1
|
Suman TY, Kwak IS. Current understanding of human bioaccumulation patterns and health effects of exposure to perfluorooctane sulfonate (PFOS). JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137249. [PMID: 39842114 DOI: 10.1016/j.jhazmat.2025.137249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/24/2024] [Accepted: 01/15/2025] [Indexed: 01/24/2025]
Abstract
Perfluorooctane sulfonate (PFOS) is a persistent organic pollutant of global concern due to its environmental presence,bioaccumulative potential and toxicological impacts. This review synthesizes current knowledge regarding PFOS exposure, bioaccumulation patterns and adverse health outcomes in human population. Analysis of worldwide biomonitoring data, and epidemiological studies reveals PFOS systemic effects, including immunological dysfunction (decreased vaccine response), developmental toxicity (reduced birth weight), hepatic metabolic disruption, potential carcinogenogenicity, and reproductive abnormalities. At the molecular level, PFOS induces toxicity through multiple pathways, including PI3K/AKT/mTOR pathway inhibition, PPARα activation, NF-κB signaling modulation, and oxidative stress induction. Recent advances in analytical methodologies have enhanced our understanding of PFOS distribution and fate, while evolving egulatory frameworks attempts to address its risk. This review identifies critical research gaps and emphasized the need for coordinated multidisciplinary approaches to address this persistent environmental contaminant.
Collapse
Affiliation(s)
| | - Ihn-Sil Kwak
- Fisheries Science Institute, Chonnam National University, Yeosu 59626, South Korea; Department of Ocean Integrated Science, Chonnam National University, Yeosu 59626, South Korea.
| |
Collapse
|
2
|
Cai D, Li SP, Guo YT, Chou WC, Mohammed Z, Qiu RL, Hu G, Qi J, Ren M, Xiang M, Li Z, Zhou Y, Huang J, Kong M, Xie Y, Tang C, Lin LZ, Yu Y, Dong GH, Zeng XW. Effects of Serum Insulin and Insulin-Like Growth Factor 1 Levels on the Association between Fetal Growth and Per- and Polyfluoroalkyl Substance Exposure Based on a Nested Case-Control Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:3841-3852. [PMID: 39969242 DOI: 10.1021/acs.est.4c08752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Insulin and insulin-like growth factor 1 (IGF1) play key roles in fetal growth and development. However, their roles in the association between fetal growth and perfluoroalkyl and polyfluoroalkyl substance (PFAS) exposure remain unclear. In this study, the levels of 34 PFAS, IGF1, and insulin were measured in 258 paired mother-infant serum samples collected from a nested case-control study in Maoming city. Isomeric perfluorooctanesulfonate (PFOS) exposure significantly increased the preterm birth or low birth weight (PTB/LBW) risk, and the odds ratios for ∑2m, 3+4+5m, iso, and branched PFOS were 1.50, 1.72, 1.61, and 1.77, respectively. Cord IGF1 could explain 15.4, 13.4, 9.7, and 11.9% of these associations, respectively. Additionally, cord IGF1 mediated 12.3 to 44.6% of the associations between PFOS isomers, perfluorooctanoate acid (PFOA), and its alternative (perfluorobutanoic acid: PFBA) with a fetal growth index. For instance, cord IGF1 contributed 42.0% (95% Cl: 0.8, 140.0%), 42.7% (95% Cl: 13.0, 110.0%), and 43.0% (95% Cl: 8.4, 130.0%) to the associations between z-scores of birth weight and branched PFOS, PFOA, and PFBA, respectively. These findings suggest that cord IGF1 plays a mediating role in the associations between PFAS exposure and fetal growth.
Collapse
Affiliation(s)
- Dan Cai
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Shen-Pan Li
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yu-Ting Guo
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wei-Chun Chou
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Zeeshan Mohammed
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas 7760, United States
| | - Rong-Liang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Guocheng Hu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Jianying Qi
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Mingzhong Ren
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Mingdeng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Zhenchi Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yang Zhou
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Jinbo Huang
- Maoming Maternal and Child Health Hospital, Maoming 525000, China
| | - Minli Kong
- Maoming Maternal and Child Health Hospital, Maoming 525000, China
| | - Yanqi Xie
- Maoming Maternal and Child Health Hospital, Maoming 525000, China
| | - Cuilan Tang
- Maoming Maternal and Child Health Hospital, Maoming 525000, China
| | - Li-Zi Lin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Guang-Hui Dong
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Wen Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
3
|
Zhang L, Du J, Guo Q, Xu X, Li H, Zhong N, Zhang J, Li G, Shao B. Serum levels of per- and poly-fluoroalkyl substances among middle-aged and elderly populations in Beijing and their association with dyslipidemia. Food Chem Toxicol 2024; 193:115066. [PMID: 39433243 DOI: 10.1016/j.fct.2024.115066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
Per- and poly-fluoroalkyl substances (PFAS), ubiquitous environmental pollutants, have been reported as possible contributors to human dyslipidemia. However, evidence for emerging PFAS remains scarce. Using a nested case-control study (n = 357) in a middle-aged and elderly population from Beijing, we investigated the serum concentrations of eight traditional and fourteen emerging PFAS and their potential links with dyslipidemia. Perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) were found to be the dominant PFAS. Serum levels of perfluorohexanesulfonic acid (PFHxS) and 6:2 chlorinated polyfluoroalkyl ether sulfonate (6:2 Cl-PFESA/F53B) were associated with higher risk of elevated low-density lipoprotein cholesterol (LDL-C) with odds ratios (OR) of 3.88 (95% CI: 1.44-10.51) and 2.71 (95% CI: 1.11-6.57), respectively. These compounds also positively correlated with high total cholesterol (TC). PFOA, perfluorodecanoic acid (PFDA), and 6:2 Fluorotelomer phosphate monoester (6:2 PAP) were linked to increased risk of high triglycerides (TG) with OR of 2.79 (95% CI: 1.30-6.01), 2.41 (95% CI: 1.27-4.60), and 1.53 (95% CI: 1.05-2.22), respectively. Conversely, perfluorooctane sulfonamidoacetic acid (FOSAA) was negatively associated with high TG levels. These findings indicate that both traditional and emerging PFAS may induce dyslipidemia, emphasizing the potentially serious impact of emerging PFAS on human health.
Collapse
Affiliation(s)
- Lan Zhang
- School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Jing Du
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Qiaozhen Guo
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Xin Xu
- School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Hong Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Nannan Zhong
- Department of Medical Science and Technology, Guiyang Healthcare Vocational University, Guiyang, China.
| | - Jing Zhang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Gang Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China.
| | - Bing Shao
- School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China; Food Laboratory of Zhongyuan, Luohe, 450007, China.
| |
Collapse
|
4
|
Lin CY, Lee HL, Wang C, Sung FC, Su TC. Examining the impact of polyfluoroalkyl substance exposure on erythrocyte profiles and its related nutrients: Insights from a prospective study on young Taiwanese. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124576. [PMID: 39032552 DOI: 10.1016/j.envpol.2024.124576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) constitute a group of synthetic chemicals extensively utilized across various commonplace products. PFAS are known to have various toxic effects on human health. The relationship between PFAS exposure and erythrocytes has been a subject of interest in epidemiological research, but so far, only limited cross-sectional studies have investigated. Additionally, the role of erythrocyte related nutrition indicators on PFAS-induced changes in erythrograms has not been explored. To fill these knowledge gaps, we launched a longitudinal study over a decade, tracking 502 adolescents and young adults aged 12 to 30 from the YOung TAiwanese Cohort (YOTA). Our analysis encompassed 11 types of plasma PFAS, as well as erythrograms and serum levels of ferritin, transferrin saturation, vitamin B12, and folate. Our examination unveiled positive associations between specific average levels of PFAS compounds, including linear perfluorooctanoic acid (PFOA), branched perfluorooctane sulfonic acid (PFOS), perfluorononanoic acid (PFNA), and perfluorohexane sulfonic acid (PFHxS), and transferrin saturation. Furthermore, linear PFOA and both linear and branched PFOS were negatively correlated with vitamin B12 levels. Specifically, we observed that the average linear PFOA demonstrated positive correlations with mean corpuscular volume (MCV) and mean corpuscular hemoglobin (MCH), while average PFNA also exhibited positive associations with hemoglobin (Hb) and hematocrit (Hct) in a multiple linear regression model. Subsequent analysis revealed noteworthy interactions between vitamin B12 and PFNA, as well as folate and PFNA, in the context of their impact on Hb, Hct, and PFNA relationships. Additionally, an interaction with transferrin saturation was identified in the correlation between Hct and PFNA. These findings suggest a plausible link between PFAS exposure and erythrograms among young populations, underscoring the potential involvement of iron status, vitamin B12, and folate in this association. Further studies are imperative to elucidate the precise effects of PFAS on erythrocyte in human subjects.
Collapse
Affiliation(s)
- Chien-Yu Lin
- Department of Internal Medicine, En Chu Kong Hospital, New Taipei City 237, Taiwan; School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan; Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan
| | - Hui-Ling Lee
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Chikang Wang
- Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan
| | - Fung-Chang Sung
- Department of Health Services Administration, China Medical University College of Public Health, Taichung 404, Taiwan; Department of Food Nutrition and Health Biotechnology, Asia University, Taichung 413, Taiwan
| | - Ta-Chen Su
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, 100, Taiwan; School of Medicine, College of Medicine, National Cheng-Kung University, Tainan 700, Taiwan.
| |
Collapse
|
5
|
Garmo LC, Herroon MK, Mecca S, Wilson A, Allen DR, Agarwal M, Kim S, Petriello MC, Podgorski I. The long-chain polyfluorinated alkyl substance perfluorohexane sulfonate (PFHxS) promotes bone marrow adipogenesis. Toxicol Appl Pharmacol 2024; 491:117047. [PMID: 39111555 DOI: 10.1016/j.taap.2024.117047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/11/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) bioaccumulate in different organ systems, including bone. While existing research highlights the adverse impact of PFAS on bone density, a critical gap remains in understanding the specific effects on the bone marrow microenvironment, especially the bone marrow adipose tissue (BMAT). Changes in BMAT have been linked to various health consequences, such as the development of osteoporosis and the progression of metastatic tumors in bone. Studies presented herein demonstrate that exposure to a mixture of five environmentally relevant PFAS compounds promotes marrow adipogenesis in vitro and in vivo. We show that among the components of the mixture, PFHxS, an alternative to PFOS, has the highest propensity to accumulate in bone and effectively promote marrow adipogenesis. Utilizing RNAseq approaches, we identified the peroxisome proliferator-activated receptor (PPAR) signaling as a top pathway modulated by PFHxS exposure. Furthermore, we provide results suggesting the activation and involvement of PPAR-gamma (PPARγ) in PFHxS-mediated bone marrow adipogenesis, especially in combination with high-fat diet. In conclusion, our findings demonstrate the potential impact of elevated PFHxS levels, particularly in occupational settings, on bone health, and specifically bone marrow adiposity. This study contributes new insights into the health risks of PFHxS exposure, urging further research on the relationship between environmental factors, diet, and adipose tissue dynamics.
Collapse
Affiliation(s)
- Laimar C Garmo
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Mackenzie K Herroon
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Shane Mecca
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Alexis Wilson
- Department of Oncology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, United States of America
| | - David R Allen
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Manisha Agarwal
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Seongho Kim
- Department of Oncology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, United States of America
| | - Michael C Petriello
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America; Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States of America
| | - Izabela Podgorski
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America; Department of Oncology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, United States of America.
| |
Collapse
|
6
|
Wu J, Zhang X, Wang Q, Ma N, Zheng F, Chen K, Niu W. Perfluoroalkyl substances and metabolic syndrome: A cross-sectional study using data from the US national health and nutrition examination survey. Heliyon 2024; 10:e36894. [PMID: 39281531 PMCID: PMC11401229 DOI: 10.1016/j.heliyon.2024.e36894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 07/31/2024] [Accepted: 08/23/2024] [Indexed: 09/18/2024] Open
Abstract
Background Epidemiological studies linking metabolic syndrome (MetS) and exposure to perfluoroalkyl substances (PFASs) are limited, and the observations gleaned thus far are inconclusive. The study was performed to explore the association of serum PFASs both singly and in a mixed manner with MetS, and meanwhile to examine whether this association was mediated by serum albumin in a US national population. Methods Total 8108 participants from the National Health and Nutrition Examination Survey, 2007-2018 were included. Four PFASs - including perfluorohexane sulfonic acid (PFHxS), perfluorononanoic acid (PFNA), perfluoromethylheptane sulfonic acid (PFOS), and perfluorooctanoic acid (PFOA), were selected. Weighted quantile sum regression was used to evaluate mixed PFAS exposure and MetS. Multivariable logistic regression models were used to calculate odd ratio (OR) and 95 % confidence interval (95 % CI). Mediating analyses were used to evaluate the mediating effects of albumin. Results Comparing the highest with lowest quartile yielded a multivariable-adjusted OR (95 % CI) of 1.40 (1.14-1.72) for PFHxS, 1.36 (1.09-1.70) for PFNA, 1.26 (1.00-1.58) for PFOA, and 1.50 (1.19-1.88) for PFOS when associating MetS. Per unit increment in ln-transformed PFHxS, PFNA, PFOA, and PFOS concentrations was significantly associated with 16 %, 17 %, 13 %, and 15 % increased risk of MetS, respectively. When stratified by sex, the significant association between four PFASs and MetS was only noted in females. Mixed PFAS exposure was inversely associated with MetS, and 8.1 % of this association was mediated by serum albumin (P < 0.001). Conclusions Our findings indicate a significant and independent association of serum PFASs with MetS, and importantly this association was dose-dependent, sex-specific, and possibly mediated by serum albumin.
Collapse
Affiliation(s)
- Jing Wu
- Center for Evidence-Based Medicine, Capital Institute of Pediatrics, Beijing, China
| | - Xiaoqian Zhang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Qiong Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Ning Ma
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Fangjieyi Zheng
- Center for Evidence-Based Medicine, Capital Institute of Pediatrics, Beijing, China
| | - Kening Chen
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Wenquan Niu
- Center for Evidence-Based Medicine, Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
7
|
Zhang YT, Zeeshan M, Fan YY, Tan WH, Zhao K, Liang LX, Huang JW, Zhou JX, Guo LH, Lin LZ, Liu RQ, Zeng XW, Dong GH, Chu C. Isomer of per- and polyfluoroalkyl substances and red blood cell indices in adults: The Isomers of C8 Health Project in China. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2024; 79:153-165. [PMID: 39219509 DOI: 10.1080/19338244.2024.2396927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
This study aimed to explore the isomer-specific, sex-specific, and joint associations of PFAS and red blood cell indices. We used data of 1,238 adults from the Isomers of C8 Health Project in China. Associations of PFAS isomers and red blood cell indices were explored using multiple linear regression models, Bayesian Kernel Machine Regression models and subgroup analysis across sex. We found that serum concentration of linear (n-) and branched (Br-) isomers of perfluorooctane sulfonate (PFOS) and perfluorohexanesulfonic acid (PFHxS) were significantly associated with red blood cell indices in single-pollutant models, with stronger associations observed for n-PFHxS than Br-PFHxS, in women than in men. For instance, the estimated percentage change in hemoglobin concentration for n-PFHxS (3.65%; 95% CI: 2.95%, 4.34%) was larger than that for Br-PFHxS (0.96%; 95% CI: 0.52%, 1.40%). The estimated percentage change in red blood cell count for n-PFHxS in women (2.55%; 95% CI: 1.81%, 3.28%) was significantly higher than that in men (0.12%; 95% CI: -1.04%, 1.29%) (Pinter < 0.001). Similarly, sex-specific positive association of PFAS mixture and outcomes was observed. Therefore, the structure, susceptive population, and joint effect of PFAS isomers should be taken into consideration when evaluating the health risk of chemicals.
Collapse
Affiliation(s)
- Yun-Ting Zhang
- Department of Reproductive Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Mohammed Zeeshan
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou, China
| | - Yuan-Yuan Fan
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou, China
| | - Wei-Hong Tan
- Department of Reproductive Medicine and Genetics Center, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Kun Zhao
- Department of Reproductive Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Li-Xia Liang
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou, China
| | - Jing-Wen Huang
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou, China
| | - Jia-Xin Zhou
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou, China
| | - Li-Hao Guo
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou, China
| | - Li-Zi Lin
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou, China
| | - Ru-Qing Liu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou, China
| | - Xiao-Wen Zeng
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou, China
| | - Guang-Hui Dong
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou, China
| | - Chu Chu
- Department of Reproductive Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
8
|
Bline AP, Ellis LB, Pelch KE, Lam J, Sen S, Zlatnik M, Varshavsky J. The effect of per and polyfluoroalkyl substance (PFAS) exposure on gestational diabetes mellitus and its subclinical risk factors: A systematic review and meta-analysis protocol. ENVIRONMENT INTERNATIONAL 2024; 188:108711. [PMID: 38754246 DOI: 10.1016/j.envint.2024.108711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/30/2024] [Accepted: 04/27/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Multiple lines of evidence suggest that exposure to per- and polyfluoroalkyl substances (PFAS) may alter glucose homeostasis, particularly during pregnancy, and may affect risk for developing gestational diabetes mellitus (GDM). While previous systematic reviews have been conducted on this topic, they did not assess internal validity of the included studies and their search strategies were narrowly focused. OBJECTIVE The objective of this study is to assess the effect of higher PFAS exposure (defined by individual compounds or mixtures measured before or during pregnancy) on GDM and subclinical measures of impaired glucose homeostasis (measured during pregnancy) compared to lower PFAS exposure in pregnant. METHODS We developed our systematic review protocol in accordance with the Navigation Guide. Peer-reviewed journal and grey literature searches were piloted in to identify relevant studies and refine our search terms and strategy. We also piloted the study screening criteria and data extraction form in DistillerSR, and refined our protocol accordingly. The risk of bias assessment protocol was adapted from Navigation Guide guidance and will be piloted and performed in DistillerSR. Pending the identification of comparable studies, quantitative meta-analyses will be performed where possible. Study results that cannot be quantitatively synthesized will be included in a narrative synthesis. The quality and strength of the body of evidence will be evaluated using Navigation Guide methodology, which is informed by guidance from the Cochrane Collaboration and Grading of Recommendations Assessment, Development and Evaluation (GRADE). We also made refinements to the quality of evidence considerations based on guidance from the National Institute of Environmental Health Sciences (NIEHS) Office of Health Assessment and Translation (OHAT). FUNDING This work was supported by the Systematizing Data on Per- and Polyfluoroalkyl Substances and Health Northeastern University TIER 1 Award.
Collapse
Affiliation(s)
- Abigail P Bline
- Social Science Environmental Health Research Institute, Northeastern University, Boston, MA, United States; Silent Spring Institute, Newton, MA, United States.
| | - Lauren B Ellis
- Social Science Environmental Health Research Institute, Northeastern University, Boston, MA, United States; Department of Health Sciences, Northeastern University, Boston, MA, United States.
| | - Katherine E Pelch
- Natural Resources Defense Council, San Francisco, CA, United States.
| | - Juleen Lam
- Department of Public Health, California State University, East Bay, Hayward, CA, United States.
| | - Saunak Sen
- College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States.
| | - Marya Zlatnik
- Department of Obstetrics, Gynecology and Reproductive Sciences, Program on Reproductive Health and the Environment, University of California San Francisco, San Francisco, CA, United States.
| | - Julia Varshavsky
- Social Science Environmental Health Research Institute, Northeastern University, Boston, MA, United States; Department of Health Sciences, Northeastern University, Boston, MA, United States; Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, United States.
| |
Collapse
|
9
|
Schlezinger JJ, Gokce N. Perfluoroalkyl/Polyfluoroalkyl Substances: Links to Cardiovascular Disease Risk. Circ Res 2024; 134:1136-1159. [PMID: 38662859 PMCID: PMC11047059 DOI: 10.1161/circresaha.124.323697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Conservative estimates by the World Health Organization suggest that at least a quarter of global cardiovascular diseases are attributable to environmental exposures. Associations between air pollution and cardiovascular risk have garnered the most headlines and are strong, but less attention has been paid to other omnipresent toxicants in our ecosystem. Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are man-made chemicals that are extensively used in industrial and consumer products worldwide and in aqueous film-forming foam utilized in firefighting. As such, our exposure to PFAS is essentially ubiquitous. Given the long half-lives of these degradation-resistant chemicals, virtually, all people are carrying a body burden of PFAS. Health concerns related to PFAS are growing such that the National Academies of Sciences, Engineering and Medicine has recommended standards for clinical follow-up of individuals with high PFAS blood levels, including prioritizing screening for dyslipidemia. The link between PFAS and dyslipidemia has been extensively investigated, and evidence for associations is compelling. However, dyslipidemia is not the only cardiovascular risk factor with which PFAS is associated. Here, we review the epidemiological evidence for links between PFAS of concern identified by the National Academies of Sciences, Engineering and Medicine and risk factors for cardiovascular disease, including overweight/obesity, glucose intolerance, hypertension, dyslipidemia, and hyperuricemia. Moreover, we review the potential connections of PFAS with vascular disease and atherosclerosis. While observational data support associations between the National Academies of Sciences, Engineering and Medicine PFAS and selected cardiac risk factors, additional research is needed to establish causation and better understand how exposure to PFAS leads to the development of these conditions.
Collapse
Affiliation(s)
| | - Noyan Gokce
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
10
|
Tian Q, Yang Y, An Q, Li Y, Wang Q, Zhang P, Zhang Y, Zhang Y, Mu L, Lei L. Association of exposure to multiple perfluoroalkyl and polyfluoroalkyl substances and glucose metabolism in National Health and Nutrition Examination Survey 2017-2018. Front Public Health 2024; 12:1370971. [PMID: 38633237 PMCID: PMC11021729 DOI: 10.3389/fpubh.2024.1370971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/13/2024] [Indexed: 04/19/2024] Open
Abstract
Objective To investigate the relationships between perfluoroalkyl and polyfluoroalkyl substances (PFASs) exposure and glucose metabolism indices. Methods Data from the National Health and Nutrition Examination Survey (NHANES) 2017-2018 waves were used. A total of 611 participants with information on serum PFASs (perfluorononanoic acid (PFNA); perfluorooctanoic acid (PFOA); perfluoroundecanoic acid (PFUA); perfluorohexane sulfonic acid (PFHxS); perfluorooctane sulfonates acid (PFOS); perfluorodecanoic acid (PFDeA)), glucose metabolism indices (fasting plasma glucose (FPG), homeostasis model assessment for insulin resistance (HOMA-IR) and insulin) as well as selected covariates were included. We used cluster analysis to categorize the participants into three exposure subgroups and compared glucose metabolism index levels between the subgroups. Least absolute shrinkage and selection operator (LASSO), multiple linear regression analysis and Bayesian kernel machine regression (BKMR) were used to assess the effects of single and mixed PFASs exposures and glucose metabolism. Results The cluster analysis results revealed overlapping exposure types among people with higher PFASs exposure. As the level of PFAS exposure increased, FPG level showed an upward linear trend (p < 0.001), whereas insulin levels demonstrated a downward linear trend (p = 0.012). LASSO and multiple linear regression analysis showed that PFNA and FPG had a positive relationship (>50 years-old group: β = 0.059, p < 0.001). PFOA, PFUA, and PFHxS (≤50 years-old group: insulin β = -0.194, p < 0.001, HOMA-IR β = -0.132, p = 0.020) showed negative correlation with HOMA-IR/insulin. PFNA (>50 years-old group: insulin β = 0.191, p = 0.018, HOMA-IR β = 0.220, p = 0.013) showed positive correlation with HOMA-IR/insulin, which was essentially the same as results that obtained for the univariate exposure-response map in the BKMR model. Association of exposure to PFASs on glucose metabolism indices showed positive interactions between PFOS and PFHxS and negative interactions between PFOA and PFNA/PFOS/PFHxS. Conclusion Our study provides evidence that positive and negative correlations between PFASs and FPG and HOMA-IR/insulin levels are observed, respectively. Combined effects and interactions between PFASs. Given the higher risk of glucose metabolism associated with elevated levels of PFAS, future studies are needed to explore the potential underlying mechanisms.
Collapse
Affiliation(s)
- Qinghua Tian
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, China
| | - Yutong Yang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, China
| | - Qi An
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, China
| | - Yang Li
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, China
| | - Qingyao Wang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, China
| | - Ping Zhang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, China
| | - Yue Zhang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, China
| | - Yingying Zhang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, China
| | - Lina Mu
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York at Buffalo, Buffalo, NY, United States
| | - Lijian Lei
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
11
|
Yang A, Tam CHT, Wong KK, Ozaki R, Lowe WL, Metzger BE, Chow E, Tam WH, Wong CKC, Ma RCW. Epidemic-specific association of maternal exposure to per- and polyfluoroalkyl substances (PFAS) and their components with maternal glucose metabolism: A cross-sectional analysis in a birth cohort from Hong Kong. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170220. [PMID: 38278268 DOI: 10.1016/j.scitotenv.2024.170220] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/13/2024] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent chemicals that have been linked to increased risk of gestational diabetes mellitus (GDM) and may affect glucose metabolisms during pregnancy. We examined the associations between maternal PFAS exposure and maternal glucose metabolisms and GDM risk among 1601 mothers who joined the Hyperglycaemia-and-Adverse-Pregnancy-Outcome (HAPO) Study in Hong Kong in 2001-2006. All mothers underwent a 75 g-oral-glucose-tolerance test at 24-32 weeks of gestation. We measured serum concentrations of six PFAS biomarkers using high-performance liquid-chromatography-coupled-with-tandem-mass-spectrometry (LC-MS-MS). We fitted conventional and advanced models (quantile-g-computation [qgcomp] and Bayesian-kernel machine regression [BKMR]) to assess the associations of individual and a mixture of PFAS with glycaemic traits. Subgroup analyses were performed based on the enrollment period by the severe-acute-respiratory-syndrome (SARS) epidemic periods in Hong Kong between March 2003 and May 2004. PFOS and PFOA were the main components of PFAS mixture among 1601 pregnant women in the Hong Kong HAPO study, with significantly higher median PFOS concentrations (19.09 ng/mL), compared to Chinese pregnant women (9.40 ng/mL) and US women (5.27 ng/mL). Maternal exposure to PFAS mixture was associated with higher HbA1c in the qgcomp (β = 0.04, 95 % CI: 0.01-0.06) model. We did not observe significant associations of PFAS mixture with fasting plasma glucose (PG), 1-h and 2-h PG in either model, except for 2-h PG in the qgcmop model (β = 0.074, 95 % CI: 0.01-0.15). PFOS was the primary contributor to the overall positive effects on HbA1c. Epidemic-specific analyses showed specific associations between PFAS exposure and the odds of GDM in the pre-SARS epidemic period. The median concentration of PFOS was highest during the peri-SARS epidemic (21.2 [14.5-43.6] ng/mL) compared with the pre-SARS (12.3 [9.2-19.9] ng/mL) and post-SARS (20.3 [14.2-46.3] ng/mL) epidemic periods. Potential interactions and exposure-response relationships between PFOA and PFNA with elevated HbA1c were observed in the peri-SARS period in BKMR model. Maternal exposure to PFAS mixture was associated with altered glucose metabolism during pregnancy. SARS epidemic-specific associations call for further studies on its long-term adverse health effects, especially potential modified associations by lifestyle changes during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Aimin Yang
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, China.
| | - Claudia H T Tam
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Kwun Kiu Wong
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
| | - Risa Ozaki
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
| | - William L Lowe
- Northwestern University Feinberg School of Medicine, Chicago, USA.
| | - Boyd E Metzger
- Northwestern University Feinberg School of Medicine, Chicago, USA.
| | - Elaine Chow
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Wing Hung Tam
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China.
| | - Chris K C Wong
- Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Hong Kong, China.
| | - Ronald C W Ma
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
12
|
San Román A, Abilleira E, Irizar A, Santa-Marina L, Gonzalez-Gaya B, Etxebarria N. Optimization for the analysis of 42 per- and polyfluorinated substances in human plasma: A high-throughput method for epidemiological studies. J Chromatogr A 2023; 1712:464481. [PMID: 37948771 DOI: 10.1016/j.chroma.2023.464481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023]
Abstract
There is an increasing awareness about the presence of per- and polyfluoroalkyl substances (PFAS) in many environmental and biological compartments, including human biofluids and tissues. However, the increase of PFAS replacements, including alternatives with shorter chain or less bioaccumulative potential, has broaden the exposure and the need for wider identification procedures. Moreover, the low volumes available for human blood or plasma, and the high number of samples needed to assess adequately epidemiologic studies, require particularly fast, reproducible and, if possible, miniaturized protocols. Therefore, accurate and robust analytical methods are still needed to quantify the PFAS's burden in humans and to understand potential health risks. In this study, we have developed and validated the analysis of 42 PFAS in human plasma by means of a Captiva 96-well micro extraction plate and a LC-q-Orbitrap. For the optimization of the analytical workflow, three extraction/clean-up methods were tested, and the selected one was validated using spiked artificial and bovine plasma at four concentration levels. The final method showed high absolute recoveries for the 42 PFAS, ranging from 52% to 130%, instrumental detection limits between 0.001-0.6 ng mL-1, overall good precision (CV < 20% for most of the PFAS) and a low uncertainty (< 30% of relative expanded deviation, k = 2). The method was further validated both with the NIST plasma Standard Reference Material 1950, showing that the accuracy of the provided results was between 63%-101%, and by the proficiency test arranged by the Arctic Monitoring Assessment Program (AMAP, 2022) obtaining satisfactory results within 95% confidence interval of the assigned value.
Collapse
Affiliation(s)
- Anne San Román
- Institute of Health Research Biodonostia, Paseo Dr. Begiristain, s/n, 20014 Donostia Gipuzkoa, Basque Country; Plentzia Marine Station (PiE), University of Basque Country (UPV/EHU), Areatza Hiribidea, 47, 48620 Plentzia, Bizkaia, Basque Country; Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940, Leioa, Basque Country, Spain; Department of Public Health from the Basque Government, Avenida Navarra, 4, 20013 Donostia Gipuzkoa, Basque Country.
| | - Eunate Abilleira
- Institute of Health Research Biodonostia, Paseo Dr. Begiristain, s/n, 20014 Donostia Gipuzkoa, Basque Country; Department of Public Health from the Basque Government, Avenida Navarra, 4, 20013 Donostia Gipuzkoa, Basque Country
| | - Amaia Irizar
- Institute of Health Research Biodonostia, Paseo Dr. Begiristain, s/n, 20014 Donostia Gipuzkoa, Basque Country
| | - Loreto Santa-Marina
- Institute of Health Research Biodonostia, Paseo Dr. Begiristain, s/n, 20014 Donostia Gipuzkoa, Basque Country; Department of Public Health from the Basque Government, Avenida Navarra, 4, 20013 Donostia Gipuzkoa, Basque Country
| | - Belen Gonzalez-Gaya
- Plentzia Marine Station (PiE), University of Basque Country (UPV/EHU), Areatza Hiribidea, 47, 48620 Plentzia, Bizkaia, Basque Country; Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940, Leioa, Basque Country, Spain
| | - Nestor Etxebarria
- Plentzia Marine Station (PiE), University of Basque Country (UPV/EHU), Areatza Hiribidea, 47, 48620 Plentzia, Bizkaia, Basque Country; Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940, Leioa, Basque Country, Spain
| |
Collapse
|
13
|
Zhang R, Lu W, Tu L, Lin Y, Sun J, Chen B, Luan T. Perfluorooctanoic acid-induced metabolic disorder via enhancing metabolism of glutamine and fatty acids in human intestinal cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122684. [PMID: 37802284 DOI: 10.1016/j.envpol.2023.122684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/08/2023]
Abstract
Intestinal cell metabolism plays an important role in intestine health. Perfluorooctanoic acid (PFOA) exposure could disorder intestinal cell metabolism. However, the mechanisms regarding how the three carbon sources interact under PFOA stress remined to be understood. The present study aimed to dissect the interconnections of glucose, glutamine, and fatty acids in PFOA-treated human colorectal cancer (DLD-1) cells using 13C metabolic flux analysis. The abundance of glycolysis and tricarboxylic acid (TCA) cycle metabolites was decreased in PFOA-treated cells except for succinate, whereas most of amino acids were more abundant. Beside serine and glycine, the levels of metabolites derived from 13C glucose were reduced in PFOA-treated cells, and the pentose phosphate pathway flux was 1.4-fold higher in PFOA-treated cells than in the controls. In reductive glutamine pathway, higher labeled enrichment of citrate, malate, fumarate, and succinate was observed for PFOA-treated cells. The contribution of glucose to fatty acid synthesis in PFOA-treated cells decreased while the contribution of glutamine to fatty acid synthesis increased. Additionally, synthesis of TCA intermediates from fatty acid β-oxidation was promoted in PFOA-treated cells. All results suggested that metabolic remodeling could happen in intestinal cells exposed to PFOA, which was potentially related to PFOA toxicity relevant with the loss of glucose in biomass synthesis and energy metabolism.
Collapse
Affiliation(s)
- Ruijia Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Wenhua Lu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Lanyin Tu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yingshi Lin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jin Sun
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Baowei Chen
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China.
| | - Tiangang Luan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
14
|
Aker A, Ayotte P, Caron-Beaudoin É, Ricard S, Gaudreau É, Lemire M. Cardiometabolic health and per and polyfluoroalkyl substances in an Inuit population. ENVIRONMENT INTERNATIONAL 2023; 181:108283. [PMID: 37883911 DOI: 10.1016/j.envint.2023.108283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023]
Abstract
INTRODUCTION The cardiometabolic health status of Inuit in Nunavik has worsened in the last thirty years. The high concentrations of perfluoroalkyl acids (PFAAs) may be contributing to this since PFAAs have been linked with hypercholesterolemia, diabetes, and high blood pressure. The aim of this study was to examine the association between a PFAAs mixture and lipid profiles, Type II diabetes, prediabetes, and high blood pressure in this Inuit population. METHODS We included 1212 participants of the Qanuilirpitaa? 2017 survey aged 16-80 years. Two mixture models (quantile g-computation and Bayesian Kernel Machine Regression (BKMR)) were used to investigate the associations between six PFAAs (PFHxS, PFOS, PFOA and three long-chain PFAAs (PFNA, PFDA and PFUnDA)) with five lipid profiles and three cardiometabolic outcomes. Non-linearity and interaction between PFAAs were further assessed. RESULTS An IQR increase in all PFAAs congeners resulted in an increase in total cholesterol (β 0.15, 95% confidence interval (CI) 0.06, 0.24), low-density lipoprotein cholesterol (LDL) (β 0.08, 95% CI 0.01, 0.16), high-density lipoprotein cholesterol (HDL) (β 0.04, 95% CI 0.002, 0.08), apolipoprotein B-100 (β 0.03, 95% CI 0.004, 0.05), and prediabetes (OR 1.80, 95% CI 1.11, 2.91). There was no association between PFAAs and triglycerides, diabetes, or high blood pressure. Long-chain PFAAs congeners were the main contributors driving the associations. Associations were largely linear, and there was no evidence of interaction between the PFAAs congeners. CONCLUSIONS Our study provides further evidence of increasing circulating lipids with increased exposure to PFAAs. The increased risk of prediabetes points to the influence of PFAAs on potential clinical outcomes. International regulation of PFAAs is essential to curb PFAAs exposure and related health effects in Arctic communities.
Collapse
Affiliation(s)
- Amira Aker
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada; Département de médecine sociale et préventive, Université Laval, Québec, Quebec, Canada.
| | - Pierre Ayotte
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada; Département de médecine sociale et préventive, Université Laval, Québec, Quebec, Canada; Centre de Toxicologie du Québec, Institut National de Santé Publique du Québec, Québec, Canada
| | - Élyse Caron-Beaudoin
- Department of Health and Society, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada
| | - Sylvie Ricard
- Nunavik Regional Board of Health and Social Services, Kuujjuaq, QC, Canada
| | - Éric Gaudreau
- Centre de Toxicologie du Québec, Institut National de Santé Publique du Québec, Québec, Canada
| | - Mélanie Lemire
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada; Département de médecine sociale et préventive, Université Laval, Québec, Quebec, Canada; Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec, Quebec, Canada
| |
Collapse
|
15
|
Zheng H, Yin Z, Luo X, Zhou Y, Zhang F, Guo Z. Association of per- and polyfluoroalkyl substance exposure with metabolic syndrome and its components in adults and adolescents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:112943-112958. [PMID: 37845597 PMCID: PMC10643431 DOI: 10.1007/s11356-023-30317-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are widespread contaminants, but few studies have explored the relationship between PFAS and levels of metabolic syndrome (MetS) in the population. The available evidence of an association is also conflicting. We selected adults and adolescents with complete PFAS data from the National Health and Nutrition Examination Survey conducted between 2003 and 2018. We analyzed the association between PFAS and MetS using multivariate logistic regression models and evaluated potential nonlinear relationships with restricted cubic spline models. Additionally, we employed weighted quantile sum (WQS) regressions to uncover the multiple exposure effects and relative weights of each PFAS. Finally, we conducted a series of sensitivity analyses to test the robustness of our findings. In this population-based study, we analyzed data from a total of 4,973 adults, aged 20-85 years, and 1,381 adolescents, aged 12-19 years. Using fully adjusted multivariate logistic regression models, we found that serum levels of perfluorodecanoate (PFDA) [0.65 (0.50, 0.85)] and total PFAS [0.92 (0.85, 0.99)] were negatively associated with the prevalence of MetS in adults. Similarly, in adolescents, we observed negative correlations between the prevalence of MetS and levels of PFDA [0.55 (0.38, 0.80)], perfluorooctanoic acid (PFOA) [0.62 (0.39, 1.00)], perfluorooctane sulfonic acid (PFOS) [0.59 (0.36, 0.96)], and total PFAS [0.61 (0.37, 0.99)]. Additionally, our study identified statistically significant negative associations between serum levels of PFAS and certain components of MetS, primarily elevated fasting glucose and lower high-density lipoprotein cholesterol. Our study found that PFAS was associated with a lower prevalence of MetS in both adults and adolescents, offering new insights into the relationship between PFAS and metabolic health. Interestingly, however, we observed conflicting findings across the components of MetS. Specifically, we observed that PFAS had a negative correlation with some metrics and a positive correlation with others. These conflicting results point to a complex interplay between PFAS and various metrics of metabolic health.
Collapse
Affiliation(s)
- Huizhen Zheng
- Department of Cardiology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Ziwei Yin
- Department of Cardiology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Xi Luo
- Department of Cardiology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yingli Zhou
- Department of Cardiology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Fei Zhang
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Zhihua Guo
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China.
- Hunan Key Laboratory of Colleges of Intelligent Traditional Chinese Medicine Diagnosis and Preventive Treatment of Chronic Diseases, Changsha, 410208, China.
| |
Collapse
|
16
|
Rhee J, Loftfield E, Albanes D, Layne TM, Stolzenberg-Solomon R, Liao LM, Playdon MC, Berndt SI, Sampson JN, Freedman ND, Moore SC, Purdue MP. A metabolomic investigation of serum perfluorooctane sulfonate and perfluorooctanoate. ENVIRONMENT INTERNATIONAL 2023; 180:108198. [PMID: 37716341 PMCID: PMC10591812 DOI: 10.1016/j.envint.2023.108198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/10/2023] [Accepted: 09/07/2023] [Indexed: 09/18/2023]
Abstract
BACKGROUND Exposures to perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA), environmentally persistent chemicals detectable in the blood of most Americans, have been associated with several health outcomes. To offer insight into their possible biologic effects, we evaluated the metabolomic correlates of circulating PFOS and PFOA among 3,647 participants in eight nested case-control serum metabolomic profiling studies from the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. METHODS Metabolomic profiling was conducted by Metabolon Inc., using ultra high-performance liquid chromatography/tandem accurate mass spectrometry. We conducted study-specific multivariable linear regression analyses estimating the associations of metabolite levels with levels of PFOS or PFOA. For metabolites measured in at least 3 of 8 nested case-control studies, random effects meta-analysis was used to summarize study-specific results (1,038 metabolites in PFOS analyses and 1,100 in PFOA analyses). RESULTS The meta-analysis identified 51 and 38 metabolites associated with PFOS and PFOA, respectively, at a Bonferroni-corrected significance level (4.8x10-5 and 4.6x10-5, respectively). For both PFOS and PFOA, the most common types of associated metabolites were lipids (sphingolipids, fatty acid metabolites) and xenobiotics (xanthine metabolites, chemicals). Positive associations were commonly observed with lipid metabolites sphingomyelin (d18:1/18:0) (P = 2.0x10-10 and 2.0x10-8, respectively), 3-carboxy-4-methyl-5-pentyl-2-furanpropionate (P = 2.7x10-15, 1.1x10-17), and lignoceroylcarnitine (C24) (P = 2.6x10-8, 6.2x10-6). The strongest positive associations were observed for chemicals 3,5-dichloro-2,6-dihydroxybenzoic acid (P = 3.0x10-112 and 6.8x10-13, respectively) and 3-bromo-5-chloro-2,6-dihydroxybenzoic acid (P = 1.6x10-14, 2.3x10-6). Other metabolites positively associated with PFOS included D-glucose (carbohydrate), carotene diol (vitamin A metabolism), and L-alpha-aminobutyric acid (glutathione metabolism), while uric acid (purine metabolite) was positively associated with PFOA. PFOS associations were consistent even after adjusting for PFOA as a covariate, while PFOA associations were greatly attenuated with PFOS adjustment. CONCLUSIONS In this large metabolomic study, we observed robust positive associations with PFOS for several molecules. Further investigation of these metabolites may offer insight into PFOS-related biologic effects.
Collapse
Affiliation(s)
- Jongeun Rhee
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Erikka Loftfield
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Demetrius Albanes
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Tracy M Layne
- Department of Obstetrics, Gynecology, and Reproductive Science, and Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rachael Stolzenberg-Solomon
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Linda M Liao
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Mary C Playdon
- Department of Nutrition and Integrative Physiology, University of Utah and Cancer Control and Population Sciences Program, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Sonja I Berndt
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Joshua N Sampson
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Neal D Freedman
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Steven C Moore
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Mark P Purdue
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA.
| |
Collapse
|
17
|
Dagar M, Kumari P, Mirza AMW, Singh S, Ain NU, Munir Z, Javed T, Virk MFI, Javed S, Qizilbash FH, Kc A, Ekhator C, Bellegarde SB. The Hidden Threat: Endocrine Disruptors and Their Impact on Insulin Resistance. Cureus 2023; 15:e47282. [PMID: 38021644 PMCID: PMC10656111 DOI: 10.7759/cureus.47282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
The association between Insulin resistance, a global health issue, and endocrine disruptors (EDCs), chemicals interfering with the endocrine system, has sparked concern in the scientific community. This article provides a comprehensive review of the existing literature regarding the intricate relationship between EDCs and insulin resistance. Phthalates, commonly found in consumer products, are well-established EDCs with documented effects on insulin-signaling pathways and metabolic processes. Epidemiological studies have connected phthalate exposure to an increased risk of type 2 diabetes mellitus (T2DM). Perfluoroalkyl substances (PFAS), persistent synthetic compounds, have shown inconsistent associations with T2DM in epidemiological research. However, studies suggest that PFAS may influence insulin resistance and overall metabolic health, with varying effects depending on specific PFAS molecules and study populations. Bisphenol A (BPA), found in plastics and resins, has emerged as a concern for glucose regulation and insulin resistance. Research has linked BPA exposure to T2DM, altered insulin release, obesity, and changes in the mass and function of insulin-secreting β-cells. Triclosan, an antibacterial agent in personal care products, exhibits gender-specific associations with T2DM risk. It may impact gut microbiota, thyroid hormones, obesity, and inflammation, raising concerns about its effects on metabolic health. Furthermore, environmental EDCs like polycyclic aromatic hydrocarbons, pesticides, and heavy metals have demonstrated associations with T2DM, insulin resistance, hypertension, and obesity. Occupational exposure to specific pesticides and heavy metals has been linked to metabolic abnormalities.
Collapse
Affiliation(s)
- Mehak Dagar
- Internal Medicine, Himalayan Institute of Medical Sciences, New Delhi, IND
| | - Priya Kumari
- Medicine, Jinnah Postgraduate Medical Centre, Karachi, PAK
| | | | - Shivani Singh
- Medicine, MediCiti Institute of Medical Sciences, Hyderabad, IND
| | - Noor U Ain
- Medicine, Mayo Hospital, Lahore, PAK
- Medicine, King Edward Medical University, Lahore, PAK
| | - Zainab Munir
- Emergency Department, Imran Idrees Teaching Hospital, Sialkot, PAK
| | - Tamleel Javed
- Emergency Department, Imran Idrees Teaching Hospital, Sialkot, PAK
| | | | - Saleha Javed
- Emergency Department, Sheikh Zayed Hospital, Rahim Yar Khan, PAK
| | | | - Anil Kc
- Medicine and Surgery, Patan Academy of Health Sciences, Kathmandu, NPL
- Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Chukwuyem Ekhator
- Neuro-Oncology, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, USA
| | - Sophia B Bellegarde
- Pathology and Laboratory Medicine, American University of Antigua, Coolidge, ATG
| |
Collapse
|
18
|
Haug M, Dunder L, Lind PM, Lind L, Salihovic S. Associations of perfluoroalkyl substances (PFAS) with lipid and lipoprotein profiles. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:757-765. [PMID: 37019983 PMCID: PMC10541331 DOI: 10.1038/s41370-023-00545-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/21/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Perfluoroalkyl substances (PFAS) are man-made chemicals with unique properties that are widely distributed in humans and the environment. Recent studies suggest that PFAS are involved in cholesterol metabolism, however, the mechanisms underlying the associations are poorly understood. OBJECTIVE We aimed to evaluate associations of plasma PFAS with detailed lipid and lipoprotein subfractions in an adult population of men and women. METHODS We measured concentrations of cholesterol and triglycerides in lipoprotein subfractions, apolipoprotein subclasses, as well as fatty acid and different phospholipid measures, using serum proton nuclear magnetic resonance (1H-NMR), and four plasma PFAS using liquid chromatography-mass spectrometry (UHPLC-MS/MS). Measurements were available for 493 participants (all aged 50 years, 50% female). Multivariable linear regression was used to estimate the association of four PFAS with 43 different 1H-NMR measures, with adjustment for body mass index (BMI), smoking, education, and physical activity. RESULTS We found that perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorodecanoic acid (PFDA), but not perfluorohexanesulfonate (PFHxS), concentrations were consistently positively associated with concentrations of cholesterol in lipoprotein subfractions, apolipoproteins, as well as composite fatty acid- and phospholipid profiles. The most consistent associations were found for the relationship of PFAS with total cholesterol in intermediate-density lipoprotein (IDL), across all low-density lipoprotein (LDL) subfractions and small high-density lipoprotein (HDL). Moreover, we found weak to null evidence for an association of any of the measured 13 triglyceride lipoprotein subfractions with PFAS. CONCLUSIONS Our results suggest that plasma PFAS concentrations are associated with cholesterol in small HDL, IDL and all LDL subfractions, as well as apolipoproteins and composite fatty acid and phospholipid profiles but to a lesser extent with triglycerides in lipoproteins. Our findings draw attention to the need for more detailed measurements of lipids across various lipoprotein subfractions and subclasses in assessing the role of PFAS in lipid metabolism. IMPACT By performing an in-depth characterization of circulating cholesterol and triglycerides in lipoprotein subfractions, apolipoprotein, fatty acid, and phospholipid concentrations, this study has expanded upon the limited literature available on the associations of plasma PFAS concentrations beyond clinical routine laboratory testing for lipids.
Collapse
Affiliation(s)
- Marianne Haug
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Linda Dunder
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala Univeristy, Uppsala, Sweden
| | - P Monica Lind
- Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University, Uppsala, Sweden
| | - Lars Lind
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala Univeristy, Uppsala, Sweden
| | - Samira Salihovic
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
| |
Collapse
|
19
|
Kang H, Ding N, Karvonen-Gutierrez CA, Mukherjee B, Calafat AM, Park SK. Per- and Polyfluoroalkyl Substances (PFAS) and Lipid Trajectories in Women 45-56 Years of Age: The Study of Women's Health Across the Nation. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:87004. [PMID: 37552133 PMCID: PMC10408595 DOI: 10.1289/ehp12351] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are associated with less favorable blood lipid profiles in epidemiological studies. However, little is known about the potential role of PFAS in longitudinal changes in lipids among midlife women even though women become more susceptible to metabolic alterations during the menopausal transition. OBJECTIVES To examine associations of serum PFAS concentrations with longitudinal trajectories of blood total cholesterol, low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, and triglycerides in midlife women undergoing menopausal transition. METHODS The sample included 1,130 women from the Study of Women's Health Across the Nation 45-56 y of age at baseline (1999-2000). We measured serum PFAS concentrations including linear perfluorooctanoic acid (n-PFOA), perfluorononanoic acid (PFNA), linear and branched perfluorooctanesulfonic acid (n-PFOS and Sm-PFOS, respectively), and perfluorohexanesulfonic acid (PFHxS) at baseline. We used k-means clustering to identify subgroups with different patterns of PFAS mixture. Blood lipids were measured annually or biannually through 2016 with an average follow-up of 14.8 y. We identified longitudinal trajectories of each lipid using latent class growth models. We used multinomial log-linear models adjusted for covariates to estimate odds ratios (ORs) and 95% confidence intervals (CIs) of lipid trajectory classes by PFAS and their mixtures. RESULTS Three distinct trajectories (low, middle, high) of total, LDL, and HDL cholesterol and two distinct trajectories (low and high) of triglycerides were identified. n-PFOS, Sm-PFOS, and PFHxS were positively associated with total and LDL cholesterol trajectories. n-PFOS was inversely associated with triglycerides trajectories. PFAS mixtures (high vs. low) showed positive associations with total and LDL cholesterol trajectories (high vs. low), showing ORs (95% CIs) of 1.69 (95% CI: 1.36, 2.12) and 1.79 (95% CI: 1.44, 2.22), respectively. DISCUSSION Concentrations of serum PFAS were positively associated with trajectories of total and LDL cholesterol, providing a line of evidence supporting adverse effects of PFAS on lipid homeostasis. https://doi.org/10.1289/EHP12351.
Collapse
Affiliation(s)
- Habyeong Kang
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
- Institute of Health Sciences, College of Health Science, Korea University, Seoul, Republic of Korea
| | - Ning Ding
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | | | - Bhramar Mukherjee
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Antonia M. Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sung Kyun Park
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| |
Collapse
|
20
|
Mandour DA, Morsy MM, Fawzy A, Mohamed NM, Ahmad MM. Structural and molecular changes in the rat myocardium following perfluoroctane sulfonate (PFOS) exposure are mitigated by quercetin via modulating HSP 70 and SERCA 2. J Mol Histol 2023; 54:283-296. [PMID: 37365388 PMCID: PMC10412685 DOI: 10.1007/s10735-023-10134-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 06/11/2023] [Indexed: 06/28/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is a man-made fluorinated compound employed in a variety of industrial and civilian applications. Due to its long elimination half-life and promotion of oxidative stress and inflammation, it is one of the most abundant organic contaminants. The present study was designed to determine the cytotoxic effect of PFOS on adult male rat cardiac tissue and to assess the cardioprotective role of the flavonoid quercetin (Que), which possesses antioxidant, anti-inflammatory, and anti-apoptotic properties. Twenty-four adult male Sprague-Dawley rats were randomly divided into four equal groups: Group I (Control). Group II (Que) received Que (75 mg/kg/day for 4 weeks) by oral gavage. Group III (PFOS group): supplemented orally with PFOS (20 mg/kg/day for 4 weeks) and Group IV (PF OS/Que). The rat heart was processed for histological, immunohistochemical, and gene expression studies. The PFOS group showed histological alterations in the myocardium that were partially reversed by the administration of Que. The inflammatory biomarkers (TNF, IL-6, and IL-1), lipid profile, TSH, MDA, and serum cardiac enzymes (LDH and CK-MB) were all altered. These findings collectively suggest that PFOS had adverse effects on the cardiac muscle structure, and these effects were alleviated by quercetin, which is a promising cardioprotective flavonoid.
Collapse
Affiliation(s)
- Dalia A. Mandour
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Manal M. Morsy
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Amal Fawzy
- Department of Biochemistry, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | - Marwa M. Ahmad
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
21
|
Chatzi L, Baumert BO. Invited Perspective: PFAS and Dyslipidemia-The Perimenopausal Period as a Critical Time Window. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:81302. [PMID: 37552132 PMCID: PMC10408593 DOI: 10.1289/ehp13195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 08/09/2023]
Affiliation(s)
- Lida Chatzi
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Brittney O. Baumert
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
22
|
Lazarevic N, Smurthwaite KS, D'Este C, Lucas RM, Armstrong B, Clements AC, Trevenar SM, Gad I, Hosking R, Law HD, Mueller J, Bräunig J, Nilsson S, Lane J, Lal A, Lidbury BA, Korda RJ, Kirk MD. Liver and cardiometabolic markers and conditions in a cross-sectional study of three Australian communities living with environmental per- and polyfluoroalkyl substances contamination. ENVIRONMENTAL RESEARCH 2023; 226:115621. [PMID: 36898423 DOI: 10.1016/j.envres.2023.115621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/05/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) have been associated with higher cholesterol and liver function markers in some studies, but the evidence for specific cardiometabolic conditions has been inconclusive. OBJECTIVES We quantified the associations of single and combined PFAS with cardiometabolic markers and conditions in a cross-sectional study of three Australian communities with PFAS-contaminated water from the historical use of aqueous film-forming foam in firefighting activities, and three comparison communities. METHODS Participants gave blood samples for measurement of nine PFAS, four lipids, six liver function markers, and completed a survey on sociodemographic characteristics and eight cardiometabolic conditions. We estimated differences in mean biomarker concentrations per doubling in single PFAS concentrations (linear regression) and per interquartile range increase in the PFAS mixture (Bayesian kernel machine regression). We estimated prevalence ratios of biomarker concentrations outside reference limits and self-reported cardiometabolic conditions (Poisson regression). RESULTS We recruited 881 adults in exposed communities and 801 in comparison communities. We observed higher mean total cholesterol with higher single and mixture PFAS concentrations in blood serum (e.g., 0.18 mmol/L, 95% credible interval -0.06 to 0.42, higher total cholesterol concentrations with an interquartile range increase in all PFAS concentrations in Williamtown, New South Wales), with varying certainty across communities and PFAS. There was less consistency in direction of associations for liver function markers. Serum perfluorooctanoic acid (PFOA) concentrations were positively associated with the prevalence of self-reported hypercholesterolemia in one of three communities, but PFAS concentrations were not associated with self-reported type II diabetes, liver disease, or cardiovascular disease. DISCUSSION Our study is one of few that has simultaneously quantified the associations of blood PFAS concentrations with multiple biomarkers and cardiometabolic conditions in multiple communities. Our findings for total cholesterol were consistent with previous studies; however, substantial uncertainty in our estimates and the cross-sectional design limit causal inference.
Collapse
Affiliation(s)
- Nina Lazarevic
- National Centre for Epidemiology and Population Health, College of Health and Medicine, The Australian National University, Canberra, ACT 2600, Australia.
| | - Kayla S Smurthwaite
- National Centre for Epidemiology and Population Health, College of Health and Medicine, The Australian National University, Canberra, ACT 2600, Australia
| | - Catherine D'Este
- National Centre for Epidemiology and Population Health, College of Health and Medicine, The Australian National University, Canberra, ACT 2600, Australia; School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Robyn M Lucas
- National Centre for Epidemiology and Population Health, College of Health and Medicine, The Australian National University, Canberra, ACT 2600, Australia
| | - Bruce Armstrong
- School of Public Health, The University of Sydney, Sydney, NSW, 2206, Australia; School of Population and Global Health, The University of Western Australia, Perth, WA, 6009, Australia
| | - Archie Ca Clements
- Faculty of Health Sciences, Curtin University, Bentley, WA, 6102, Australia; Telethon Kids Institute, Nedlands, WA, 6009, Australia
| | - Susan M Trevenar
- National Centre for Epidemiology and Population Health, College of Health and Medicine, The Australian National University, Canberra, ACT 2600, Australia
| | - Imogen Gad
- National Centre for Epidemiology and Population Health, College of Health and Medicine, The Australian National University, Canberra, ACT 2600, Australia
| | - Rose Hosking
- National Centre for Epidemiology and Population Health, College of Health and Medicine, The Australian National University, Canberra, ACT 2600, Australia
| | - Hsei Di Law
- National Centre for Epidemiology and Population Health, College of Health and Medicine, The Australian National University, Canberra, ACT 2600, Australia
| | - Jochen Mueller
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Woolloongabba, Qld, 4102, Australia
| | - Jennifer Bräunig
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Woolloongabba, Qld, 4102, Australia
| | - Sandra Nilsson
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Woolloongabba, Qld, 4102, Australia
| | - Jo Lane
- National Centre for Epidemiology and Population Health, College of Health and Medicine, The Australian National University, Canberra, ACT 2600, Australia
| | - Aparna Lal
- National Centre for Epidemiology and Population Health, College of Health and Medicine, The Australian National University, Canberra, ACT 2600, Australia
| | - Brett A Lidbury
- National Centre for Epidemiology and Population Health, College of Health and Medicine, The Australian National University, Canberra, ACT 2600, Australia
| | - Rosemary J Korda
- National Centre for Epidemiology and Population Health, College of Health and Medicine, The Australian National University, Canberra, ACT 2600, Australia
| | - Martyn D Kirk
- National Centre for Epidemiology and Population Health, College of Health and Medicine, The Australian National University, Canberra, ACT 2600, Australia
| |
Collapse
|
23
|
Liu B, Zhu L, Wang M, Sun Q. Associations between Per- and Polyfluoroalkyl Substances Exposures and Blood Lipid Levels among Adults-A Meta-Analysis. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:56001. [PMID: 37141244 PMCID: PMC10159273 DOI: 10.1289/ehp11840] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
BACKGROUND Associations between per- and polyfluoroalkyl substances (PFAS) and blood lipid levels in humans were mixed. OBJECTIVES The objective of this meta-analysis was to summarize associations between PFAS and blood lipids in adults. METHODS A literature search was conducted on PubMed and Web of Science for articles published through 13 May 2022 that examined associations between PFAS and blood lipids, including total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and triacylglycerols (TGs). Inclusion criteria included the presence of associations between five PFAS (PFOA, PFOS, PFHxS, PFDA, and PFNA) and four blood lipid measures (TC, HDL-C, LDL-C, and TGs) in adults. Data on study characteristics and PFAS-lipid associations were extracted. Assessments of individual study quality were performed. Associations of changes of blood lipid levels corresponding to 1 interquartile range (IQR)-unit increase of blood PFAS levels were pooled using random effects models. Dose-response relationships were examined. RESULTS Twenty-nine publications were included in the present analyses. Every IQR increase of PFOA was significantly associated with a 2.1 -mg / dL increase in TC (95% CI: 1.2, 3.0), a 1.3 -mg / dL increase in TGs (95% CI: 0.1, 2.4), and a 1.4 -mg / dL increase in LDL-C (95% CI: 0.6, 2.2). PFOS was also significantly associated with TC and LDL-C levels, and the corresponding values were 2.6 (95% CI: 1.5, 3.6) and 1.9 (95% CI: 0.9, 3.0), respectively. Associations of PFOS and PFOA with HDL-C levels were largely null. For minor PFAS species, PFHxS was significantly associated with higher levels of HDL-C [0.8 (95% CI: 0.5, 1.2)]. Inverse associations were observed between PFDA and TGs [- 5.0 (95% CI: - 8.1 , - 1.9 )] and between PFNA and TGs [- 1.7 (95% CI: - 3.5 , - 0.02 )], whereas a positive association was observed between PFDA and HDL-C [1.4 (95% CI: 0.1, 2.7)]. Nonsignificant nonlinear dose-response relationships were identified for associations of PFOA and PFOS with certain blood lipids. DISCUSSION PFOA and PFOS were significantly associated with TC and LDL-C levels in adults. Whether these findings may translate into an elevated cardiovascular disease risk associated with PFAS exposure warrants further investigation. https://doi.org/10.1289/EHP11840.
Collapse
Affiliation(s)
- Binkai Liu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Lu Zhu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Molin Wang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Department of Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Qi Sun
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Department of Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
24
|
Baek K, Sakong J, Park C. Association of serum polyfluoroalkyl substances (PFAS) with anemia and erythrocytosis in Korean adults: Data from Korean National Environmental Health Survey cycle 4 (2018–2020). Int J Hyg Environ Health 2023. [DOI: 10.1016/j.ijheh.2023.114136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
25
|
Richard AM, Lougee R, Adams M, Hidle H, Yang C, Rathman J, Magdziarz T, Bienfait B, Williams AJ, Patlewicz G. A New CSRML Structure-Based Fingerprint Method for Profiling and Categorizing Per- and Polyfluoroalkyl Substances (PFAS). Chem Res Toxicol 2023; 36:508-534. [PMID: 36862450 PMCID: PMC10031568 DOI: 10.1021/acs.chemrestox.2c00403] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Indexed: 03/03/2023]
Abstract
The term PFAS encompasses diverse per- and polyfluorinated alkyl (and increasingly aromatic) chemicals spanning industrial processes, commercial uses, environmental occurrence, and potential concerns. With increased chemical curation, currently exceeding 14,000 structures in the PFASSTRUCTV5 inventory on EPA's CompTox Chemicals Dashboard, has come increased motivation to profile, categorize, and analyze the PFAS structure space using modern cheminformatics approaches. Making use of the publicly available ToxPrint chemotypes and ChemoTyper application, we have developed a new PFAS-specific fingerprint set consisting of 129 TxP_PFAS chemotypes coded in CSRML, a chemical-based XML-query language. These are split into two groups, the first containing 56 mostly bond-type ToxPrints modified to incorporate attachment to either a CF group or F atom to enforce proximity to the fluorinated portion of the chemical. This focus resulted in a dramatic reduction in TxP_PFAS chemotype counts relative to the corresponding ToxPrint counts (averaging 54%). The remaining TxP_PFAS chemotypes consist of various lengths and types of fluorinated chains, rings, and bonding patterns covering indications of branching, alternate halogenation, and fluorotelomers. Both groups of chemotypes are well represented across the PFASSTRUCT inventory. Using the ChemoTyper application, we show how the TxP_PFAS chemotypes can be visualized, filtered, and used to profile the PFASSTRUCT inventory, as well as to construct chemically intuitive, structure-based PFAS categories. Lastly, we used a selection of expert-based PFAS categories from the OECD Global PFAS list to evaluate a small set of analogous structure-based TxP_PFAS categories. TxP_PFAS chemotypes were able to recapitulate the expert-based PFAS category concepts based on clearly defined structure rules that can be computationally implemented and reproducibly applied to process large PFAS inventories without need to consult an expert. The TxP_PFAS chemotypes have the potential to support computational modeling, harmonize PFAS structure-based categories, facilitate communication, and allow for more efficient and chemically informed exploration of PFAS chemicals moving forward.
Collapse
Affiliation(s)
- Ann M. Richard
- Center
for Computational Toxicology & Exposure, Office of Research and
Development, U.S. Environmental Protection
Agency, Research Triangle Park, Durham, North Carolina 27711, United States
| | - Ryan Lougee
- Oak
Ridge Affiliated Universities Student Contractor to Center for Computational
Toxicology & Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, Durham, North Carolina 27711, United States
| | - Matthew Adams
- Oak
Ridge Affiliated Universities Student Contractor to Center for Computational
Toxicology & Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, Durham, North Carolina 27711, United States
| | - Hannah Hidle
- Oak
Ridge Affiliated Universities Student Contractor to Center for Computational
Toxicology & Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, Durham, North Carolina 27711, United States
| | - Chihae Yang
- MN-AM,
Molecular Networks GmbH & Altamira LLC, Nuremberg 90411, Germany
| | - James Rathman
- MN-AM,
Molecular Networks GmbH & Altamira LLC, Nuremberg 90411, Germany
| | - Tomasz Magdziarz
- MN-AM,
Molecular Networks GmbH & Altamira LLC, Nuremberg 90411, Germany
| | - Bruno Bienfait
- MN-AM,
Molecular Networks GmbH & Altamira LLC, Nuremberg 90411, Germany
| | - Antony J. Williams
- Center
for Computational Toxicology & Exposure, Office of Research and
Development, U.S. Environmental Protection
Agency, Research Triangle Park, Durham, North Carolina 27711, United States
| | - Grace Patlewicz
- Center
for Computational Toxicology & Exposure, Office of Research and
Development, U.S. Environmental Protection
Agency, Research Triangle Park, Durham, North Carolina 27711, United States
| |
Collapse
|
26
|
Xu HM, Wu MY, Shi XC, Liu KL, Zhang YC, Zhang YF, Li HM. Preliminary Study on the Protective Effects and Molecular Mechanism of Procyanidins against PFOS-Induced Glucose-Stimulated Insulin Secretion Impairment in INS-1 Cells. TOXICS 2023; 11:174. [PMID: 36851050 PMCID: PMC9966006 DOI: 10.3390/toxics11020174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
This study aimed to investigate the effects of perfluorooctanesulfonic acid (PFOS) exposure on glucose-stimulated insulin secretion (GSIS) of rat insulinoma (INS-1) cells and the potential protective effects of procyanidins (PC). The effects of PFOS and/or PC on GSIS of INS-1 cells were investigated after 48 h of exposure (protein level: insulin; gene level: glucose transporter 2 (Glut2), glucokinase (Gck), and insulin). Subsequently, the effects of exposure on the intracellular reactive oxygen species (ROS) activity were measured. Compared to the control group, PFOS exposure (12.5, 25, and 50 μM) for 48 h had no significant effect on the viability of INS-1 cells. PFOS exposure (50 μM) could reduce the level of insulin secretion and reduce the relative mRNA expression levels of Glut2, Gck, and insulin. It is worth noting that PC could partially reverse the damaging effect caused by PFOS. Significantly, there was an increase in ROS after exposure to PFOS and a decline after PC intervention. PFOS could affect the normal physiological function of GSIS in INS-1 cells. PC, a plant natural product, could effectively alleviate the damage caused by PFOS by inhibiting ROS activity.
Collapse
Affiliation(s)
- Hai-Ming Xu
- School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China
- The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan 750004, China
| | - Meng-Yu Wu
- School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China
- The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan 750004, China
| | - Xin-Chen Shi
- School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China
- The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan 750004, China
| | - Ke-Liang Liu
- School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China
- The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan 750004, China
| | - Ying-Chi Zhang
- School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China
- The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan 750004, China
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Hong-Mei Li
- School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China
- The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan 750004, China
- The Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
27
|
Li H, Chen J, Yang J, Tan Z, Li L, Xiao F, An Z, Ma C, Liu Y, Wang L, Zhang X, Guo H. Association of exposure to perfluoroalkyl substances and risk of the acute coronary syndrome: A case-control study in Shijiazhuang Hebei Province. CHEMOSPHERE 2023; 313:137464. [PMID: 36495974 DOI: 10.1016/j.chemosphere.2022.137464] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/03/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Exposures to perfluoroalkyl substances (PFAS) have been reported to increase the risk of atherosclerosis. Therefore, PFAS exposure may be linked to the risk of acute coronary syndrome (ACS), but this association remains uncertain. The objective of the present study was to investigate the association between PFAS exposure and ACS risk through a case-control study. The study included 355 newly diagnosed ACS cases and 355 controls matched by age (within 5 years) and sex. Twelve PFAS were measured in plasma by ultra-high-performance liquid chromatography-tandem mass spectrometry. The conditional logistic regression models were performed to investigate the association between the single and multiple PFAS and ACS risk. Furthermore, we investigated the association of PFAS mixture exposure with ACS risk using a quantile-based g-computation (qgcomp) approach. A mediating effect model was used to assess the mediating effect of platelet indices on the association between PFAS and ACS risk. The results showed that perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) were significantly positively associated with ACS risk in the multiple-PFAS model 2, and this effect was not significant in females. The odds ratios (95% confidence intervals) for PFAS (z-score PFAS) and ACS risk were 1.51 (1.07, 2.15) for PFOA and 1.77 (1.15, 2.72) for PFOS. The dose-response relationships revealed an increasing trend for ACS risk with PFOA and PFOS and decreasing trend for perfluorohexane sulfonic acid (PFHxS) and perfluorodecanoic acid (PFDA). There was no significant correlation between PFAS mixture exposure and ACS risk. Analysis of mediation indicated that platelet count mediated the relationship between PFOS and ACS risk. Our study suggests that higher levels of PFOA and PFOS, and lower levels of PFHxS and PFDA may increase the risk of ACS. However, the reported negative associations should not be considered as protective, and uncertain unresolved confounding may contribute to this result.
Collapse
Affiliation(s)
- Haoran Li
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China; Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Jinbo Chen
- Department of Cardiology, The Second Hospital of Shijiazhuang, Shijiazhuang, 050057, China
| | - Jing Yang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Zhenzhen Tan
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Longfei Li
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Fang Xiao
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Ziwen An
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Chaoying Ma
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yi Liu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Lei Wang
- Department of Medicinal Chemistry, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xiaoguang Zhang
- Core Facilities and Centers of Hebei Medical University, Shijiazhuang, 050017, China
| | - Huicai Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
| |
Collapse
|
28
|
Weatherly LM, Shane HL, Lukomska E, Baur R, Anderson SE. Systemic toxicity induced by topical application of perfluoroheptanoic acid (PFHpA), perfluorohexanoic acid (PFHxA), and perfluoropentanoic acid (PFPeA) in a murine model. Food Chem Toxicol 2023; 171:113515. [PMID: 36435305 PMCID: PMC9989852 DOI: 10.1016/j.fct.2022.113515] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 11/25/2022]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of synthetic structurally diverse chemicals incorporated into industrial and consumer products. PFHpA, PFHxA, and PFPeA are carboxylic PFAS (C7, C6, C5, respectively) labeled as a safer alternative to legacy carboxylic PFAS due to their shorter half-life in animals. Although there is a high potential for dermal exposure, these studies are lacking. The present study conducted analyses of serum chemistries, immune phenotyping, gene expression, and histology to evaluate the systemic toxicity of a sub-chronic 28-day dermal exposure of alternative PFAS (1.25-5% or 31.25-125 mg/kg/dose) in a murine model. Liver weight (% body) significantly increased with PFHpA, PFHxA, and PFPeA exposure and histopathological changes were observed in both the liver and skin. Gene expression changes were observed with PPAR isoforms in the liver and skin along with changes in genes involved in steatosis, fatty acid metabolism, necrosis, and inflammation. These findings, along with significant detection levels in serum and urine, support PFAS-induced liver damage and PPARα, δ, and γ involvement in alternative PFAS systemic toxicity and immunological disruption. This demonstrates that these compounds can be absorbed through the skin and brings into question whether these PFAS are a suitable alternative to legacy PFAS.
Collapse
Affiliation(s)
- Lisa M Weatherly
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA.
| | - Hillary L Shane
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Ewa Lukomska
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Rachel Baur
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Stacey E Anderson
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|
29
|
He X, Wu D, Xu Y, Zhang Y, Sun Y, Chang X, Zhu Y, Tang W. Perfluorooctanoic acid promotes pancreatic β cell dysfunction and apoptosis through ER stress and the ATF4/CHOP/TRIB3 pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:84532-84545. [PMID: 35788477 DOI: 10.1007/s11356-022-21188-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Perfluorooctanoic acid (PFOA), a widely used chemical substance, causes an increased risk of human type 2 diabetes (T2D), but its underlying mechanism is not well elucidated. The aim of the present study was to investigate whether PFOA regulates the functions of pancreatic β cells, which are specialized for the biosynthesis and secretion of insulin. The treatment of the mouse pancreatic β cell line (MIN6 cells) with PFOA caused a time- and dose-dependent inhibition of cell viability in CCK-8 assays. Annexin V/PI and TUNEL staining results confirmed that exposure to a high PFOA dose (500 μM) promoted apoptosis of β cells, while a low dose (300 μM) had no effects on β cell survival. PFOA treatment, even at a low dose, diminished glucose-stimulated insulin secretion (GSIS) in both primary islet perfusion and MIN6 cell experiments. RNA-sequencing data showed significantly increased expression of endoplasmic reticulum (ER) stress-associated genes, with tribbles homolog 3 (Trib3) ranking first among the altered genes. The activation of ER stress pathways was verified by qRT-PCR assays, and the ATF4/CHOP/TRIB3 pathway contributed to PFOA-induced β cell damage. The inhibition of TRIB3 expression significantly protected MIN6 cells from PFOA-induced GSIS defects and apoptosis by ameliorating ER stress. These findings reveal a link between ER stress and PFOA-induced β cell defects, opening up a new set of questions about the pathogenesis of T2D due to environmental chemicals.
Collapse
Affiliation(s)
- Xiaowei He
- Department of Endocrinology, Islet Cell Senescence and Function Research Laboratory, Nanjing Medical University Affiliated Geriatric Hospital/Jiangsu Province Geriatric Hospital, 30 Luojia Road, Nanjing, 210024, Jiangsu, China
| | - Dan Wu
- Department of Endocrinology, Islet Cell Senescence and Function Research Laboratory, Nanjing Medical University Affiliated Geriatric Hospital/Jiangsu Province Geriatric Hospital, 30 Luojia Road, Nanjing, 210024, Jiangsu, China
| | - Yanan Xu
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiangjia Yuan, Nanjing, 210011, Jiangsu, China
| | - Yaqin Zhang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Yue Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Xiaoai Chang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Yunxia Zhu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Wei Tang
- Department of Endocrinology, Islet Cell Senescence and Function Research Laboratory, Nanjing Medical University Affiliated Geriatric Hospital/Jiangsu Province Geriatric Hospital, 30 Luojia Road, Nanjing, 210024, Jiangsu, China.
| |
Collapse
|
30
|
Ho SH, Soh SXH, Wang MX, Ong J, Seah A, Wong Y, Fang Z, Sim S, Lim JT. Perfluoroalkyl substances and lipid concentrations in the blood: A systematic review of epidemiological studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:158036. [PMID: 35973530 DOI: 10.1016/j.scitotenv.2022.158036] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/19/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Perfluoroalkyl substances (PFAS) are widely used synthetic aliphatic compounds. This systematic review aims to assess PFAS associations with low-density lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol (HDL), total cholesterol (TC) and total triglyceride (TG) concentrations in human populations. METHOD We systematically searched four online databases, PubMed, Scopus, Embase, and Cochrane Library for relevant peer-reviewed English language articles published until July 2021. Additional relevant articles identified were also included in the search results. We categorised populations into adults (≥18 years old) and children. Primary findings were the associations between PFAS concentrations and LDL, HDL, TC, and TG concentrations in the serum, plasma, or whole blood; secondary findings were the associations between PFAS concentrations and the odds of lipid-related health outcomes. Quantitative synthesis was done by vote counting of the effect directions between concentrations of PFAS and lipids/health outcomes, repeated on articles with sample size >1000. Sign tests were performed to assess the statistical significance of the differences between positive and negative associations. Sensitivity analysis was performed by separating out articles with populations having high concentrations of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS). Quality was assessed with the STROBE checklist and NHBLI Study Quality Assessment Tool. RESULTS A total of 58 articles were included for review. There was evidence that PFAS exposure is associated with higher concentrations of LDL, HDL, and TC, particularly for PFOA-LDL, PFOA-TC, PFOS-TC, and PFNA-LDL. Associations between PFAS and TG tended to be negative, especially for perfluoroundecanoic acid (PFUnDA). Associations between PFAS concentration and the odds of secondary outcomes generally supported a positive association between PFAS and cholesterol concentrations. CONCLUSION We found evidence of associations between the concentrations of some PFAS-lipid pairs in human populations. Future research should be conducted on the less well-studied PFAS to explore their effects on human health and in regions where such studies are currently lacking. (300 words).
Collapse
Affiliation(s)
- Soon Hoe Ho
- Environmental Health Institute, National Environment Agency, 11 Biopolis Way, #06-05/08 Helios Block, Singapore 138667, Singapore.
| | - Stacy Xin Hui Soh
- Environmental Health Institute, National Environment Agency, 11 Biopolis Way, #06-05/08 Helios Block, Singapore 138667, Singapore
| | - Min Xian Wang
- Saw Swee Hock School of Public Health, Tahir Foundation Building, National University of Singapore, 12 Science Drive 2, #10-01, Singapore 117549, Singapore
| | - Janet Ong
- Environmental Health Institute, National Environment Agency, 11 Biopolis Way, #06-05/08 Helios Block, Singapore 138667, Singapore
| | - Annabel Seah
- Environmental Health Institute, National Environment Agency, 11 Biopolis Way, #06-05/08 Helios Block, Singapore 138667, Singapore
| | - Yvonne Wong
- Environmental Health Institute, National Environment Agency, 11 Biopolis Way, #06-05/08 Helios Block, Singapore 138667, Singapore
| | - Zhanxiong Fang
- Environmental Health Institute, National Environment Agency, 11 Biopolis Way, #06-05/08 Helios Block, Singapore 138667, Singapore
| | - Shuzhen Sim
- Environmental Health Institute, National Environment Agency, 11 Biopolis Way, #06-05/08 Helios Block, Singapore 138667, Singapore
| | - Jue Tao Lim
- Environmental Health Institute, National Environment Agency, 11 Biopolis Way, #06-05/08 Helios Block, Singapore 138667, Singapore; Saw Swee Hock School of Public Health, Tahir Foundation Building, National University of Singapore, 12 Science Drive 2, #10-01, Singapore 117549, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University Novena Campus, 11 Mandalay Road, Singapore 308232, Singapore
| |
Collapse
|
31
|
Tan Y, Zeng Z, Liang H, Weng X, Yao H, Fu Y, Li Y, Chen J, Wei X, Jing C. Association between Perfluoroalkyl and Polyfluoroalkyl Substances and Women's Infertility, NHANES 2013-2016. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15348. [PMID: 36430067 PMCID: PMC9692248 DOI: 10.3390/ijerph192215348] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are widely used in consumer products. However, the role of PFAS in infertility is still poorly understood. A total of 788 women from the 2013-2016 nationally representative NHANES were included to explore the association between PFAS exposure and self-reported infertility. Six PFAS, including PFDE, PFNA, PFHxS, n-PFOA, n-PFOS, and Sm-PFOS, were detected by online SPE-HPLC-TIS-MS/MS. We used the generalized linear regression model (GLM), generalized additive models (GAM), and Bayesian kernel machine regression (BKMR) to assess the single effects, non-linear relationships, and mixed effects on women's infertility, respectively. The prevalence of self-reported infertility was 15.54% in this study. In GLM, n-PFOA showed a negative association with self-reported infertility in women for the Q3 (OR: 0.396, 95% CI: 0.119, 0.788) and Q4 (OR: 0.380, 95% CI: 0.172-0.842) compared with Q1 (p for trend = 0.013). A negative trend was also observed in n-PFOS and ∑PFOS (p for trend < 0.05). In GAM, a non-linear relationship was revealed in Sm-PFOS, which exhibits a U-shaped relationship. The BKMR model indicated that there might be a joint effect between PFAS and women's infertility, to which PFNA contributed the highest effect (PIP = 0.435). Moreover, age stratification analysis showed a different dose-response curve in under and above 35 years old. Women under the age of 35 have a more noticeable U-shaped relationship with infertility. Therefore, the relatively low level of mixed PFAS exposure was negatively associated with self-reported infertility in women in general, and the impact of PFAS on infertility may vary among women of different age groups. Further studies are needed to determine the etiological relationship.
Collapse
Affiliation(s)
- Yuxuan Tan
- Department of Preventive Medicine and Public Health, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, China
| | - Zurui Zeng
- Department of Preventive Medicine and Public Health, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, China
- Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou 510632, China
| | - Huanzhu Liang
- Department of Preventive Medicine and Public Health, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, China
| | - Xueqiong Weng
- Department of Preventive Medicine and Public Health, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, China
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Huojie Yao
- Department of Preventive Medicine and Public Health, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, China
| | - Yingyin Fu
- Department of Preventive Medicine and Public Health, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, China
| | - Yexin Li
- Department of Preventive Medicine and Public Health, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, China
| | - Jingmin Chen
- Department of Preventive Medicine and Public Health, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, China
| | - Xiangcai Wei
- Department of Preventive Medicine and Public Health, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, China
- Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou 510632, China
| | - Chunxia Jing
- Department of Preventive Medicine and Public Health, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, China
- Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou 510632, China
| |
Collapse
|
32
|
Maranhao Neto GA, Polcrova AB, Pospisilova A, Blaha L, Klanova J, Bobak M, Gonzalez-Rivas JP. Associations between Per- and Polyfluoroalkyl Substances (PFAS) and Cardiometabolic Biomarkers in Adults of Czechia: The Kardiovize Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13898. [PMID: 36360776 PMCID: PMC9656035 DOI: 10.3390/ijerph192113898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/17/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Even though there is evidence of decreasing trends of per- and polyfluoroalkyl substances (PFAS) in Czechia, there are still major sources of PFAS pollution. Regarding the still-inconsistent results of the relationship between cardiometabolic health and PFAS, the present study sought to determine the association between PFAS levels and the presence of cardiometabolic biomarkers, including blood pressure and dysglycemia drivers in the Czech population. A cross-sectional study with 479 subjects (56.4% women, median: 53 years, range: 25-89) was conducted. Four PFAS were measured in serum: perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), and perfluorooctane sulfonate (PFOS). The associations between natural log (ln)-transformed PFAS and cardiometabolic biomarkers were assessed through generalized additive models using linear regression and smoothing thin plate splines, adjusted for potential confounders. There were positive and significant (p < 0.05) associations between the ln-transformed PFOA and glucose (β = 0.01), systolic (β = 0.76) and diastolic blood pressure (β = 0.65); total cholesterol (β = 0.07) and LDL-c (β = 0.04); and PFOS with glucose (β = 0.03), BMI (β = 2.26), waist circumference (β = 7.89), systolic blood pressure (β = 1.18), total cholesterol (β = 0.13), and HDL-c (β = 0.04). When significant, the correlations of PFNA and PFDA were negative. Of the four PFAS, only PFOA and PFOS showed a positive association, even in serum levels not as high as the values from the literature.
Collapse
Affiliation(s)
- Geraldo A. Maranhao Neto
- International Clinical Research Center (ICRC), St Anne’s University Hospital (FNUSA) Brno, 602 00 Brno, Czech Republic
| | - Anna Bartoskova Polcrova
- International Clinical Research Center (ICRC), St Anne’s University Hospital (FNUSA) Brno, 602 00 Brno, Czech Republic
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Anna Pospisilova
- International Clinical Research Center (ICRC), St Anne’s University Hospital (FNUSA) Brno, 602 00 Brno, Czech Republic
| | - Ludek Blaha
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jana Klanova
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Martin Bobak
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Juan P. Gonzalez-Rivas
- International Clinical Research Center (ICRC), St Anne’s University Hospital (FNUSA) Brno, 602 00 Brno, Czech Republic
- Foundation for Clinic, Public Health, and Epidemiology Research of Venezuela (FISPEVEN INC), Caracas 3001, Venezuela
- Department of Global Health and Population, Harvard TH Chan School of Public Health, Harvard University, Boston, MA 02138, USA
| |
Collapse
|
33
|
Xu C, Zhang L, Zhou Q, Ding J, Yin S, Shang X, Tian Y. Exposure to per- and polyfluoroalkyl substances as a risk factor for gestational diabetes mellitus through interference with glucose homeostasis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156561. [PMID: 35691348 DOI: 10.1016/j.scitotenv.2022.156561] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are hypothesized to trigger gestational diabetes mellitus (GDM) through modulation of glucose metabolism. However, studies investigating links between joint PFASs to GDM are limited and led to discrepant conclusions. This study included 171 women with GDM development in pregnancy and 169 healthy controls from Hangzhou, China between October 2020 and September 2021. By using the solid-phase extraction (SPE)-ultra performance liquid chromatography-tandem-mass-spectrometry (UPLC/MS-MS), 15 PFASs were detected to be widely distributed in maternal serum, with highest median concentrations of 7.43, 4.23, and 3.64 ng/mL for perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), and 6:2 chlorinated polyfluorinated ether sulfonates (6:2 Cl-PFESA). Multivariable logistic regressions suggested that the adjusted odds ratios (ORs) with 95% confidence intervals (CI) of GDM for second and highest tertiles of PFOA were 2.57 (1.24, 4.86), p = 0.001 and 1.98 (1.06, 3.65), p = 0.023. Compared with the reference tertile, the ORs of GDM were also significantly increased at the highest tertile of perfluoroundecanoic acid (PFUnDA), perfluorododecanoic acid (PFDoA), PFOS and 6:2Cl-PFESA. Multiple linear regressions further indicated that exposure to these PFASs congeners were positively associated with continuous glycemic outcomes of fasting blood glucose (FBG), 1-h, and 2-h glucose after 75 g oral glucose tolerance (OGTT) test as well as glycohemoglobin (HbA1c). Nevertheless, perfluorohexane sulfonic acid (PFHxS), 4:2 fluorotelomer sulfonates (FTSs), and 3H-perfluoro-3-[(3-methoxy-propoxy) propanoic acid] (ADONA) exhibited protective effects on some of these glycemic outcomes. When assessing the PFASs as mixtures by conducting the Bayesian kernel machine regression (BKMR), the risks of GDM and values of glycemic outcomes increased significantly as the concentrations of the PFASs mixture increased, with PFOA being the largest contributor. We therefore propose that although the effects on glucose homeostasis varied between different PFAS congeners, the elevated combined exposures to PFASs may be associated with substantially increased GDM risks by altering glucose metabolism.
Collapse
Affiliation(s)
- Chenye Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Long Zhang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China
| | - Quan Zhou
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jiaxin Ding
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Shanshan Yin
- Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Xuejun Shang
- Department of Andrology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Yonghong Tian
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China.
| |
Collapse
|
34
|
Papadopoulou E, Nicolescu A, Haug LS, Husøy T, Deleanu C, Dirven H, Lindeman B. Lipoprotein profiles associated with exposure to poly- and perfluoroalkyl substances (PFASs) in the EuroMix human biomonitoring study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119664. [PMID: 35738521 DOI: 10.1016/j.envpol.2022.119664] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/25/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
Exposure to per- and polyfluoroalkyl substances (PFASs) is associated with increased blood cholesterol. Although elevated cholesterol is a well-established risk factor for cardiovascular diseases (CVD), it is not clear whether PFASs affect this risk. Lipoprotein subclasses are emerging biomarkers for disease risk and lipoprotein profiling may provide an insight to physiological implications of PFAS exposure. We explored the association between serum PFAS concentrations and lipoprotein subclasses in a cross-sectional study. We determined the concentrations and lipid composition of the major subclasses of lipoproteins in plasma samples from 127 adult participants of the EuroMix human biomonitoring study by nuclear magnetic resonance (NMR). Serum concentrations of 17 PFASs showed a detection frequency between 30 and 100% and were included in further analyses. We examined the associations between PFAS concentrations and lipoprotein subclasses by linear mixed-effect regression models, adjusted for confounders. In the adjusted models, positive associations were found between several PFASs and cholesterol concentrations in large to medium sized HDL and medium sized LDL particles. We found a 4-12% increase in HDL cholesterol per interquartile range (IQR) increase for several PFASs. In women the associations with PFNA, PFUnDA, PFDoDA and PFOS were significant after adjustment for multiple comparisons. Similar magnitude of change was observed between longer chained PFASs and LDL cholesterol, and a few of these associations reached significance for cholesterol in large to medium LDL particle sizes in women. No significant associations with plasma triglycerides were observed. However, most PFASs tended to be associated with reduction in VLDL (very low-density lipoproteins) particle number and VLDL triglyceride. Findings from this exploratory study, suggest that background PFAS exposures influence particle size distributions and lipid composition of plasma lipoprotein subclasses, and that these effects may be more prominent in women. A two-points lipoprofiling for all subjects indicated both low intra-individual variability and good analytical reproducibility.
Collapse
Affiliation(s)
- Eleni Papadopoulou
- Norwegian Institute of Public Health, PO Box 222, Skøyen, 0213, Oslo, Norway.
| | - Alina Nicolescu
- "C.D. Nenitescu" Centre of Organic Chemistry, Spl. Independentei 202-B, RO-060023, Bucharest, Romania; "Petru Poni" Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41-A, RO-700487, Iasi, Romania.
| | - Line S Haug
- Norwegian Institute of Public Health, PO Box 222, Skøyen, 0213, Oslo, Norway.
| | - Trine Husøy
- Norwegian Institute of Public Health, PO Box 222, Skøyen, 0213, Oslo, Norway.
| | - Calin Deleanu
- "C.D. Nenitescu" Centre of Organic Chemistry, Spl. Independentei 202-B, RO-060023, Bucharest, Romania; "Petru Poni" Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41-A, RO-700487, Iasi, Romania.
| | - Hubert Dirven
- Norwegian Institute of Public Health, PO Box 222, Skøyen, 0213, Oslo, Norway.
| | - Birgitte Lindeman
- Norwegian Institute of Public Health, PO Box 222, Skøyen, 0213, Oslo, Norway.
| |
Collapse
|
35
|
Roth K, Petriello MC. Exposure to per- and polyfluoroalkyl substances (PFAS) and type 2 diabetes risk. Front Endocrinol (Lausanne) 2022; 13:965384. [PMID: 35992116 PMCID: PMC9388934 DOI: 10.3389/fendo.2022.965384] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/13/2022] [Indexed: 01/09/2023] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are ubiquitous man-made chemicals found in consumer products including fabrics, food packaging, non-stick coatings, and aqueous film-forming foams. PFAS are stable and extremely resistant to degradation, resulting in high persistence throughout the environment as well as in human blood. PFAS consist of a large family of synthetic chemicals, with over 4000 distinct varieties having been identified and around 250 currently being manufactured at globally relevant levels. Numerous epidemiological studies have linked exposure to PFAS with adverse health effects ranging from immunotoxicity, cardiometabolic disease, developmental and reproductive effects, cancer, and recently type 2 diabetes. Several studies have demonstrated associations between serum PFAS concentrations and glycemic indicators of type 2 diabetes including glucose, insulin, and HOMA-IR in adolescent and adult cohorts. In addition, some studies have shown positive associations with incident type 2 diabetes and multiple PFAS. However, the link between PFAS exposure and the development of diabetes continues to be a disputed area of study, with conflicting data having been reported from various epidemiological studies. In this mini review we will summarize the current state of the literature linking PFAS to type 2 diabetes and discuss important future directions including the use of more complex mixtures-based statistical analyses.
Collapse
Affiliation(s)
- Katherine Roth
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States
| | - Michael C. Petriello
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, United States
| |
Collapse
|
36
|
Zare Jeddi M, Soltanmohammadi R, Barbieri G, Fabricio ASC, Pitter G, Dalla Zuanna T, Canova C. To which extent are per-and poly-fluorinated substances associated to metabolic syndrome? REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:211-228. [PMID: 34036763 DOI: 10.1515/reveh-2020-0144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Exposure to per- and polyfluoroalkyl substances (PFAS), ubiquitous persistent environmental contaminants, has led to substantial global concern due to their potential environmental and human health effects. Several epidemiological studies have assessed the possible association between PFAS exposure and risk of metabolic syndrome (MetS), however, the results are ambiguous. The aim of this study was to assess the current human epidemiologic evidence on the association between exposure to PFAS and MetS. We performed a systematic search strategy using three electronic databases (PubMed, Scopus, and Web of Science) for relevant studies concerning the associations of PFAS with MetS and its clinical relevance from inception until January 2021. We undertook meta-analyses where there were five or more studies with exposure and outcomes assessments that were reasonably comparable. The pooled odd ratios (ORs) were calculated using random effects models and heterogeneity among studies was assessed by I2 index and Q test. A total of 12 cross-sectional studies (10 studies on the general population and two studies in the occupational settings) investigated the association between PFAS exposure and MetS. We pooled data from seven studies on the general population for perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS) and five studies for perfluorohexanesulfonate (PFHxS) and perfluorononanoic acid (PFNA). Predominately, most studies reported no statistically significant association between concentrations of PFAS and MetS. In the meta-analysis, the overall measure of effect was not statistically significant, showing no evidence of an association between concentrations of PFOA, PFOS, PFNA, and PFHxS and the risk of MetS. Based on the results of the meta-analysis, current small body of evidence does not support association between PFAS and MetS. However, due to limited number of studies and substantial heterogeneity, results should be interpreted with caution. Further scrutinizing cohort studies are needed to evaluate the association between various and less well-known PFAS substances and their mixture with MetS and its components in both adults and children in different settings.
Collapse
Affiliation(s)
- Maryam Zare Jeddi
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padova, Italy
| | - Rozita Soltanmohammadi
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padova, Italy
| | - Giulia Barbieri
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padova, Italy
| | - Aline S C Fabricio
- Regional Center for Biomarkers, Department of Clinical Pathology, Azienda ULSS 3 Serenissima, Venice, Italy
| | - Gisella Pitter
- Screening and Health Impact Assessment Unit, Azienda Zero-Veneto Region, Padova, Italy
| | - Teresa Dalla Zuanna
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padova, Italy
| | - Cristina Canova
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padova, Italy
| |
Collapse
|
37
|
Boyd RI, Ahmad S, Singh R, Fazal Z, Prins GS, Madak Erdogan Z, Irudayaraj J, Spinella MJ. Toward a Mechanistic Understanding of Poly- and Perfluoroalkylated Substances and Cancer. Cancers (Basel) 2022; 14:2919. [PMID: 35740585 PMCID: PMC9220899 DOI: 10.3390/cancers14122919] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 01/27/2023] Open
Abstract
Poly- and perfluoroalkylated substances (PFAS) are chemicals that persist and bioaccumulate in the environment and are found in nearly all human populations through several routes of exposure. Human occupational and community exposure to PFAS has been associated with several cancers, including cancers of the kidney, testis, prostate, and liver. While evidence suggests that PFAS are not directly mutagenic, many diverse mechanisms of carcinogenicity have been proposed. In this mini-review, we organize these mechanisms into three major proposed pathways of PFAS action-metabolism, endocrine disruption, and epigenetic perturbation-and discuss how these distinct but interdependent pathways may explain many of the proposed pro-carcinogenic effects of the PFAS class of environmental contaminants. Notably, each of the pathways is predicted to be highly sensitive to the dose and window of exposure which may, in part, explain the variable epidemiologic and experimental evidence linking PFAS and cancer. We highlight testicular and prostate cancer as models to validate this concept.
Collapse
Affiliation(s)
- Raya I. Boyd
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL 61802, USA; (R.I.B.); (R.S.); (Z.F.)
| | - Saeed Ahmad
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; (S.A.); (J.I.)
| | - Ratnakar Singh
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL 61802, USA; (R.I.B.); (R.S.); (Z.F.)
| | - Zeeshan Fazal
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL 61802, USA; (R.I.B.); (R.S.); (Z.F.)
| | - Gail S. Prins
- Departments of Urology, Pathology and Physiology, College of Medicine, Chicago Center for Health and Environment, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Zeynep Madak Erdogan
- Department of Food Science and Human Nutrition, Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA;
- Institute of Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute of Technology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Joseph Irudayaraj
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; (S.A.); (J.I.)
- Department of Food Science and Human Nutrition, Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA;
- Institute of Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute of Technology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Michael J. Spinella
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL 61802, USA; (R.I.B.); (R.S.); (Z.F.)
- Institute of Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
38
|
Hoyeck MP, Matteo G, MacFarlane EM, Perera I, Bruin JE. Persistent organic pollutants and β-cell toxicity: a comprehensive review. Am J Physiol Endocrinol Metab 2022; 322:E383-E413. [PMID: 35156417 PMCID: PMC9394781 DOI: 10.1152/ajpendo.00358.2021] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/20/2021] [Accepted: 02/07/2022] [Indexed: 01/09/2023]
Abstract
Persistent organic pollutants (POPs) are a diverse family of contaminants that show widespread global dispersion and bioaccumulation. Humans are continuously exposed to POPs through diet, air particles, and household and commercial products; POPs are consistently detected in human tissues, including the pancreas. Epidemiological studies show a modest but consistent correlation between exposure to POPs and increased diabetes risk. The goal of this review is to provide an overview of epidemiological evidence and an in-depth evaluation of the in vivo and in vitro evidence that POPs cause β-cell toxicity. We review evidence for six classes of POPs: dioxins, polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), organophosphate pesticides (OPPs), flame retardants, and per- and polyfluoroalkyl substances (PFAS). The available data provide convincing evidence implicating POPs as a contributing factor driving impaired glucose homeostasis, β-cell dysfunction, and altered metabolic and oxidative stress pathways in islets. These findings support epidemiological data showing that POPs increase diabetes risk and emphasize the need to consider the endocrine pancreas in toxicity assessments. Our review also highlights significant gaps in the literature assessing islet-specific endpoints after both in vivo and in vitro POP exposure. In addition, most rodent studies do not consider the impact of biological sex or secondary metabolic stressors in mediating the effects of POPs on glucose homeostasis and β-cell function. We discuss key gaps and limitations that should be assessed in future studies.
Collapse
Affiliation(s)
- Myriam P Hoyeck
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Geronimo Matteo
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Erin M MacFarlane
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Ineli Perera
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Jennifer E Bruin
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
39
|
Starnes HM, Rock KD, Jackson TW, Belcher SM. A Critical Review and Meta-Analysis of Impacts of Per- and Polyfluorinated Substances on the Brain and Behavior. FRONTIERS IN TOXICOLOGY 2022; 4:881584. [PMID: 35480070 PMCID: PMC9035516 DOI: 10.3389/ftox.2022.881584] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/14/2022] [Indexed: 01/09/2023] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of structurally diverse synthetic organic chemicals that are chemically stable, resistant to degradation, and persistent in terrestrial and aquatic environments. Widespread use of PFAS in industrial processing and manufacturing over the last 70 years has led to global contamination of built and natural environments. The brain is a lipid rich and highly vascularized organ composed of long-lived neurons and glial cells that are especially vulnerable to the impacts of persistent and lipophilic toxicants. Generally, PFAS partition to protein-rich tissues of the body, primarily the liver and blood, but are also detected in the brains of humans, wildlife, and laboratory animals. Here we review factors impacting the absorption, distribution, and accumulation of PFAS in the brain, and currently available evidence for neurotoxic impacts defined by disruption of neurochemical, neurophysiological, and behavioral endpoints. Emphasis is placed on the neurotoxic potential of exposures during critical periods of development and in sensitive populations, and factors that may exacerbate neurotoxicity of PFAS. While limitations and inconsistencies across studies exist, the available body of evidence suggests that the neurobehavioral impacts of long-chain PFAS exposures during development are more pronounced than impacts resulting from exposure during adulthood. There is a paucity of experimental studies evaluating neurobehavioral and molecular mechanisms of short-chain PFAS, and even greater data gaps in the analysis of neurotoxicity for PFAS outside of the perfluoroalkyl acids. Whereas most experimental studies were focused on acute and subchronic impacts resulting from high dose exposures to a single PFAS congener, more realistic exposures for humans and wildlife are mixtures exposures that are relatively chronic and low dose in nature. Our evaluation of the available human epidemiological, experimental, and wildlife data also indicates heightened accumulation of perfluoroalkyl acids in the brain after environmental exposure, in comparison to the experimental studies. These findings highlight the need for additional experimental analysis of neurodevelopmental impacts of environmentally relevant concentrations and complex mixtures of PFAS.
Collapse
|
40
|
Al-Abdulla R, Ferrero H, Soriano S, Boronat-Belda T, Alonso-Magdalena P. Screening of Relevant Metabolism-Disrupting Chemicals on Pancreatic β-Cells: Evaluation of Murine and Human In Vitro Models. Int J Mol Sci 2022; 23:ijms23084182. [PMID: 35457000 PMCID: PMC9025712 DOI: 10.3390/ijms23084182] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are chemical substances that can interfere with the normal function of the endocrine system. EDCs are ubiquitous and can be found in a variety of consumer products such as food packaging materials, personal care and household products, plastic additives, and flame retardants. Over the last decade, the impact of EDCs on human health has been widely acknowledged as they have been associated with different endocrine diseases. Among them, a subset called metabolism-disrupting chemicals (MDCs) is able to promote metabolic changes that can lead to the development of metabolic disorders such as diabetes, obesity, hepatic steatosis, and metabolic syndrome, among others. Despite this, today, there are still no definitive and standardized in vitro tools to support the metabolic risk assessment of existing and emerging MDCs for regulatory purposes. Here, we evaluated the following two different pancreatic cell-based in vitro systems: the murine pancreatic β-cell line MIN6 as well as the human pancreatic β-cell line EndoC-βH1. Both were challenged with the following range of relevant concentrations of seven well-known EDCs: (bisphenol-A (BPA), bisphenol-S (BPS), bisphenol-F (BPF), perfluorooctanesulfonic acid (PFOS), di(2-ethylhexyl) phthalate (DEHP), cadmium chloride (CdCl2), and dichlorodiphenyldichloroethylene (DDE)). The screening revealed that most of the tested chemicals have detectable, deleterious effects on glucose-stimulated insulin release, insulin content, electrical activity, gene expression, and/or viability. Our data provide new molecular information on the direct effects of the selected chemicals on key aspects of pancreatic β-cell function, such as the stimulus-secretion coupling and ion channel activity. In addition, we found that, in general, the sensitivity and responses were comparable to those from other in vivo studies reported in the literature. Overall, our results suggest that both systems can serve as effective tools for the rapid screening of potential MDC effects on pancreatic β-cell physiology as well as for deciphering and better understanding the molecular mechanisms that underlie their action.
Collapse
Affiliation(s)
- Ruba Al-Abdulla
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche, Spain; (R.A.-A.); (H.F.); (S.S.); (T.B.-B.)
| | - Hilda Ferrero
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche, Spain; (R.A.-A.); (H.F.); (S.S.); (T.B.-B.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Sergi Soriano
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche, Spain; (R.A.-A.); (H.F.); (S.S.); (T.B.-B.)
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, 03690 Alicante, Spain
| | - Talía Boronat-Belda
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche, Spain; (R.A.-A.); (H.F.); (S.S.); (T.B.-B.)
| | - Paloma Alonso-Magdalena
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche, Spain; (R.A.-A.); (H.F.); (S.S.); (T.B.-B.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
41
|
Richard AM, Hidle H, Patlewicz G, Williams AJ. Identification of Branched and Linear Forms of PFOA and Potential Precursors: A User-Friendly SMILES Structure-based Approach. FRONTIERS IN ENVIRONMENTAL SCIENCE 2022; 10:1-865488. [PMID: 35494535 PMCID: PMC9048161 DOI: 10.3389/fenvs.2022.865488] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Perfluorooctanoic acid (PFOA) and related compounds are per- and polyfluorinated alkyl substances (PFASs) of concern from toxicological, environmental, and regulatory perspectives. In 2019, the Conference of the Parties to the Stockholm Convention on Persistent Organic Pollutants listed PFOA, its salts, and PFOA-related compounds in Annex A to the Convention. Additionally, the listing specifically included PFOA branched isomers and compounds containing a perfluoroheptyl (C7F15)C moiety, with some noted exclusions. A draft updated "Indicative List" of 393 PFASs (335 with defined structures), each specified as falling within or outside the listing, was released for comment in 2021. The U.S. Environmental Protection Agency's CompTox Chemicals Dashboard has published a curated PFAS list containing more than 10,700 structures. Applying the PFOA and related compounds listing definition to screen this list required a structure-based approach capable of discerning salts and branched or linear forms of the (C7F15)C moiety. A PFOA SMILES workflow and associated Excel macro file, developed to address this need, applies a series of text substitution rules to a set of canonicalized SMILES structure representations to convert branched forms of the (C7F15)C moiety to linear forms to aid their detection. The approach correctly classified each Stockholm Convention draft Indicative List structure relative to the PFOA and related compounds definition, and accurately discerned branched and linear forms of the (C7F15)C moiety in over 10,700 PFAS structures with 100% sensitivity (no false negatives) and 99.7% accuracy (35 false positives). Approximately 20% of structures in the large PFAS list fell within the PFOA and related compounds definition, and 10% of those were branched. The present work highlights the need to computationally detect branched forms of PFASs and promotes the use of unambiguous, structure-based definitions, along with tools that are publicly available and easy to use, to support clear communication and regulatory action within the PFAS community.
Collapse
Affiliation(s)
- Ann M. Richard
- Center for Computational Toxicology & Exposure, Office
of Research and Development, U.S. Environmental Protection Agency, Research Triangle
Park, Triangle Park, NC, United States
| | - Hannah Hidle
- ORAU Student Services Contractor to Center for
Computational Toxicology & Exposure, Office of Research and Development, U.S.
Environmental Protection Agency, Research Triangle Park, Triangle Park, NC, United
States
| | - Grace Patlewicz
- Center for Computational Toxicology & Exposure, Office
of Research and Development, U.S. Environmental Protection Agency, Research Triangle
Park, Triangle Park, NC, United States
| | - Antony J. Williams
- Center for Computational Toxicology & Exposure, Office
of Research and Development, U.S. Environmental Protection Agency, Research Triangle
Park, Triangle Park, NC, United States
| |
Collapse
|
42
|
Mi X, Wu LY, Liu JJ, Fang QL, Qian ZM, Chu C, Li QQ, Su F, Zhang YT, Zhou P, Zeng XW, Yu HY, Dong P, Zhou Y, Ou Y, Xiong S, Shen X, Feng W, Zhou Y, Dong GH. The effects of Cl-PFESAs exposure on blood lipids - A community-based large population study in Guangzhou. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150634. [PMID: 34597565 DOI: 10.1016/j.scitotenv.2021.150634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Numerous epidemiological studies have investigated the lipid interference effects of legacy PFASs, however, no studies on PFAS alternatives and blood lipids have been published. In this study, we explored the association between Cl-PFESAs, a typical PFASs alternative in China, and blood lipid profiles in 1336 Guangzhou community residents using linear and non-linear regression models. The results showed a deleterious effect of Cl-PFESAs and blood lipids: adjusted estimates (β) for TC, TG, LDL-C and HDL-C per natural log unit increase of 6:2 Cl-PFESA were 0.029 (95% CI: 0.020, 0.038), 0.075 (95% CI: 0.049, 0.101), 0.035 (95% CI: 0.021, 0.049) and -0.071 (95% CI: -0.084, -0.058), respectively. The association between Cl-PFESAs and dyslipidemia was also positively significant (P < 0.05). Furthermore, a non-linear relationship was observed in Cl-PFESAs and serum lipid levels using a restricted cubic splines (RCS) model. In summary, our research suggested a negative impact of Cl-PFESAs on blood lipid patterns and a possible non-linear association.
Collapse
Affiliation(s)
- Xin Mi
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Lu-Yin Wu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiao-Jiao Liu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qiu-Ling Fang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhengmin Min Qian
- Department of Epidemiology and Biostatistics, College for Public Health & Social Justice, Saint Louis University, Saint Louis, MO 63104, USA
| | - Chu Chu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qing-Qing Li
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Fan Su
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yun-Ting Zhang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Peien Zhou
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Hong-Yao Yu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Pengxin Dong
- Nursing College, Guangxi Medical University, Nanning 530021, China
| | - Yang Zhou
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, China
| | - Yanqiu Ou
- Department of Epidemiology, Guangdong Cardiovascular Institute, WHO Collaborating Center for Research and Training in Cardiovascular Diseases, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Shimin Xiong
- School of Public Health, Zunyi Medical University, Zunyi 563060, China
| | - Xubo Shen
- School of Public Health, Zunyi Medical University, Zunyi 563060, China
| | - Wenru Feng
- Department of Environmental Health, Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China.
| | - Yuanzhong Zhou
- School of Public Health, Zunyi Medical University, Zunyi 563060, China.
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
43
|
Sen P, Qadri S, Luukkonen PK, Ragnarsdottir O, McGlinchey A, Jäntti S, Juuti A, Arola J, Schlezinger JJ, Webster TF, Orešič M, Yki-Järvinen H, Hyötyläinen T. Exposure to environmental contaminants is associated with altered hepatic lipid metabolism in non-alcoholic fatty liver disease. J Hepatol 2022; 76:283-293. [PMID: 34627976 DOI: 10.1016/j.jhep.2021.09.039] [Citation(s) in RCA: 151] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS Recent experimental models and epidemiological studies suggest that specific environmental contaminants (ECs) contribute to the initiation and pathology of non-alcoholic fatty liver disease (NAFLD). However, the underlying mechanisms linking EC exposure with NAFLD remain poorly understood and there is no data on their impact on the human liver metabolome. Herein, we hypothesized that exposure to ECs, particularly perfluorinated alkyl substances (PFAS), impacts liver metabolism, specifically bile acid metabolism. METHODS In a well-characterized human NAFLD cohort of 105 individuals, we investigated the effects of EC exposure on liver metabolism. We characterized the liver (via biopsy) and circulating metabolomes using 4 mass spectrometry-based analytical platforms, and measured PFAS and other ECs in serum. We subsequently compared these results with an exposure study in a PPARa-humanized mouse model. RESULTS PFAS exposure appears associated with perturbation of key hepatic metabolic pathways previously found altered in NAFLD, particularly those related to bile acid and lipid metabolism. We identified stronger associations between the liver metabolome, chemical exposure and NAFLD-associated clinical variables (liver fat content, HOMA-IR), in females than males. Specifically, we observed PFAS-associated upregulation of bile acids, triacylglycerols and ceramides, and association between chemical exposure and dysregulated glucose metabolism in females. The murine exposure study further corroborated our findings, vis-à-vis a sex-specific association between PFAS exposure and NAFLD-associated lipid changes. CONCLUSIONS Females may be more sensitive to the harmful impacts of PFAS. Lipid-related changes subsequent to PFAS exposure may be secondary to the interplay between PFAS and bile acid metabolism. LAY SUMMARY There is increasing evidence that specific environmental contaminants, such as perfluorinated alkyl substances (PFAS), contribute to the progression of non-alcoholic fatty liver disease (NAFLD). However, it is poorly understood how these chemicals impact human liver metabolism. Here we show that human exposure to PFAS impacts metabolic processes associated with NAFLD, and that the effect is different in females and males.
Collapse
Affiliation(s)
- Partho Sen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland; School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Sami Qadri
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Panu K Luukkonen
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Internal Medicine, Yale University, New Haven, Connecticut, USA
| | - Oddny Ragnarsdottir
- MTM Research Centre, School of Science and Technology, Örebro University, Örebro, Sweden
| | | | - Sirkku Jäntti
- Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Anne Juuti
- Department of Gastrointestinal Surgery, Abdominal Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Johanna Arola
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jennifer J Schlezinger
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Thomas F Webster
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Matej Orešič
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland; School of Medical Sciences, Örebro University, Örebro, Sweden.
| | - Hannele Yki-Järvinen
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland.
| | - Tuulia Hyötyläinen
- MTM Research Centre, School of Science and Technology, Örebro University, Örebro, Sweden.
| |
Collapse
|
44
|
Zhang YT, Zeeshan M, Su F, Qian ZM, Dee Geiger S, Edward McMillin S, Wang ZB, Dong PX, Ou YQ, Xiong SM, Shen XB, Zhou PE, Yang BY, Chu C, Li QQ, Zeng XW, Feng WR, Zhou YZ, Dong GH. Associations between both legacy and alternative per- and polyfluoroalkyl substances and glucose-homeostasis: The Isomers of C8 health project in China. ENVIRONMENT INTERNATIONAL 2022; 158:106913. [PMID: 34624590 DOI: 10.1016/j.envint.2021.106913] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Epidemiological studies on the associations of legacy per- and polyfluoroalkyl substances (PFASs) and glucose homeostasis remain discordant. Understanding of PFAS alternatives is limited, and few studies have reported joint associations of PFASs and PFAS alternatives. OBJECTIVES To investigate associations of novel PFAS alternatives (chlorinated perfluoroalkyl ether sulfonic acids, Cl-PFESAs and perfluorobutanoic acid, PFBA) and two legacy PFASs (Perfluorooctanoic acid, PFOA and perfluorooctane sulfonate, PFOS) with glucose-homeostasis markers and explore joint associations of 13 legacy and alternative PFASs with the selected outcomes. METHODS We used cross-sectional data of 1,038 adults from the Isomers of C8 Health Project in China. Associations of PFASs and PFAS alternatives with glucose-homeostasis were explored in single-pollutant models using generalized linear models with natural cubic splines for PFASs. Bayesian Kernel Machine Regression (BKMR) models were applied to assess joint associations of exposures and outcomes. Sex-specific analyses were also conducted to evaluate effect modification. RESULTS After adjusting for confounders, both legacy (PFOA, PFOS) and alternative (Cl-PFESAs and PFBA) PFASs were positively associated with glucose-homeostasis markers in single-pollutant models. For example, in the total study population, estimated changes with 95% confidence intervals (CI) of fasting glucose at the 95th percentile of 6:2Cl-PFESA and PFOS against the thresholds were 0.90 (95% CI: 0.59, 1.21) and 0.44 (95% CI: 0.26, 0.62). Positive joint associations were found in BKMR models with 6:2Cl-PFESA contributing most. Sex-specific associations existed in both single- and multi-pollutant models. CONCLUSIONS Legacy and alternative PFASs were positively associated with glucose-homeostasis markers. 6:2Cl-PFESA was the primary contributor. Sex-specific associations were also identified. These results indicate that joint associations and effect modification should be considered in risk assessment. However, further studies are recommended to strengthen our findings and to elucidate the mechanisms of action of legacy and alternative PFASs.
Collapse
Affiliation(s)
- Yun-Ting Zhang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Mohammed Zeeshan
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Fan Su
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zheng-Min Qian
- Department of Epidemiology and Biostatistics, College for Public Health & Social Justice, Saint Louis University, Saint Louis, MO 63104, USA
| | - Sarah Dee Geiger
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - Stephen Edward McMillin
- School of Social Work, College for Public Health and Social Justice, Saint Louis University, Saint Louis, MO 63103, USA
| | - Zhi-Bin Wang
- Department of Environmental Health Sciences, Laboratory of Human Environmental Epigenomes, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Peng-Xin Dong
- Nursing College, Guangxi Medical University, Nanning 530021, China
| | - Yan-Qiu Ou
- Department of Epidemiology, Guangdong Cardiovascular Institute, WHO Collaborating Center for Research and Training in Cardiovascular Diseases, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Shi-Min Xiong
- School of Public Health, Zunyi Medical University, Zunyi 563060, China
| | - Xu-Bo Shen
- School of Public Health, Zunyi Medical University, Zunyi 563060, China
| | - Pei-En Zhou
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Chu Chu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qing-Qing Li
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wen-Ru Feng
- Department of Environmental Health, Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China.
| | - Yuan-Zhong Zhou
- School of Public Health, Zunyi Medical University, Zunyi 563060, China.
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
45
|
Lin CY, Lee HL, Wang C, Sung FC, Su TC. Association between the total plasma isomers of per- and polyfluoroalkyl substances and erythrograms in young and middle-aged Taiwanese populations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112902. [PMID: 34656858 DOI: 10.1016/j.ecoenv.2021.112902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
PURPOSE Per- and polyfluoroalkyl substances (PFAS) are human-made chemicals used in daily use products. Recent studies have shown that different perfluorooctanoic acid (PFOA) and/or perfluorooctane sulfonate (PFOS) isomers may have different biological effects. In vitro studies have also reported that PFAS exposure can alter the structure of hemoglobin (Hb). In epidemiology, however, few studies have investigated the relationship between PFAS exposure and erythrocytes. Additionally, the correlation between PFOA/PFOS isomers and full erythrograms has never been explored. APPROACH AND RESULTS In cohorts comprising young and middle-aged Taiwanese populations, we enrolled 1483 participants (aged between 12 and 63 years) to analyze the correlations between the plasma levels of PFOA/PFOS isomers and whole-blood erythrograms. The study comprised 868 men and 615 women with a mean age of 31.2 years. When all PFOA/PFOS isomers were entered into the multiple linear regression model, the linear PFOA (L-PFOA) levels were positively correlated with the Hb, hematocrit (HCT), mean corpuscular volume (MCV), and mean corpuscular hemoglobin (MCH) levels while the branched PFOS (B-PFOS) levels were positively associated with the Hb, HCT, and mean corpuscular hemoglobin concentration (MCHC). The mean value of Hb was the highest (14.66 mg/dL (95% CI =14.52-14.80); P for trend <0.001) when both the L-PFOA and B-PFOS levels were above the 50th percentile. CONCLUSIONS The results imply that PFOA/PFOS isomers may increase the weight and volume of Hb/RBC and that L-PFOA/B-PFOS may have an additive effect on the Hb levels. However, it is also possible PFAS detected at a higher concentration may due to its binding to higher levels of Hb. Further studies are needed to investigate the effects of PFOA/PFOS isomers on RBCs in humans.
Collapse
Affiliation(s)
- Chien-Yu Lin
- Department of Internal Medicine, En Chu Kong Hospital, New Taipei City 237, Taiwan; School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan; Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan
| | - Hui-Ling Lee
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Chikang Wang
- Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan
| | - Fung-Chang Sung
- Department of Health Services Administration, China Medical University College of Public Health, Taichung 404, Taiwan; Department of Food Nutrition and Health Biotechnology, Asia University, Taichung 413, Taiwan
| | - Ta-Chen Su
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei 100, Taiwan.
| |
Collapse
|
46
|
Roth K, Yang Z, Agarwal M, Liu W, Peng Z, Long Z, Birbeck J, Westrick J, Liu W, Petriello MC. Exposure to a mixture of legacy, alternative, and replacement per- and polyfluoroalkyl substances (PFAS) results in sex-dependent modulation of cholesterol metabolism and liver injury. ENVIRONMENT INTERNATIONAL 2021; 157:106843. [PMID: 34479135 PMCID: PMC8490327 DOI: 10.1016/j.envint.2021.106843] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/22/2021] [Accepted: 08/19/2021] [Indexed: 05/22/2023]
Abstract
BACKGROUND Epidemiological studies have shown Per- and polyfluoroalkyl substances (PFAS) to be associated with diseases of dysregulated lipid and sterol homeostasis such as steatosis and cardiometabolic disorders. However, the majority of mechanistic studies rely on single chemical exposures instead of identifying mechanisms related to the toxicity of PFAS mixtures. OBJECTIVES The goal of the current study is to investigate mechanisms linking exposure to a PFAS mixture with alterations in lipid metabolism, including increased circulating cholesterol and bile acids. METHODS Male and female wild-type C57BL/6J mice were fed an atherogenic diet used in previous studies of pollutant-accelerated atherosclerosis and exposed to water containing a mixture of 5 PFAS representing legacy, replacement, and alternative subtypes (i.e., PFOA, PFOS, PFNA, PFHxS, and GenX), each at a concentration of 2 mg/L, for 12 weeks. Changes at the transcriptome and metabolome level were determined by RNA-seq and high-resolution mass spectrometry, respectively. RESULTS We observed increased circulating cholesterol, sterol metabolites, and bile acids due to PFAS exposure, with some sexual dimorphic effects. PFAS exposure increased hepatic injury, demonstrated by increased liver weight, hepatic inflammation, and plasma alanine aminotransferase levels. Females displayed increased lobular and portal inflammation compared to the male PFAS-exposed mice. Hepatic transcriptomics analysis revealed PFAS exposure modulated multiple metabolic pathways, including those related to sterols, bile acids, and acyl carnitines, with multiple sex-specific differences observed. Finally, we show that hepatic and circulating levels of PFOA were increased in exposed females compared to males, but this sexual dimorphism was not the same for other PFAS examined. DISCUSSION Exposure of mice to a mixture of PFAS results in PFAS-mediated modulation of cholesterol levels, possibly through disruption of enterohepatic circulation.
Collapse
Affiliation(s)
- Katherine Roth
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Zhao Yang
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Manisha Agarwal
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA; Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48202, USA
| | - Wendy Liu
- Department of Pathology, University Hospitals, Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Zheyun Peng
- Department of Pharmaceutical Sciences, College of Pharmacy, Wayne State University, Detroit, MI 48202, USA
| | - Ze Long
- Department of Pharmaceutical Sciences, College of Pharmacy, Wayne State University, Detroit, MI 48202, USA
| | - Johnna Birbeck
- Department of Chemistry, Lumigen Instrumentation Center, Wayne State University, Detroit, MI 48202, USA
| | - Judy Westrick
- Department of Chemistry, Lumigen Instrumentation Center, Wayne State University, Detroit, MI 48202, USA
| | - Wanqing Liu
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48202, USA; Department of Pharmaceutical Sciences, College of Pharmacy, Wayne State University, Detroit, MI 48202, USA
| | - Michael C Petriello
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA; Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
47
|
Papadopoulou E, Stratakis N, Basagaña X, Brantsæter AL, Casas M, Fossati S, Gražulevičienė R, Småstuen Haug L, Heude B, Maitre L, McEachan RRC, Robinson O, Roumeliotaki T, Sabidó E, Borràs E, Urquiza J, Vafeiadi M, Zhao Y, Slama R, Wright J, Conti DV, Vrijheid M, Chatzi L. Prenatal and postnatal exposure to PFAS and cardiometabolic factors and inflammation status in children from six European cohorts. ENVIRONMENT INTERNATIONAL 2021; 157:106853. [PMID: 34500361 PMCID: PMC11847598 DOI: 10.1016/j.envint.2021.106853] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 05/14/2023]
Abstract
Developing children are particularly vulnerable to the effects of exposure to per- and polyfluoroalkyl substances (PFAS), a group of endocrine disrupting chemicals. We hypothesized that early life exposure to PFASs is associated with poor metabolic health in children. We studied the association between prenatal and postnatal PFASs mixture exposure and cardiometabolic health in children, and the role of inflammatory proteins. In 1,101 mothers-child pairs from the Human Early Life Exposome project, we measured the concentrations of PFAS in blood collected in pregnancy and at 8 years (range = 6-12 years). We applied Bayesian Kernel Machine regression (BKMR) to estimate the associations between exposure to PFAS mixture and the cardiometabolic factors as age and sex- specific z-scores of waist circumference (WC), systolic and diastolic blood pressures (BP), and concentrations of triglycerides (TG), high-density lipoprotein (HDL-C) and low-density lipoprotein (LDL-C) cholesterol. We measured thirty six inflammatory biomarkers in child plasma and examined the underlying role of inflammatory status for the exposure-outcome association by integrating the three panels into a network. Exposure to the PFAS mixture was positively associated with HDL-C and systolic BP, and negatively associated with WC, LDL-C and TG. When we examined the independent effects of the individual chemicals in the mixture, prenatal PFHxS was negatively associated with HDL-C and prenatal PFNA was positively associated with WC and these were opposing directions from the overall mixture. Further, the network consisted of five distinct communities connected with positive and negative correlations. The selected inflammatory biomarkers were positively, while the postnatal PFAS were negatively related with the included cardiometabolic factors, and only prenatal PFOA was positively related with the pro-inflammatory cytokine IL-1beta and WC. Our study supports that prenatal, rather than postnatal, PFAS exposure might contribute to an unfavorable lipidemic profile and adiposity in childhood.
Collapse
Affiliation(s)
| | - Nikos Stratakis
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA; Department of Complex Genetics and Epidemiology, CAPHRI School for Public Health and Primary Care, University of Maastricht, Maastricht, the Netherlands
| | - Xavier Basagaña
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain
| | | | - Maribel Casas
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain
| | - Serena Fossati
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain
| | | | | | - Barbara Heude
- Centre for Research in Epidemiology and Statistics, INSERM, Université de Paris, INRAe, Paris, France
| | - Léa Maitre
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain
| | - Rosemary R C McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Oliver Robinson
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, UK
| | - Theano Roumeliotaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Eduard Sabidó
- Proteomics Unit, Centre de Regulació Genòmica, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Eva Borràs
- Proteomics Unit, Centre de Regulació Genòmica, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Jose Urquiza
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Yinqi Zhao
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Rémy Slama
- Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Inserm, CNRS, University Grenoble Alpes, Institute of Advanced Biosciences, Joint research center (U1209), La Tronche, Grenoble, France
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - David V Conti
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain
| | - Lida Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA
| |
Collapse
|
48
|
Han X, Meng L, Zhang G, Li Y, Shi Y, Zhang Q, Jiang G. Exposure to novel and legacy per- and polyfluoroalkyl substances (PFASs) and associations with type 2 diabetes: A case-control study in East China. ENVIRONMENT INTERNATIONAL 2021; 156:106637. [PMID: 33993001 DOI: 10.1016/j.envint.2021.106637] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 06/12/2023]
Abstract
Associations between per- and polyfluoroalkyl substances (PFASs) and the incidence of type 2 diabetes are controversial in epidemiological studies. In addition, limited data are available for assessing the health effects of novel PFAS alternatives. Our study evaluated the effects of PFAS exposure on type 2 diabetes by estimating the associations of PFASs in human serum with the risk of type 2 diabetes and levels of glycemic biomarkers and lipid fractions. The case-control study consisted of 304 participants from Shandong Province, East China, half of which were diagnosed with type 2 diabetes. Logistic regression showed that most PFASs were inversely associated with the risk of type 2 diabetes after adjusting for age, sex, and body mass index. However, concentrations of perfluorooctanoic acid (PFOA) in the control group were positively associated with fasting plasma glucose levels (β = 0.04, 95% confidence interval (CI): 0.0003, 0.08), which may promote the development of type 2 diabetes. Furthermore, each log-unit increase in the concentrations of perfluorononanoic acid (PFNA), perfluoroundecanoic acid (PFUnDA), and 6:2 chlorinated polyfluoroalkyl ether sulfonic acid (Cl-PFESA) were associated with a total cholesterol increase (i.e., 17.49% (95% CI: 0.93%, 34.90%), 17.49% (95% CI: 4.71%, 31.83%), and 17.49% (95% CI: 4.71%, 31.83%), respectively). Positive associations were also observed between PFNA, PFUnDA, perfluorooctane sulfonate (PFOS), and 6:2 Cl-PFESA and low-density lipoprotein cholesterol. However, no associations between PFASs and hemoglobin A1c, triglycerides, or high-density lipoprotein cholesterol reached statistical significance, nor associations between PFAS mixtures and outcomes of interest. In conclusion, the significant correlations between serum PFASs and glycemic biomarkers and lipid fractions indicated that PFAS exposure may be a potential diabetogenic factor. To the best of our knowledge, this is the first study to assess the associations between novel Cl-PFESAs and type 2 diabetes, although the inverse associations observed require clarification in future studies.
Collapse
Affiliation(s)
- Xu Han
- Research Institute of Petroleum Processing, Sinopec, Beijing 100083, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lingling Meng
- Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, Jinan, Shandong 250014, China
| | - Gaoxin Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Chemistry and Chemical Engineering, Northwest Normal University, Lan Zhou, Gansu 730070, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yali Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| |
Collapse
|
49
|
Cong J, Chu C, Li QQ, Zhou Y, Min Qian Z, Dee Geiger S, Vaughn MG, Zeng XW, Liu RQ, Hu LW, Yang BY, Chen G, Zeeshan M, Sun X, Xiang M, Dong GH. Associations of perfluorooctane sulfonate alternatives and serum lipids in Chinese adults. ENVIRONMENT INTERNATIONAL 2021; 155:106596. [PMID: 33940391 DOI: 10.1016/j.envint.2021.106596] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Chlorinated polyfluorinated ether sulfonic acids (Cl-PFESAs), a group of perfluorooctane sulfonate (PFOS) alternatives, can be widely observed in humans and environmental matrices. However, associations between exposure to Cl-PFESAs and serum lipid levels in adults are unknown. OBJECTIVE To explore the relationships between Cl-PFESA levels and serum lipid levels in adults. METHODS We analyzed 1238 adults from the Isomers of C8 Health Project, a cross-sectional study conducted in China from July 2015 to October 2016. The average age of the participants was 61.98 ± 14.40 years. We quantified two select legacy per- and perfluoroalkyl substances [perfluorooctanoic acid (PFOA) and PFOS] and their alternatives (6:2 and 8:2 Cl-PFESAs). We also measured four serum lipids: low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), total cholesterol (TC), and triglycerides (TG). We used generalized linear models to estimate the associations between PFASs and serum lipids, with PFASs defined as either a categorical variable divided into quartiles or as a continuous variable. RESULTS We found that 6:2 Cl-PFESA was positively associated with serum TC and LDL-C. For instance, LDL-C levels in the highest quartile of 6:2 Cl-PFESA exposure (Q4) were significantly higher than those in the lowest quartile (Q1) [β: 0.19, 95% confidence interval (CI): 0.08, 0.30]. Further analysis showed that one ln-ng/mL increase in 6:2 Cl-PFESA exposure corresponded to a 0.10 mmol/L (95% CI: 0.05, 0.16) LDL-C increase, and that exposure to 8:2 Cl-PFESA was negatively correlated with HDL-C (β: -0.03, 95% CI: -0.05, -0.01). TC had a similar relationship with both 6:2 Cl-PFESA and legacy PFASs. Participants with a BMI ≥ 25 kg/m2 exhibited a stronger association between 6:2 Cl-PFESA and TC. CONCLUSIONS Our findings make the novel suggestion that exposure to Cl-PFESAs are adversely associated with serum lipid levels, and that such associations are also observed in legacy PFASs. Increased investigation into the effects of Cl-PFESAs exposure on human health is warranted.
Collapse
Affiliation(s)
- Jianping Cong
- Department of Internal Medicine, Shenyang Women's and Children's Hospital, Shenyang 110011, China; Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Chu Chu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qing-Qing Li
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yang Zhou
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, China
| | - Zhengmin Min Qian
- Department of Epidemiology and Biostatistics, College for Public Health & Social Justice, Saint Louis University, Saint Louis, MO 63104, USA
| | - Sarah Dee Geiger
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - Michael G Vaughn
- School of Social Work, College for Public Health & Social Justice, Saint Louis University, Saint Louis, MO 63104, USA
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ru-Qing Liu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Wen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Gongbo Chen
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Mohammed Zeeshan
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao Sun
- Department of Internal Medicine, Shenyang Women's and Children's Hospital, Shenyang 110011, China.
| | - Mingdeng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, China.
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
50
|
Margolis R, Sant KE. Associations between Exposures to Perfluoroalkyl Substances and Diabetes, Hyperglycemia, or Insulin Resistance: A Scoping Review. J Xenobiot 2021; 11:115-129. [PMID: 34564296 PMCID: PMC8482218 DOI: 10.3390/jox11030008] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 01/09/2023] Open
Abstract
Per- and polyfluoroalkyl substances (PFASs) are persistent environmental pollutants that are commonly found in the human body due to exposures via drinking water, surfactants used in consumer materials, and aqueous film-forming foams (AFFFs). PFAS exposure has been linked to adverse health effects such as low infant birth weights, cancer, and endocrine disruption, though increasingly studies have demonstrated that they may perturb metabolic processes and contribute to dysfunction. This scoping review summarizes the chemistry of PFAS exposure and the epidemiologic evidence for associations between exposure to per- and polyfluoroalkyl substances and the development of diabetes, hyperglycemia, and/or insulin resistance. We identified 11 studies on gestational diabetes mellitus, 3 studies on type 1 diabetes, 7 studies on type 2 diabetes, 6 studies on prediabetes or unspecified diabetes, and 15 studies on insulin resistance or glucose tolerance using the SCOPUS and PubMed databases. Approximately 24 reported positive associations, 9 negative associations, 2 non-linear associations, and 2 inverse associations, and 8 reported no associations found between PFAS and all diabetes search terms. Cumulatively, these data indicate the need for further studies to better assess these associations between PFAS exposure and diabetes.
Collapse
Affiliation(s)
| | - Karilyn E. Sant
- School of Public Health, San Diego State University, San Diego, CA 92182, USA;
| |
Collapse
|