1
|
Antonetti OR, Desine S, Smith HM, Robles ME, McDonald E, Ovide G, Wang C, Dean ED, Doran AC, Calcutt MW, Huang S, Brown JD, Silver HJ, Ferguson JF. The consumption of animal products is associated with plasma levels of alpha-aminoadipic acid (2-AAA). Nutr Metab Cardiovasc Dis 2024; 34:1712-1720. [PMID: 38658223 PMCID: PMC11188583 DOI: 10.1016/j.numecd.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/15/2024] [Accepted: 03/07/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND AND AIMS The cardiometabolic disease-associated metabolite, alpha-aminoadipic acid (2-AAA) is formed from the breakdown of the essential dietary amino acid lysine. However, it was not known whether elevated plasma levels of 2-AAA are related to dietary nutrient intake. We aimed to determine whether diet is a determinant of circulating 2-AAA in healthy individuals, and whether 2-AAA is altered in response to dietary modification. METHODS AND RESULTS We investigated the association between 2-AAA and dietary nutrient intake in a cross-sectional study of healthy individuals (N = 254). We then performed a randomized cross-over dietary intervention trial to investigate the effect of lysine supplementation (1 week) on 2-AAA in healthy individuals (N = 40). We further assessed the effect of a vegetarian diet on 2-AAA in a short-term (4-day) dietary intervention trial in healthy omnivorous women (N = 35). We found that self-reported dietary intake of animal products, including meat, poultry, and seafood, was associated with higher plasma 2-AAA cross-sectionally (P < 0.0001). Supplementary dietary lysine (5g/day) caused no significant increase in plasma 2-AAA; however, plasma 2-AAA was altered by general dietary modification. Further, plasma 2-AAA was significantly reduced by a short-term vegetarian diet (P = 0.003). CONCLUSION We identified associations between plasma 2-AAA and consumption of animal products, which were validated in a vegetarian dietary intervention trial, but not in a trial designed to specifically increase the 2-AAA amino acid precursor lysine. Further studies are warranted to investigate whether implementation of a vegetarian diet improves cardiometabolic risk in individuals with elevated 2-AAA.
Collapse
Affiliation(s)
- Olivia R Antonetti
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, USA
| | - Stacy Desine
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, USA
| | - Holly M Smith
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, USA
| | - Michelle E Robles
- Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, USA
| | - Ezelle McDonald
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, USA
| | - Gerry Ovide
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, USA
| | - Chuan Wang
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, USA
| | - E Danielle Dean
- Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, USA
| | - Amanda C Doran
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, USA
| | - M Wade Calcutt
- Department of Biochemistry, Mass Spectrometry Research Center, Vanderbilt University, USA
| | - Shi Huang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville TN, USA
| | - Jonathan D Brown
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, USA
| | - Heidi J Silver
- Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, USA; Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville TN, USA
| | - Jane F Ferguson
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, USA.
| |
Collapse
|
2
|
Yan J, Wu J, Xu M, Wang M, Guo W. Disrupted de novo pyrimidine biosynthesis impairs adult hippocampal neurogenesis and cognition in pyridoxine-dependent epilepsy. SCIENCE ADVANCES 2024; 10:eadl2764. [PMID: 38579001 PMCID: PMC10997211 DOI: 10.1126/sciadv.adl2764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/04/2024] [Indexed: 04/07/2024]
Abstract
Despite seizure control by early high-dose pyridoxine (vitamin B6) treatment, at least 75% of pyridoxine-dependent epilepsy (PDE) patients with ALDH7A1 mutation still suffer from intellectual disability. It points to a need for additional therapeutic interventions for PDE beyond pyridoxine treatment, which provokes us to investigate the mechanisms underlying the impairment of brain hemostasis by ALDH7A1 deficiency. In this study, we show that ALDH7A1-deficient mice with seizure control exhibit altered adult hippocampal neurogenesis and impaired cognitive functions. Mechanistically, ALDH7A1 deficiency leads to the accumulation of toxic lysine catabolism intermediates, α-aminoadipic-δ-semialdehyde and its cyclic form, δ-1-piperideine-6-carboxylate, which in turn impair de novo pyrimidine biosynthesis and inhibit NSC proliferation and differentiation. Notably, supplementation of pyrimidines rescues abnormal neurogenesis and cognitive impairment in ALDH7A1-deficient adult mice. Therefore, our findings not only define the important role of ALDH7A1 in the regulation of adult hippocampal neurogenesis but also provide a potential therapeutic intervention to ameliorate the defective mental capacities in PDE patients with seizure control.
Collapse
Affiliation(s)
- Jianfei Yan
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100093, China
| | - Junjie Wu
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100093, China
| | - Mingyue Xu
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100093, China
| | - Min Wang
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Weixiang Guo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
3
|
Taylor-Bowden T, Bhogoju S, Khwatenge CN, Nahashon SN. The Impact of Essential Amino Acids on the Gut Microbiota of Broiler Chickens. Microorganisms 2024; 12:693. [PMID: 38674637 PMCID: PMC11052162 DOI: 10.3390/microorganisms12040693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
The research involving the beneficial aspects of amino acids being added to poultry feed pertaining to performance, growth, feed intake, and feed conversion ratio is extensive. Yet currently the effects of amino acids on the gut microbiota aren't fully understood nor have there been many studies executed in poultry to explain the relationship between amino acids and the gut microbiota. The overall outcome of health has been linked to bird gut health due to the functionality of gastrointestinal tract (GIT) for digestion/absorption of nutrients as well as immune response. These essential functions of the GI are greatly driven by the resident microbiota which produce metabolites such as butyrate, propionate, and acetate, providing the microbiota a suitable and thrive driven environment. Feed, age, the use of feed additives and pathogenic infections are the main factors that have an effect on the microbial community within the GIT. Changes in these factors may have potential effects on the gut microbiota in the chicken intestine which in turn may have an influence on health essentially affecting growth, feed intake, and feed conversion ratio. This review will highlight limited research studies that investigated the possible role of amino acids in the gut microbiota composition of poultry.
Collapse
Affiliation(s)
- Thyneice Taylor-Bowden
- Department of Agriculture and Environmental Sciences, Tennessee State University, Nashville, TN 37209, USA;
| | - Sarayu Bhogoju
- College of Medicine, University of Kentucky, Lexington, KY 40506, USA;
| | - Collins N. Khwatenge
- College of Agriculture, Science and Technology, Department of Biological Sciences, Delaware State University, Dover, DE 19901, USA;
| | - Samuel N. Nahashon
- Department of Agriculture and Environmental Sciences, Tennessee State University, Nashville, TN 37209, USA;
| |
Collapse
|
4
|
Moro J, Roisné-Hamelin G, Khodorova N, Rutledge DN, Martin JC, Barbillon P, Tomé D, Gaudichon C, Tardivel C, Jouan-Rimbaud Bouveresse D, Azzout-Marniche D. Pipecolate and Taurine are Rat Urinary Biomarkers for Lysine and Threonine Deficiencies. J Nutr 2023; 153:2571-2584. [PMID: 37394117 DOI: 10.1016/j.tjnut.2023.06.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/04/2023] Open
Abstract
BACKGROUND The consumption of poor-quality protein increases the risk of essential amino acid (EAA) deficiency, particularly for lysine and threonine. Thus, it is necessary to be able to detect easily EAA deficiency. OBJECTIVES The purpose of this study was to develop metabolomic approaches to identify specific biomarkers for an EAA deficiency, such as lysine and threonine. METHODS Three experiments were performed on growing rats. In experiment 1, rats were fed for 3 weeks with lysine (L30), or threonine (T53)-deficient gluten diets, or nondeficient gluten diet (LT100) in comparison with the control diet (milk protein, PLT). In experiments 2a and 2b, rats were fed at different concentrations of lysine (L) or threonine (T) deficiency: L/T15, L/T25, L/T40, L/T60, L/T75, P20, L/T100 and L/T170. Twenty-four-hour urine and blood samples from portal vein and vena cava were analyzed using LC-MS. Data from experiment 1 were analyzed by untargeted metabolomic and Independent Component - Discriminant Analysis (ICDA) and data from experiments 2a and 2b by targeted metabolomic and a quantitative Partial Least- Squares (PLS) regression model. Each metabolite identified as significant by PLS or ICDA was then tested by 1-way ANOVA to evaluate the diet effect. A two-phase linear regression analysis was used to determine lysine and threonine requirements. RESULTS ICDA and PLS found molecules that discriminated between the different diets. A common metabolite, the pipecolate, was identified in experiments 1 and 2a, confirming that it could be specific to lysine deficiency. Another metabolite, taurine, was found in experiments 1 and 2b, so probably specific to threonine deficiency. Pipecolate or taurine breakpoints obtained give a value closed to the values obtained by growth indicators. CONCLUSIONS Our results showed that the EAA deficiencies influenced the metabolome. Specific urinary biomarkers identified could be easily applied to detect EAA deficiency and to determine which AA is deficient.
Collapse
Affiliation(s)
- Joanna Moro
- Université Paris-Saclay, AgroParisTech, Institut National de recherche pour l'agriculture, l'alimentation et l'environnement, UMR Physiologie de la Nutrition et du Comportement Alimentaire, Palaiseau, France
| | - Gaëtan Roisné-Hamelin
- Université Paris-Saclay, AgroParisTech, Institut National de recherche pour l'agriculture, l'alimentation et l'environnement, UMR Physiologie de la Nutrition et du Comportement Alimentaire, Palaiseau, France
| | - Nadezda Khodorova
- Université Paris-Saclay, AgroParisTech, Institut National de recherche pour l'agriculture, l'alimentation et l'environnement, UMR Physiologie de la Nutrition et du Comportement Alimentaire, Palaiseau, France
| | - Douglas N Rutledge
- AgroParisTech, Université Paris-Saclay, Institut National de recherche pour l'agriculture, l'alimentation et l'environnement, UMR SayFood, Massy, France
| | - Jean-Charles Martin
- Aix Marseille Université, INSERM, Institut National de recherche pour l'agriculture, l'alimentation et l'environnement, Centre de recherche en cardiovasculaire et Nutrition, Marseille, France
| | - Pierre Barbillon
- Université Paris-Saclay, AgroParisTech, Institut National de recherche pour l'agriculture, l'alimentation et l'environnement, UMR Mathématiques et Informatique Appliquées Paris-Saclay, Palaiseau, France
| | - Daniel Tomé
- Université Paris-Saclay, AgroParisTech, Institut National de recherche pour l'agriculture, l'alimentation et l'environnement, UMR Physiologie de la Nutrition et du Comportement Alimentaire, Palaiseau, France
| | - Claire Gaudichon
- Université Paris-Saclay, AgroParisTech, Institut National de recherche pour l'agriculture, l'alimentation et l'environnement, UMR Physiologie de la Nutrition et du Comportement Alimentaire, Palaiseau, France
| | - Catherine Tardivel
- Aix Marseille Université, INSERM, Institut National de recherche pour l'agriculture, l'alimentation et l'environnement, Centre de recherche en cardiovasculaire et Nutrition, Marseille, France
| | - Delphine Jouan-Rimbaud Bouveresse
- Université Paris-Saclay, AgroParisTech, Institut National de recherche pour l'agriculture, l'alimentation et l'environnement, UMR Physiologie de la Nutrition et du Comportement Alimentaire, Palaiseau, France
| | - Dalila Azzout-Marniche
- Université Paris-Saclay, AgroParisTech, Institut National de recherche pour l'agriculture, l'alimentation et l'environnement, UMR Physiologie de la Nutrition et du Comportement Alimentaire, Palaiseau, France.
| |
Collapse
|
5
|
van Outersterp R, Oosterhout J, Gebhardt CR, Berden G, Engelke UFH, Wevers RA, Cuyckens F, Oomens J, Martens J. Targeted Small-Molecule Identification Using Heartcutting Liquid Chromatography-Infrared Ion Spectroscopy. Anal Chem 2023; 95:3406-3413. [PMID: 36735826 PMCID: PMC9933049 DOI: 10.1021/acs.analchem.2c04904] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Infrared ion spectroscopy (IRIS) can be used to identify molecular structures detected in mass spectrometry (MS) experiments and has potential applications in a wide range of analytical fields. However, MS-based approaches are often combined with orthogonal separation techniques, in many cases liquid chromatography (LC). The direct coupling of LC and IRIS is challenging due to the mismatching timescales of the two technologies: an IRIS experiment typically takes several minutes, whereas an LC fraction typically elutes in several seconds. To resolve this discrepancy, we present a heartcutting LC-IRIS approach using a setup consisting of two switching valves and two sample loops as an alternative to direct online LC-IRIS coupling. We show that this automated setup enables us to record multiple IR spectra for two LC-features from a single injection without degrading the LC-separation performance. We demonstrate the setup for application in drug metabolism research by recording six m/z-selective IR spectra for two drug metabolites from a single 2 μL sample of cell incubation extract. Additionally, we measure the IR spectra of two closely eluting diastereomeric biomarkers for the inborn error of metabolism pyridoxine-dependent epilepsy (PDE-ALDH7A1), which shows that the heartcutting LC-IRIS setup has good sensitivity (requiring ∼μL injections of ∼μM samples) and that the separation between closely eluting isomers is maintained. We envision applications in a range of research fields, where the identification of molecular structures detected by LC-MS is required.
Collapse
Affiliation(s)
- Rianne
E. van Outersterp
- Radboud
University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Jitse Oosterhout
- Radboud
University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | | | - Giel Berden
- Radboud
University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Udo F. H. Engelke
- Department
of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Ron A. Wevers
- Department
of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Filip Cuyckens
- Drug
Metabolism & Pharmacokinetics, Janssen R&D, Beerse 2340, Belgium
| | - Jos Oomens
- Radboud
University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands,van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, 1098XH Amsterdam, The Netherlands
| | - Jonathan Martens
- Radboud
University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands,
| |
Collapse
|
6
|
van Outersterp R, Engelke UF, Merx J, Berden G, Paul M, Thomulka T, Berkessel A, Huigen MC, Kluijtmans LA, Mecinović J, Rutjes FP, van Karnebeek CD, Wevers RA, Boltje TJ, Coene KL, Martens J, Oomens J. Metabolite Identification Using Infrared Ion Spectroscopy─Novel Biomarkers for Pyridoxine-Dependent Epilepsy. Anal Chem 2021; 93:15340-15348. [PMID: 34756024 PMCID: PMC8613736 DOI: 10.1021/acs.analchem.1c02896] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/25/2021] [Indexed: 11/30/2022]
Abstract
Untargeted liquid chromatography-mass spectrometry (LC-MS)-based metabolomics strategies are being increasingly applied in metabolite screening for a wide variety of medical conditions. The long-standing "grand challenge" in the utilization of this approach is metabolite identification─confidently determining the chemical structures of m/z-detected unknowns. Here, we use a novel workflow based on the detection of molecular features of interest by high-throughput untargeted LC-MS analysis of patient body fluids combined with targeted molecular identification of those features using infrared ion spectroscopy (IRIS), effectively providing diagnostic IR fingerprints for mass-isolated targets. A significant advantage of this approach is that in silico-predicted IR spectra of candidate chemical structures can be used to suggest the molecular structure of unknown features, thus mitigating the need for the synthesis of a broad range of physical reference standards. Pyridoxine-dependent epilepsy (PDE-ALDH7A1) is an inborn error of lysine metabolism, resulting from a mutation in the ALDH7A1 gene that leads to an accumulation of toxic levels of α-aminoadipic semialdehyde (α-AASA), piperideine-6-carboxylate (P6C), and pipecolic acid in body fluids. While α-AASA and P6C are known biomarkers for PDE in urine, their instability makes them poor candidates for diagnostic analysis from blood, which would be required for application in newborn screening protocols. Here, we use combined untargeted metabolomics-IRIS to identify several new biomarkers for PDE-ALDH7A1 that can be used for diagnostic analysis in urine, plasma, and cerebrospinal fluids and that are compatible with analysis in dried blood spots for newborn screening. The identification of these novel metabolites has directly provided novel insights into the pathophysiology of PDE-ALDH7A1.
Collapse
Affiliation(s)
- Rianne
E. van Outersterp
- Institute
for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Udo F.H. Engelke
- Department
of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Jona Merx
- Institute
for Molecules and Materials, Synthetic Organic Chemistry, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Giel Berden
- Institute
for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Mathias Paul
- Department
of Chemistry, University of Cologne, Greinstrasse 4, 50939 Cologne, Germany
| | - Thomas Thomulka
- Department
of Chemistry, University of Cologne, Greinstrasse 4, 50939 Cologne, Germany
| | - Albrecht Berkessel
- Department
of Chemistry, University of Cologne, Greinstrasse 4, 50939 Cologne, Germany
| | - Marleen C.D.G. Huigen
- Department
of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Leo A.J. Kluijtmans
- Department
of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Jasmin Mecinović
- University
of Southern Denmark, Department of Physics,
Chemistry and Pharmacy, Campusvej 55, 5230 Odense, Denmark
| | - Floris P.J.T. Rutjes
- Institute
for Molecules and Materials, Synthetic Organic Chemistry, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Clara D.M. van Karnebeek
- Department
of Pediatrics-Metabolic Diseases, Radboud Center for Mitochondrial
Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Ron A. Wevers
- Department
of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Thomas J. Boltje
- Institute
for Molecules and Materials, Synthetic Organic Chemistry, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Karlien L.M. Coene
- Department
of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Jonathan Martens
- Institute
for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Jos Oomens
- Institute
for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
- van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science
Park 908, 1098XH Amsterdam, The Netherlands
| |
Collapse
|
7
|
Al-Shekaili HH, Petkau TL, Pena I, Lengyell TC, Verhoeven-Duif NM, Ciapaite J, Bosma M, van Faassen M, Kema IP, Horvath G, Ross C, Simpson EM, Friedman JM, van Karnebeek C, Leavitt BR. A novel mouse model for pyridoxine-dependent epilepsy due to antiquitin deficiency. Hum Mol Genet 2021; 29:3266-3284. [PMID: 32969477 DOI: 10.1093/hmg/ddaa202] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/18/2020] [Accepted: 08/27/2020] [Indexed: 01/09/2023] Open
Abstract
Pyridoxine-dependent epilepsy (PDE) is a rare autosomal recessive disease caused by mutations in the ALDH7A1 gene leading to blockade of the lysine catabolism pathway. PDE is characterized by recurrent seizures that are resistant to conventional anticonvulsant treatment but are well-controlled by pyridoxine (PN). Most PDE patients also suffer from neurodevelopmental deficits despite adequate seizure control with PN. To investigate potential pathophysiological mechanisms associated with ALDH7A1 deficiency, we generated a transgenic mouse strain with constitutive genetic ablation of Aldh7a1. We undertook extensive biochemical characterization of Aldh7a1-KO mice consuming a low lysine/high PN diet. Results showed that KO mice accumulated high concentrations of upstream lysine metabolites including ∆1-piperideine-6-carboxylic acid (P6C), α-aminoadipic semialdehyde (α-AASA) and pipecolic acid both in brain and liver tissues, similar to the biochemical picture in ALDH7A1-deficient patients. We also observed preliminary evidence of a widely deranged amino acid profile and increased levels of methionine sulfoxide, an oxidative stress biomarker, in the brains of KO mice, suggesting that increased oxidative stress may be a novel pathobiochemical mechanism in ALDH7A1 deficiency. KO mice lacked epileptic seizures when fed a low lysine/high PN diet. Switching mice to a high lysine/low PN diet led to vigorous seizures and a quick death in KO mice. Treatment with PN controlled seizures and improved survival of high-lysine/low PN fed KO mice. This study expands the spectrum of biochemical abnormalities that may be associated with ALDH7A1 deficiency and provides a proof-of-concept for the utility of the model to study PDE pathophysiology and to test new therapeutics.
Collapse
Affiliation(s)
- Hilal H Al-Shekaili
- British Columbia Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Terri L Petkau
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Izabella Pena
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Tess C Lengyell
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | | | - Jolita Ciapaite
- Department of Genetics, University Medical Center, Utrecht, The Netherlands
| | - Marjolein Bosma
- Department of Genetics, University Medical Center, Utrecht, The Netherlands
| | - Martijn van Faassen
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ido P Kema
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gabriella Horvath
- Division of Biochemical Diseases, Department of Pediatrics, University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada
| | - Colin Ross
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Elizabeth M Simpson
- British Columbia Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.,Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Jan M Friedman
- British Columbia Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Clara van Karnebeek
- Department of Pediatrics, Centre for Molecular Medicine and Therapeutics, BC Children's Research Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Centres, Amsterdam, The Netherlands.,Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
8
|
Leandro J, Dodatko T, Aten J, Nemeria NS, Zhang X, Jordan F, Hendrickson RC, Sanchez R, Yu C, DeVita RJ, Houten SM. DHTKD1 and OGDH display substrate overlap in cultured cells and form a hybrid 2-oxo acid dehydrogenase complex in vivo. Hum Mol Genet 2021; 29:1168-1179. [PMID: 32160276 DOI: 10.1093/hmg/ddaa037] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/27/2020] [Accepted: 03/04/2020] [Indexed: 11/14/2022] Open
Abstract
Glutaric aciduria type 1 (GA1) is an inborn error of lysine degradation characterized by a specific encephalopathy that is caused by toxic accumulation of lysine degradation intermediates. Substrate reduction through inhibition of DHTKD1, an enzyme upstream of the defective glutaryl-CoA dehydrogenase, has been investigated as a potential therapy, but revealed the existence of an alternative enzymatic source of glutaryl-CoA. Here, we show that loss of DHTKD1 in glutaryl-CoA dehydrogenase-deficient HEK-293 cells leads to a 2-fold decrease in the established GA1 clinical biomarker glutarylcarnitine and demonstrate that oxoglutarate dehydrogenase (OGDH) is responsible for this remaining glutarylcarnitine production. We furthermore show that DHTKD1 interacts with OGDH, dihydrolipoyl succinyltransferase and dihydrolipoamide dehydrogenase to form a hybrid 2-oxoglutaric and 2-oxoadipic acid dehydrogenase complex. In summary, 2-oxoadipic acid is a substrate for DHTKD1, but also for OGDH in a cell model system. The classical 2-oxoglutaric dehydrogenase complex can exist as a previously undiscovered hybrid containing DHTKD1 displaying improved kinetics towards 2-oxoadipic acid.
Collapse
Affiliation(s)
- João Leandro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tetyana Dodatko
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jan Aten
- Department of Pathology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, 1105 AZ The Netherlands
| | - Natalia S Nemeria
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA
| | - Xu Zhang
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA
| | - Frank Jordan
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA
| | - Ronald C Hendrickson
- Microchemistry and Proteomics Core, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Roberto Sanchez
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chunli Yu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Mount Sinai Genomics, Inc., Stamford, CT 06902, USA
| | - Robert J DeVita
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sander M Houten
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
9
|
Engelke UF, van Outersterp RE, Merx J, van Geenen FA, van Rooij A, Berden G, Huigen MC, Kluijtmans LA, Peters TM, Al-Shekaili HH, Leavitt BR, de Vrieze E, Broekman S, van Wijk E, Tseng LA, Kulkarni P, Rutjes FP, Mecinović J, Struys EA, Jansen LA, Gospe SM, Mercimek-Andrews S, Hyland K, Willemsen MA, Bok LA, van Karnebeek CD, Wevers RA, Boltje TJ, Oomens J, Martens J, Coene KL. Untargeted metabolomics and infrared ion spectroscopy identify biomarkers for pyridoxine-dependent epilepsy. J Clin Invest 2021; 131:e148272. [PMID: 34138754 DOI: 10.1172/jci148272] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/16/2021] [Indexed: 12/30/2022] Open
Abstract
BackgroundPyridoxine-dependent epilepsy (PDE-ALDH7A1) is an inborn error of lysine catabolism that presents with refractory epilepsy in newborns. Biallelic ALDH7A1 variants lead to deficiency of α-aminoadipic semialdehyde dehydrogenase/antiquitin, resulting in accumulation of piperideine-6-carboxylate (P6C), and secondary deficiency of the important cofactor pyridoxal-5'-phosphate (PLP, active vitamin B6) through its complexation with P6C. Vitamin B6 supplementation resolves epilepsy in patients, but intellectual disability may still develop. Early diagnosis and treatment, preferably based on newborn screening, could optimize long-term clinical outcome. However, no suitable PDE-ALDH7A1 newborn screening biomarkers are currently available.MethodsWe combined the innovative analytical methods untargeted metabolomics and infrared ion spectroscopy to discover and identify biomarkers in plasma that would allow for PDE-ALDH7A1 diagnosis in newborn screening.ResultsWe identified 2S,6S-/2S,6R-oxopropylpiperidine-2-carboxylic acid (2-OPP) as a PDE-ALDH7A1 biomarker, and confirmed 6-oxopiperidine-2-carboxylic acid (6-oxoPIP) as a biomarker. The suitability of 2-OPP as a potential PDE-ALDH7A1 newborn screening biomarker in dried bloodspots was shown. Additionally, we found that 2-OPP accumulates in brain tissue of patients and Aldh7a1-knockout mice, and induced epilepsy-like behavior in a zebrafish model system.ConclusionThis study has opened the way to newborn screening for PDE-ALDH7A1. We speculate that 2-OPP may contribute to ongoing neurotoxicity, also in treated PDE-ALDH7A1 patients. As 2-OPP formation appears to increase upon ketosis, we emphasize the importance of avoiding catabolism in PDE-ALDH7A1 patients.FundingSociety for Inborn Errors of Metabolism for Netherlands and Belgium (ESN), United for Metabolic Diseases (UMD), Stofwisselkracht, Radboud University, Canadian Institutes of Health Research, Dutch Research Council (NWO), and the European Research Council (ERC).
Collapse
Affiliation(s)
- Udo Fh Engelke
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Jona Merx
- Institute for Molecules and Materials, Synthetic Organic Chemistry, Radboud University, Nijmegen, Netherlands
| | | | - Arno van Rooij
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Giel Berden
- Institute for Molecules and Materials, FELIX Laboratory and
| | - Marleen Cdg Huigen
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Leo Aj Kluijtmans
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Tessa Ma Peters
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Hilal H Al-Shekaili
- Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia Vancouver, British Columbia, Canada
| | - Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia Vancouver, British Columbia, Canada
| | - Erik de Vrieze
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Sanne Broekman
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Erwin van Wijk
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Laura A Tseng
- Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Purva Kulkarni
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Floris Pjt Rutjes
- Institute for Molecules and Materials, Synthetic Organic Chemistry, Radboud University, Nijmegen, Netherlands
| | - Jasmin Mecinović
- Institute for Molecules and Materials, Synthetic Organic Chemistry, Radboud University, Nijmegen, Netherlands.,Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Eduard A Struys
- Department of Clinical Chemistry, Amsterdam University Medical Centers, location VU Medical Centre, Amsterdam, Netherlands
| | - Laura A Jansen
- Division of Pediatric Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sidney M Gospe
- Departments of Neurology and Pediatrics, University of Washington, Seattle, Washington, USA.,Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Saadet Mercimek-Andrews
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada.,Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Keith Hyland
- Medical Neurogenetics Laboratories, Atlanta, Georgia, USA
| | - Michèl Aap Willemsen
- Department of Pediatric Neurology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Levinus A Bok
- Department of Pediatrics, Máxima Medical Centre, Veldhoven, Netherlands
| | - Clara Dm van Karnebeek
- Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, Netherlands.,Department of Pediatrics-Metabolic Diseases, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, Netherlands.,United for Metabolic Diseases (UMD), Netherlands
| | - Ron A Wevers
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Thomas J Boltje
- Institute for Molecules and Materials, Synthetic Organic Chemistry, Radboud University, Nijmegen, Netherlands
| | - Jos Oomens
- Institute for Molecules and Materials, FELIX Laboratory and.,Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, Netherlands
| | | | - Karlien Lm Coene
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
10
|
Gholaminejad A, Fathalipour M, Roointan A. Comprehensive analysis of diabetic nephropathy expression profile based on weighted gene co-expression network analysis algorithm. BMC Nephrol 2021; 22:245. [PMID: 34215202 PMCID: PMC8252307 DOI: 10.1186/s12882-021-02447-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/10/2021] [Indexed: 12/30/2022] Open
Abstract
Background Diabetic nephropathy (DN) is the major complication of diabetes mellitus, and leading cause of end-stage renal disease. The underlying molecular mechanism of DN is not yet completely clear. The aim of this study was to analyze a DN microarray dataset using weighted gene co-expression network analysis (WGCNA) algorithm for better understanding of DN pathogenesis and exploring key genes in the disease progression. Methods The identified differentially expressed genes (DEGs) in DN dataset GSE47183 were introduced to WGCNA algorithm to construct co-expression modules. STRING database was used for construction of Protein-protein interaction (PPI) networks of the genes in all modules and the hub genes were identified considering both the degree centrality in the PPI networks and the ranked lists of weighted networks. Gene ontology and Reactome pathway enrichment analyses were performed on each module to understand their involvement in the biological processes and pathways. Following validation of the hub genes in another DN dataset (GSE96804), their up-stream regulators, including microRNAs and transcription factors were predicted and a regulatory network comprising of all these molecules was constructed. Results After normalization and analysis of the dataset, 2475 significant DEGs were identified and clustered into six different co-expression modules by WGCNA algorithm. Then, DEGs of each module were subjected to functional enrichment analyses and PPI network constructions. Metabolic processes, cell cycle control, and apoptosis were among the top enriched terms. In the next step, 23 hub genes were identified among the modules in genes and five of them, including FN1, SLC2A2, FABP1, EHHADH and PIPOX were validated in another DN dataset. In the regulatory network, FN1 was the most affected hub gene and mir-27a and REAL were recognized as two main upstream-regulators of the hub genes. Conclusions The identified hub genes from the hearts of co-expression modules could widen our understanding of the DN development and might be of targets of future investigations, exploring their therapeutic potentials for treatment of this complicated disease.
Collapse
Affiliation(s)
- Alieh Gholaminejad
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Fathalipour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Amir Roointan
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
11
|
Guan H, Liu X, Mur LAJ, Fu Y, Wei Y, Wang J, He W. Rethinking of the Roles of Endophyte Symbiosis and Mycotoxin in Oxytropis Plants. J Fungi (Basel) 2021; 7:jof7050400. [PMID: 34065540 PMCID: PMC8160975 DOI: 10.3390/jof7050400] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 11/16/2022] Open
Abstract
Plants in the Oxytropis genus can live with the endophytic fungi Alternaria sect. Undifilum. Swainsonine, the mycotoxin produced by the endophyte render the host plant toxic and this has been detrimental to grazing livestock in both China and U.S.A. Despite previous efforts, many questions remain to be solved, such as the transmission mode and life cycle of host–endophyte symbiont, the biosynthesis pathway of swainsonine, and in particular the ecological role and evolution of such symbiosis. In this review, we compile the literature to synthesize ideas on the diversity of the symbiosis and propagation of the endophyte. We further compare the previous work from both Alternaria sect. Undifilum and other swainsonine producing fungi to orchestrate a more comprehensive biosynthesis pathway of swainsonine. We also connect swainsonine biosynthesis pathway with that of its precursor, lysine, and link this to a potential role in modulating plant stress response. Based on this we hypothesize that this host–endophyte co-evolution originated from the needs for host plant to adapt for stress. Validation of this hypothesis will depend on future research on endophytic symbiosis in Oxytropis and help in better understanding the roles of plant–endophyte symbiosis in non-Poaceae species.
Collapse
Affiliation(s)
- Huirui Guan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Department of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xin Liu
- Shaanxi Institute for Food and Drug, Xi'an 710065, China
| | - Luis A J Mur
- Institute of Biology, Environmental and Rural Science, Aberystwyth University, Aberystwyth SY23 3FL, UK
| | - Yanping Fu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Department of Life Sciences, Northwest University, Xi'an 710069, China
| | - Yahui Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Department of Life Sciences, Northwest University, Xi'an 710069, China
| | - Jing Wang
- Key Laboratory of Grassland Resources of Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Resources and Environment, College of Grassland, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Wei He
- Key Laboratory of Resource Biology and Biotechnology in Western China, Department of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Grassland Resources of Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
12
|
Cobbold SA, V Tutor M, Frasse P, McHugh E, Karnthaler M, Creek DJ, Odom John A, Tilley L, Ralph SA, McConville MJ. Non-canonical metabolic pathways in the malaria parasite detected by isotope-tracing metabolomics. Mol Syst Biol 2021; 17:e10023. [PMID: 33821563 PMCID: PMC8022201 DOI: 10.15252/msb.202010023] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 12/26/2022] Open
Abstract
The malaria parasite, Plasmodium falciparum, proliferates rapidly in human erythrocytes by actively scavenging multiple carbon sources and essential nutrients from its host cell. However, a global overview of the metabolic capacity of intraerythrocytic stages is missing. Using multiplex 13 C-labelling coupled with untargeted mass spectrometry and unsupervised isotopologue grouping, we have generated a draft metabolome of P. falciparum and its host erythrocyte consisting of 911 and 577 metabolites, respectively, corresponding to 41% of metabolites and over 70% of the metabolic reaction predicted from the parasite genome. An additional 89 metabolites and 92 reactions were identified that were not predicted from genomic reconstructions, with the largest group being associated with metabolite damage-repair systems. Validation of the draft metabolome revealed four previously uncharacterised enzymes which impact isoprenoid biosynthesis, lipid homeostasis and mitochondrial metabolism and are necessary for parasite development and proliferation. This study defines the metabolic fate of multiple carbon sources in P. falciparum, and highlights the activity of metabolite repair pathways in these rapidly growing parasite stages, opening new avenues for drug discovery.
Collapse
Affiliation(s)
- Simon A Cobbold
- Department of Biochemistry and Molecular BiologyBio21 Institute of Molecular Science and BiotechnologyUniversity of MelbourneParkvilleVic.Australia
| | - Madel V Tutor
- Department of Biochemistry and Molecular BiologyBio21 Institute of Molecular Science and BiotechnologyUniversity of MelbourneParkvilleVic.Australia
| | - Philip Frasse
- Department of MedicineWashington University School of MedicineSt. LouisMOUSA
| | - Emma McHugh
- Department of Biochemistry and Molecular BiologyBio21 Institute of Molecular Science and BiotechnologyUniversity of MelbourneParkvilleVic.Australia
| | - Markus Karnthaler
- Department of Biochemistry and Molecular BiologyBio21 Institute of Molecular Science and BiotechnologyUniversity of MelbourneParkvilleVic.Australia
| | - Darren J Creek
- Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVic.Australia
| | - Audrey Odom John
- The Children’s Hospital of PhiladelphiaUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Leann Tilley
- Department of Biochemistry and Molecular BiologyBio21 Institute of Molecular Science and BiotechnologyUniversity of MelbourneParkvilleVic.Australia
| | - Stuart A Ralph
- Department of Biochemistry and Molecular BiologyBio21 Institute of Molecular Science and BiotechnologyUniversity of MelbourneParkvilleVic.Australia
| | - Malcolm J McConville
- Department of Biochemistry and Molecular BiologyBio21 Institute of Molecular Science and BiotechnologyUniversity of MelbourneParkvilleVic.Australia
| |
Collapse
|
13
|
Remesar X, Alemany M. Dietary Energy Partition: The Central Role of Glucose. Int J Mol Sci 2020; 21:E7729. [PMID: 33086579 PMCID: PMC7593952 DOI: 10.3390/ijms21207729] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 12/17/2022] Open
Abstract
Humans have developed effective survival mechanisms under conditions of nutrient (and energy) scarcity. Nevertheless, today, most humans face a quite different situation: excess of nutrients, especially those high in amino-nitrogen and energy (largely fat). The lack of mechanisms to prevent energy overload and the effective persistence of the mechanisms hoarding key nutrients such as amino acids has resulted in deep disorders of substrate handling. There is too often a massive untreatable accumulation of body fat in the presence of severe metabolic disorders of energy utilization and disposal, which become chronic and go much beyond the most obvious problems: diabetes, circulatory, renal and nervous disorders included loosely within the metabolic syndrome. We lack basic knowledge on diet nutrient dynamics at the tissue-cell metabolism level, and this adds to widely used medical procedures lacking sufficient scientific support, with limited or nil success. In the present longitudinal analysis of the fate of dietary nutrients, we have focused on glucose as an example of a largely unknown entity. Even most studies on hyper-energetic diets or their later consequences tend to ignore the critical role of carbohydrate (and nitrogen disposal) as (probably) the two main factors affecting the substrate partition and metabolism.
Collapse
Affiliation(s)
- Xavier Remesar
- Department of Biochemistry and Molecular Biomedicine Faculty of Biology, University Barcelona, 08028 Barcelona, Spain;
- IBUB Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain
- CIBER Obesity and Nutrition, Institute of Health Carlos III, 08028 Barcelona, Spain
| | - Marià Alemany
- Department of Biochemistry and Molecular Biomedicine Faculty of Biology, University Barcelona, 08028 Barcelona, Spain;
- IBUB Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain
- CIBER Obesity and Nutrition, Institute of Health Carlos III, 08028 Barcelona, Spain
| |
Collapse
|
14
|
Leandro J, Houten SM. The lysine degradation pathway: Subcellular compartmentalization and enzyme deficiencies. Mol Genet Metab 2020; 131:14-22. [PMID: 32768327 DOI: 10.1016/j.ymgme.2020.07.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 02/07/2023]
Abstract
Lysine degradation via formation of saccharopine is a pathway confined to the mitochondria. The second pathway for lysine degradation, the pipecolic acid pathway, is not yet fully elucidated and known enzymes are localized in the mitochondria, cytosol and peroxisome. The tissue-specific roles of these two pathways are still under investigation. The lysine degradation pathway is clinically relevant due to the occurrence of two severe neurometabolic disorders, pyridoxine-dependent epilepsy (PDE) and glutaric aciduria type 1 (GA1). The existence of three other disorders affecting lysine degradation without apparent clinical consequences opens up the possibility to find alternative therapeutic strategies for PDE and GA1 through pathway modulation. A better understanding of the mechanisms, compartmentalization and interplay between the different enzymes and metabolites involved in lysine degradation is of utmost importance.
Collapse
Affiliation(s)
- João Leandro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sander M Houten
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
15
|
Dalangin R, Kim A, Campbell RE. The Role of Amino Acids in Neurotransmission and Fluorescent Tools for Their Detection. Int J Mol Sci 2020; 21:E6197. [PMID: 32867295 PMCID: PMC7503967 DOI: 10.3390/ijms21176197] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/17/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022] Open
Abstract
Neurotransmission between neurons, which can occur over the span of a few milliseconds, relies on the controlled release of small molecule neurotransmitters, many of which are amino acids. Fluorescence imaging provides the necessary speed to follow these events and has emerged as a powerful technique for investigating neurotransmission. In this review, we highlight some of the roles of the 20 canonical amino acids, GABA and β-alanine in neurotransmission. We also discuss available fluorescence-based probes for amino acids that have been shown to be compatible for live cell imaging, namely those based on synthetic dyes, nanostructures (quantum dots and nanotubes), and genetically encoded components. We aim to provide tool developers with information that may guide future engineering efforts and tool users with information regarding existing indicators to facilitate studies of amino acid dynamics.
Collapse
Affiliation(s)
- Rochelin Dalangin
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; (R.D.); (A.K.)
| | - Anna Kim
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; (R.D.); (A.K.)
| | - Robert E. Campbell
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; (R.D.); (A.K.)
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo City, Tokyo 113-0033, Japan
| |
Collapse
|
16
|
Khwatenge CN, Kimathi BM, Nahashon SN. Transcriptome Analysis and Expression of Selected Cationic Amino Acid Transporters in the Liver of Broiler Chicken Fed Diets with Varying Concentrations of Lysine. Int J Mol Sci 2020; 21:E5594. [PMID: 32764289 PMCID: PMC7460557 DOI: 10.3390/ijms21165594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/24/2020] [Accepted: 08/03/2020] [Indexed: 11/28/2022] Open
Abstract
Amino acids are known to play a key role in gene expression regulation. Amino acid signaling is mediated via two pathways: the mammalian target of rapamycin complex 1 (mTORC1) and the amino acid responsive (AAR) pathways. Cationic amino acid transporters (CATs) are crucial in these pathways due to their sensing, signaling and transport functions. The availability of certain amino acids plays a key role in the intake of other amino acids, hence affecting growth in young birds. However, the specific mechanism for regulating lysine transport for growth is not clear. In this study, we analyze the transcriptome profiles and mRNA expression of selected cationic amino acid transporters in the livers of broilers fed low and high lysine diets. Birds consumed high-lysine (1.42% lysine) or low-lysine (0.85% lysine) diets while the control group consumed 1.14% lysine diet. These concentrations of lysine represent 125% (high lysine), 75% (low lysine) and 100% (control), respectively, of the National Research Council's (NRC) recommendation for broiler chickens. After comparing the two groups, 210 differentially expressed genes (DEGs) were identified (fold change >1 and false discovery rate (FDR) <0.05). When comparing the high lysine and the low lysine treatments, there were 67 upregulated genes and 143 downregulated genes among these DEGs. Analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) and the Gene Ontology (GO) enrichment analysis show that cellular growth, lipid metabolism and lysine metabolism pathways were among the significantly enriched pathways. This study contributes to a better understanding of the potential molecular mechanisms underlying the correlation between lysine intake, body weight gain (BWG) and feed intake (FI) in broiler chickens. Moreover, the DEGs obtained in this study may be used as potential candidate genes for further investigation of broiler growth customized responses to individualized nutrients such as amino acids.
Collapse
Affiliation(s)
- Collins N. Khwatenge
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA; (C.N.K.); (B.M.K.)
- Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, TN 37209, USA
| | - Boniface M. Kimathi
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA; (C.N.K.); (B.M.K.)
- Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, TN 37209, USA
| | - Samuel N. Nahashon
- Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, TN 37209, USA
| |
Collapse
|
17
|
Arruda P, Barreto P. Lysine Catabolism Through the Saccharopine Pathway: Enzymes and Intermediates Involved in Plant Responses to Abiotic and Biotic Stress. FRONTIERS IN PLANT SCIENCE 2020; 11:587. [PMID: 32508857 PMCID: PMC7253579 DOI: 10.3389/fpls.2020.00587] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/20/2020] [Indexed: 05/14/2023]
Abstract
The saccharopine pathway (SACPATH) involves the conversion of lysine into α-aminoadipate by three enzymatic reactions catalyzed by the bifunctional enzyme lysine-ketoglutarate reductase/saccharopine dehydrogenase (LKR/SDH) and the enzyme α-aminoadipate semialdehyde dehydrogenase (AASADH). The LKR domain condenses lysine and α-ketoglutarate into saccharopine, and the SDH domain hydrolyzes saccharopine to form glutamate and α-aminoadipate semialdehyde, the latter of which is oxidized to α-aminoadipate by AASADH. Glutamate can give rise to proline by the action of the enzymes Δ1-pyrroline-5-carboxylate synthetase (P5CS) and Δ1-pyrroline-5-carboxylate reductase (P5CR), while Δ1-piperideine-6-carboxylate the cyclic form of α-aminoadipate semialdehyde can be used by P5CR to produce pipecolate. The production of proline and pipecolate by the SACPATH can help plants face the damage caused by osmotic, drought, and salt stress. AASADH is a versatile enzyme that converts an array of aldehydes into carboxylates, and thus, its induction within the SACPATH would help alleviate the toxic effects of these compounds produced under stressful conditions. Pipecolate is the priming agent of N-hydroxypipecolate (NHP), the effector of systemic acquired resistance (SAR). In this review, lysine catabolism through the SACPATH is discussed in the context of abiotic stress and its potential role in the induction of the biotic stress response.
Collapse
Affiliation(s)
- Paulo Arruda
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- *Correspondence: Paulo Arruda,
| | - Pedro Barreto
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
18
|
Expression of lysine-mediated neuropeptide hormones controlling satiety and appetite in broiler chickens. Poult Sci 2019; 99:1409-1420. [PMID: 32115028 PMCID: PMC7587822 DOI: 10.1016/j.psj.2019.10.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 11/21/2022] Open
Abstract
Lysine is the second most limiting amino acid after methionine and is considered the most limiting amino acid for growth in poultry. Lysine requirement for broiler chickens has changed over the years. Leptin and adiponectin represent 2 adipokines that mediate metabolism by eliciting satiety effects whereas ghrelin peptide hormone influences appetite. We hypothesize that this affects growth performance of chicks. This study evaluates the effect of varying dietary lysine homeostasis on performance of broiler chickens through satiety- and appetite-mediating hormones. In 3 replications, 270 one-day-old chicks were reared for 8 wk feeding on diets comprising 0.85, 1.14, and 1.42% lysine during the starter period and 0.75, 1.00, and 1.25% lysine during the grower period. These concentrations of lysine represent 75% (low lysine), 100% (control), and 125% (high lysine) of National Research Council recommendation for broiler chickens. Feed and water were provided for ad libitum consumption. At 8 wk of age, liver, pancreas, brain, and hypothalamus tissues were collected from 18 birds randomly selected from each treatment, snap frozen in liquid nitrogen, and stored at -80°C until use. Total RNA was extracted, and cDNA was synthesized for quantitative real-time PCR assays. Low lysine concentration caused slow growth and high mortality. There was significant upregulation of ghrelin in the hypothalamus and pancreas, and leptin and adiponectin in the hypothalamus and liver, and downregulation of ghrelin in the intestines. At low lysine concentrations, adiponectin was not expressed in both pancreas and intestines. High lysine concentration exhibited increased growth, upregulation of ghrelin in the liver, and downregulation of ghrelin in the intestines, and both adiponectin and leptin in the liver. The expression of ghrelin was negatively correlated with the expression of adiponectin and leptin (P < 0.05) in the liver, hypothalamus, and pancreas. Expression of leptin was positively correlated with adiponectin in the hypothalamus and liver (P < 0.05), exhibiting satiety effects when the concentrations of lysine were low.
Collapse
|
19
|
Lee JW, Moen EL, Punshon T, Hoen AG, Stewart D, Li H, Karagas MR, Gui J. An Integrated Gaussian Graphical Model to evaluate the impact of exposures on metabolic networks. Comput Biol Med 2019; 114:103417. [PMID: 31521894 PMCID: PMC6817396 DOI: 10.1016/j.compbiomed.2019.103417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/25/2019] [Accepted: 08/26/2019] [Indexed: 02/07/2023]
Abstract
Examining the effects of exogenous exposures on complex metabolic processes poses the unique challenge of identifying interactions among a large number of metabolites. Recent progress in the quantification of the metabolome through mass spectrometry (MS) and nuclear magnetic resonance (NMR) has given rise to high-dimensional biomedical data of specific metabolites that can be leveraged to study their effects in humans. These metabolic interactions can be evaluated using probabilistic graphical models (PGMs), which define conditional dependence and independence between components within and between heterogeneous biomedical datasets. This method allows for the detection and recovery of valuable but latent information that cannot be easily detected by other currently existing methods. Here, we develop a PGM method, referred to as an "Integrated Gaussian Graphical Model (IGGM)", to incorporate exposure concentrations of seven trace elements-arsenic (As), lead (Pb), mercury (Hg), cadmium (Cd), zinc (Zn), selenium (Se) and copper (Cu-into metabolic networks. We first conducted a simulation study demonstrating that the integration of trace elements into metabolomics data can improve the accuracy of detecting latent interactions of metabolites impacted by exposure in the network. We tested parameters such as sample size and the number of neighboring metabolites of a chosen trace element for their impact on the accuracy of detecting metabolite interactions. We then applied this method to measurements of cord blood plasma metabolites and placental trace elements collected from newborns in the New Hampshire Birth Cohort Study (NHBCS). We found that our approach can identify latent interactions among metabolites that are related to trace element concentrations. Application to similarly structured data may contribute to our understanding of the complex interplay between exposure-related metabolic interactions that are important for human health.
Collapse
Affiliation(s)
- Jai Woo Lee
- Institute for Quantitative Biomedical Sciences, Dartmouth College, Hanover, NH, USA
| | - Erika L Moen
- Department of Biomedical Data Science, Geisel School of Medicine, Lebanon, NH, USA
| | - Tracy Punshon
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Anne G Hoen
- Department of Biomedical Data Science, Geisel School of Medicine, Lebanon, NH, USA; Department of Epidemiology, Geisel School of Medicine, Lebanon, NH, USA
| | - Delisha Stewart
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hongzhe Li
- Department of Biostatistics and Epidemiology, University of Pennsylvania Perelman School of Medicine, Philadephia, PA, USA
| | | | - Jiang Gui
- Department of Biomedical Data Science, Geisel School of Medicine, Lebanon, NH, USA.
| |
Collapse
|
20
|
Crowther LM, Mathis D, Poms M, Plecko B. New insights into human lysine degradation pathways with relevance to pyridoxine-dependent epilepsy due to antiquitin deficiency. J Inherit Metab Dis 2019; 42:620-628. [PMID: 30767241 DOI: 10.1002/jimd.12076] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 02/12/2019] [Indexed: 01/19/2023]
Abstract
Deficiency of antiquitin (ATQ), an enzyme involved in lysine degradation, is the major cause of vitamin B6 -dependent epilepsy. Accumulation of the potentially neurotoxic α-aminoadipic semialdehyde (AASA) may contribute to frequently associated developmental delay. AASA is formed by α-aminoadipic semialdehyde synthase (AASS) via the saccharopine pathway of lysine degradation, or, as has been postulated, by the pipecolic acid (PA) pathway, and then converted to α-aminoadipic acid by ATQ. The PA pathway has been considered to be the predominant pathway of lysine degradation in mammalian brain; however, this was refuted by recent studies in mouse. Consequently, inhibition of AASS was proposed as a potential new treatment option for ATQ deficiency. It is therefore of utmost importance to determine whether the saccharopine pathway is also predominant in human brain cells. The route of lysine degradation was analyzed by isotopic tracing studies in cultured human astrocytes, ReNcell CX human neuronal progenitor cells and human fibroblasts, and expression of enzymes of the two lysine degradation pathways was determined by Western blot. Lysine degradation was only detected through the saccharopine pathway in all cell types studied. The enrichment of 15 N-glutamate as a side product of AASA formation through AASS furthermore demonstrated activity of the saccharopine pathway. We provide first evidence that the saccharopine pathway is the major route of lysine degradation in cultured human brain cells. These results support inhibition of the saccharopine pathway as a new treatment option for ATQ deficiency.
Collapse
Affiliation(s)
- Lisa M Crowther
- Division of Child Neurology, University Children's Hospital Zurich, Zurich, Switzerland
- CRC Clinical Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- Radiz - Rare Disease Intiative Zurich, Clinical Research Priority Program for Rare Diseases, University of Zurich, Zurich, Switzerland
| | - Déborah Mathis
- CRC Clinical Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- Radiz - Rare Disease Intiative Zurich, Clinical Research Priority Program for Rare Diseases, University of Zurich, Zurich, Switzerland
- Department of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, Zurich, Switzerland
| | - Martin Poms
- Division of Child Neurology, University Children's Hospital Zurich, Zurich, Switzerland
- CRC Clinical Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- Radiz - Rare Disease Intiative Zurich, Clinical Research Priority Program for Rare Diseases, University of Zurich, Zurich, Switzerland
| | - Barbara Plecko
- Division of Child Neurology, University Children's Hospital Zurich, Zurich, Switzerland
- CRC Clinical Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- Radiz - Rare Disease Intiative Zurich, Clinical Research Priority Program for Rare Diseases, University of Zurich, Zurich, Switzerland
- Department of Pediatrics and Adolescent Medicine, Division of General Pediatrics, Medical University of Graz, Graz, Austria
| |
Collapse
|
21
|
Zhang Y, Ji X, Ku T, Li B, Li G, Sang N. Ambient fine particulate matter exposure induces cardiac functional injury and metabolite alterations in middle-aged female mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:121-132. [PMID: 30784831 DOI: 10.1016/j.envpol.2019.01.080] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 01/17/2019] [Accepted: 01/19/2019] [Indexed: 06/09/2023]
Abstract
Plenty of epidemiological studies have shown that exposure to ambient particulate matter (PM2.5) is linked to cardiovascular diseases (CVDs) in older even in middle-aged populations; however, experimental evidence through intuitive metabolic analysis to confirm the age susceptibility and explain the related molecular mechanism of PM2.5-induced cardiotoxicity is relatively rare. In the present study, C57BL/6 mice (adult (4-month) and middle-aged (10-month)) were given 3 mg/kg PM2.5 every other day by oropharyngeal aspiration for 4 weeks, and then, body and cardiac parameter, containing weight data, cardiac function, ultrastructure, metabolic analysis, and molecular detection were conducted to investigate the PM2.5-induced cardiotoxicity. The results indicated that middle-aged mice were more susceptible to PM2.5, displaying slow cardiac growth, cardiac dysfunction, abnormal mitochondrial structure and function, and cardiac metabolic disorders. The altered metabolites were enriched in carbohydrate metabolism, fatty acid metabolism, amino acid metabolism, nucleotide metabolism and nicotinate and nicotinamide metabolism. In conclusion, we speculated that the cardiac metabolic disorders may be important factors in PM2.5-induced cardiac dysfunction and mitochondrial structure destruction in middle-aged mice, providing a new direction for the study of the association between PM2.5 and CVDs.
Collapse
Affiliation(s)
- Yingying Zhang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Xiaotong Ji
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Tingting Ku
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Ben Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China.
| |
Collapse
|
22
|
Wempe MF, Kumar A, Kumar V, Choi YJ, Swanson MA, Friederich MW, Hyland K, Yue WW, Van Hove JLK, Coughlin CR. Identification of a novel biomarker for pyridoxine-dependent epilepsy: Implications for newborn screening. J Inherit Metab Dis 2019; 42:565-574. [PMID: 30663059 DOI: 10.1002/jimd.12059] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 01/11/2019] [Indexed: 11/12/2022]
Abstract
Pyridoxine-dependent epilepsy (PDE) is often characterized as an early onset epileptic encephalopathy with dramatic clinical improvement following pyridoxine supplementation. Unfortunately, not all patients present with classic neonatal seizures or respond to an initial pyridoxine trial, which can result in the under diagnosis of this treatable disorder. Restriction of lysine intake and transport is associated with improved neurologic outcomes, although treatment should be started in the first year of life to be effective. Because of the documented diagnostic delay and benefit of early treatment, we aimed to develop a newborn screening method for PDE. Previous studies have demonstrated the accumulation of Δ1 -piperideine-6-carboxylate and α-aminoadipic semialdehyde in individuals with PDE, although these metabolites are unstable at room temperature (RT) limiting their utility for newborn screening. As a result, we sought to identify a biomarker that could be applied to current newborn screening paradigms. We identified a novel metabolite, 6-oxo-pipecolate (6-oxo-PIP), which accumulates in substantial amounts in blood, plasma, urine, and cerebral spinal fluid of individuals with PDE. Using a stable isotope-labeled internal standard, we developed a nonderivatized liquid chromatography tandem mass spectrometry-based method to quantify 6-oxo-PIP. This method replicates the analytical techniques used in many laboratories and could be used with few modifications in newborn screening programs. Furthermore, 6-oxo-PIP was measurable in urine for 4 months even when stored at RT. Herein, we report a novel biomarker for PDE that is stable at RT and can be quantified using current newborn screening techniques.
Collapse
Affiliation(s)
- Michael F Wempe
- School of Pharmacy, Department of Pharmaceutical Sciences, University of Colorado, Aurora, Colorado
| | - Amit Kumar
- School of Pharmacy, Department of Pharmaceutical Sciences, University of Colorado, Aurora, Colorado
| | - Vijay Kumar
- School of Pharmacy, Department of Pharmaceutical Sciences, University of Colorado, Aurora, Colorado
| | - Yu J Choi
- School of Pharmacy, Department of Pharmaceutical Sciences, University of Colorado, Aurora, Colorado
| | - Michael A Swanson
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado School of Medicine, Aurora, Colorado
| | - Marisa W Friederich
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado School of Medicine, Aurora, Colorado
| | - Keith Hyland
- Medical Neurogenetics Laboratories, LLC, Atlanta, Georgia
| | - Wyatt W Yue
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Johan L K Van Hove
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado School of Medicine, Aurora, Colorado
| | - Curtis R Coughlin
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
23
|
Cavalcanti JHF, Kirma M, Barros JAS, Quinhones CGS, Pereira-Lima ÍA, Obata T, Nunes-Nesi A, Galili G, Fernie AR, Avin-Wittenberg T, Araújo WL. An L,L-diaminopimelate aminotransferase mutation leads to metabolic shifts and growth inhibition in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5489-5506. [PMID: 30215754 PMCID: PMC6255705 DOI: 10.1093/jxb/ery325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/31/2018] [Indexed: 06/08/2023]
Abstract
Lysine (Lys) connects the mitochondrial electron transport chain to amino acid catabolism and the tricarboxylic acid cycle. However, our understanding of how a deficiency in Lys biosynthesis impacts plant metabolism and growth remains limited. Here, we used a previously characterized Arabidopsis mutant (dapat) with reduced activity of the Lys biosynthesis enzyme L,L-diaminopimelate aminotransferase to investigate the physiological and metabolic impacts of impaired Lys biosynthesis. Despite displaying similar stomatal conductance and internal CO2 concentration, we observed reduced photosynthesis and growth in the dapat mutant. Surprisingly, whilst we did not find differences in dark respiration between genotypes, a lower storage and consumption of starch and sugars was observed in dapat plants. We found higher protein turnover but no differences in total amino acids during a diurnal cycle in dapat plants. Transcriptional and two-dimensional (isoelectric focalization/SDS-PAGE) proteome analyses revealed alterations in the abundance of several transcripts and proteins associated with photosynthesis and photorespiration coupled with a high glycine/serine ratio and increased levels of stress-responsive amino acids. Taken together, our findings demonstrate that biochemical alterations rather than stomatal limitations are responsible for the decreased photosynthesis and growth of the dapat mutant, which we hypothesize mimics stress conditions associated with impairments in the Lys biosynthesis pathway.
Collapse
Affiliation(s)
- João Henrique F Cavalcanti
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Max-Planck-partner group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Menny Kirma
- Department of Plant Science, The Weizmann Institute of Science, Rehovot, Israel
| | - Jessica A S Barros
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Max-Planck-partner group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Carla G S Quinhones
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Max-Planck-partner group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Ítalo A Pereira-Lima
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Max-Planck-partner group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Toshihiro Obata
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Max-Planck-partner group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Gad Galili
- Department of Plant Science, The Weizmann Institute of Science, Rehovot, Israel
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Tamar Avin-Wittenberg
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Givat Ram, Jerusalem Israel
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Max-Planck-partner group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
24
|
Hartmann M, Zeier J. l-lysine metabolism to N-hydroxypipecolic acid: an integral immune-activating pathway in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:5-21. [PMID: 30035374 DOI: 10.1111/tpj.14037] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/22/2018] [Accepted: 07/03/2018] [Indexed: 05/03/2023]
Abstract
l-lysine catabolic routes in plants include the saccharopine pathway to α-aminoadipate and decarboxylation of lysine to cadaverine. The current review will cover a third l-lysine metabolic pathway having a major role in plant systemic acquired resistance (SAR) to pathogen infection that was recently discovered in Arabidopsis thaliana. In this pathway, the aminotransferase AGD2-like defense response protein (ALD1) α-transaminates l-lysine and generates cyclic dehydropipecolic (DP) intermediates that are subsequently reduced to pipecolic acid (Pip) by the reductase SAR-deficient 4 (SARD4). l-pipecolic acid, which occurs ubiquitously in the plant kingdom, is further N-hydroxylated to the systemic acquired resistance (SAR)-activating metabolite N-hydroxypipecolic acid (NHP) by flavin-dependent monooxygenase1 (FMO1). N-hydroxypipecolic acid induces the expression of a set of major plant immune genes to enhance defense readiness, amplifies resistance responses, acts synergistically with the defense hormone salicylic acid, promotes the hypersensitive cell death response and primes plants for effective immune mobilization in cases of future pathogen challenge. This pathogen-inducible NHP biosynthetic pathway is activated at the transcriptional level and involves feedback amplification. Apart from FMO1, some cytochrome P450 monooxygenases involved in secondary metabolism catalyze N-hydroxylation reactions in plants. In specific taxa, pipecolic acid might also serve as a precursor in the biosynthesis of specialized natural products, leading to C-hydroxylated and otherwise modified piperidine derivatives, including indolizidine alkaloids. Finally, we show that NHP is glycosylated in Arabidopsis to form a hexose-conjugate, and then discuss open questions in Pip/NHP-related research.
Collapse
Affiliation(s)
- Michael Hartmann
- Department of Biology, Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Universitätsstraße 1, D-40225, Düsseldorf, Germany
| | - Jürgen Zeier
- Department of Biology, Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Universitätsstraße 1, D-40225, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstraße 1, D-40225, Düsseldorf, Germany
| |
Collapse
|
25
|
Li WW, Yang Y, Dai QG, Lin LL, Xie T, He LL, Tao JL, Shan JJ, Wang SC. Non-invasive urinary metabolomic profiles discriminate biliary atresia from infantile hepatitis syndrome. Metabolomics 2018; 14:90. [PMID: 30830373 DOI: 10.1007/s11306-018-1387-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/14/2018] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Neonatal cholestatic disorders are a group of hepatobiliary diseases occurring in the first 3 months of life. The most common causes of neonatal cholestasis are infantile hepatitis syndrome (IHS) and biliary atresia (BA). The clinical manifestations of the two diseases are too similar to distinguish them. However, early detection is very important in improving the clinical outcome of BA. Currently, a liver biopsy is the only proven and effective method used to differentially diagnose these two similar diseases in the clinic. However, this method is invasive. Therefore, sensitive and non-invasive biomarkers are needed to effectively differentiate between BA and IHS. We hypothesized that urinary metabolomics can produce unique metabolite profiles for BA and IHS. OBJECTIVES The aim of this study was to characterize urinary metabolomic profiles in infants with BA and IHS, and to identify differences among infants with BA, IHS, and normal controls (NC). METHODS Urine samples along with patient characteristics were obtained from 25 BA, 38 IHS, and 38 NC infants. A non-targeted gas chromatography-mass spectrometry (GC-MS) metabolomics method was used in conjunction with orthogonal partial least squares discriminant analysis (OPLS-DA) to explore the metabolomic profiles of BA, IHS, and NC infants. RESULTS In total, 41 differentially expressed metabolites between BA vs. NC, IHS vs. NC, and BA vs. IHS were identified. N-acetyl-D-mannosamine and alpha-aminoadipic acid were found to be highly accurate at distinguishing between BA and IHS. CONCLUSIONS BA and IHS infants have specific urinary metabolomic profiles. The results of our study underscore the clinical potential of metabolomic profiling to uncover metabolic changes that could be used to discriminate BA from IHS.
Collapse
Affiliation(s)
- Wei-Wei Li
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Yang
- TCM Department, Beijing Children's Hospital Affiliated to Capital Medical University, Beijing, China
| | - Qi-Gang Dai
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Li-Li Lin
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tong Xie
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Li-Li He
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jia-Lei Tao
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin-Jun Shan
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Shou-Chuan Wang
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
26
|
Reijngoud DJ. Flux analysis of inborn errors of metabolism. J Inherit Metab Dis 2018; 41:309-328. [PMID: 29318410 PMCID: PMC5959979 DOI: 10.1007/s10545-017-0124-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 02/07/2023]
Abstract
Patients with an inborn error of metabolism (IEM) are deficient of an enzyme involved in metabolism, and as a consequence metabolism reprograms itself to reach a new steady state. This new steady state underlies the clinical phenotype associated with the deficiency. Hence, we need to know the flux of metabolites through the different metabolic pathways in this new steady state of the reprogrammed metabolism. Stable isotope technology is best suited to study this. In this review the progress made in characterizing the altered metabolism will be presented. Studies done in patients to estimate the residual flux through the metabolic pathway affected by enzyme deficiencies will be discussed. After this, studies done in model systems will be reviewed. The focus will be on glycogen storage disease type I, medium-chain acyl-CoA dehydrogenase deficiency, propionic and methylmalonic aciduria, urea cycle defects, phenylketonuria, and combined D,L-2-hydroxyglutaric aciduria. Finally, new developments are discussed, which allow the tracing of metabolic reprogramming in IEM on a genome-wide scale. In conclusion, the outlook for flux analysis of metabolic derangement in IEMs looks promising.
Collapse
Affiliation(s)
- D-J Reijngoud
- Section of Systems Medicine and Metabolic Signaling, Laboratory of Pediatrics, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
- Center of Liver, Digestive and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
- European Research Institute of the Biology of Ageing, Internal ZIP code EA12, A. Deusinglaan 1, 9713, AV, Groningen, The Netherlands.
| |
Collapse
|
27
|
St Clair SL, Li H, Ashraf U, Karty JA, Tennessen JM. Metabolomic Analysis Reveals That the Drosophila melanogaster Gene lysine Influences Diverse Aspects of Metabolism. Genetics 2017; 207:1255-1261. [PMID: 28986444 PMCID: PMC5714445 DOI: 10.1534/genetics.117.300201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/04/2017] [Indexed: 01/31/2023] Open
Abstract
The fruit fly Drosophila melanogaster has emerged as a powerful model for investigating the molecular mechanisms that regulate animal metabolism. However, a major limitation of these studies is that many metabolic assays are tedious, dedicated to analyzing a single molecule, and rely on indirect measurements. As a result, Drosophila geneticists commonly use candidate gene approaches, which, while important, bias studies toward known metabolic regulators. In an effort to expand the scope of Drosophila metabolic studies, we used the classic mutant lysine (lys) to demonstrate how a modern metabolomics approach can be used to conduct forward genetic studies. Using an inexpensive and well-established gas chromatography-mass spectrometry-based method, we genetically mapped and molecularly characterized lys by using free lysine levels as a phenotypic readout. Our efforts revealed that lys encodes the Drosophila homolog of Lysine Ketoglutarate Reductase/Saccharopine Dehydrogenase, which is required for the enzymatic degradation of lysine. Furthermore, this approach also allowed us to simultaneously survey a large swathe of intermediate metabolism, thus demonstrating that Drosophila lysine catabolism is complex and capable of influencing seemingly unrelated metabolic pathways. Overall, our study highlights how a combination of Drosophila forward genetics and metabolomics can be used for unbiased studies of animal metabolism, and demonstrates that a single enzymatic step is intricately connected to diverse aspects of metabolism.
Collapse
Affiliation(s)
| | - Hongde Li
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - Usman Ashraf
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405
| | - Jonathan A Karty
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405
| | - Jason M Tennessen
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| |
Collapse
|
28
|
Pena IA, Roussel Y, Daniel K, Mongeon K, Johnstone D, Weinschutz Mendes H, Bosma M, Saxena V, Lepage N, Chakraborty P, Dyment DA, van Karnebeek CDM, Verhoeven-Duif N, Bui TV, Boycott KM, Ekker M, MacKenzie A. Pyridoxine-Dependent Epilepsy in Zebrafish Caused by Aldh7a1 Deficiency. Genetics 2017; 207:1501-1518. [PMID: 29061647 PMCID: PMC5714462 DOI: 10.1534/genetics.117.300137] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/04/2017] [Indexed: 11/25/2022] Open
Abstract
Pyridoxine-dependent epilepsy (PDE) is a rare disease characterized by mutations in the lysine degradation gene ALDH7A1 leading to recurrent neonatal seizures, which are uniquely alleviated by high doses of pyridoxine or pyridoxal 5'-phosphate (vitamin B6 vitamers). Despite treatment, neurodevelopmental disabilities are still observed in most PDE patients underlining the need for adjunct therapies. Over 60 years after the initial description of PDE, we report the first animal model for this disease: an aldh7a1-null zebrafish (Danio rerio) displaying deficient lysine metabolism and spontaneous and recurrent seizures in the larval stage (10 days postfertilization). Epileptiform electrographic activity was observed uniquely in mutants as a series of population bursts in tectal recordings. Remarkably, as is the case in human PDE, the seizures show an almost immediate sensitivity to pyridoxine and pyridoxal 5'-phosphate, with a resulting extension of the life span. Lysine supplementation aggravates the phenotype, inducing earlier seizure onset and death. By using mass spectrometry techniques, we further explored the metabolic effect of aldh7a1 knockout. Impaired lysine degradation with accumulation of PDE biomarkers, B6 deficiency, and low γ-aminobutyric acid levels were observed in the aldh7a1-/- larvae, which may play a significant role in the seizure phenotype and PDE pathogenesis. This novel model provides valuable insights into PDE pathophysiology; further research may offer new opportunities for drug discovery to control seizure activity and improve neurodevelopmental outcomes for PDE.
Collapse
Affiliation(s)
- Izabella A Pena
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 8L1, Canada
- Department of Pediatrics, Faculty of Medicine, University of Ottawa, Ontario K1H 8L1, Canada
- Department of Biology, University of Ottawa, Ontario K1N 6N5, Canada
| | - Yann Roussel
- Department of Biology, University of Ottawa, Ontario K1N 6N5, Canada
| | - Kate Daniel
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 8L1, Canada
| | - Kevin Mongeon
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 8L1, Canada
- Department of Pediatrics, Faculty of Medicine, University of Ottawa, Ontario K1H 8L1, Canada
| | - Devon Johnstone
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 8L1, Canada
- Department of Pediatrics, Faculty of Medicine, University of Ottawa, Ontario K1H 8L1, Canada
| | | | - Marjolein Bosma
- Departments of Pediatrics and Clinical Genetics, Academic Medical Centre, 1105 AZ Amsterdam, The Netherlands
| | - Vishal Saxena
- Department of Biology, University of Ottawa, Ontario K1N 6N5, Canada
| | - Nathalie Lepage
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 8L1, Canada
| | - Pranesh Chakraborty
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 8L1, Canada
| | - David A Dyment
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 8L1, Canada
- Department of Pediatrics, Faculty of Medicine, University of Ottawa, Ontario K1H 8L1, Canada
| | - Clara D M van Karnebeek
- Departments of Pediatrics and Clinical Genetics, Academic Medical Centre, 1105 AZ Amsterdam, The Netherlands
- Department of Pediatrics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver V5Z 4H4, British Columbia, Canada
| | - Nanda Verhoeven-Duif
- Department of Genetics, Center for Molecular Medicine, University Medical Center (UMC), 3584 EA Utrecht, The Netherlands
| | - Tuan Vu Bui
- Department of Biology, University of Ottawa, Ontario K1N 6N5, Canada
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 8L1, Canada
- Department of Pediatrics, Faculty of Medicine, University of Ottawa, Ontario K1H 8L1, Canada
| | - Marc Ekker
- Department of Biology, University of Ottawa, Ontario K1N 6N5, Canada
| | - Alex MacKenzie
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 8L1, Canada
- Department of Pediatrics, Faculty of Medicine, University of Ottawa, Ontario K1H 8L1, Canada
| |
Collapse
|
29
|
Pena IA, MacKenzie A, Van Karnebeek CDM. Current knowledge for pyridoxine-dependent epilepsy: a 2016 update. Expert Rev Endocrinol Metab 2017; 12:5-20. [PMID: 30058881 DOI: 10.1080/17446651.2017.1273107] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Pyridoxine-dependent epilepsy (PDE) is a rare genetic condition characterized by intractable and recurrent neonatal seizures that are uniquely alleviated by high doses of pyridoxine (vitamin B6). This recessive disease is caused by mutations in ALDH7A1, a gene encoding Antiquitin, an enzyme central to lysine degradation. This results in the pathogenic accumulation of the lysine intermediates Aminoadipate Semialdehyde (AASA) and its cyclic equilibrium form Piperideine-6-carboxylate (P6C) in body fluids; P6C reacts with pyridoxal-5'-phosphate (PLP, the active form of vitamin B6) causing its inactivation and leading to pyridoxine-dependent seizures. While PDE is responsive to pharmacological dosages of pyridoxine, despite lifelong supplementation, neurodevelopment delays are observed in >75% of PDE cases. Thus, adjunct treatment strategies are emerging to both improve seizure control and moderate the delays in cognition. These adjunctive therapies, lysine restriction and arginine supplementation, separately or in combination (with pyridoxine thus termed 'triple therapy'), have shown promising results and are recommended in all PDE patients. Other new therapeutic strategies currently in preclinical phase of study include antisense therapy and substrate reduction therapy. We present here a comprehensive review of current treatment options as well as PDE phenotype, differential diagnosis, current management and views upon the future of PDE research.
Collapse
Affiliation(s)
- Izabella Agostinho Pena
- a Children's Hospital of Eastern Ontario (CHEO) Research Institute , Ottawa , ON , Canada
- b Department of Cellular and Molecular Medicine , University of Ottawa , Ottawa , ON , Canada
| | - Alex MacKenzie
- a Children's Hospital of Eastern Ontario (CHEO) Research Institute , Ottawa , ON , Canada
- b Department of Cellular and Molecular Medicine , University of Ottawa , Ottawa , ON , Canada
| | - Clara D M Van Karnebeek
- c Department of Pediatrics, BC Children's Hospital Research Institute, Centre for Molecular Medicine and Therapeutics , University of British Columbia , Vancouver BC , Canada
| |
Collapse
|
30
|
Mouse lysine catabolism to aminoadipate occurs primarily through the saccharopine pathway; implications for pyridoxine dependent epilepsy (PDE). Biochim Biophys Acta Mol Basis Dis 2017; 1863:121-128. [DOI: 10.1016/j.bbadis.2016.09.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/11/2016] [Accepted: 09/07/2016] [Indexed: 11/24/2022]
|
31
|
Natarajan SK, Muthukrishnan E, Khalimonchuk O, Mott JL, Becker DF. Evidence for Pipecolate Oxidase in Mediating Protection Against Hydrogen Peroxide Stress. J Cell Biochem 2016; 118:1678-1688. [PMID: 27922192 DOI: 10.1002/jcb.25825] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 12/02/2016] [Indexed: 01/16/2023]
Abstract
Pipecolate, an intermediate of the lysine catabolic pathway, is oxidized to Δ1 -piperideine-6-carboxylate (P6C) by the flavoenzyme l-pipecolate oxidase (PIPOX). P6C spontaneously hydrolyzes to generate α-aminoadipate semialdehyde, which is then converted into α-aminoadipate acid by α-aminoadipatesemialdehyde dehydrogenase. l-pipecolate was previously reported to protect mammalian cells against oxidative stress. Here, we examined whether PIPOX is involved in the mechanism of pipecolate stress protection. Knockdown of PIPOX by small interference RNA abolished pipecolate protection against hydrogen peroxide-induced cell death in HEK293 cells suggesting a critical role for PIPOX. Subcellular fractionation analysis showed that PIPOX is localized in the mitochondria of HEK293 cells consistent with its role in lysine catabolism. Signaling pathways potentially involved in pipecolate protection were explored by treating cells with small molecule inhibitors. Inhibition of both mTORC1 and mTORC2 kinase complexes or inhibition of Akt kinase alone blocked pipecolate protection suggesting the involvement of these signaling pathways. Phosphorylation of the Akt downstream target, forkhead transcription factor O3 (FoxO3), was also significantly increased in cells treated with pipecolate, further implicating Akt in the protective mechanism and revealing FoxO3 inhibition as a potentially key step. The results presented here demonstrate that pipecolate metabolism can influence cell signaling during oxidative stress to promote cell survival and suggest that the mechanism of pipecolate protection parallels that of proline, which is also metabolized in the mitochondria. J. Cell. Biochem. 118: 1678-1688, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sathish Kumar Natarajan
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588.,Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, 68583
| | - Ezhumalai Muthukrishnan
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, 68583
| | - Oleh Khalimonchuk
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588
| | - Justin L Mott
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, 68198
| | - Donald F Becker
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588
| |
Collapse
|
32
|
Han H, Xiao H, Lu Z. Short-term toxicity assessments of an antibiotic metabolite in Wistar rats and its metabonomics analysis by ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Toxicol Appl Pharmacol 2016; 293:1-9. [PMID: 26780399 DOI: 10.1016/j.taap.2016.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/30/2015] [Accepted: 01/05/2016] [Indexed: 01/08/2023]
Abstract
4-Epi-oxytetracycline (4-EOTC), one of main oxytetracycline (OTC) metabolites, can be commonly detected in food and environment. The toxicity and effects of OTC on animals have been well characterized; however, its metabolites have never been studied systemically. This study aims to investigate 15-day oral dose toxicity and urine metabonomics changes of 4-EOTC after repeated administration in Wistar rats at daily doses of 0.5, 5.0 and 50.0mg/kg bw (bodyweight). Hematology and clinical chemistry parameters, including white blood cell count, red blood cell count, total protein, globulin and albumin/globulin, were obviously altered in rats of 5.0 and 50.0mg/kg bw. Histopathology changes of kidney and liver tissues were also observed in high-dose groups. Urinary metabolites from all groups were analyzed using ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). Seventeen metabolites contributing to the clusters were identified as potential biomarkers from multivariate analysis, including aminoadipic acid, 6-phosphogluconate, sebacic acid, pipecolic acid, etc. The significant changes of these biomarkers demonstrated metabonomic variations in treated rats, especially lysine and purine metabolism. For the first time in this paper, we combined the results of toxicity and metabonomics induced by 4-EOTC for the serious reconsideration of the safety and potential risks of antibiotics and its degradation metabolites.
Collapse
Affiliation(s)
- Hongxing Han
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Hailong Xiao
- Hangzhou Institute for Food and Drug Control, Hangzhou 310004, China
| | - Zhenmei Lu
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|
33
|
Jiang K, Xue Y, Ma Y. Identification of N(α)-acetyl-α-lysine as a probable thermolyte and its accumulation mechanism in Salinicoccus halodurans H3B36. Sci Rep 2015; 5:18518. [PMID: 26687465 PMCID: PMC4685198 DOI: 10.1038/srep18518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/30/2015] [Indexed: 11/09/2022] Open
Abstract
Salinicoccus halodurans H3B36 is a moderate halophile that was isolated from a 3.2-m-deep sediment sample in Qaidam Basin, China. Our results suggest that N(α)-acetyl-α-lysine can accumulate and act as a probable thermolyte in this strain. The accumulation mechanism and biosynthetic pathway for this rare compatible solute were also elucidated. We confirmed that the de novo synthesis pathway of N(α)-acetyl-α-lysine in this strain starts from aspartate and passes through lysine. Through RNA sequencing, we also found an 8-gene cluster (orf_1582-1589) and another gene (orf_2472) that might encode the biosynthesis of N(α)-acetyl-α-lysine in S. halodurans H3B36. Orf_192, orf_193, and orf_1259 might participate in the transportation of precursors for generating N(α)-acetyl-α-lysine under the heat stress. The transcriptome reported here also generated a global view of heat-induced changes and yielded clues for studying the regulation of N(α)-acetyl-α-lysine accumulation. Heat stress triggered a global transcriptional disturbance and generated a series of actions to adapt the strain to heat stress. Furthermore, the transcriptomic results showed that the regulon of RpoN (orf_2534) may be critical to conferring heat stress tolerance and survival to S. halodurans.
Collapse
Affiliation(s)
- Kai Jiang
- State Key Laboratory of Microbial Resources and National Engineering Laboratory for Industrial Enzymes, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yanfen Xue
- State Key Laboratory of Microbial Resources and National Engineering Laboratory for Industrial Enzymes, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yanhe Ma
- State Key Laboratory of Microbial Resources and National Engineering Laboratory for Industrial Enzymes, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
34
|
Kiyota E, Pena IA, Arruda P. The saccharopine pathway in seed development and stress response of maize. PLANT, CELL & ENVIRONMENT 2015; 38:2450-61. [PMID: 25929294 DOI: 10.1111/pce.12563] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 04/17/2015] [Accepted: 04/21/2015] [Indexed: 05/10/2023]
Abstract
Lysine is catabolized in developing plant tissues through the saccharopine pathway. In this pathway, lysine is converted into α-aminoadipic semialdehyde (AASA) by the bifunctional enzyme lysine-ketoglutarate reductase/saccharopine dehydrogenase (LKR/SDH). AASA is then converted into aminoadipic acid (AAA) by aminoadipic semialdehyde dehydrogenase (AASADH). Here, we show that LKR/SDH and AASADH are co-expressed in the sub-aleurone cell layers of the developing endosperm; however, although AASADH protein is produced in reproductive and vegetative tissues, the LKR/SDH protein is detectable only in the developing endosperm. AASADH showed an optimum pH of 7.4 and Kms for AASA and NAD(+) in the micromolar range. In the developing endosperm, the saccharopine pathway is induced by exogenous lysine and repressed by salt stress, whereas proline and pipecolic acid synthesis are significantly repressed by lysine. In young coleoptiles, the LKR/SDH and AASADH transcriptions are induced by abiotic stress, but while the AASADH protein accumulates in the stressed tissues, the LKR/SDH protein is not produced. In the developing seeds, the saccharopine pathway is used for pipecolic acid synthesis although proline may play a major role in abiotic stress response. The results indicate that the saccharopine pathway in maize seed development and stress responses significantly differ from that observed for dicot plants.
Collapse
Affiliation(s)
- Eduardo Kiyota
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, 13083-875, Campinas, Sao Paulo, Brazil
| | - Izabella Agostinho Pena
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, 13083-875, Campinas, Sao Paulo, Brazil
| | - Paulo Arruda
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, 13083-875, Campinas, Sao Paulo, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, 13083-875, Campinas, Sao Paulo, Brazil
| |
Collapse
|
35
|
Maurino VG, Engqvist MKM. 2-Hydroxy Acids in Plant Metabolism. THE ARABIDOPSIS BOOK 2015; 13:e0182. [PMID: 26380567 PMCID: PMC4568905 DOI: 10.1199/tab.0182] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Glycolate, malate, lactate, and 2-hydroxyglutarate are important 2-hydroxy acids (2HA) in plant metabolism. Most of them can be found as D- and L-stereoisomers. These 2HA play an integral role in plant primary metabolism, where they are involved in fundamental pathways such as photorespiration, tricarboxylic acid cycle, glyoxylate cycle, methylglyoxal pathway, and lysine catabolism. Recent molecular studies in Arabidopsis thaliana have helped elucidate the participation of these 2HA in in plant metabolism and physiology. In this chapter, we summarize the current knowledge about the metabolic pathways and cellular processes in which they are involved, focusing on the proteins that participate in their metabolism and cellular/intracellular transport in Arabidopsis.
Collapse
Affiliation(s)
- Veronica G. Maurino
- institute of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich Heine University, Universitätsstraße 1, and Cluster of Excellence on Plant Sciences (CEPLAS), 40225 Düsseldorf, Germany
| | - Martin K. M. Engqvist
- institute of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich Heine University, Universitätsstraße 1, and Cluster of Excellence on Plant Sciences (CEPLAS), 40225 Düsseldorf, Germany
| |
Collapse
|
36
|
Tamaura M, Shimbo H, Iai M, Yamashita S, Osaka H. Seizure recurrence following pyridoxine withdrawal in a patient with pyridoxine-dependent epilepsy. Brain Dev 2015; 37:442-5. [PMID: 25123644 DOI: 10.1016/j.braindev.2014.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 07/11/2014] [Accepted: 07/19/2014] [Indexed: 10/24/2022]
Abstract
Pyridoxine-dependent epilepsy (PDE) is an autosomal recessive disorder characterized by early onset and recurrent seizures that can be controlled by a high dose of pyridoxine. PDE is caused by mutations in ALDH7A1, which encodes antiquitin. Antiquitin converts α-aminoadipic semialdehyde to α-aminoadipic acid. Seizure recurrence after pyridoxine withdrawal is a criterion for diagnosis, but PDE can be diagnosed conclusively by genetic testing for mutations in the ALDH7A1 gene. In this case study, we report the long-term follow-up of a patient suspected with PDE. She experienced prolonged generalized tonic seizures and was hospitalized in an intensive care unit following pyridoxine withdrawal. Later, we identified a compound heterozygous mutation, c.1216G>A, p.Gly406Arg, and a novel splice donor site mutation, IVS9+5G>A. Confirmation of these mutations would have prevented an unsafe withdrawal test. This case suggests the importance of the genetic determination of PDE to avoid the diagnostic withdrawal of pyridoxine.
Collapse
Affiliation(s)
- Moe Tamaura
- Division of Neurology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Hiroko Shimbo
- Division of Neurology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Mizue Iai
- Division of Neurology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Sumimasa Yamashita
- Division of Neurology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Hitoshi Osaka
- Division of Neurology, Kanagawa Children's Medical Center, Yokohama, Japan; Department of Pediatrics, Jichi Medical School, Shimotsuke, Tochigi, Japan.
| |
Collapse
|
37
|
Posset R, Opp S, Struys EA, Völkl A, Mohr H, Hoffmann GF, Kölker S, Sauer SW, Okun JG. Understanding cerebral L-lysine metabolism: the role of L-pipecolate metabolism in Gcdh-deficient mice as a model for glutaric aciduria type I. J Inherit Metab Dis 2015; 38:265-72. [PMID: 25214427 DOI: 10.1007/s10545-014-9762-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 07/29/2014] [Accepted: 08/08/2014] [Indexed: 11/30/2022]
Abstract
Inherited deficiencies of the L-lysine catabolic pathway cause glutaric aciduria type I and pyridoxine-dependent epilepsy. Dietary modulation of cerebral L-lysine metabolism is thought to be an important therapeutic intervention for these diseases. To better understand cerebral L-lysine degradation, we studied in mice the two known catabolic routes -- pipecolate and saccharopine pathways -- using labeled stable L-lysine and brain peroxisomes purified according to a newly established protocol. Experiments with labeled stable L-lysine show that cerebral L-pipecolate is generated along two pathways: i) a minor proportion retrograde after ε-deamination of L-lysine along the saccharopine pathway, and ii) a major proportion anterograde after α-deamination of L-lysine along the pipecolate pathway. In line with these findings, we observed only little production of saccharopine in the murine brain. L-pipecolate oxidation was only detectable in brain peroxisomes, but L-pipecolate oxidase activity was low (7 ± 2μU/mg protein). In conclusion, L-pipecolate is a major degradation product from L-lysine in murine brain generated by α-deamination of this amino acid.
Collapse
Affiliation(s)
- Roland Posset
- Division of Inherited Metabolic Diseases, University Children's Hospital, Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Biswas NK, Chandra V, Sarkar-Roy N, Das T, Bhattacharya RN, Tripathy LN, Basu SK, Kumar S, Das S, Chatterjee A, Mukherjee A, Basu P, Maitra A, Chattopadhyay A, Basu A, Dhara S. Variant allele frequency enrichment analysis in vitro reveals sonic hedgehog pathway to impede sustained temozolomide response in GBM. Sci Rep 2015; 5:7915. [PMID: 25604826 PMCID: PMC4300501 DOI: 10.1038/srep07915] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/22/2014] [Indexed: 01/06/2023] Open
Abstract
Neoplastic cells of Glioblastoma multiforme (GBM) may or may not show sustained response to temozolomide (TMZ) chemotherapy. We hypothesize that TMZ chemotherapy response in GBM is predetermined in its neoplastic clones via a specific set of mutations that alter relevant pathways. We describe exome-wide enrichment of variant allele frequencies (VAFs) in neurospheres displaying contrasting phenotypes of sustained versus reversible TMZ-responses in vitro. Enrichment of VAFs was found on genes ST5, RP6KA1 and PRKDC in cells showing sustained TMZ-effect whereas on genes FREM2, AASDH and STK36, in cells showing reversible TMZ-effect. Ingenuity pathway analysis (IPA) revealed that these genes alter cell-cycle, G2/M-checkpoint-regulation and NHEJ pathways in sustained TMZ-effect cells whereas the lysine-II&V/phenylalanine degradation and sonic hedgehog (Hh) pathways in reversible TMZ-effect cells. Next, we validated the likely involvement of the Hh-pathway in TMZ-response on additional GBM neurospheres as well as on GBM patients, by extracting RNA-sequencing-based gene expression data from the TCGA-GBM database. Finally, we demonstrated TMZ-sensitization of a TMZ non-responder neurosphere in vitro by treating them with the FDA-approved pharmacological Hh-pathway inhibitor vismodegib. Altogether, our results indicate that the Hh-pathway impedes sustained TMZ-response in GBM and could be a potential therapeutic target to enhance TMZ-response in this malignancy.
Collapse
Affiliation(s)
- Nidhan K Biswas
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Vikas Chandra
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Neeta Sarkar-Roy
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Tapojyoti Das
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | | | - Laxmi N Tripathy
- Medica Superspeciality Hospital, 127 Mukundapur, Kolkata 700099, India
| | - Sunandan K Basu
- Medica Superspeciality Hospital, 127 Mukundapur, Kolkata 700099, India
| | - Shantanu Kumar
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Subrata Das
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Ankita Chatterjee
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Ankur Mukherjee
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Pryiadarshi Basu
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Arindam Maitra
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | | | - Analabha Basu
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Surajit Dhara
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| |
Collapse
|
39
|
Hanhineva K, Lankinen MA, Pedret A, Schwab U, Kolehmainen M, Paananen J, de Mello V, Sola R, Lehtonen M, Poutanen K, Uusitupa M, Mykkänen H. Nontargeted metabolite profiling discriminates diet-specific biomarkers for consumption of whole grains, fatty fish, and bilberries in a randomized controlled trial. J Nutr 2015; 145:7-17. [PMID: 25527657 DOI: 10.3945/jn.114.196840] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Nontargeted metabolite profiling allows for concomitant examination of a wide range of metabolite species, elucidating the metabolic alterations caused by dietary interventions. OBJECTIVE The aim of the current study was to investigate the effects of dietary modifications on the basis of increasing consumption of whole grains, fatty fish, and bilberries on plasma metabolite profiles to identify applicable biomarkers for dietary intake and endogenous metabolism. METHODS Metabolite profiling analysis was performed on fasting plasma samples collected in a 12-wk parallel-group intervention with 106 participants with features of metabolic syndrome who were randomly assigned to 3 dietary interventions: 1) whole-grain products, fatty fish, and bilberries [healthy diet (HD)]; 2) a whole-grain-enriched diet with the same grain products as in the HD intervention but with no change in fish or berry consumption; and 3) refined-wheat breads and restrictions on fish and berries (control diet). In addition, correlation analyses were conducted with the food intake data to define the food items correlating with the biomarker candidates. RESULTS Nontargeted metabolite profiling showed marked differences in fasting plasma after the intervention diets compared with the control diet. In both intervention groups, a significant increase was observed in 2 signals identified as glucuronidated alk(en)-ylresorcinols [corrected P value (Pcorr) < 0.05], which correlated strongly with the intake of whole-grain products (r = 0.63, P < 0.001). In addition, the HD intervention increased the signals for furan fatty acids [3-carboxy-4-methyl-5-propyl-2-furanpropionic acid (CMPF)], hippuric acid, and various lipid species incorporating polyunsaturated fatty acids (Pcorr < 0.05). In particular, plasma CMPF correlated strongly with the intake of fish (r = 0.47, P < 0.001) but not with intakes of any other foods. CONCLUSIONS Novel biomarkers of the intake of health-beneficial food items included in the Nordic diet were identified by the metabolite profiling of fasting plasma and confirmed by the correlation analyses with dietary records. The one with the most potential was CMPF, which was shown to be a highly specific biomarker for fatty fish intake. This trial was registered at clinicaltrials.gov as NCT00573781.
Collapse
Affiliation(s)
| | | | - Anna Pedret
- Research Unit on Lipids and Atherosclerosis, Technological Center of Nutrition and Health, CIBERDEM, Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, IISPV, Institut d'Investigació Sanitaria Pere Virgili, Reus, Spain; and
| | - Ursula Schwab
- Institute of Public Health and Clinical Nutrition and Research Unit on Lipids and Atherosclerosis, Technological Center of Nutrition and Health, CIBERDEM, Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, IISPV, Institut d'Investigació Sanitaria Pere Virgili, Reus, Spain; and
| | | | | | | | - Rosa Sola
- Research Unit on Lipids and Atherosclerosis, Technological Center of Nutrition and Health, CIBERDEM, Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, IISPV, Institut d'Investigació Sanitaria Pere Virgili, Reus, Spain; and
| | - Marko Lehtonen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Kaisa Poutanen
- Institute of Public Health and Clinical Nutrition and VTT Technical Research Centre of Finland, Espoo, Finland
| | | | | |
Collapse
|
40
|
Struys EA, Jansen EEW, Salomons GS. Human pyrroline-5-carboxylate reductase (PYCR1) acts on Δ(1)-piperideine-6-carboxylate generating L-pipecolic acid. J Inherit Metab Dis 2014; 37:327-32. [PMID: 24431009 DOI: 10.1007/s10545-013-9673-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/27/2013] [Accepted: 12/13/2013] [Indexed: 11/25/2022]
Abstract
We have conducted biochemical studies with commercial available pyrroline-5-carboxylate (P5C) reductase (PYCR1) to investigate whether this enzyme plays a role in L-lysine degradation. Our recent studies with antiquitin/ALDH7A1 deficient fibroblasts revealed an alternative genesis of L-pipecolic acid, and we then hypothesized that PYCR1 was responsible for the conversion of Δ(1)-piperideine-6-carboxylate (P6C) into pipecolic acid. We here present evidence that PYCR1 is indeed able to produce L-pipecolic acid from P6C preparations, and the observed K m for this conversion is of the same magnitude as the K m described for the conversion of P5C to L-proline by PYCR1. Urine samples from antiquitin deficient individuals, who accumulate P6C, were also incubated with PYCR1 which resulted in a marked decrease of P6C and a huge increase of L-pipecolic acid as measured by LC-MS/MS, confirming that indeed PYCR1 generates L-pipecolic acid from P6C.
Collapse
Affiliation(s)
- Eduard A Struys
- Metabolic Unit, Clinical Chemistry, VUmc Medical Center, The Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands,
| | | | | |
Collapse
|
41
|
Yang H, Lin W, Zhang J, Lin W, Xu P, Li J, Ling X. Metabonomic analysis of the toxic effects of TM208 in rat urine by HPLC-ESI-IT-TOF/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 959:49-54. [PMID: 24747524 DOI: 10.1016/j.jchromb.2014.03.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/26/2014] [Accepted: 03/28/2014] [Indexed: 10/25/2022]
Abstract
4-Methylpiperazine-1-carbodithiocacid-3-cyano-3,3-diphenylpropyl ester hydrochloride (TM208) was a potential antitumor new drug with many preliminary studies in pharmacokinetics and pharmacodynamics. This study aims to determine whether TM208 elicits toxic effects by metabonomics for the first time. Sprague Dawley (SD) rats were exposured to TM208 at a single therapeutic dose (100mg/kg/d) for 5 days, metabolites of urine samples from both control and TM208-treated groups were analyzed using high performance liquid chromatography-electrospray ionization source in combination with hybrid ion trap and high-resolution time-of-flight mass spectrometry (HPLC-ESI-IT-TOF/MS). Metabolites such as aminoadipic acid, creatine, gluconic acid, cis-aconitic acid, succinic acid and pipecolic acid which changed significantly, were identified as potential biomarkers. These results suggest that the changes in urinary metabolites of rats after exposure to TM208 were mainly related to energy metabolism and amino acid metabolism, which may be helpful to further understand the mechanism of TM208 toxicity in rats and a new drug development.
Collapse
Affiliation(s)
- Haisong Yang
- State Key Laboratory of Natural and Biomimetic and Drugs and Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences and Peking University, Beijing 100191, PR China
| | - Wensi Lin
- State Key Laboratory of Natural and Biomimetic and Drugs and Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences and Peking University, Beijing 100191, PR China
| | - Jianmei Zhang
- State Key Laboratory of Natural and Biomimetic and Drugs and Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences and Peking University, Beijing 100191, PR China
| | - Weiwei Lin
- State Key Laboratory of Natural and Biomimetic and Drugs and Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences and Peking University, Beijing 100191, PR China
| | - Peng Xu
- State Key Laboratory of Natural and Biomimetic and Drugs and Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences and Peking University, Beijing 100191, PR China
| | - Jing Li
- State Key Laboratory of Natural and Biomimetic and Drugs and Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences and Peking University, Beijing 100191, PR China
| | - Xiaomei Ling
- State Key Laboratory of Natural and Biomimetic and Drugs and Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences and Peking University, Beijing 100191, PR China.
| |
Collapse
|
42
|
Lysine-restricted diet and mild cerebral serotonin deficiency in a patient with pyridoxine-dependent epilepsy caused by ALDH7A1 genetic defect. Mol Genet Metab Rep 2014; 1:124-128. [PMID: 27896080 PMCID: PMC5121319 DOI: 10.1016/j.ymgmr.2014.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 02/01/2014] [Accepted: 02/01/2014] [Indexed: 11/27/2022] Open
Abstract
Pyridoxine dependent epilepsy (PDE) is caused by mutations in the ALDH7A1 gene (PDE-ALDH7A1) encoding α-aminoadipic-semialdehyde-dehydrogenase enzyme in the lysine catabolic pathway resulting in an accumulation of α-aminoadipic-acid-semialdehyde (α-AASA). We present the one-year treatment outcome of a patient on a lysine-restricted diet. Serial cerebral-spinal-fluid (CSF) α-AASA and CSF pipecolic-acid levels showed decreased levels but did not normalize. He had a normal neurodevelopmental outcome on a lysine-restricted diet. Despite normal CSF and plasma tryptophan levels and normal tryptophan intake, he developed mild CSF serotonin deficiency at one year of therapy. Stricter lysine restriction would be necessary to normalize CSF α-AASA levels, but might increase the risks associated with the diet. Patients are at risk of cerebral serotonin deficiency and should be monitored by CSF neurotransmitter measurements.
Collapse
Key Words
- 5-HIAA, 5-hydroxyindolacetic acid
- Alpha-amino adipic acid semialdehyde dehydrogenase deficiency
- CNS, central nervous system
- CSF, cerebral spinal fluid
- CSF-PA, CSF PA
- CSF-α-AASA, CSF α-AASA
- GA-I, glutaric aciduria type I
- HVA, homovanillic acid levels
- Lysine restricted diet
- MSEL, Mullen Scales of Early Learning
- P5CR, pyrroline-5-carboxylate reductase
- P6C, piperidine 6-carboxylic acid
- PA, pipecolic acid
- PDE, pyridoxine dependent epilepsy
- PDE-ALDH7A1, PDE caused by ALDH7A1 genetic defect
- PDMS-2, Peabody Developmental Motor Scales — 2nd Edition
- Pyridoxine dependent epilepsy
- α AASAS, α-AASA synthase
- α-AASA, alpha-aminoadipic acid semialdehyde
- α-AASAD, alpha-aminoadipic acid semialdehyde dehydrogenase
Collapse
|
43
|
Shimomura A, Matsui I, Hamano T, Ishimoto T, Katou Y, Takehana K, Inoue K, Kusunoki Y, Mori D, Nakano C, Obi Y, Fujii N, Takabatake Y, Nakano T, Tsubakihara Y, Isaka Y, Rakugi H. Dietary L-lysine prevents arterial calcification in adenine-induced uremic rats. J Am Soc Nephrol 2014; 25:1954-65. [PMID: 24652795 DOI: 10.1681/asn.2013090967] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Vascular calcification (VC) is a life-threatening complication of CKD. Severe protein restriction causes a shortage of essential amino acids, and exacerbates VC in rats. Therefore, we investigated the effects of dietary l-lysine, the first-limiting amino acid of cereal grains, on VC. Male Sprague-Dawley rats at age 13 weeks were divided randomly into four groups: low-protein (LP) diet (group LP), LP diet+adenine (group Ade), LP diet+adenine+glycine (group Gly) as a control amino acid group, and LP diet+adenine+l-lysine·HCl (group Lys). At age 18 weeks, group LP had no VC, whereas groups Ade and Gly had comparable levels of severe VC. l-Lysine supplementation almost completely ameliorated VC. Physical parameters and serum creatinine, urea nitrogen, and phosphate did not differ among groups Ade, Gly, and Lys. Notably, serum calcium in group Lys was slightly but significantly higher than in groups Ade and Gly. Dietary l-lysine strongly suppressed plasma intact parathyroid hormone in adenine rats and supported a proper bone-vascular axis. The conserved orientation of the femoral apatite in group Lys also evidenced the bone-protective effects of l-lysine. Dietary l-lysine elevated plasma alanine, proline, arginine, and homoarginine but not lysine. Analyses in vitro demonstrated that alanine and proline inhibit apoptosis of cultured vascular smooth muscle cells, and that arginine and homoarginine attenuate mineral precipitations in a supersaturated calcium/phosphate solution. In conclusion, dietary supplementation of l-lysine ameliorated VC by modifying key pathways that exacerbate VC.
Collapse
Affiliation(s)
| | - Isao Matsui
- Departments of Geriatric Medicine and Nephrology and
| | - Takayuki Hamano
- Comprehensive Kidney Disease Research, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takuya Ishimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Yumiko Katou
- Applied Analytical Group, Fundamental Technology Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki-ku, Kawasaki, Kanagawa, Japan
| | - Kenji Takehana
- Pharmacology Research Laboratory, Research Institute, Ajinomoto Pharmaceutical Co., Ltd., Kawasaki-ku, Kawasaki, Kanagawa, Japan; and
| | | | | | - Daisuke Mori
- Departments of Geriatric Medicine and Nephrology and
| | | | | | - Naohiko Fujii
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Yoshiharu Tsubakihara
- Comprehensive Kidney Disease Research, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | | | - Hiromi Rakugi
- Departments of Geriatric Medicine and Nephrology and
| |
Collapse
|
44
|
Engqvist MKM, Eßer C, Maier A, Lercher MJ, Maurino VG. Mitochondrial 2-hydroxyglutarate metabolism. Mitochondrion 2014; 19 Pt B:275-81. [PMID: 24561575 DOI: 10.1016/j.mito.2014.02.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 01/03/2023]
Abstract
2-Hydroxyglutarate (2-HG) is a five-carbon dicarboxylic acid with a hydroxyl group at the alpha position, which forms a stereocenter in this molecule. Although the existence of mitochondrial D- and L-2HG metabolisms has long been known in different eukaryotes, the biosynthetic pathways, especially in plants, have not been completely elucidated. While D-2HG is involved in intermediary metabolism, L-2HG may not have a cellular function but it needs to be recycled through a metabolic repair reaction. Independent of their metabolic origin, D- and L-2HG are oxidized in plant mitochondria to 2-ketoglutarate through the action of two stereospecific enzymes, D- and L-2-hydroxyacid dehydrogenases. While plants are to a large extent unaffected by high cellular concentrations of D-2HG, deficiencies in the metabolism of D- and L-2HG result in fatal disorders in humans. We present current data gathered on plant D- and L-2HG metabolisms and relate it to existing knowledge on 2HG metabolism in other organisms. We focus on the metabolic origin of these compounds, the mitochondrial catabolic steps catalyzed by the stereospecific dehydrogenases, and phylogenetic relationships between different studied 2-hydroxyacid dehydrogenases.
Collapse
Affiliation(s)
- Martin K M Engqvist
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Mail Code 210-41, Pasadena, CA 91125, United States
| | - Christian Eßer
- Institute for Computer Science, Heinrich-Heine-University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Alexander Maier
- Institut of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Martin J Lercher
- Institute for Computer Science, Heinrich-Heine-University, Universitätsstr. 1, D-40225 Düsseldorf, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), 40225 Düsseldorf, Germany
| | - Veronica G Maurino
- Institut of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), 40225 Düsseldorf, Germany.
| |
Collapse
|
45
|
Somaio Neto F, Ikejiri AT, Bertoletto PR, Chaves JCB, Teruya R, Fagundes DJ, Taha MO. Gene expression related to oxidative stress in the heart of mice after intestinal ischemia. Arq Bras Cardiol 2013; 102:165-73. [PMID: 24346830 PMCID: PMC3987340 DOI: 10.5935/abc.20130240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 09/04/2013] [Indexed: 01/30/2023] Open
Abstract
Background Intestinal ischemia-reperfusion is a frequent clinical event associated to injury
in distant organs, especially the heart. Objective To investigate the gene expression of oxidative stress and antioxidant defense in
the heart of inbred mice subjected to intestinal ischemia and reperfusion (IR).
Methods Twelve mice (C57BL / 6) were assigned to: IR Group (GIR) with 60 minutes of
superior mesenteric artery occlusion followed by 60 minutes of reperfusion;
Control Group (CG) which underwent anesthesia and laparotomy without IR procedure
and was observed for 120 minutes. Intestine and heart samples were processed using
the RT-qPCR / Reverse transcriptase-quantitative Polymerase Chain Reaction method
for the gene expression of 84 genes related to oxidative stress and oxidative
defense (Student's "t" test, p < 0.05). Results The intestinal tissue (GIR) was noted to have an up-regulation of 65 genes
(74.71%) in comparison to normal tissue (CG), and 37 genes (44.04%) were
hyper-expressed (greater than three times the threshold allowed by the algorithm).
Regarding the remote effects of intestinal I/R in cardiac tissue an up-regulation
of 28 genes (33.33%) was seen, but only eight genes (9.52%) were hyper-expressed
three times above threshold. Four (7.14%) of these eight genes were expressed in
both intestinal and cardiac tissues. Cardiomyocytes with smaller and pyknotic
nuclei, rich in heterochromatin with rare nucleoli, indicating cardiac distress,
were observed in the GIR. Conclusion Intestinal I/R caused a statistically significant over expression of 8 genes
associated with oxidative stress in remote myocardial tissue.
Collapse
Affiliation(s)
| | | | | | | | - Roberto Teruya
- Universidade Federal do Mato Grosso do Sul, Campo Grande, MS, Brasil
| | | | | |
Collapse
|
46
|
Neshich IAP, Kiyota E, Arruda P. Genome-wide analysis of lysine catabolism in bacteria reveals new connections with osmotic stress resistance. THE ISME JOURNAL 2013; 7:2400-10. [PMID: 23887172 PMCID: PMC3834855 DOI: 10.1038/ismej.2013.123] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 06/20/2013] [Accepted: 06/21/2013] [Indexed: 11/09/2022]
Abstract
Lysine is catabolized via the saccharopine pathway in plants and mammals. In this pathway, lysine is converted to α-aminoadipic-δ-semialdehyde (AASA) by lysine-ketoglutarate reductase/saccharopine dehydrogenase (LKR/SDH); thereafter, AASA is converted to aminoadipic acid (AAA) by α-aminoadipic-δ-semialdehyde dehydrogenase (AASADH). Here, we investigate the occurrence, genomic organization and functional role of lysine catabolic pathways among prokaryotes. Surprisingly, only 27 species of the 1478 analyzed contain the lkr and sdh genes, whereas 323 species contain aasadh orthologs. A sdh-related gene, identified in 159 organisms, was frequently found contiguously to an aasadh gene. This gene, annotated as lysine dehydrogenase (lysdh), encodes LYSDH an enzyme that directly converts lysine to AASA. Pipecolate oxidase (PIPOX) and lysine-6-aminotransferase (LAT), that converts lysine to AASA, were also found associated with aasadh. Interestingly, many lysdh-aasadh-containing organisms live under hyperosmotic stress. To test the role of the lysine-to-AASA pathways in the bacterial stress response, we subjected Silicibacter pomeroyi to salt stress. All but lkr, sdh, lysdh and aasadh were upregulated under salt stress conditions. In addition, lysine-supplemented culture medium increased the growth rate of S. pomeroyi under high-salt conditions and induced high-level expression of the lysdh-aasadh operon. Finally, transformation of Escherichia coli with the S. pomeroyi lysdh-aasadh operon resulted in increased salt tolerance. The transformed E. coli accumulated high levels of the compatible solute pipecolate, which may account for the salt resistance. These findings suggest that the lysine-to-AASA pathways identified in this work may have a broad evolutionary importance in osmotic stress resistance.
Collapse
Affiliation(s)
- Izabella AP Neshich
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Eduardo Kiyota
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Paulo Arruda
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|
47
|
Hallen A, Jamie JF, Cooper AJL. Lysine metabolism in mammalian brain: an update on the importance of recent discoveries. Amino Acids 2013; 45:1249-72. [PMID: 24043460 DOI: 10.1007/s00726-013-1590-1] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 08/29/2013] [Indexed: 12/23/2022]
Abstract
The lysine catabolism pathway differs in adult mammalian brain from that in extracerebral tissues. The saccharopine pathway is the predominant lysine degradative pathway in extracerebral tissues, whereas the pipecolate pathway predominates in adult brain. The two pathways converge at the level of ∆(1)-piperideine-6-carboxylate (P6C), which is in equilibrium with its open-chain aldehyde form, namely, α-aminoadipate δ-semialdehyde (AAS). A unique feature of the pipecolate pathway is the formation of the cyclic ketimine intermediate ∆(1)-piperideine-2-carboxylate (P2C) and its reduced metabolite L-pipecolate. A cerebral ketimine reductase (KR) has recently been identified that catalyzes the reduction of P2C to L-pipecolate. The discovery that this KR, which is capable of reducing not only P2C but also other cyclic imines, is identical to a previously well-described thyroid hormone-binding protein [μ-crystallin (CRYM)], may hold the key to understanding the biological relevance of the pipecolate pathway and its importance in the brain. The finding that the KR activity of CRYM is strongly inhibited by the thyroid hormone 3,5,3'-triiodothyronine (T3) has far-reaching biomedical and clinical implications. The inter-relationship between tryptophan and lysine catabolic pathways is discussed in the context of shared degradative enzymes and also potential regulation by thyroid hormones. This review traces the discoveries of enzymes involved in lysine metabolism in mammalian brain. However, there still remain unanswered questions as regards the importance of the pipecolate pathway in normal or diseased brain, including the nature of the first step in the pathway and the relationship of the pipecolate pathway to the tryptophan degradation pathway.
Collapse
Affiliation(s)
- André Hallen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Balaclava Road, North Ryde, NSW, 2109, Australia,
| | | | | |
Collapse
|
48
|
Mercimek-Mahmutoglu S, Donner EJ, Siriwardena K. Normal plasma pipecolic acid level in pyridoxine dependent epilepsy due to ALDH7A1 mutations. Mol Genet Metab 2013; 110:197. [PMID: 23683770 DOI: 10.1016/j.ymgme.2013.04.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 04/24/2013] [Indexed: 11/18/2022]
|
49
|
Van Schaftingen E, Rzem R, Marbaix A, Collard F, Veiga-da-Cunha M, Linster CL. Metabolite proofreading, a neglected aspect of intermediary metabolism. J Inherit Metab Dis 2013; 36:427-34. [PMID: 23296366 DOI: 10.1007/s10545-012-9571-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 11/26/2012] [Accepted: 11/29/2012] [Indexed: 10/27/2022]
Abstract
Enzymes of intermediary metabolism are less specific than what is usually assumed: they often act on metabolites that are not their 'true' substrate, making abnormal metabolites that may be deleterious if they accumulate. Some of these abnormal metabolites are reconverted to normal metabolites by repair enzymes, which play therefore a role akin to the proofreading activities of DNA polymerases and aminoacyl-tRNA synthetases. An illustrative example of such repair enzymes is L-2-hydroxyglutarate dehydrogenase, which eliminates a metabolite abnormally made by a Krebs cycle enzyme. Mutations in L-2-hydroxyglutarate dehydrogenase lead to L-2-hydroxyglutaric aciduria, a leukoencephalopathy. Other examples are the epimerase and the ATP-dependent dehydratase that repair hydrated forms of NADH and NADPH; ethylmalonyl-CoA decarboxylase, which eliminates an abnormal metabolite formed by acetyl-CoA carboxylase, an enzyme of fatty acid synthesis; L-pipecolate oxidase, which repairs a metabolite formed by a side activity of an enzyme of L-proline biosynthesis. Metabolite proofreading enzymes are likely quite common, but most of them are still unidentified. A defect in these enzymes may account for new metabolic disorders.
Collapse
|
50
|
Han Z, Sun J, Zhang Y, He F, Xu Y, Matsumura K, He LS, Qiu JW, Qi SH, Qian PY. iTRAQ-Based Proteomic Profiling of the Barnacle Balanus amphitrite in Response to the Antifouling Compound Meleagrin. J Proteome Res 2013; 12:2090-100. [PMID: 23540395 DOI: 10.1021/pr301083e] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Zhuang Han
- Key Laboratory of Marine Bio-resources Sustainable Utilization, South
China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- Division of Life Sciences, The Hong Kong University of Science and Technology,
Clear Water Bay, Hong Kong, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Sun
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Yu Zhang
- Division of Life Sciences, The Hong Kong University of Science and Technology,
Clear Water Bay, Hong Kong, China
- Shenzhen Key
Laboratory of Marine Bioresource and Eco-environmental Science, College
of Life Science, Shenzhen University, Shenzhen,
China
| | - Fei He
- Key Laboratory of Marine Bio-resources Sustainable Utilization, South
China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Ying Xu
- Division of Life Sciences, The Hong Kong University of Science and Technology,
Clear Water Bay, Hong Kong, China
| | - Kiyotaka Matsumura
- Division of Life Sciences, The Hong Kong University of Science and Technology,
Clear Water Bay, Hong Kong, China
| | - Li-Sheng He
- Division of Life Sciences, The Hong Kong University of Science and Technology,
Clear Water Bay, Hong Kong, China
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Shu-Hua Qi
- Key Laboratory of Marine Bio-resources Sustainable Utilization, South
China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Pei-Yuan Qian
- Division of Life Sciences, The Hong Kong University of Science and Technology,
Clear Water Bay, Hong Kong, China
| |
Collapse
|