1
|
Gupta S, Vera-Ponce de León A, Kodama M, Hoetzinger M, Clausen CG, Pless L, Verissimo ARA, Stengel B, Calabuig V, Kvingedal R, Skugor S, Westereng B, Harvey TN, Nordborg A, Bertilsson S, Limborg MT, Mørkøre T, Sandve SR, Pope PB, Hvidsten TR, La Rosa SL. The need for high-resolution gut microbiome characterization to design efficient strategies for sustainable aquaculture production. Commun Biol 2024; 7:1391. [PMID: 39455736 PMCID: PMC11511968 DOI: 10.1038/s42003-024-07087-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Microbiome-directed dietary interventions such as microbiota-directed fibers (MDFs) have a proven track record in eliciting responses in beneficial gut microbes and are increasingly being promoted as an effective strategy to improve animal production systems. Here we used initial metataxonomic data on fish gut microbiomes as well as a wealth of a priori mammalian microbiome knowledge on α-mannooligosaccharides (MOS) and β-mannan-derived MDFs to study effects of such feed supplements in Atlantic salmon (Salmo salar) and their impact on its gut microbiome composition and functionalities. Our multi-omic analysis revealed that the investigated MDFs (two α-mannans and an acetylated β-galactoglucomannan), at a dose of 0.2% in the diet, had negligible effects on both host gene expression, and gut microbiome structure and function under the studied conditions. While a subsequent trial using a higher (4%) dietary inclusion of β-mannan significantly shifted the gut microbiome composition, there were still no biologically relevant effects on salmon metabolism and physiology. Only a single Burkholderia-Caballeronia-Paraburkholderia (BCP) population demonstrated consistent and significant abundance shifts across both feeding trials, although with no evidence of β-mannan utilization capabilities or changes in gene transcripts for producing metabolites beneficial to the host. In light of these findings, we revisited our omics data to predict and outline previously unreported and potentially beneficial endogenous lactic acid bacteria that should be targeted with future, conceivably more suitable, MDF strategies for salmon.
Collapse
Affiliation(s)
- Shashank Gupta
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Arturo Vera-Ponce de León
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Miyako Kodama
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Matthias Hoetzinger
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Cecilie G Clausen
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Louisa Pless
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Ana R A Verissimo
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | - Bjørge Westereng
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | | | - Anna Nordborg
- Department of Biotechnology and Nanomedicine, SINTEF, Trondheim, Norway
| | - Stefan Bertilsson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Morten T Limborg
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Turid Mørkøre
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Simen R Sandve
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Phillip B Pope
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, QLD, Australia
| | - Torgeir R Hvidsten
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.
| | - Sabina Leanti La Rosa
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
2
|
Sultana S, Biró J, Kucska B, Hancz C. Factors Affecting Yeast Digestibility and Immunostimulation in Aquatic Animals. Animals (Basel) 2024; 14:2851. [PMID: 39409800 PMCID: PMC11475639 DOI: 10.3390/ani14192851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/11/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
The aquafeed industry increasingly relies on using sustainable and appropriate protein sources to ensure the long-term sustainability and financial viability of intensive aquaculture. Yeast has emerged as a viable substitute protein source in the aquaculture sector due to its potential as a nutritional supplement. A substantial body of evidence exists to suggest that yeast has the potential to act as an effective immune-stimulating agent for a range of aquaculture fish species. Furthermore, the incorporation of yeast supplements and feed additives has the potential to bolster disease prevention, development, and production within the aquaculture sector. Except for methionine, lysine, arginine, and phenylalanine, which are typically the limiting essential amino acids in various fish species, the various yeast species exhibit amino acid profiles that are advantageous when compared to fishmeal. The present review considers the potential nutritional suitability of several yeast species for fish, with particular attention to the various applications of yeast in aquaculture nutrition. The findings of this study indicate that the inclusion of yeast in the diet resulted in the most favorable outcomes, with improvements observed in the overall health, growth performance, and nutritional condition of the fish. Digestibility, a key factor in sustainable feed development, is discussed in special detail. Additionally, this review addresses the utilization of yeast as an immunostimulating agent for fish and its digestion in fish. Furthermore, the research emphasizes the necessity of large-scale production of yeast as a substitute for fishmeal in aquaculture.
Collapse
Affiliation(s)
- Sadia Sultana
- Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, Guba S. 40., 7400 Kaposvár, Hungary; (S.S.)
| | - Janka Biró
- Research Center for Fisheries and Aquaculture, Hungarian University of Agriculture and Life Sciences, Anna-liget u. 35, 5540 Szarvas, Hungary
| | - Balázs Kucska
- Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, Guba S. 40., 7400 Kaposvár, Hungary; (S.S.)
| | - Csaba Hancz
- Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, Guba S. 40., 7400 Kaposvár, Hungary; (S.S.)
| |
Collapse
|
3
|
Merkin GV, Girons A, Okubamichael MA, Pittman K. Mucosal epithelial homeostasis: Reference intervals for skin, gill lamellae and filament for Atlantic salmon and other fish species. JOURNAL OF FISH DISEASES 2024:e14023. [PMID: 39315613 DOI: 10.1111/jfd.14023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024]
Abstract
Mucosal barriers are gatekeepers of health and exhibit homeostatic variation in relation to habitat and disease. Mucosal Mapping technology provides an in-depth examination of the dynamic mucous cells (MCs) in fish mucosal barriers on tangential sections, about 90° from the view of traditional histology. The method was originally developed and standardized in academia prior to the establishment of QuantiDoc AS to apply mucosal mapping, now trademarked as Veribarr™ for the analysis of skin, gills and gastrointestinal tracts. Veribarr™ uses design-based stereology for the selection and measurement of cell area (size) (μm2), the volumetric density of MCs in the epithelium (MCD, amount of the epithelia occupied by MCs, in %) and the calculated abundance of the MCs (barrier status or defence activity). MC production was mapped across the skin and gill epithelia in 12 species, discovering that gills consistently have two distinct groups of MCs, one on the lamellae where MCs are few and small and one on the filament where MCs are larger and more abundant. MCs were usually much larger in the skin than in the gills, with the latter requiring fewer and smaller cells for adequate respiration. The difference observed between MCs in gill lamella and gill filament is likely a result of functional demands. In addition, our findings also highlight a variation in the mucosal parameters between the species skin, which cannot be explained by the weight differences, and a potential link between MC distribution and species-specific lifestyles in the gill lamella. This diversity necessitates the development of species and tissue site-specific reference intervals for mucosal health evaluation. Mucosal bivariate reference intervals were developed for MC production, including size (trophy) and calculated defence activity (plasia) in the skin and gills of Atlantic salmon, to contrast new measurements against historical data patterns. The application of mucosal reference intervals demonstrates that stress from parasites and treatments can manifest as changes in mucosal architecture, as evidenced by MC hypertrophy and hyperplasia within the gill lamellae. These reference intervals also facilitate comparisons with wild Atlantic salmon, revealing a somewhat higher MC level in farmed salmon gill lamellae. These findings suggest that MC hyperplasia and hypertrophy in the gills are stress/environmental responses in aquaculture. They also advocate for developing specific mucosal bivariate homeostatic reference intervals in aquaculture to improve fish health and welfare across all farmed species.
Collapse
Affiliation(s)
| | | | | | - Karin Pittman
- QuantiDoc AS, Bergen, Norway
- University of Bergen, Bergen, Norway
| |
Collapse
|
4
|
Ezatrahimi N, Soltanian S, Hoseinifar SH. Skin mucosal immune parameters and expression of the immune-relevant genes in Danio rerio treated by white button mushroom (Agaricus bisporus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2024:10.1007/s10695-024-01375-w. [PMID: 39105975 DOI: 10.1007/s10695-024-01375-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/26/2024] [Indexed: 08/07/2024]
Abstract
This study evaluates using different levels of the white button mushroom powder (WBMP) on some mucosal innate immune parameters (lysozyme, protease, esterase, alkaline phosphatase activities, and total immunoglobulin levels), and the relative expression of some principal immune-relevant genes (lysozyme, TNF-α, and IL-1β) in the zebra danio intestine. Zebrafish specimens (1.75 ± 0.25 g) were divided into experimental units based on the additives to a diet including 5, 10, and 20 g of WBMP per kilogram of food weight, alone or in conjunction with the antibiotic (10 mg/kg BW), and the AGRIMOS (1 g/kg food weight). Following the 11-day experimental duration, the skin mucus and intestine were sampled. To assess the immune gene expression, the real-time PCR detection system was conducted according to the ΔΔCt method using the IQ5 software (Bio-RAD). Results showed that all groups had a significant increase in terms of mucosal lysozyme activity compared to the control group. Examination of total immunoglobulin, protease, esterase, and ALP activity in fish under experimental treatment showed that there was no significant difference between the trial groups and the control groups. The most expression of the lysozyme gene was related to the group that was separately taken the lower concentration (5 g per kg of FW) of WBMP. In conclusion, the amount of 1% mushroom powder in the diet can improve its immune function. Our recommendation is that given the positive effects that mushroom powder added on the diet alone, avoid taking antibiotics for this purpose.
Collapse
Affiliation(s)
- Narmin Ezatrahimi
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
- Administration of Mazandaran Province, Iran Fisheries Organization, Sari, Iran
| | - Siyavash Soltanian
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
5
|
Olowe OS, Hamidoghli A, Choi W, Bae J, Lee Y, Folorunso EA, Lee S, Bai SC. The effects of two dietary synbiotics on growth performance, hematological parameters, and nonspecific immune responses in Japanese Eel. JOURNAL OF AQUATIC ANIMAL HEALTH 2024; 36:136-150. [PMID: 38050651 DOI: 10.1002/aah.10212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/05/2023] [Accepted: 11/25/2023] [Indexed: 12/06/2023]
Abstract
OBJECTIVE Feed additives have attracted increased attention in aquaculture due to their ability to modulate fish gut microbiota, resulting in improved fish growth and immunity. This study assessed the effects of two synbiotics in Japanese Eel Anguilla japonica: Bacillus subtilis with mannooligosaccharides (MOS) and Enterococcus faecium with fructooligosaccharides (FOS). METHODS Six diets, including a control (CON) diet, oxytetracycline (OTC) diet, and four synbiotic diets (B. subtilis at 1 × 106 or 1 × 107 colony-forming units [CFU]/g with MOS at 5 g/kg [BS6MO and BS7MO; collectively, BSMOS diets] and E. faecium at 1 × 106 or 1 × 107 CFU/g with FOS at 5 g/kg [EF6FO and EF7FO; collectively, EFFOS diets]), were fed to triplicate groups of 20 fish (average weight ± SD = 6.00 ± 0.07 g) for 8 weeks. RESULT Fish fed the BSMOS diets showed significantly higher weight gain, specific growth rate (SGR), and feed efficiency compared to fish fed the CON and OTC diets, but the values were not significantly different from those of fish fed the EFFOS diets. Weight gain and SGR of fish that were given EFFOS diets were not significantly different from those of fish fed all other diets. Fish fed the OTC diet showed a higher mean aspartate aminotransferase level, although the difference was not statistically significant. The myeloperoxidase activity of fish fed the BS7MO diet was significantly higher than those of fish receiving all other diets, and the superoxide dismutase activity of fish fed the BS7MO diet was also significantly higher than that of fish fed the EF7FO diet. Overall, the BSMOS synbiotic diets were significantly more effective than the CON diet in enhancing fish survival against a Vibrio anguillarum challenge. CONCLUSION Our findings suggest that synbiotics can be a preferable alternative to antibiotics in aquaculture.
Collapse
Affiliation(s)
- Olumide Samuel Olowe
- Food and Agriculture Organization of the United Nations, World Fisheries University Pilot Program, Pukyong National University, Busan, Korea
| | - Ali Hamidoghli
- Feeds and Foods Nutrition Research Center, Pukyong National University, Busan, Korea
| | - Wonsuk Choi
- Feeds and Foods Nutrition Research Center, Pukyong National University, Busan, Korea
| | - Jinho Bae
- Aquafeed Research Center, National Institute of Fisheries Science, Pohang, Korea
| | - Yein Lee
- Major of Aquaculture and Applied Life Sciences, Division of Fisheries and Life Sciences, Pukyong National University, Busan, Korea
| | - Ewumi Azeez Folorunso
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
| | - Seunghyung Lee
- Major of Aquaculture and Applied Life Sciences, Division of Fisheries and Life Sciences, Pukyong National University, Busan, Korea
| | - Sungchul C Bai
- Food and Agriculture Organization of the United Nations, World Fisheries University Pilot Program, Pukyong National University, Busan, Korea
- Feeds and Foods Nutrition Research Center, Pukyong National University, Busan, Korea
| |
Collapse
|
6
|
Mensah DD, Morales-Lange B, Øverland M, Baruah K, Mydland LT. Differential expression of immune-related biomarkers in primary cultures from Atlantic salmon (Salmo salar) exposed to processed Paecilomyces variotii with or without inactivated Moritella viscosa. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109506. [PMID: 38508541 DOI: 10.1016/j.fsi.2024.109506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/07/2024] [Accepted: 03/13/2024] [Indexed: 03/22/2024]
Abstract
Paecilomyces variotii (a filamentous fungus), is a promising novel protein source in fish feeds due to its high nutritional value. Also, P. variotii has Microbial-Associated Molecular Patterns (MAMPs) such as glucans and nucleic acids that could modulate the host's immune response. To understand the potential bioactive properties of this fungus in Atlantic salmon (Salmo salar), our study was conducted to evaluate the gene expression of immune-related biomarkers (e.g., cytokines, effector molecules and receptors) on primary cultures from salmon head kidney (HKLs) and spleen leukocytes (SLs) exposed to either UV inactivated or fractions from P. variotii with or without inactivated Moritella viscosa (a skin pathogen in salmonids). Moreover, the effect of the fermentation conditions and down-stream processing on the physical ultrastructure and cell wall glucan content of P. variotii was characterized. The results showed that drying had a significant effect on the cell wall ultrastructure of the fungi and the choice of fermentation has a significant effect on the quantity of β-glucans in P. variotii. Furthermore, stimulating Atlantic salmon HKLs and SLs with P. variotii and its fractions induced gene expression related to pro-inflammatory (tnfα, il1β) and antimicrobial response (cath2) in HKLs, while response in SLs was related to both pro-inflammatory and regulatory response (tnfα, il6 and il10). Similarly, the stimulation with inactivated M. viscosa alone led to an up-regulation of genes related to pro-inflammatory (tnfα, il1β, il6) antimicrobial response (cath2), intra-cellular signalling and recognition of M. viscosa (sclra, sclrb) and a suppression of regulatory response (il10) in both HKLs and SLs. Interestingly, the co-stimulation of cells with P. variotii and M. viscosa induced immune homeostasis (il6, tgfβ) and antimicrobial response (cath2) in SLs at 48h. Thus, P. variotii induces immune activation and cellular communication in Atlantic salmon HKLs and SLs and modulates M. viscosa induced pro-inflammatory responses in SLs. Taken together, the results from physical and chemical characterization of the fungi, along with the differential gene expression of key immune biomarkers, provides a theoretical basis for designing feeding trials and optimize diets with P. variotii as a functional novel feed ingredient for Atlantic salmon.
Collapse
Affiliation(s)
- Dominic Duncan Mensah
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Oluf Thesens Vei 6, 1433, Ås, Norway.
| | - Byron Morales-Lange
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Oluf Thesens Vei 6, 1433, Ås, Norway
| | - Margareth Øverland
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Oluf Thesens Vei 6, 1433, Ås, Norway
| | - Kartik Baruah
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Ulls Väg 26, 75007, Uppsala, Sweden
| | - Liv Torunn Mydland
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Oluf Thesens Vei 6, 1433, Ås, Norway.
| |
Collapse
|
7
|
Bunnoy A, Yanglang A, Tribamrung N, Keawthong C, Tumree P, Kumwan B, Meachasompop P, Saengrung J, Vanichvatin K, Muangrerk C, Prakitsri P, Suwatthanaphim A, Srisapoome P. Dietary administration of yeast (Saccharomyces cerevisiae) hydrolysate from sugar byproducts promotes the growth, survival, immunity, microbial community and disease resistance to VP (AHPND) in Pacific white shrimp (Litopenaeus vannamei). FISH & SHELLFISH IMMUNOLOGY 2024; 145:109327. [PMID: 38158167 DOI: 10.1016/j.fsi.2023.109327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/20/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
This study investigated the effects of yeast hydrolysate (YH) from sugar byproducts on various parameters in Pacific white shrimp (Litopenaeus vannamei). The study found no significant differences in water quality parameters across all treatment tanks, ensuring that the observed effects were not due to environmental variations. There were no significant differences in growth parameters between the control group and groups receiving YH at different dosages. However, the group given YH at 10.0 g/kg feed exhibited a notably higher survival rate and higher expression of growth-related genes (IGF-2 and RAP-2A) in various shrimp tissues. YH was associated with enhanced immune responses, including lysozyme activity, NBT dye reduction, bactericidal activity, and phagocytic activity. Notably, the 10.0 g/kg feed group displayed the highest phagocytic index, indicating a dose-dependent immune response. Expression of immune-related genes (ALF, LYZ, ProPO, and SOD) was upregulated in various shrimp tissues. This upregulation was particularly significant in the gills, hepatopancreas, intestine, and hemocytes. While total Vibrio counts remained consistent, a reduction in green Vibrio colonies was observed in the intestine of shrimp treated with YH. YH, especially at 5.0 and 10.0 g/kg feed dosages, significantly increased survival rates and RPS values in response to AHPND infection. The findings of this study suggest that incorporating additives derived from yeast byproducts with possible prebiotic properties obtained from sugar byproducts can lead to positive results in terms of enhancing growth performance, immunity, histological improvements, and resistance to V. parahaemolyticus, the causative agent of acute hepatopancreatic necrosis disease (AHPND).
Collapse
Affiliation(s)
- Anurak Bunnoy
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd, Ladyao, Chatuchak, 10900, Bangkok, Thailand; Center of Excellence in Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd, Ladyao, Chatuchak, 10900, Bangkok, Thailand.
| | - Arat Yanglang
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd, Ladyao, Chatuchak, 10900, Bangkok, Thailand; Center of Excellence in Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd, Ladyao, Chatuchak, 10900, Bangkok, Thailand.
| | - Nattanicha Tribamrung
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd, Ladyao, Chatuchak, 10900, Bangkok, Thailand; Center of Excellence in Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd, Ladyao, Chatuchak, 10900, Bangkok, Thailand.
| | - Chalinda Keawthong
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd, Ladyao, Chatuchak, 10900, Bangkok, Thailand; Center of Excellence in Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd, Ladyao, Chatuchak, 10900, Bangkok, Thailand.
| | - Pimchanok Tumree
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd, Ladyao, Chatuchak, 10900, Bangkok, Thailand; Center of Excellence in Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd, Ladyao, Chatuchak, 10900, Bangkok, Thailand.
| | - Benchawan Kumwan
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd, Ladyao, Chatuchak, 10900, Bangkok, Thailand; Center of Excellence in Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd, Ladyao, Chatuchak, 10900, Bangkok, Thailand.
| | - Pakapon Meachasompop
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd, Ladyao, Chatuchak, 10900, Bangkok, Thailand; Center of Excellence in Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd, Ladyao, Chatuchak, 10900, Bangkok, Thailand.
| | - Jureerat Saengrung
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd, Ladyao, Chatuchak, 10900, Bangkok, Thailand; Center of Excellence in Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd, Ladyao, Chatuchak, 10900, Bangkok, Thailand.
| | - Kontee Vanichvatin
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd, Ladyao, Chatuchak, 10900, Bangkok, Thailand; Center of Excellence in Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd, Ladyao, Chatuchak, 10900, Bangkok, Thailand.
| | - Chayanee Muangrerk
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd, Ladyao, Chatuchak, 10900, Bangkok, Thailand; Center of Excellence in Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd, Ladyao, Chatuchak, 10900, Bangkok, Thailand.
| | - Pravit Prakitsri
- Mitr Phol Biofuel Co. Ltd, Sukhumvit Rd. Klongtoey, Bangkok, 10110, Thailand
| | | | - Prapansak Srisapoome
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd, Ladyao, Chatuchak, 10900, Bangkok, Thailand; Center of Excellence in Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd, Ladyao, Chatuchak, 10900, Bangkok, Thailand.
| |
Collapse
|
8
|
Retcheski MC, Maximowski LV, Escorsin KJS, de Almeida Rosa Kurosaki JK, Romão S, Bitencourt TB, Parra JEG, Cazarolli LH. Yarrowia lipolytica biomass-a potential additive to boost metabolic and physiological responses of Nile tilapia. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:655-670. [PMID: 37422548 DOI: 10.1007/s10695-023-01219-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 07/01/2023] [Indexed: 07/10/2023]
Abstract
We studied the effects of Yarrowia lipolytica biomass on digestive enzymes, blood biochemical profile, energy metabolism enzymes, and proximate meat composition of Nile tilapias. The experiment was entirely randomized with four replications. The animals (n = 20 per repetition) were fed with 0%, 3%, 5%, and 7% of biomass for 40 days and then blood and liver were analyzed. There was an increase in the activities of chymotrypsin (5, 7% groups), trypsin (3, 5% groups), and sucrase (7% group) compared to the respective control groups. On the other hand, maltase activity was significantly reduced for all yeast biomass treatments, while the supplementation did not influence lipase and amylase activities. Moreover, the blood triacylglycerol concentrations were increased in the 7% group, while any treatment modified blood total cholesterol, glycemia, and hepatic glycogen content. Y. lipolytica biomass promoted significant increases in meat protein and lipid contents without changes in moisture and ash parameters. Furthermore, Y. lipolytica biomass promoted increases in hexokinase (3% group), phosphofructokinase (5, 7% groups), glucose-6-phosphate dehydrogenase (5% group), citrate synthase (3% group), aspartate aminotransferase and alanine aminotransferase (3% group), and glutamate dehydrogenase (3, 5% groups) compared to the respective control groups. At the same time, no changes were observed in the activity of glucose-6-phosphatase. Y. lipolytica biomass supplementation in tilapias' diet can modulate the digestive system and improve nutrient disponibility to the cells. Moreover, the changes in the metabolic profile and in energy metabolism can be correlated with the improvement of meat composition. Therefore, the Y. lipolytica biomass has a great potential to be used as a feed ingredient for Nile tilapias.
Collapse
Affiliation(s)
- Milena Cia Retcheski
- Federal University of Fronteira Sul, Laranjeiras do Sul Campus, Km 405, BR 158 Road, P.O. Box 106, 85301-970, Laranjeiras do Sul, Paraná, Brazil
| | - Luiz Vitor Maximowski
- Federal University of Fronteira Sul, Laranjeiras do Sul Campus, Km 405, BR 158 Road, P.O. Box 106, 85301-970, Laranjeiras do Sul, Paraná, Brazil
| | - Keveen Jhonathan Soares Escorsin
- Federal University of Fronteira Sul, Laranjeiras do Sul Campus, Km 405, BR 158 Road, P.O. Box 106, 85301-970, Laranjeiras do Sul, Paraná, Brazil
| | | | - Silvia Romão
- Federal University of Fronteira Sul, Laranjeiras do Sul Campus, Km 405, BR 158 Road, P.O. Box 106, 85301-970, Laranjeiras do Sul, Paraná, Brazil
| | - Thiago Bergler Bitencourt
- Federal University of Fronteira Sul, Laranjeiras do Sul Campus, Km 405, BR 158 Road, P.O. Box 106, 85301-970, Laranjeiras do Sul, Paraná, Brazil
| | - Jorge Erick Garcia Parra
- Federal University of Fronteira Sul, Laranjeiras do Sul Campus, Km 405, BR 158 Road, P.O. Box 106, 85301-970, Laranjeiras do Sul, Paraná, Brazil
| | - Luisa Helena Cazarolli
- Federal University of Fronteira Sul, Laranjeiras do Sul Campus, Km 405, BR 158 Road, P.O. Box 106, 85301-970, Laranjeiras do Sul, Paraná, Brazil.
| |
Collapse
|
9
|
Rawling M, Schiavone M, Apper E, Merrifield DL, Castex M, Leclercq E, Foey A. Yeast cell wall extracts from Saccharomyces cerevisiae varying in structure and composition differentially shape the innate immunity and mucosal tissue responses of the intestine of zebrafish ( Danio rerio). Front Immunol 2023; 14:1158390. [PMID: 37304290 PMCID: PMC10248512 DOI: 10.3389/fimmu.2023.1158390] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
With the rising awareness of antimicrobial resistance, the development and use of functional feed additives (FFAs) as an alternative prophylactic approach to improve animal health and performance is increasing. Although the FFAs from yeasts are widely used in animal and human pharma applications already, the success of future candidates resides in linking their structural functional properties to their efficacy in vivo. Herein, this study aimed to characterise the biochemical and molecular properties of four proprietary yeast cell wall extracts from S. cerevisiae in relation to their potential effect on the intestinal immune responses when given orally. Dietary supplementation of the YCW fractions identified that the α-mannan content was a potent driver of mucus cell and intraepithelial lymphocyte hyperplasia within the intestinal mucosal tissue. Furthermore, the differences in α-mannan and β-1,3-glucans chain lengths of each YCW fraction affected their capacity to be recognised by different PRRs. As a result, this affected the downstream signalling and shaping of the innate cytokine milieu to elicit the preferential mobilisation of effector T-helper cell subsets namely Th17, Th1, Tr1 and FoxP3+-Tregs. Together these findings demonstrate the importance of characterising the molecular and biochemical properties of YCW fractions when assessing and concluding their immune potential. Additionally, this study offers novel perspectives in the development specific YCW fractions derived from S. cerievisae for use in precision animal feeds.
Collapse
Affiliation(s)
- Mark Rawling
- Aquatic Animal Nutrition and Health Research Group, School of Biological, Plymouth University, Plymouth, United Kingdom
| | | | | | - Daniel L. Merrifield
- Aquatic Animal Nutrition and Health Research Group, School of Biological, Plymouth University, Plymouth, United Kingdom
| | | | | | - Andrew Foey
- Aquatic Animal Nutrition and Health Research Group, School of Biological, Plymouth University, Plymouth, United Kingdom
| |
Collapse
|
10
|
Lu Z, Feng L, Jiang W, Wu P, Liu Y, Jiang J, Kuang S, Tang L, Li S, Zhong C, Zhou X. Mannan oligosaccharides alleviate oxidative injury in the head kidney and spleen in grass carp (Ctenopharyngodon idella) via the Nrf2 signaling pathway after Aeromonas hydrophila infection. J Anim Sci Biotechnol 2023; 14:58. [PMID: 37060042 PMCID: PMC10105433 DOI: 10.1186/s40104-023-00844-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/31/2023] [Indexed: 04/16/2023] Open
Abstract
BACKGROUND Mannan oligosaccharides (MOS) are recommended as aquaculture additives owing to their excellent antioxidant properties. In the present study, we examined the effects of dietary MOS on the head kidney and spleen of grass carp (Ctenopharyngodon idella) with Aeromonas hydrophila infection. METHODS A total of 540 grass carp were used for the study. They were administered six gradient dosages of the MOS diet (0, 200, 400, 600, 800, and 1,000 mg/kg) for 60 d. Subsequently, we performed a 14-day Aeromonas hydrophila challenge experiment. The antioxidant capacity of the head kidney and spleen were examined using spectrophotometry, DNA fragmentation, qRT-PCR, and Western blotting. RESULTS After infection with Aeromonas hydrophila, 400-600 mg/kg MOS supplementation decreased the levels of reactive oxygen species, protein carbonyl, and malonaldehyde and increased the levels of anti-superoxide anion, anti-hydroxyl radical, and glutathione in the head kidney and spleen of grass carp. The activities of copper-zinc superoxide dismutase, manganese superoxide dismutase, catalase, glutathione S-transferase, glutathione reductase, and glutathione peroxidase were also enhanced by supplementation with 400-600 mg/kg MOS. Furthermore, the expression of most antioxidant enzymes and their corresponding genes increased significantly with supplementation of 200-800 mg/kg MOS. mRNA and protein levels of nuclear factor erythroid 2-related factor 2 also increased following supplementation with 400-600 mg/kg MOS. In addition, supplementation with 400-600 mg/kg MOS reduced excessive apoptosis by inhibiting the death receptor pathway and mitochondrial pathway processes. CONCLUSIONS Based on the quadratic regression analysis of the above biomarkers (reactive oxygen species, malondialdehyde, and protein carbonyl) of oxidative damage in the head kidney and spleen of on-growing grass carp, the recommended MOS supplementation is 575.21, 557.58, 531.86, 597.35, 570.16, and 553.80 mg/kg, respectively. Collectively, MOS supplementation could alleviate oxidative injury in the head kidney and spleen of grass carp infected with Aeromonas hydrophila.
Collapse
Affiliation(s)
- Zhiyuan Lu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Weidan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shengyao Kuang
- Sichuan Animal Science Academy, Sichuan Animtech Feed Co. Ltd, Chengdu, 610066, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Ling Tang
- Sichuan Animal Science Academy, Sichuan Animtech Feed Co. Ltd, Chengdu, 610066, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Shuwei Li
- Sichuan Animal Science Academy, Sichuan Animtech Feed Co. Ltd, Chengdu, 610066, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Chengbo Zhong
- Sichuan Animal Science Academy, Sichuan Animtech Feed Co. Ltd, Chengdu, 610066, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Xiaoqiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China.
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
11
|
Agboola JO, Rocha SDC, Mensah DD, Hansen JØ, Øyås O, Lapeña D, Mydland LT, Arntzen MØ, Horn SJ, Øverland M. Effect of yeast species and processing on intestinal microbiota of Atlantic salmon (Salmo salar) fed soybean meal-based diets in seawater. Anim Microbiome 2023; 5:21. [PMID: 37016467 PMCID: PMC10074822 DOI: 10.1186/s42523-023-00242-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/20/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND Yeasts are gaining attention as alternative ingredients in aquafeeds. However, the impact of yeast inclusion on modulation of intestinal microbiota of fish fed plant-based ingredients is limited. Thus, the present study investigates the effects of yeast and processing on composition, diversity and predicted metabolic capacity of gut microbiota of Atlantic salmon smolt fed soybean meal (SBM)-based diet. Two yeasts, Cyberlindnera jadinii (CJ) and Wickerhamomyces anomalus (WA), were produced in-house and processed by direct heat-inactivation with spray-drying (ICJ and IWA) or autolyzed at 50 °C for 16 h, followed by spray-drying (ACJ and AWA). In a 42-day feeding experiment, fish were fed one of six diets: a fishmeal (FM)-based diet, a challenging diet with 30% SBM and four other diets containing 30% SBM and 10% of each of the four yeast products (i.e., ICJ, ACJ, IWA and AWA). Microbial profiling of digesta samples was conducted using 16S rRNA gene sequencing, and the predicted metabolic capacities of gut microbiota were determined using genome-scale metabolic models. RESULTS The microbial composition and predicted metabolic capacity of gut microbiota differed between fish fed FM diet and those fed SBM diet. The digesta of fish fed SBM diet was dominated by members of lactic acid bacteria, which was similar to microbial composition in the digesta of fish fed the inactivated yeasts (ICJ and IWA diets). Inclusion of autolyzed yeasts (ACJ and AWA diets) reduced the richness and diversity of gut microbiota in fish. The gut microbiota of fish fed ACJ diet was dominated by the genus Pediococcus and showed a predicted increase in mucin O-glycan degradation compared with the other diets. The gut microbiota of fish fed AWA diet was highly dominated by the family Bacillaceae. CONCLUSIONS The present study showed that dietary inclusion of FM and SBM differentially modulate the composition and predicted metabolic capacity of gut microbiota of fish. The inclusion of inactivated yeasts did not alter the modulation caused by SBM-based diet. Fish fed ACJ diet increased relative abundance of Pediococcus, and mucin O-glycan degradation pathway compared with the other diets.
Collapse
Affiliation(s)
- Jeleel O Agboola
- Faculty of Biosciences, Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway.
| | - Sérgio D C Rocha
- Faculty of Biosciences, Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway
| | - Dominic D Mensah
- Faculty of Biosciences, Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway
| | - Jon Ø Hansen
- Faculty of Biosciences, Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway
| | - Ove Øyås
- Faculty of Biosciences, Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway
| | - David Lapeña
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway
| | - Liv T Mydland
- Faculty of Biosciences, Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway
| | - Magnus Ø Arntzen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway
| | - Svein J Horn
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway
| | - Margareth Øverland
- Faculty of Biosciences, Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway.
| |
Collapse
|
12
|
Effects of Five Prebiotics on Growth, Antioxidant Capacity, Non-Specific Immunity, Stress Resistance, and Disease Resistance of Juvenile Hybrid Grouper ( Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂). Animals (Basel) 2023; 13:ani13040754. [PMID: 36830542 PMCID: PMC9952795 DOI: 10.3390/ani13040754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
To explore the short-term health benefits of five prebiotics on hybrid grouper (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂), six experimental groups fed with different diets (basal diet, diet control (CON); basal diet + 0.2% fructooligosaccharide (FOS), diet FOS; basal diet + 0.5% chitosan, diet chitosan (CTS); basal diet + 0.2% mannan-oligosaccharide (MOS), diet MOS; basal diet + 0.1% β-glucan (GLU), Diet GLU; basal diet + 0.05% xylooligosaccharide (XOS), diet XOS) were set up, and a 4-week feeding trial was conducted. MOS and XOS significantly improved the growth of hybrid grouper compared to the CON group (p < 0.05). Antioxidant enzyme assay showed that the activity of glutathione peroxidase (GPx) was significantly enhanced in the MOS group, and the content of malondialdehyde (MDA) in the XOS group was significantly lower than in the CON group (p < 0.05). The catalase (CAT) activities were significantly enhanced in all prebiotic-supplemented groups compared with the CON group (p < 0.05). Non-specific immunity assay showed that the activities of alkaline phosphatase (AKP) and lysozyme (LZM) were significantly increased in all prebiotic-supplemented groups compared with the CON group (p < 0.05). The total protein content in the XOS group was significantly increased (p < 0.05), and the albumin (ALB) activity in the MOS group was more significantly increased than that in the CON group. Histological examination of the intestine revealed that muscle thickness was significantly increased in all prebiotic-supplemented groups compared to the CON group (p < 0.05). Villi length, villi width, muscle thickness all increased significantly in the MOS group (p < 0.05). In addition, the crowding stress and ammonia nitrogen stress experiments revealed that the survival rates of the MOS and XOS groups after stresses were significantly higher than those of the CON group (p < 0.05). Though MOS and XOS exhibited similar anti-stress effects, the antioxidant and non-specific immunity parameters they regulated were not the same, indicating that the specific mechanisms of MOS and XOS's anti-stress effects were probably different. After being challenged with Vibrio harvey, MOS and GLU groups showed significantly higher post-challenge survival rates than the CON group (p < 0.05). These findings indicated that among the five prebiotics, MOS and XOS showed the best overall short-term beneficial effects and could be considered promising short-term feed additives to improve the stress resistance of juvenile hybrid grouper.
Collapse
|
13
|
Harikrishnan R, Devi G, Balamurugan P, Abdel-Warith AWA, Younis EM, Doan HV, Balasundaram C, Davies SJ, El-Haroun E. Immunostimulatory effect of mannan-oligosaccharides supplementation diet in milkfish (Chanos chanos). FISH & SHELLFISH IMMUNOLOGY 2023; 133:108568. [PMID: 36717065 DOI: 10.1016/j.fsi.2023.108568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 01/07/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
The current study was designed to examine the impacts of dietary mannan-oligosaccharides (MOS) on growth, hemato-biochemical changes, digestive-antioxidant enzyme activity, immune response, and disease resistance of milkfish (Chanos chanos) fed diets contained MOS i.e. 1g, 2g, and 3g MOS. The growth parameters were significantly influence in milkfish fed all MOS diets, whereas the feed conversion ratio (FCR) and protein efficiency ratio (PER) were significantly influence with 2g or 3g MOS diets. The total protein (TP), globulin (GB), and glucose (GLU) levels, amylase, protease, liver enzymes were found significantly high in fish fed 2g or 3g MOS diets; but, lipase, trypsin, and alkaline phosphatase (ALP) enzymes were increased significantly at 3g MOS diet. All MOS inclusion levels were significantly increased total and Lactobacillus intestinal microflora population. The oxidative enzymes activity as superoxide desmutase (SOD) and catalyze (CAT) were progressively increased with all MOS supplementation diet, but the glutathione peroxidase (GPx) and lactate dehydrogenase (LDH) content were found significantly high in fish fed 2g or 3g MOS diets. Similarly, the reduced glutathione (GSH) and glutathione reductase (GR) contents were observed significantly high level in fish fed 3g MOS diet. The phagocytic (PC) and lysozyme (LYZ) activities were found gradually increase in fish fed increasing level of MOS diets, while the respiratory burst (RB) and malondialdehyde (MDA) activities were seen significant in fish fed 2g and 3g MOS diets. The current research work confirmed that C. chanos fed diets contained 3g kg-1 MOS recorded better growth performance, digestive-antioxidant, immune response, and disease resistance.
Collapse
Affiliation(s)
- Ramasamy Harikrishnan
- Department of Zoology, Pachaiyappa's College for Men, Kanchipuram, 631 501, Tamil Nadu, India.
| | - Gunapathy Devi
- Department of Zoology, Nehru Memorial College, Puthanampatti, 621 007, Tamil Nadu, India
| | - Paramaraj Balamurugan
- Department of Biotechnology, St. Michael College of Engineering and Technology, Kalayarkoil, 630 551, Tamil Nadu, India
| | - Abdel-Wahab A Abdel-Warith
- Department of Zoology, College of Science, King Saudi University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Elsayed M Younis
- Department of Zoology, College of Science, King Saudi University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chellam Balasundaram
- Department of Herbal and Environmental Science, Tamil University, Thanjavur, 613 005, Tamil Nadu, India
| | - Simon J Davies
- School of Science and Engineering, National University of Ireland Galway Republic of Ireland, H91 TK33, Galway, Ireland
| | - Ehab El-Haroun
- Fish Nutrition Research Laboratory, Animal Production Department, Faculty of Agriculture, Cairo University, Egypt
| |
Collapse
|
14
|
Dietary Supplementation with a Blend of Hydrolyzable and Condensed Tannins Ameliorates Diet-Induced Intestinal Inflammation in Zebrafish ( Danio rerio). Animals (Basel) 2022; 13:ani13010167. [PMID: 36611775 PMCID: PMC9818001 DOI: 10.3390/ani13010167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/17/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
The current study evaluated the effects of hydrolyzable and condensed tannins from chestnut and quebracho wood, respectively (TSP, Silvafeed®), on zebrafish with intestinal inflammation induced by a plant-based diet (basal diet). Four experimental diets were prepared as follows: the basal diet + 0 TSP, the basal diet + TSP at 0.9 g/kg of feed, the basal diet + TSP at 1.7 g/kg of feed, and the basal diet + TSP at 3.4 g/kg of feed. Eighty-four zebrafish (Danio rerio) were fed for 12 days with the experimental diets. In zebrafish fed the basal diet, intestine integrity appeared to be altered, with damaged intestinal villi, high immunoexpression of tumor necrosis factor-α (TNFα) and cyclooxygenase 2 (COX2), and high expression of the cox2, interleukin 1 (il-1b), interleukin 8 (cxcl8-l1), and tnfα genes. The tannin treatment partially restored intestinal morphology and downregulated the expression of cytokines. The best activity was detected with 1.7 and 3.4 g/kg of feed. In the guts of all groups, Proteobacteria, Fusobacteria, Firmicutes, and Bacteroidetes were the most represented phyla. The most represented genera were Plesiomonas and Sphingomonas, belonging to the Proteobacteria phylum; Cetobacterium, belonging to the Fusobacteria phylum; and Lactobacillus, belonging to the Firmicutes phylum. No significant differences were detected among groups, except for a slight decrease in the Fusobacteria phylum and slight increases in the Shewanella and Bacteroides genera with TSP. In conclusion, these results suggest that tannins can improve the zebrafish intestinal inflammation caused by a terrestrial-plant-based diet in a dose-dependent manner.
Collapse
|
15
|
Dietary silver nanoparticles as immunostimulant on rohu ( Labeo rohita): Effects on the growth, cellular ultrastructure, immune-gene expression, and survival against Aeromonas hydrophila. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2022; 4:100080. [PMID: 36624883 PMCID: PMC9823159 DOI: 10.1016/j.fsirep.2022.100080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
The current study aimed at assessing the immunostimulatory properties of silver nanoparticles (AgNPs) on Labeo rohita, and understanding how it affects the growth, cellular ultrastructure, the expression level of immune genes, and infection risk from Aeromonas hydrophila. Fish (avg wt: 30.1±3.26 g) were fed diets with four separate AgNP inclusion levels (0 µgKg-1 [basic diet, T1], 10 µgKg-1 [T2], 15 µgKg-1 [T3], and 20 µgKg-1 [T4]) for 56 days. After the feeding trial, growth, histological, immunological parameters, and protective immune response against A. hydrophila were assessed. The fish in the treatment groups including T1(control), the T3 growth indices, such as specific growth rate (7.56±0.26) and percent weight gain (231.05±3.21), was statistically higher (P < 0.05). In the immunological and oxidative parameters, levels of SOD and catalase decreased in correlation with a rise in the inclusion doses of AgNP in the liver, and a reduction in catalase values was recorded in the gill. With the addition of AgNP, the NBT value was decreased in the gill, and T3 had a considerably larger (P<0.05) value in the liver (0.493±0.02). The kidney of the L. rohita fed AgNP (0 and20 µgKg-1 AgNP) showed expansion through Bowman's gaps, severing of glomeruli with haemorrhage, as well as atrophic spots between its gaps. The liver showed fibrosis, karyolysis, and the removal of the hepatocytes wall. The gill, liver, kidney, and muscle of fish-fed diets supplemented with AgNP, showed that interleukin-8 (IL-8), and cyclooxygenase-2 (COX-2), were up-regulated. Expression was considerably higher in T3 compared with the control. However, the control group that wasn't given AgNP supplemented diet had increased levels of TGF-beta. Additionally, fish on the T3 diet showed much greater post-challenge survival rates (90%). These findings strongly suggest that dietary inclusion of AgNP (at 10 and 15 µgKg-1 feed) enhances growth, health, and protective immune response against A. hydrophila.
Collapse
|
16
|
Serradell A, Montero D, Fernández-Montero Á, Terova G, Makol A, Valdenegro V, Acosta F, Izquierdo MS, Torrecillas S. Gill Oxidative Stress Protection through the Use of Phytogenics and Galactomannan Oligosaccharides as Functional Additives in Practical Diets for European Sea Bass ( Dicentrarchus labrax) Juveniles. Animals (Basel) 2022; 12:ani12233332. [PMID: 36496852 PMCID: PMC9737065 DOI: 10.3390/ani12233332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022] Open
Abstract
The aim of the present study is to evaluate the potential of two functional additives as gill endogenous antioxidant capacity boosters in European sea-bass juveniles fed low-FM/FO diets when challenged against physical and biological stressors. For that purpose, two isoenergetic and isonitrogenous diets with low FM (10%) and FO (6%) contents were supplemented with 5000 ppm plant-derived galactomannan-oligosaccharides (GMOS) or 200 ppm of a mixture of garlic and labiate plant essential oils (PHYTO). A control diet was void from supplementation. Fish were fed the experimental diet for nine weeks and subjected to a confinement stress challenge (C challenge) or a confinement stress challenge combined with an exposure to the pathogen Vibrio anguillarum (CI challenge). Both GMOS and PHYTO diets attenuated fish stress response, inducing lower circulating plasma cortisol and down-regulating nfκβ2 and gr relative gene-expression levels in the gill. This attenuated stress response was associated with a minor energetic metabolism response in relation to the down-regulation of nd5 and coxi gene expression.
Collapse
Affiliation(s)
- Antonio Serradell
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de las Palmas de Gran Canaria, 35200 Las Palmas, Spain
| | - Daniel Montero
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de las Palmas de Gran Canaria, 35200 Las Palmas, Spain
- Correspondence:
| | - Álvaro Fernández-Montero
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Genciana Terova
- Department of Biotechnology and Life Sciences, University of Insubria, 2-21100 Varese, Italy
| | - Alex Makol
- Global Solution Aquaculture Unit, Delacon Biotechnik Gmbh, 24-4209 Engerwitzdorf, Austria
| | | | - Félix Acosta
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de las Palmas de Gran Canaria, 35200 Las Palmas, Spain
| | - María Soledad Izquierdo
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de las Palmas de Gran Canaria, 35200 Las Palmas, Spain
| | - Silvia Torrecillas
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de las Palmas de Gran Canaria, 35200 Las Palmas, Spain
| |
Collapse
|
17
|
Menanteau-Ledouble S, Skov J, Lukassen MB, Rolle-Kampczyk U, Haange SB, Dalsgaard I, von Bergen M, Nielsen JL. Modulation of gut microbiota, blood metabolites, and disease resistance by dietary β-glucan in rainbow trout (Oncorhynchus mykiss). Anim Microbiome 2022; 4:58. [PMID: 36404315 PMCID: PMC9677660 DOI: 10.1186/s42523-022-00209-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 11/03/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Prebiotics are known to have a positive impact on fish health and growth rate, and β-glucans are among the most used prebiotics on the market. In this study, rainbow trout (Oncorhynchus mykiss) were treated with a β-1,3;1,6-glucan dietary supplement (at a dose of 0 g, 1 g, 10 g, and 50 g β-glucan per kg of feed). After 6 weeks, the effect of the β-glucan was evaluated by determining the changes in the microbiota and the blood serum metabolites in the fish. The impact of β-glucan on the immune system was evaluated through a challenge experiment with the bacterial fish pathogen Yersinia ruckeri. RESULTS The microbiota showed a significant change in terms of composition following β-glucan treatment, notably an increase in the relative abundance of members of the genus Aurantimicrobium, associated with a decreased abundance of the genera Carnobacterium and Deefgea. Furthermore, analysis of more than 200 metabolites revealed that the relative levels of 53 metabolites, in particular compounds related to phosphatidylcholines, were up- or downregulated in response to the dietary supplementation, this included the amino acid alanine that was significantly upregulated in the fish that had received the highest dose of β-glucan. Meanwhile, no strong effect could be detected on the resistance of the fish to the bacterial infection. CONCLUSIONS The present study illustrates the ability of β-glucans to modify the gut microbiota of fish, resulting in alteration of the metabolome and affecting fish health through the lipidome of rainbow trout.
Collapse
Affiliation(s)
- Simon Menanteau-Ledouble
- grid.5117.20000 0001 0742 471XDepartment of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg East, Denmark
| | - Jakob Skov
- grid.5254.60000 0001 0674 042XDepartment of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 15, 1870 Frederiksberg C, Denmark ,grid.5170.30000 0001 2181 8870National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, 2800 Kongens Lyngby, Denmark
| | - Mie Bech Lukassen
- grid.5117.20000 0001 0742 471XDepartment of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg East, Denmark
| | - Ulrike Rolle-Kampczyk
- grid.7492.80000 0004 0492 3830Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research, UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Sven-Bastiaan Haange
- grid.7492.80000 0004 0492 3830Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research, UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Inger Dalsgaard
- grid.5170.30000 0001 2181 8870National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, 2800 Kongens Lyngby, Denmark
| | - Martin von Bergen
- grid.7492.80000 0004 0492 3830Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research, UFZ, Permoserstr. 15, 04318 Leipzig, Germany ,grid.421064.50000 0004 7470 3956German Centre for Integrative Biodiversity Research, (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany ,grid.9647.c0000 0004 7669 9786Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, Brüderstraße 34, 04103 Leipzig, Germany
| | - Jeppe Lund Nielsen
- grid.5117.20000 0001 0742 471XDepartment of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg East, Denmark
| |
Collapse
|
18
|
Effects of mannan oligosaccharides (MOS) on glucose and lipid metabolism of largemouth bass (Micropterus salmoides) fed with high carbohydrate diet. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Lu ZY, Feng L, Jiang WD, Wu P, Liu Y, Jiang J, Kuang SY, Tang L, Li SW, Zhong CB, Zhou XQ. Dietary mannan oligosaccharides strengthens intestinal immune barrier function via multipath cooperation during Aeromonas Hydrophila infection in grass carp (Ctenopharyngodon Idella). Front Immunol 2022; 13:1010221. [PMID: 36177013 PMCID: PMC9513311 DOI: 10.3389/fimmu.2022.1010221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
In recent years, mannose oligosaccharide (MOS) as a functional additive is widely used in aquaculture, to enhance fish immunity. An evaluation of the effect of dietary MOS supplementation on the immune barrier function and related signaling molecules mechanism of grass carp (Ctenopharyngodon idella) was undertaken in the present study. Six diets with graded amounts of MOS supplementation (0, 200, 400, 600, 800, and 1000 mg/kg) were fed to 540 grass carp over 60 days. To examine the immune response and potential mechanisms of MOS supplementation on the intestine, a challenge test was conducted using injections of Aeromonas hydrophila for 14 days. Results of the study on the optimal supplementation with MOS were found as follows (1) MOS enhances immunity partly related to increasing antibacterial substances content and antimicrobial peptides expression; (2) MOS attenuates inflammatory response partly related to regulating the dynamic balance of intestinal inflammatory cytokines; (3) MOS regulates immune barrier function may partly be related to modulating TLRs/MyD88/NFκB and TOR/S6K1/4EBP signalling pathways. Finally, the current study concluded that MOS supplementation could improve fish intestinal immune barrier function under Aeromonas hydrophila infected conditions.
Collapse
Affiliation(s)
- Zhi-Yuan Lu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, China
| | - Sheng-Yao Kuang
- Sichuan Animal Science Academy, Sichuan Animtech Feed Co. Ltd, Chengdu, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, China
| | - Ling Tang
- Sichuan Animal Science Academy, Sichuan Animtech Feed Co. Ltd, Chengdu, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, China
| | - Shu-Wei Li
- Sichuan Animal Science Academy, Sichuan Animtech Feed Co. Ltd, Chengdu, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, China
| | - Cheng-Bo Zhong
- Sichuan Animal Science Academy, Sichuan Animtech Feed Co. Ltd, Chengdu, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, China
- *Correspondence: Xiao-Qiu Zhou,
| |
Collapse
|
20
|
Dawood A, Shi W. Effect of dietary β-mannanase supplementation on growth performance, digestibility, and gene expression levels of Cyprinus carpio (Linnaeus) fingerlings fed a plant protein-rich diet. Front Vet Sci 2022; 9:956054. [PMID: 36118353 PMCID: PMC9480618 DOI: 10.3389/fvets.2022.956054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/05/2022] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to assess possible beneficial effects of dietary β-mannanase supplementation on the nutrient digestibility, growth performance, digestive and metabolic enzyme activity, and immune response of common carp (Cyprinus carpio) fed plant protein-rich diets. An experiment was conducted in triplicate, and a total of 225 fingerlings of common carp with an average body weight of 13.17 ± 0.12 g were stocked in 15 fiberglass tanks (15 fish/tank). Five dietary treatments (control 35% crude protein, plant-rich basal diet without supplement and four diets supplemented with β-mannanase from two sources (commercially available and locally isolated), each at two dosage levels (500 and 1,000 U/kg diet) were prepared and fed to respective groups of fish, twice a day (8:00 AM and 4:00 PM) at 4 % body weight. During the trial, changes in the level of DO and temperature ranged from 5.5 to 6.1 mg L-1 and 21.5 to 23.5°C, respectively. At the end of the feeding experiment, all fish in each tank were weighed and counted to determine growth parameters, while for the study of other indices, nine samples/treatment group were selected. The results of the study indicated a positive effect of both sources and dosage levels of β-mannanase supplementation on all studied indices, that is, significantly improved (P < 0.05), growth performance (%weight gain, specific growth rate), survival %, hematological indices (RBC, Hb, HCT, and MCHC), immunological indices (lysozyme activity, WBC, respiratory burst activity, and phagocytic activity), improved apparent digestibility of nutrients (crude protein, crude fat, and carbohydrates), and digestible energy. Furthermore, higher activity (P < 0.05) of the digestive enzymes (cellulase, lipase, and protease) and upregulation of MyoD gene in muscle and TNF-α gene in liver, intestine, and muscle were also observed, while the activity of serum AST (serum aspartate aminotransferase) and ALT (alanine transaminase) as compared to control group was significantly decreased (P < 0.05). Based on the results, β-mannanase supplementation (500 U/kg) could be recommended for obtaining better carp production when low-cost plant protein-rich diets are used.
Collapse
Affiliation(s)
- Aneesa Dawood
- Department of Zoology, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, United States
| | - Weibin Shi
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
21
|
Modulatory effect of Gracilaria gracilis on European seabass gut microbiota community and its functionality. Sci Rep 2022; 12:14836. [PMID: 36050345 PMCID: PMC9437047 DOI: 10.1038/s41598-022-17891-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/02/2022] [Indexed: 12/02/2022] Open
Abstract
Seaweeds are an important source of nutrients and bioactive compounds and have a high potential as health boosters in aquaculture. This study evaluated the effect of dietary inclusion of Gracilaria gracilis biomass or its extract on the European seabass (Dicentrarchus labrax) gut microbial community. Juvenile fish were fed a commercial-like diet with 2.5% or 5% seaweed biomass or 0.35% seaweed extract for 47 days. The gut microbiome was assessed by 16S rRNA amplicon sequencing, and its diversity was not altered by the seaweed supplementation. However, a reduction in Proteobacteria abundance was observed. Random forest analysis highlighted the genera Photobacterium, Staphylococcus, Acinetobacter, Micrococcus and Sphingomonas, and their abundances were reduced when fish were fed diets with algae. SparCC correlation network analysis suggested several mutualistic and other antagonistic relationships that could be related to the predicted altered functions. These pathways were mainly related to the metabolism and biosynthesis of protective compounds such as ectoine and were upregulated in fish fed diets supplemented with algae. This study shows the beneficial potential of Gracilaria as a functional ingredient through the modulation of the complex microbial network towards fish health improvement.
Collapse
|
22
|
Porter D, Peggs D, McGurk C, Martin SAM. Immune responses to prebiotics in farmed salmonid fish: How transcriptomic approaches help interpret responses. FISH & SHELLFISH IMMUNOLOGY 2022; 127:35-47. [PMID: 35667538 DOI: 10.1016/j.fsi.2022.05.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/24/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Within aquaculture, prebiotics are composed of complex carbohydrate molecules that cannot be digested by the fish directly but are metabolised by the microbial communities within the host gut, with the desire that "healthy" bacterial species are promoted with subsequently improved performance of the fish, there are likely some direct responses of intestinal cells to these dietary components. The sources and processing of prebiotics, which fall under the overarching theme of "functional feeds" are highly varied between species and types of prebiotics administered. How these feeds exert their effect, and the host responses are hard to determine, but new technologies and the development of high-throughput technologies (omics) are enabling the mechanisms and methods of action to be further understood. The recent advances in the availability of 'omics' technologies with the transition from single gene assays to microarray and RNA-seq in fish health have enabled novel functional ingredients to be analysed. This review will focus on recent studies on targeted gene expression and 'omics' technologies to characterize immune responses. Comparisons between the immunomodulatory effect of different prebiotics have been made and specific examples of how transcriptomics techniques have been used to identify immune responses to prebiotics are given.
Collapse
Affiliation(s)
- D Porter
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24, 2TZ, UK
| | - D Peggs
- Skretting ARC, Sjøhagen 15, 4016 Stavanger, Norway
| | - C McGurk
- Skretting ARC, Sjøhagen 15, 4016 Stavanger, Norway
| | - S A M Martin
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24, 2TZ, UK.
| |
Collapse
|
23
|
Ding Z, Wang X, Liu Y, Zheng Y, Li H, Zhang M, He Y, Cheng H, Xu J, Chen X, Zhao X. Dietary Mannan Oligosaccharides Enhance the Non-Specific Immunity, Intestinal Health, and Resistance Capacity of Juvenile Blunt Snout Bream (Megalobrama amblycephala) Against Aeromonas hydrophila. Front Immunol 2022; 13:863657. [PMID: 35784342 PMCID: PMC9240629 DOI: 10.3389/fimmu.2022.863657] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/16/2022] [Indexed: 01/04/2023] Open
Abstract
Mannan oligosaccharides (MOS) have been studied and applied as a feed additive, whereas their regulation on the growth performance and immunity of aquatic animals lacks consensus. Furthermore, their immunoprotective effects on the freshwater fish Megalobrama amblycephala have not been sufficiently studied. Thus, we investigated the effects of dietary MOS of 0, 200, and 400 mg/kg on the growth performance, non-specific immunity, intestinal health, and resistance to Aeromonas hydrophila infection in juvenile M. amblycephala. The results showed that the weight gain rate of juvenile M. amblycephala was not significantly different after 8 weeks of feeding, whereas the feed conversion ratio decreased in the MOS group of 400 mg/kg. Moreover, dietary MOS increased the survival rate of juvenile M. amblycephala upon infection, which may be attributed to enhanced host immunity. For instance, dietary MOS increase host bactericidal and antioxidative abilities by regulating the activities of hepatic antimicrobial and antioxidant enzymes. In addition, MOS supplementation increased the number of intestinal goblet cells, and the intestine was protected from necrosis of the intestinal folds and disruption of the microvilli and junctional complexes, thus maintaining the stability of the intestinal epithelial barrier. The expression levels of M. amblycephala immune and tight junction-related genes increased after feeding dietary MOS for 8 weeks. However, the upregulated expression of immune and tight junction-related genes in the MOS supplemental groups was not as notable as that in the control group postinfection. Therefore, MOS supplementation might suppress the damage caused by excessive intestinal inflammation. Furthermore, dietary MOS affected the richness and composition of the gut microbiota, which improved the gut health of juvenile M. amblycephala by increasing the relative abundance of beneficial gut microbiota. Briefly, dietary MOS exhibited significant immune protective effects to juvenile M. amblycephala, which is a functional feed additive and immunostimulant.
Collapse
Affiliation(s)
- Zhujin Ding
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- *Correspondence: Zhujin Ding, ; Xiaoheng Zhao,
| | - Xu Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Yunlong Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Yancui Zheng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Hongping Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Minying Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Yang He
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, China
| | - Hanliang Cheng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Jianhe Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Xiangning Chen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Xiaoheng Zhao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- *Correspondence: Zhujin Ding, ; Xiaoheng Zhao,
| |
Collapse
|
24
|
Inclusion of Mannan-Oligosaccharides in Diets for Tropical Gar Atractosteus tropicus Larvae: Effects on Growth, Digestive Enzymes, and Expression of Intestinal Barrier Genes. FISHES 2022. [DOI: 10.3390/fishes7030127] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mannan-oligosaccharides (MOS) are non-digestible carbohydrates, and their use in aquaculture as prebiotics is well documented. The objective of this work was to test whether MOS supplemented in the diet of A. tropicus larvae (2, 4, and 6 g kg−1) influence growth parameters, the activity of digestive enzymes, and the expression of genes related to the intestinal barrier. The highest total length was observed in larvae fed 6 g kg−1 MOS compared to control larvae. Trypsin activity increased with the addition of MOS to the diets, but leucine aminopeptidase activity only increased with 6 g kg−1 MOS. Lipase and α-amylase activities increased in larvae fed with 2 and 4 g kg−1 MOS. The expression of zo-2 was higher with the 6 g kg−1 MOS treatment. The cl-3 transcripts were lower with 2 g kg−1 MOS but higher with 6 g kg−1 MOS. All tested concentrations of MOS increased the expression of muc-2. In this study, incorporating mannan-oligosaccharides into the diet of A. tropicus larvae had a positive effect, and the concentration of 6 g kg−1 produced the best results. Therefore, including this prebiotic in the diets for the culture of A. tropicus larvae is suitable.
Collapse
|
25
|
Lu ZY, Feng L, Jiang WD, Wu P, Liu Y, Jin XW, Ren HM, Kuang SY, Li SW, Tang L, Zhang L, Mi HF, Zhou XQ. An Antioxidant Supplement Function Exploration: Rescue of Intestinal Structure Injury by Mannan Oligosaccharides after Aeromonas hydrophila Infection in Grass Carp ( Ctenopharyngodon idella). Antioxidants (Basel) 2022; 11:antiox11050806. [PMID: 35624670 PMCID: PMC9137958 DOI: 10.3390/antiox11050806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 12/26/2022] Open
Abstract
Mannan oligosaccharides (MOS) are a type of functional oligosaccharide which have received increased attention because of their beneficial effects on fish intestinal health. However, intestinal structural integrity is a necessary prerequisite for intestinal health. This study focused on exploring the protective effects of dietary MOS supplementation on the grass carp’s (Ctenopharyngodon idella) intestinal structural integrity (including tight junction (TJ) and adherent junction (AJ)) and its related signalling molecule mechanism. A total of 540 grass carp (215.85 ± 0.30 g) were fed six diets containing graded levels of dietary MOS supplementation (0, 200, 400, 600, 800 and 1000 mg/kg) for 60 days. Subsequently, a challenge test was conducted by injection of Aeromonas hydrophila for 14 days. We used ELISA, spectrophotometry, transmission electron microscope, immunohistochemistry, qRT-PCR and Western blotting to determine the effect of dietary MOS supplementation on intestinal structural integrity and antioxidant capacity. The results revealed that dietary MOS supplementation protected the microvillus of the intestine; reduced serum diamine oxidase and d-lactate levels (p < 0.05); enhanced intestinal total antioxidant capacity (p < 0.01); up-regulated most intestinal TJ and AJ mRNA levels; and decreased GTP-RhoA protein levels (p < 0.01). In addition, we also found several interesting results suggesting that MOS supplementation has no effects on ZO-2 and Claudin-15b. Overall, these findings suggested that dietary MOS supplementation could protect intestinal ultrastructure, reduce intestinal mucosal permeability and maintain intestinal structural integrity via inhibiting MLCK and RhoA/ROCK signalling pathways.
Collapse
Affiliation(s)
- Zhi-Yuan Lu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (Z.-Y.L.); (L.F.); (W.-D.J.); (P.W.); (Y.L.); (X.-W.J.); (H.-M.R.)
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (Z.-Y.L.); (L.F.); (W.-D.J.); (P.W.); (Y.L.); (X.-W.J.); (H.-M.R.)
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (Z.-Y.L.); (L.F.); (W.-D.J.); (P.W.); (Y.L.); (X.-W.J.); (H.-M.R.)
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (Z.-Y.L.); (L.F.); (W.-D.J.); (P.W.); (Y.L.); (X.-W.J.); (H.-M.R.)
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (Z.-Y.L.); (L.F.); (W.-D.J.); (P.W.); (Y.L.); (X.-W.J.); (H.-M.R.)
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiao-Wan Jin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (Z.-Y.L.); (L.F.); (W.-D.J.); (P.W.); (Y.L.); (X.-W.J.); (H.-M.R.)
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Hong-Mei Ren
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (Z.-Y.L.); (L.F.); (W.-D.J.); (P.W.); (Y.L.); (X.-W.J.); (H.-M.R.)
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co., Ltd., Chengdu 610066, China; (S.-Y.K.); (S.-W.L.); (L.T.)
| | - Shu-Wei Li
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co., Ltd., Chengdu 610066, China; (S.-Y.K.); (S.-W.L.); (L.T.)
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co., Ltd., Chengdu 610066, China; (S.-Y.K.); (S.-W.L.); (L.T.)
| | - Lu Zhang
- Healthy Aquaculture Key Laboratory of Sichuan Province, Tongwei Co., Ltd., Chengdu 610041, China; (L.Z.); (H.-F.M.)
| | - Hai-Feng Mi
- Healthy Aquaculture Key Laboratory of Sichuan Province, Tongwei Co., Ltd., Chengdu 610041, China; (L.Z.); (H.-F.M.)
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (Z.-Y.L.); (L.F.); (W.-D.J.); (P.W.); (Y.L.); (X.-W.J.); (H.-M.R.)
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence:
| |
Collapse
|
26
|
Bledsoe JW, Pietrak MR, Burr GS, Peterson BC, Small BC. Functional feeds marginally alter immune expression and microbiota of Atlantic salmon (Salmo salar) gut, gill, and skin mucosa though evidence of tissue-specific signatures and host-microbe coadaptation remain. Anim Microbiome 2022; 4:20. [PMID: 35272695 PMCID: PMC8908560 DOI: 10.1186/s42523-022-00173-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/01/2022] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Mucosal surfaces of fish provide cardinal defense against environmental pathogens and toxins, yet these external mucosae are also responsible for maintaining and regulating beneficial microbiota. To better our understanding of interactions between host, diet, and microbiota in finfish and how those interactions may vary across mucosal tissue, we used an integrative approach to characterize and compare immune biomarkers and microbiota across three mucosal tissues (skin, gill, and gut) in Atlantic salmon receiving a control diet or diets supplemented with mannan-oligosaccharides, coconut oil, or both. Dietary impacts on mucosal immunity were further evaluated by experimental ectoparasitic sea lice (Lepeophtheirus salmonis) challenge. RESULTS Fish grew to a final size of 646.5 g ± 35.8 during the 12-week trial, with no dietary effects on growth or sea lice resistance. Bacterial richness differed among the three tissues with the highest richness detected in the gill, followed by skin, then gut, although dietary effects on richness were only detected within skin and gill. Shannon diversity was reduced in the gut compared to skin and gill but was not influenced by diet. Microbiota communities clustered separately by tissue, with dietary impacts on phylogenetic composition only detected in the skin, although skin and gill communities showed greater overlap compared to the gut according to overall composition, differential abundance, and covariance networks. Inferred metagenomic functions revealed preliminary evidence for tissue-specific host-microbiota coadaptation, as putative microbiota functions showed ties to the physiology of each tissue. Immune gene expression profiles displayed tissue-specific signatures, yet dietary effects were also detected within each tissue and peripheral blood leukocytes. Procrustes analysis comparing sample-matched multivariate variation in microbiota composition to that of immune expression profiles indicated a highly significant correlation between datasets. CONCLUSIONS Diets supplemented with functional ingredients, namely mannan-oligosaccharide, coconut oil, or a both, resulted in no difference in Atlantic salmon growth or resistance to sea lice infection. However, at the molecular level, functional ingredients caused physiologically relevant changes to mucosal microbiota and host immune expression. Putative tissue-specific metagenomic functions and the high correlation between expression profiles and microbiota composition suggest host and microbiota are interdependent and coadapted in a tissue-specific manner.
Collapse
Affiliation(s)
- Jacob W. Bledsoe
- Hagerman Fish Culture Experiment Station, Aquaculture Research Institute, University of Idaho, 3059-F National Fish Hatchery Rd., Hagerman, ID 83332 USA
| | - Michael R. Pietrak
- Agricultural Research Service, National Cold Water Marine Aquaculture Center, United States Department of Agriculture, 25 Salmon Farm Road, Franklin, ME 04634 USA
| | - Gary S. Burr
- Agricultural Research Service, National Cold Water Marine Aquaculture Center, United States Department of Agriculture, 25 Salmon Farm Road, Franklin, ME 04634 USA
| | - Brian C. Peterson
- Agricultural Research Service, National Cold Water Marine Aquaculture Center, United States Department of Agriculture, 25 Salmon Farm Road, Franklin, ME 04634 USA
| | - Brian C. Small
- Hagerman Fish Culture Experiment Station, Aquaculture Research Institute, University of Idaho, 3059-F National Fish Hatchery Rd., Hagerman, ID 83332 USA
| |
Collapse
|
27
|
Sun D, Li C, Cui P, Zhang J, Zhou Y, Wu M, Li X, Wang TF, Zeng Z, Qin HM. Reshaping the binding channel of a novel GH113 family β-mannanase from Paenibacillus cineris (PcMan113) for enhanced activity. BIORESOUR BIOPROCESS 2022; 9:17. [PMID: 38647808 PMCID: PMC10992819 DOI: 10.1186/s40643-022-00505-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/13/2022] [Indexed: 11/10/2022] Open
Abstract
Endo-β-mannanases are important enzymes for degrading lignocellulosic biomass to generate mannan, which has significant health effects as a prebiotic that promotes the development of gut microbiota. Here, a novel endo-β-mannanase belonging to glycoside hydrolase (GH) family 113 from Paenibacillus cineris (PcMan113) was cloned, expressed and characterized, as one of only a few reported GH113 family β-mannanases. Compared to other functionally and structurally characterized GH113 mannanases, recombinant PcMan113 showed a broader substrate spectrum and a better performance. Based on a structural homology model, the highly active mutant PcMT3 (F110E/N246Y) was obtained, with 4.60- and 5.53-fold increases of enzyme activity (towards KG) and catalytic efficiency (kcat/Km, against M5) compared with the WT enzyme, respectively. Furthermore, molecular dynamics (MD) simulations were conducted to precisely explore the differences of catalytic activity between WT and PcMT3, which revealed that PcMT3 has a less flexible conformation, as well as an enlarged substrate-binding channel with decreased steric hindrance and increased binding energy in substrate recognition. In conclusion, we obtained a highly active variant of PcMan113 with potential for commercial application in the manufacture of manno-oligosaccharides.
Collapse
Affiliation(s)
- Dengyue Sun
- State Key Laboratory of Biobased Material and Green Papermaking, College of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250100, People's Republic of China
- School of Bioengineering, Qilu University of Technology, Shandong Province, Jinan, 250353, People's Republic of China
| | - Chao Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Pengpeng Cui
- School of Bioengineering, Qilu University of Technology, Shandong Province, Jinan, 250353, People's Republic of China
| | - Jie Zhang
- School of Bioengineering, Qilu University of Technology, Shandong Province, Jinan, 250353, People's Republic of China
| | - Yaolin Zhou
- School of Bioengineering, Qilu University of Technology, Shandong Province, Jinan, 250353, People's Republic of China
| | - Mian Wu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Xia Li
- School of Bioengineering, Qilu University of Technology, Shandong Province, Jinan, 250353, People's Republic of China
| | - Teng-Fei Wang
- State Key Laboratory of Biobased Material and Green Papermaking, College of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250100, People's Republic of China
- School of Bioengineering, Qilu University of Technology, Shandong Province, Jinan, 250353, People's Republic of China
| | - Zhixiong Zeng
- School of Bioengineering, Qilu University of Technology, Shandong Province, Jinan, 250353, People's Republic of China.
| | - Hui-Min Qin
- State Key Laboratory of Biobased Material and Green Papermaking, College of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250100, People's Republic of China.
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
28
|
Mannan Oligosaccharide Enhanced the Growth Rate, Digestive Enzyme Activity, Carcass Composition, and Blood Chemistry of Thinlip Grey Mullet ( Liza ramada). Animals (Basel) 2021; 11:ani11123559. [PMID: 34944334 PMCID: PMC8698089 DOI: 10.3390/ani11123559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/22/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Sustainable aquaculture requires natural alternative substances with high potential in enhancing the performance and wellbeing of aquatic animals. In this regard, the present study tested the possibility of using mannan oligosaccharides (MOS) in the diets of grey mullet as functional additives. For 8 weeks, fish were fed with enriched diets containing 0, 0.5, 1, and 2% MOS. The results showed marked improvements in the growth performance, digestive enzyme activity, blood chemistry, and antioxidative capacity. In conclusion, dietary MOS at 0.5–1% is required to enhance the productivity of grey mullet. Abstract Mannan oligosaccharide (MOS) is prebiotic with high functionality in aquaculture. The current study investigated the potential roles of MOS on the growth performance, digestive enzyme activity, carcass composition, and blood chemistry of Thinlip grey mullet (Liza ramada). Four tested diets with 34.49% crude protein and 6.29% of total lipids were prepared and fortified with 0, 0.5, 1, and 2% MOS. Fish of initial weight = 5.14 ± 0.11 g/fish were distributed in 12 hapas (0.5 × 0.5 × 1 m) at 15 fish per hapa (triplicates) and fed the test diets to the satiation level two times a day (08:00 and 15:00) for eight weeks. At the end of the trial, all fish were weighed individually for growth performance calculation. Blood was collected to check blood chemistry traits, and intestines were dissected for digestive enzyme analysis. Fish treated with MOS had marked enhancement in the final body weight, feed conversion ratio, protein gain, and protein retention regardless of inclusion dose (p < 0.05). The weight gain, specific growth rate, and protein efficiency ratio were meaningfully enhanced by including MOS at 0.5 and 1%, followed by fish fed with 2% MOS, while the lowest values were in the control group (p < 0.05). Insignificant influences of MOS were seen on the chemical composition of carcass components (moisture, crude protein, total lipids, and ash) (p > 0.05). Fish treated with MOS at 0.5 and 1% had marked enhancement in the amylase, lipase, and protease activities regardless of inclusion dose (p < 0.05). The blood total protein and albumin levels were meaningfully enhanced by including MOS at 0.5 and 1%, followed by fish fed with 2% MOS, while the lowest values were in the control group (p < 0.05). The blood globulin was significantly enhanced in fish fed 1% MOS than fish treated with 0, 0.5, and 2% of MOS (p < 0.05). The blood lysozyme activity was meaningfully enhanced by including MOS at 1%, followed by fish treated with 0.5 and 2%, while the lowest values were in the control group (p < 0.05). Phagocytic activity and phagocytic index were markedly improved in fish treated with 1 and 2% MOS, followed by those fed 0.5% compared with fish fed MOS-free diet (p < 0.05). Superoxide dismutase and glutathione peroxidase were markedly improved in fish treated with 1, and 2% MOS, followed by those fed 0.5% compared with fish fed MOS-free diet (p < 0.05). Dietary MOS (0.5, 1, and 2%) meaningfully enhanced catalase activity while decreased the malondialdehyde concentration (p < 0.05). In summary, dietary MOS is required at 0.5–1% for enhancing the growth rate, feed efficiency, digestive enzyme activity, blood chemistry, and antioxidative capacity of grey mullet.
Collapse
|
29
|
Faustino M, Durão J, Pereira CF, Pintado ME, Carvalho AP. Mannans and mannan oligosaccharides (MOS) from Saccharomyces cerevisiae - A sustainable source of functional ingredients. Carbohydr Polym 2021; 272:118467. [PMID: 34420726 DOI: 10.1016/j.carbpol.2021.118467] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/10/2021] [Accepted: 07/16/2021] [Indexed: 11/18/2022]
Abstract
Sustainable industry practices and circular economy concepts encourage the transformation of production waste into by-products. Saccharomyces cerevisiae is widely used in fermentation industry worldwide, generating large amounts of spent yeast which is mainly directed to animal feed or discarded as waste. Instead of becoming and environmental problem, spent yeast can be directed to the extraction of valuable compounds such as mannans and mannan oligosaccharides (MOS). This review presents a compilation of the studies up to date regarding the different chemical, enzymatic, mechanical or physical processes addressed for mannans extraction and MOS production. Additionally, the existing studies on the chemical modification of mannans aimed to improve specific characteristics are also discussed. Finally, the more relevant bioactivities and potential applications of mannans, MOS and mannose are presented, together with products on the market containing these compounds.
Collapse
Affiliation(s)
- Margarida Faustino
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Joana Durão
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; Amyris Bio Products Portugal Unipessoal Lda, Portugal
| | - Carla F Pereira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Manuela E Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Ana P Carvalho
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
30
|
Liu X, Xu Z, Chang X, Fang JKH, Song J, He J, Tai Z, Zhu Q, Hu M. Enhanced immunity and hemocytes proliferation by three immunostimulants in tri-spine horseshoe crab Tachypleus tridentatus. FISH & SHELLFISH IMMUNOLOGY 2021; 115:112-123. [PMID: 34098068 DOI: 10.1016/j.fsi.2021.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/26/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
Tachypleus amebocyte lysate (TAL) is crucial in medical testing, but its industry in China has been restricted due to the decline of horseshoe crab population in recent years. Exploring methods of enhancing immunity and rapid hemocytes proliferation is urgent for the industrial horseshoe crab culture. In this study, β-glucan (G), peptidoglycan (P), and squalene (S) were injected to horseshoe crabs at two concentrations (5 and 10 mg/kg), in order to compare their effects on total hemocyte count (THC), reactive oxygen species (ROS), and non-specific immune enzyme activities. Results showed that the THC, superoxide dismutase (SOD), catalase (CAT), and total antioxidant capacity (T-AOC) were significantly increased by three immunostimulants at different points of time; ROS was significantly increased except at two squalene groups; lysozyme (LZM) and alkaline phosphatase (AKP) activity were increased except at low dose (5 mg/kg) squalene group; malondialdehyde (MDA) activity was decreased in all treatments; and hemocyanin concentration (HC) changed little during the experiment. At the 48th hour, THC, ROS, SOD, CAT, T-AOC, LZM, and AKP activities were significantly higher in the two peptidoglycan groups than those in the control group; the low dose β-glucan and squalene groups showed significantly higher SOD and CAT, but their THC and AKP were not significantly different from those of the control group. In general, all three immunostimulants stimulated the hemolymph parameters of horseshoe crabs, notably, peptidoglycan could significantly increase the THC and enzyme activities, suggesting that peptidoglycan can be developed as an efficient immunostimulant for horseshoe crabs.
Collapse
Affiliation(s)
- Ximei Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhen Xu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Xueqing Chang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - James K H Fang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Jie Song
- Tianjin Era Biology Technology Co., Ltd., China
| | - Jinfeng He
- Beihai Product Quality Testing Institute, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, China
| | - Menghong Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
31
|
Effect of Dietary Sugarcane Bagasse Supplementation on Growth Performance, Immune Response, and Immune and Antioxidant-Related Gene Expressions of Nile Tilapia ( Oreochromis niloticus) Cultured under Biofloc System. Animals (Basel) 2021; 11:ani11072035. [PMID: 34359162 PMCID: PMC8300095 DOI: 10.3390/ani11072035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Supplementation of agriculture by-product as functional feed additives in combination with biofloc technology (a sustainable and environmentally friendly technology) has recently gained much attention in aquaculture. In the present study, sugarcane bagasse powder can possibly be applied as a feed additive to improve growth performance, immune response, and immune and antioxidant-related gene expression. Abstract We investigated, herein, the effects of dietary inclusion of sugarcane bagasse powder (SB) on Nile tilapia development, mucosal and serum immunities, and relative immune and antioxidant genes. Fish (15.12 ± 0.04 g) were provided a basal diet (SB0) or basal diet incorporated with SB at 10 (SB10), 20 (SB20), 40 (SB40), or 80 (SB80) g kg−1 for 8 weeks. Our results demonstrated that the dietary incorporation of sugarcane bagasse powder (SB) at 20 and 40 g kg−1 significantly ameliorated FW, WG, and SGR as opposed to fish fed basal, SB10, and SB80 diets. However, no significant changes in FCR and survivability were observed between the SB supplemented diets and the control (basal diet). The mucosal immunity exhibited significantly higher SMLA and SMPA activities (p < 0.005) in fish treated with SB diets after eight weeks. The highest SMLA and SMPA levels were recorded in fish fed SB80 followed by SB20, SB40, and SB10, respectively. For serum immunity, fish fed SB incorporated diets significantly ameliorated SL and RB levels (p < 0.05) compared with the control. However, SP was not affected by the inclusion of SB in any diet throughout the experiment. The expression of IL1, IL8, LBP, GSTa, GPX, and GSR genes in the fish liver was significantly increased in fish fed the SB20 and SB10 diets relative to the basal diet fed fish (p < 0.05); whereas only the IL8, LBP, and GPX genes in the intestines were substantially augmented via the SB20 and SB80 diets (p < 0.05). IL1 and GSR were not influenced by the SB incorporated diets (p > 0.05). In summary, sugarcane bagasse powder (SB) may be applied as a feed additive to improve growth performance, immune response, and immune and antioxidant-related gene expression in Nile tilapia.
Collapse
|
32
|
Mohammadian T, Ghanei-Motlagh R, Molayemraftar T, Mesbah M, Zarea M, Mohtashamipour H, Jangaran Nejad A. Modulation of growth performance, gut microflora, non-specific immunity and gene expression of proinflammatory cytokines in shabout (Tor grypus) upon dietary prebiotic supplementation. FISH & SHELLFISH IMMUNOLOGY 2021; 112:38-45. [PMID: 33609700 DOI: 10.1016/j.fsi.2021.02.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/09/2021] [Accepted: 02/13/2021] [Indexed: 06/12/2023]
Abstract
In this study, the effect of dietary supplementation of mannan oligosaccharide (MOS) + β-glucan (Immunogen®) was investigated on growth performance, body composition, gut microflora, innate immune responses and gene expression of some proinflammatory cytokines in shabout (Tor grypus). Shabout fingerlings (35 ± 1.2 g) were fed with basal diet (control) or basal diet supplemented with Immunogen® at 0.5, 1 and 1.5% of feed for 90 days. According to the results, growth parameters were significantly improved in fish fed with prebiotic (1 and 1.5%) for 90 days (p < 0.05). The carcass protein content was significantly higher in fish nourished by prebiotic at 1.5% of feed for 90 days compared to fish received the basal diet (p < 0.05). Feeding with various levels of Immunogen® resulted in the significant promotion of the population of intestinal Lactobacillus spp. in the prebiotic-treated groups relative to the control group (p < 0.05). Serum total globulin was significantly higher in all prebiotic groups relative to the control group at day 60. Serum bactericidal and lysozyme activities were significantly (p < 0.05) elevated after feeding with dietary prebiotic at all intervals (days 30, 60 and 90). However, the highest serum bactericidal activities were recorded in fish fed with Immunogen® at 1.5% of diet (p < 0.05). The transcription levels of interleukin 1 beta (IL-1β), interleukin 8 (IL-8) and tumor necrosis factor alpha (TNF-α) were significantly increased in the head kidney of fish treated with dietary prebiotic at all intervals. The results show that dietary supplementation with Immunogen®, particularly at the level of 1.5%, can positively alter growth parameters, carcass protein, intestinal microflora and immune responses of shabout.
Collapse
Affiliation(s)
- Takavar Mohammadian
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, 61355-145, Iran; Member of Excellence Center of Warm Water Fish Health, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Reza Ghanei-Motlagh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, 61355-145, Iran.
| | - Taravat Molayemraftar
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, 61355-145, Iran.
| | - Mehrzad Mesbah
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, 61355-145, Iran; Member of Excellence Center of Warm Water Fish Health, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mojtaba Zarea
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, 61355-145, Iran
| | - Hamzeh Mohtashamipour
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, 61355-145, Iran
| | | |
Collapse
|
33
|
Wang J, Jaramillo-Torres A, Li Y, Kortner TM, Gajardo K, Brevik ØJ, Jakobsen JV, Krogdahl Å. Microbiota in intestinal digesta of Atlantic salmon (Salmo salar), observed from late freshwater stage until one year in seawater, and effects of functional ingredients: a case study from a commercial sized research site in the Arctic region. Anim Microbiome 2021; 3:14. [PMID: 33509296 PMCID: PMC7841887 DOI: 10.1186/s42523-021-00075-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/08/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The importance of the gut microbiota for health and wellbeing is well established for humans and some land animals. The gut microbiota is supposedly as important for fish, but existing knowledge has many gaps, in particular for fish in the Arctic areas. This study addressed the dynamics of Atlantic salmon digesta-associated gut microbiota assemblage and its associations with host responses from freshwater to seawater life stages under large-scale, commercial conditions in the Arctic region of Norway, and explored the effects of functional ingredients. The microbiota was characterized by 16S rRNA gene sequencing in distal intestinal digesta at four time points: 2 weeks before seawater transfer (in May, FW); 4 weeks after seawater transfer (in June, SW1); in November (SW2), and in April (SW3) the following year. Two series of diets were fed, varying throughout the observation time in nutrient composition according to the requirements of fish, one without (Ref diet), and the other with functional ingredients (Test diet). The functional ingredients, i.e. nucleotides, yeast cell walls, one prebiotic and essential fatty acids, were supplemented as single or mixtures based on the strategies from the feed company. RESULTS Overall, the fish showed higher microbial richness and lactic acid bacteria (LAB) abundance after seawater transfer, while Simpson's diversity decreased throughout the observation period. At SW1, the gut microbiota was slightly different from those at FW, and was dominated by the genera Lactobacillus and Photobacterium. As the fish progressed towards SW2 and SW3, the genera Lactobacillus and Mycoplasma became more prominent, with a corresponding decline in genus Photobacterium. The overall bacterial profiles at these time points showed a clear distinction from those at FW. A significant effect of functional ingredients (a mixture of nucleotides, yeast cell walls and essential fatty acids) was observed at SW2, where Test-fed fish showed lower microbial richness, Shannon's diversity, and LAB abundance. The multivariate association analysis identified differentially abundant taxa, especially Megasphaera, to be significantly associated with gut immune and barrier gene expressions, and plasma nutrients. CONCLUSIONS The gut microbiota profile varied during the observation period, and the Mycoplasma became the dominating bacteria with time. Megasphaera abundance was associated with gut health and plasma nutrient biomarkers. Functional ingredients modulated the gut microbiota profile during an important ongrowing stage.
Collapse
Affiliation(s)
- Jie Wang
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway.
| | - Alexander Jaramillo-Torres
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway
| | - Yanxian Li
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway
| | - Trond M Kortner
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway
| | - Karina Gajardo
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway
| | | | - Jan Vidar Jakobsen
- Cargill Aqua Nutrition, Prof. Olav Hanssensvei 7A, 4021, Stavanger, Norway
| | - Åshild Krogdahl
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway
| |
Collapse
|
34
|
Yousefi S, Monsef Shokri M, Allaf Noveirian H, Hoseinifar SH. Effects of dietary yeast cell wall on biochemical indices, serum and skin mucus immune responses, oxidative status and resistance against Aeromonas hydrophila in juvenile Persian sturgeon (Acipenser persicus). FISH & SHELLFISH IMMUNOLOGY 2020; 106:464-472. [PMID: 32777461 DOI: 10.1016/j.fsi.2020.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
The present study aims to shed light on the effects of yeast cell wall (ImmunoWall®) supplementation on biochemical indices, oxidative status, serum and mucus immune responses as well as disease resistance of juvenile Persian sturgeon (Acipenser persicus). For this purpose, one hundred fifty three juvenile Persian sturgeons (47.78 ± 0.39 g) were distributed into nine tanks (500 L) and fed with basal diets containing two levels of yeast cell wall (YCW) 0.5% (T1) and 1% (T2) and a diet without YCW as control (0%). As shown by the results obtained at the end of 56-day feeding trial, YCW had no significant effect on glucose, cortisol, SGOT, lysozyme and IgM in serum (P > 0.05) albeit an enhancement of cholesterol, LDH, ALP and SOD and ACH50 was observed in fish fed YCW supplemented diets. However, plasma triglyceride levels were lower in fish fed YCW compared with the control group. Also, total protein content, lysozyme and protease activities in skin mucus were unaffected by the supplemented diets (P > 0.05) and only total immunoglobulin and ALP enzyme activity were significantly increased in T1 and T2 groups (P > 0.05). The cumulative mortality of the fish fed supplemented diets at the end of disease challenge was 100% where cumulative mortality of those fed the control diet was 75% (P < 0.05). The present study shows that increasing immune parameters in serum and mucus of juvenile Persian sturgeon by YCW dietary supplementation did not improve resistance against Aeromonas hydrophila. According to the obtained results, the YCW supplementation at 0.5 and 1% in the juvenile Persian sturgeon diet is not recommended.
Collapse
Affiliation(s)
- Soheil Yousefi
- Department of Fisheries, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Iran
| | - Maryam Monsef Shokri
- International Sturgeon Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Rasht, Iran.
| | - Hamid Allaf Noveirian
- Department of Fisheries, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Iran
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
35
|
Lu ZY, Jiang WD, Wu P, Liu Y, Kuang SY, Tang L, Yang J, Zhou XQ, Feng L. Mannan oligosaccharides supplementation enhanced head-kidney and spleen immune function in on-growing grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2020; 106:596-608. [PMID: 32841685 DOI: 10.1016/j.fsi.2020.08.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/14/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
This research investigates the influences of dietary mannan oligosaccharides (MOS) on the head-kidney and spleen immune function in on-growing grass carp (Ctenopharyngodon idella) and its related mechanism. Fish were fed during 60 days at different levels of MOS (0, 200, 400, 600, 800 and 1000 mg kg-1). Subsequently, 14 days after the feeding trial was injected intraperitoneally with Aeromonas hydrophila, the immune function was studied. The results are as follows: (1) appropriate MOS supplementation could increase the content of antibacterial compound and immunoglobulin (Ig), up-regulate antimicrobial peptides transcriptional levels in these two organs; (2) appropriate MOS supplementation attenuated inflammatory response in these two organs by regulating cytokines (pro- and anti-inflammatory cytokines) and related signalling pathways (NF-κB and TOR). The interesting points though, was, no differences were found in liver-expressed antimicrobial peptide (LEAP)-2A, interleukin (IL)-8, IL-4/13B, IκB kinase (IKK) α and nuclear factor kappa B (NF-κB) p52 gene expression in these two organs. Consequently, the present research suggests that MOS supplementation can enhance head-kidney and spleen immune function. Finally, we obtained these appropriate MOS dose (538.5 and 585.8 mg kg-1) by quadratic regression analysis of lysozyme activity (head-kidney) and phosphatase activity (spleen), respectively.
Collapse
Affiliation(s)
- Zhi-Yuan Lu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Juan Yang
- Enterprise Technology Center, Tongwei Co., Ltd, Chengdu, 610041, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
36
|
Wang J, Kortner TM, Chikwati EM, Li Y, Jaramillo-Torres A, Jakobsen JV, Ravndal J, Brevik ØJ, Einen O, Krogdahl Å. Gut immune functions and health in Atlantic salmon (Salmo salar) from late freshwater stage until one year in seawater and effects of functional ingredients: A case study from a commercial sized research site in the Arctic region. FISH & SHELLFISH IMMUNOLOGY 2020; 106:1106-1119. [PMID: 32941976 DOI: 10.1016/j.fsi.2020.09.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 09/10/2020] [Accepted: 09/13/2020] [Indexed: 06/11/2023]
Abstract
The present study was conducted to strengthen the knowledge on gut immune functions and health in Atlantic salmon under large scale, commercial conditions in the Arctic region of Norway. Two groups of fish were monitored, one fed a series of diets without functional ingredients (Ref) and the other diets with functional ingredients (Test). The nutritional composition of the two diet series varied in parallel according to the nutrient requirements of the fish during the observation time. The content of functional ingredients in the Test diets, i.e. nucleotides, yeast cell walls, a prebiotic and essential fatty acids, varied in accordance with a strategy developed by the feed company. The fish were observed at four sampling time points, the first (FW) in May 2016 two weeks before seawater transfer, the other three throughout the following seawater period until the fish reached a size of about 2 kg, i.e. in June, four weeks after seawater transfer (SW1); in November (SW2), and in April the following year (SW3). Gut health was assessed based on histopathological indicators of lipid malabsorption and gut inflammation, expression of gut immune, barrier and other health related genes, plasma biomarkers, somatic indices of intestinal sections, as well as biomarkers of digestive functions. Seawater transfer of the fish (SW1 compared to FW) caused a marked lowering of expression of genes related to immune and barrier functions in the distal intestine, i.e. cytokines (il1β, il10, tgfβ, ifnγ), T-cell markers (cd3γδ), myd88 and tight junction proteins (zo-1, claudin-15, claudin-25b), indicating suppressed immune and barrier functions. At SW2 and SW3, most of the immune biomarkers showed values similar to those observed at FW. The development of plasma cholesterol and triglyceride levels showed similar picture, with markedly lower levels after seawater transfer. Lipid malabsorption was observed in particular in fish from SW1 and SW2, as indicated by hyper-vacuolation of the pyloric caeca enterocytes with concurrently increased expression levels of plin2. Regarding effects of functional ingredients, significantly lower condition factor and plasma triglyceride level were observed for Test-fed fish at SW2, indicating a metabolic cost of use of a mixture of nucleotides, yeast cell walls and essential fatty acids. No clear effects of functional ingredients on expression of gut immune genes and other health indexes were observed through the observation period. The great, temporary lowering of expression of gut immune and barrier genes at SW1 is suggested to be an important factor underlying the increased vulnerability of the fish at this time point. Our findings regarding supplementation with functional ingredients raise questions whether some of these ingredients overall are beneficial or might come with a metabolic cost. Our results highlight the need for a better understanding of the cause and consequences of the suppression of gut immune functions of farmed Atlantic salmon just after seawater transfer, and the use of functional ingredients under commercial conditions.
Collapse
Affiliation(s)
- Jie Wang
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway.
| | - Trond M Kortner
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | - Elvis M Chikwati
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | - Yanxian Li
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | - Alexander Jaramillo-Torres
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | | | | | | | | | - Åshild Krogdahl
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| |
Collapse
|
37
|
Villumsen KR, Ohtani M, Forberg T, Aasum E, Tinsley J, Bojesen AM. Synbiotic feed supplementation significantly improves lipid utilization and shows discrete effects on disease resistance in rainbow trout (Oncorhynchus mykiss). Sci Rep 2020; 10:16993. [PMID: 33046750 PMCID: PMC7550352 DOI: 10.1038/s41598-020-73812-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
Enteric redmouth disease caused by the bacterial pathogen Yersinia ruckeri is the main reason for antimicrobial prescription, and a cause of substantial economic losses and decreased animal welfare in aquaculture. Given the importance of the intestinal microbiota in digestion and disease, our aim was to investigate whether synbiotic feed supplementation strategies could improve feed performance and disease resistance. Four experimental synbiotic feeds formulated with pre- and probiotics were tested against a commercially available probiotic control feed. Each experimental feed was evaluated for feed performance, effects on gross as well as intestinal morphometrics, and finally their effect on resistance against a waterborne experimental infection with Yersinia ruckeri serotype O1, biotype 2. While co-supplementing Pediococcus acidilactici with citrus flavonoids or bacterial paraprobiotics significantly improved utilization of feed lipid content relative to the control group, a decrease in lipid utilization was observed for feeds that combined P. acidilactici with yeast paraprobiotics. No significant improvements on disease resistance were observed. Still, synbiotic formulations including P. acidilactici led to reduced risks relative to that of the control group, while an increased relative risk was observed for a Bacillus-based formulation. In conclusion, two of the synbiotic supplements significantly improved lipid utilization and contributed to minor increases in disease resistance.
Collapse
Affiliation(s)
- Kasper Rømer Villumsen
- Preventive Veterinary Microbiology, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark.
| | - Maki Ohtani
- Preventive Veterinary Microbiology, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
- Division of Development of Functional Brain Activities,Research Centre for Child Mental Development, University of Fukui, Fukui, Japan
| | | | | | | | - Anders Miki Bojesen
- Preventive Veterinary Microbiology, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
38
|
Kishawy AT, Sewid AH, Nada HS, Kamel MA, El-Mandrawy SA, Abdelhakim TM, El-Murr AEI, Nahhas NE, Hozzein WN, Ibrahim D. Mannanoligosaccharides as a Carbon Source in Biofloc Boost Dietary Plant Protein and Water Quality, Growth, Immunity and Aeromonas hydrophila Resistance in Nile Tilapia ( Oreochromis niloticus). Animals (Basel) 2020; 10:ani10101724. [PMID: 32977486 PMCID: PMC7598294 DOI: 10.3390/ani10101724] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/16/2020] [Accepted: 09/16/2020] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Biofloc technology (BFT), offers some potential advantages for improvements in water quality and growth of farmed fish reared in recirculation systems. One practical disadvantage of implementing a BFT system to culture fish is the need to add organic carbon to maintain a C:N ratio above 10. The present study evaluated the effect of using mannan oligosaccharides as a carbon source in a biofloc system with cultivated tilapia. MOS resulted in increased lactic acid bacterial count in the water and the intestinal tract, modulated immune response and resistance against Aeromonus hydrophila and improved the survival and growth of reared Nile tilapia (Oreochromis niloticus L.) Abstract The aim of the present study was to evaluate mannan oligosaccharides (MOS) or glycerol (GLY) as a carbon source on biofloc systems of Nile tilapia (O. niloticus) juveniles. Fish (n = 750) were reared in open flow (Controls) or biofloc systems (B-GLY and B-MOS) fed with a plant or fish protein source over a period of twelve weeks. Total ammonia nitrogen and nitrate decreased in the biofloc groups, while biofloc volume increased in B-MOS. Compared to the controls, B-MOS and B-GLY exhibited higher weight gain and improved feed conversion, irrespectively of the diet. Serum level of C-reactive protein was reduced, while IgM and lysozyme activity was higher in the B-MOS fish, compared to other groups. Intestinal Bacillus spp. count was increased, whereas Vibrio, Aeromonas and Pseudomonas spp. counts decreased in B-MOS reared groups, compared to the other groups. The proinflammatory cytokine (IL-8 and IFN-γ) transcript expression was upregulated in B-MOS more than B-GLY reared groups. Compared to the controls, the virulence of Aeromonas hydrophila was decreased in the B-MOS and B-GLY groups. The results indicate several benefits of using MOS as a carbon source in a biofloc Nile tilapia system; a cost benefit analysis is required to assess the economic viability of this.
Collapse
Affiliation(s)
- Asmaa T.Y. Kishawy
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Al Sharqia Governorate 44519, Egypt
- Correspondence: (A.T.Y.K.); (D.I.)
| | - Alaa H. Sewid
- Departments of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Al Sharqia Governorate 44519, Egypt; (A.H.S.); (H.S.N.)
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, TN 37996, USA
| | - Hend S. Nada
- Departments of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Al Sharqia Governorate 44519, Egypt; (A.H.S.); (H.S.N.)
| | - Mohamed A. Kamel
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Al Sharqia Governorate 44519, Egypt;
| | - Shefaa A.M. El-Mandrawy
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Taghrid M.N. Abdelhakim
- Department of Fish Health and Management, Central Laboratory for Aquaculture Research, Agriculture Research Center, Abo Hammad 44519, Egypt;
| | - Abd Elhakeem I. El-Murr
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Zagazig University, Al Sharqia Governorate 44519, Egypt;
| | - Nihal El Nahhas
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Moharram baik, Alexandria 21515, Egypt;
| | - Wael N. Hozzein
- Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Al Sharqia Governorate 44519, Egypt
- Correspondence: (A.T.Y.K.); (D.I.)
| |
Collapse
|
39
|
Liu Z, Ning C, Yuan M, Fu X, Yang S, Wei X, Xiao M, Mou H, Zhu C. High-efficiency expression of a superior β-mannanase engineered by cooperative substitution method in Pichia pastoris and its application in preparation of prebiotic mannooligosaccharides. BIORESOURCE TECHNOLOGY 2020; 311:123482. [PMID: 32416491 DOI: 10.1016/j.biortech.2020.123482] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
β-mannanase with high specific activity is a prerequisite for the industrial preparation of prebiotic mannooligosaccharides. Three mutants, namely MEI, MER, and MEIR, were constructed by cooperative substitution based on three predominant single-point site mutations (K291E, L211I, and Q112R, respectively). Heterologous expression was facilitated in Pichia pastoris and the recombinase was characterized completely. The specific activities of MER (7481.9 U mg-1) and MEIR (9003.1 U mg-1) increased by 1.07- and 1.29-fold from the initial activity of ME (6970.2U mg-1), respectively. MEIR was used for high-cell-density fermentation to further improve enzyme activity, and the expression levels achieved in the 10-L fermenter were significantly high (105,836 U mL-1). The prebiotic mannooligosaccharides (<2000 Da) were prepared by hydrolyzing konjac gum and locust bean gum with MEIR, with 100% and 76.40% hydrolysis rates, respectively. These characteristics make MEIR highly attractive for prebiotic development in food and related industries.
Collapse
Affiliation(s)
- Zhemin Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 China
| | - Chen Ning
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 China
| | - Mingxue Yuan
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 China
| | - Xiaodan Fu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 China
| | - Suxiao Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 China
| | - Xinyi Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 China
| | - Mengshi Xiao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 China.
| | - Changliang Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 China.
| |
Collapse
|
40
|
Serradell A, Torrecillas S, Makol A, Valdenegro V, Fernández-Montero A, Acosta F, Izquierdo MS, Montero D. Prebiotics and phytogenics functional additives in low fish meal and fish oil based diets for European sea bass (Dicentrarchus labrax): Effects on stress and immune responses. FISH & SHELLFISH IMMUNOLOGY 2020; 100:219-229. [PMID: 32160965 DOI: 10.1016/j.fsi.2020.03.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 06/10/2023]
Abstract
The use of terrestrial raw materials to replace fish meal (FM) and fish oil (FO) in marine fish diets may affect fish growth performance and health. In the last years functional additives have been profiled as good candidates to reduce the effects on health and disease resistance derived from this replacement, via reinforcement of the fish immune system. In the present study, three isoenergetic and isonitrogenous diets with low FM and FO (10% and 6% respectively) were tested based on supplementation either with 0.5% galactomannanoligosaccharides (GMOS diet) or 0.02% of a mixture of essential oils (PHYTO diet), a non-supplemented diet was defined as a control diet. Fish were fed the experimental diets in triplicate for 9 weeks and then they were subjected to a stress by confinement as a single challenge (C treatment) or combined with an experimental intestinal infection with Vibrio anguillarum (CI treatment). Along the challenge test, selected stress and immunological parameters were evaluated at 2, 24 and 168h after C or CI challenges. As stress indicators, circulating plasma cortisol and glucose concentrations were analyzed as well as the relative gene expression of cyp11b hydroxylase, hypoxia inducible factor, steroidogenic acute regulatory protein, heat shock protein 70 and heat shock protein 90 (cyp11b, hif-1α, StAR, hsp70 and hsp90). As immune markers, serum and skin mucus lysozyme, bactericidal and peroxidase activities were measured, as well as gene expression of Caspase-3 (casp-3) and interleukin 1β (il-1ß). The use of functional additives induced a significant (p < 0.05) reduction of circulating plasma cortisol concentration when confinement was the unique challenge test applied. Supplementation of PHYTO induced a down-regulation of cyp11b, hif-1α, casp-3 and il-1β gene expression 2h after stress test, whereas StAR expression was significantly (p < 0.05) up-regulated. However, when combination of confinement stress and infection was applied (CI treatment), the use of PHYTO significantly (p < 0.05) down-regulated StAR and casp-3 gene expression 2h after challenge test, denoting that PHYTO diet reinforced fish capacity of stress response via protection of head kidney leucocytes from stress-related apoptotic processes, with lower caspase-3 gene expression and a higher il-1β gene expression when an infection occurs. Additionally, dietary supplementation with GMOS and PHYTO compounds increased fish serum lysozyme after infection. Both functional additives entailed a better capability of the animals to cope with infection in European sea bass when fed low FM and FO diets.
Collapse
Affiliation(s)
- A Serradell
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte S/n, Las Palmas, Canary Islands, 35214, Telde, Spain
| | - S Torrecillas
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte S/n, Las Palmas, Canary Islands, 35214, Telde, Spain
| | - A Makol
- Delacon Biotechnik GmbH, Weissenwolffstrasse 14, 4221, Steyregg, Austria
| | - V Valdenegro
- Biomar A/S. BioMar AS, POB 1282 Sluppen, N-7462, Trondheim, Norway
| | - A Fernández-Montero
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte S/n, Las Palmas, Canary Islands, 35214, Telde, Spain
| | - F Acosta
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte S/n, Las Palmas, Canary Islands, 35214, Telde, Spain
| | - M S Izquierdo
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte S/n, Las Palmas, Canary Islands, 35214, Telde, Spain
| | - D Montero
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte S/n, Las Palmas, Canary Islands, 35214, Telde, Spain.
| |
Collapse
|
41
|
Rimoldi S, Gini E, Koch JFA, Iannini F, Brambilla F, Terova G. Effects of hydrolyzed fish protein and autolyzed yeast as substitutes of fishmeal in the gilthead sea bream (Sparus aurata) diet, on fish intestinal microbiome. BMC Vet Res 2020; 16:118. [PMID: 32321508 PMCID: PMC7178574 DOI: 10.1186/s12917-020-02335-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/06/2020] [Indexed: 01/11/2023] Open
Abstract
Background This study evaluated the effects of partial substitution of dietary fishmeal (FM) with either fish protein hydrolysate (FPH) or autolysed dried yeast (HiCell®, Biorigin, Brazil) on intestinal microbiota of gilthead sea bream (Sparus aurata). A total number of 720 fish of 122.18 ± 6.22 g were fed for 92 days with three different diets in triplicate (3 tanks/diet). A diet based on FM/vegetable meal was used as control. The other two diets were formulated by replacing FM with 5% of either FPH or HiCell®. To analyze the gut microbiota associated to autochthonous and allochthonous microbial communities, the Illumina MiSeq platform for sequencing of 16S rRNA gene and QIIME pipeline were used. Results A total number of 102 OTUs (operational taxonomic units) at 97% identity were identified in fish gut samples collected at the end of feeding trial. Fourteen OTUs constituted the core gut microbiota, i.e. those OTUs found in at least nine out of fifteen samples per group and shared regardless of the diet. Eight OTUs were assigned to Firmicutes represented by Lactobacillus, Staphylococcus, and Bacillus genera, and six to Proteobacteria phylum. Dietary dried yeast autolysate modulated the intestinal microbiota by promoting the growth of some beneficial bacteria. At order level, fish fed yeast showed an enrichment in Bacillales and Clostridiales as compared to the control group, whereas fish fed FPH showed a significantly lower amount of bacteria belonging to Alteromonadales and Enterobacteriales than the other two feeding groups. Although we did not observe any effect of 5% FM replacement with alternative nitrogen sources at phylum level, at lower taxonomical levels, the composition of gut microbiota, in terms of relative abundance of specific taxa, was significantly influenced by the dietary treatment. Conclusions The metabarcoding analysis revealed a clearly intestinal microbiota modulation in response to dietary autolyzed yeast. The abundance of some beneficial bacteria, i.e. indigestible carbohydrate degrading- and SCFA producing bacteria, was positively affected. Brewer’s yeast autolysate could be a valid alternative protein source to FM as well as a valid functional ingredient for aquafeed production.
Collapse
Affiliation(s)
- S Rimoldi
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant, 3, 21100, Varese, Italy
| | - E Gini
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant, 3, 21100, Varese, Italy
| | - J F A Koch
- Biorigin Brazil. Rua XV de Novembro, 865, Lençóis Paulista, São Paulo, 18680-900, Brazil
| | - F Iannini
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant, 3, 21100, Varese, Italy
| | - F Brambilla
- VRM srl Naturalleva, Via Sommacampagna, 63/D, 37137, Verona, Italy
| | - G Terova
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant, 3, 21100, Varese, Italy.
| |
Collapse
|
42
|
Rimoldi S, Torrecillas S, Montero D, Gini E, Makol A, Valdenegro V. V, Izquierdo M, Terova G. Assessment of dietary supplementation with galactomannan oligosaccharides and phytogenics on gut microbiota of European sea bass (Dicentrarchus Labrax) fed low fishmeal and fish oil based diet. PLoS One 2020; 15:e0231494. [PMID: 32298317 PMCID: PMC7162502 DOI: 10.1371/journal.pone.0231494] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/24/2020] [Indexed: 11/19/2022] Open
Abstract
There is an increasing interest from the aquafeed industry in functional feeds containing selected additives that improve fish growth performance and health status. Functional feed additives include probiotics, prebiotics, organic acids, and phytogenics (substances derived from plants and their extracts). This study evaluated the effects of dietary inclusion of a mucilage extract rich in galactomannan oligosaccharides (GMOS), a mixture of garlic and labiatae-plants oils (PHYTO), and a combination of them (GMOSPHYTO), on gut microbiota composition of European sea bass (Dicentrarchus labrax) fed with a low fishmeal (FM) and fish oil (FO) diet. Three experimental diets and a control diet (plant-based formulation with 10% FM and 6% FO) were tested in a 63-days feeding trial. To analyze the microbiota associated to feeds and the intestinal autochthonous (mucosa-adhered) and allochthonous (transient) microbial communities, the Illumina MiSeq platform for sequencing of 16S rRNA gene and QIIME2 pipeline were used. Metabarcoding analysis of feed-associated bacteria showed that the microbial communities of control (CTRL) feed deeply differed from those of experimental diets. The number of reads was significantly lower in CTRL feed than in other feeds. The OTU (operational taxonomic unit) number was instead similar between the feeds, ranging from 42 to 50 OTUs. The variation of resident gut microbiota induced by diet was lower than the variation of transient intestinal microbiota, because feedstuffs are a major source of allochthonous bacteria, which can temporarily integrate into the gut transient microbiome. However, the composition of transient bacterial communities was not simply a mirror of feed-borne bacteria. Indeed, the microbial profile of feeds was different from both faecal and mucosa profiles. Our findings suggest that the dietary inclusion of GMOS (0.5%) and PHYTO (0.02%) in a low FM and FO diet induces changes in gut microbiota composition of European sea bass. However, if on allochthonous microbiota the combined inclusion of GMOS and PHYTO showed an antagonistic effect on bactericidal activity against Vibrionales, at mucosa level, only GMOSPHYTO diet increased the relative abundance of Bacteroidales, Lactobacillales, and Clostridiales resident bacterial orders. The main beneficial effects of GMOS and PHYTO on gut microbiota are the reduction of coliforms and Vibrionales bacteria, which include several potentially pathogenic species for fish, and the enrichment of gut microbiota composition with butyrate producer taxa. Therefore, these functional ingredients have a great potential to be used as health-promoting agents in the farming of European sea bass and other marine fish.
Collapse
Affiliation(s)
- Simona Rimoldi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Silvia Torrecillas
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Telde, Las Palmas, Canary Islands, Spain
| | - Daniel Montero
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Telde, Las Palmas, Canary Islands, Spain
| | - Elisabetta Gini
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Alex Makol
- Delacon Biotechnik GmbH, Steyregg, Austria
| | | | - Marisol Izquierdo
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Telde, Las Palmas, Canary Islands, Spain
| | - Genciana Terova
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
43
|
Rivero-Ramírez F, Torrecillas S, Betancor MB, Izquierdo MS, Caballero MJ, Montero D. Effects of dietary arachidonic acid in European sea bass (Dicentrarchus labrax) distal intestine lipid classes and gut health. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:681-697. [PMID: 31845079 DOI: 10.1007/s10695-019-00744-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
The use of low fishmeal/fish oil in marine fish diets affects dietary essential fatty acids (EFAs) composition and concentration and, subsequently, may produce a marginal deficiency of those fatty acids with a direct impact on the fish intestinal physiology. Supplementation of essential fatty acids is necessary to cover the requirements of the different EFAs, including the ones belonging to the n-6 series, such as arachidonic acid (ARA). ARA, besides its structural role in the configuration of the lipid classes of the intestine, plays an important role in the functionality of the gut-associated immune tissue (GALT). The present study aimed to test five levels of dietary ARA (ARA0.5 (0.5%), ARA1 (1%), ARA2 (2%), ARA4 (4%), and ARA6 (6%)) for European sea bass (Dicentrarchus labrax) juveniles in order to determine (a) its effect in selected distal intestine (DI) lipid classes composition and (b) how these changes affected gut bacterial translocation rates and selected GALT-related gene expression pre and post challenge. No differences were found between distal intestines of fish fed with the graded ARA levels in total neutral lipids and total polar lipids. However, DI of fish fed with the ARA6 diet presented a higher (P < 0.05) level of phosphatidylethanolamine (PE) and sphingomyelin (SM) than those DI of fish fed with the ARA0.5 diet. In general terms, fatty acid profiles of DI lipid classes mirrored those of the diet dietary. Nevertheless, selective retention of ARA could be observed in glycerophospholipids when dietary levels are low (diet ARA0.5), as reflected in the higher glycerophospholipids-ARA/dietary-ARA ratio for those animals. Increased ARA dietary supplementation was inversely correlated with eicosapentaenoic acid (EPA) content in lipid classes, when data from fish fed with the diets with the same basal composition (diets ARA1 to ARA6). ARA supplementation did not affect intestinal morphometry, goblet cell number, or fish survival, in terms of gut bacterial translocation, along the challenge test. However, after the experimental infection with Vibrio anguillarum, the relative expression of cox-2 and il-1β were upregulated (P < 0.05) in DI of fish fed with the diets ARA0.5 and ARA2 compared with fish fed with the rest of the experimental diets. Although dietary ARA did not affect fish survival, it altered the fatty acid composition of glycerophospholipids and the expression of pro-inflammatory genes after infection when included at the lowest concentration, which could be compromising the physical and the immune functionality of the DI, denoting the importance of ARA supplementation when low FO diets are used for marine fish.
Collapse
Affiliation(s)
- F Rivero-Ramírez
- Grupo de Investigación en Acuicultura (GIA), Instituto Universitario Ecoaqua, University of Las Palmas de Gran Canaria, ULPGC, Crta. Taliarte s/n, 35214, Telde, Las Palmas, Canary Islands, Spain
| | - S Torrecillas
- Grupo de Investigación en Acuicultura (GIA), Instituto Universitario Ecoaqua, University of Las Palmas de Gran Canaria, ULPGC, Crta. Taliarte s/n, 35214, Telde, Las Palmas, Canary Islands, Spain
| | - M B Betancor
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, Scotland, FK9 4LA, UK
| | - M S Izquierdo
- Grupo de Investigación en Acuicultura (GIA), Instituto Universitario Ecoaqua, University of Las Palmas de Gran Canaria, ULPGC, Crta. Taliarte s/n, 35214, Telde, Las Palmas, Canary Islands, Spain
| | - M J Caballero
- Grupo de Investigación en Acuicultura (GIA), Instituto Universitario Ecoaqua, University of Las Palmas de Gran Canaria, ULPGC, Crta. Taliarte s/n, 35214, Telde, Las Palmas, Canary Islands, Spain
| | - D Montero
- Grupo de Investigación en Acuicultura (GIA), Instituto Universitario Ecoaqua, University of Las Palmas de Gran Canaria, ULPGC, Crta. Taliarte s/n, 35214, Telde, Las Palmas, Canary Islands, Spain.
| |
Collapse
|
44
|
Rømer Villumsen K, Ohtani M, Forberg T, Tinsley J, Boye M, Bojesen AM. Citrus flavonoids, β-Glucan and organic acid feed additives decrease relative risk during Yersinia ruckeri O1 biotype 2 infection of rainbow trout ( Oncorhynchus mykiss). PeerJ 2020; 8:e8706. [PMID: 32181057 PMCID: PMC7060755 DOI: 10.7717/peerj.8706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/06/2020] [Indexed: 12/24/2022] Open
Abstract
Whether through direct supplementation of bacteria or by prebiotic supplementation thought to favour subsets of bacteria, modulation of gut microbiota constitutes an important and promising alternative to the use of prophylactic and growth promoting antibiotics in worldwide aquaculture. We fed a commercial base feed, alone or supplemented with either proprietary β-glucan, β-glucan and organic acids, citrus flavonoid or yeast cell wall supplements, to rainbow trout over a period of four weeks. Fish from each feed group were then subjected to experimental, waterborne infection with Yersinia ruckeri O1 biotype 2. Following experimental feeding, the β-glucan and organic acids supplemented group showed significantly improved feed conversion and lipid efficiency ratios. Furthermore, the β-glucan, β-glucan and organic acids and citrus flavonoid supplements proved to significantly reduce the risk of mortality in rainbow trout during experimental infection as shown by hazard ratio analysis. Resulting in 33.2%, 30.6% and 30.5% reduction in risk relative to the non-supplemented base feed, respectively, these three supplements show a promising potential either as stand-alone feed supplements, or as components in complex feed formulations.
Collapse
Affiliation(s)
- Kasper Rømer Villumsen
- Preventive Veterinary Microbiology, Department of Veterinary and Animal Sciences , University of Copenhagen, Denmark, Frederiksberg, Denmark
| | - Maki Ohtani
- Preventive Veterinary Microbiology, Department of Veterinary and Animal Sciences , University of Copenhagen, Denmark, Frederiksberg, Denmark
| | | | | | - Mette Boye
- Preventive Veterinary Microbiology, Department of Veterinary and Animal Sciences , University of Copenhagen, Denmark, Frederiksberg, Denmark
| | - Anders M. Bojesen
- Preventive Veterinary Microbiology, Department of Veterinary and Animal Sciences , University of Copenhagen, Denmark, Frederiksberg, Denmark
| |
Collapse
|
45
|
Gainza O, Romero J. Effect of mannan oligosaccharides on the microbiota and productivity parameters of Litopenaeus vannamei shrimp under intensive cultivation in Ecuador. Sci Rep 2020; 10:2719. [PMID: 32066764 PMCID: PMC7026423 DOI: 10.1038/s41598-020-59587-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/28/2020] [Indexed: 12/14/2022] Open
Abstract
The white leg Litopenaeus vannamei shrimp is of importance to the eastern Pacific fisheries and aquaculture industry but suffer from diseases such as the recently emerged early mortality syndrome. Many bacterial pathogens have been identified but the L. vannamei microbiota is still poorly known. Using a next-generation sequencing (NGS) approach, this work evaluated the impact of the inclusion in the diet of mannan oligosaccharide, (MOS, 0.5% w/w), over the L. vannamei microbiota and production behavior of L. vannamei under intensive cultivation in Ecuador. The MOS supplementation lasted for 60 days, after which the shrimp in the ponds were harvested, and the production data were collected. MOS improved productivity outcomes by increasing shrimp survival by 30%. NGS revealed quantitative differences in the shrimp microbiota between MOS and control conditions. In the treatment with inclusion of dietary MOS, the predominant phylum was Actinobacteria (28%); while the control group was dominated by the phylum Proteobacteria (30%). MOS has also been linked to an increased prevalence of Lactococcus- and Verrucomicrobiaceae-like bacteria. Furthermore, under the treatment of MOS, the prevalence of potential opportunistic pathogens, like Vibrio, Aeromonas, Bergeyella and Shewanella, was negligible. This may be attributable to MOS blocking the adhesion of pathogens to the surfaces of the host tissues. Together, these findings point to the fact that the performance (survival) improvements of the dietary MOS may be linked to the impact on the microbiota, since bacterial lines with pathogenic potential towards shrimps were excluded in the gut.
Collapse
Affiliation(s)
- Oreste Gainza
- Departamento de Acuicultura, Universidad Católica del Norte, Doctorado en Acuicultura, Programa Cooperativo Universidad de Chile, Pontificia Universidad Católica de Valparaíso, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile
| | - Jaime Romero
- Laboratorio de Biotecnología de Alimentos, Unidad de Alimentos, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Líbano 5524, Macul, Santiago, Chile.
| |
Collapse
|
46
|
Yaacob EN, Norouzitallab P, De Geest BG, Bajek A, Dierckens K, Bossier P, Vanrompay D. Recombinant DnaK Orally Administered Protects Axenic European Sea Bass Against Vibriosis. Front Immunol 2020; 10:3162. [PMID: 32117214 PMCID: PMC7033693 DOI: 10.3389/fimmu.2019.03162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/31/2019] [Indexed: 11/13/2022] Open
Abstract
Vibrio anguillarum causes high mortality in European sea bass (Dicentrarchus labrax) larviculture and is a hindering factor for successful sustainable aquaculture of this commercially valuable species. Priming of the innate immune system through administration of immunostimulants has become an important approach to control disease outbreaks in marine fish larviculture. This study was conducted to evaluate immunostimulation by Escherichia coli HSP70 (DnaK) in axenic European sea bass larvae in order to protect the larvae against vibriosis. DnaK stimulates the immune response in crustaceans and juvenile fish against bacterial infections. The use of axenic fish larvae allows to study immunostimulation in the absence of an interfering microbial community. At 7 days post-hatching, larvae received a single dose of alginate encapsulated recombinant DnaK. Two non-treated control groups in which animals either received empty alginate microparticles (C1) or no alginante microparticles (C2 and C3) were included in the study. Eighteen hours later, all larvae, except the ones from group C3 (non-infected control) were challenged with V. anguillarum (105 CFU, bath infection). Mortality was daily recorded until 120 h post infection and at 18, 24, and 36 h post infection, larvae were sampled for expression of immune related genes. Results showed that V. anguillarum induced an immune response in axenic sea bass larvae but that the innate immune response was incapable to protect the larvae against deadly septicaemic disease. In addition, we showed that administration of alginate encapsulated DnaK to axenic European sea bass larvae at DAH7 resulted in a significant, DnaK dose dependent, upreglation of immune sensor, regulatory and effector genes. Significant upregulation of cxcr4, cas1 and especially of hep and dic was correlated with significant higher survival rates in V. anguillarum infected larvae. In the future recombinant DnaK might perhaps be used as a novel immunostimulant in sea bass larviculture.
Collapse
Affiliation(s)
- Eamy Nursaliza Yaacob
- Laboratory of Aquaculture and Artemia Reference Center, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.,Laboratory for Immunology and Animal Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Parisa Norouzitallab
- Laboratory of Aquaculture and Artemia Reference Center, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.,Laboratory for Immunology and Animal Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | | | - Aline Bajek
- Écloserie Marine de Gravelines, Gravelines, France
| | - Kristof Dierckens
- Laboratory of Aquaculture and Artemia Reference Center, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Peter Bossier
- Laboratory of Aquaculture and Artemia Reference Center, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Daisy Vanrompay
- Laboratory for Immunology and Animal Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
47
|
Koch H, Germscheid N, Freese HM, Noriega-Ortega B, Lücking D, Berger M, Qiu G, Marzinelli EM, Campbell AH, Steinberg PD, Overmann J, Dittmar T, Simon M, Wietz M. Genomic, metabolic and phenotypic variability shapes ecological differentiation and intraspecies interactions of Alteromonas macleodii. Sci Rep 2020; 10:809. [PMID: 31964928 PMCID: PMC6972757 DOI: 10.1038/s41598-020-57526-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 12/23/2019] [Indexed: 01/28/2023] Open
Abstract
Ecological differentiation between strains of bacterial species is shaped by genomic and metabolic variability. However, connecting genotypes to ecological niches remains a major challenge. Here, we linked bacterial geno- and phenotypes by contextualizing pangenomic, exometabolomic and physiological evidence in twelve strains of the marine bacterium Alteromonas macleodii, illuminating adaptive strategies of carbon metabolism, microbial interactions, cellular communication and iron acquisition. In A. macleodii strain MIT1002, secretion of amino acids and the unique capacity for phenol degradation may promote associations with Prochlorococcus cyanobacteria. Strain 83-1 and three novel Pacific isolates, featuring clonal genomes despite originating from distant locations, have profound abilities for algal polysaccharide utilization but without detrimental implications for Ecklonia macroalgae. Degradation of toluene and xylene, mediated via a plasmid syntenic to terrestrial Pseudomonas, was unique to strain EZ55. Benzoate degradation by strain EC673 related to a chromosomal gene cluster shared with the plasmid of A. mediterranea EC615, underlining that mobile genetic elements drive adaptations. Furthermore, we revealed strain-specific production of siderophores and homoserine lactones, with implications for nutrient acquisition and cellular communication. Phenotypic variability corresponded to different competitiveness in co-culture and geographic distribution, indicating linkages between intraspecific diversity, microbial interactions and biogeography. The finding of "ecological microdiversity" helps understanding the widespread occurrence of A. macleodii and contributes to the interpretation of bacterial niche specialization, population ecology and biogeochemical roles.
Collapse
Affiliation(s)
- Hanna Koch
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
- Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Nora Germscheid
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Heike M Freese
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Beatriz Noriega-Ortega
- ICBM-MPI Bridging Group for Marine Geochemistry, University of Oldenburg, Oldenburg, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Dominik Lücking
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Martine Berger
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Galaxy Qiu
- Centre for Marine Science and Innovation, University of New South Wales, Kensington, Australia
- Western Sydney University, Hawkesbury, Australia
| | - Ezequiel M Marzinelli
- Centre for Marine Science and Innovation, University of New South Wales, Kensington, Australia
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- Sydney Institute of Marine Science, Mosman, Australia
- University of Sydney, Camperdown, Australia
| | - Alexandra H Campbell
- Centre for Marine Science and Innovation, University of New South Wales, Kensington, Australia
- University of Sunshine Coast, Sunshine Coast, Australia
| | - Peter D Steinberg
- Centre for Marine Science and Innovation, University of New South Wales, Kensington, Australia
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- Sydney Institute of Marine Science, Mosman, Australia
| | - Jörg Overmann
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- Braunschweig University of Technology, Braunschweig, Germany
| | - Thorsten Dittmar
- ICBM-MPI Bridging Group for Marine Geochemistry, University of Oldenburg, Oldenburg, Germany
| | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Matthias Wietz
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany.
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany.
| |
Collapse
|
48
|
Liu Z, Ning C, Yuan M, Yang S, Wei X, Xiao M, Fu X, Zhu C, Mou H. High-level expression of a thermophilic and acidophilic β-mannanase from Aspergillus kawachii IFO 4308 with significant potential in mannooligosaccharide preparation. BIORESOURCE TECHNOLOGY 2020; 295:122257. [PMID: 31648129 DOI: 10.1016/j.biortech.2019.122257] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
An engineered thermophilic and acidophilic β-mannanase (ManAK) from Aspergillus kawachii IFO 4308 was highly expressed in Pichia pastoris. Through high cell density fermentation, the maximum yield reached 11,600 U/mL and 15.5 g/L, which is higher than most extreme β-mannanases. The recombinant ManAK was thermostable with a temperature optimum of 80 °C, and acid tolerant with a pH optimum of 2.0. ManAK could efficiently degrade locust bean gum, konjac gum, and guar gum into small molecular mannooligosaccharide (<2000 Da), even at high initial substrate concentration (10%), and displayed different Mw distributions in their end products. Docking analysis demonstrated that the catalytic pocket of ManAK could only accommodate a galactopyranosyl residue in subsite -1, which might be responsible for the distinct hydrolysis product compositions from locust bean gum and guar gum. These superior properties of ManAK strongly facilitate mannooligosaccharide preparation and application in food and feed area.
Collapse
Affiliation(s)
- Zhemin Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 China
| | - Chen Ning
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 China
| | - Mingxue Yuan
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 China
| | - Suxiao Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 China
| | - Xinyi Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 China
| | - Mengshi Xiao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 China
| | - Xiaodan Fu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 China
| | - Changliang Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 China.
| |
Collapse
|
49
|
Zhou Z, Zhang B, Yang X, Shang W, Ma Q, Strappe P. Regulation of hyperglycemia in diabetic mice by autolysates from β-mannanase-treated brewer's yeast. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:6981-6988. [PMID: 31414473 DOI: 10.1002/jsfa.9987] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/24/2019] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Diabetes mellitus is a serious chronic disease, characterized by hyperglycemia. This study administered either β-mannanase-treated yeast cell autolysis supernatant (YCS) or yeast cell-wall residues after autolysis (YCR) to investigate their influence on the alleviation of diabetes in a diabetic mouse model. RESULTS Application of either YCS or YCR led to body weight gain, blood glucose reduction, and an improvement in lipid composition in the diabetic mice. Administration of YCS was more effective in inhibiting oxidative stress than YCR. The expression of PPARα and CPT1α was enhanced, improving lipid biosynthesis, and Trx1 and HIF-1-α genes were downregulated due to the activation of thioredoxin following the interventions, indicating that the processes of lipid metabolism and oxidative stress were heavily involved in the reduction of diabetic characteristics following the interventions. The current study revealed that consumption of YCR also led to a reduction in hyperglycemia, this being associated with its richness in mineral elements, such as chromium and selenium. CONCLUSION This study may highlight the potential of both YCS and YCR as functional ingredients in dietary formula for improving diabetic syndromes. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhongkai Zhou
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
- ARC Industrial Transformation Training Centre for Functional Grains, Charles Sturt University, Wagga Wagga, Australia
| | - Boxi Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Xingyue Yang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Wenting Shang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Qiuchen Ma
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Padraig Strappe
- School of Medical and Applied Sciences, Central Queensland University, Rockhampton, Australia
| |
Collapse
|
50
|
Song M, Fan Y, Su H, Ye J, Liu F, Zhu X, Wang L, Gao P, Shu G, Wang Z, Zhu F, Lin G, Xue Y, Jiang Q, Wang S. Effects of Actigen, a second-generation mannan rich fraction, in antibiotics-free diets on growth performance, intestinal barrier functions and inflammation in weaned piglets. Livest Sci 2019. [DOI: 10.1016/j.livsci.2019.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|