1
|
Adetutu A, Adegbola PI, Aborisade AB. Low Dose of Nickel and Benzo [a] Anthracene in Rat-Diet, Induce Apoptosis, Fibrosis, and Initiate Carcinogenesis in Liver via NF-Ƙβ Pathway. Biol Trace Elem Res 2025; 203:305-333. [PMID: 38656682 DOI: 10.1007/s12011-024-04177-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/08/2024] [Indexed: 04/26/2024]
Abstract
Environmental contaminants such as polycyclic aromatic hydrocarbon (PAH) and heavy metals are major contaminants of food such as fish thus serving as source of exposure to human. This study was designed to evaluate the carcinogenic risk and other risks associated with long-term consumption of environmentally relevant dose of nickel and benzo [a] anthracene in rats. Thirty-six (36) male rats weighing between 80 and 100 g were assigned into 6 groups of 6 animals each; normal, nickel-, and benzo [a] anthracene-exposed groups for 12 and 24 weeks, respectively. Micronucleus and comet analyses were done in the blood, liver, and bone marrow. Liver function, redox, and inflammatory markers (AST, ALT, GGT, SOD, GSH, MDA, protein carbonyl, protein thiol, total protein, IL-10, 1L-1β, TNF-α, TGF-β NF-Ƙβ, and 8-oxodeoxyguansine) were analysed by standard methods. Immuno-histochemical quantification of Bax, Bcl2, and Erk 1/2 as well as mRNA expression of cyclin D1 was done in liver. From the results, weight gain was observed in varying degrees throughout the exposure period. The polychromatic erythrocytes/normochromatic erythrocytes ratio > 0.2 indicates no cytotoxic effects on the bone marrow. Percentage-MnPCE in blood significantly (p < 0.05) increased throughout exposure duration. Percentage tail DNA in blood was significantly (< 0.05) increased at weeks 20 and 24 in the exposed groups and in liver at weeks 12 (16.22 ± 0.47) and 24 (17.00 ± 0.36) of nickel-exposed rats. The aspartate amino transferase (AST):alanine amino transferase (ALT) ratio indicated fatty liver disease in the benzo [a] anthracene (0.90) and acute liver injury in the nickel (> 10 times greater than the upper limits of the reference group) exposed groups during the first 12 weeks. Observation from the histological and cytological data of the liver revealed the presence of inflammation, fibrosis, and high nuclear/cytoplasmic ratio, respectively, in the nickel and benzo [a] anthracene groups. Only benzo [a] anthracene induced liver oxidative stress with significant (p < 0.05) decrease in SOD (0.64 ± 0.02) activity and increase in protein carbonyl (7.60 ± 0.80 × 10-5) and MDA (57.10 ± 6.64) concentration after 24 weeks. Benzo [a] anthracene up-regulated the cyclin D1 expression and significantly (p < 0.05) increased the levels of the cytokines. Nickel and benzo [a] anthracene significantly (p < 0.05) increased the Bax (183.45 ± 6.50 and 199.76 ± 10.04) and Erk 1/2 (108.25 ± 6.41 and 136.74 ± 4.22) levels when compared with the control (37.43 ± 22.22 and 60.37 ± 17.86), respectively. Overall result showed that the toxic effects of nickel and benzo [a] anthracene might involve fibrosis, cirrhosis, apoptosis, and inflammation of the liver. As clearly demonstrated in this study, benzo [a] anthracene after the 24 weeks of exposure stimulates carcinogenic process by suppressing the liver antioxidant capacity, altering apoptotic, cell proliferation, and differentiation pathways.
Collapse
Affiliation(s)
- Adewale Adetutu
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Peter Ifeoluwa Adegbola
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria.
- Department of Biochemistry and Forensic Science, First Technical University, Ibadan, Nigeria.
| | - Abiodun Bukunmi Aborisade
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- Nigeria Institute of Oceanography and Marine Research, Lagos, Nigeria
| |
Collapse
|
2
|
Huang Y, Zhang H, Lv Y, Yu L, Liu H, Xu S, Chen T, Li Y. Joint association of polycyclic aromatic hydrocarbon and heavy metal exposures with sex steroid hormones in children and adolescents aged 6-19 years in NHANES 2013-2016. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 197:114. [PMID: 39739052 DOI: 10.1007/s10661-024-13534-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 12/09/2024] [Indexed: 01/02/2025]
Abstract
Sex hormone homeostasis is crucial for the proper development of children and adolescents. Previous studies have indicated that exposure to heavy metals and polycyclic aromatic hydrocarbons (PAHs) is linked to disruptions in sex hormone levels in this age group. However, there is limited research on the harm caused by exposure to chemical mixtures. Our study analyzed data from 1059 participants aged 6-19 years who participated in the 2013-2016 National Health and Nutrition Examination Survey (NHANES) to examine the association between 15 heavy metals, 8 PAH metabolites, and sex hormone levels in children and adolescents. We used various statistical models, such as generalized linear regression models, weighted quantile sum (WQS) regression models, and Bayesian kernel regression (BKMR) models, to analyze the single effects of chemicals and the combined effects of chemical mixtures. We discovered that exposure to a mixture of heavy metals and PAHs was linked to a decrease in testosterone (TT) and estradiol (E2) levels, as well as an increase in sex hormone-binding globulin (SHBG) levels. We identified Cesium (Cs), molybdenum (Mo), tin (Sn), antimony (Sb), lead (Pb), and metabolites of naphthalene and phenanthrene as significant contributors to these associations. This association was more significant in adolescents. Our results suggest that exposure to a mixture of heavy metals and PAHs can disrupt sex hormone levels in children and adolescents.
Collapse
Affiliation(s)
- Yizhao Huang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Hongling Zhang
- Wuchang University of Technology, Wuhan, Hubei, People's Republic of China
| | - Yiqing Lv
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Ling Yu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Hongxiu Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Tian Chen
- Department of Environmental Health, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China.
- Division of Public Health Service and Safety Assessment, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China.
- State Environmental Protection Key Laboratory of the Assessment of Effects of Emerging Pollutants On Environmental and Human Health, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China.
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China.
| |
Collapse
|
3
|
Liao J, Huang R, Jia X, He J, Li Q, Li X, Yuan J, Tan L. Impact of COVID-19 on temporal trends and health risks of urinary metal concentrations among residents of Guangzhou, China. ENVIRONMENTAL RESEARCH 2024; 261:119705. [PMID: 39084505 DOI: 10.1016/j.envres.2024.119705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/10/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Long-term biomonitoring of urinary metal ions is an essential tool for the epidemiological assessment of chronic exposure levels, enabling us to track changes in metal exposure over time and better understand its health implications. In this study, we evaluated the temporal trends of urinary metal ions among 1962 residents of Guangzhou, China, from 2018 to 2022. The total metal ion concentrations in the urine of the population did not change significantly between 2018 and 2019. With the onset of the COVID-19 pandemic in 2020, urinary total metal ion concentrations began to decline dramatically, reaching their lowest level in 2021. A rebound in concentrations was observed in 2022, which returned to the initial levels observed in 2018. Urine chromium and cadmium concentrations peaked in 2020, while urinary lead levels were the highest in 2021, and urinary nickel concentrations were the highest in 2022. Males consistently displayed higher urinary concentrations of lead and arsenic throughout each year of the study. Furthermore, minors consistently had higher urinary nickel levels than adults, whereas adults consistently had higher urinary cadmium concentrations than minors. Cluster analyses were conducted annually on urinary metal ions to examine the differences in their distribution and to evaluate changes in metal exposure patterns over time. The Monte Carlo simulations indicate that the whole population exhibits a high non-carcinogenic risk from arsenic exposure and significant carcinogenic risks associated with exposure to nickel, arsenic, chromium, and cadmium. The next two years were predicted by a gray prediction model, and the results are tested using mean absolute percentage error which demonstrating high accuracy.
Collapse
Affiliation(s)
- Jia Liao
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Rende Huang
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Xiangyu Jia
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China; School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jia He
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Qin Li
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Xiaotong Li
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Jun Yuan
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Lei Tan
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China; School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
4
|
Lai J, Li X, Liu W, Liufu Q, Zhong C. Global, regional, and national burden and trends analysis of malignant neoplasm of bone and articular cartilage from 1990 to 2021: A systematic analysis for the Global Burden of Disease Study 2021. Bone 2024; 188:117212. [PMID: 39059750 DOI: 10.1016/j.bone.2024.117212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Malignant neoplasm of bone and articular cartilage (MNBAC) is one of the causes of cancer-related deaths worldwide. To date, there is a lack of detailed studies on the disease burden of MNBAC. METHODS Data on the incidence, mortality, and disability-adjusted life years (DALYs) of MNBAC from 1990 to 2021 were obtained from the Global Burden of Disease study. We estimated the trends in the burden of MNBAC by calculating the estimated annual percentage change (EAPC) in age-standardized rates by region, country, and social development index. RESULTS Globally, the cases of incidence and deaths of MNBAC showed a significant upward trend. In 2021, the global incidence cases of MNBAC were 91,375.1 (73,780.4-102,469.7), and the number of deaths was 66,114.3 (53,305.4-74,466.9). The age-standardized incidence, mortality, and DALYs rates were all on the rise, with EAPCs of 0.59 (0.51 to 0.68), 0.11 (0.02 to 0.21), and 0.08 (0 to 0.17), respectively. In 2021, China had the highest number of incidence cases and deaths. Two peaks in incidence cases and deaths were observed in the 15-19 and 65-69 age groups, with incidence rates and death rates generally increasing with age, and higher in males than females. The region with the highest incidence cases, deaths, and age-standardized incidence rate was East Asia, while Eastern Sub-Saharan Africa had the highest age-standardized mortality, and DALYs rates. CONCLUSION From 1990 to 2021, the global burden of MNBAC has continued to increase, particularly in East Asia, which faces the highest number of incidence cases and deaths, while Eastern Sub-Saharan Africa faces the highest ASMR and ASDR. To mitigate this burden, different regions should develop cancer control actions based on their respective epidemiological characteristics, with a focus on the elderly and adolescents, and control of risk factors.
Collapse
Affiliation(s)
- Jianqiang Lai
- Department of Orthopedic Surgery, Gaozhou People's Hospital, Gaozhou, China
| | - Xianmin Li
- Department of Orthopedic Surgery, Gaozhou People's Hospital, Gaozhou, China
| | - Wei Liu
- Department of Orthopedic Surgery, Gaozhou People's Hospital, Gaozhou, China
| | - Qian Liufu
- Department of Orthopedic Surgery, Gaozhou People's Hospital, Gaozhou, China
| | - Chengfan Zhong
- Department of Orthopedic Surgery, Gaozhou People's Hospital, Gaozhou, China.
| |
Collapse
|
5
|
Suljević D, Fočak M, Alijagic A. Assessing chromium toxicity across aquatic and terrestrial environments: a cross-species review. Drug Chem Toxicol 2024; 47:1312-1324. [PMID: 38727006 DOI: 10.1080/01480545.2024.2350660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/06/2024] [Accepted: 04/27/2024] [Indexed: 11/21/2024]
Abstract
Chromium (Cr) toxicity, even at low concentrations, poses a significant health threat to various environmental species. Cr is found in the environment in two oxidation states that differ in their bioavailability and toxicity. While Cr(III) is essential for glucose metabolism, the oxyanion chromate Cr(VI) is mostly of anthropogenic origin, toxic, and carcinogenic. The sources of Cr in the environment are multiple, including geochemical processes, disposal of industrial waste, and industrial wastewater. Cr pollution may consequently impact the health of numerous plant and animal species. Despite that, the number of published studies on Cr toxicity across environmental species remained mainly unchanged over the past two decades. The presence of Cr in the environment affects several plant physiological processes, including germination or photosynthesis, and consequently impacts growth, and lowers agricultural production and quality. Recent research has also reported the toxic effects of Cr in different aquatic and terrestrial organisms. Whereas some species showed sensitivity, others exhibited tolerance. Hence, this review discusses the understanding of the ecotoxicological effect of Cr on different plant and animal groups and serves as a concise source of consolidated information and a valuable reference for researchers and policymakers in an understanding of Cr toxicity. Future directions should focus on expanding research efforts to understand the mechanisms underlying species-specific responses to Cr pollution.
Collapse
Affiliation(s)
- Damir Suljević
- Department of Biology, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Muhamed Fočak
- Department of Biology, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Andi Alijagic
- Man-Technology-Environment Research Center (MTM), Örebro University, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
6
|
McGraw KE, Schilling K, Glabonjat RA, Galvez-Fernandez M, Domingo-Relloso A, Martinez-Morata I, Jones MR, Nigra A, Post WS, Kaufman J, Tellez-Plaza M, Valeri L, Brown ER, Kronmal RA, Barr RG, Shea S, Navas-Acien A, Sanchez TR. Urinary Metal Levels and Coronary Artery Calcification: Longitudinal Evidence in the Multi-Ethnic Study of Atherosclerosis. J Am Coll Cardiol 2024; 84:1545-1557. [PMID: 39297845 DOI: 10.1016/j.jacc.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Exposure to metals, a newly recognized risk factor for cardiovascular disease (CVD), could be related to atherosclerosis progression. OBJECTIVES The authors hypothesized that higher urinary levels of nonessential (cadmium, tungsten, uranium) and essential (cobalt, copper, zinc) metals previously associated with CVD would be associated with baseline and rate of change of coronary artery calcium (CAC) progression, a subclinical marker of CVD in MESA (Multi-Ethnic Study of Atherosclerosis). METHODS We analyzed data from 6,418 MESA participants with spot urinary metal levels at baseline (2000-2002) and 1 to 4 repeated, continuous measures of CAC over a 10-year period. We used linear mixed-effect models to assess the association of baseline urinary metal levels with baseline CAC and cumulative change in CAC over a 10-year period. Urinary metals (μg/g creatinine) and CAC were log transformed. Models were adjusted for baseline sociodemographic factors, estimated glomerular filtration rate, lifestyle factors, and clinical factors. RESULTS At baseline, the median CAC was 6.3 (Q1-Q3: 0.7-58.2). Comparing the highest to lowest quartile of urinary cadmium, CAC levels were 51% (95% CI: 32%, 74%) higher at baseline and 75% (95% CI: 47%, 107%) higher over the 10-year period. For urinary tungsten, uranium, and cobalt, the corresponding CAC levels over the 10-year period were 45% (95% CI: 23%, 71%), 39% (95% CI: 17%, 64%), and 47% (95% CI: 25%, 74%) higher, respectively, with no difference for models with and without adjustment for clinical factors. For copper and zinc, the corresponding estimates dropped from 55% to 33% and from 85% to 57%, respectively, after adjustment for clinical factors. The associations of metals with CAC were comparable in magnitude to those for classical CVD risk factors. CONCLUSIONS Exposure to metals was generally associated with extent of coronary calcification at baseline and follow-up. These findings support that metals are associated with the progression of atherosclerosis, potentially providing a novel strategy for the prevention and treatment of atherosclerosis progression.
Collapse
Affiliation(s)
- Katlyn E McGraw
- Department of Environmental Health Science, Columbia University Mailman School of Public Health, New York, New York, USA.
| | - Kathrin Schilling
- Department of Environmental Health Science, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Ronald A Glabonjat
- Department of Environmental Health Science, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Marta Galvez-Fernandez
- Department of Environmental Health Science, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Arce Domingo-Relloso
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Irene Martinez-Morata
- Department of Environmental Health Science, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Miranda R Jones
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Anne Nigra
- Department of Environmental Health Science, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Wendy S Post
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Joel Kaufman
- Departments of Environmental & Occupational Health Sciences, Medicine, and Epidemiology, University of Washington, Seattle, Washington, USA
| | - Maria Tellez-Plaza
- Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Linda Valeri
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Elizabeth R Brown
- Departments of Environmental & Occupational Health Sciences, Medicine, and Epidemiology, University of Washington, Seattle, Washington, USA; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Richard A Kronmal
- Departments of Environmental & Occupational Health Sciences, Medicine, and Epidemiology, University of Washington, Seattle, Washington, USA
| | - R Graham Barr
- Departments of Medicine and Epidemiology, Columbia University Irving Medical Center, New York, New York, USA
| | - Steven Shea
- Departments of Medicine and Epidemiology, Columbia University Irving Medical Center, New York, New York, USA
| | - Ana Navas-Acien
- Department of Environmental Health Science, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Tiffany R Sanchez
- Department of Environmental Health Science, Columbia University Mailman School of Public Health, New York, New York, USA
| |
Collapse
|
7
|
Song J, Wu Y, Ma Y, He J, Zhu S, Tang Y, Tang J, Hu M, Hu L, Zhang L, Wu Q, Liu J, Liang Z. A prospective cohort study of multimetal exposure and risk of gestational diabetes mellitus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174568. [PMID: 38977093 DOI: 10.1016/j.scitotenv.2024.174568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024]
Abstract
The relationship between co-exposure to multiple metals and gestational diabetes mellitus (GDM) and the mechanisms involved are poorly understood. In this nested case-control study, 228 GDM cases and 456 matched controls were recruited, and biological samples were collected at 12-14 gestational weeks. The urinary concentrations of 10 metals and 8-hydroxydeoxyguanosine (8-OHdG) as well as the serum levels of malondialdehyde (MDA) and advanced glycation end products (AGEs) were determined to assess the association of metals with GDM risk and the mediating effects of oxidative stress. Urinary Ti concentration was significantly and positively associated with the risk of GDM (odds ratio [OR]:1.45, 95 % confidence interval [CI]: 1.12, 1.88), while Mn and Fe were negatively associated with GDM risk (OR: 0.67, 95 % CI: 0.50, 0.91 or OR: 0.61, 95 % CI: 0.47, 0.80, respectively). A significant negative association was observed between Mo and GDM risk, specifically in overweight and obese pregnant women. Bayesian kernel machine regression showed a significant negative joint effect of the mixture of 10 metals on GDM risk. The adjusted restricted cubic spline showed a protective role of Mn and Fe in GDM risk (P < 0.05). A significant negative association was observed between essential metals and GDM risk in quantile g-computation analysis (P < 0.05). Mediation analyses showed a mediating effect of MDA on the association between Ti and GDM risk, with a proportion of 8.7 % (P < 0.05), and significant direct and total effects on Ti, Mn, and Fe. This study identified Ti as a potential risk factor and Mn, Fe, and Mo as potential protective factors against GDM, as well as the mediating effect of lipid oxidation.
Collapse
Affiliation(s)
- Jiajia Song
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Yihui Wu
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Yubing Ma
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Juhui He
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Shuqi Zhu
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Yibo Tang
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Jiayue Tang
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Mengjia Hu
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Luyao Hu
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Lixia Zhang
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Qi Wu
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhaoxia Liang
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China.
| |
Collapse
|
8
|
Wang Y, Wang Y, Li R, Ni B, Chen R, Huang Y, Cheng R, Li P, Li H, Peng Y, Chen X, Wang J, Fu Y, Yang C, Yuan N, Xiao X, Huang Y, Zeng H, Xia W, Li Y, Xu S, Chen L, Liu H. Low-grade systemic inflammation links heavy metal exposures to mortality: A multi-metal inflammatory index approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174537. [PMID: 38977088 DOI: 10.1016/j.scitotenv.2024.174537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024]
Abstract
Certain heavy metals have been correlated to an elevated risk of inflammation-related diseases and mortality. Nevertheless, the intricate relationships between metal exposure, inflammation and mortality remain unknown. We included 3741 adults with measurements of ten urinary heavy metals in the National Health and Nutritional Examination Survey (NHANES) 2005-2010, followed up to December 31, 2019. Low-grade systemic inflammation was evaluated by various markers, including C-reactive protein (CRP) and ratios derived from regular blood tests. We assessed associations between heavy metal and all-cause mortality using multivariate COX regressions. Then we assessed the mediation effect of low-grade systemic inflammation on the associations via Sobel Test. To gauge the systemic inflammatory potential of the multi-metal mixture and its correlation with all-cause mortality, a Metal Mixture Inflammatory Index (MMII) was developed using reduced rank regression (RRR) models. The association between MMII and all-cause mortality was explored via multivariate COX regressions. Cadmium, antimony and uranium displayed positive associations with mortality, with hazard ratios (HR) ranging from 1.18 to 1.46 (all P-FDR < 0.05). Mediation analyses revealed that the associations between specific heavy metals (cadmium and antimony) and mortality risk were slightly mediated by the low-grade systemic inflammation markers, with mediation proportions ranging from 3.11 % to 5.38 % (all P < 0.05). MMII, the weighted sum of 9 heavy metals, significantly predicted platelet-to-lymphocyte ratio (PLR) and CRP (β = 0.10 and 1.16, all P < 0.05), was positively associated with mortality risk (HR 1.28, 95 % CI 1.14 to 1.43). Exposure to heavy metals might increase all-cause mortality, partly mediated by low-grade systemic inflammation. MMII, designed to assess the potential systemic inflammatory effects of exposure to multiple heavy metals, was closely related to the all-cause mortality risk. This study introduces MMII as an approach to evaluating co-exposure and its potential health effects comprehensively.
Collapse
Affiliation(s)
- Yin Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China; The Institute of Environmental Medicine, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Yuyan Wang
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA
| | - Ruizhen Li
- Department of Children Healthcare, Wuhan Children's Hospital, Wuhan Maternal and Child Healthcare Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, PR China
| | - Baiwen Ni
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Ruixin Chen
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Yun Huang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Rongrong Cheng
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Pei Li
- Department of Physiology and Biophysics, University of New York at Buffalo, New York, NY, USA
| | - Han Li
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning 530021, PR China
| | - Yang Peng
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Nanning 530021, PR China
| | - Xue Chen
- Department of Children Healthcare, Wuhan Children's Hospital, Wuhan Maternal and Child Healthcare Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, PR China
| | - Jingyu Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Yuehao Fu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Chenhui Yang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Ningxue Yuan
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Xianhe Xiao
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Yizhao Huang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Huaicai Zeng
- Department of Occupational and Environmental Health, Guilin Medical University, Guilin, China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Lei Chen
- Department of Children Healthcare, Wuhan Children's Hospital, Wuhan Maternal and Child Healthcare Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, PR China.
| | - Hongxiu Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China; The Institute of Environmental Medicine, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China.
| |
Collapse
|
9
|
Zhou D, Mao Q, Sun Y, Cheng H, Zhao J, Liu Q, Deng M, Xu S, Zhao X. Association of Blood Copper With the Subclinical Carotid Atherosclerosis: An Observational Study. J Am Heart Assoc 2024; 13:e033474. [PMID: 38700020 PMCID: PMC11179917 DOI: 10.1161/jaha.123.033474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/01/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND Copper exposure is reported to be associated with increased risk of stroke. However, the association of copper exposure with subclinical carotid atherosclerosis remains unclear. METHODS AND RESULTS This observational study included consecutive participants from Xinqiao Hospital between May 2020 and August 2021. Blood metals were measured using inductively coupled plasma mass spectrometry and carotid atherosclerosis was assessed using ultrasound. Modified Poisson regression was performed to evaluate the associations of copper and other metals with subclinical carotid plaque presence. Blood metals were analyzed as categorical according to the quartiles. Multivariable models were adjusted for age, sex, body mass index, education, smoking, drinking, hypertension, diabetes, dyslipidemia, estimated glomerular filtration rate, and coronary artery disease history. Bayesian Kernel Machine Regression was conducted to evaluate the overall association of metal mixture with subclinical carotid plaque presence. One thousand five hundred eighty-five participants were finally enrolled in our study, and carotid plaque was found in 1091 subjects. After adjusting for potential confounders, metal-progressively-adjusted models showed that blood copper was positively associated with subclinical carotid plaque (relative risk according to comparing quartile 4 to quartile 1 was 1.124 [1.021-1.238], relative risk according to per interquartile increment was 1.039 [1.008-1.071]). Blood cadmium and lead were also significantly associated with subclinical carotid plaque. Bayesian Kernel Machine Regression analyses suggested a synergistic effect of copper-cadmium-lead mixture on subclinical carotid plaque presence. CONCLUSIONS Our findings identify copper as a novel risk factor of subclinical carotid atherosclerosis and show the potential synergistic proatherogenic effect of copper, cadmium, and lead mixture.
Collapse
Affiliation(s)
- Denglu Zhou
- Department of Cardiology, Institute of Cardiovascular Research, Xinqiao Hospital Army Medical University Chongqing China
| | - Qi Mao
- Department of Cardiology, Institute of Cardiovascular Research, Xinqiao Hospital Army Medical University Chongqing China
| | - Yapei Sun
- Center of Laboratory Medicine Chongqing Prevention and Treatment Center for Occupational Diseases Chongqing China
- Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning Chongqing China
- School of Public Health Nanjing Medical University Nanjing China
| | - Hao Cheng
- Department of Cardiology, Institute of Cardiovascular Research, Xinqiao Hospital Army Medical University Chongqing China
| | - Jianhua Zhao
- Department of Cardiology, Institute of Cardiovascular Research, Xinqiao Hospital Army Medical University Chongqing China
| | - Qingsong Liu
- Department of Cardiology, Institute of Cardiovascular Research, Xinqiao Hospital Army Medical University Chongqing China
| | - Mengyang Deng
- Department of Cardiology, Institute of Cardiovascular Research, Xinqiao Hospital Army Medical University Chongqing China
| | - Shangcheng Xu
- Center of Laboratory Medicine Chongqing Prevention and Treatment Center for Occupational Diseases Chongqing China
- Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning Chongqing China
- School of Public Health Nanjing Medical University Nanjing China
| | - Xiaohui Zhao
- Department of Cardiology, Institute of Cardiovascular Research, Xinqiao Hospital Army Medical University Chongqing China
| |
Collapse
|
10
|
Sauvain JJ, Hemmendinger M, Charreau T, Jouannique V, Debatisse A, Suárez G, Hopf NB, Guseva Canu I. Metal and oxidative potential exposure through particle inhalation and oxidative stress biomarkers: a 2-week pilot prospective study among Parisian subway workers. Int Arch Occup Environ Health 2024; 97:387-400. [PMID: 38504030 PMCID: PMC10999389 DOI: 10.1007/s00420-024-02054-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 02/05/2024] [Indexed: 03/21/2024]
Abstract
OBJECTIVE In this pilot study on subway workers, we explored the relationships between particle exposure and oxidative stress biomarkers in exhaled breath condensate (EBC) and urine to identify the most relevant biomarkers for a large-scale study in this field. METHODS We constructed a comprehensive occupational exposure assessment among subway workers in three distinct jobs over 10 working days, measuring daily concentrations of particulate matter (PM), their metal content and oxidative potential (OP). Individual pre- and post-shift EBC and urine samples were collected daily. Three oxidative stress biomarkers were measured in these matrices: malondialdehyde (MDA), 8-hydroxy-2'deoxyguanosine (8-OHdG) and 8-isoprostane. The association between each effect biomarker and exposure variables was estimated by multivariable multilevel mixed-effect models with and without lag times. RESULTS The OP was positively associated with Fe and Mn, but not associated with any effect biomarkers. Concentration changes of effect biomarkers in EBC and urine were associated with transition metals in PM (Cu and Zn) and furthermore with specific metals in EBC (Ba, Co, Cr and Mn) and in urine (Ba, Cu, Co, Mo, Ni, Ti and Zn). The direction of these associations was both metal- and time-dependent. Associations between Cu or Zn and MDAEBC generally reached statistical significance after a delayed time of 12 or 24 h after exposure. Changes in metal concentrations in EBC and urine were associated with MDA and 8-OHdG concentrations the same day. CONCLUSION Associations between MDA in both EBC and urine gave opposite response for subway particles containing Zn versus Cu. This diverting Zn and Cu pattern was also observed for 8-OHdG and urinary concentrations of these two metals. Overall, MDA and 8-OHdG responses were sensitive for same-day metal exposures in both matrices. We recommend MDA and 8-OHdG in large field studies to account for oxidative stress originating from metals in inhaled particulate matter.
Collapse
Affiliation(s)
- Jean-Jacques Sauvain
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University Lausanne, Route de la Corniche 2, 1066, Epalinges, Switzerland.
| | - Maud Hemmendinger
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University Lausanne, Route de la Corniche 2, 1066, Epalinges, Switzerland
| | - Thomas Charreau
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University Lausanne, Route de la Corniche 2, 1066, Epalinges, Switzerland
| | - Valérie Jouannique
- Service Santé-Travail, Régie autonome des transports parisiens (RATP), 88 Boulevard Sébastopol, 75003, Paris, France
| | - Amélie Debatisse
- Service Santé-Travail, Régie autonome des transports parisiens (RATP), 88 Boulevard Sébastopol, 75003, Paris, France
| | - Guillaume Suárez
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University Lausanne, Route de la Corniche 2, 1066, Epalinges, Switzerland
| | - Nancy B Hopf
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University Lausanne, Route de la Corniche 2, 1066, Epalinges, Switzerland
| | - Irina Guseva Canu
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University Lausanne, Route de la Corniche 2, 1066, Epalinges, Switzerland
| |
Collapse
|
11
|
Sazakli E. Human Health Effects of Oral Exposure to Chromium: A Systematic Review of the Epidemiological Evidence. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:406. [PMID: 38673319 PMCID: PMC11050383 DOI: 10.3390/ijerph21040406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/10/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
The toxicity and carcinogenicity of hexavalent chromium via the inhalation route is well established. However, a scientific debate has arisen about the potential effects of oral exposure to chromium on human health. Epidemiological studies evaluating the connection between ingested chromium and adverse health effects on the general population are limited. In recent years, a wealth of biomonitoring studies has emerged evaluating the associations between chromium levels in body fluids and tissues and health outcomes. This systematic review brings together epidemiological and biomonitoring evidence published over the past decade on the health effects of the general population related to oral exposure to chromium. In total, 65 studies were reviewed. There appears to be an inverse association between prenatal chromium exposure and normal fetal development. In adults, parameters of oxidative stress and biochemical alterations increase in response to chromium exposure, while effects on normal renal function are conflicting. Risks of urothelial carcinomas cannot be overlooked. However, findings regarding internal chromium concentrations and abnormalities in various tissues and systems are, in most cases, controversial. Environmental monitoring together with large cohort studies and biomonitoring with multiple biomarkers could fill the scientific gap.
Collapse
Affiliation(s)
- Eleni Sazakli
- Lab of Public Health, Medical School, University of Patras, GR 26504 Patras, Greece
| |
Collapse
|
12
|
Yang L, Zhang T, Gao Y, Li D, Cui R, Gu C, Wang L, Sun H. Quantitative identification of the co-exposure effects of e-waste pollutants on human oxidative stress by explainable machine learning. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133560. [PMID: 38246054 DOI: 10.1016/j.jhazmat.2024.133560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/04/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
Global electronic waste (e-waste) generation continues to grow. The various pollutants released during precarious e-waste disposal activities can contribute to human oxidative stress. This study encompassed 129 individuals residing near e-waste dismantling sites in China, with elevated urinary concentrations of e-waste-related pollutants including heavy metals, polycyclic aromatic hydrocarbons (PAHs), organophosphorus flame retardants (OPFRs), bisphenols (BPs), and phthalate esters (PAEs). Utilizing an explainable machine learning framework, the study quantified the co-exposure effects of these pollutants, finding that approximately 23% and 18% of the variance in oxidative DNA damage and lipid peroxidation, respectively, was attributable to these substances. Heavy metals emerged as the most critical factor in inducing oxidative stress, followed by PAHs and PAEs for oxidative DNA damage, and BPs, OPFRs, and PAEs for lipid peroxidation. The interactions between different pollutant classes were found to be weak, attributable to their disparate biological pathways. In contrast, the interactions among congeneric pollutants were strong, stemming from their shared pathways and resultant synergistic or additive effects on oxidative stress. An intelligent analysis system for e-waste pollutants was also developed, which enables more efficient processing of large-scale and dynamic datasets in evolving environments. This study offered an enticing peek into the intricacies of co-exposure effect of e-waste pollutants.
Collapse
Affiliation(s)
- Luhan Yang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Yanxia Gao
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Dairui Li
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Rui Cui
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
13
|
Romadhon YA, Kurniati YP, Jumadi J, Alesheikh AA, Lotfata A. Analyzing socio-environmental determinants of bone and soft tissue cancer in Indonesia. BMC Cancer 2024; 24:206. [PMID: 38350928 PMCID: PMC10865616 DOI: 10.1186/s12885-024-11974-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/06/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND This study is designed to explore the potential impact of individual and environmental residential factors as risk determinants for bone and soft tissue cancers, with a particular focus on the Indonesian context. While it is widely recognized that our living environment can significantly influence cancer development, there has been a notable scarcity of research into how specific living environment characteristics relate to the risk of bone and soft tissue cancers. METHODS In a cross-sectional study, we analyzed the medical records of oncology patients treated at Prof. Suharso National Referral Orthopedic Hospital. The study aimed to assess tumor malignancy levels and explore the relationships with socio-environmental variables, including gender, distance from the sea, sunrise time, altitude, and population density. Data were gathered in 2020 from diverse sources, including medical records, Google Earth, and local statistical centers. The statistical analyses employed Chi-square and logistic regression techniques with the support of Predictive Analytics SoftWare (PASW) Statistics 18. RESULTS Both bivariate and multivariate analyses revealed two significant factors associated with the occurrence of bone and soft tissue cancer. Age exhibited a statistically significant influence (OR of 5.345 and a p-value of 0.000 < 0.05), indicating a robust connection between cancer development and age. Additionally, residing within a distance of less than 14 km from the sea significantly affected the likelihood of bone and soft tissue cancers OR 5.604 and p-value (0.001 < 0.05). CONCLUSIONS The study underscores the strong association between age and the development of these cancers, emphasizing the need for heightened vigilance and screening measures in older populations. Moreover, proximity to the sea emerges as another noteworthy factor influencing cancer risk, suggesting potential environmental factors at play. These results highlight the multifaceted nature of cancer causation and underscore the importance of considering socio-environmental variables when assessing cancer risk factors. Such insights can inform more targeted prevention and early detection strategies, ultimately contributing to improved cancer management and patient outcomes.
Collapse
Affiliation(s)
- Yusuf Alam Romadhon
- Faculty of Medicine, Universitas Muhammadiyah Surakarta, Surakarta, 57162, Indonesia
- Centre for Chronical Disease, Universitas Muhammadiyah Surakarta, Surakarta, 57162, Indonesia
| | - Yuni Prastyo Kurniati
- Faculty of Medicine, Universitas Muhammadiyah Surakarta, Surakarta, 57162, Indonesia
| | - Jumadi Jumadi
- Centre for Chronical Disease, Universitas Muhammadiyah Surakarta, Surakarta, 57162, Indonesia
- Faculty of Geography, Universitas Muhammadiyah Surakarta, Surakarta, 57162, Indonesia
| | - Ali Asghar Alesheikh
- Department of Geospatial Information Systems, Faculty of Geodesy and Geomatics Engineering, K. N. Toosi University of Technology, Tehran, Iran.
| | - Aynaz Lotfata
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, USA
| |
Collapse
|
14
|
Li W, Li Z, Yan Y, Zhang J, Zhou Q, Wang R, He M. Association of urinary arsenic metabolism with type 2 diabetes and glucose homeostasis: Cross-sectional and longitudinal associations. ENVIRONMENTAL RESEARCH 2023; 239:117410. [PMID: 37858693 DOI: 10.1016/j.envres.2023.117410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/20/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Previous researches have assessed the relationships of urinary arsenic metabolism with type 2 diabetes (T2D) and glucose-insulin homeostasis, but the results were controversial, and potential mechanisms remain largely unclear. OBJECTIVES This study aimed to investigate the cross-sectional and longitudinal associations of urinary arsenic metabolism with T2D prevalence and glucose changes in relatively higher arsenic exposure, and further to evaluate the underlying roles of oxidative damage in these relationships. METHODS We included 796 participants at baseline, among them 509 participants were followed up after 2 years. Logistic regression model and leave-one-out approach were applied to evaluate the associations of arsenic metabolism with T2D prevalence. Linear mixed model was conducted to estimate the relationship of arsenic metabolism with glycemic changes over two years. The associations between arsenic metabolism and indicators of oxidative stress were assessed with a linear regression model. We further performed mediation analysis to investigate the role of oxidative stress in the associations of arsenic metabolism with 2-year change of glucose levels. RESULTS Higher urinary MMA% increased T2D prevalence and baseline glucose levels. MMA% was positively associated with 2-year change of glucose levels. Moreover, we observed significant dose-response relationship between MMA% and 8-hydroxy-2-deoxyguanosine (8-OHdG). However, the mediating role of 8-OHdG in the association of MMA% and 2-year change of glucose levels was not observed in this population. CONCLUSIONS In this population exposure to relatively higher arsenic levels, higher MMA% contributed to increased T2D prevalence and glucose homeostasis disorder. Arsenic metabolism also affected oxidative stress levels, especially 8-OHdG. Further studies are required to investigate the potential mechanisms.
Collapse
Affiliation(s)
- Weiya Li
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaoyang Li
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Yan
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiazhen Zhang
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qihang Zhou
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruixin Wang
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meian He
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
15
|
Liu Y, Wang T, Ge Y, Shen H, Li J, Qiao C. Individual and combined association between nutritional trace metals and the risk of preterm birth in a recurrent pregnancy loss cohort. Front Nutr 2023; 10:1205748. [PMID: 38099181 PMCID: PMC10720726 DOI: 10.3389/fnut.2023.1205748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/30/2023] [Indexed: 12/17/2023] Open
Abstract
Background Recurrent pregnancy loss (RPL) was associated with an elevated risk of pregnancy complications, particularly preterm birth (PTB). However, the risk factors associated with PTB in RPL remained unclear. Emerging evidence indicated that maternal exposure to metals played a crucial role in the development of PTB. The objective of our study was to investigate the individual and combined associations of nutritional trace metals (NTMs) during pregnancy with PTB in RPL. Methods Using data from a recurrent pregnancy loss cohort (n = 459), propensity score matching (1:3) was performed to control for covariates. Multiple logistic regression and multiple linear regression were employed to identify the individual effects, while elastic-net regularization (ENET) and Bayesian kernel machine regression (BKMR) were used to examine the combined effects on PTB in RPL. Results The logistic regression model found that maternal exposure to copper (Cu) (quantile 4 [Q4] vs. quantile 1 [Q1], odds ratio [OR]: 0.21, 95% confidence interval [CI]: 0.05, 0.74) and zinc (Zn) (Q4 vs. Q1, OR: 0.19, 95%CI: 0.04, 0.77) was inversely associated with total PTB risk. We further constructed environmental risk scores (ERSs) using principal components and interaction terms derived from the ENET model to predict PTB accurately (p < 0.001). In the BKMR model, we confirmed that Cu was the most significant component (PIP = 0.85). When other metals were fixed at the 25th and 50th percentiles, Cu was inversely associated with PTB. In addition, we demonstrated the non-linear relationships of Zn with PTB and the potential interaction between Cu and other metals, including Zn, Ca, and Fe. Conclusion In conclusion, our study highlighted the significance of maternal exposure to NTMs in RPL and its association with PTB risk. Cu and Zn were inversely associated with PTB risk, with Cu identified as a crucial factor. Potential interactions between Cu and other metals (Zn, Ca, and Fe) further contributed to the understanding of PTB etiology in RPL. These findings suggest opportunities for personalized care and preventive interventions to optimize maternal and infant health outcomes.
Collapse
Affiliation(s)
- Yilin Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Reproductive and Genetic Medicine, National Health Commission, Shenyang, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Shenyang, China
- Research Center of China Medical University Birth Cohort, China Medical University, Shenyang, China
| | - Tingting Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Reproductive and Genetic Medicine, National Health Commission, Shenyang, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Shenyang, China
- Research Center of China Medical University Birth Cohort, China Medical University, Shenyang, China
| | - Yunpeng Ge
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Reproductive and Genetic Medicine, National Health Commission, Shenyang, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Shenyang, China
- Research Center of China Medical University Birth Cohort, China Medical University, Shenyang, China
| | - Hongfei Shen
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Reproductive and Genetic Medicine, National Health Commission, Shenyang, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Shenyang, China
- Research Center of China Medical University Birth Cohort, China Medical University, Shenyang, China
| | - Jiapo Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Reproductive and Genetic Medicine, National Health Commission, Shenyang, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Shenyang, China
- Research Center of China Medical University Birth Cohort, China Medical University, Shenyang, China
| | - Chong Qiao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Reproductive and Genetic Medicine, National Health Commission, Shenyang, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Shenyang, China
- Research Center of China Medical University Birth Cohort, China Medical University, Shenyang, China
| |
Collapse
|
16
|
McGraw KE, Schilling K, Glabonjat RA, Galvez-Fernandez M, Domingo-Relloso A, Martinez-Morata I, Jones MR, Post WS, Kaufman J, Tellez-Plaza M, Valeri L, Brown ER, Kronmal RA, Barr GR, Shea S, Navas-Acien A, Sanchez TR. Urinary Metal Levels and Coronary Artery Calcification: Longitudinal Evidence in the Multi-Ethnic Study of Atherosclerosis (MESA). MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.31.23297878. [PMID: 37961623 PMCID: PMC10635251 DOI: 10.1101/2023.10.31.23297878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Objective Growing evidence indicates that exposure to metals are risk factors for cardiovascular disease (CVD). We hypothesized that higher urinary levels of metals with prior evidence of an association with CVD, including non-essential (cadmium , tungsten, and uranium) and essential (cobalt, copper, and zinc) metals are associated with baseline and rate of change of coronary artery calcium (CAC) progression, a subclinical marker of atherosclerotic CVD. Methods We analyzed data from 6,418 participants in the Multi-Ethnic Study of Atherosclerosis (MESA) with spot urinary metal levels at baseline (2000-2002) and 1-4 repeated measures of spatially weighted coronary calcium score (SWCS) over a ten-year period. SWCS is a unitless measure of CAC highly correlated to the Agatston score but with numerical values assigned to individuals with Agatston score=0. We used linear mixed effect models to assess the association of baseline urinary metal levels with baseline SWCS, annual change in SWCS, and SWCS over ten years of follow-up. Urinary metals (adjusted to μg/g creatinine) and SWCS were log transformed. Models were progressively adjusted for baseline sociodemographic factors, estimated glomerular filtration rate, lifestyle factors, and clinical factors. Results At baseline, the median and interquartile range (25th, 75th) of SWCS was 6.3 (0.7, 58.2). For urinary cadmium, the fully adjusted geometric mean ratio (GMR) (95%Cl) of SWCS comparing the highest to the lowest quartile was 1.51 (1.32, 1.74) at baseline and 1.75 (1.47, 2.07) at ten years of follow-up. For urinary tungsten, uranium, and cobalt the corresponding GMRs at ten years of follow-up were 1.45 (1.23, 1.71), 1.39 (1.17, 1.64), and 1.47 (1.25, 1.74), respectively. For copper and zinc, the association was attenuated with adjustment for clinical risk factors; GMRs at ten years of follow-up before and after adjustment for clinical risk factors were 1.55 (1.30, 1.84) and 1.33 (1.12, 1.58), respectively, for copper and 1.85 (1.56, 2.19) and 1.57 (1.33, 1.85) for zinc. Conclusion Higher levels of cadmium, tungsten, uranium, cobalt, copper, and zinc, as measured in urine, were associated with subclinical CVD at baseline and at follow-up. These findings support the hypothesis that metals are pro-atherogenic factors.
Collapse
Affiliation(s)
- Katlyn E. McGraw
- Columbia University Mailman School of Public Health, Department of Environmental Health Science, 722 W 168th St, New York, NY 10032
| | - Kathrin Schilling
- Columbia University Mailman School of Public Health, Department of Environmental Health Science, 722 W 168th St, New York, NY 10032
| | - Ronald A. Glabonjat
- Columbia University Mailman School of Public Health, Department of Environmental Health Science, 722 W 168th St, New York, NY 10032
| | - Marta Galvez-Fernandez
- Columbia University Mailman School of Public Health, Department of Environmental Health Science, 722 W 168th St, New York, NY 10032
| | - Arce Domingo-Relloso
- Columbia University Mailman School of Public Health, Department of Biostatistics, 722 W 168th St, New York, NY 10032
| | - Irene Martinez-Morata
- Columbia University Mailman School of Public Health, Department of Environmental Health Science, 722 W 168th St, New York, NY 10032
| | - Miranda R. Jones
- Johns Hopkins University School of Medicine, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Baltimore MD 21057
- Johns Hopkins University Bloomberg School of Public Health, Department of Epidemiology, 615 N. Wolfe Street. Baltimore MD 212057
| | - Wendy S. Post
- Johns Hopkins University School of Medicine, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Baltimore MD 21057
- Johns Hopkins University Bloomberg School of Public Health, Department of Epidemiology, 615 N. Wolfe Street. Baltimore MD 212057
| | - Joel Kaufman
- University of Washington, Department of Medicine
| | - Maria Tellez-Plaza
- National Center for Epidemiology, Instituto de Salud Carlos III, Madrid, Spain, Department of Chronic Diseases Epidemiology
| | - Linda Valeri
- Columbia University Mailman School of Public Health, Department of Biostatistics, 722 W 168th St, New York, NY 10032
| | - Elizabeth R. Brown
- Fred Hutchinson Cancer Center, Vaccine and Infectious Disease Division
- University of Washington, Department of Biostatistics
| | | | - Graham R. Barr
- Columbia University Irving Medical Center, Departments of Medicine and Epidemiology
| | - Steven Shea
- Columbia University Irving Medical Center, Departments of Medicine and Epidemiology
| | - Ana Navas-Acien
- Columbia University Mailman School of Public Health, Department of Environmental Health Science, 722 W 168th St, New York, NY 10032
| | - Tiffany R. Sanchez
- Columbia University Mailman School of Public Health, Department of Environmental Health Science, 722 W 168th St, New York, NY 10032
| |
Collapse
|
17
|
Li ZH, Li J, Mao YC, Zhao JW, Hu HY, Zhang S, Liu ZY, Liu XJ, Huang K, Hu CY, Zhang XJ. Association of urinary heavy metal combined exposure with periodontitis among US adults from NHANES 2011-2014. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:107887-107898. [PMID: 37740806 DOI: 10.1007/s11356-023-29888-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/11/2023] [Indexed: 09/25/2023]
Abstract
Some heavy metals are associated with periodontitis; whereas most of these associations have focused on individual metal, there are no specific studies on the effects of combined heavy metal exposure on periodontitis. We conducted an analysis on the association between urinary heavy metal exposure and periodontitis in participants aged 30 years and older using multiple logistic regression and Bayesian kernel machine regression (BKMR). This analysis was performed on data from the National Health and Nutrition Examination Survey from 2011 to 2014. The study found that using logistic regression, the 4th quartile of urinary lead and molybdenum and the 3rd quartile of urinary strontium were positively associated with periodontitis compared to the reference quartile after adjusting for covariates. Odds ratio (OR) with 95% confidence interval (CI) was 1.738 (1.069-2.826), 1.515 (1.025-2.239), and 1.498 (1.010-2.222), respectively. The 3rd and 4th quartiles of urinary cobalt were negatively associated with periodontitis, and their ORs and 95% CIs were 0.639 (0.438-0.934) and 0.571 (0.377-0.964), respectively. The BKMR model showed that urinary barium, lead, and molybdenum were positively associated with periodontitis in a range of concentrations and urinary cobalt, manganese, tin, and strontium were negatively correlated with periodontitis. Furthermore, the overall association between urinary heavy metals and periodontitis was positive. Our study provides evidence for an association between exposure to multiple urinary heavy metals and periodontitis. However, further longitudinal studies are needed to explore the specific mechanisms involved.
Collapse
Affiliation(s)
- Zhen-Hua Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Jiong Li
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, 230032, China
| | - Yi-Cheng Mao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Jia-Wen Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Hui-Yu Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Sun Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Zhe-Ye Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Xue-Jie Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Kai Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
- Department of Hospital Infection Prevention and Control, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, China
| | - Cheng-Yang Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
- Department of Humanistic Medicine, School of Humanistic Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Xiu-Jun Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
18
|
Tang P, Liao Q, Tang Y, Yao X, Du C, Wang Y, Song F, Deng S, Wang Y, Qiu X, Yang F. Independent and combined associations of urinary metals exposure with markers of liver injury: Results from the NHANES 2013-2016. CHEMOSPHERE 2023; 338:139455. [PMID: 37429383 DOI: 10.1016/j.chemosphere.2023.139455] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/02/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
BACKGROUND Heavy metals entering the human body could cause damage to a variety of organs. However, the combined harmful effects of exposure to various metals on liver function are not well understood. The purpose of the study was to investigate the independent and joint relationships between heavy metal exposure and liver function in adults. METHODS The study involved 3589 adults from the National Health and Nutrition Examination Survey. Concentrations of urinary metals, including arsenic (As), cadmium (Cd), lead (Pb), antimony (Sb), barium (Ba), thallium (Tl), tungsten (W), uranium (U), were determined in urine using inductively coupled plasma mass spectrometry. Data for liver function biomarkers included alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transaminase (GGT), and alkaline phosphatase (ALP). Survey-weighted linear regression and quantile g-computation (qgcomp) were employed to evaluate the relationship of urinary metals with the markers of liver injury. RESULTS Cd, U and Ba were found to have positive correlations with ALT, AST, GGT, and ALP in the survey-weighted linear regression analyses. According to the qgcomp analyses, the total metal mixture was positively correlated with ALT (percent change: 8.15; 95% CI: 3.84, 12.64), AST (percent change: 5.55; 95% CI: 2.39, 8.82), GGT (percent change: 14.30; 95% CI: 7.81, 21.18), and ALP (percent change: 5.59; 95% CI: 2.65, 8.62), and Cd, U, and Ba were the main contributors to the combined effects. Positive joint effects were observed between Cd and U on ALT, AST, GGT and ALP, and U and Ba had positive joint effects on ALT, AST and GGT. CONCLUSION Exposures to Cd, U, and Ba were individually associated with multiple markers of liver injury. Mixed metal exposure might be adversely correlated with markers of liver function. The findings indicated the potential harmful effect of metal exposure on liver function.
Collapse
Affiliation(s)
- Peng Tang
- Department of Epidemiology and Health Statistics, The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China; Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Department of Maternal and Child Health, School of Public Health, Peking University, Beijing, 100191, China
| | - Qian Liao
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yan Tang
- Department of Epidemiology and Health Statistics, The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Xueqiong Yao
- Department of Epidemiology and Health Statistics, The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Can Du
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Yangcan Wang
- Department of Epidemiology and Health Statistics, The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Fengmei Song
- Department of Epidemiology and Health Statistics, The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Shuxiang Deng
- Department of Epidemiology and Health Statistics, The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yue Wang
- Department of Epidemiology and Health Statistics, The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Xiaoqiang Qiu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Fei Yang
- Department of Epidemiology and Health Statistics, The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, 410078, China.
| |
Collapse
|
19
|
Gonzalez-Martin R, Grau-Perez M, Sebastian-Leon P, Diaz-Gimeno P, Vidal C, Tellez-Plaza M, Dominguez F. Association of blood cadmium and lead levels with self-reported reproductive lifespan and pregnancy loss: The national health and nutrition examination survey 1999-2018. ENVIRONMENTAL RESEARCH 2023; 233:116514. [PMID: 37392826 DOI: 10.1016/j.envres.2023.116514] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/09/2023] [Accepted: 06/25/2023] [Indexed: 07/03/2023]
Abstract
Cadmium and lead are known to interfere with the endocrine function. Thus, hormonally regulated processes such as menarche, menopause and pregnancy are likely influenced by chronic exposure to these metals. In US post-menopausal women, who already completed their reproductive lifespan, we evaluated the association between blood cadmium and lead levels with self-reported reproductive lifespan and personal history of pregnancy loss. We selected 5317 post-menopausal women participating in the National Health and Nutrition Examination Survey (NHANES), 1999-2018. Blood cadmium and lead levels were measured by inductively coupled plasma mass spectrometry. Reproductive lifespan was defined as the number of years between self-reported age at menarche and menopause. Personal history of pregnancy loss was defined as number of self-reported pregnancy losses out of the self-reported number of pregnancies. The fully adjusted mean difference in reproductive lifespan (95% confidence interval [CI]) comparing the 80th to the 20th percentiles of blood cadmium and lead distributions was, respectively, 0.50 (0.10, 0.91) and 0.72 (0.41, 1.03) years. Ever smoker showed stronger association of blood lead with reproductive lifespan. For self-reported pregnancy loss, the corresponding fully adjusted relative prevalence (95% CI) was 1.10 (0.93, 1.31) for cadmium and 1.10 (1.00, 1.21) for lead, and remained similar after additional adjustment for reproductive lifespan. In never smokers, the relative prevalence was 1.07 (1.04, 1.11) and 1.16 (1.05, 1.28) for blood cadmium and lead, respectively. These findings suggest that blood cadmium and lead exposures increase reproductive lifespan and prevalence of pregnancy loss in the general population. Additional studies are needed to improve the understanding of mechanisms and prevention potential of metals-related pregnancy outcomes.
Collapse
Affiliation(s)
- Roberto Gonzalez-Martin
- IVI Foundation/ISS LaFe Biomedical Research Institute, Avenida Fernando Abril Martorell, 106, 46026, Valencia, Spain.
| | - Maria Grau-Perez
- Area of Cardiometabolic and Renal Risk. Instituto de Investigacion Sanitaria Hospital Clinic de Valencia INCLIVA, Valencia, Spain
| | - Patricia Sebastian-Leon
- IVI Foundation/ISS LaFe Biomedical Research Institute, Avenida Fernando Abril Martorell, 106, 46026, Valencia, Spain
| | - Patricia Diaz-Gimeno
- IVI Foundation/ISS LaFe Biomedical Research Institute, Avenida Fernando Abril Martorell, 106, 46026, Valencia, Spain
| | - Carmen Vidal
- IVI Foundation/ISS LaFe Biomedical Research Institute, Avenida Fernando Abril Martorell, 106, 46026, Valencia, Spain; IVI/RMA Valencia, Plaza de la Policía Local, 3. 46015, Valencia, Spain
| | - Maria Tellez-Plaza
- Area of Cardiometabolic and Renal Risk. Instituto de Investigacion Sanitaria Hospital Clinic de Valencia INCLIVA, Valencia, Spain; Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institutes, Madrid, Spain
| | - Francisco Dominguez
- IVI Foundation/ISS LaFe Biomedical Research Institute, Avenida Fernando Abril Martorell, 106, 46026, Valencia, Spain
| |
Collapse
|
20
|
Iyer M, Anand U, Thiruvenkataswamy S, Babu HWS, Narayanasamy A, Prajapati VK, Tiwari CK, Gopalakrishnan AV, Bontempi E, Sonne C, Barceló D, Vellingiri B. A review of chromium (Cr) epigenetic toxicity and health hazards. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163483. [PMID: 37075992 DOI: 10.1016/j.scitotenv.2023.163483] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/13/2023] [Accepted: 04/09/2023] [Indexed: 05/03/2023]
Abstract
Carcinogenic metals affect a variety of cellular processes, causing oxidative stress and cancer. The widespread distribution of these metals caused by industrial, residential, agricultural, medical, and technical activities raises concern for adverse environmental and human health effects. Of these metals, chromium (Cr) and its derivatives, including Cr(VI)-induced, are of a public health concern as they cause DNA epigenetic alterations resulting in heritable changes in gene expression. Here, we review and discuss the role of Cr(VI) in epigenetic changes, including DNA methylation, histone modifications, micro-RNA changes, biomarkers of exposure and toxicity, and highlight prevention and intervention strategies to protect susceptible populations from exposure and adverse occupational health effects. Cr(VI) is a ubiquitous toxin linked to cardiovascular, developmental, neurological, and endocrine diseases as well as immunologic disorders and a high number of cancer types in humans following inhalation and skin contact. Cr alters DNA methylation levels as well as global and gene-specific histone posttranslational modifications, emphasizing the importance of considering epigenetics as a possible mechanism underlying Cr(VI) toxicity and cell-transforming ability. Our review shows that determining the levels of Cr(VI) in occupational workers is a crucial first step in shielding health problems, including cancer and other disorders. More clinical and preventative measures are therefore needed to better understand the toxicity and safeguard employees against cancer.
Collapse
Affiliation(s)
- Mahalaxmi Iyer
- Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India
| | - Uttpal Anand
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion 8499000, Israel
| | - Saranya Thiruvenkataswamy
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India; Department of Zoology (PG-SF), PSG college of arts and science, Coimbatore 641014, Tamil Nadu, India
| | - Harysh Winster Suresh Babu
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Arul Narayanasamy
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India.
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India
| | - Chandan Kumar Tiwari
- Research and Development section, Carestream Health Inc., Oakdale, MN 55128, United States of America
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore 632 014, India
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, University of Brescia, via Branze 38, 25123 Brescia, Italy
| | - Christian Sonne
- Department of Ecoscience, Arctic Research Centre, Faculty of Science and Technology, Aarhus University, Frederiksborgvej 399, PO Box 358, 4000 Roskilde, Denmark
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA-CERCA), H(2)O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, Girona 17003, Spain; Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 1826, Barcelona 08034, Spain
| | - Balachandar Vellingiri
- Stem cell and Regenerative Medicine/Translational Research, North block, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab 151401, India.
| |
Collapse
|
21
|
Yang Q, Liu Y, Liu L, Zhang L, Lei J, Wang Q, Hong F. Exposure to multiple metals and diabetes mellitus risk in dong ethnicity in China: from the China multi-ethnic cohort study. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:2435-2445. [PMID: 35986857 DOI: 10.1007/s10653-022-01366-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Metals play an important role in the development of diabetes mellitus (DM). The association of metals with diabetes among the Dong ethnicity in China remains poorly understood. The current study aimed to evaluate the association of single metal exposure and multi-metal co-exposure with DM risk. Urinary concentrations of arsenic, cadmium, chromium, copper, iron, lead, manganese, mercury, molybdenum, nickel, strontium, vanadium, and zinc were measured using inductively coupled plasma-mass spectrometry (ICP-MS) among 4479 Dong ethnic participants aged 30-79 years from the China Multi-Ethnic Cohort (CMEC) study. Based on tertiles, the metal exposure can be divided into three groups: low, middle, and high exposure. Multivariate logistic regression models and principal component analysis were performed to determine exposure to single-metal and multi-metal co-exposure in relation to DM. A decrease in risk of DM was associated with iron (OR = 0.78, 95% CI: 0.61-1.00 and 0.68, 0.53-0.88 for the middle and high vs. low) and strontium (OR = 0.87, 95% CI: 0.69-1.12 and 0.67, 0.51-0.86 for the middle and high vs. low), respectively. A principal component 3 (PC3) characterized by iron and strontium showed an inverse association with DM. A principal component 4 (PC4) characterized by manganese and lead positively associated with DM. Exposure to high concentrations of urinary iron and strontium may reduce the risk of diabetes mellitus. This study revealed an increase in the risk of diabetes mellitus by co-exposure to high concentrations of urinary manganese and lead.
Collapse
Affiliation(s)
- Qianyuan Yang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Yalan Liu
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Leilei Liu
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Linyuan Zhang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Juan Lei
- Guiyang City Center for Disease Control and Prevention, Guizhou, 550003, China
| | - Qiaorong Wang
- University Town Hospital, Gui'an New District, Guizhou, 550025, China
| | - Feng Hong
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| |
Collapse
|
22
|
Zeng H, Dong B, Wang N, Xu W, Guo L, Liu J, Fang B, Zhang L, Wang Q, Yang W, Wang M. The effects of metals and mixture exposure on lung function and the potential mediating effects of oxidative stress. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:2263-2275. [PMID: 35925433 DOI: 10.1007/s10653-022-01339-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Exposure to metals is associated with lung function decline. However, limited data are available about effects of co-exposure of metals on lung function. Additionally, the mechanism of the association between metals and lung function remains unclear. We conducted a longitudinal panel study in 2017-2018 among 45 healthy college students. Urinary 15 metals, lung function, biomarkers of oxidative stress and inflammation of participants were measured. Linear mixed effect (LME) and Bayesian kernel machine regression (BKMR) models were applied to explore the associations of urinary metals and mixture with lung function. Furthermore, we analyzed the mediating effect of biomarkers in the association between urinary metals and lung function. LME models showed the negative associations of aluminum (Al), vanadium (V), manganese (Mn), cobalt (Co), nickel (Ni), cadmium (Cd) or antimony (Sb) with Forced vital capacity (FVC), and V, Co, Ni, and Sb with Forced expiratory volume in one second (FEV1). BKMR models indicated the overall effect of metals mixture was negatively associated with FEV1 and FVC; urinary Sb was identified as the major contributor to decreased FVC and FEV1. Urinary 8-hydroxydeoxyguanosine mediated the association of Al, Mn, or Sb with FVC and the relationship of V with FEV1. The results revealed the longitudinal dose-response relationships of urinary metals with pulmonary function among healthy adults. Oxidative stress may be the underlying mechanisms of metals exposure associated with decreased lung function. Due to the small sample size, the interpretation of the results of this study should be cautious, and more studies are needed to verify the findings of this study.
Collapse
Affiliation(s)
- Hao Zeng
- Affiliated Huaihe Hospital, Henan University, 115 Ximen street, Kaifeng, 475000, Henan, China
- School of Public Health, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, 063210, Hebei, China
| | - Bohua Dong
- Affiliated Hospital, North China University of Science and Technology, Tangshan, 063000, China
| | - Nan Wang
- School of Public Health, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, 063210, Hebei, China
| | - Wenzhe Xu
- Tangshan Environmental Monitoring Center, No.54, Jianshe North Road, Lubei, Tangshan, 063210, Hebei, China
| | - Linan Guo
- School of Public Health, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, 063210, Hebei, China
| | - Jiajia Liu
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, China
| | - Bo Fang
- Affiliated Huaihe Hospital, Henan University, 115 Ximen street, Kaifeng, 475000, Henan, China
| | - Lei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Qian Wang
- School of Public Health, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, 063210, Hebei, China.
| | - Wenqi Yang
- Affiliated Hospital, North China University of Science and Technology, Tangshan, 063000, China
| | - Manman Wang
- School of Public Health, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, 063210, Hebei, China
| |
Collapse
|
23
|
Fan Y, Tao C, Li Z, Huang Y, Yan W, Zhao S, Gao B, Xu Q, Qin Y, Wang X, Peng Z, Covaci A, Li Y, Xia Y, Lu C. Association of Endocrine-Disrupting Chemicals with All-Cause and Cause-Specific Mortality in the U.S.: A Prospective Cohort Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2877-2886. [PMID: 36728834 DOI: 10.1021/acs.est.2c07611] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Wide exposure to endocrine-disrupting chemicals (EDCs) poses a great risk on human health. However, few large-scale cohort studies have comprehensively estimated the association between EDCs exposure and mortality risk. This study aimed to investigate the association of urinary EDCs exposure with mortality risk and quantify attributable mortality and economic loss. Multivariable Cox proportional hazards regression models were performed to investigate the association of 38 representative EDCs exposure with mortality risk in the National Health and Nutrition Examination Survey (NHANES). During a median follow-up of 7.7 years, 47,279 individuals were enrolled. All-cause mortality was positively associated with 1-hydroxynaphthalene, 2-hydroxynaphthalene, cadmium, antimony, cobalt, and monobenzyl phthalate. Cancer mortality was positively associated with cadmium. Cardiovascular disease (CVD) mortality was positively associated with 1-hydroxynaphthalene, 2-hydroxynaphthalene, and 2-hydroxyfluorene. Nonlinear U-shaped relationships were found between all-cause mortality and cadmium and cobalt, which was also identified between 2-hydroxyfluorene and CVD mortality. J-shaped association of cadmium exposure with cancer mortality was also determined. EDCs exposure may cause 56.52% of total deaths (1,528,500 deaths) and around 1,897 billion USD in economic costs. Exposure to certain phthalates, polycyclic aromatic hydrocarbons, phytoestrogens, or toxic metals, even at substantially low levels, is significantly associated with mortality and induces high economic costs.
Collapse
Affiliation(s)
- Yun Fan
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Microbes and Infection, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chengzhe Tao
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhi Li
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yuna Huang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wenkai Yan
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Shuangshuang Zhao
- Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing 210004, China
| | - Beibei Gao
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Qiaoqiao Xu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yufeng Qin
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Microbes and Infection, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhihang Peng
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Wilrijk 2610, Belgium
| | - You Li
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chuncheng Lu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
24
|
Weiss MC, Shih YH, Bryan MS, Jackson BP, Aguilar D, Hanis CL, Argos M, Sargis RM. Relationships Between Urinary Metals and Diabetes Traits Among Mexican Americans in Starr County, Texas, USA. Biol Trace Elem Res 2023; 201:529-538. [PMID: 35247137 PMCID: PMC10766113 DOI: 10.1007/s12011-022-03165-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/14/2022] [Indexed: 01/25/2023]
Abstract
Hispanics/Latinos have higher rates of type 2 diabetes (T2D), and the origins of these disparities are poorly understood. Environmental endocrine-disrupting chemicals (EDCs), including some metals and metalloids, are implicated as diabetes risk factors. Data indicate that Hispanics/Latinos may be disproportionately exposed to EDCs, yet they remain understudied with respect to environmental exposures and diabetes. The objective of this study is to determine how metal exposures contribute to T2D progression by evaluating the associations between 8 urinary metals and measures of glycemic status in 414 normoglycemic or prediabetic adults living in Starr County, Texas, a Hispanic/Latino community with high rates of diabetes and diabetes-associated mortality. We used multivariable linear regression to quantify the differences in homeostatic model assessments for pancreatic β-cell function, insulin resistance, and insulin sensitivity (HOMA-β, HOMA-IR, HOMA-S, respectively), plasma insulin, plasma glucose, and hemoglobin A1c (HbA1c) associated with increasing urinary metal concentrations. Quantile-based g-computation was utilized to assess mixture effects. After multivariable adjustment, urinary arsenic and molybdenum were associated with lower HOMA-β, HOMA-IR, and plasma insulin levels and higher HOMA-S. Additionally, higher urinary copper levels were associated with a reduced HOMA-β. Lastly, a higher concentration of the 8 metal mixtures was associated with lower HOMA-β, HOMA-IR, and plasma insulin levels as well as higher HOMA-S. Our data indicate that arsenic, molybdenum, copper, and this metal mixture are associated with alterations in measures of glucose homeostasis among non-diabetics in Starr County. This study is one of the first to comprehensively evaluate associations of urinary metals with glycemic measures in a high-risk Mexican American population.
Collapse
Affiliation(s)
- Margaret C Weiss
- School of Public Health, University of Illinois at Chicago, Chicago, IL, USA
- College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Yu-Hsuan Shih
- School of Public Health, University of Illinois at Chicago, Chicago, IL, USA
| | - Molly Scannell Bryan
- Institute for Minority Health Research, University of Illinois at Chicago, Chicago, IL, USA
- Chicago Center for Health and Environment, Chicago, IL, USA
| | - Brian P Jackson
- Department of Earth Sciences, Dartmouth College, Hanover, NH, USA
| | - David Aguilar
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Craig L Hanis
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Maria Argos
- School of Public Health, University of Illinois at Chicago, Chicago, IL, USA
- Chicago Center for Health and Environment, Chicago, IL, USA
| | - Robert M Sargis
- College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
- Chicago Center for Health and Environment, Chicago, IL, USA.
- Section of Endocrinology, Diabetes, and Metabolism, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA.
- Division of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, 835 S. Wolcott, Suite E625, M/C 640, Chicago, IL, 60612, USA.
| |
Collapse
|
25
|
Grau-Perez M, Domingo-Relloso A, Garcia-Barrera T, Gomez-Ariza JL, Leon-Latre M, Casasnovas JA, Moreno-Franco B, Laclaustra M, Guallar E, Navas-Acien A, Pastor-Barriuso R, Redon J, Tellez-Plaza M. Association of single and joint metals with albuminuria and estimated glomerular filtration longitudinal change in middle-aged adults from Spain: The Aragon workers health study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120851. [PMID: 36509352 DOI: 10.1016/j.envpol.2022.120851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
The nephrotoxicity of low-chronic metal exposures is unclear, especially considering several metals simultaneously. We assessed the individual and joint association of metals with longitudinal change in renal endpoints in Aragon Workers Health Study participants with available measures of essential (cobalt [Co], copper [Cu], molybdenum [Mo] and zinc [Zn]) and non-essential (As, barium [Ba], Cd, chromium [Cr], antimony [Sb], titanium [Ti], uranium [U], vanadium [V] and tungsten [W]) urine metals and albumin-to-creatinine ratio (ACR) (N = 707) and estimated glomerular filtration rate (eGFR) (N = 1493) change. Median levels were 0.24, 7.0, 18.6, 295, 3.1, 1.9, 0.28, 1.16, 9.7, 0.66, 0.22 μg/g for Co, Cu, Mo, Zn, As, Ba, Cd, Cr, Sb, Ti, V and W, respectively, and 52.5 and 27.2 ng/g for Sb and U, respectively. In single metal analysis, higher As, Cr and W concentrations were associated with increasing ACR annual change. Higher Zn, As and Cr concentrations were associated with decreasing eGFR annual change. The shape of the longitudinal dose-responses, however, was compatible with a nephrotoxic role for all metals, both in ACR and eGFR models. In joint metal analysis, both higher mixtures of Cu-Zn-As-Ba-Ti-U-V-W and Co-Cd-Cr-Sb-V-W showed associations with increasing ACR and decreasing eGFR annual change. As and Cr were main drivers of the ACR change joint metal association. For the eGFR change joint metal association, while Zn and Cr were main drivers, other metals also contributed substantially. We identified potential interactions for As, Zn and W by other metals with ACR change, but not with eGFR change. Our findings support that Zn, As, Cr and W and suggestively other metals, are nephrotoxic at relatively low exposure levels. Metal exposure reduction and mitigation interventions may improve prevention and decrease the burden of renal disease in the population.
Collapse
Affiliation(s)
- Maria Grau-Perez
- Cardiometabolic and Renal Risk Unit, Biomedical Research Institute INCLIVA, Valencia, Spain; Department of Preventive Medicine and Microbiology, Universidad Autonoma de Madrid, Madrid, Spain; Department of Statistics and Operations Research, University of Valencia, Valencia, Spain.
| | - Arce Domingo-Relloso
- Department of Statistics and Operations Research, University of Valencia, Valencia, Spain; Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institutes, Madrid, Spain; Department of Environmental Health Sciences, Columbia University, New York, NY, USA
| | - Tamara Garcia-Barrera
- Research Center for Natural Resources, Health and the Environment (RENSMA), University of Huelva, Spain
| | - Jose L Gomez-Ariza
- Research Center for Natural Resources, Health and the Environment (RENSMA), University of Huelva, Spain
| | - Montserrat Leon-Latre
- Universidad de Zaragoza, Instituto de Investigación Sanitaria Aragón e Instituto Aragonés de Ciencias de la Salud, Zaragoza, Spain
| | - J Antonio Casasnovas
- Universidad de Zaragoza, Instituto de Investigación Sanitaria Aragón e Instituto Aragonés de Ciencias de la Salud, Zaragoza, Spain
| | - Belen Moreno-Franco
- Universidad de Zaragoza, Instituto de Investigación Sanitaria Aragón e Instituto Aragonés de Ciencias de la Salud, Zaragoza, Spain
| | - Martin Laclaustra
- Universidad de Zaragoza, Instituto de Investigación Sanitaria Aragón e Instituto Aragonés de Ciencias de la Salud, Zaragoza, Spain
| | - Eliseo Guallar
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University, New York, NY, USA
| | - Roberto Pastor-Barriuso
- Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institutes, Madrid, Spain
| | - Josep Redon
- Cardiometabolic and Renal Risk Unit, Biomedical Research Institute INCLIVA, Valencia, Spain; CIBERObn, Carlos III Health Institutes, Madrid, Spain
| | - Maria Tellez-Plaza
- Department of Preventive Medicine and Microbiology, Universidad Autonoma de Madrid, Madrid, Spain; Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institutes, Madrid, Spain
| |
Collapse
|
26
|
Rodriguez-Villamizar LA, Medina OM, Flórez-Vargas O, Vilanova E, Idrovo AJ, Araque-Rodriguez SA, Henao JA, Sánchez-Rodríguez LH. Chemical Element Mixtures and Kidney Function in Mining and Non-Mining Settings in Northern Colombia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2321. [PMID: 36767692 PMCID: PMC9914985 DOI: 10.3390/ijerph20032321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 05/27/2023]
Abstract
The exposure to chemical mixtures is a problem of concern in developing countries and it is well known that the kidney is the major target organ for toxic elements. This cross-sectional study aimed to estimate the individual and composite mixture effect of a large number of chemical elements on kidney function in gold-mining and surrounding non-mining populations in northeast Colombia. We measured concentrations of 36 chemical elements in hair as indicators of chronic exposure from 199 adult participants. We estimated the effect of exposure to mixtures of chemical elements on estimated glomerular filtration rate (eGFR) using weighted quantile sum regression (WQS). The WQS index of the mixture was associated with reduced eGFR (Coefficient -2.42; 95%CI: -4.69, -0.16) being Be, Cd, Pb, As, and Mn, the principal contributors of the toxic mixture. Mining activities and Hg concentration were not associated with decreased kidney function. Our results suggest that complex mixtures of chemical elements, mainly heavy metals, act as nephrotoxic in these populations and therefore the analysis of chemical element mixtures is a better approach to identify environmental and occupational chemical risks for kidney damage.
Collapse
Affiliation(s)
- Laura A. Rodriguez-Villamizar
- Departamento de Salud Pública, Escuela de Medicina, Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| | - Olga M. Medina
- Escuela de Microbiología, Universidad Industrial de Santander, Bucaramanga 68002, Colombia
| | - Oscar Flórez-Vargas
- Escuela de Microbiología, Universidad Industrial de Santander, Bucaramanga 68002, Colombia
| | - Eugenio Vilanova
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, 03202 Elche, Spain
| | - Alvaro J. Idrovo
- Departamento de Salud Pública, Escuela de Medicina, Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| | - Santiago A. Araque-Rodriguez
- Facultad de Ciencias de la Salud Programa de Medicina, Universidad Autónoma de Bucaramanga, Bucaramanga 681003, Colombia
| | - José A. Henao
- Escuela de Química, Universidad Industrial de Santander, Bucaramanga 680006, Colombia
| | | |
Collapse
|
27
|
Tian X, Shan X, Ma L, Zhang C, Wang M, Zheng J, Lei R, He L, Yan J, Li X, Bai Y, Hu K, Li S, Niu J, Luo B. Mixed heavy metals exposure affects the renal function mediated by 8-OHG: A cross-sectional study in rural residents of China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120727. [PMID: 36427825 DOI: 10.1016/j.envpol.2022.120727] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
Heavy metals are important risk factors for kidney, but their co-exposure effect on kidney and related mechanism remain unclear. This study evaluated the relationship between heavy metals and renal function, and the feasible mediation effect of oxidative stress. Based on the Dongdagou-Xinglong cohort, participants were recruited and their information were collected through questionnaires and physical examinations. The urine concentration of heavy metals like Cobalt, Nickel, Molybdenum, Cadmium, Antimony, Copper, Zinc, Mercury, Lead, Manganese, and renal injury biomarkers like β2-microglobulin, β-N-Acetylglucosaminidase, retinol-binding protein, 8-hydroxyguanine (8-OHG) were measured and corrected by creatinine. Linear regression was conducted to analyze the relationship between metals and renal biomarkers. Bayesian kernel machine regression, weighted quantile sum and quantile-based g-computation were applied to analyze the association between metal mixtures and renal biomarkers. Finally, the mediating effect of 8-OHG was analyzed through the mediation model. We found that these metals were positively related with renal biomarkers, where copper showed the strongest relationship. The co-exposure models showed that renal biomarkers increased with the concentration of mixtures, particularly for cadmium, copper, mercury, manganese. In addition, the proportion of 8-OHG in mediating effect of metals on renal function ranged from 2.6% to 86.9%. Accordingly, the renal function damage is positively associated with metals, and 8-OHG may play an important mediating role.
Collapse
Affiliation(s)
- Xiaoyu Tian
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Xiaobing Shan
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Li Ma
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Chenyang Zhang
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Mei Wang
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Jie Zheng
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Ruoyi Lei
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Li He
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Jun Yan
- The First School of Clinical Medical, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Xun Li
- The First School of Clinical Medical, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Yanjun Bai
- Silong Township Health Center in Baiyin City, Baiyin, Gansu, 730910, China
| | - Keqin Hu
- Mapo Township Health Center in Lanzhou City, Lanzhou, Gansu, 730115, China
| | - Sheng Li
- Public Health Department, The First People's Hospital of Lanzhou City, Lanzhou, Gansu, 730050, China
| | - Jingping Niu
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Bin Luo
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
28
|
Galvez-Fernandez M, Rodriguez-Hernandez Z, Grau-Perez M, Chaves FJ, Garcia-Garcia AB, Amigo N, Monleon D, Garcia-Barrera T, Gomez-Ariza JL, Briongos-Figuero LS, Perez-Castrillon JL, Redon J, Tellez-Plaza M, Martin-Escudero JC. Metabolomic patterns, redox-related genes and metals, and bone fragility endpoints in the Hortega Study. Free Radic Biol Med 2023; 194:52-61. [PMID: 36370960 DOI: 10.1016/j.freeradbiomed.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/06/2022] [Accepted: 11/06/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND The potential joint influence of metabolites on bone fragility has been rarely evaluated. We assessed the association of plasma metabolic patterns with bone fragility endpoints (primarily, incident osteoporosis-related bone fractures, and, secondarily, bone mineral density BMD) in the Hortega Study participants. Redox balance plays a key role in bone metabolism. We also assessed differential associations in participant subgroups by redox-related metal exposure levels and candidate genetic variants. MATERIAL AND METHODS In 467 participants older than 50 years from the Hortega Study, a representative sample from a region in Spain, we estimated metabolic principal components (mPC) for 54 plasma metabolites from NMR-spectrometry. Metals biomarkers were measured in plasma by AAS and in urine by HPLC-ICPMS. Redox-related SNPs (N = 341) were measured by oligo-ligation assay. RESULTS The prospective association with incident bone fractures was inverse for mPC1 (non-essential and essential amino acids, including branched-chain, and bacterial co-metabolites, including isobutyrate, trimethylamines and phenylpropionate, versus fatty acids and VLDL) and mPC4 (HDL), but positive for mPC2 (essential amino acids, including aromatic, and bacterial co-metabolites, including isopropanol and methanol). Findings from BMD models were consistent. Participants with decreased selenium and increased antimony, arsenic and, suggestively, cadmium exposures showed higher mPC2-associated bone fractures risk. Genetic variants annotated to 19 genes, with the strongest evidence for NCF4, NOX4 and XDH, showed differential metabolic-related bone fractures risk. CONCLUSIONS Metabolic patterns reflecting amino acids, microbiota co-metabolism and lipid metabolism were associated with bone fragility endpoints. Carriers of redox-related variants may benefit from metabolic interventions to prevent the consequences of bone fragility depending on their antimony, arsenic, selenium, and, possibly, cadmium, exposure levels.
Collapse
Affiliation(s)
- Marta Galvez-Fernandez
- Department of Preventive Medicine and Microbiology, School of Medicine, Universidad Autónoma de Madrid, Arzobispo Morcillo, 4, 28029, Madrid, Spain; Department of Preventive Medicine, Hospital Universitario Severo Ochoa, Avenida de Orellana, s/n, 28911, Madrid, Spain; Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Instituto de Salud Carlos III, Monforte de Lemos, 5, 28029, Madrid, Spain
| | - Zulema Rodriguez-Hernandez
- Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Instituto de Salud Carlos III, Monforte de Lemos, 5, 28029, Madrid, Spain; Department of Biotechnology, Universitat Politècnica de València, Camí de Vera, s/n, 46022, Valencia, Spain
| | - Maria Grau-Perez
- Department of Preventive Medicine and Microbiology, School of Medicine, Universidad Autónoma de Madrid, Arzobispo Morcillo, 4, 28029, Madrid, Spain; INCLIVA Biomedical Research Institute, Menéndez y Pelayo, 4, 46010, Valencia, Spain
| | - F Javier Chaves
- INCLIVA Biomedical Research Institute, Menéndez y Pelayo, 4, 46010, Valencia, Spain; CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Ana Barbara Garcia-Garcia
- INCLIVA Biomedical Research Institute, Menéndez y Pelayo, 4, 46010, Valencia, Spain; CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Nuria Amigo
- Biosfer Teslab, Plaça de Prim, 10, 43201, Tarragona, Spain; Department of Basic Medical Sciences, Universidad de Rovira I virgili, Carrer de Sant Llorenç, 21, 43201, Tarragona, Spain
| | - Daniel Monleon
- INCLIVA Biomedical Research Institute, Menéndez y Pelayo, 4, 46010, Valencia, Spain; Department of Pathology, School of Medicine, Universidad de Valencia, Avenida de Blasco Ibáñez, 15, 46010, Valencia, Spain; Center for Biomedical Research Network on Frailty and Health Aging (CIBERFES), Madrid, Spain
| | - Tamara Garcia-Barrera
- Department of Chemistry, Universidad de Huelva, Avenida de las Fuerzas Armadas, 21007, Huelva, Spain
| | - Jose L Gomez-Ariza
- Department of Chemistry, Universidad de Huelva, Avenida de las Fuerzas Armadas, 21007, Huelva, Spain
| | - Laisa S Briongos-Figuero
- Department of Internal Medicine, Hospital Universitario Rio Hortega, Calle Dulzaina, 2, 47012, Valladolid, Spain
| | - Jose L Perez-Castrillon
- Department of Internal Medicine, Hospital Universitario Rio Hortega, Calle Dulzaina, 2, 47012, Valladolid, Spain
| | - Josep Redon
- INCLIVA Biomedical Research Institute, Menéndez y Pelayo, 4, 46010, Valencia, Spain
| | - Maria Tellez-Plaza
- Department of Preventive Medicine and Microbiology, School of Medicine, Universidad Autónoma de Madrid, Arzobispo Morcillo, 4, 28029, Madrid, Spain; Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Instituto de Salud Carlos III, Monforte de Lemos, 5, 28029, Madrid, Spain; INCLIVA Biomedical Research Institute, Menéndez y Pelayo, 4, 46010, Valencia, Spain.
| | - Juan C Martin-Escudero
- Department of Internal Medicine, Hospital Universitario Rio Hortega, Calle Dulzaina, 2, 47012, Valladolid, Spain
| |
Collapse
|
29
|
BAÑERAS J, IGLESIES-GRAU J, TÉLLEZ-PLAZA M, ARRARTE V, BÁEZ-FERRER N, BENITO B, CAMPUZANO RUIZ R, CECCONI A, DOMÍNGUEZ-RODRÍGUEZ A, RODRÍGUEZ-SINOVAS A, UJUETA F, VOZZI C, LAMAS GA, NAVAS-ACIÉN A. [Environment and cardiovascular health: causes, consequences and opportunities in prevention and treatment]. Rev Esp Cardiol 2022; 75:1050-1058. [PMID: 36570815 PMCID: PMC9785336 DOI: 10.1016/j.recesp.2022.05.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The environment is a strong determinant of cardiovascular health. Environmental cardiology studies the contribution of environmental exposures with the aim of minimizing the harmful influences of pollution and promoting cardiovascular health through specific preventive or therapeutic strategies. The present review focuses on particulate matter and metals, which are the pollutants with the strongest level of scientific evidence, and includes possible interventions. Legislation, mitigation and control of pollutants in air, water and food, as well as environmental policies for heart-healthy spaces, are key measures for cardiovascular health. Individual strategies include the chelation of divalent metals such as lead and cadmium, metals that can only be removed from the body via chelation. The TACT (Trial to Assess Chelation Therapy, NCT00044213) clinical trial demonstrated cardiovascular benefit in patients with a previous myocardial infarction, especially in those with diabetes. Currently, the TACT2 trial (NCT02733185) is replicating the TACT results in people with diabetes. Data from the United States and Argentina have also shown the potential usefulness of chelation in severe peripheral arterial disease. More research and action in environmental cardiology could substantially help to improve the prevention and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Jordi BAÑERAS
- Servei de Cardiologia, Hospital Universitari Vall d’Hebron, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, España
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), España
| | - Josep IGLESIES-GRAU
- Centre ÉPIC and Research Center, Montreal Heart Institute, Montreal, Quebec, Canadá
| | - María TÉLLEZ-PLAZA
- Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Madrid, España
| | - Vicente ARRARTE
- Servicio de Cardiología, Hospital General Universitario Dr. Balmis, ISABIAL, Alicante, España
| | - Néstor BÁEZ-FERRER
- Servicio de Cardiología, Hospital Universitario de Canarias, Universidad Europea de Canarias, Santa Cruz de Tenerife, España
| | - Begoña BENITO
- Servei de Cardiologia, Hospital Universitari Vall d’Hebron, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, España
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), España
| | - Raquel CAMPUZANO RUIZ
- Servicio de Cardiología, Hospital Universitario Fundación de Alcorcón, Alcorcón, Madrid, España
| | - Alberto CECCONI
- Servicio de Cardiología, Hospital Universitario de la Princesa, Madrid, España
| | - Alberto DOMÍNGUEZ-RODRÍGUEZ
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), España
- Servicio de Cardiología, Hospital Universitario de Canarias, Universidad Europea de Canarias, Santa Cruz de Tenerife, España
| | - Antonio RODRÍGUEZ-SINOVAS
- Servei de Cardiologia, Hospital Universitari Vall d’Hebron, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, España
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), España
| | - Francisco UJUETA
- Columbia University Division of Cardiology, Mount Sinai Medical Center, Miami Beach, Florida, Estados Unidos
| | - Carlos VOZZI
- Departamento de Cardiología, Instituto Vozzi, Rosario, Argentina
| | - Gervasio A. LAMAS
- Columbia University Division of Cardiology, Mount Sinai Medical Center, Miami Beach, Florida, Estados Unidos
- Department of Medicine, Mount Sinai Medical Center, Miami Beach, Florida, Estados Unidos
| | - Ana NAVAS-ACIÉN
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, Nueva York, Estados Unidos
| |
Collapse
|
30
|
Bañeras J, Iglesies-Grau J, Téllez-Plaza M, Arrarte V, Báez-Ferrer N, Benito B, Campuzano Ruiz R, Cecconi A, Domínguez-Rodríguez A, Rodríguez-Sinovas A, Ujueta F, Vozzi C, Lamas GA, Navas-Acién A. Environment and cardiovascular health: causes, consequences and opportunities in prevention and treatment. REVISTA ESPANOLA DE CARDIOLOGIA (ENGLISH ED.) 2022; 75:1050-1058. [PMID: 35931285 PMCID: PMC10266758 DOI: 10.1016/j.rec.2022.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
The environment is a strong determinant of cardiovascular health. Environmental cardiology studies the contribution of environmental exposures with the aim of minimizing the harmful influences of pollution and promoting cardiovascular health through specific preventive or therapeutic strategies. The present review focuses on particulate matter and metals, which are the pollutants with the strongest level of scientific evidence, and includes possible interventions. Legislation, mitigation and control of pollutants in air, water and food, as well as environmental policies for heart-healthy spaces, are key measures for cardiovascular health. Individual strategies include the chelation of divalent metals such as lead and cadmium, metals that can only be removed from the body via chelation. The TACT (Trial to Assess Chelation Therapy, NCT00044213) clinical trial demonstrated cardiovascular benefit in patients with a previous myocardial infarction, especially in those with diabetes. Currently, the TACT2 trial (NCT02733185) is replicating the TACT results in people with diabetes. Data from the United States and Argentina have also shown the potential usefulness of chelation in severe peripheral arterial disease. More research and action in environmental cardiology could substantially help to improve the prevention and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Jordi Bañeras
- Servei de Cardiologia, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Josep Iglesies-Grau
- Centre ÉPIC and Research Center, Montreal Heart Institute, Montreal, Quebec, Canada
| | - María Téllez-Plaza
- Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Vicente Arrarte
- Servicio de Cardiología, Hospital General Universitario Dr. Balmis, ISABIAL, Alicante, Spain
| | - Néstor Báez-Ferrer
- Servicio de Cardiología, Hospital Universitario de Canarias, Universidad Europea de Canarias, Santa Cruz de Tenerife, Spain
| | - Begoña Benito
- Servei de Cardiologia, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Raquel Campuzano Ruiz
- Servicio de Cardiología, Hospital Universitario Fundación de Alcorcón, Alcorcón, Madrid, Spain
| | - Alberto Cecconi
- Servicio de Cardiología, Hospital Universitario de La Princesa, Madrid, Spain
| | - Alberto Domínguez-Rodríguez
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain; Servicio de Cardiología, Hospital Universitario de Canarias, Universidad Europea de Canarias, Santa Cruz de Tenerife, Spain
| | - Antonio Rodríguez-Sinovas
- Servei de Cardiologia, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Francisco Ujueta
- Columbia University Division of Cardiology, Mount Sinai Medical Center, Miami Beach, Florida, United States
| | - Carlos Vozzi
- Departamento de Cardiología, Instituto Vozzi, Rosario, Argentina
| | - Gervasio A Lamas
- Columbia University Division of Cardiology, Mount Sinai Medical Center, Miami Beach, Florida, United States; Department of Medicine, Mount Sinai Medical Center, Miami Beach, Florida, United States
| | - Ana Navas-Acién
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, Nueva York, United States.
| |
Collapse
|
31
|
Frazzoli C, Ruggieri F, Battistini B, Orisakwe OE, Igbo JK, Bocca B. E-WASTE threatens health: The scientific solution adopts the one health strategy. ENVIRONMENTAL RESEARCH 2022; 212:113227. [PMID: 35378120 DOI: 10.1016/j.envres.2022.113227] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
The aggressively extractive advanced technology industry thrives on intensive use of non-renewable resources and hyper-consumeristic culture. The environmental impact of its exponential growth means extreme mining, hazardous labour practices including child labour, and exposure burden to inorganic and organic hazardous chemicals for the environment and current and future human generations. Globally, processes such as in-country reduce, reuse and recycle have so far received less attention than outer-circle strategies like the uncontrolled dumping of e-waste in countries that are unprotected by regulatory frameworks. Here, in the absence of infrastructures for sound hazardous e-waste management, the crude recycling, open burning and dumping into landfills of e-waste severely expose people, animal and the environment. Along with economic, political, social, and cultural solutions to the e-waste global problem, the scientific approach based on risk analysis encompassing risk assessment, risk management and risk communication can foster a technical support to resist transgenerational e-waste exposure and health inequalities. This paper presents the latest public health strategies based on the use of integrated human and animal biomonitoring and appropriate biomarkers to assess and manage the risk of e-waste embracing the One Health approach. Advantages and challenges of integrated biomonitoring are described, along with ad-hoc biomarkers of exposure, effect and susceptibility with special focus on metals and metalloids. Indeed, the safe and sustainable management of novel technologies will benefit of the integration and coordination of human and animal biomonitoring.
Collapse
Affiliation(s)
- Chiara Frazzoli
- Department of Cardiovascular and Endocrine-Metabolic Diseases and Ageing, Istituto Superiore di Sanità, Rome, Italy
| | - Flavia Ruggieri
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Beatrice Battistini
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Orish E Orisakwe
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port Harcourt, Rivers State, Nigeria; African Centre of Excellence, Centre for Public Health and Toxicological Research, University of Port Harcourt, Rivers State, Nigeria
| | | | - Beatrice Bocca
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
32
|
Guo X, Su W, Li N, Song Q, Wang H, Liang Q, Li Y, Lowe S, Bentley R, Zhou Z, Song EJ, Cheng C, Zhou Q, Sun C. Association of urinary or blood heavy metals and mortality from all causes, cardiovascular disease, and cancer in the general population: a systematic review and meta-analysis of cohort studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:67483-67503. [PMID: 35917074 DOI: 10.1007/s11356-022-22353-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Amounting epidemiological evidence has shown detrimental effects of heavy metals on a wide range of diseases. However, the effect of heavy metal exposure on mortality in the general population remains unclear. The primary objective of this study was to clarify the associations between heavy metals and mortality from all causes, cardiovascular disease (CVD), and cancer based on prospective studies. We comprehensively searched Pubmed, Embase, and Web of Science electronic databases to identify studies published from their inception until 1 March 2022. Investigators identified inclusion criteria, extracted study characteristics, and assessed the methodological quality of included studies according to standardized guidelines. Meta-analysis was conducted if the effect estimates of the same outcome were reported in at least three studies. Finally, 42 original studies were identified. The results of meta-analysis showed that cadmium and lead exposure was significantly associated with mortality from all causes, CVD, and cancer in the general population. Moderate evidence suggested there was a link between arsenic exposure and mortality. The adverse effects of mercury and other heavy metals on mortality were inconclusive. Epidemiological evidence for the joint effect of heavy metal exposure on mortality was still indeterminate. In summary, our study provided compelling evidence that exposure to cadmium, lead, and arsenic were associated with mortality from all causes, CVD, and cancer, while the evidence on other heavy metals, for example mercury, was insignificant or indeterminate. Nevertheless, further prospective studies are warranted to explore the joint effects of multiple metal exposure on mortality.
Collapse
Affiliation(s)
- Xianwei Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China
| | - Wanying Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China
| | - Ning Li
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China
| | - Qiuxia Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China
| | - Hao Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China
| | - Qiwei Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China
| | - Yaru Li
- Internal Medicine, Swedish Hospital, 5140 N California Ave, Chicago, IL, 60625, USA
- College of Osteopathic Medicine, Des Moines University, 3200 Grand Ave, Des Moines, IA, 50312, USA
| | - Scott Lowe
- College of Osteopathic Medicine, Kansas City University, 1750 Independence Ave, Kansas City, MO, 64106, USA
| | - Rachel Bentley
- College of Osteopathic Medicine, Kansas City University, 1750 Independence Ave, Kansas City, MO, 64106, USA
| | - Zhen Zhou
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, TAS, 7000, Australia
| | - Evelyn J Song
- Division of Hospital Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Ce Cheng
- The University of Arizona College of Medicine, 1501 N Campbell Ave, Tucson, AZ, 85724, USA
- Banner-University Medical Center South, 2800 E Ajo Way, Tucson, AZ, 85713, USA
| | - Qin Zhou
- Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Chenyu Sun
- AMITA Health Saint Joseph Hospital Chicago, 2900 N. Lake Shore Drive, Chicago, IL, 60657, USA.
| |
Collapse
|
33
|
Rafiee A, Delgado-Saborit JM, Aquilina NJ, Amiri H, Hoseini M. Assessing oxidative stress resulting from environmental exposure to metals (Oids) in a middle Eastern population. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:2649-2668. [PMID: 34390449 DOI: 10.1007/s10653-021-01065-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 08/04/2021] [Indexed: 05/15/2023]
Abstract
Concentrations of metals and metalloids derived mainly from anthropogenic activities have increased considerably in the environment. Metals might be associated with increase reactive oxygen species (ROS) damage, potentially related to several health outcomes. This study has recruited 200 adult participants, including 110 males and 90 females in Shiraz (Iran), to investigate the relationship between chronic exposure to metals and ROS damage by analyzing malondialdehyde (MDA) and 8-Oxo-2'-deoxyguanosine (8-OHdG) concentrations, and has evaluated the associations between chronic metal exposure and ROS damage using regression analysis. Our findings showed participants are chronically exposed to elevate As, Ni, Hg, and Pb levels. The mean urinary concentrations of 8-OHdG and MDA were 3.8 ± 2.35 and 214 ± 134 µg/g creatinine, respectively. This study shows that most heavy metals are correlated with urinary ROS biomarkers (R ranges 0.19 to 0.64). In addition, regression analysis accounting for other confounding factors such as sex, age, smoking status, and teeth filling with amalgam highlights that Al, Cu, Si and Sn are associated with 8-OHdG concentrations, while an association between Cr and MDA and 8-OHdG is suggested. Smoking cigarettes and water-pipe is considered a significant contributory factor for both ROS biomarkers (MDA and 8-OHdG).
Collapse
Affiliation(s)
- Ata Rafiee
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Juana Maria Delgado-Saborit
- Perinatal Epidemiology, Environmental Health and Clinical Research, School of Medicine, Universitat Jaume I, Castellon, Spain
- ISGlobal Barcelona Institute for Global Health, Barcelona Biomedical Research Park, Barcelona, Spain
- Population Health and Environmental Sciences, Analytical Environmental and Forensic Sciences, King's College London, London, UK
- Division of Environmental Health & Risk Management, School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Noel J Aquilina
- Department of Chemistry, University of Malta, Msida, 2080, MSD, Malta
| | - Hoda Amiri
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Hoseini
- Research Center for Health Sciences, Institute of Health, Department of Environmental Health Engineering, School of Public Health, Shiraz University of Medical Sciences, Razi blvd, Kuye Zahra Street, Shiraz, Iran.
| |
Collapse
|
34
|
Urbano T, Filippini T, Wise LA, Lasagni D, De Luca T, Sucato S, Polledri E, Malavolti M, Rigon C, Santachiara A, Pertinhez TA, Baricchi R, Fustinoni S, Vinceti M. Associations of urinary and dietary cadmium with urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine and blood biochemical parameters. ENVIRONMENTAL RESEARCH 2022; 210:112912. [PMID: 35150710 DOI: 10.1016/j.envres.2022.112912] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Cadmium is a heavy metal with established adverse effects on human health, namely on bone, liver and kidney function and the cardiovascular system. We assessed cadmium exposure and its correlation with biomarkers of toxicity. We recruited 137 non-smoking blood donors without a history of chronic disease or cancer who resided in the Northern Italy province of Reggio Emilia (mean age 47 years, range 30-60 years) in the 2017-2019 period. We used a semi-quantitative food frequency questionnaire to estimate dietary cadmium intake and urine samples to assess concentrations of urinary cadmium and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG). Median urinary cadmium and 8-oxodG concentrations were 0.21 μg/L (interquartile range (IQR): 0.11-0.34 μg/L) and 3.21 μg/g creatinine (IQR: 2.21-4.80 μg/g creatinine), respectively, while median dietary cadmium intake was 6.16 μg/day (IQR: 5.22-7.93 μg/day). We used multivariable linear and spline regression models to estimate mean differences exposure concentrations. Dietary and urinary cadmium were positively correlated, and both were positively and linearly correlated with 8-oxodG. We found a positive association of urinary cadmium with blood alanine aminotransferase (ALT), total cholesterol, low-density lipoprotein (LDL)-cholesterol and thyroid-stimulating hormone (TSH) concentrations. We also observed a positive association with triglycerides, in both linear (beta regression coefficient = 77.03, 95% confidence interval 32.27-121.78) and non-linear spline regression analyses. Despite the positive correlation between dietary and urinary cadmium estimates, dietary cadmium intake showed inconsistent results with the study endpoints and generally weaker associations, suggesting a decreased capacity to reflect actual cadmium exposure. Overall, these findings suggest that even low levels of cadmium exposure may adversely alter hematological and biochemical variables and induce oxidative stress.
Collapse
Affiliation(s)
- Teresa Urbano
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Tommaso Filippini
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Lauren A Wise
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Daniela Lasagni
- Transfusion Medicine Unit, AUSL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Tiziana De Luca
- Transfusion Medicine Unit, AUSL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Sabrina Sucato
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Elisa Polledri
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Marcella Malavolti
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Chiara Rigon
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | - Roberto Baricchi
- Transfusion Medicine Unit, AUSL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Silvia Fustinoni
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; IRCCS Ca' Granda Foundation Maggiore Policlinico Hospital, Milan, Italy
| | - Marco Vinceti
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA.
| |
Collapse
|
35
|
Blanco Muñoz J, Lope V, Fernández de Larrea-Baz N, Gómez-Ariza JL, Dierssen-Sotos T, Fernández-Tardón G, Aragonés N, Amiano P, Gómez-Acebo I, Tardón A, Grau-Pérez M, García-Barrera T, Kogevinas M, Pollán M, Pérez-Gómez B. Levels and determinants of urinary cadmium in general population in Spain: Metal-MCC-Spain study. ENVIRONMENTAL RESEARCH 2022; 210:112959. [PMID: 35189102 DOI: 10.1016/j.envres.2022.112959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/17/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Cadmium is a ubiquitous and persistent metal, associated with different harmful health effects and with increased morbidity and mortality. Understanding the main sources of exposure is essential to identify at risk populations and to design public health interventions. OBJECTIVE To evaluate cadmium exposure in a random-sample of general adult population from three regions of Spain, assessed by the urinary cadmium (U-Cd) concentration, and to identify its potential determinants and sex-specific differences, including sociodemographic, lifestyle and dietary factors. MATERIALS AND METHODS We measured U-Cd (μg/g creatinine) in single urine spot samples from 1282 controls enrolled in the multicase-control study in common tumors in Spain (MCC-Spain) with inductively coupling plasma-mass spectrometry equipped with an octopole reaction systems (ICP-ORS-MS). The association between sociodemographic, lifestyle, and dietary characteristics and U-Cd concentrations was evaluated using geometric mean ratios (GMR) estimated by multiple log-linear regression models. RESULTS Overall, geometric mean U-Cd concentration was 0.40 (95%CI: 0.38, 0.41) μg/g creatinine. Levels were higher in women than in men (GMR]: 1.19; 95%CI: 1.07, 1.32), and increased with age in males (ptrend< 0.001). Cigarette smoking was clearly associated to U-Cd levels (GMRformer vs non-smokers: 1.16; 95%CI: 1.05, 1.29; GMRcurrent vs non-smokers: 1.42; 95%CI: 1.26, 1.60); the relationship with secondhand tobacco exposure in non-smokers, was restricted to women (pinteraction = 0.02). Sampling season and region also seemed to influence U-Cd concentrations, with lower levels in summer (GMRsummer vs average: 0.79; 95%CI: 0.71, 0.88), and higher levels in North-Spain Asturias (GMRAsturias vs average: 1.13; 95%CI: 1.04, 1.23). Regarding diet, higher U-Cd concentration was associated with eggs consumption only in men (pinteraction = 0.04), just as rice intake was associated in women (pinteraction = 0.03). CONCLUSION These results confirmed that tobacco exposure is the main modifiable predictor of U-Cd concentrations, and remark that the role of dietary/sociodemographic factors on U-Cd levels may differ by sex.
Collapse
Affiliation(s)
- Julia Blanco Muñoz
- Department of Environmental Health. Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública. Cuernavaca, Morelos, Mexico
| | - Virginia Lope
- Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Instituto de Salud Carlos III, Av/Monforte de Lemos, 5, 28029, Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Instituto de Salud Carlos III. Av/Monforte de Lemos, 5, 28029, Madrid, Spain.
| | - Nerea Fernández de Larrea-Baz
- Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Instituto de Salud Carlos III, Av/Monforte de Lemos, 5, 28029, Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Instituto de Salud Carlos III. Av/Monforte de Lemos, 5, 28029, Madrid, Spain
| | - José Luis Gómez-Ariza
- Department of Chemistry, Faculty of Experimental Sciences, Campus El Carmen, University of Huelva. Research Center for Natural Resources, Health and the Environment, Campus El Carmen, University of Huelva, Av. del Tres de Marzo, 3, 21007, Huelva, Spain
| | - Trinidad Dierssen-Sotos
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Instituto de Salud Carlos III. Av/Monforte de Lemos, 5, 28029, Madrid, Spain; Universidad de Cantabria - IDIVAL, 39011, Santander, Spain
| | - Guillermo Fernández-Tardón
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Instituto de Salud Carlos III. Av/Monforte de Lemos, 5, 28029, Madrid, Spain; Institute of Health Research of the Principality of Asturias (ISPA)/University of Oviedo, 03301, Oviedo, Spain
| | - Nuria Aragonés
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Instituto de Salud Carlos III. Av/Monforte de Lemos, 5, 28029, Madrid, Spain; Epidemiology Section, Public Health Division, Department of Health of Madrid, Madrid, Spain. C/San Martín de Porres, 6, 28035, Madrid, Spain
| | - Pilar Amiano
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Instituto de Salud Carlos III. Av/Monforte de Lemos, 5, 28029, Madrid, Spain; Sub-Directorate for Public Health and Addictions of Gipuzkoa, Ministry of Health of the Basque Government, 20013, San Sebastian, Spain; Epidemiology and Public Health Area, Biodonostia Health Research Institute, 20014, San Sebastian, Spain
| | - Inés Gómez-Acebo
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Instituto de Salud Carlos III. Av/Monforte de Lemos, 5, 28029, Madrid, Spain; Universidad de Cantabria - IDIVAL, 39011, Santander, Spain
| | - Adonina Tardón
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Instituto de Salud Carlos III. Av/Monforte de Lemos, 5, 28029, Madrid, Spain; Institute of Health Research of the Principality of Asturias (ISPA)/University of Oviedo, 03301, Oviedo, Spain
| | - María Grau-Pérez
- Department of Preventive Medicine and Public Health, Universidad Autónoma de Madrid/ IdiPAZ, 28049, Madrid, Spain; Cardiometabolic and Renal Risk Unit, Biomedical Research Institute INCLIVA, Valencia, Spain
| | - Tamara García-Barrera
- Department of Chemistry, Faculty of Experimental Sciences, Campus El Carmen, University of Huelva. Research Center for Natural Resources, Health and the Environment, Campus El Carmen, University of Huelva, Av. del Tres de Marzo, 3, 21007, Huelva, Spain
| | - Manolis Kogevinas
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Instituto de Salud Carlos III. Av/Monforte de Lemos, 5, 28029, Madrid, Spain; Instituto de Salud Global de Barcelona (ISGlobal), 08003, Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), 08003, Barcelona, Spain
| | - Marina Pollán
- Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Instituto de Salud Carlos III, Av/Monforte de Lemos, 5, 28029, Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Instituto de Salud Carlos III. Av/Monforte de Lemos, 5, 28029, Madrid, Spain
| | - Beatriz Pérez-Gómez
- Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Instituto de Salud Carlos III, Av/Monforte de Lemos, 5, 28029, Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Instituto de Salud Carlos III. Av/Monforte de Lemos, 5, 28029, Madrid, Spain
| |
Collapse
|
36
|
Signes-Pastor AJ, Sayarath V, Jackson B, Cottingham KL, Punshon T, Karagas MR. Dietary Exposure to Essential and Non-essential Elements During Infants' First Year of Life in the New Hampshire Birth Cohort Study. EXPOSURE AND HEALTH 2022; 15:269-279. [PMID: 36873246 PMCID: PMC9971144 DOI: 10.1007/s12403-022-00489-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/29/2022] [Accepted: 05/10/2022] [Indexed: 06/18/2023]
Abstract
Even the low levels of non-essential elements exposure common in the US may have health consequences especially early in life. However, little is known about the infant's dynamic exposure to essential and non-essential elements. This study aims to evaluate exposure to essential and non-essential elements during infants' first year of life and to explore the association between the exposure and rice consumption. Paired urine samples from infants enrolled in the New Hampshire Birth Cohort Study (NHBCS) were collected at approximately 6 weeks (exclusively breastfed) and at 1 year of age after weaning (n = 187). A further independent subgroup of NHBCS infants with details about rice consumption at 1 year of age also was included (n = 147). Urinary concentrations of 8 essential (Co, Cr, Cu, Fe, Mn, Mo, Ni, and Se) and 9 non-essential (Al, As, Cd, Hg, Pb, Sb, Sn, V, and U) elements were determined as a measure of exposure. Several essential (Co, Fe, Mo, Ni, and Se) and non-essential (Al, As, Cd, Hg, Pb, Sb, Sn, and V) elements had higher concentrations at 1 year than at 6 weeks of age. The highest increases were for urinary As and Mo with median concentrations of 0.20 and 1.02 µg/L at 6 weeks and 2.31 and 45.36 µg/L at 1 year of age, respectively. At 1 year of age, As and Mo urine concentrations were related to rice consumption. Further efforts are necessary to minimize exposure to non-essential elements while retaining essential elements to protect and promote children's health. Supplementary Information The online version contains supplementary material available at 10.1007/s12403-022-00489-x.
Collapse
Affiliation(s)
- Antonio J. Signes-Pastor
- Department of Epidemiology, Geisel Medical School at Dartmouth College, Lebanon, NH USA
- Instituto de Investigación Sanitaria y Biomédica de Alicante, Universidad Miguel Hernández (ISABIAL-UMH), Alicante, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Vicki Sayarath
- Department of Epidemiology, Geisel Medical School at Dartmouth College, Lebanon, NH USA
| | - Brian Jackson
- Department of Earth Sciences, Dartmouth College, Hanover, NH USA
| | | | - Tracy Punshon
- Department of Biological Sciences, Dartmouth College, Hanover, NH USA
| | - Margaret R. Karagas
- Department of Epidemiology, Geisel Medical School at Dartmouth College, Lebanon, NH USA
| |
Collapse
|
37
|
Zhang Y, Huan J, Gao D, Xu S, Han X, Song J, Wang L, Zhang H, Niu Q, Lu X. Blood pressure mediated the effects of cognitive function impairment related to aluminum exposure in Chinese aluminum smelting workers. Neurotoxicology 2022; 91:269-281. [PMID: 35654245 DOI: 10.1016/j.neuro.2022.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 10/18/2022]
Abstract
OBJECTIVES The aim of this study is to investigate the effects that the Al on blood pressure and the effect of hypertension in aluminum-induced cognitive impairment in electrolytic aluminum worker. METHODS The study was conducted 392 male aluminum electrolytic workers in an aluminum plant of China. The concentration of alumina dust in the air of the electrolytic aluminum workshop is 1.07mg/m3-2.13mg/m3. According to the Permissible concentration-Time Weighted Average of alumina dust is 4mg/ m3, which does not exceed the standard. The blood pressure of the workers was measured. The plasma aluminum concentration of workers was determined by ICP-MS (Inductively Coupled Plasma Mass Spectrometry). Cognitive functions were measured using MMSE (Mini-Mental State Examination), VFT (Verbal Fluency Test), ATIME (Average Reaction Time), FOM (Fuld Object Memory Evaluation), DST (Digit Span Test), CDT (Clock Drawing Test) scales. Modified Poisson regression was used to analyze the risk of hypertension and cognitive impairment with different plasma aluminum concentrations. Generalized linear regression model was used to analyze the relationship between aluminum and cognitive function, blood pressure and cognitive function. Causal Mediation Analysis was used to analyze the mediation effect of blood press in aluminum-induced cognitive impairment. RESULTS Plasma aluminum appeared to be a risk factor for hypertension (PR (prevalence ratio) = 1.630, 95%-CI (confidence interval): 1.103 to 2.407), systolic blood pressure (PR = 1.578, 95%-CI: 1.038 to 2.399) and diastolic blood pressure (PR = 1.842, 95%-CI: 1.153 to 2.944). And plasma aluminum increased by e-fold, the scores of MMSE and VFT decreased by 0.630 and 2.231 units respectively and the time of ATIME increased by 0.029 units. In addition, generalized linear regression model showed that blood press was negatively correlated with the scores of MMSE and VFT. Finally, causal Mediation Analysis showed that hypertension was a part of the mediating factors of aluminum-induced decline in MMSE score, and the mediating effects was 16.300% (7.100%, 33.200%). In addition, hypertension was a part of the mediating factors of aluminum-induced decline in VFT score, and the mediating effects was 9.400% (2.600%, 29.000%) CONCLUSION: Occupational aluminum exposure increases the risk of hypertension and cognitive impairment. And hypertension may be a mediating factor of cognitive impairment caused by aluminum exposure.
Collapse
Affiliation(s)
- Yunwei Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China; Center for Disease Control and Prevention, Linfen, Shanxi, China
| | - Jiaping Huan
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Dan Gao
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Shimeng Xu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Xiao Han
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Jing Song
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Linping Wang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Huifang Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Qiao Niu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Xiaoting Lu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
38
|
Buonaurio F, Borra F, Pigini D, Paci E, Spagnoli M, Astolfi ML, Giampaoli O, Sciubba F, Miccheli A, Canepari S, Ancona C, Tranfo G. Biomonitoring of Exposure to Urban Pollutants and Oxidative Stress during the COVID-19 Lockdown in Rome Residents. TOXICS 2022; 10:toxics10050267. [PMID: 35622680 PMCID: PMC9143243 DOI: 10.3390/toxics10050267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023]
Abstract
Background: The objective of this study is to evaluate the effects of traffic on human health comparing biomonitoring data measured during the COVID-19 lockdown, when restrictions led to a 40% reduction in airborne benzene in Rome and a 36% reduction in road traffic, to the same parameters measured in 2021. Methods: Biomonitoring was performed on 49 volunteers, determining the urinary metabolites of the most abundant traffic pollutants, such as benzene and PAHs, and oxidative stress biomarkers by HPLC/MS-MS, 28 elements by ICP/MS and metabolic phenotypes by NMR. Results: Means of s-phenylmercaputric acid (SPMA), metabolites of naphthalene and nitropyrene in 2020 are 20% lower than in 2021, while 1-OH-pyrene was 30% lower. A reduction of 40% for 8-oxo-7,8-dihydroguanosine (8-oxoGuo) and 8-oxo-7,8-dihydro-2-deoxyguanosine (8-oxodGuo) and 60% for 8-oxo-7,8-dihydroguanine (8-oxoGua) were found in 2020 compared to 2021. The concentrations of B, Co, Cu and Sb in 2021 are significantly higher than in the 2020. NMR untargeted metabolomic analysis identified 35 urinary metabolites. Results show in 2021 a decrease in succinic acid, a product of the Krebs cycle promoting inflammation. Conclusions: Urban pollution due to traffic is partly responsible for oxidative stress of nucleic acids, but other factors also have a role, enhancing the importance of communication about a healthy lifestyle in the prevention of cancer diseases.
Collapse
Affiliation(s)
- Flavia Buonaurio
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy; (F.B.); (F.B.); (M.L.A.)
| | - Francesca Borra
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy; (F.B.); (F.B.); (M.L.A.)
| | - Daniela Pigini
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Monte Porzio Catone, 00144 Rome, Italy; (D.P.); (E.P.); (M.S.)
| | - Enrico Paci
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Monte Porzio Catone, 00144 Rome, Italy; (D.P.); (E.P.); (M.S.)
| | - Mariangela Spagnoli
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Monte Porzio Catone, 00144 Rome, Italy; (D.P.); (E.P.); (M.S.)
| | - Maria Luisa Astolfi
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy; (F.B.); (F.B.); (M.L.A.)
| | - Ottavia Giampaoli
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy; (O.G.); (F.S.); (A.M.); (S.C.)
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, 00185 Rome, Italy
| | - Fabio Sciubba
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy; (O.G.); (F.S.); (A.M.); (S.C.)
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, 00185 Rome, Italy
| | - Alfredo Miccheli
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy; (O.G.); (F.S.); (A.M.); (S.C.)
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, 00185 Rome, Italy
| | - Silvia Canepari
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy; (O.G.); (F.S.); (A.M.); (S.C.)
| | - Carla Ancona
- Department of Epidemiology, Lazio Regional Health Service, 00154 Rome, Italy;
| | - Giovanna Tranfo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Monte Porzio Catone, 00144 Rome, Italy; (D.P.); (E.P.); (M.S.)
- Correspondence: ; Tel.: +39-0694181436
| |
Collapse
|
39
|
Kapoor RT, Bani Mfarrej MF, Alam P, Rinklebe J, Ahmad P. Accumulation of chromium in plants and its repercussion in animals and humans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 301:119044. [PMID: 35217142 DOI: 10.1016/j.envpol.2022.119044] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/13/2022] [Accepted: 02/19/2022] [Indexed: 05/26/2023]
Abstract
The untreated effluents released from industrial operations have adverse impacts on human health, environment and socio-economic aspects. Environmental pollution due to chromium is adversely affecting our natural resources and ecosystem. Chromium is hazardous carcinogenic element released from spontaneous activities and industrial procedures. Chromium toxicity, mobility and bioavailability depend mainly on its speciation. Chromium mainly exists in two forms, first as an immobile, less soluble trivalent chromium [Cr(III)] species under reducing conditions whereas hexavalent chromium [Cr(VI)] as a mobile, toxic and bioavailable species under oxidizing conditions. Hexavalent chromium is more pernicious in comparison to trivalent form. Chromium negatively affects crop growth, total yield and grain quality. Exposure of chromium even at low concentration enhances its accretion in cells of human-beings and animals which may show detrimental health effects. Many techniques have been utilized for the elimination of chromium. The selection of the green and cost-efficient technology for treatment of industrial effluent is an arduous task. The present review highlights the problems associated with chromium pollution and need of its immediate elimination by suitable remediation strategies. Further, investigations are required to fill the gaps to overcome the problem of chromium contamination and implementation of sustainable remediation strategies with their real-time applicability on the contaminated sites.
Collapse
Affiliation(s)
- Riti Thapar Kapoor
- Plant Physiology Laboratory, Amity Institute of Biotechnology, Amity University, Noida, 201 313, Uttar Pradesh, India
| | - Manar Fawzi Bani Mfarrej
- Department of Life and Environmental Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi, 144534, United Arab Emirates
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saudi University, P. O. Box. 2460, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
40
|
Galvez-Fernandez M, Sanchez-Saez F, Domingo-Relloso A, Rodriguez-Hernandez Z, Tarazona S, Gonzalez-Marrachelli V, Grau-Perez M, Morales-Tatay JM, Amigo N, Garcia-Barrera T, Gomez-Ariza JL, Chaves FJ, Garcia-Garcia AB, Melero R, Tellez-Plaza M, Martin-Escudero JC, Redon J, Monleon D. Gene-environment interaction analysis of redox-related metals and genetic variants with plasma metabolic patterns in a general population from Spain: The Hortega Study. Redox Biol 2022; 52:102314. [PMID: 35460952 PMCID: PMC9048061 DOI: 10.1016/j.redox.2022.102314] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 12/26/2022] Open
Abstract
Background Limited studies have evaluated the joint influence of redox-related metals and genetic variation on metabolic pathways. We analyzed the association of 11 metals with metabolic patterns, and the interacting role of candidate genetic variants, in 1145 participants from the Hortega Study, a population-based sample from Spain. Methods Urine antimony (Sb), arsenic, barium (Ba), cadmium (Cd), chromium (Cr), cobalt (Co), molybdenum (Mo) and vanadium (V), and plasma copper (Cu), selenium (Se) and zinc (Zn) were measured by ICP-MS and AAS, respectively. We summarized 54 plasma metabolites, measured with targeted NMR, by estimating metabolic principal components (mPC). Redox-related SNPs (N = 291) were measured by oligo-ligation assay. Results In our study, the association with metabolic principal component (mPC) 1 (reflecting non-essential and essential amino acids, including branched chain, and bacterial co-metabolism versus fatty acids and VLDL subclasses) was positive for Se and Zn, but inverse for Cu, arsenobetaine-corrected arsenic (As) and Sb. The association with mPC2 (reflecting essential amino acids, including aromatic, and bacterial co-metabolism) was inverse for Se, Zn and Cd. The association with mPC3 (reflecting LDL subclasses) was positive for Cu, Se and Zn, but inverse for Co. The association for mPC4 (reflecting HDL subclasses) was positive for Sb, but inverse for plasma Zn. These associations were mainly driven by Cu and Sb for mPC1; Se, Zn and Cd for mPC2; Co, Se and Zn for mPC3; and Zn for mPC4. The most SNP-metal interacting genes were NOX1, GSR, GCLC, AGT and REN. Co and Zn showed the highest number of interactions with genetic variants associated to enriched endocrine, cardiovascular and neurological pathways. Conclusions Exposures to Co, Cu, Se, Zn, As, Cd and Sb were associated with several metabolic patterns involved in chronic disease. Carriers of redox-related variants may have differential susceptibility to metabolic alterations associated to excessive exposure to metals. In a population-based sample, cobalt, copper, selenium, zinc, arsenic, cadmium and antimony exposures were related to some metabolic patterns. Carriers of redox-related variants displayed differential susceptibility to metabolic alterations associated to excessive metal exposures. Cobalt and zinc showed a number of statistical interactions with variants from genes sharing biological pathways with a role in chronic diseases. The metabolic impact of metals combined with variation in redox-related genes might be large in the population, given metals widespread exposure.
Collapse
Affiliation(s)
- Marta Galvez-Fernandez
- Department of Preventive Medicine and Microbiology, Universidad Autónoma de Madrid, Madrid, Spain; Department of Preventive Medicine, Hospital Universitario Severo Ochoa, Madrid, Spain; Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, Madrid, Spain
| | - Francisco Sanchez-Saez
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain; Department of Statistics and Operational Research, University of Valencia, Valencia, Spain
| | - Arce Domingo-Relloso
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, Madrid, Spain; Department of Statistics and Operational Research, University of Valencia, Valencia, Spain; Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, USA
| | - Zulema Rodriguez-Hernandez
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, Madrid, Spain; Department of Biotechnology, Universitat Politècnica de València, Valencia, Spain
| | - Sonia Tarazona
- Applied Statistics and Operations Research and Quality Politècnica de València, Valencia, Spain
| | - Vannina Gonzalez-Marrachelli
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain; Department of Physiology, University of Valencia, Valencia, Spain
| | - Maria Grau-Perez
- Department of Preventive Medicine and Microbiology, Universidad Autónoma de Madrid, Madrid, Spain; Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain; Department of Statistics and Operational Research, University of Valencia, Valencia, Spain
| | - Jose M Morales-Tatay
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain; Department of Pathology University of Valencia, Valencia, Spain
| | - Nuria Amigo
- Biosfer Teslab, Reus, Spain; Department of Basic Medical Sciences, University Rovira I Virgili, Reus, Spain; Center for Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Tamara Garcia-Barrera
- Research Center for Natural Resources, Health and the Environment (RENSMA), Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Huelva, Spain
| | - Jose L Gomez-Ariza
- Research Center for Natural Resources, Health and the Environment (RENSMA), Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Huelva, Spain
| | - F Javier Chaves
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain; Center for Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Ana Barbara Garcia-Garcia
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain; Center for Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Rebeca Melero
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain
| | - Maria Tellez-Plaza
- Department of Preventive Medicine and Microbiology, Universidad Autónoma de Madrid, Madrid, Spain; Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, Madrid, Spain; Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain.
| | - Juan C Martin-Escudero
- Department of Internal Medicine, Hospital Universitario Rio Hortega, University of Valladolid, Valladolid, Spain
| | - Josep Redon
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain
| | - Daniel Monleon
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain; Department of Pathology University of Valencia, Valencia, Spain; Center for Biomedical Research Network on Frailty and Health Aging (CIBERFES), Madrid, Spain
| |
Collapse
|
41
|
Capelo R, Rohlman DS, Jara R, García T, Viñas J, Lorca JA, Contreras Llanes M, Alguacil J. Residence in an Area with Environmental Exposure to Heavy Metals and Neurobehavioral Performance in Children 9-11 Years Old: An Explorative Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084732. [PMID: 35457599 PMCID: PMC9032432 DOI: 10.3390/ijerph19084732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 01/25/2023]
Abstract
We explored the association between residence in an area polluted with metals and neurobehavioral performance in children aged 9 to 11. A cross-sectional study was conducted with thirty boys and thirty girls aged 9 to 11 from public schools in a heavily industrialized area, matched by age (±4 months) and gender with 15 boys and 15 girls from public schools in cities without relevant industrial activity. Neurobehavioral performance was assessed with the Behavioral Assessment and Research System. Linear regression models were used, adjusting for age, sex, social class and multimedia activities to predict each of the neurobehavioral outcome variables. No differences in neurobehavioral performance were found when all children with residence in areas with environmental exposure to metals were classified as exposed and the children from the other provinces as unexposed. However, when we compared children living <1 km from an industrial area with respect to those living more than 1 km away, significant differences were found. Children living <1 km away had lower scores on Finger Tapping (p = 0.03), Symbol-Digit (p = 0.07) and Continuous Performance (p = 0.02) than those living farther away. Our results support the hypothesis that residing close to an area with industrial activity (<1 km) is associated with deficits in neurobehavioral performance among children aged 9 to 11.
Collapse
Affiliation(s)
- Rocío Capelo
- Centro de Investigación en Recursos Naturales, Salud y Medio Ambiente (RENSMA), Universidad de Huelva, 21071 Huelva, Spain; (R.C.); (R.J.); (T.G.); (J.V.)
- Departamento de Sociología, Trabajo Social y Salud Pública, Universidad de Huelva, 21071 Huelva, Spain
| | - Diane S. Rohlman
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, Portland, OR 97239, USA;
| | - Rocío Jara
- Centro de Investigación en Recursos Naturales, Salud y Medio Ambiente (RENSMA), Universidad de Huelva, 21071 Huelva, Spain; (R.C.); (R.J.); (T.G.); (J.V.)
| | - Tamara García
- Centro de Investigación en Recursos Naturales, Salud y Medio Ambiente (RENSMA), Universidad de Huelva, 21071 Huelva, Spain; (R.C.); (R.J.); (T.G.); (J.V.)
| | - Jesús Viñas
- Centro de Investigación en Recursos Naturales, Salud y Medio Ambiente (RENSMA), Universidad de Huelva, 21071 Huelva, Spain; (R.C.); (R.J.); (T.G.); (J.V.)
| | - José A. Lorca
- Departamento de Psicología Clínica, Experimental y Social, Universidad de Huelva, 21071 Huelva, Spain;
| | - Manuel Contreras Llanes
- Centro de Investigación en Recursos Naturales, Salud y Medio Ambiente (RENSMA), Universidad de Huelva, 21071 Huelva, Spain; (R.C.); (R.J.); (T.G.); (J.V.)
- Departamento de Sociología, Trabajo Social y Salud Pública, Universidad de Huelva, 21071 Huelva, Spain
- Correspondence: (M.C.L.); (J.A.); Tel.: +34-959-219-892 (M.C.L.); +34-959-219-890 (J.A.)
| | - Juan Alguacil
- Centro de Investigación en Recursos Naturales, Salud y Medio Ambiente (RENSMA), Universidad de Huelva, 21071 Huelva, Spain; (R.C.); (R.J.); (T.G.); (J.V.)
- Departamento de Sociología, Trabajo Social y Salud Pública, Universidad de Huelva, 21071 Huelva, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Correspondence: (M.C.L.); (J.A.); Tel.: +34-959-219-892 (M.C.L.); +34-959-219-890 (J.A.)
| |
Collapse
|
42
|
Zhang M, Liu C, Li WD, Xu XD, Cui FP, Chen PP, Deng YL, Miao Y, Luo Q, Zeng JY, Lu TT, Shi T, Zeng Q. Individual and mixtures of metal exposures in associations with biomarkers of oxidative stress and global DNA methylation among pregnant women. CHEMOSPHERE 2022; 293:133662. [PMID: 35063557 DOI: 10.1016/j.chemosphere.2022.133662] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/09/2021] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Prenatal exposure to metals has been linked with adverse pregnancy outcomes. Oxidative stress and epigenetic changes are potential mechanisms of action. OBJECTIVES We aimed to examine the associations of individual and mixtures of metal exposures with oxidative stress and DNA methylation among pregnant women. METHODS We measured a panel of 16 metals and 3 oxidative stress biomarkers including 8-hydroxydeoxyguanosine (8-OHdG), 4-hydroxy-2-nonenal-mercapturic acid (HNE-MA) and 8-isoprostaglandin F2α (8-isoPGF2α) in urine from 113 pregnant women in a Chinese cohort. Biomarkers of global DNA methylation including Alu and long interspersed nucleotide element-1 (LINE-1) in cord blood were measured. Multivariable linear regression and Bayesian kernel machine regression (BKMR) models were separately applied to estimate the associations between individual and mixtures of metal exposures and biomarkers of oxidative stress and global DNA methylation. RESULTS In single-metal analyses, we observed positive associations between 11 metals [arsenic (As), cadmium (Cd), thallium (Tl), barium (Ba), nickel (Ni), vanadium (V), cobalt (Co), zinc (Zn), copper (Cu), selenium (Se) and molybdenum (Mo)] and at least one of oxidative stress biomarkers (all FDR-adjusted P-values < 0.05). In mixture analyses, we found positive overall associations of metal mixtures with 8-OHdG and 8-isoPGF2α, and Se was the most important predictor. There was no evidence on associations of urinary metals as individual chemicals and mixtures with Alu and LINE-1 methylation. CONCLUSION Urinary metals as individual chemicals and mixtures were associated with increased oxidative stress, especially Se.
Collapse
Affiliation(s)
- Min Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Wen-Ding Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Xue-Dan Xu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Fei-Peng Cui
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Pan-Pan Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yan-Ling Deng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yu Miao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qiong Luo
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jia-Yue Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Ting-Ting Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Tian Shi
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
43
|
García-Villarino M, Signes-Pastor AJ, Karagas MR, Riaño-Galán I, Rodríguez-Dehli C, Grimalt JO, Junqué E, Fernández-Somoano A, Tardón A. Exposure to metal mixture and growth indicators at 4-5 years. A study in the INMA-Asturias cohort. ENVIRONMENTAL RESEARCH 2022; 204:112375. [PMID: 34785205 PMCID: PMC8671344 DOI: 10.1016/j.envres.2021.112375] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND Exposure to toxic and non-toxic metals impacts childhood growth and development, but limited data exists on exposure to metal mixtures. Here, we investigated the effects of exposure to individual metals and a mixture of barium, cadmium, cobalt, lead, molybdenum, zinc, and arsenic on growth indicators in children 4-5 years of age. METHODS We used urine metal concentrations as biomarkers of exposure in 328 children enrolled in the Spanish INMA-Asturias cohort. Anthropometric measurements (arm, head, and waist circumferences, standing height, and body mass index) and parental sociodemographic variables were collected through face-to-face interviews by trained study staff. Linear regressions were used to estimate the independent effects and were adjusted for each metal in the mixture. We applied Bayesian kernel machine regression to examine non-linear associations and potential interactions. RESULTS In linear regression, urinary levels of cadmium were associated with reduced arm circumference (βadjusted = -0.44, 95% confidence interval [CI]: -0.73, -0.15), waist circumference (βadjusted = -1.29, 95% CI: -2.10, -0.48), and standing height (βadjusted = -1.09, 95% CI: -1.82, -0.35). Lead and cobalt concentrations were associated with reduced standing height (βadjusted = -0.64, 95% CI: -1.20, -0.07) and smaller head circumference (βadjusted = -0.29, 95% CI: -0.49, -0.09), respectively. However, molybdenum was positively associated with head circumference (βadjusted = 0.22, 95% CI: 0.01, 0.43). BKMR analyses showed strong linear negative associations of cadmium with arm and head circumference and standing height. BKMR analyses also found lead and cobalt in the metal mixture were related to reduce standing height and head circumference, and consistently found molybdenum was related to increased head circumference. CONCLUSION Our findings suggest that exposure to metal mixtures impacts growth indicators in children.
Collapse
Affiliation(s)
- Miguel García-Villarino
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Monforte de Lemos Avenue 3-5, 28029, Madrid, Spain; Unidad de Epidemiología Molecular Del Cáncer, Instituto Universitario de Oncología Del Principado de Asturias (IUOPA) - Departamento de Medicina, Universidad de Oviedo, Julián Clavería Street S/n, 33006, Oviedo, Asturias, Spain; Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Roma Avenue S/n, 33001, Oviedo, Spain
| | - Antonio J Signes-Pastor
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, 1 Medical Center Dr., Lebanon, NH, 03756, USA; Department of Public Health. Universidad Miguel Hernández, Avenida de Alicante KM 87, 03550, Sant Joan D'Alacant, Spain
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, 1 Medical Center Dr., Lebanon, NH, 03756, USA
| | - Isolina Riaño-Galán
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Monforte de Lemos Avenue 3-5, 28029, Madrid, Spain; Servicio de Pediatría, Endocrinología Pediátrica, HUCA, Roma Avenue S/n, 33001, Oviedo, Asturias, Spain
| | | | - Joan O Grimalt
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona Street 18-26, 08034, Barcelona, Cataluña, Spain
| | - Eva Junqué
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona Street 18-26, 08034, Barcelona, Cataluña, Spain
| | - Ana Fernández-Somoano
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Monforte de Lemos Avenue 3-5, 28029, Madrid, Spain; Unidad de Epidemiología Molecular Del Cáncer, Instituto Universitario de Oncología Del Principado de Asturias (IUOPA) - Departamento de Medicina, Universidad de Oviedo, Julián Clavería Street S/n, 33006, Oviedo, Asturias, Spain; Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Roma Avenue S/n, 33001, Oviedo, Spain.
| | - Adonina Tardón
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Monforte de Lemos Avenue 3-5, 28029, Madrid, Spain; Unidad de Epidemiología Molecular Del Cáncer, Instituto Universitario de Oncología Del Principado de Asturias (IUOPA) - Departamento de Medicina, Universidad de Oviedo, Julián Clavería Street S/n, 33006, Oviedo, Asturias, Spain; Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Roma Avenue S/n, 33001, Oviedo, Spain
| |
Collapse
|
44
|
Dubey R, Verma P, Kumar S. Cr (III) genotoxicity and oxidative stress: An occupational health risk for leather tannery workers of South Asian developing countries. Toxicol Ind Health 2022; 38:112-126. [DOI: 10.1177/07482337211055131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In the leather industry, Cr (III) is used as a basic tanning agent. The wastewater discharged from the tannery industry contains a high concentration of chromium. Recent studies indicate the genotoxic effects especially DNA damage and oxidative stress of Cr (III) in tannery workers. Cr (III) interacts with DNA to form DNA cross-links and DNA strand breaks. It also modifies the oxidative DNA base through the Haber–Weiss reaction. The present study is based on an overview of scientific literature and previous observations regarding the effects of tannery chromium effluents on exposed workers and the population in the vicinity. This study strongly suggests for use of a non-toxic substitute of chromium to be used for the tanning process and placement of tannery industries on the outskirts of the city. In South Asian developing countries like India, Pakistan and Bangladesh where the economy is strongly dependent on leather manufacturing industries, there is a need to spread proper information regarding the harmful effects of chromium toxicity to the workforce employed in the tannery and also to the people living in the surrounding area. Workers should be provided with the required safety protections like gloves, aprons, foot/shoe covers, masks, etc. Last but most important on an immediate basis is the installation of the proper efficient waste treatment plant, so that, waste should be treated before moving out of the industry.
Collapse
Affiliation(s)
- Ramji Dubey
- Department of Zoology, University of Lucknow, Lucknow, India
| | - Pragya Verma
- Department of Zoology, University of Lucknow, Lucknow, India
| | - Sudhir Kumar
- Department of Zoology, University of Lucknow, Lucknow, India
| |
Collapse
|
45
|
Malecki KMC, Andersen JK, Geller AM, Harry GJ, Jackson CL, James KA, Miller GW, Ottinger MA. Integrating Environment and Aging Research: Opportunities for Synergy and Acceleration. Front Aging Neurosci 2022; 14:824921. [PMID: 35264945 PMCID: PMC8901047 DOI: 10.3389/fnagi.2022.824921] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/12/2022] [Indexed: 12/25/2022] Open
Abstract
Despite significant overlaps in mission, the fields of environmental health sciences and aging biology are just beginning to intersect. It is increasingly clear that genetics alone does not predict an individual’s neurological aging and sensitivity to disease. Accordingly, aging neuroscience is a growing area of mutual interest within environmental health sciences. The impetus for this review came from a workshop hosted by the National Academies of Sciences, Engineering, and Medicine in June of 2020, which focused on integrating the science of aging and environmental health research. It is critical to bridge disciplines with multidisciplinary collaborations across toxicology, comparative biology, epidemiology to understand the impacts of environmental toxicant exposures and age-related outcomes. This scoping review aims to highlight overlaps and gaps in existing knowledge and identify essential research initiatives. It begins with an overview of aging biology and biomarkers, followed by examples of synergy with environmental health sciences. New areas for synergistic research and policy development are also discussed. Technological advances including next-generation sequencing and other-omics tools now offer new opportunities, including exposomic research, to integrate aging biomarkers into environmental health assessments and bridge disciplinary gaps. This is necessary to advance a more complete mechanistic understanding of how life-time exposures to toxicants and other physical and social stressors alter biological aging. New cumulative risk frameworks in environmental health sciences acknowledge that exposures and other external stressors can accumulate across the life course and the advancement of new biomarkers of exposure and response grounded in aging biology can support increased understanding of population vulnerability. Identifying the role of environmental stressors, broadly defined, on aging biology and neuroscience can similarly advance opportunities for intervention and translational research. Several areas of growing research interest include expanding exposomics and use of multi-omics, the microbiome as a mediator of environmental stressors, toxicant mixtures and neurobiology, and the role of structural and historical marginalization and racism in shaping persistent disparities in population aging and outcomes. Integrated foundational and translational aging biology research in environmental health sciences is needed to improve policy, reduce disparities, and enhance the quality of life for older individuals.
Collapse
Affiliation(s)
- Kristen M. C. Malecki
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- *Correspondence: Kristen M. C. Malecki,
| | | | - Andrew M. Geller
- United States Environmental Protection Agency, Office of Research and Development, Durham, NC, United States
| | - G. Jean Harry
- Division of National Toxicology Program, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Chandra L. Jackson
- Division of Intramural Research, Department of Health and Human Services, Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
- Department of Health and Human Services, National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD, United States
| | - Katherine A. James
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Denver, Denver, CO, United States
| | - Gary W. Miller
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, United States
| | - Mary Ann Ottinger
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| |
Collapse
|
46
|
Tung PW, Burt A, Karagas M, Jackson BP, Punshon T, Lester B, Marsit CJ. Prenatal exposure to metal mixtures and newborn neurobehavior in the Rhode Island Child Health Study. Environ Epidemiol 2022; 6:e194. [PMID: 35169672 PMCID: PMC8835549 DOI: 10.1097/ee9.0000000000000194] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/05/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Prenatal exposure to metals can affect the developing fetus and negatively impact neurobehavior. The associations between individual metals and neurodevelopment have been examined, but little work has explored the potentially detrimental neurodevelopmental outcomes associated with the combined impact of coexisting metals. The objective of this study is to evaluate prenatal metal exposure mixtures in the placenta to elucidate the link between their combined effects on newborn neurobehavior. METHOD This study included 192 infants with available placental metal and NICU Network Neurobehavioral Scale data at 24 hours-72 hours age. Eight essential and nonessential metals (cadmium, cobalt, copper, iron, manganese, molybdenum, selenium, zinc) detected in more than 80% of samples were tested for associations with atypical neurobehavior indicated by NICU Network Neurobehavioral Scale using logistic regression and in a quantile g-computation analysis to evaluate the joint association between placental metal mixture and neurobehavioral profiles. RESULTS Individually, a doubling of placental cadmium concentrations was associated with an increased likelihood of being in the atypical neurobehavioral profile (OR = 2.39; 95% CI = 1.05 to 5.71). In the mixture analysis, joint effects of a quartile increase in exposure to all metals was associated with 3-fold increased odds of newborns being assigned to the atypical profile (OR = 3.23; 95% CI = 0.92 to 11.36), with cadmium having the largest weight in the mixture effect. CONCLUSIONS Prenatal exposure to relatively low levels of a mixture of placental metals was associated with adverse newborn neurobehavior. Examining prenatal metal exposures as a mixture is important for understanding the harmful effects of concomitant exposures in the vulnerable populations.
Collapse
Affiliation(s)
- Pei Wen Tung
- Gangarosa Department of Environmental Health, Emory University, Atlanta, GA
| | - Amber Burt
- Gangarosa Department of Environmental Health, Emory University, Atlanta, GA
| | - Margaret Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | | | - Tracy Punshon
- Department of Biological Sciences, Dartmouth College, Hanover, NH
| | - Barry Lester
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, Providence, RI
- The Brown Center of the Study of Children at Risk, Brown University, Providence, RI
| | - Carmen J. Marsit
- Gangarosa Department of Environmental Health, Emory University, Atlanta, GA
| |
Collapse
|
47
|
Liu J, Ruan F, Cao S, Li Y, Xu S, Xia W. Associations between prenatal multiple metal exposure and preterm birth: Comparison of four statistical models. CHEMOSPHERE 2022; 289:133015. [PMID: 34822868 DOI: 10.1016/j.chemosphere.2021.133015] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/19/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Exposure to some heavy metals has been demonstrated to be related to the risk of preterm birth (PTB). However, the effects of multi-metal mixture are seldom assessed. Thus, we aimed to investigate the associations of maternal exposure to metal mixture with PTB, and to identify the main contributors to PTB from the mixture. METHODS The population in the nested case-control study was from a prospective cohort enrolled in Wuhan, China between 2012 and 2014. Eighteen metals were measured in maternal urine collected before delivery. Logistic regression, elastic net regularization (ENET), weighted quantile sum regression (WQSR), and Bayesian kernel machine regression (BKMR) were used to estimate the overall effect and identify important mixture components that drive the associations with PTB. RESULTS Logistic regression found naturally log-transformed concentrations of 13 metals were positively associated with PTB after adjusting for the covariates, and only V, Zn, and Cr remained the significantly positive associations when additionally adjusting for the 13 metals together. ENET identified 11 important metals for PTB, and V (β = 0.23) had the strongest association. WQSR determined the positive combined effect of metal mixture on PTB (OR: 1.44, 95%CI: 1.32, 1.57), and selected Cr and V (weighted 0.41 and 0.32, respectively) as the most weighted metals. BKMR analysis confirmed the overall mixture was positively associated with PTB, and the independent effect of V was the most significant. Besides, BKMR showed the non-linear relationships of V and Cu with PTB, and the potential interaction between Zn and Cu. CONCLUSION Applying different statistical models, the study found that exposure to the metal mixture was associated with a higher risk of PTB, and V was identified as the most important risk factor among co-exposed metals for PTB.
Collapse
Affiliation(s)
- Juan Liu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, PR China.
| | - Fengyu Ruan
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, PR China.
| | - Shuting Cao
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, PR China.
| | - Yuanyuan Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, PR China.
| | - Shunqing Xu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, PR China.
| | - Wei Xia
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, PR China.
| |
Collapse
|
48
|
Zeng H, Fang B, Hao K, Wang H, Zhang L, Wang M, Hao Y, Wang X, Wang Q, Yang W, Rong S. Combined effects of exposure to polycyclic aromatic hydrocarbons and metals on oxidative stress among healthy adults in Caofeidian, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113168. [PMID: 34999341 DOI: 10.1016/j.ecoenv.2022.113168] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Exposure to polycyclic aromatic hydrocarbons (PAHs) and metals is associated with many adverse effects on human health, accompanied by oxidative stress. This study aimed to investigate the effects of co-exposure to PAHs and metals on oxidative stress in healthy adults. A preliminary longitudinal panel study was conducted between 2017 and 2018 in 45 healthy college students in Caofeidian, China. Six urinary monohydroxylated-PAHs (OH-PAHs), ten metals, 8-hydroxydeoxyguanosine (8-OHdG), and 8-iso-prostaglandin-F2α (8-iso-PGF2α) were measured. Linear mixed effects (LME) models and Bayesian kernel machine regression (BKMR) models were used to explore the associations of urinary OH-PAHs and metals with 8-OHdG and 8-iso-PGF2α. LME models showed that most urinary OH-PAHs and metals were positively associated with 8-OHdG and 8-iso-PGF2α. For example, a one-unit increase in the ln-transformed level of 1-hydroxypyrene (1-OHPyr) and vanadium (V) was associated with an increase of 143.8% (95% CI: 105.7 - 188.9%) and 105.8% (95% CI: 79.2-136.4%) in 8-OHdG; 8-iso-PGF2α increased by 118.9% (95% CI: 99.2-140.5%) and 83.9% (95% CI: 67.2-102.2%) with a one-unit increase in the ln-transformed level of 3-hydroxyphenanthrene (3-OHPhe) and aluminum (Al). BKMR models indicated the overall positive associations of the mixture of six OH-PAHs, ten metals, or six OH-PAHs and ten metals with 8-OHdG and 8-iso-PGF2α. Urinary 1-OHPyr and V were identified as the major contributors to the increased urinary 8-OHdG levels, while urinary 3-OHPhe and Al were the most vital contributors to the increased urinary 8-iso-PGF2α levels. The results revealed the longitudinal dose-response relationships of urinary OH-PAHs and metals with oxidative stress among healthy adults in Caofeidian; this finding serves as an evidence regarding the early health hazard caused by exposure to PAHs and metals and has implications for the environmental management of PAH and metal emissions in this area.
Collapse
Affiliation(s)
- Hao Zeng
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian, Tangshan 063210, Hebei, China
| | - Bo Fang
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian, Tangshan 063210, Hebei, China; Affiliated Huaihe Hospital, Henan University, 115 Ximen Street, Kaifeng 475000, Henan, China
| | - Kelu Hao
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian, Tangshan 063210, Hebei, China
| | - Haotian Wang
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian, Tangshan 063210, Hebei, China
| | - Lei Zhang
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian, Tangshan 063210, Hebei, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Manman Wang
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian, Tangshan 063210, Hebei, China
| | - Yulan Hao
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian, Tangshan 063210, Hebei, China
| | - Xuesheng Wang
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian, Tangshan 063210, Hebei, China
| | - Qian Wang
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian, Tangshan 063210, Hebei, China.
| | - Wenqi Yang
- Affiliated Hospital, North China University of Science and Technology, Tangshan 063000, China.
| | - Suying Rong
- Department of Clinical Medicine, Tangshan Vocational and Technical College, No. 120 Xinhua West Road, Tangshan 063000, China
| |
Collapse
|
49
|
Xu R, Meng X, Pang Y, An H, Wang B, Zhang L, Ye R, Ren A, Li Z, Gong J. Associations of maternal exposure to 41 metals/metalloids during early pregnancy with the risk of spontaneous preterm birth: Does oxidative stress or DNA methylation play a crucial role? ENVIRONMENT INTERNATIONAL 2022; 158:106966. [PMID: 34735952 DOI: 10.1016/j.envint.2021.106966] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Few studies have explored the effects of multiple types of metals/metalloids on spontaneous preterm birth (SPB). A nested case-control study was conducted in Shanxi Province to investigate the associations between maternal exposure to 41 metals/metalloids during early pregnancy and the risk of SPB, and to clarify the underlying mechanisms of oxidative stress and DNA methylation. METHODS A total of 74 controls with full-term delivery and 74 cases with SPB were included in the nested case-control study. The metals/metalloids in serum and the DNA adducts in peripheral blood cell DNA were determined using ICP-MS and UPLC-QqQ-MS/MS, respectively. Unconditional logistic regression models were employed to estimate the associations of the risk of SPB with the metal concentrations, as well as with the levels of oxidative stress/DNA methylation. In addition, linear regression models were used to investigate the associations between the metal/metalloid concentrations and the levels of oxidative stress/DNA methylation. RESULTS After adjusting for potential confounders, the concentrations of Mn, Fe, Cu, Nd, Hg, and Pb in maternal serum during early pregnancy were positively associated with the risk of SPB. Compared with the lowest levels (Quartile 1) of Mn, Fe, Cu, Nd, Hg, and Pb, the odds ratios of SPB increased to 5.21 (95% CI: 1.63, 16.68), 3.47 (95% CI: 1.07, 11.21), 16.23 (95% CI: 3.86, 68.18), 10.54 (95% CI: 2.79, 39.86), 5.88 (95% CI: 1.72, 20.11), and 4.09 (95% CI: 1.31, 12.77) in the highest levels (Quartile 4), respectively. A significant increase in 8-OHdG was associated with the increased exposure to Fe, Pr, Eu, Er, and Lu. The levels of 5-MdC, 5-HmdC, and N6-MdA-the indicators of DNA methylation-were associated with exposure to multiple metals/metalloids. However, no significant associations were observed between the levels of oxidative stress or DNA methylation and the risk of SPB. CONCLUSIONS Exposure to multiple types of metals/metalloids during early pregnancy is positively associated with the risk of SPB. Oxidative stress and DNA methylation are significantly associated with exposure to multiple metals/metalloids. Systemic oxidative stress and DNA methylation have not been proven to be the mediating mechanisms of metals increasing the risk of SPB.
Collapse
Affiliation(s)
- Ruiwei Xu
- SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Center for Environment and Health, Peking University, Beijing 100871, China
| | - Xin Meng
- SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Center for Environment and Health, Peking University, Beijing 100871, China
| | - Yiming Pang
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Hang An
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Bin Wang
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Le Zhang
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Rongwei Ye
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Aiguo Ren
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Zhiwen Li
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China.
| | - Jicheng Gong
- SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Center for Environment and Health, Peking University, Beijing 100871, China.
| |
Collapse
|
50
|
Grau-Perez M, Caballero-Mateos MJ, Domingo-Relloso A, Navas-Acien A, Gomez-Ariza JL, Garcia-Barrera T, Leon-Latre M, Soriano-Gil Z, Jarauta E, Cenarro A, Moreno-Franco B, Laclaustra M, Civeira F, Casasnovas JA, Guallar E, Tellez-Plaza M. Toxic Metals and Subclinical Atherosclerosis in Carotid, Femoral, and Coronary Vascular Territories: The Aragon Workers Health Study. Arterioscler Thromb Vasc Biol 2021; 42:87-99. [PMID: 34879710 DOI: 10.1161/atvbaha.121.316358] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Studies evaluating the association of metals with subclinical atherosclerosis are mostly limited to carotid arteries. We assessed individual and joint associations of nonessential metals exposure with subclinical atherosclerosis in 3 vascular territories. Approach and Results: One thousand eight hundred seventy-three Aragon Workers Health Study participants had urinary determinations of inorganic arsenic species, barium, cadmium, chromium, antimony, titanium, uranium, vanadium, and tungsten. Plaque presence in carotid and femoral arteries was determined by ultrasound. Coronary Agatston calcium score ≥1 was determined by computed tomography scan. Median arsenic, barium, cadmium, chromium, antimony, titanium, uranium, vanadium, and tungsten levels were 1.83, 1.98, 0.27, 1.18, 0.05, 9.8, 0.03, 0.66, and 0.23 μg/g creatinine, respectively. The adjusted odds ratio (95% CI) for subclinical atherosclerosis presence in at least one territory was 1.25 (1.03-1.51) for arsenic, 1.67 (1.22-2.29) for cadmium, and 1.26 (1.04-1.52) for titanium. These associations were driven by arsenic and cadmium in carotid, cadmium and titanium in femoral, and titanium in coronary territories and mostly remained after additional adjustment for the other relevant metals. Titanium, cadmium, and antimony also showed positive associations with alternative definitions of increased coronary calcium. Bayesian Kernel Machine Regression analysis simultaneously evaluating metal associations suggested an interaction between arsenic and the joint cadmium-titanium exposure. CONCLUSIONS Our results support arsenic and cadmium and identify titanium and potentially antimony as atherosclerosis risk factors. Exposure reduction and mitigation interventions of these metals may decrease cardiovascular risk in individuals without clinical disease.
Collapse
Affiliation(s)
- Maria Grau-Perez
- Area of Cardiometabolic and Renal Risk, Biomedical Research Institute INCLIVA, Valencia, Spain (M.G.-P., M.J.C.-M., M.T.-P.).,Department of Preventive Medicine and Microbiology, Autonomous University of Madrid, Spain (M.G.-P., M.T.-P.).,Department of Statistics and Operational Research, University of Valencia, Spain (M.G.-P., A.D.-R.)
| | - Maria J Caballero-Mateos
- Area of Cardiometabolic and Renal Risk, Biomedical Research Institute INCLIVA, Valencia, Spain (M.G.-P., M.J.C.-M., M.T.-P.)
| | - Arce Domingo-Relloso
- Department of Statistics and Operational Research, University of Valencia, Spain (M.G.-P., A.D.-R.).,Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institutes, Madrid, Spain (A.D.-R., M.T.-P.).,Department of Environmental Health Sciences, Columbia University, New York, NY (A.D.-R., A.N.-A.)
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University, New York, NY (A.D.-R., A.N.-A.)
| | - Jose L Gomez-Ariza
- Research Center on Natural Resources, Health and the Environment, Department of Chemistry, University of Huelva, Spain (J.L.G.-A., T.G.-B.)
| | - Tamara Garcia-Barrera
- Research Center on Natural Resources, Health and the Environment, Department of Chemistry, University of Huelva, Spain (J.L.G.-A., T.G.-B.)
| | - Montse Leon-Latre
- CIBERCV (M.L.-L., E.J., A.C., M.L., F.C., J.A.C.).,Instituto de Investigacion Sanitaria de Aragon (M.L.-L., Z.S.-G., E.J., A.C., B.M.-F., M.L., F.C., J.A.C.)
| | - Zoraida Soriano-Gil
- Instituto de Investigacion Sanitaria de Aragon (M.L.-L., Z.S.-G., E.J., A.C., B.M.-F., M.L., F.C., J.A.C.).,Department of Microbiology, Pediatrics, Radiology, and Public Health, University of Zaragoza, Spain (Z.S.-G., B.M.-F.)
| | - Estibaliz Jarauta
- CIBERCV (M.L.-L., E.J., A.C., M.L., F.C., J.A.C.).,Instituto de Investigacion Sanitaria de Aragon (M.L.-L., Z.S.-G., E.J., A.C., B.M.-F., M.L., F.C., J.A.C.).,Hospital Universitario Miguel Servet, Zaragoza, Spain, and University of Zaragoza, Spain (E.J., B.M.-F., M.L., F.C., J.A.C.)
| | - Ana Cenarro
- CIBERCV (M.L.-L., E.J., A.C., M.L., F.C., J.A.C.).,Instituto de Investigacion Sanitaria de Aragon (M.L.-L., Z.S.-G., E.J., A.C., B.M.-F., M.L., F.C., J.A.C.).,Instituto Aragonés de Ciencias de la Salud (A.C.)
| | - Belen Moreno-Franco
- Instituto de Investigacion Sanitaria de Aragon (M.L.-L., Z.S.-G., E.J., A.C., B.M.-F., M.L., F.C., J.A.C.).,Hospital Universitario Miguel Servet, Zaragoza, Spain, and University of Zaragoza, Spain (E.J., B.M.-F., M.L., F.C., J.A.C.).,Department of Microbiology, Pediatrics, Radiology, and Public Health, University of Zaragoza, Spain (Z.S.-G., B.M.-F.)
| | - Martin Laclaustra
- CIBERCV (M.L.-L., E.J., A.C., M.L., F.C., J.A.C.).,Instituto de Investigacion Sanitaria de Aragon (M.L.-L., Z.S.-G., E.J., A.C., B.M.-F., M.L., F.C., J.A.C.).,Hospital Universitario Miguel Servet, Zaragoza, Spain, and University of Zaragoza, Spain (E.J., B.M.-F., M.L., F.C., J.A.C.)
| | - Fernando Civeira
- CIBERCV (M.L.-L., E.J., A.C., M.L., F.C., J.A.C.).,Instituto de Investigacion Sanitaria de Aragon (M.L.-L., Z.S.-G., E.J., A.C., B.M.-F., M.L., F.C., J.A.C.).,Hospital Universitario Miguel Servet, Zaragoza, Spain, and University of Zaragoza, Spain (E.J., B.M.-F., M.L., F.C., J.A.C.)
| | - Jose A Casasnovas
- CIBERCV (M.L.-L., E.J., A.C., M.L., F.C., J.A.C.).,Instituto de Investigacion Sanitaria de Aragon (M.L.-L., Z.S.-G., E.J., A.C., B.M.-F., M.L., F.C., J.A.C.).,Hospital Universitario Miguel Servet, Zaragoza, Spain, and University of Zaragoza, Spain (E.J., B.M.-F., M.L., F.C., J.A.C.)
| | - Eliseo Guallar
- Departments of Epidemiology (E.G.), Johns Hopkins University, Baltimore, MD.,Medicine (E.G.), Johns Hopkins University, Baltimore, MD
| | - Maria Tellez-Plaza
- Area of Cardiometabolic and Renal Risk, Biomedical Research Institute INCLIVA, Valencia, Spain (M.G.-P., M.J.C.-M., M.T.-P.).,Department of Preventive Medicine and Microbiology, Autonomous University of Madrid, Spain (M.G.-P., M.T.-P.).,Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institutes, Madrid, Spain (A.D.-R., M.T.-P.).,Environmental Health and Engineering (M.T.-P.), Johns Hopkins University, Baltimore, MD
| |
Collapse
|