
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Qi Liu
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Zhihong Zhu
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Xiaoli Wu
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Yuqing Zhang
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China.
| |
Collapse
|
5
|
Huang Y, Li Z. Introducing internal allocation factors for assessing aggregate pesticide exposure across multiple pathways and routes. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137346. [PMID: 39874755 DOI: 10.1016/j.jhazmat.2025.137346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 01/30/2025]
Abstract
In the health risk assessment of pesticides, methods for external exposure assessment have been well developed. However, quantifying the contribution of various exposure pathways or routes to internal dose remains challenging. This study introduced the internal allocation factor (IAF) for 319 pesticides to investigate the impact of different exposure pathways and routes on chemical distribution within the human body. The IAFs can be calculated from various exposure sources (or pathways), routes, and biological samples. Analysis of different exposure sources revealed that crop exposure generally had the lowest IAF in organs and tissues, indicating a high contribution to the internal dose. The median IAF values for crop exposure in blood, liver, lung, kidney, fat, and muscle were all around 1.05. For three exposure routes of soil pesticide, the results found that IAF values for oral and dermal exposure routes were significantly lower than those for inhalation exposure. When the pesticide concentrations in biological samples are known, IAF can be utilized to back-calculate the pesticide levels in other organs and tissues. The results show that under a single exposure route, the concentration factor varies greatly between organs or tissues due to differences in compositions of human tissues (e.g., water and lipid contents) and pesticide properties (e.g., hydrophilicity and lipophilicity).
Collapse
Affiliation(s)
- Yabi Huang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong 510275, China
| | - Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong 510275, China.
| |
Collapse
|
6
|
Han M, Yin J, Wang X, Yang R, Dong Z, Ning J, Xu Y, Shao B. Pentachlorophenol increases diabetes risk by damaging β-cell secretion and disrupting gut microbial-related amino acids and fatty acids biosynthesis. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136103. [PMID: 39405696 DOI: 10.1016/j.jhazmat.2024.136103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024]
Abstract
Pentachlorophenol (PCP), a ubiquitous environmental pollutant, has been reported as a possible contributor to diabetes. However, evidence for general population is scarce while related mechanisms are largely unknown. Using a representative population-based case-control study in Beijing (n = 1796), we found a positive association between PCP exposure and diabetes risk with the odds ratio reaching 1.68 (95 % confidence interval: 1.30 to 2.18). A further rat experiment revealed that low-dose PCP mimicking real-world human exposure can significantly impair glycemic homeostasis by inducing pancreatic β-cell dysfunction, with non-linear dose-response relationships. Subsequent multi-omics analysis suggested that low-dose PCP led to notable gut microbiota dysbiosis (especially the species from genus Prevotella, such as intermedia, dentalis, ruminicola, denticola, melaninogenica, and oris), decreased serum amino acids (L-phenylalanine, L-tyrosine, and L-tryptophan) and increased serum fatty acids (oleic and palmitic acid) in rats, while strong correlations were observed among alterations of gut microbes, serum metabolites and glycemic-related biomarkers (e.g., fasting blood glucose and insulin). Collectively, these results imply PCP may increase diabetes risk by disrupting gut microbial-related amino acids and fatty acids biosynthesis. This will help guide future in-depth studies on the roles of PCP in the development of human diabetes.
Collapse
Affiliation(s)
- Muke Han
- Beijing Ctr Dis Prevent & Control, Beijing Key Lab Diagnost & Traceabil Technol Food, Beijing, PR China; Peking Univ, Sch Publ Hlth, Dept Nutr & Food Hyg, Beijing 100083, PR China
| | - Jie Yin
- Beijing Ctr Dis Prevent & Control, Beijing Key Lab Diagnost & Traceabil Technol Food, Beijing, PR China
| | - Xinyi Wang
- Beijing Ctr Dis Prevent & Control, Beijing Key Lab Diagnost & Traceabil Technol Food, Beijing, PR China
| | - Runhui Yang
- Beijing Ctr Dis Prevent & Control, Beijing Key Lab Diagnost & Traceabil Technol Food, Beijing, PR China
| | - Zhong Dong
- Beijing Ctr Dis Prevent & Control, Beijing Key Lab Diagnost & Traceabil Technol Food, Beijing, PR China
| | - Junyu Ning
- Beijing Ctr Dis Prevent & Control, Beijing Key Lab Diagnost & Traceabil Technol Food, Beijing, PR China
| | - Yajun Xu
- Peking Univ, Sch Publ Hlth, Dept Nutr & Food Hyg, Beijing 100083, PR China; Peking Univ, Beijing Key Lab Toxicol Res & Risk Assessment Food, Beijing 100083, PR China
| | - Bing Shao
- Beijing Ctr Dis Prevent & Control, Beijing Key Lab Diagnost & Traceabil Technol Food, Beijing, PR China; Xihua Univ, Sch Food & Bioengn, Food Microbiol Key Lab Sichuan Prov, Chengdu 610039, PR China.
| |
Collapse
|
7
|
La Merrill MA, Smith MT, McHale CM, Heindel JJ, Atlas E, Cave MC, Collier D, Guyton KZ, Koliwad S, Nadal A, Rhodes CJ, Sargis RM, Zeise L, Blumberg B. Consensus on the key characteristics of metabolism disruptors. Nat Rev Endocrinol 2024:10.1038/s41574-024-01059-8. [PMID: 39613954 DOI: 10.1038/s41574-024-01059-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 12/01/2024]
Abstract
Metabolism-disrupting agents (MDAs) are chemical, infectious or physical agents that increase the risk of metabolic disorders. Examples include pharmaceuticals, such as antidepressants, and environmental agents, such as bisphenol A. Various types of studies can provide evidence to identify MDAs, yet a systematic method is needed to integrate these data to help to identify such hazards. Inspired by work to improve hazard identification of carcinogens using key characteristics (KCs), we developed 12 KCs of MDAs based on our knowledge of processes underlying metabolic diseases and the effects of their causal agents: (1) alters function of the endocrine pancreas; (2) impairs function of adipose tissue; (3) alters nervous system control of metabolic function; (4) promotes insulin resistance; (5) disrupts metabolic signalling pathways; (6) alters development and fate of metabolic cell types; (7) alters energy homeostasis; (8) causes inappropriate nutrient handling and partitioning; (9) promotes chronic inflammation and immune dysregulation in metabolic tissues; (10) disrupts gastrointestinal tract function; (11) induces cellular stress pathways; and (12) disrupts circadian rhythms. In this Consensus Statement, we present the logic that revealed the KCs of MDAs and highlight evidence that supports the identification of KCs. We use chemical, infectious and physical agents as examples to illustrate how the KCs can be used to organize and use mechanistic data to help to identify MDAs.
Collapse
Affiliation(s)
- Michele A La Merrill
- Department of Environmental Toxicology, University of California, Davis, CA, USA.
| | - Martyn T Smith
- School of Public Health, University of California, Berkeley, CA, USA
| | - Cliona M McHale
- School of Public Health, University of California, Berkeley, CA, USA
| | - Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Environmental Health Sciences, Bozeman, MT, USA
| | - Ella Atlas
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Matthew C Cave
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY, USA
| | - David Collier
- Department of Pediatrics, East Carolina University, Greenville, NC, USA
| | - Kathryn Z Guyton
- Board on Environmental Studies and Toxicology, National Academies of Sciences, Engineering, and Medicine, Washington, DC, USA
| | - Suneil Koliwad
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Angel Nadal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), CIBERDEM, Miguel Hernandez University of Elche, Elche, Spain
| | - Christopher J Rhodes
- Research and Early Development, Cardiovascular, Renal and Metabolic Diseases, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Robert M Sargis
- Division of Endocrinology, Diabetes and Metabolism, The University of Illinois at Chicago, Chicago, IL, USA
| | - Lauren Zeise
- Office of the Director, Office of Environmental Health Hazard Assessment of the California Environmental Protection Agency, Sacramento, CA, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
8
|
Calderon L, Warner M, Gunier RB, Rauch S, Hazard KG, Kogut K, Eskenazi B, Torres JM. Residential proximity to agricultural pesticide use and cardiovascular disease risk factors among adult Latina women in California's Salinas Valley. Am J Epidemiol 2024; 193:1583-1591. [PMID: 38872348 DOI: 10.1093/aje/kwae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 04/09/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024] Open
Abstract
Cardiovascular disease is a leading cause of death worldwide. There is limited evidence that exposure to current-use pesticides may contribute to cardiovascular disease risk. We examined the association between residential proximity to the application of agricultural pesticides and cardiovascular risk factors among 484 adult women in the Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS) Study, a cohort based in an agricultural region of California. Outcome assessment was completed between 2010 and 2013. Using participant residential addresses and California's Pesticide Use Reporting database, we estimated agricultural pesticide use within 1 km of residences during the 2-year period preceding outcome assessment. We used Bayesian hierarchical modeling to evaluate associations between exposure to 14 agricultural pesticides and continuous measures of waist circumference, body mass index, and blood pressure. Each 10-fold increase in paraquat application around homes was associated with increased diastolic blood pressure (β = 2.60 mm Hg; 95% credible interval [CrI], 0.27-4.89) and each 10-fold increase in glyphosate application was associated with increased pulse pressure (β = 2.26 mm Hg; 95% CrI, 0.09-4.41). No meaningful associations were observed for the other pesticides examined. Our results suggest that paraquat and glyphosate pesticides may affect cardiovascular disease development in women with chronic environmental exposure. This article is part of a Special Collection on Environmental Epidemiology.
Collapse
Affiliation(s)
- Lucia Calderon
- Department of Epidemiology and Biostatistics, School of Medicine, University of California, San Francisco, San Francisco, CA 94158, United States
| | - Marcella Warner
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Robert B Gunier
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Stephen Rauch
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Kimberly G Hazard
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, CA 94720, United States
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Katherine Kogut
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Brenda Eskenazi
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Jacqueline M Torres
- Department of Epidemiology and Biostatistics, School of Medicine, University of California, San Francisco, San Francisco, CA 94158, United States
| |
Collapse
|
9
|
Brovini EM, de Oliveira M, Pereira AR, Martucci MEP, de Aquino SF. Removal of acephate and methamidophos from water: Coagulation and adsorptive treatment approaches. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124514. [PMID: 38986762 DOI: 10.1016/j.envpol.2024.124514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
Pesticides has transformed the agricultural industry, primarily by enhancing productivity. However, the indiscriminate use of such compounds can adversely affect human health and disrupt ecosystem balance. Limited knowledge exists regarding the removal of these compounds from water, particularly for organophosphate pesticides when employing conventional treatment technologies. Therefore, this study aimed to assess the removal of acephate (ACE) and methamidophos (MET) - considered priority pesticides in Brazil - from waters with high and low turbidity during the clarification process carried out with aluminum sulfate (AS) and ferric chloride (FC), either alone or combined with powdered activated carbon (PAC) adsorption. All water samples were submitted to solid phase extraction (SPE C18 cartridges) prior to acephate and methamidophos analysis by HPLC MS/MS. The clarification process with either AS or FC coagulant did not efficiently remove acephate or methamidophos and maximum average removal (27 %) was observed with waters of high turbidity when using ferric chloride as coagulant. Addition of mineral PAC was also ineffective for removing both pesticides. However, the use of vegetable PAC (10 mg/L) resulted in better removal percentages, up to 80%, but only for methamidophos. The limited removal rates were attributed to the high hydrophilicity of acephate and methamidophos, along with their neutral charge at coagulation pH. These factors hinder the interaction of such organophosphorus pesticides with the flocs formed during coagulation as well as with PAC surface.
Collapse
Affiliation(s)
- Emília Marques Brovini
- Post Graduate Program in Environmental Engineering, Federal University of Ouro Preto, 35400-000, Ouro Preto, Minas Gerais, Brazil
| | - Mariana de Oliveira
- Post Graduate Program in Environmental Engineering, Federal University of Ouro Preto, 35400-000, Ouro Preto, Minas Gerais, Brazil
| | - Andressa Rezende Pereira
- Post Graduate Program in Environmental Engineering, Federal University of Ouro Preto, 35400-000, Ouro Preto, Minas Gerais, Brazil
| | - Maria Elvira Poleti Martucci
- Post Graduate Program in Environmental Engineering, Federal University of Ouro Preto, 35400-000, Ouro Preto, Minas Gerais, Brazil; Pharmacy Department, Federal University of Ouro Preto, 35400-000, Ouro Preto, Minas Gerais, Brazil
| | - Sérgio Francisco de Aquino
- Post Graduate Program in Environmental Engineering, Federal University of Ouro Preto, 35400-000, Ouro Preto, Minas Gerais, Brazil; Chemistry Department, Federal University of Ouro Preto, 35400-000, Ouro Preto, Minas Gerais, Brazil.
| |
Collapse
|
10
|
Chen Z, Wu R, Wei D, Wu X, Ma C, Shi J, Geng J, Zhao M, Guo Y, Xu H, Zhou Y, Zeng X, Huo W, Wang C, Mao Z. New findings on the risk of hypertension from organophosphorus exposure under different glycemic statuses: The key role of lipids? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172711. [PMID: 38688361 DOI: 10.1016/j.scitotenv.2024.172711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/15/2024] [Accepted: 04/21/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND AND OBJECTIVE Considering the widespread use of organophosphorus pesticides (OPs) and the global prevalence of hypertension (HTN), as well as studies indicating that different glycemic statuses may respond differently to the biological effects of OPs. Therefore, this study, based on the Henan rural cohort, aims to investigate the association between OPs exposure and HTN, and further explores whether lipids mediate these associations. METHODS We measured the plasma levels of OPs in 2730 participants under different glycemic statuses using gas chromatography-triple quadrupole mass spectrometry (GC-MS/MS). A generalized linear model, Quantile g-computation (QGC), adaptive elastic net (AENET), and Bayesian kernel machine regression (BKMR) models were used to assess the impact of OPs exposure on HTN, with least absolute shrinkage and selection operator (LASSO) penalty regression identifying main OPs. Mediation models were used to evaluate the intermediary role of blood lipids in the OPs-HTN relationship. RESULTS The detection rates for all OPs were high, ranging from 76.35 % to 99.17 %. In the normal glucose tolerance (NGT) population, single exposure models indicated that malathion and phenthoate were associated with an increased incidence of HTN (P-FDR < 0.05), with corresponding odds ratios (ORs) and 95 % confidence intervals (CIs) of 1.624 (1.167,2.260) and 1.290 (1.072,1.553), respectively. QGC demonstrated a positive association between OP mixtures and HTN, with malathion and phenthoate being the primary contributors. Additionally, the AENET model's Exposure Response Score (ERS) suggested that the risk of HTN increases with higher ERS (P < 0.001). Furthermore, BKMR revealed that co-exposure to OPs increases HTN risk, with phenthoate having a significant impact. Furthermore, triglycerides (TG) mediated 6.55 % of the association between phenthoate and HTN. However, no association was observed in the impaired fasting glucose (IFG) and type 2 diabetes mellitus (T2DM) populations. CONCLUSIONS Our findings suggest that in the NGT population, OPs may significantly contribute to the development of HTN, proposing TG as a potential novel target for HTN prevention.
Collapse
Affiliation(s)
- Zhiwei Chen
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Ruihong Wu
- School of Computer Science and Technology, East China Normal University; Information Department, First Affiliated Hospital of Henan University of Chinese Medicine, PR China
| | - Dandan Wei
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Xueyan Wu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Cuicui Ma
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jiayu Shi
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jintian Geng
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Mengzhen Zhao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yao Guo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Haoran Xu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yilin Zhou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Xin Zeng
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Wenqian Huo
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China.
| |
Collapse
|
11
|
Fukunaga A, Jimba M, Pham TTP, Nguyen CQ, Hoang DV, Phan TV, Yazawa A, Phan DC, Hachiya M, Le HX, Do HT, Mizoue T, Inoue Y. Association of green tea consumption with prediabetes, diabetes and markers of glucose metabolism in rural Vietnam: a cross-sectional study. Br J Nutr 2024; 131:1883-1891. [PMID: 38361457 DOI: 10.1017/s0007114524000412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The literature on green tea consumption and glucose metabolism has reported conflicting findings. This cross-sectional study examined the association of green tea consumption with abnormal glucose metabolism among 3000 rural residents aged 40-60 years in Khánh Hòa province in Vietnam. Multinomial logistic regression analysis was conducted to examine the association of green tea consumption (0, < 200, 200-< 400, 400-< 600 or ≥ 600 ml/d) with prediabetes and diabetes (based on the American Diabetes Association criteria). Linear regression analysis was performed to examine the association between green tea consumption and the log-transformed homeostatic model assessment of insulin resistance (HOMA-IR) (a marker of insulin resistance) and the log-transformed homeostatic model assessment of β-cell function (HOMA-β) (a marker of insulin secretion). The OR for prediabetes and diabetes among participants who consumed ≥ 600 ml/d v. those who did not consume green tea were 1·61 (95 % CI = 1·07, 2·42) and 2·04 (95 % CI = 1·07, 3·89), respectively. Higher green tea consumption was associated with a higher level of log-transformed HOMA-IR (Pfor trend = 0·04) but not with a lower level of log-transformed HOMA-β (Pfor trend = 0·75). Higher green tea consumption was positively associated with the prevalence of prediabetes, diabetes and insulin resistance in rural Vietnam. The findings of this study indicated prompting the need for further research considering context in understanding the link between green tea consumption and glucose metabolism, especially in rural settings in low- and middle-income countries.
Collapse
Affiliation(s)
- Ami Fukunaga
- Department of Community and Global Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Epidemiology and Prevention, National Center for Global Health and Medicine, Tokyo, Japan
| | - Masamine Jimba
- Department of Community and Global Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Thuy Thi Phuong Pham
- Department of Non-communicable Disease Control and Nutrition, Pasteur Institute in Nha Trang, Nha Trang, Khánh Hòa, Vietnam
| | - Chau Que Nguyen
- Department of Non-communicable Disease Control and Nutrition, Pasteur Institute in Nha Trang, Nha Trang, Khánh Hòa, Vietnam
| | - Dong Van Hoang
- Department of Epidemiology and Prevention, National Center for Global Health and Medicine, Tokyo, Japan
| | - Tien Vu Phan
- Medical Service Center, Pasteur Institute in Nha Trang, Nha Trang, Khánh Hòa, Vietnam
| | - Aki Yazawa
- Department of Epidemiology and Prevention, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, BostonMA, USA
| | - Danh Cong Phan
- Department of Non-communicable Disease Control and Nutrition, Pasteur Institute in Nha Trang, Nha Trang, Khánh Hòa, Vietnam
| | - Masahiko Hachiya
- Bureau of International Health Cooperation, National Center for Global Health and Medicine, Tokyo, Japan
| | - Huy Xuan Le
- Pasteur Institute in Nha Trang, Khánh Hòa, Vietnam
| | - Hung Thai Do
- Pasteur Institute in Nha Trang, Khánh Hòa, Vietnam
| | - Tetsuya Mizoue
- Department of Epidemiology and Prevention, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yosuke Inoue
- Department of Epidemiology and Prevention, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Ugalde-Resano R, Mérida-Ortega Á, Barajas B, López-Carrillo L, Cebrián ME. Diabetes mellitus and serum organochlorine pesticides mixtures in Mexican women. Environ Health 2024; 23:57. [PMID: 38872224 PMCID: PMC11170832 DOI: 10.1186/s12940-024-01096-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Very recently, it has been reported that exposure to different mixtures of organochlorine pesticides (OCP) is associated with the development of diabetes mellitus (DM). In Mexico, DM is a public health problem that might be related to the historical intense use of OCP. We aimed to evaluate, the association between DM and serum concentrations of OCP mixtures, and identify the main contributors within them. METHODS We conducted a secondary cross-sectional analysis on the control group from a breast cancer population-based case-control study conducted from 2007 to 2011 in Northern Mexico. We identified 214 self-reported diabetic women and 694 non-diabetics. We obtained direct information about sociodemographic, lifestyle and reproductive characteristics. We determined 24 OCP and metabolites in serum by gas chromatography using an electron capture micro detector. We used Weighted Quantile Sum regression to assess the association of DM and exposure to multiple OCP, and the contribution of each compound within the mixture. RESULTS We found a positive adjusted association between DM and an OCP mixture (OR: 2.63, 95%CI: 1.85, 3.74), whose primary contribution arose from p, p'-DDE (mean weight 23.3%), HCB (mean weight 17.3%), trans nonachlor (mean weight 15.4%), o, p'-DDE (mean weight 7.3%), heptachlor epoxide (mean weight 5.9%), oxychlordane (mean weight 4.7%), and heptachlor (mean weight 4.5%). In addition, these OCP along with p, p'-DDT and cis chlordane, were of concern and remained associated when excluding hypertensive women from the analysis (OR 2.55; 95% CI 1.56, 4.18). CONCLUSIONS Our results indicate, for the first time in a Latin-American population, that the concomitant exposure to multiple OCP is associated with DM. Further research is needed since the composition of OCP mixtures may vary according to regional pesticides use patterns.
Collapse
Affiliation(s)
- Rodrigo Ugalde-Resano
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Av. Universidad 655, Col. Santa María Ahuacatitlán, Cuernavaca, Morelos, C.P. 62100, México
| | - Ángel Mérida-Ortega
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Av. Universidad 655, Col. Santa María Ahuacatitlán, Cuernavaca, Morelos, C.P. 62100, México
| | - Belén Barajas
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México, C.P. 07360, México
| | - Lizbeth López-Carrillo
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Av. Universidad 655, Col. Santa María Ahuacatitlán, Cuernavaca, Morelos, C.P. 62100, México.
| | - Mariano E Cebrián
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México, C.P. 07360, México.
| |
Collapse
|
13
|
Rincón-Rubio A, Mérida-Ortega Á, Ugalde-Resano R, Gamboa-Loira B, Rothenberg SJ, González FB, Cebrián ME, López-Carrillo L. Carcinogenic, non-carcinogenic risk, and attributable cases to organochlorine pesticide exposure in women from Northern Mexico. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:421. [PMID: 38570395 DOI: 10.1007/s10661-024-12584-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/23/2024] [Indexed: 04/05/2024]
Abstract
This study aimed to estimate the carcinogenic and non-carcinogenic risk as well as the attributable cases due to exposure to organochlorine pesticides (OCPs): hexachlorobenzene (HCB), dichlorophenyltrichloroethane (DDT), hexachlorocyclohexane (HCH), heptachlor, and chlordane. From serum concentrations of pesticides of interest in a sample of 908 women from Northern Mexico, the risk for both cancer and non-cancer health effects was evaluated. The population attributable fraction (PAF) was also calculated based on summary association estimates between exposure to OCPs and different health events. Findings revealed that due to their OCP exposure slightly less than half of the women in the sample were at increased risk of developing non-cancerous diseases. Moreover, approximately 25% and 75% of participants were at risk of develop some type of cancer associated with their HCB and DDE concentrations, respectively. In addition, it was estimated that 40.5% of type 2 diabetes, 18.7% of endometriosis, and 23.1% of non-Hodgkin's lymphoma cases could have been prevented if women had not been exposed to these OCPs. Results suggest that the use of OCPs may have contributed to the disease burden in the study area and, based on the time required for these substances to be eliminated from the body, there are probably some women who are still at elevated risk of developing diseases associated to OCPs.
Collapse
Affiliation(s)
- Alma Rincón-Rubio
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Col. Santa María Ahuacatitlán, Av. Universidad 655, C.P. 62100, Cuernavaca, Morelos, México
| | - Ángel Mérida-Ortega
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Col. Santa María Ahuacatitlán, Av. Universidad 655, C.P. 62100, Cuernavaca, Morelos, México
| | - Rodrigo Ugalde-Resano
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Col. Santa María Ahuacatitlán, Av. Universidad 655, C.P. 62100, Cuernavaca, Morelos, México
| | - Brenda Gamboa-Loira
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Col. Santa María Ahuacatitlán, Av. Universidad 655, C.P. 62100, Cuernavaca, Morelos, México
- Facultad de Medicina, Universidad Autónoma de Yucatán, Av. Itzáes 498, Colonia Centro, C.P. 97000, Mérida, Yucatán, México
| | - Stephen J Rothenberg
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Col. Santa María Ahuacatitlán, Av. Universidad 655, C.P. 62100, Cuernavaca, Morelos, México
| | - Fernando Bejarano González
- Red de Acción Sobre Plaguicidas y Alternativas en México, A. C. (RAPAM), Amado Nervo 23, Int. 3, Col. San Juanito, C.P. 56121, Texcoco, Estado de México, México
| | - Mariano E Cebrián
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, México
| | - Lizbeth López-Carrillo
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Col. Santa María Ahuacatitlán, Av. Universidad 655, C.P. 62100, Cuernavaca, Morelos, México.
| |
Collapse
|
14
|
Wada R, Peng FJ, Lin CA, Vermeulen R, Iglesias-González A, Palazzi P, Bodinier B, Streel S, Guillaume M, Vuckovic D, Dagnino S, Chiquet J, Appenzeller BMR, Chadeau-Hyam M. Hair-Derived Exposome Exploration of Cardiometabolic Health: Piloting a Bayesian Multitrait Variable Selection Approach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5383-5393. [PMID: 38478982 DOI: 10.1021/acs.est.3c08739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Cardiometabolic health is complex and characterized by an ensemble of correlated and/or co-occurring conditions including obesity, dyslipidemia, hypertension, and diabetes mellitus. It is affected by social, lifestyle, and environmental factors, which in-turn exhibit complex correlation patterns. To account for the complexity of (i) exposure profiles and (ii) health outcomes, we propose to use a multitrait Bayesian variable selection approach and identify a sparse set of exposures jointly explanatory of the complex cardiometabolic health status. Using data from a subset (N = 941 participants) of the nutrition, environment, and cardiovascular health (NESCAV) study, we evaluated the link between measurements of the cumulative exposure to (N = 33) pollutants derived from hair and cardiometabolic health as proxied by up to nine measured traits. Our multitrait analysis showed increased statistical power, compared to single-trait analyses, to detect subtle contributions of exposures to a set of clinical phenotypes, while providing parsimonious results with improved interpretability. We identified six exposures that were jointly explanatory of cardiometabolic health as modeled by six complementary traits, of which, we identified strong associations between hexachlorobenzene and trifluralin exposure and adverse cardiometabolic health, including traits of obesity, dyslipidemia, and hypertension. This supports the use of this type of approach for the joint modeling, in an exposome context, of correlated exposures in relation to complex and multifaceted outcomes.
Collapse
Affiliation(s)
- Rin Wada
- Department of Epidemiology and Biostatistics, School of Public Health Imperial College London, London W2 1PG, U.K
- MRC Centre for Environment and Health Imperial College London, London W2 1PG, U.K
| | - Feng-Jiao Peng
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen L-1445, Luxembourg
| | - Chia-An Lin
- Department of Epidemiology and Biostatistics, School of Public Health Imperial College London, London W2 1PG, U.K
| | - Roel Vermeulen
- Department of Epidemiology and Biostatistics, School of Public Health Imperial College London, London W2 1PG, U.K
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht 3584 CM, The Netherlands
| | - Alba Iglesias-González
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen L-1445, Luxembourg
| | - Paul Palazzi
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen L-1445, Luxembourg
| | - Barbara Bodinier
- Department of Epidemiology and Biostatistics, School of Public Health Imperial College London, London W2 1PG, U.K
- MRC Centre for Environment and Health Imperial College London, London W2 1PG, U.K
| | - Sylvie Streel
- Department of Public Health Sciences, University of Liege, Liege 4000, Belgium
| | - Michèle Guillaume
- Department of Public Health Sciences, University of Liege, Liege 4000, Belgium
| | - Dragana Vuckovic
- Department of Epidemiology and Biostatistics, School of Public Health Imperial College London, London W2 1PG, U.K
- MRC Centre for Environment and Health Imperial College London, London W2 1PG, U.K
| | - Sonia Dagnino
- Department of Epidemiology and Biostatistics, School of Public Health Imperial College London, London W2 1PG, U.K
- Transporters in Imaging and Radiotherapy in Oncology (TIRO), Institut des sciences du vivant Fréderic Joliot, CEA, Université Côte d'Azur, Nice 06107, France
| | - Julien Chiquet
- Université Paris-Saclay, AgroParisTech, INRAE, UMR MIA Paris-Saclay, Palaiseau 91120, France
| | - Brice M R Appenzeller
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen L-1445, Luxembourg
| | - Marc Chadeau-Hyam
- Department of Epidemiology and Biostatistics, School of Public Health Imperial College London, London W2 1PG, U.K
- MRC Centre for Environment and Health Imperial College London, London W2 1PG, U.K
| |
Collapse
|
15
|
Chen T, Liu X, Zhang J, Wang L, Su J, Jing T, Xiao P. Associations of chronic exposure to a mixture of pesticides and type 2 diabetes mellitus in a Chinese elderly population. CHEMOSPHERE 2024; 351:141194. [PMID: 38218232 DOI: 10.1016/j.chemosphere.2024.141194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/02/2024] [Accepted: 01/10/2024] [Indexed: 01/15/2024]
Abstract
Epidemiological studies have related exposure to pesticides to increased risk of diabetes. However, few studies have evaluated the health effects of mixed pesticides exposure, especially in an elderly population. Here, we utilized gas chromatography-tandem mass spectrometry to quantify the levels of 39 pesticides in 4 categories in a Chinese elderly population. Then we used general linear models to explore the association between individual pesticide exposure and type 2 diabetes mellitus (T2DM). Restricted cubic spline (RCS) models were fitted to identify potential non-linearities between those associations. Furthermore, stratified analysis by gender was conducted to explore the gender-specific associations. Finally, we used weighted quantile sum (WQS) regression, quantile-based g computation (qgcomp), and Bayesian kernel machine regression (BKMR) to evaluate the effects of mixed exposure to 39 pesticides. The results showed that exposure to pesticides was associated with high risk of T2DM, with β-Hexachlorocyclohexane (β-BHC) and oxadiazon being the most significant independent contributors, which was pronounced among elderly women. Moreover, the association of β-BHC and oxadiazon with T2DM was linear. These indicated that it is an urgent need to take practical measures to control these harmful pesticides.
Collapse
Affiliation(s)
- Tian Chen
- State Environmental Protection Key Laboratory of the Assessment of Effects of Emerging Pollutants on Environmental and Human Health, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China; Department of Environmental Health, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Xiaohua Liu
- Shanghai Minhang Center for Disease Control and Prevention, Shanghai, China
| | - Jianghua Zhang
- State Environmental Protection Key Laboratory of the Assessment of Effects of Emerging Pollutants on Environmental and Human Health, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China; Department of Environmental Health, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Lulu Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jin Su
- State Environmental Protection Key Laboratory of the Assessment of Effects of Emerging Pollutants on Environmental and Human Health, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China; Department of Environmental Health, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Tao Jing
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Ping Xiao
- State Environmental Protection Key Laboratory of the Assessment of Effects of Emerging Pollutants on Environmental and Human Health, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China.
| |
Collapse
|
16
|
Samia B, Della Puppa L, Mattei C, Durand A, Ravier S, Quivet E, Wortham H. Influence of pesticide mixture on their heterogeneous atmospheric degradation by ozone and OH radicals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123351. [PMID: 38272169 DOI: 10.1016/j.envpol.2024.123351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/27/2024]
Abstract
Pesticides in the atmosphere can exist in both gaseous and particulate phases due to their semi-volatile properties. They can undergo degradation when exposed to atmospheric oxidants like ozone and hydroxyl radicals. The majority of studies on the atmospheric reactivity of pesticides study them in combination, without considering potential mixture effects that could induce uncertainties in the results. Therefore, this study aims to address this gap, through laboratory studies using a flow reactor, and by evaluating the degradation kinetics of pendimethalin mixed with folpet, tebuconazole, and S-metolachlor, which were simultaneously adsorbed on hydrophobic silica particles that mimic atmospheric aerosols. The comparison with other mixtures, including pendimethalin, from the literature has shown similar reactivity with ozone and hydroxyl radicals, indicating that the degradation kinetics of pesticides is independent of the mixture. Moreover, the degradation rates of the four pesticides under study indicate that they are not or slightly degraded by ozone, with half-lives ranging from 29 days to over 800 days. In contrast, when exposed to hydroxyl radicals, tebuconazole exhibited the fastest reactivity, with a half-life of 4 days, while pendimethalin had a half-life of 17 days.
Collapse
Affiliation(s)
- Boulos Samia
- Aix Marseille Univ, CNRS, LCE, Marseille, France
| | | | - Coraline Mattei
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | | | | | | | | |
Collapse
|
17
|
Berlivet J, Payrastre L, Rebouillat P, Fougerat A, Touvier M, Hercberg S, Lairon D, Pointereau P, Guillou H, Vidal R, Baudry J, Kesse-Guyot E. Association between dietary pesticide exposure profiles and body weight change in French adults: Results from the NutriNet-Santé cohort. ENVIRONMENT INTERNATIONAL 2024; 184:108485. [PMID: 38350259 DOI: 10.1016/j.envint.2024.108485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/17/2024] [Accepted: 02/05/2024] [Indexed: 02/15/2024]
Abstract
BACKGROUND Pesticides cause a wide range of deleterious health effects, including metabolic disorders. Little is known about the effects of dietary pesticide exposure on body weight (BW) change in the general population. We aimed to investigate the role of dietary pesticide exposure in BW change among NutriNet-Santé participants, focusing on potential sexual dimorphism. METHODS Participants completed a Food Frequency Questionnaire (2014), assessing conventional and organic food consumption. Dietary exposure from plant foods of 25 commonly used pesticides was estimated using a residue database, accounting for agricultural practices (conventional and organic). Exposure profiles based on dietary patterns were computed using Non-negative Matrix Factorization (NMF). Mixed models were used to estimate the associations between BW change and exposure to pesticide mixtures, overall and after stratification by sex and menopausal status. RESULTS The final sample included 32,062 participants (8,211 men, 10,637 premenopausal, and 13,214 postmenopausal women). The median (IQR) follow-up was 7.0 (4.4; 8.0) years. Four pesticides profiles were inferred. Overall, men and postmenopausal women lost BW during follow-up, whereas premenopausal women gained BW. Higher exposure to NMF3, reflecting a lower exposure to synthetic pesticides, was associated with a lower BW gain, especially in premenopausal women (β(95 %CI) = -0.04 (-0.07; 0) kg/year, p = 0.04). Higher exposure to NMF2, highly positively correlated with a mixture of synthetic pesticides (azoxystrobin, boscalid, chlorpropham, cyprodinil, difenoconazole, fenhexamid, iprodione, tebuconazole, and lamda-cyhalothrin), was associated with a higher BW loss in men (β(95 %CI) = -0.05 (-0.08; -0.03) kg/year, p < 0.0001). No associations were observed for NMF1 and 4. CONCLUSIONS This study suggests a role of pesticide exposure, inferred from dietary patterns, on BW change, with sexually dimorphic actions, including a potential role of a lower exposure to synthetic pesticides on BW change in women. In men, exposure to a specific pesticide mixture was associated with higher BW loss. The underlying mechanisms need further elucidation.
Collapse
Affiliation(s)
- Justine Berlivet
- Université Sorbonne Paris Nord and Université Paris Cité, INSERM, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS), Nutritional Epidemiology Research Team (EREN), F-93017, Bobigny, France.
| | - Laurence Payrastre
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - Pauline Rebouillat
- Université Sorbonne Paris Nord and Université Paris Cité, INSERM, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS), Nutritional Epidemiology Research Team (EREN), F-93017, Bobigny, France.
| | - Anne Fougerat
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - Mathilde Touvier
- Université Sorbonne Paris Nord and Université Paris Cité, INSERM, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS), Nutritional Epidemiology Research Team (EREN), F-93017, Bobigny, France.
| | - Serge Hercberg
- Université Sorbonne Paris Nord and Université Paris Cité, INSERM, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS), Nutritional Epidemiology Research Team (EREN), F-93017, Bobigny, France; Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France; Public Health Department, Groupe Hospitalier Paris-Seine-Saint-Denis, Assistance Publique-Hôpitaux de Paris (AP-HP), Bobigny, France.
| | - Denis Lairon
- Aix Marseille Université, Inserm, INRAE, C2VN, 13005, Marseille, France.
| | | | - Hervé Guillou
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - Rodolphe Vidal
- Institut de l'Agriculture et de l'Alimentation Biologiques (ITAB), 149 rue de Bercy 75595, Paris, France.
| | - Julia Baudry
- Université Sorbonne Paris Nord and Université Paris Cité, INSERM, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS), Nutritional Epidemiology Research Team (EREN), F-93017, Bobigny, France
| | - Emmanuelle Kesse-Guyot
- Université Sorbonne Paris Nord and Université Paris Cité, INSERM, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS), Nutritional Epidemiology Research Team (EREN), F-93017, Bobigny, France.
| |
Collapse
|
18
|
Peng FJ, Lin CA, Wada R, Bodinier B, Iglesias-González A, Palazzi P, Streel S, Guillaume M, Vuckovic D, Chadeau-Hyam M, Appenzeller BMR. Association of hair polychlorinated biphenyls and multiclass pesticides with obesity, diabetes, hypertension and dyslipidemia in NESCAV study. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132637. [PMID: 37788552 DOI: 10.1016/j.jhazmat.2023.132637] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/11/2023] [Accepted: 09/25/2023] [Indexed: 10/05/2023]
Abstract
Obesity, diabetes, hypertension and dyslipidemia are well-established risk factors for cardiovascular diseases (CVDs), and have been associated with exposure to persistent organic pollutants. However, studies have been lacking as regards effects of non-persistent pesticides on CVD risk factors. Here, we investigated whether background chronic exposure to polychlorinated biphenyls (PCBs) and multiclass pesticides were associated with the prevalence of these CVD risk factors in 502 Belgian and 487 Luxembourgish adults aged 18-69 years from the Nutrition, environment and cardiovascular health (NESCAV) study 2007-2013. We used hair analysis to evaluate the chronic internal exposure to three PCBs, seven organochlorine pesticides (OCs) and 18 non-persistent pesticides. We found positive associations of obesity with hexachlorobenzene (HCB), β-hexachlorocyclohexane (β-HCH) and chlorpyrifos, diabetes with pentachlorophenol (PCP), fipronil and fipronil sulfone, hypertension with PCB180 and chlorpyrifos, and dyslipidemia with diflufenican and oxadiazon, among others. However, we also found some inverse associations, such as obesity with PCP, diabetes with γ-HCH, hypertension with diflufenican, and dyslipidemia with chlorpyrifos. These results add to the existing evidence that OC exposure may contribute to the development of CVDs. Additionally, the present study revealed associations between CVD risk factors and chronic environmental exposure to currently used pesticides such as organophosphorus and pyrethroid pesticides.
Collapse
Affiliation(s)
- Feng-Jiao Peng
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Chia-An Lin
- MRC/PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Rin Wada
- MRC/PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Barbara Bodinier
- MRC/PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Alba Iglesias-González
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Paul Palazzi
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Sylvie Streel
- Public Health Sciences Department, University of Liege, Liège, Belgium
| | - Michèle Guillaume
- Public Health Sciences Department, University of Liege, Liège, Belgium
| | - Dragana Vuckovic
- MRC/PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Marc Chadeau-Hyam
- MRC/PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Brice M R Appenzeller
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg.
| |
Collapse
|
19
|
ElSayed NA, Aleppo G, Bannuru RR, Bruemmer D, Collins BS, Ekhlaspour L, Hilliard ME, Johnson EL, Khunti K, Lingvay I, Matfin G, McCoy RG, Perry ML, Pilla SJ, Polsky S, Prahalad P, Pratley RE, Segal AR, Seley JJ, Stanton RC, Gabbay RA. 1. Improving Care and Promoting Health in Populations: Standards of Care in Diabetes-2024. Diabetes Care 2024; 47:S11-S19. [PMID: 38078573 PMCID: PMC10725798 DOI: 10.2337/dc24-s001] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The American Diabetes Association (ADA) "Standards of Care in Diabetes" includes the ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a interprofessional expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations and a full list of Professional Practice Committee members, please refer to Introduction and Methodology. Readers who wish to comment on the Standards of Care are invited to do so at https://professional.diabetes.org/SOC.
Collapse
|
20
|
Chu N, Shu X, Meng X, Zhang X, Yang J, Li B. Determination and dietary exposure assessment of 79 pesticide residues in Chinese onion (Allium fistulosum L.). CYTA - JOURNAL OF FOOD 2023. [DOI: 10.1080/19476337.2022.2158947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Nengming Chu
- Institute of Agro-Products Quality food Standards and Testing Technology, Chongqing Academy of Agricultural Science, Chongqing, China
- Supervision, Inspection & Testing Center of Agricultural Products Quality, Ministry of Agriculture and Rural Affairs (Chongqing), Chongqing, China
| | - Xiao Shu
- Institute of Agro-Products Quality food Standards and Testing Technology, Chongqing Academy of Agricultural Science, Chongqing, China
- Supervision, Inspection & Testing Center of Agricultural Products Quality, Ministry of Agriculture and Rural Affairs (Chongqing), Chongqing, China
| | - Xia Meng
- Institute of Agro-Products Quality food Standards and Testing Technology, Chongqing Academy of Agricultural Science, Chongqing, China
- Supervision, Inspection & Testing Center of Agricultural Products Quality, Ministry of Agriculture and Rural Affairs (Chongqing), Chongqing, China
| | - Xuemei Zhang
- Institute of Agro-Products Quality food Standards and Testing Technology, Chongqing Academy of Agricultural Science, Chongqing, China
- Supervision, Inspection & Testing Center of Agricultural Products Quality, Ministry of Agriculture and Rural Affairs (Chongqing), Chongqing, China
| | - Junying Yang
- Institute of Agro-Products Quality food Standards and Testing Technology, Chongqing Academy of Agricultural Science, Chongqing, China
- Supervision, Inspection & Testing Center of Agricultural Products Quality, Ministry of Agriculture and Rural Affairs (Chongqing), Chongqing, China
| | - Biquan Li
- Institute of Agro-Products Quality food Standards and Testing Technology, Chongqing Academy of Agricultural Science, Chongqing, China
- Supervision, Inspection & Testing Center of Agricultural Products Quality, Ministry of Agriculture and Rural Affairs (Chongqing), Chongqing, China
| |
Collapse
|
21
|
Daraban GM, Hlihor RM, Suteu D. Pesticides vs. Biopesticides: From Pest Management to Toxicity and Impacts on the Environment and Human Health. TOXICS 2023; 11:983. [PMID: 38133384 PMCID: PMC10748064 DOI: 10.3390/toxics11120983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
The environmental pollution that occurs in direct response to the widespread use of man-made/conventional pesticides results from many chemicals that require a long period of time, often decades, to degrade. The synthetic nature of pesticides also harms animals, beneficial insects, microorganisms, and plants, as well as humans. Fortunately, however, there are many natural pesticides, the so-called biopesticides, that are also effective against pests and more importantly, do not interfere with the well-being of ecosystems. Consequently, most biopesticides are safer for use around people and pets than man-made pesticides because, for example, they can be easily washed away from fruits and vegetables. The natural habitat is a rich resource with a wide selection of plants, many of which are also used to treat diseases in humans, animals, and plants. Out of concern for public health, environmental safety, and the stringent regulation of pesticide residues in agricultural commodities, the use of biopesticides is becoming increasingly important, but questions regarding potential pest resistance to these products may arise, just as is the case with conventional pesticides. Therefore, the performance and potential role of biopesticides in the management of plant pests should be prioritized due to their sustainability and importance to human and environmental welfare. In this review, we propose to highlight a scenario in which we discuss in detail the main constraints posed by the use of pesticides compared to biopesticides, starting with issues regarding their definition and continuing on to issues related to their toxicity and their impact on the environment and human health.
Collapse
Affiliation(s)
- Gabriel Mihăiță Daraban
- “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 73 Prof.dr.docent D. Mangeron Blvd., 700050 Iasi, Romania;
| | - Raluca-Maria Hlihor
- Faculty of Horticulture, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 3 Mihail Sadoveanu Street, 700490 Iasi, Romania
| | - Daniela Suteu
- “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 73 Prof.dr.docent D. Mangeron Blvd., 700050 Iasi, Romania;
| |
Collapse
|
22
|
Xuereb N, Ólafsdóttir K, Samarra F, Svavarsson J, Magnúsdóttir EE. POPs in long-finned pilot whales mass stranded in Iceland as a proxy for their physiological condition. MARINE POLLUTION BULLETIN 2023; 197:115758. [PMID: 37979533 DOI: 10.1016/j.marpolbul.2023.115758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/13/2023] [Accepted: 11/03/2023] [Indexed: 11/20/2023]
Abstract
Long-finned pilot whales (Globicephala melas) are the most frequently stranded cetaceans in the world; however, the predominant drivers of these events are poorly understood. In this study the levels of persistent organic pollutants from pilot whales stranded in North-east Iceland were quantified and compared to historical data and physical parameters to investigate whether contaminant load may have influenced the physiological state of stranded individuals, how these loads fluctuate with sex and age group, and if this is consistent with the literature. Historical comparison was also carried out to discern how pollutant contamination has changed throughout the past few decades. DDE, transnonachlor and PCB-153 were the top three pollutants respectively. The accumulation of POPs was greater on average in immature individuals than adults, whilst among adults, males had higher concentration than females. Moreover, despite an indication of decreasing POP loads throughout the years, knowledge of harmful thresholds remains exceedingly limited.
Collapse
Affiliation(s)
- Nicholai Xuereb
- Faculty of Life and Environmental Sciences, University of Iceland, Askja, Sturlugata 7, 102 Reykjavík, Iceland.
| | - Kristín Ólafsdóttir
- Department of Pharmacology and Toxicology, University of Iceland, Hofsvallagata 53, 107 Reykjavík, Iceland
| | - Filipa Samarra
- University of Iceland's Institute of Research Centers, Ægisgata 2, 900 Vestmannaeyjar, Iceland
| | - Jörundur Svavarsson
- Faculty of Life and Environmental Sciences, University of Iceland, Askja, Sturlugata 7, 102 Reykjavík, Iceland
| | - Edda Elísabet Magnúsdóttir
- Faculty of Life and Environmental Sciences, University of Iceland, Askja, Sturlugata 7, 102 Reykjavík, Iceland; Faculty of Subject Teacher Education, University of Iceland, Askja, Sturlugata 7, 102 Reykjavík, Iceland
| |
Collapse
|
23
|
Li W, Lei D, Huang G, Tang N, Lu P, Jiang L, Lv J, Lin Y, Xu F, Qin YJ. Association of glyphosate exposure with multiple adverse outcomes and potential mediators. CHEMOSPHERE 2023; 345:140477. [PMID: 37858770 DOI: 10.1016/j.chemosphere.2023.140477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
Glyphosate (GLY) is a widely used herbicide with potential adverse effects on public health. However, the current epidemiological evidence is limited. This study aimed to investigate the potential associations between exposure to GLY and multiple health outcomes. The data on urine GLY concentration and nine health outcomes, including type 2 diabetes mellitus (T2DM), hypertension, cardiovascular disease (CVD), obesity, chronic kidney disease (CKD), hepatic steatosis, cancers, chronic obstructive pulmonary disease (COPD), and neurodegenerative diseases (NGDs), were extracted from NHANES (2013-2016). The associations between GLY exposure and each health outcome were estimated using reverse-scale Cox regression and logistic regression. Furthermore, mediation analysis was conducted to identify potential mediators in the significant associations. The dose-response relationships between GLY exposure with health outcomes and potential mediators were analyzed using restricted cubic spline (RCS) regression. The findings of the study revealed that individuals with higher urinary concentrations of GLY had a higher likelihood of having T2DM, hypertension, CVD and obesity (p < 0.001, p = 0.005, p < 0.001 and p = 0.005, respectively). In the reverse-scale Cox regression, a notable association was solely discerned between exposure to GLY and the risk of T2DM (adjusted HR = 1.22, 95% CI: 1.10, 1.36). Consistent outcomes were also obtained via logistic regression analysis, wherein the adjusted OR and 95% CI for T2DM were determined to be 1.30 (1.12, 1.52). Moreover, the present investigation identified serum high-density lipoprotein cholesterol (HDL) as a mediator in this association, with a mediating effect of 7.14% (p = 0.040). This mediating effect was further substantiated by RCS regression, wherein significant dose-response associations were observed between GLY exposure and an increased risk of T2DM (p = 0.002) and reduced levels of HDL (p = 0.001). Collectively, these findings imply an association between GLY exposure and an increased risk of T2DM in the general adult population.
Collapse
Affiliation(s)
| | - Daizai Lei
- Department of Ophthalmology, The People's Hospital of Guangxi Zhuang Autonomous Region & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530021, China
| | - Guangyi Huang
- Department of Ophthalmology, The People's Hospital of Guangxi Zhuang Autonomous Region & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530021, China
| | - Ningning Tang
- Department of Ophthalmology, The People's Hospital of Guangxi Zhuang Autonomous Region & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530021, China
| | - Peng Lu
- Department of Ophthalmology, The People's Hospital of Guangxi Zhuang Autonomous Region & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530021, China
| | - Li Jiang
- Department of Ophthalmology, The People's Hospital of Guangxi Zhuang Autonomous Region & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530021, China
| | - Jian Lv
- Department of Ophthalmology, The People's Hospital of Guangxi Zhuang Autonomous Region & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530021, China
| | - Yunru Lin
- Department of Ophthalmology, The People's Hospital of Guangxi Zhuang Autonomous Region & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530021, China
| | - Fan Xu
- Department of Ophthalmology, The People's Hospital of Guangxi Zhuang Autonomous Region & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530021, China.
| | - Yuan-Jun Qin
- Department of Ophthalmology, The People's Hospital of Guangxi Zhuang Autonomous Region & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530021, China; Department of Ophthalmology, Renmin Hospital of Wuhan University, China.
| |
Collapse
|
24
|
Weiss MC, Wang L, Sargis RM. Hormonal Injustice: Environmental Toxicants as Drivers of Endocrine Health Disparities. Endocrinol Metab Clin North Am 2023; 52:719-736. [PMID: 37865484 PMCID: PMC10929240 DOI: 10.1016/j.ecl.2023.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2023]
Abstract
The toll of multiple endocrine disorders has increased substantially in recent decades, and marginalized populations bear a disproportionate burden of disease. Because of the significant individual and societal impact of these conditions, it is essential to identify and address all modifiable risk factors contributing to these disparities. Abundant evidence now links endocrine dysfunction with exposure to endocrine-disrupting chemicals (EDCs), with greater exposures to multiple EDCs occurring among vulnerable groups, such as racial/ethnic minorities, those with low incomes, and others with high endocrine disease burdens. Identifying and eliminating EDC exposures is an essential step in achieving endocrine health equity.
Collapse
Affiliation(s)
- Margaret C Weiss
- School of Public Health, University of Illinois at Chicago, 1603 West Taylor Street, Chicago, IL 60612, USA; College of Medicine, University of Illinois at Chicago, 1853 West Polk Street, Chicago, IL 60612, USA; Division of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, 835 South Wolcott, Suite E625, M/C 640, Chicago, IL 60612, USA
| | - Luyu Wang
- College of Medicine, University of Illinois at Chicago, 1853 West Polk Street, Chicago, IL 60612, USA; Division of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, 835 South Wolcott, Suite E625, M/C 640, Chicago, IL 60612, USA
| | - Robert M Sargis
- College of Medicine, University of Illinois at Chicago, 1853 West Polk Street, Chicago, IL 60612, USA; Division of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, 835 South Wolcott, Suite E625, M/C 640, Chicago, IL 60612, USA; Chicago Center for Health and Environment, School of Public Health, University of Illinois at Chicago, 1603 West Taylor Street, Chicago, IL 60612, USA; Section of Endocrinology, Diabetes, and Metabolism, Jesse Brown Veterans Affairs Medical Center, 820 South Damen, Chicago, IL 60612, USA.
| |
Collapse
|
25
|
Dagar M, Kumari P, Mirza AMW, Singh S, Ain NU, Munir Z, Javed T, Virk MFI, Javed S, Qizilbash FH, Kc A, Ekhator C, Bellegarde SB. The Hidden Threat: Endocrine Disruptors and Their Impact on Insulin Resistance. Cureus 2023; 15:e47282. [PMID: 38021644 PMCID: PMC10656111 DOI: 10.7759/cureus.47282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
The association between Insulin resistance, a global health issue, and endocrine disruptors (EDCs), chemicals interfering with the endocrine system, has sparked concern in the scientific community. This article provides a comprehensive review of the existing literature regarding the intricate relationship between EDCs and insulin resistance. Phthalates, commonly found in consumer products, are well-established EDCs with documented effects on insulin-signaling pathways and metabolic processes. Epidemiological studies have connected phthalate exposure to an increased risk of type 2 diabetes mellitus (T2DM). Perfluoroalkyl substances (PFAS), persistent synthetic compounds, have shown inconsistent associations with T2DM in epidemiological research. However, studies suggest that PFAS may influence insulin resistance and overall metabolic health, with varying effects depending on specific PFAS molecules and study populations. Bisphenol A (BPA), found in plastics and resins, has emerged as a concern for glucose regulation and insulin resistance. Research has linked BPA exposure to T2DM, altered insulin release, obesity, and changes in the mass and function of insulin-secreting β-cells. Triclosan, an antibacterial agent in personal care products, exhibits gender-specific associations with T2DM risk. It may impact gut microbiota, thyroid hormones, obesity, and inflammation, raising concerns about its effects on metabolic health. Furthermore, environmental EDCs like polycyclic aromatic hydrocarbons, pesticides, and heavy metals have demonstrated associations with T2DM, insulin resistance, hypertension, and obesity. Occupational exposure to specific pesticides and heavy metals has been linked to metabolic abnormalities.
Collapse
Affiliation(s)
- Mehak Dagar
- Internal Medicine, Himalayan Institute of Medical Sciences, New Delhi, IND
| | - Priya Kumari
- Medicine, Jinnah Postgraduate Medical Centre, Karachi, PAK
| | | | - Shivani Singh
- Medicine, MediCiti Institute of Medical Sciences, Hyderabad, IND
| | - Noor U Ain
- Medicine, Mayo Hospital, Lahore, PAK
- Medicine, King Edward Medical University, Lahore, PAK
| | - Zainab Munir
- Emergency Department, Imran Idrees Teaching Hospital, Sialkot, PAK
| | - Tamleel Javed
- Emergency Department, Imran Idrees Teaching Hospital, Sialkot, PAK
| | | | - Saleha Javed
- Emergency Department, Sheikh Zayed Hospital, Rahim Yar Khan, PAK
| | | | - Anil Kc
- Medicine and Surgery, Patan Academy of Health Sciences, Kathmandu, NPL
- Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Chukwuyem Ekhator
- Neuro-Oncology, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, USA
| | - Sophia B Bellegarde
- Pathology and Laboratory Medicine, American University of Antigua, Coolidge, ATG
| |
Collapse
|
26
|
Li BA, Li BM, Bao Z, Li Q, Xing M, Li B. Dichlorodiphenyltrichloroethane for Malaria and Agricultural Uses and Its Impacts on Human Health. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 111:45. [PMID: 37730942 DOI: 10.1007/s00128-023-03789-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 08/12/2023] [Indexed: 09/22/2023]
Abstract
Pesticides are widely used in agriculture and disease control, and dichlorodiphenyltrichloroethane (DDT) is one of the most used pesticides in human history. Besides its significant contributions in pest control in agriculture, DDT was credited as having saved millions of human lives for controlling malaria and other deadly insect-transmitted diseases. Even today, the use of DDT in some countries for malaria control cannot be replaced without endangering people who live there. The recent COVID-19 pandemic has changed our lives and reminded us of the challenges in dealing with infectious diseases, especially deadly ones including malaria. However, DDT and its metabolites are stable, persist long, are found in almost every corner of the world, and their persistent effects on humans, animals, and the environment must be seriously considered. This review will focus on the history of DDT use for agriculture and malaria control, the pathways for the spread of DDT, benefits and risks of DDT use, DDT exposure to animals, humans, and the environment, and the associated human health risks. These knowledge and findings of DDT will benefit the selection and management of pesticides worldwide.
Collapse
Affiliation(s)
- Benjamin A Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, 26506-9196, WV, USA
- Morgantown High School, Morgantown, WV, USA
| | | | - Zhenghong Bao
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, 26506-9196, WV, USA
| | - Qingyang Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, 26506-9196, WV, USA
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, and The Children's Hospital Research Institute of Manitoba, MB, Winnipeg, Canada
| | - Bingyun Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, 26506-9196, WV, USA.
| |
Collapse
|
27
|
Zhao L, Liu Q, Jia Y, Lin H, Yu Y, Chen X, Liu Z, Li W, Fang T, Jiang W, Zhang J, Cui H, Li P, Li H, Hou S, Guo L. The Associations between Organophosphate Pesticides (OPs) and Respiratory Disease, Diabetes Mellitus, and Cardiovascular Disease: A Review and Meta-Analysis of Observational Studies. TOXICS 2023; 11:741. [PMID: 37755752 PMCID: PMC10535340 DOI: 10.3390/toxics11090741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/28/2023]
Abstract
Although some epidemiological studies have identified the associations between exposure to organophosphate pesticides (Ops) and respiratory diseases, diabetes mellitus (DM), and cardiovascular diseases (CVDs), controversial results still exist. In this review and meta-analysis, we aimed to investigate the overall pooled effect estimates and the possible mechanisms of the relationship between OP exposure and adverse health outcomes. In this study, Web of Science, PubMed, Embase, OVID, and the Cochrane Library were systematically searched until September 2022. Nineteen observational studies that focused on the general population or occupational populations examined the associations between OP exposure and respiratory diseases, DM, and CVD were included. Based on the overall pooled results, a significantly positive association was observed between OP exposure and respiratory diseases (OR: 1.12, 95% CI: 1.06-1.19). A significant link was also observed between various individual species of OP exposure and respiratory diseases, with an OR value of 1.11 (95% CI: 1.05-1.18). In particular, there was a significant association of OPs with wheezing and asthma, with OR values of 1.19 (95% CI: 1.08-1.31) and 1.13 (95% CI: 1.05-1.22), respectively. In addition, a significant association was also observed between OP exposure and DM (OR: 1.18, 95% CI: 1.07-1.29). However, no significant association was observed between OP exposure and CVD (OR: 1.00, 95% CI: 0.94-1.05). Exposure to OPs was associated with a significantly increased risk of respiratory diseases and DM, but there was no evidence of a significant association between OP exposure and CVD. Considering the moderate strength of the results, further evidence is needed to confirm these associations.
Collapse
Affiliation(s)
- Lei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Tianjin Fourth Central Hospital, Tianjin 300140, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China
| | - Qisijing Liu
- Research Institute of Public Health, School of Medicine, Nankai University, Tianjin 300381, China
| | - Yaning Jia
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Tianjin Fourth Central Hospital, Tianjin 300140, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China
| | - Huishu Lin
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Tianjin Fourth Central Hospital, Tianjin 300140, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China
| | - Yuanyuan Yu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Tianjin Fourth Central Hospital, Tianjin 300140, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China
| | - Xuemei Chen
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Tianjin Fourth Central Hospital, Tianjin 300140, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China
| | - Ziquan Liu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Tianjin Fourth Central Hospital, Tianjin 300140, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China
| | - Weixia Li
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Tianjin Fourth Central Hospital, Tianjin 300140, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China
| | - Tao Fang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Tianjin Fourth Central Hospital, Tianjin 300140, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China
| | - Wenbing Jiang
- The Dingli Clinical College, Wenzhou Medical University, Wenzhou 325000, China
| | - Jianfeng Zhang
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China
| | - Huanhuan Cui
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China
| | - Penghui Li
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Hongyu Li
- Office for National Clinical Research Center for Geriatric Diseases, Beijing Hospital, Beijing 100051, China
- National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100700, China
| | - Shike Hou
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China
| | - Liqiong Guo
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Tianjin Fourth Central Hospital, Tianjin 300140, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China
| |
Collapse
|
28
|
Parra KL, Harris RB, Farland LV, Beamer P, Furlong M. Associations of Prenatal Agricultural Farm Work with Fetal Overgrowth and Pregnancy Complications in State of Arizona Birth Records. J Occup Environ Med 2023; 65:635-642. [PMID: 37167931 PMCID: PMC10523987 DOI: 10.1097/jom.0000000000002877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
OBJECTIVE The purpose of this study is to examine fetal growth outcomes from agricultural worker households. METHODS Using Arizona 2006 to 2013 birth certificates with parental occupation, we identified N = 623,185 live births by agricultural household status. Logistic regression models estimated adjusted odds ratios (aORs) for macrosomia (>4000 g), postterm birth (>41 weeks), low birth weight (<2500 g), preterm birth (<37 weeks), large for GA, small for GA, and 5-minute APGAR (<7). RESULTS Newborns of agricultural households (n = 6371) had a higher risk of macrosomia (aOR, 1.15; 95% CI, 1.05-1.26), large for GA (aOR, 1.12; 95% CI, 1.03-1.22), postterm birth (aOR, 1.20; 95% CI, 1.09-1.33), and low 5-minute APGAR (aOR, 1.39; 95% CI, 1.07-1.81), whereas low birth weight (aOR, 0.85; 95% CI, 0.76-0.96) and preterm birth (aOR, 0.82; 95% CI, 0.74-0.92) were inversely related. CONCLUSIONS Having an agriculture working parent increased the likelihood of fetal overgrowth and low APGAR.
Collapse
Affiliation(s)
- Kimberly L. Parra
- Department of Epidemiology & Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona, USA
| | - Robin B. Harris
- Department of Epidemiology & Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona, USA
| | - Leslie V. Farland
- Department of Epidemiology & Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona, USA
- Department of Obstetrics and Gynecology, College of Medicine-Tucson, University of Arizona, Tucson, Arizona, USA
| | - Paloma Beamer
- Environmental Health Sciences, Department of Community, Environment, & Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona, USA
| | - Melissa Furlong
- Environmental Health Sciences, Department of Community, Environment, & Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
29
|
Andrade‐Rivas F, Paul N, Spiegel J, Henderson SB, Parrott L, Delgado‐Ron JA, Echeverri A, van den Bosch M. Mapping Potential Population-Level Pesticide Exposures in Ecuador Using a Modular and Scalable Geospatial Strategy. GEOHEALTH 2023; 7:e2022GH000775. [PMID: 37426690 PMCID: PMC10326482 DOI: 10.1029/2022gh000775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/03/2023] [Accepted: 05/18/2023] [Indexed: 07/11/2023]
Abstract
Human populations and ecosystems are extensively exposed to pesticides. Most nations lack the capacity to control pesticide contamination and have limited availability of pesticide use information. Ecuador is a country with intense pesticide use with high exposure risks to humans and the environment, although relative or combined risks are not well understood. Here, we analyzed the distribution of application rates in Ecuador and identified regions of concern because of high potential exposure. We used a geospatial analysis to identify grid cells (∼8 km × 8 km) where the highest pesticide application rates and density of human populations overlap. Furthermore, we identified other regions of concern based on the number of amphibian species as an indicator of ecosystem integrity and the location of natural protected areas. We found that 28% of Ecuador's population dwelled in areas with high pesticide application rate. We identified an area of ∼512 km2 in the Amazon region where high application rates, large human settlements, and a high number of amphibian species overlapped. Additionally, we distinguished clusters of pesticide application rates and human populations that intersected with natural protected areas. Ecuador exemplifies how pesticides are disproportionately applied in areas with the potential to affect human health and ecosystems' integrity. Global estimates of population dwelling, pesticide application rates, and environmental factors are key in prioritizing locations to conduct further exposure assessments. The modular and scalable nature of the geospatial tools we developed can be expanded and adapted to other regions of the world where data on pesticide use are limited.
Collapse
Affiliation(s)
- Federico Andrade‐Rivas
- School of Population and Public HealthThe University of British ColumbiaVancouverBCCanada
- Instituto de Salud y AmbienteUniversidad El BosqueBogotáColombia
| | - Naman Paul
- School of Population and Public HealthThe University of British ColumbiaVancouverBCCanada
- Environmental Health ServicesBritish Columbia Centre for Disease Control (BCCDC)VancouverBCCanada
| | - Jerry Spiegel
- School of Population and Public HealthThe University of British ColumbiaVancouverBCCanada
| | - Sarah B. Henderson
- School of Population and Public HealthThe University of British ColumbiaVancouverBCCanada
- Environmental Health ServicesBritish Columbia Centre for Disease Control (BCCDC)VancouverBCCanada
| | - Lael Parrott
- Department of BiologyThe University of British ColumbiaKelownaBCCanada
- Department of Earth, Environmental and Geographic SciencesThe University of British ColumbiaKelownaBCCanada
- Okanagan Institute for Biodiversity, Resilience, and Ecosystem ServicesThe University of British ColumbiaKelownaBCCanada
| | - Jorge Andrés Delgado‐Ron
- School of Population and Public HealthThe University of British ColumbiaVancouverBCCanada
- Faculty of Health SciencesSimon Fraser UniversityVancouverBCCanada
| | - Alejandra Echeverri
- Centre for Conservation BiologyStanford UniversityStanfordCAUSA
- The Natural Capital ProjectStanford UniversityStanfordCAUSA
| | - Matilda van den Bosch
- School of Population and Public HealthThe University of British ColumbiaVancouverBCCanada
- ISGlobalParc de Recerca Biomèdica de BarcelonaBarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
- Centro de Investigación Biomédica en Red Epidemiología y Salud Pública (CIBERESP)MadridSpain
- Department of Forest and Conservation SciencesThe University of British ColumbiaVancouverBCCanada
| |
Collapse
|
30
|
Bliznashka L, Roy A, Christiani DC, Calafat AM, Ospina M, Diao N, Mazumdar M, Jaacks LM. Pregnancy pesticide exposure and child development in low- and middle-income countries: A prospective analysis of a birth cohort in rural Bangladesh and meta-analysis. PLoS One 2023; 18:e0287089. [PMID: 37294794 PMCID: PMC10256216 DOI: 10.1371/journal.pone.0287089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/30/2023] [Indexed: 06/11/2023] Open
Abstract
BACKGROUND Despite considerable evidence on a negative association between pregnancy pesticide exposure and child development in high-income countries, evidence from low- and middle-income countries (LMICs) is limited. Therefore, we assessed associations between pregnancy pesticide exposure and child development in rural Bangladesh and summarised existing literature in a systematic review and meta-analysis. METHODS We used data from 284 mother-child pairs participating in a birth cohort established in 2008. Eight urinary pesticide biomarkers were quantified in early pregnancy (mean gestational age 11.6±2.9 weeks) as an index of pesticide exposure. The Bayley Scales of Infant and Toddler Development, Third Edition were administered at 20-40 months of age. Associations between creatinine-adjusted urinary pesticide biomarker concentrations and child development scores were estimated using multivariable generalised linear models. We searched ten databases up to November 2021 to identify prospective studies on pregnancy pesticide exposure and child development conducted in LMICs. We used a random-effects model to pool similar studies, including our original analysis. The systematic review was pre-registered with PROSPERO: CRD42021292919. RESULTS In the Bangladesh cohort, pregnancy 2-isopropyl-4-methyl-6-hydroxypyrimidine (IMPY) concentrations were inversely associated with motor development (-0.66 points [95% CI -1.23, -0.09]). Pregnancy 3,5,6-trichloro-2-pyridinol (TCPY) concentrations were inversely associated with cognitive development, but the association was small: -0.02 points (-0.04, 0.01). We observed no associations between 4-nitrophenol and 3-phenoxybenzoic acid (3-PBA) concentrations and child development. The systematic review included 13 studies from four LMICs. After pooling our results with one other study, we found consistent evidence that pregnancy 3-PBA concentrations were not associated with cognitive, language, or motor development. CONCLUSION Evidence suggests that pregnancy exposure to some organophosphate pesticides is negatively associated with child development. Interventions to reduce in-utero pesticide exposure in LMICs may help protect child development.
Collapse
Affiliation(s)
- Lilia Bliznashka
- Nutrition, Diets, and Health Unit, International Food Policy Research Institute, Washington, DC, United States of America
- Global Academy of Agriculture and Food Systems, University of Edinburgh, Scotland, United Kingdom
| | - Aditi Roy
- Center for Environmental Health, Public Health Foundation of India, New Delhi, India
| | - David C. Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| | - Antonia M. Calafat
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Maria Ospina
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Nancy Diao
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| | - Maitreyi Mazumdar
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
- Department of Neurology, Boston Children’s Hospital, Boston, MA, United States of America
| | - Lindsay M. Jaacks
- Global Academy of Agriculture and Food Systems, University of Edinburgh, Scotland, United Kingdom
- Center for Environmental Health, Public Health Foundation of India, New Delhi, India
| |
Collapse
|
31
|
Khalil WJ, Akeblersane M, Khan AS, Moin ASM, Butler AE. Environmental Pollution and the Risk of Developing Metabolic Disorders: Obesity and Diabetes. Int J Mol Sci 2023; 24:8870. [PMID: 37240215 PMCID: PMC10219141 DOI: 10.3390/ijms24108870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/25/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
To meet the increased need for food and energy because of the economic shift brought about by the Industrial Revolution in the 19th century, there has been an increase in persistent organic pollutants (POPs), atmospheric emissions and metals in the environment. Several studies have reported a relationship between these pollutants and obesity, and diabetes (type 1, type 2 and gestational). All of the major pollutants are considered to be endocrine disruptors because of their interactions with various transcription factors, receptors and tissues that result in alterations of metabolic function. POPs impact adipogenesis, thereby increasing the prevalence of obesity in exposed individuals. Metals impact glucose regulation by disrupting pancreatic β-cells, causing hyperglycemia and impaired insulin signaling. Additionally, a positive association has been observed between the concentration of endocrine disrupting chemicals (EDCs) in the 12 weeks prior to conception and fasting glucose levels. Here, we evaluate what is currently known regarding the link between environmental pollutants and metabolic disorders. In addition, we indicate where further research is required to improve our understanding of the specific effects of pollutants on these metabolic disorders which would enable implementation of changes to enable their prevention.
Collapse
Affiliation(s)
- William Junior Khalil
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| | - Meriem Akeblersane
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| | - Ana Saad Khan
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| | - Abu Saleh Md Moin
- Research Department, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| | - Alexandra E. Butler
- Research Department, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| |
Collapse
|
32
|
Brennan E, Butler AE, Nandakumar M, Drage DS, Sathyapalan T, Atkin SL. Association between Organochlorine Pesticides and Vitamin D in Female Subjects. Biomedicines 2023; 11:biomedicines11051451. [PMID: 37239122 DOI: 10.3390/biomedicines11051451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
In human population studies, organochlorine pesticides (OCPs) have been linked to vitamin D deficiency. Therefore, this study examined the association between OCPs, vitamin D3 (cholecalciferol, 25(OH)D3), and the active metabolite 1,25-dihydrovitamin D3 (1,25(OH)2D3) in a cohort of non-obese women. The serum samples of 58 female participants (age-31.9 ± 4.6 years; body mass index (BMI)-25.7 ± 3.7 kg/m2) were screened for 10 indicator OCPs. 25(OH)D3 and 1,25(OH)2D3 levels were determined via isotope dilution liquid chromatography tandem mass spectrometry. In this cohort, the 25(OH)D3 and 1,25(OH)2D3 levels were 22.9 ± 11.2 ng/mL and 0.05 ± 0.02 ng/mL, respectively, with 28 participants classified as 25(OH)D3-deficient (<50 nmol/L). In the study cohort, no correlations were found between individual or total OCPs (ƩOCPs) and 25(OH)D3. p,p'-dichlorodiphenyldichloroethylene (DDE) and ƩOCPs correlated positively with 1,25(OH)2D3, with the latter being negatively correlated with estimated glomerular filtration rate (eGFR). In women with sufficient 25(OH)D3 levels, p,p'-dichlorodiphenyltrichloroethan (DDT) was positively correlated with 1,25(OH)2D3, whilst in the deficient group, hexachlorobenzene (HCB) and p,p'-(DDE) were positively correlated with 1,25(OH)2D3, β-Hexachlorocyclohexane (HCH) was positively correlated with 25(OH)D3, and none of the OCPs were associated with measures of renal function. Overall, OCPs and ƩOCPs were not associated with 25(OH)D3, suggesting that they are unrelated to vitamin D deficiency, but p,p'-DDE and ƩOCPs correlated positively with active 1,25(OH)2D3, while ƩOCPs correlated negatively with eGFR, suggesting a possible renal effect. Analysis of vitamin D deficiency revealed an association between β-HCH and 25(OH)D3, and between HCB and p,p'-DDE and 1,25(OH)2D3, suggesting that OCP effects may be enhanced in cases of vitamin D deficiency.
Collapse
Affiliation(s)
- Edwina Brennan
- School of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain, Busaiteen 15503, Bahrain
| | - Alexandra E Butler
- School of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain, Busaiteen 15503, Bahrain
| | - Manjula Nandakumar
- School of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain, Busaiteen 15503, Bahrain
| | - Daniel S Drage
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, 39 Kessels Road, Brisbane, QLD 4108, Australia
| | | | - Stephen L Atkin
- School of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain, Busaiteen 15503, Bahrain
| |
Collapse
|
33
|
Yu S, Wang B, Li G, Guo X, Yang H, Sun Y. Habitual Tea Consumption Increases the Incidence of Metabolic Syndrome in Middle-Aged and Older Individuals. Nutrients 2023; 15:nu15061448. [PMID: 36986178 PMCID: PMC10055940 DOI: 10.3390/nu15061448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
In middle-aged and elderly individuals, the relationship between tea consumption and incident metabolic syndrome (MetS) is still unclear. Therefore, this study intends to figure out the relationship between tea-drinking frequency and MetS in rural middle-aged and older Chinese residents. In the Northeast China Rural Cardiovascular Health Study, 3632 middle-aged or older individuals (mean age 57 ± 8, 55.2% men) without MetS were included at baseline during 2012–2013 and were followed up on between 2015–2017. Participants showing differential tea consumption frequency were divided into the following classes: non-habitual tea drinkers, occasional tea drinkers, 1–2 times/day drinkers, and ≥3 times/day drinkers. Data showed that non-habitual tea drinking was more common among women. The frequency of tea consumption was higher in ethnic groups other than Han and among singles, as well as in concurrent smokers and drinkers and individuals with primary or lower educational status. The increasing tea consumption was in line with baseline elevations in body mass index, systolic and diastolic blood pressure, high-density lipoprotein cholesterol (HDL-C), and AST/ALT ratio. Multivariate logistic regression analysis confirmed that occasional tea drinking increased the incidence of low HDL-C [OR (95% CI): 1.268 (1.015, 1.584)], high waist circumference [OR (95% CI): 1.336 (1.102, 1.621)], and MetS [OR (95% CI): 1.284 (1.050, 1.570)]. In addition, 1–2 times/day tea drinking increased the cumulative incidence of high TG [OR (95% CI): 1.296 (1.040, 1.616)], high waist circumference [OR (95% CI): 1.296 (1.044, 1.609)] and MetS [OR (95% CI): 1.376 (1.030, 1.760)]. We demonstrated that regular tea consumption is correlated with a greater incidence of metabolic disorders and MetS. Our findings may help clarify the contradictory association reported between tea drinking and MetS development in middle-aged and older residents of rural China.
Collapse
Affiliation(s)
- Shasha Yu
- Department of Cardiology, First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang 110001, China
| | - Bo Wang
- Department of Cardiology, First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang 110001, China
| | - Guangxiao Li
- Department of Clinical Epidemiology, Institute of Cardiovascular Diseases, First Hospital of China Medical University, Shenyang 110001, China
| | - Xiaofan Guo
- Department of Cardiology, First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang 110001, China
| | - Hongmei Yang
- Department of Cardiology, First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang 110001, China
| | - Yingxian Sun
- Department of Cardiology, First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang 110001, China
- Correspondence: ; Tel.: +86-024-8328-2888; Fax: +86-24-8328-2346
| |
Collapse
|
34
|
Prissel CM, Grossardt BR, Klinger GS, St. Sauver JL, Rocca WA. Integrating Environmental Data with Medical Data in a Records-Linkage System to Explore Groundwater Nitrogen Levels and Child Health Outcomes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5116. [PMID: 36982025 PMCID: PMC10049688 DOI: 10.3390/ijerph20065116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Background: The Rochester Epidemiology Project (REP) medical records-linkage system offers a unique opportunity to integrate medical and residency data with existing environmental data, to estimate individual-level exposures. Our primary aim was to provide an archetype of this integration. Our secondary aim was to explore the association between groundwater inorganic nitrogen concentration and adverse child and adolescent health outcomes. Methods: We conducted a nested case-control study in children, aged seven to eighteen, from six counties of southeastern Minnesota. Groundwater inorganic nitrogen concentration data were interpolated, to estimate exposure across our study region. Residency data were then overlaid, to estimate individual-level exposure for our entire study population (n = 29,270). Clinical classification software sets of diagnostic codes were used to determine the presence of 21 clinical conditions. Regression models were adjusted for age, sex, race, and rurality. Results: The analyses support further investigation of associations between nitrogen concentration and chronic obstructive pulmonary disease and bronchiectasis (OR: 2.38, CI: 1.64-3.46) among boys and girls, thyroid disorders (OR: 1.44, CI: 1.05-1.99) and suicide and intentional self-inflicted injury (OR: 1.37, CI: >1.00-1.87) among girls, and attention deficit conduct and disruptive behavior disorders (OR: 1.34, CI: 1.24-1.46) among boys. Conclusions: Investigators with environmental health research questions should leverage the well-enumerated population and residency data in the REP.
Collapse
Affiliation(s)
- Christine M. Prissel
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Brandon R. Grossardt
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Gregory S. Klinger
- Water Resources Center, University of Minnesota Extension, Minneapolis, MN 55455, USA
| | - Jennifer L. St. Sauver
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
- The Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN 55905, USA
| | - Walter A. Rocca
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
- Women’s Health Research Center, Mayo Clinic, Rochester, MN 55905, USA
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
35
|
Kampouraki M, Mavridou K, Bakola M, Kitsou KS, Karanasios D. Can Sulfonylureas for Agricultural Use Cause Diabetes? A Report of Three Cases. Cureus 2023; 15:e35938. [PMID: 37038579 PMCID: PMC10082617 DOI: 10.7759/cureus.35938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2023] [Indexed: 03/11/2023] Open
Abstract
Sulfonylureas (SUs) are commonly used as herbicides. Many farmers and other professionals use SUs for cereal, strawberry, and grape crops. This study examines the possible association between exposure to SUs herbicides and the risk of developing type 2 diabetes (T2D). The study presents three cases of unrelated agronomists who had used SUs for more than three decades and developed T2D. The objective was to investigate the association between occupational dermal and inhalation exposure to herbicides and T2D. Further studies with a larger sample size are needed to determine the association and to help develop prevention strategies.
Collapse
|
36
|
Miranda RA, Silva BS, de Moura EG, Lisboa PC. Pesticides as endocrine disruptors: programming for obesity and diabetes. Endocrine 2023; 79:437-447. [PMID: 36301509 DOI: 10.1007/s12020-022-03229-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/28/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE Exposure to pesticides has been associated with obesity and diabetes in humans and experimental models mainly due to endocrine disruptor effects. First contact with environmental pesticides occurs during critical phases of life, such as gestation and lactation, which can lead to damage in central and peripheral tissues and subsequently programming disorders early and later in life. METHODS We reviewed epidemiological and experimental studies that associated pesticide exposure during gestation and lactation with programming obesity and diabetes in progeny. RESULTS Maternal exposure to organochlorine, organophosphate and neonicotinoids, which represent important pesticide groups, is related to reproductive and behavioral dysfunctions in offspring; however, few studies have focused on glucose metabolism and obesity as outcomes. CONCLUSION We provide an update regarding the use and metabolic impact of early pesticide exposure. Considering their bioaccumulation in soil, water, and food and through the food chain, pesticides should be considered a great risk factor for several diseases. Thus, it is urgent to reformulate regulatory actions to reduce the impact of pesticides on the health of future generations.
Collapse
Affiliation(s)
- Rosiane Aparecida Miranda
- Laboratory of Endocrine Physiology, Biology Institute, Rio de Janeiro State University, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Beatriz Souza Silva
- Laboratory of Endocrine Physiology, Biology Institute, Rio de Janeiro State University, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Egberto Gaspar de Moura
- Laboratory of Endocrine Physiology, Biology Institute, Rio de Janeiro State University, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia Cristina Lisboa
- Laboratory of Endocrine Physiology, Biology Institute, Rio de Janeiro State University, Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
37
|
Sesin V, Judy JD, Kapustka L, Opeolu B, Ottinger MA, Bertsch PM, Wang Y, Lazorchak J, Smythe TA, Stahl RG. The Importance of Fostering and Funding Scientific Research, and its Relevance to Environmental Toxicology and Chemistry. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:581-593. [PMID: 36524856 PMCID: PMC10203974 DOI: 10.1002/etc.5542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/10/2022] [Accepted: 12/12/2022] [Indexed: 05/25/2023]
Abstract
What do environmental contaminants and climate change have in common with the virus SARS-CoV-2 and the disease COVID-19? We argue that one common element is the wealth of basic and applied scientific research that provides the knowledge and tools essential in developing effective programs for addressing threats to humans and social-ecological systems. Research on various chemicals, including dichlorodiphenyltrichloroethane and per- and polyfluoroalkyl substances, resulted in regulatory action to protect environmental and human health. Moreover, decades of research on coronaviruses, mRNA, and recently SARS-CoV-2 enabled the rapid development of vaccines to fight the COVID-19 pandemic. In the present study, we explore the common elements of basic and applied scientific research breakthroughs that link chemicals, climate change, and SARS-CoV-2/COVID-19 and describe how scientific information was applied for protecting human health and, more broadly, socio-ecological systems. We also offer a cautionary note on the misuse and mistrust of science that is not new in human history, but unfortunately is surging in modern times. Our goal was to illustrate the critical role of scientific research to society, and we argue that research must be intentionally fostered, better funded, and applied appropriately. To that end, we offer evidence that supports the importance of investing in scientific research and, where needed, ways to counter the spread of misinformation and disinformation that undermines legitimate discourse. Environ Toxicol Chem 2023;42:581-593. © 2022 SETAC.
Collapse
Affiliation(s)
- Verena Sesin
- Environmental and Life Sciences, Trent University, Peterborough, Ontario, Canada
| | - Jonathan D Judy
- Soil and Water Sciences Department, University of Florida, Gainesville, Florida, United States
| | | | - Beatrice Opeolu
- Environmental Chemistry and Toxicology Research Group, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Mary A Ottinger
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States
| | - Paul M Bertsch
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Brisbane, Qld, Australia
| | - Ying Wang
- Lawrence Berkeley National Laboratory, Berkeley, California, United States
| | - James Lazorchak
- US Environmental Protection Agency, Cincinnati, Ohio, United States
| | - Tristan A Smythe
- Department of Chemistry, Carleton University, Ottawa, Ontario, Canada
| | - Ralph G Stahl
- DuPont Company (Retired), Wilmington, Delaware, United States
| |
Collapse
|
38
|
Liu J, Hermon T, Gao X, Dixon D, Xiao H. Arsenic and Diabetes Mellitus: A Putative Role for the Immune System. ALL LIFE 2023; 16:2167869. [PMID: 37152101 PMCID: PMC10162781 DOI: 10.1080/26895293.2023.2167869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 01/02/2023] [Indexed: 02/04/2023] Open
Abstract
Diabetes mellitus (DM) is an enormous public health issue worldwide. Recent data suggest that chronic arsenic exposure is linked to the risk of developing type 1 and type 2 DM, albeit the underlying mechanisms are unclear. This review discusses the role of the immune system as a link to possibly explain some of the mechanisms of developing T1DM or T2DM associated with arsenic exposure in humans, animal models, and in vitro studies. The rationale for the hypothesis includes: (1) Arsenic is a well-recognized modulator of the immune system; (2) arsenic exposures are associated with increased risk of DM; and (3) dysregulation of the immune system is one of the hallmarks in the pathogenesis of both T1DM and T2DM. A better understanding of DM in association with immune dysregulation and arsenic exposures may help to understand how environmental exposures modulate the immune system and how these effects may impact the manifestation of disease.
Collapse
Affiliation(s)
- Jingli Liu
- Molecular Pathogenesis Group, Mechanistic Toxicology Branch, Division of the National Toxicology Program (DNTP), National Institute of Environmental Health Sciences (NIEHS), NIH, DHHS, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Tonia Hermon
- Molecular Pathogenesis Group, Mechanistic Toxicology Branch, Division of the National Toxicology Program (DNTP), National Institute of Environmental Health Sciences (NIEHS), NIH, DHHS, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Xiaohua Gao
- Molecular Pathogenesis Group, Mechanistic Toxicology Branch, Division of the National Toxicology Program (DNTP), National Institute of Environmental Health Sciences (NIEHS), NIH, DHHS, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Darlene Dixon
- Molecular Pathogenesis Group, Mechanistic Toxicology Branch, Division of the National Toxicology Program (DNTP), National Institute of Environmental Health Sciences (NIEHS), NIH, DHHS, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Hang Xiao
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu, China
| |
Collapse
|
39
|
Matosinhos RD, Cesca K, Carciofi BAM, de Oliveira D, de Andrade CJ. Mannosylerythritol lipids as green pesticides and plant biostimulants. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:37-47. [PMID: 35775374 DOI: 10.1002/jsfa.12100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/03/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Biosurfactants can be applied in the formulation of personal care products, as food additives, and as biocontrol agents in the agricultural sector. Glycolipids and lipopeptides represent an important group of microbial-based biosurfactants with biostimulating properties. Among them, the mannosylerythritol lipids also presented antimicrobial activity, mostly against Gram-positive bacteria and phytopathogenic fungi. In this sense, mannosylerythritol lipids are a potential safer green alternative for partially replacing synthetic pesticides. This review aimed to critically discuss the current state of the art and future trends of mannosylerythritol lipids as green pesticides and biostimulants for seed germination and plant growth. Due to their chemical structure, mannosylerythritol lipids are likely related to energy pathways such as glycolysis and Krebs cycle, i.e. a direct cellular biostimulant potential. In this case, experimental evidence from other glycolipids indicated that structural and chemical changes as a potential drug vehicle due to morphological changes caused by biosurfactant-membrane interaction. In addition, like other biosurfactants, mannosylerythritol lipids can trigger self-defense mechanisms, leading to a lower frequency of phytopathogen infections. Therefore, mannosylerythritol lipids have the potential for biostimulation and antiphytopathogenic action, despite that to date no data are available on mannosylerythritol lipids as biostimulants and green pesticides simultaneously. Based on the current state of the art, mannosylerythritol lipids have great potential for a biotechnological advance toward more sustainable agriculture. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Renato Dias Matosinhos
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Karina Cesca
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | - Débora de Oliveira
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Cristiano José de Andrade
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
40
|
ElSayed NA, Aleppo G, Aroda VR, Bannuru RR, Brown FM, Bruemmer D, Collins BS, Hilliard ME, Isaacs D, Johnson EL, Kahan S, Khunti K, Leon J, Lyons SK, Perry ML, Prahalad P, Pratley RE, Seley JJ, Stanton RC, Gabbay RA, on behalf of the American Diabetes Association. 1. Improving Care and Promoting Health in Populations: Standards of Care in Diabetes-2023. Diabetes Care 2023; 46:S10-S18. [PMID: 36507639 PMCID: PMC9810463 DOI: 10.2337/dc23-s001] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The American Diabetes Association (ADA) "Standards of Care in Diabetes" includes the ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations and a full list of Professional Practice Committee members, please refer to Introduction and Methodology. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
Collapse
|
41
|
Araújo RAL, Cremonese C, Santos R, Piccoli C, Carvalho G, Freire C, Canuto R. Association of occupational exposure to pesticides with overweight and abdominal obesity in family farmers in southern Brazil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:2798-2809. [PMID: 34844470 DOI: 10.1080/09603123.2021.1991284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
The association of chronic exposure to pesticides with overweight and abdominal obesity in adult farmers was investigated. This cross-sectional study included a random sample of 122 farmers and their family members of both sexes (61% were male), living in the municipality of Farroupilha, southern Brazil. Pesticide groups and their individual compounds were self-reported and classified according to major functional and chemical classes (never used, 1-20 years, or > 20 years of use). Abdominal obesity and overweight were the outcomes of interest. A multivariate Poisson regression model was analyzed. After confounding factors were controlled, chronic use (>20 years) of insecticides (PR: 1.45; 95% CI: 1.00-2.10) and organophosphorus pesticides (PR: 1.48, 95% CI: 1.02-2.12) was associated with a higher prevalence of overweight but not abdominal obesity. Additional studies are needed to confirm our findings and clarify the specific mechanisms of these pollutants in the etiology of obesity.
Collapse
Affiliation(s)
- Roberta Andressa Line Araújo
- Postgraduate Program in Food, Nutrition and Health - Universidade Federal Do Rio Grande Do Sul - UFRGS, Porto Alegre, Brazil
| | - Cleber Cremonese
- Institute of Collective Health /ISC Universidade Federal da Bahia - UFBA, Salvador, Brazil
| | - Ramison Santos
- Postgraduate Program in Biological Science - Universidade Federal do Rio Grande do Sul UFRGS, Porto Alegre, Brazil
| | - Camila Piccoli
- Postgraduate Program in Public Health and Environment,National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Gabriela Carvalho
- Postgraduate Program in Nutrition - Universidade Federal de Pernambuco - UFPE, Recife, Brazil
| | - Carmen Freire
- Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), Hospital Universitario San Cecilio, Granada, Spain
| | - Raquel Canuto
- Postgraduate Program in Food, Nutrition and Health - Universidade Federal Do Rio Grande Do Sul - UFRGS, Porto Alegre, Brazil
- Postgraduate Program in Nutrition - Universidade Federal de Pernambuco - UFPE, Recife, Brazil
| |
Collapse
|
42
|
Zhou L, Wu Q, Gao Y, Shi H, Wang M. Enantioselective aquatic toxicity and degradation in soil of the chiral fungicide oxathiapiprolin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155632. [PMID: 35523333 DOI: 10.1016/j.scitotenv.2022.155632] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
Oxathiapiprolin is an efficient and chiral fungicide for peronosporomycetes. The enantioselective environmental behavior and ecotoxicity of oxathiapiprolin are still unclear. The enantioselectivity of oxathiapiprolin enantiomers was explored, including their acute toxicity toward aquatic plants (Auxenochlorella pyrenoidosa and Soirodela polyrhiza) along with their influence on photosynthetic pigment production, the acute toxicity and morphological differences for the embryos, larvae and adult stages of zebrafish (Danio rerio), and the degradation in four typical soils (aerobic, anaerobic and sterilized conditions). The enantioselective toxicity of oxathiapiprolin showed that the toxicity of R-oxathiapiprolin was 1.8-2.1 times higher than that of S-oxathiapiprolin toward the two aquatic plants. In particular, the content of photosynthetic pigments decreased significantly stronger after exposure to R-oxathiapiprolin compared with S-oxathiapiprolin. The LC50 values of R-oxathiapiprolin in zebrafish in the different life stages were 1.6-2.1 times higher than those of S-oxathiapiprolin. The zebrafish embryos were most sensitive to the oxathiapiprolin enantiomers. After exposure to R-oxathiapiprolin, zebrafish embryos showed noticeable hatching delays, inhibition or deformation. R-oxathiapiprolin degraded preferentially in all four soils, with an enantiomeric fraction (EF) ranging from 0.28 to 0.42 under aerobic conditions. Enantioselective degradation was not found under anaerobic and sterilized conditions. The enantioselectivity of new chiral pesticides should be fully considered in risk assessments to provide a basis for the development and preparation of pure optical enantiomers.
Collapse
Affiliation(s)
- Liangliang Zhou
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Qiqi Wu
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Yingying Gao
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Haiyan Shi
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Minghua Wang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China.
| |
Collapse
|
43
|
Guo X, Wang H, Song Q, Li N, Liang Q, Su W, Liang M, Ding X, Sun C, Lowe S, Sun Y. Association between exposure to organophosphorus pesticides and the risk of diabetes among US Adults: Cross-sectional findings from the National Health and Nutrition Examination Survey. CHEMOSPHERE 2022; 301:134471. [PMID: 35367493 DOI: 10.1016/j.chemosphere.2022.134471] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
OBJECTIVE Organophosphorus pesticides (OPPs) are commonly used pesticides across the world, however there is little epidemiological evidence linking their exposure to diabetes. Hence, this study aimed at investigating the effect of OPP exposure on the prevalence of diabetes in American adults. METHODS Adults (≥20 years old) were eligible for this study from the National Health and Nutrition Examination Survey (NHANES). Multivariate logistic regression model was employed to explore the associations of six main urinary OPPs metabolites with diabetes. Subgroup analyses were performed by age and gender. Combined effect of OPPs metabolites on the overall association with diabetes was evaluated by weighted quantile sum regression (WQS). Furthermore, Bayesian kernel machine regression (BKMR) model was implemented to explore joint effect of multiple OPPs metabolites on diabetes. RESULTS Ultimately, 6,593 adults were included in our analysis. Of them, 1,044 participants were determined as diabetes patients. The results of logistic regression shown that urinary OPPs metabolites concentrations, whether taken as continuous variables or quantiles, were in positive correlation with diabetes. Notably, the p for trend of diethylphosphate (DEP), a kind of OPPs metabolites, was less than 0.05 indicated that a linear trend may exist between levels of DEP and prevalence of diabetes among adults while this trend was not obversed in other OPPs metabolites. In the WQS model, combined exposure of OPPs metabolites had a significantly positive association with diabetes (OR: 1.057; 95% CI: 1.002, 1.114) and diethylphosphate (36.84%) made the largest contributor to the WQS index. The result of BKMR also suggested a positive trend of association between mixed OPPs metabolites and diabetes. CONCLUSION Our results add credibility to the argument that OPP exposure might trigger diabetes. Certainly, prospective data are required to corroborate our findings.
Collapse
Affiliation(s)
- Xianwei Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Hao Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Qiuxia Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Ning Li
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Qiwei Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Wanying Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Mingming Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Xiuxiu Ding
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Chenyu Sun
- Internal Medicine, AMITA Health Saint Joseph Hospital Chicago, 2900 N. Lake Shore Drive, Chicago, IL, 60657, USA
| | - Scott Lowe
- College of Osteopathic Medicine, Kansas City University, 1750 Independence Ave, Kansas City, MO, 64106, USA
| | - Yehuan Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China; Chaohu Hospital, Anhui Medical University, Hefei, 238000, Anhui, PR China.
| |
Collapse
|
44
|
Abouzid MR, Ali K, Elkhawas I, Elshafei SM. An Overview of Diabetes Mellitus in Egypt and the Significance of Integrating Preventive Cardiology in Diabetes Management. Cureus 2022; 14:e27066. [PMID: 36000101 PMCID: PMC9390800 DOI: 10.7759/cureus.27066] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2022] [Indexed: 11/21/2022] Open
Abstract
In Egypt, diabetes mellitus (DM) is a significant public health concern, and the disease is considered a modern pandemic throughout the world. The incidence of diabetes is steadily climbing, which is causing grave concern. As a result, it is essential to take into consideration the risk factors that are pervasive in Egyptian society and have led to the worsening of this problem. These risk factors include sedentary lifestyles, obesity, hepatitis C infections, pesticides, smoking, and bad cultural habits. In this review, we aim to demonstrate the possible solutions to fight diabetes mellitus and overcome its serious health and socioeconomic burdens in Egypt. A multidisciplinary, team-based approach is highly recommended in diabetes management. Primary care physicians, endocrinologists, nephrologists, and preventive cardiologists all play a crucial role in providing the highest possible level of care to diabetic patients by collaborating closely with one another. The assessment of cardiovascular risk and the prevention of life-threatening cardiovascular events, common among diabetic patients, warrant the introduction of preventive cardiology, a new and significant concept in diabetes care that demands adoption. The integration of preventive cardiology into the treatment of diabetic patients is expected to significantly cut down the morbidity and mortality rates associated with diabetes mellitus and provide them with a better quality of life.
Collapse
|
45
|
Lamat H, Sauvant-Rochat MP, Tauveron I, Bagheri R, Ugbolue UC, Maqdasi S, Navel V, Dutheil F. Metabolic syndrome and pesticides: A systematic review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119288. [PMID: 35439599 DOI: 10.1016/j.envpol.2022.119288] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 04/03/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
The relation between pesticides exposure and metabolic syndrome (MetS) has not been clearly identified. Performing a systematic review and meta-analysis, PubMed, Cochrane Library, Embase, and ScienceDirect were searched for studies reporting the risk of MetS following pesticides exposure and their contaminants. We included 12 studies for a total of 6789 participants, in which 1981 (29.1%) had a MetS. Overall exposure to pesticides and their contaminants increased the risk of MetS by 30% (95CI 22%-37%). Overall organochlorine increased the risk of MetS by 23% (14-32%), as well as for most types of organochlorines: hexachlorocyclohexane increased the risk by 53% (28-78%), hexachlorobenzene by 40% (0.01-80%), dichlorodiphenyldichloroethylene by 22% (9-34%), dichlorodiphenyltrichloroethane by 28% (5-50%), oxychlordane by 24% (1-47%), and transnonchlor by 35% (19-52%). Sensitivity analyses confirmed that overall exposure to pesticides and their contaminants increased the risk by 46% (35-56%) using crude data or by 19% (10-29%) using fully-adjusted model. The risk for overall pesticides and types of pesticides was also significant with crude data but only for hexachlorocyclohexane (36% risk increase, 17-55%) and transnonchlor (25% risk increase, 3-48%) with fully-adjusted models. Metaregressions demonstrated that hexachlorocyclohexane increased the risk of MetS in comparison to most other pesticides. The risk increased for more recent periods (Coefficient = 0.28, 95CI 0.20 to 0.37, by year). We demonstrated an inverse relationship with body mass index and male gender. In conclusion, pesticides exposure is a major risk factor for MetS. Besides organochlorine exposure, data are lacking for other types of pesticides. The risk increased with time, reflecting a probable increase of the use of pesticides worldwide. The inverse relationship with body mass index may signify a stockage of pesticides and contaminants in fat tissue.
Collapse
Affiliation(s)
- Hugo Lamat
- Université Clermont Auvergne, University Hospital of Clermont-Ferrand, CHU Clermont-Ferrand, Endocrinology-diabetology-nutrition, 63000, Clermont-Ferrand, France
| | - Marie-Pierre Sauvant-Rochat
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000, Clermont-Ferrand, France
| | - Igor Tauveron
- Université Clermont Auvergne, CNRS, GReD, Inserm, University Hospital of Clermont-Ferrand, CHU Clermont-Ferrand, Endocrinology, Clermont-Ferrand, France
| | - Reza Bagheri
- University of Isfahan, Exercise Physiology, Isfahan, Iran
| | - Ukadike C Ugbolue
- University of the West of Scotland, Health and Life Sciences, South Lanarkshire, Scotland, UK
| | - Salwan Maqdasi
- Université Clermont Auvergne, CNRS, GReD, Inserm, University Hospital of Clermont-Ferrand, CHU Clermont-Ferrand, Endocrinology, Clermont-Ferrand, France
| | - Valentin Navel
- Université Clermont Auvergne, CNRS, INSERM, GReD, CHU Clermont-Ferrand, University Hospital of Clermont-Ferrand, Ophthalmology, Clermont-Ferrand, France
| | - Frédéric Dutheil
- Université Clermont Auvergne, CNRS, LaPSCo, Physiological and Psychosocial Stress, University Hospital of Clermont-Ferrand, CHU Clermont-Ferrand, Occupational and Environmental Medicine, WittyFit, F-63000, Clermont-Ferrand, France.
| |
Collapse
|
46
|
Jara MDL, Alvarez LAC, Guimarães MCC, Antunes PWP, de Oliveira JP. Lateral flow assay applied to pesticides detection: recent trends and progress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:46487-46508. [PMID: 35507227 PMCID: PMC9067001 DOI: 10.1007/s11356-022-20426-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Devices based on lateral flow assay (LFA) have been gaining more and more space in the detection market mainly due to their simplicity, speed, and low cost. These devices have excellent sensing format versatility and make these strips an ideal choice for field applications. The COVID-19 pandemic boosted the democratization of this method as a "point of care testing" (POCT), and the trend is that these devices become protagonists for the monitoring of pesticides in the environment. However, designing LFA devices for detecting and monitoring pesticides in the environment is still a challenge. This is because analytes are small molecules and have only one antigenic determinant, which makes it difficult to apply direct immunoassays. Furthermore, most LFA devices provide only qualitative or semi-quantitative results and have a limited number of applications in multi-residue analysis. Here, we present the state of the art on the use of LFA in the environmental monitoring of pesticides. Based on well-documented results, we review all available LFA formats and strategies for pesticide detection, which may have important implications for the future of monitoring pesticides in the environment. The main advances, challenges, and perspectives of these devices for a direction in this field of study are also presented.
Collapse
Affiliation(s)
- Marcia Daniela Lazo Jara
- Department of Morphology, Federal University of Espirito Santo, Av Marechal Campos1468, Vitória, ES, 29.040-090, Brazil
| | | | - Marco C C Guimarães
- Department of Morphology, Federal University of Espirito Santo, Av Marechal Campos1468, Vitória, ES, 29.040-090, Brazil
| | - Paulo Wagnner Pereira Antunes
- Bioengen Consulting, Engineering and Environmental Planning, R. Belo Horizonte, Lote 05-Quadra W - Alterosas, Serra, ES, 29168-068, Brazil
| | - Jairo Pinto de Oliveira
- Department of Morphology, Federal University of Espirito Santo, Av Marechal Campos1468, Vitória, ES, 29.040-090, Brazil.
| |
Collapse
|
47
|
Yipei Y, Zhilin L, Yuhong L, Meng W, Huijun W, Chang S, Yan H. Assessing the risk of diabetes in participants with DDT DDE exposure- A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2022; 210:113018. [PMID: 35227676 DOI: 10.1016/j.envres.2022.113018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
We have performed a systematic review and meta-analysis of the association between DDT/DDE and diabetes, searching PubMed, Embase, and Cochrane for relevant articles published up to August 30, 2021, and eventually including 43 publications. Our researchers evaluate included studies' quality and risk of bias via the recommended tool. This study uses meta-analyses of random effects of each exposure and outcome to estimate combined odds ratios (ORs) and 95% confidence intervals (CIs). Our research identified 43 cross-sectional, case-control, and cohort studies, including 40,141 individuals in America, Europe, Asia, and Africa. The summary ORs (95% CIs) of incident diabetes were 1.61 (1.10-2.39) for DDT, 1.67 (1.41-1.98) for DDE. The subgroup analysis indicated that the association is significantly higher in the region of Asia for both DDT (OR = 2.73) and DDE (OR = 2.62). Besides, we also tried various types of stratification to identify the more influential confounding factors, among which regional factors have a significant influence. Study evidence suggests that exposure to DDT and its breakdown product, DDE, might be associated with the risk of incident diabetes. Among Asian patients, DDT/DDE concentrations are more closely associated with diabetes. Further studies in specific regions will be considered in the future.
Collapse
Affiliation(s)
- Yu Yipei
- Peking University Health Science Center, China.
| | - Liu Zhilin
- Peking University Health Science Center, China.
| | - Lu Yuhong
- Peking University Health Science Center, China.
| | | | - Wang Huijun
- Chinese Center for Disease Control and Prevention National Institute for Nutrition and Health Key Laboratory of Trace Element Nutrition, National Health Commission of the People's Republic of China, China.
| | - Su Chang
- Chinese Center for Disease Control and Prevention National Institute for Nutrition and Health Key Laboratory of Trace Element Nutrition, National Health Commission of the People's Republic of China, China.
| | - Hou Yan
- Peking University Health Science Center, China.
| |
Collapse
|
48
|
Pesticide Exposure in Relation to the Incidence of Abnormal Glucose Regulation: A Retrospective Cohort Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127550. [PMID: 35742799 PMCID: PMC9223857 DOI: 10.3390/ijerph19127550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 12/04/2022]
Abstract
Diabetes and prediabetes (called abnormal glucose regulation (AGR)) are adverse health effects associated with exposure to pesticides. However, there are few epidemiological studies on the relationship between pesticide use and the incidence of AGR. We examined the causal relationship between pesticide use and AGR incidence in a rural population using data from a Korean Farmers’ Cohort study of 1076 participants. Poisson regression with robust error variance was used to calculate the relative risks (RR) and 95% confidence intervals (CI) to estimate the relationship between pesticide exposure and AGR. The incidence of AGR in the pesticide-exposed group was 29.1%. Pesticide use increased the RR of AGR (RR 1.32, 95% CI 1.03–1.69). We observed a low-dose effect related to exposure of pesticides to AGR and a U-shaped dose–response relationship in men. Pesticide exposure is related to the incidence of AGR, and the causal relationship differs between men and women.
Collapse
|
49
|
Food, Medicine, and Function. Phys Med Rehabil Clin N Am 2022; 33:571-586. [DOI: 10.1016/j.pmr.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Deprouw C, Courties A, Fini JB, Clerget-Froidevaux MS, Demeneix B, Berenbaum F, Sellam J, Louati K. Pollutants: a candidate as a new risk factor for osteoarthritis-results from a systematic literature review. RMD Open 2022; 8:rmdopen-2021-001983. [PMID: 35701010 PMCID: PMC9198696 DOI: 10.1136/rmdopen-2021-001983] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/08/2022] [Indexed: 01/09/2023] Open
Abstract
Background Considering non-classical environmental risk factors for osteoarthritis (OA), a systematic literature review (SLR) was performed to summarise existing knowledge on associations between OA and pollutants. Methods PubMed was used to identify studies reporting data on OA and pollutants in humans (examples of MeSH terms: “Pesticides” or “Polychlorinated Biphenyls” or ‘Lead’). Reports included epidemiological clinical studies, pollutant assessments in ex vivo OA joint, and in vitro effects of pollutants on chondrocytes. Results Among the 193 potentially relevant articles, 14 were selected and combined with 9 articles obtained by manual search. Among these 23 articles there were: (1) 11 epidemiological studies on the relationship between OA and pollutants exposure, (2) 8 on pollutant concentrations in ex vivo OA joint, (3) 4 on the in vitro effects of pollutants on human chondrocytes. Epidemiological studies investigating mainly chlorinated and fluorinated pollutants suggested a possible link with OA. In cross-sectional studies, radiographic knee OA prevalence increased with higher serum lead levels. There was also a relationship between serum lead levels and serum/urine joint biomarkers. A high concentration of heavy metals in the cartilage tidemark was found in ex vivo joints. In vitro, the viability of chondrocytes was reduced in presence of some pollutants. However, the level of knowledge currently remains low, justifying the need for new methodologically sound studies. Conclusions This SLR supports the hypothesis of a possible involvement of pollutants in OA disease risk. Large-scale epidemiological and biological studies and ideally big-data analysis are needed to confirm that pollutants could be risk factors for OA.
Collapse
Affiliation(s)
- Camille Deprouw
- Department of Rheumatology, Saint-Antoine Hospital, Paris, France
| | - Alice Courties
- Department of Rheumatology, Saint-Antoine Hospital, Paris, France.,Sorbonne Université, CRSA Inserm UMR S938, Paris, France
| | - Jean-Baptiste Fini
- Laboratoire PhyMA UMR7221 Muséum National d'Histoire Naturelle, CNRS, Paris, France
| | | | - Barbara Demeneix
- Laboratoire PhyMA UMR7221 Muséum National d'Histoire Naturelle, CNRS, Paris, France
| | - Francis Berenbaum
- Department of Rheumatology, Saint-Antoine Hospital, Paris, France .,Sorbonne Université, CRSA Inserm UMR S938, Paris, France
| | - Jérémie Sellam
- Department of Rheumatology, Saint-Antoine Hospital, Paris, France.,Sorbonne Université, CRSA Inserm UMR S938, Paris, France
| | - Karine Louati
- Department of Rheumatology, Saint-Antoine Hospital, Paris, France.,Sorbonne Université, CRSA Inserm UMR S938, Paris, France
| |
Collapse
|