1
|
Zhang D, Kou W, Luo S, Chen J, An X, Fang S, Liang X. The effect of ambient temperature on lipid metabolism in children: From a prospective cohort study. ENVIRONMENTAL RESEARCH 2024; 261:119692. [PMID: 39068968 DOI: 10.1016/j.envres.2024.119692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Dyslipidemia is increasingly recognized as an essential risk factor for cardiovascular diseases. However, few studies illustrated the effects of ambient temperature exposure (TE) on lipid levels in children. The study aimed to examine the association between ambient TE and lipid levels in children. METHODS Based on a prospective cohort, a total of 2423 children (with 4466 lipids measure person-time) were collected from 2014 to 2019. The meteorological observation data and adjusted variables were collected. Mixed-effect models and generalized additive mixed model (GAMM) were applied to investigate the association between ambient TE and lipid levels. RESULTS A significant negative association was observed between TE and low-density lipoprotein cholesterol (LDL-C) or total cholesterol (TC) levels both in all children [LDL-C, β(95%CI) = -0.350(-0.434,-0.265), P < 0.001; TC, β(95%CI) = -0.274(-0.389,-0.160), P < 0.001] and by different sex group. However, no significant association was found in low-density lipoprotein cholesterol (HDL-C) or triglycerides (TG) levels. The estimated optimal ambient TEs for LDL-C were 18.273 °C and 18.024 °C for girls and boys, respectively. For TC, the optimal ambient TEs were 17.949 °C and 18.024 °C, respectively. With ambient TE decreased, the risk of dyslipidemia increased for both boys [OR = 0.032(0.006,0.179), P < 0.001] and girls [OR = 0.582(0.576,0.587), P < 0.001]. CONCLUSION This study provided a comprehensive illustration about the associations between ambient TE and lipid levels in different sex and ages from a prospective cohort study. The findings will provide evidence for the government to prevent dyslipidemia in vulnerable children through regulating TE.
Collapse
Affiliation(s)
- Di Zhang
- Department of Clinical Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China; School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Wei Kou
- Department of Pediatric Otolaryngology Head and Neck Surgery, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Shunqing Luo
- Department of Clinical Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Jingyu Chen
- Department of Clinical Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Xizhou An
- Department of Clinical Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Shenying Fang
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Xiaohua Liang
- Department of Clinical Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China.
| |
Collapse
|
2
|
Villatoro-Santos CR, Ramirez-Zea M, Villamor E. Plasma Copper and Metabolic Syndrome in Mesoamerican Children and Their Parents. Biol Trace Elem Res 2024; 202:4903-4908. [PMID: 38240932 DOI: 10.1007/s12011-024-04069-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/15/2024] [Indexed: 10/01/2024]
Abstract
The role of copper in the etiology of metabolic syndrome (MetS) is uncertain. We evaluated associations of plasma copper concentrations with MetS and its components in a cross-sectional study of 198 children ages 7-12 years and 378 adult parents from eight Mesoamerican countries. In children, the outcome was a metabolic risk score based on waist circumference, insulin resistance, mean arterial pressure (MAP), and blood lipids. In adults, we defined MetS per Adult Treatment Panel III criteria. Plasma copper was not significantly related to MetS in children or adults; however, children with copper above the median had a MAP score 0.04 (95% CI, 0.002, 0.08; P = 0.04) adjusted units higher and a HDL-cholesterol score 0.07 (95% CI, - 0.13, - 0.003; P = 0.04) adjusted units lower than those with lower copper concentrations. In adults, copper was positively related to abdominal obesity. Longitudinal studies to confirm the deleterious role of copper on MetS components are warranted.
Collapse
Affiliation(s)
- Claudia R Villatoro-Santos
- Department of Epidemiology, University of Michigan School of Public Health, 1415 Washington Heights, SPH II, Room M5507, Ann Arbor, MI, 48109, USA
| | - Manuel Ramirez-Zea
- Institute of Nutrition of Central America and Panama, INCAP Research Center for the Prevention of Chronic Diseases, Guatemala City, Guatemala
| | - Eduardo Villamor
- Department of Epidemiology, University of Michigan School of Public Health, 1415 Washington Heights, SPH II, Room M5507, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
3
|
Wang C, Wang L, Ding W, Zhao F, Hou G. Effect of polyunsaturated fatty acids intake on the occurrence of current asthma among children and adolescents exposed to tobacco smoke: NHANES 2007-2018. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2024; 43:168. [PMID: 39449095 PMCID: PMC11515328 DOI: 10.1186/s41043-024-00663-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Asthma is an airway inflammatory disease driven by multiple factors with a high incidence in children and adolescents. Environmental tobacco smoke exposure (TSE) and diet are inducing factors for asthma. The potential of omega-3 polyunsaturated fatty acids (PUFAs) to alleviate asthma symptoms by their anti-inflammatory effects has been explored. However, to date, no studies have explored the effect of dietary PUFAs intake on the asthma in children and adolescents exposed to tobacco smoke. OBJECTIVE We aimed to examine the effect of dietary PUFAs intake on the current asthma in children and adolescents exposed to tobacco smoke. METHODS Data of this cross-sectional were extracted from the National Health and Nutrition Examination Survey (NHANES) 2007-2018. Children and adolescents with serum cotinine concentration ≥ 0.05 ng/mL were defined to exposed to tobacco smoke. Dietary PUFAs intake information were obtained from 24 h recall interview. The weighted univariate and multivariate were utilized to explore the effect of PUFAs on the association of asthma and TSE, with adjusted odds ratios (AORs) and 95% confidence intervals (CIs). These moderating effects were further explored based on the age, gender and body mass index (BMI) and sedentary time. RESULTS Totally, 7981 eligible children and adolescents were included, with the mean age of 11.96 ± 0.06 years old. Of whom, 1.024 (12.83%) had current asthma. After adjusted all covariates, we found children and adolescents with TSE had high occurrence of current asthma (AOR = 1.2, 95% CI 1.03-1.63); We also found omega-3 PUFAs intake (P for interaction = 0.010), not omega-6 PUFAs (P for interaction = 0.546), has a moderating effect on the association of TSE and current asthma. Moreover, we further observed that children and adolescents with TSE and low omega-3 PUFAs intake had high occurrence of current asthma (AOR = 1.58, 95% CI 1.19-2.10), while no significant association was found in children and adolescents with high omega-3 PUFAs intake (all P > 0.05). This moderating effect was more prominent in children and adolescents aged ≤ 12 years old (AOR = 1.62, 95% CI 1.06-2.47), girls (AOR = 2.14, 95% CI 1.15-3.98), overweight (AOR = 1.87, 95% CI 1.01-3.47) and sedentary time > 6 h (AOR = 1.96, 95% CI 1.00-3.86). CONCLUSION We found dietary omega-3 PUFAs plays a moderating effect on the association of asthma and TSE in children and adolescents, especially in children and adolescents aged ≤ 12 years, girls, overweight or sedentary time > 6 h. This moderating effect suggested higher omega-3 intake has potential benefits in decreasing the occurrence of asthma in children and adolescents who exposed to tobacco smoke.
Collapse
Affiliation(s)
- Chunyan Wang
- Department of Emergency, Changzhi Maternal and Child Health Care Hospital, No.48 Weiyuanmen Middle Road, Luzhou District, Changzhi, 046000, Shanxi Province, People's Republic of China.
| | - Li Wang
- Department of Neonatology, Changzhi Maternal and Child Health Care Hospital, Changzhi, 046000, Shanxi Province, People's Republic of China
| | - Wanling Ding
- Department of Pediatric Respiratory, Changzhi Maternal and Child Health Care Hospital, Changzhi, 046000, Shanxi Province, People's Republic of China
| | - Feng Zhao
- Department of Pediatric Digestive, Changzhi Maternal and Child Health Care Hospital, Changzhi, 046000, Shanxi Province, People's Republic of China
| | - Guoqiang Hou
- Department of Emergency, Changzhi Maternal and Child Health Care Hospital, No.48 Weiyuanmen Middle Road, Luzhou District, Changzhi, 046000, Shanxi Province, People's Republic of China
| |
Collapse
|
4
|
Gong Y, Zhou C, Wan Y, Yin H. Association of magnesium deficiency, tobacco smoke exposure and hypertension in children and adolescents: evidence from the NHANES 2007-2018. BMC Pediatr 2024; 24:647. [PMID: 39390435 PMCID: PMC11465525 DOI: 10.1186/s12887-024-05097-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Recent studies suggested that the combination of tobacco smoke exposure (TSE) and dietary nutrients intake may be related to a higher or lower risk of hypertension. However, the relationship between dietary magnesium (Mg) intake, TSE and the odds of hypertension remain unclear. This study aimed to evaluate the association of TSE, dietary Mg intake and the odds of hypertension among children and adolescents. METHOD Data of this study were extracted from the National Health and Nutrition Examination Surveys (NHANES) 2007-2018. Dietary Mg intake was calculated as the average of two days of dietary and supplementations intake. Serum cotinine concertation ≥ 0.05 µg/L or at least one-person smoking in the household was considered as exposing to the tobacco smoke. The weighted univariate and multivariate logistic regression models were utilized to explore the associations of dietary Mg intake, TSE and the odds of hypertension among children and adolescents with the evaluation index of odds ratio (ORs) and 95% confidence intervals (CIs). Subgroup analyses based on different age, gender and overweight were further assessed these associations. RESULTS A total of 7,122 children and adolescents aged 8-17 years old and with the blood pressure measurement were included. Of which, 948 (13.31%) had hypertension. After adjusting all covariates, we observed children and adolescents exposed to tobacco smoke was related to higher odds of hypertension (OR = 1.34, 95%CI: 1.01-1.78); children and adolescents not reached the dietary Mg references intakes was related to higher odds of hypertension (OR = 1.48, (95%CI: 1.11-1.97); compared to children and adolescents non-TSE and reached the DRIs of Mg, those not reached the DRIs of Mg and exposed to tobacco smoke have the highest odds of hypertension (OR = 1.94, 95%CI: 1.30-2.89, P for trend = 0.002). These associations of dietary Mg intake, TSE and hypertension remain robust after the stratified analysis based on age, gender and overweight was conducted. CONCLUSION Our findings suggested there were a robust association between dietary Mg intake, TSE and hypertension in children and adolescents. Those children and adolescents with deficiency dietary Mg intake and exposed to tobacco smoke may have the high odds of hypertension. More restrictions on smoking as well as Mg supplementation in the prevention and treatment of hypertension among children and adolescents might be justified.
Collapse
Affiliation(s)
- Yongjian Gong
- Department of Pediatrics, The Second People's Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University, No.68 Gehu Road, Wujin District, Changzhou, Jiangsu Province, 213000, China
| | - Cheng Zhou
- Department of Pediatrics, The Second People's Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University, No.68 Gehu Road, Wujin District, Changzhou, Jiangsu Province, 213000, China
| | - Yu Wan
- Department of Pediatrics, The Second People's Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University, No.68 Gehu Road, Wujin District, Changzhou, Jiangsu Province, 213000, China
| | - Haibin Yin
- Department of Pediatrics, The Second People's Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University, No.68 Gehu Road, Wujin District, Changzhou, Jiangsu Province, 213000, China.
| |
Collapse
|
5
|
Guo K, Ni W, Du L, Zhou Y, Cheng L, Zhou H. Environmental chemical exposures and a machine learning-based model for predicting hypertension in NHANES 2003-2016. BMC Cardiovasc Disord 2024; 24:544. [PMID: 39385080 PMCID: PMC11462799 DOI: 10.1186/s12872-024-04216-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/20/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND Hypertension is a common disease, often overlooked in its early stages due to mild symptoms. And persistent elevated blood pressure can lead to adverse outcomes such as coronary heart disease, stroke, and kidney disease. There are many risk factors that lead to hypertension, including various environmental chemicals that humans are exposed to, which are believed to be modifiable risk factors for hypertension. OBJECTIVE To investigate the role of environmental chemical exposures in predicting hypertension. METHODS A total of 11,039 eligible participants were obtained from NHANES 2003-2016, and multiple imputation was used to process the missing data, resulting in 5 imputed datasets. 8 Machine learning algorithms were applied to the 5 imputed datasets to establish hypertension prediction models, and the average accuracy score, precision score, recall score, and F1 score were calculated. A generalized linear model was also built to predict the systolic and diastolic blood pressure levels. RESULTS All 8 algorithms had good predictions for hypertension, with Support Vector Machine (SVM) being the best, with accuracy, precision, recall, F1 scores and area under the curve (AUC) of 0.751, 0.699, 0.717, 0.708 and 0.822, respectively. The R2 of the linear model on the training and test sets was 0.28, 0.25 for systolic and 0.06, 0.05 for diastolic blood pressure. CONCLUSIONS In this study, relatively accurate prediction of hypertension was achieved using environmental chemicals with machine learning algorithms, demonstrating the predictive value of environmental chemicals for hypertension.
Collapse
Affiliation(s)
- Kun Guo
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Hospital District, Ouhai District, Wenzhou City, 325000, Zhejiang Province, China
| | - Weicheng Ni
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Hospital District, Ouhai District, Wenzhou City, 325000, Zhejiang Province, China
| | - Leilei Du
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Hospital District, Ouhai District, Wenzhou City, 325000, Zhejiang Province, China
| | - Yimin Zhou
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Hospital District, Ouhai District, Wenzhou City, 325000, Zhejiang Province, China
| | - Ling Cheng
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Hospital District, Ouhai District, Wenzhou City, 325000, Zhejiang Province, China
| | - Hao Zhou
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Hospital District, Ouhai District, Wenzhou City, 325000, Zhejiang Province, China.
| |
Collapse
|
6
|
Liang X, Liu Q, Wu X, Huang K, Qu P, Zhang D, Xiao L, Luo S. The impact of air temperature and humidity on Children's blood pressure mediated by Lipids: A prospective cohort study. ENVIRONMENT INTERNATIONAL 2024; 192:109040. [PMID: 39353212 DOI: 10.1016/j.envint.2024.109040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/29/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
OBJECTIVES Few studies illustrate the mechanism between air temperature and blood pressure (BP) in childhood. This study aims to investigate the associations between air temperature, humidity exposure, and BP trajectories in children and adolescents, and explore the potential mediating roles of lipid profiles in these relationships. METHODS This prospective cohort study included 5,971 children with 10,800 person-times measurements at baseline from the Chongqing Health Cohort, with evaluations conducted in 2014-2015 (baseline) and follow-ups in 2016 (urban areas) and 2019 (urban and rural areas). Multilevel mixed-effects models were used to analyse the impacts of air temperature and humidity on BP levels and the incidence of elevated BP, while accounting for potential confounders. Mediation analyses were performed to evaluate the mediating effects of lipid profiles, including low-density lipoprotein (LDL), total cholesterol (TC), and specific lipid species. RESULTS After adjusting for covariates, higher air temperature quartiles were associated with both decreased BP levels and elevated BP risk (RR: 0.83; 95 % CIs: 0.78, 0.89; P = 0.028). Conversely, higher humidity quartiles exhibited a U-shaped relationship with BP levels. Greater variability in air temperature was linked to increase BP levels. The cumulative effects of air temperature exposure on BP were significant from pregnancy to age 10, with females exhibiting larger effects (β:-3.291, 95 % CIs: -4.242,-2.340, P < 0.001). LDL and TC partially mediated the associations between air temperature and BP levels, particularly in males. Specific lipid species, including SM (d21:1), LPC (17:0), and PC (O-36:3), also exhibited significant mediating effects. CONCLUSIONS This study provides novel insights into the intricate interplay between air temperature, humidity, lipid metabolism, and blood pressure regulation in children. Lower average temperatures and extreme humidity levels were associated with increased risks of elevated BP, potentially mediated by lipid profiles. Early interventions targeting air temperature exposure and lipid metabolism could mitigate hypertension risk, promoting improved cardiovascular outcomes in children.
Collapse
Affiliation(s)
- Xiaohua Liang
- Clinical Epidemiology and Biostatistics Department, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China.
| | - Qin Liu
- Clinical Epidemiology and Biostatistics Department, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Xiaofei Wu
- Clinical Epidemiology and Biostatistics Department, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Keyong Huang
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Ping Qu
- Clinical Epidemiology and Biostatistics Department, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Di Zhang
- Clinical Epidemiology and Biostatistics Department, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Lun Xiao
- Clinical Epidemiology and Biostatistics Department, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Shunqing Luo
- Clinical Epidemiology and Biostatistics Department, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| |
Collapse
|
7
|
Rousseau-Ralliard D, Bozec J, Ouidir M, Jovanovic N, Gayrard V, Mellouk N, Dieudonné MN, Picard-Hagen N, Flores-Sanabria MJ, Jammes H, Philippat C, Couturier-Tarrade A. Short-Half-Life Chemicals: Maternal Exposure and Offspring Health Consequences-The Case of Synthetic Phenols, Parabens, and Phthalates. TOXICS 2024; 12:710. [PMID: 39453131 PMCID: PMC11511413 DOI: 10.3390/toxics12100710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 10/26/2024]
Abstract
Phenols, parabens, and phthalates (PPPs) are suspected or known endocrine disruptors. They are used in consumer products that pregnant women and their progeny are exposed to daily through the placenta, which could affect offspring health. This review aims to compile data from cohort studies and in vitro and in vivo models to provide a summary regarding placental transfer, fetoplacental development, and the predisposition to adult diseases resulting from maternal exposure to PPPs during the gestational period. In humans, using the concentration of pollutants in maternal urine, and taking the offspring sex into account, positive or negative associations have been observed concerning placental or newborn weight, children's BMI, blood pressure, gonadal function, or age at puberty. In animal models, without taking sex into account, alterations of placental structure and gene expression linked to hormones or DNA methylation were related to phenol exposure. At the postnatal stage, pollutants affect the bodyweight, the carbohydrate metabolism, the cardiovascular system, gonadal development, the age of puberty, sex/thyroid hormones, and gamete quality, but these effects depend on the age and sex. Future challenges will be to explore the effects of pollutants in mixtures using models and to identify the early signatures of in utero exposure capable of predicting the health trajectory of the offspring.
Collapse
Affiliation(s)
- Delphine Rousseau-Ralliard
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Jeanne Bozec
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Marion Ouidir
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, 38000 Grenoble, France
| | - Nicolas Jovanovic
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, 38000 Grenoble, France
| | - Véronique Gayrard
- ToxAlim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31062 Toulouse, France
| | - Namya Mellouk
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Marie-Noëlle Dieudonné
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Nicole Picard-Hagen
- ToxAlim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31062 Toulouse, France
| | - Maria-José Flores-Sanabria
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Hélène Jammes
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Claire Philippat
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, 38000 Grenoble, France
| | - Anne Couturier-Tarrade
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| |
Collapse
|
8
|
Ding E, Deng F, Fang J, Liu J, Yan W, Yao Q, Miao K, Wang Y, Sun P, Li C, Liu Y, Dong H, Dong L, Zhang X, Lu Y, Lin X, Ding C, Li T, Shi Y, Cai Y, Liu X, Godri Pollitt KJ, Ji JS, Tong S, Tang S, Shi X. Exposome-Wide Ranking to Uncover Environmental Chemicals Associated with Dyslipidemia: A Panel Study in Healthy Older Chinese Adults from the BAPE Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:97005. [PMID: 39240788 PMCID: PMC11379127 DOI: 10.1289/ehp13864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
BACKGROUND Environmental contaminants (ECs) are increasingly recognized as crucial drivers of dyslipidemia and cardiovascular disease (CVD), but the comprehensive impact spectrum and interlinking mechanisms remain uncertain. OBJECTIVES We aimed to systematically evaluate the association between exposure to 80 ECs across seven divergent categories and markers of dyslipidemia and investigate their underpinning biomolecular mechanisms via an unbiased integrative approach of internal chemical exposome and multi-omics. METHODS A longitudinal study involving 76 healthy older adults was conducted in Jinan, China, and participants were followed five times from 10 September 2018 to 19 January 2019 in 1-month intervals. A broad spectrum of seven chemical categories covering the prototypes and metabolites of 102 ECs in serum or urine as well as six serum dyslipidemia markers [total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, apolipoprotein (Apo)A1, ApoB, and ApoE4] were measured. Multi-omics, including the blood transcriptome, serum/urine metabolome, and serum lipidome, were profiled concurrently. Exposome-wide association study and the deletion/substitution/addition algorithms were applied to explore the associations between 80 EC exposures detection frequency > 50 % and dyslipidemia markers. Weighted quantile sum regression was used to assess the mixture effects and relative contributions. Multi-omics profiling, causal inference model, and pathway analysis were conducted to interpret the mediating biomolecules and underlying mechanisms. Examination of cytokines and electrocardiograms was further conducted to validate the observed associations and biomolecular pathways. RESULTS Eight main ECs [1-naphthalene, 1-pyrene, 2-fluorene, dibutyl phosphate, tri-phenyl phosphate, mono-(2-ethyl-5-hydroxyhexyl) phthalate, chromium, and vanadium] were significantly associated with most dyslipidemia markers. Multi-omics indicated that the associations were mediated by endogenous biomolecules and pathways, primarily pertinent to CVD, inflammation, and metabolism. Clinical measures of cytokines and electrocardiograms further cross-validated the association of these exogenous ECs with systemic inflammation and cardiac function, demonstrating their potential mechanisms in driving dyslipidemia pathogenesis. DISCUSSION It is imperative to prioritize mitigating exposure to these ECs in the primary prevention and control of the dyslipidemia epidemic. https://doi.org/10.1289/EHP13864.
Collapse
Affiliation(s)
- Enmin Ding
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health (NIEH), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Fuchang Deng
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health (NIEH), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Jianlong Fang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health (NIEH), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Juan Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health (NIEH), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Wenyan Yan
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qiao Yao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health (NIEH), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Ke Miao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health (NIEH), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Yu Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health (NIEH), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Peijie Sun
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health (NIEH), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Chenfeng Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health (NIEH), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Yuanyuan Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health (NIEH), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Haoran Dong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health (NIEH), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Li Dong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health (NIEH), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Xu Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health (NIEH), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Yifu Lu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health (NIEH), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Xiao Lin
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health (NIEH), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Changming Ding
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health (NIEH), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Tiantian Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health (NIEH), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yali Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Xiaohui Liu
- National Protein Science Technology Center, Tsinghua University, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - John S Ji
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Shilu Tong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health (NIEH), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- School of Public Health, Institute of Environment and Population Health, Anhui Medical University, Hefei, China
- School of Public Health and Social Work, Queensland University of Technology, Brisbane, Australia
| | - Song Tang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health (NIEH), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health (NIEH), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NIEH, China CDC, Beijing, China
| |
Collapse
|
9
|
Long J, Huang H, Tang P, Liang J, Liao Q, Chen J, Pang L, Yang K, Wei H, Chen M, Wu X, Huang D, Pan D, Liu S, Zeng X, Qiu X. Associations between maternal exposure to multiple metals and metalloids and blood pressure in preschool children: A mixture-based approach. J Trace Elem Med Biol 2024; 84:127460. [PMID: 38703538 DOI: 10.1016/j.jtemb.2024.127460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/23/2024] [Accepted: 04/16/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Exposure to metals during pregnancy can potentially influence blood pressure (BP) in children, but few studies have examined the mixed effects of prenatal metal exposure on childhood BP. We aimed to assess the individual and combined effects of prenatal metal and metalloid exposure on BP in preschool children. METHODS A total of 217 mother-child pairs were selected from the Zhuang Birth Cohort in Guangxi, China. The maternal plasma concentrations of 20 metals [e.g. lead (Pb), rubidium (Rb), cesium (Cs), and zinc (Zn)] in early pregnancy were measured by inductively coupled plasmamass spectrometry. Childhood BP was measured in August 2021. The effects of prenatal metal exposure on childhood BP were explored by generalized linear models, restricted cubic spline and Bayesian kernel machine regression (BKMR) models. RESULTS In total children, each unit increase in the log10-transformed maternal Rb concentration was associated with a 10.82-mmHg decrease (95% CI: -19.40, -2.24) in childhood diastolic BP (DBP), and each unit increase in the log10-transformed maternal Cs and Zn concentrations was associated with a 9.67-mmHg (95% CI: -16.72, -2.61) and 4.37-mmHg (95% CI: -8.68, -0.062) decrease in childhood pulse pressure (PP), respectively. The log10-transformed Rb and Cs concentrations were linearly related to DBP (P nonlinear=0.603) and PP (P nonlinear=0.962), respectively. Furthermore, an inverse association was observed between the log10-transformed Cs concentration and PP (β =-12.18; 95% CI: -22.82, -1.54) in girls, and between the log10-transformed Rb concentration and DBP (β =-12.54; 95% CI: -23.87, -1.21) in boys, while there was an increasing association between the log10-transformed Pb concentration and DBP there was an increasing in boys (β =6.06; 95% CI: 0.36, 11.77). Additionally, a U-shaped relationship was observed between the log10-transformed Pb concentration and SBP (P nonlinear=0.015) and DBP (P nonlinear=0.041) in boys. Although there was no statistically signiffcant difference, there was an inverse trend in the combined effect of maternal metal mixture exposure on childhood BP among both the total children and girls in BKMR. CONCLUSIONS Prenatal exposure to both individual and mixtures of metals and metalloids influences BP in preschool children, potentially leading to nonlinear and sex-specific effects.
Collapse
Affiliation(s)
- Jinghua Long
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China; Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Huishen Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Peng Tang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jun Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Qian Liao
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jiehua Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Lixiang Pang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Kaiqi Yang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Huanni Wei
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Manlin Chen
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xiaolin Wu
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Dongping Huang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Dongxiang Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Shun Liu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xiaoyun Zeng
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xiaoqiang Qiu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China.
| |
Collapse
|
10
|
Xu M, Wang HX, Zu P, Jiang N, Bian JF, Xu JR, Luo W, Zhu P. Association Between Preeclampsia and Blood Pressure in Offspring: A Systematic Review and Meta-Analysis. Curr Hypertens Rep 2024; 26:325-337. [PMID: 38780756 DOI: 10.1007/s11906-024-01306-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE OF REVIEW Pregnancy-induced preeclampsia is a severe pregnancy complication and preeclampsia has been associated with an increased risk of chronic hypertension for offspring. However, the magnitude of the overall effect of exposure to preeclampsia in pregnancy on blood pressure (BP) in offspring is unknown. This systematic review and meta-analysis was sought to systematically assess the effects of preeclampsia on the BP of the offspring. RECENT FINDINGS Of 2550 publications identified, 23 studies were included. The meta-analysis indicated that preeclampsia increases the potential risk of hypertension in offspring. Systolic blood pressure (SBP) was 2.0 mm Hg (95% CI: 1.2, 2.8) and diastolic blood pressure (DBP) was 1.4 mm Hg (95% CI: 0.9, 1.9) higher in offspring exposed to pre-eclampsia in utero, compared to those born to normotensive mothers. The correlations were similar in stratified analyses of children and adolescents by sex, geographic area, ages, and gestational age. During childhood and young adulthood, the offspring of pregnant women with preeclampsia are at an increased risk of high BP. It is crucial to monitor their BP.
Collapse
Affiliation(s)
- Min Xu
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Environment and Population health across the Life Course, Anhui Medical University, Hefei, China
- Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei, China
| | - Hai-Xia Wang
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Environment and Population health across the Life Course, Anhui Medical University, Hefei, China
| | - Ping Zu
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Environment and Population health across the Life Course, Anhui Medical University, Hefei, China
| | - Nan Jiang
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Environment and Population health across the Life Course, Anhui Medical University, Hefei, China
| | - Jing-Feng Bian
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Environment and Population health across the Life Course, Anhui Medical University, Hefei, China
| | - Ji-Rong Xu
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Environment and Population health across the Life Course, Anhui Medical University, Hefei, China
| | - Wei Luo
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Environment and Population health across the Life Course, Anhui Medical University, Hefei, China
| | - Peng Zhu
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China.
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China.
- Anhui Provincial Key Laboratory of Environment and Population health across the Life Course, Anhui Medical University, Hefei, China.
- Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei, China.
| |
Collapse
|
11
|
Xiao T, Huang Z, Zheng C, Quach B, Zhu Y, Li F, Liang W, Baker J, Reichetzeder C, Hocher B, Yang Y. Associations of bisphenol A exposure with metabolic syndrome and its components: A systematic review and meta-analysis. Obes Rev 2024; 25:e13738. [PMID: 38491337 DOI: 10.1111/obr.13738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 01/21/2024] [Accepted: 02/13/2024] [Indexed: 03/18/2024]
Abstract
Mounting evidence shows that bisphenol A (BPA) is associated with metabolic risk factors. The aim of this study was to review related epidemiologic studies and conduct a meta-analysis to quantitatively estimate the association between BPA and metabolic syndrome. Four electronic databases were systematically searched to identify suitable articles. A total of 47 published studies were finally included. Two studies involved metabolic syndrome. Of the 17, 17, 14, and 13 studies on the relationship between BPA with abdominal obesity, blood pressure, fasting plasma glucose, and dyslipidemia, 10, 6, 3, and 4 studies were included in the meta-analysis, respectively. The results showed that the risk of abdominal obesity increased with the increase of BPA exposure, especially in the group with higher BPA exposure levels (Quartile 2 vs. Quartile 1, pooled OR = 1.16, 95%CI: 1.01, 1.33; Q3 vs. Q1, pooled OR = 1.31, 95%CI: 1.13, 1.51; Q4 vs. Q1, pooled OR = 1.40, 95%CI: 1.21, 1.61). However, there was no significant correlation between BPA exposure and metabolic syndrome components including hypertension, abnormal fasting plasma glucose, and dyslipidemia. The present study found that BPA exposure is significantly associated with a higher risk of abdominal obesity. However, the relationship between BPA with metabolic syndrome and its other components needs further longitudinal studies to verify.
Collapse
Affiliation(s)
- Tianli Xiao
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
- The Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, China
| | - Zehua Huang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
- The Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, China
| | - Chanjuan Zheng
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
- The Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, China
| | - Binh Quach
- Centre for Health and Exercise Science Research, Hong Kong Baptist University, Hong Kong, China
| | - Yulian Zhu
- Hunan Prevention and Treatment Institute for Occupational Diseases, Changsha, China
| | - Feifei Li
- Centre for Health and Exercise Science Research, Hong Kong Baptist University, Hong Kong, China
- Department of Sport, Physical Education and Health, Hong Kong Baptist University, Hong Kong, China
| | - Wei Liang
- School of Physical Education, Shenzhen University, Shenzhen, China
| | - Julien Baker
- Centre for Health and Exercise Science Research, Hong Kong Baptist University, Hong Kong, China
- Department of Sport, Physical Education and Health, Hong Kong Baptist University, Hong Kong, China
| | - Christoph Reichetzeder
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
- HMU - Health and Medical University, Potsdam, Germany
| | - Berthold Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
- Institute of Medical Diagnostics, IMD, Berlin, Germany
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China
| | - Yide Yang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
- The Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, China
| |
Collapse
|
12
|
Brink N, Lakhoo DP, Solarin I, Maimela G, von Dadelszen P, Norris S, Chersich MF. Impacts of heat exposure in utero on long-term health and social outcomes: a systematic review. BMC Pregnancy Childbirth 2024; 24:344. [PMID: 38704541 PMCID: PMC11069224 DOI: 10.1186/s12884-024-06512-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/11/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Climate change, particularly global warming, is amongst the greatest threats to human health. While short-term effects of heat exposure in pregnancy, such as preterm birth, are well documented, long-term effects have received less attention. This review aims to systematically assess evidence on the long-term impacts on the foetus of heat exposure in utero. METHODS A search was conducted in August 2019 and updated in April 2023 in MEDLINE(PubMed). We included studies on the relationship of environmental heat exposure during pregnancy and any long-term outcomes. Risk of bias was assessed using tools developed by the Joanna-Briggs Institute, and the evidence was appraised using the GRADE approach. Synthesis without Meta-Analysis (SWiM) guidelines were used. RESULTS Eighteen thousand six hundred twenty one records were screened, with 29 studies included across six outcome groups. Studies were mostly conducted in high-income countries (n = 16/25), in cooler climates. All studies were observational, with 17 cohort, 5 case-control and 8 cross-sectional studies. The timeline of the data is from 1913 to 2019, and individuals ranged in age from neonates to adults, and the elderly. Increasing heat exposure during pregnancy was associated with decreased earnings and lower educational attainment (n = 4/6), as well as worsened cardiovascular (n = 3/6), respiratory (n = 3/3), psychiatric (n = 7/12) and anthropometric (n = 2/2) outcomes, possibly culminating in increased overall mortality (n = 2/3). The effect on female infants was greater than on males in 8 of 9 studies differentiating by sex. The quality of evidence was low in respiratory and longevity outcome groups to very low in all others. CONCLUSIONS Increasing heat exposure was associated with a multitude of detrimental outcomes across diverse body systems. The biological pathways involved are yet to be elucidated, but could include epigenetic and developmental perturbations, through interactions with the placenta and inflammation. This highlights the need for further research into the long-term effects of heat exposure, biological pathways, and possible adaptation strategies in studies, particularly in neglected regions. Heat exposure in-utero has the potential to compound existing health and social inequalities. Poor study design of the included studies constrains the conclusions of this review, with heterogenous exposure measures and outcomes rendering comparisons across contexts/studies difficult. TRIAL REGISTRATION PROSPERO CRD 42019140136.
Collapse
Affiliation(s)
- Nicholas Brink
- Climate and Health Directorate, Wits RHI, University of the Witwatersrand, Johannesburg, South Africa.
| | - Darshnika P Lakhoo
- Climate and Health Directorate, Wits RHI, University of the Witwatersrand, Johannesburg, South Africa
| | - Ijeoma Solarin
- Climate and Health Directorate, Wits RHI, University of the Witwatersrand, Johannesburg, South Africa
| | - Gloria Maimela
- Climate and Health Directorate, Wits RHI, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Shane Norris
- MRC Developmental Pathways for Health Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Matthew F Chersich
- Climate and Health Directorate, Wits RHI, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
13
|
Costopoulou D, Kedikoglou K, Vafeiadi M, Roumeliotaki T, Margetaki K, Stephanou EG, Myridakis A, Leondiadis L. Systematic investigation of organochlorine pesticides and polychlorinated biphenyls blood levels in Greek children from the Rhea birth cohort suggests historical exposure to DDT and through diet to DDE. ENVIRONMENT INTERNATIONAL 2024; 187:108686. [PMID: 38669722 DOI: 10.1016/j.envint.2024.108686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/08/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
The blood levels of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) have been thoroughly investigated in Greek children from the Rhea birth cohort study. This investigation aimed to assess exposure levels, explore their possible relationship with children's age and sex, and indicate potential sources of exposure. Exposure patterns and common sources of PCBs and OCPs were analyzed using bivariate and multivariate statistics. A total of 947 blood samples from study participants were analyzed for OCP and PCB exposure, with 375 samples collected at 4 years old, 239 at 6.5 years old, and 333 at 11 years old. Elevated levels of DDE were observed in 6.5-year-old children compared to corresponding levels in other European countries. Higher levels of DDE were found in 4-year-old children, with the lowest concentrations in the 11-year-old group. The DDT/DDE ratio was consistently less than 1 among all the examined subjects. These results indicate exposure to DDT and DDE both in utero and through breastfeeding and dietary intake. For the entire cohort population, the highest concentration was determined for PCB 28, followed by PCBs 138, 153, and 180. The sum of the six indicator PCBs implied low exposure levels for the majority of the cohort population. Spearman correlations revealed strong associations between PCBs and OCPs, while principal component analysis identified two different groupings of exposure. DDE exhibited a correlation with a series of PCBs (153, 156, 163, 180), indicating a combined OCP-PCB source, and an anticorrelation with others (52, 28, 101), implying a separate and competing source.
Collapse
Affiliation(s)
- Danae Costopoulou
- Mass Spectrometry and Dioxin Analysis Laboratory, INRASTES, NCSR "Demokritos", Neapoleos 27, 15310 Athens, Greece.
| | - Kleopatra Kedikoglou
- Mass Spectrometry and Dioxin Analysis Laboratory, INRASTES, NCSR "Demokritos", Neapoleos 27, 15310 Athens, Greece
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Voutes University Campus, 70013 Heraklion, Greece
| | - Theano Roumeliotaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Voutes University Campus, 70013 Heraklion, Greece
| | - Katerina Margetaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Voutes University Campus, 70013 Heraklion, Greece
| | - Euripides G Stephanou
- Department of Chemistry, University of Crete, Voutes University Campus, 70013 Heraklion, Greece.
| | - Antonis Myridakis
- Centre for Pollution Research & Policy, Environmental Sciences, Brunel University London, UB8 3PH, United Kingdom
| | - Leondios Leondiadis
- Mass Spectrometry and Dioxin Analysis Laboratory, INRASTES, NCSR "Demokritos", Neapoleos 27, 15310 Athens, Greece
| |
Collapse
|
14
|
Cheng T, Lou C, Jing X, Ding S, Hong H, Ding G, Shen L. Phthalate exposure and blood pressure in U.S. children aged 8-17 years (NHANES 2013-2018). Eur J Med Res 2024; 29:192. [PMID: 38528598 DOI: 10.1186/s40001-024-01785-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/11/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Current evidence from epidemiologic studies suggested that phthalate metabolites might be associated with blood pressure (BP) changes. However, the special relationship between phthalate metabolites and BP changes in children has not been clearly elucidated in existing researches. OBJECTIVES We investigated the links between phthalate metabolites and various BP parameters, including systolic/diastolic BP, mean arterial pressure (MAP), and the presence of hypertension. METHODS The population sample consisted of 1036 children aged 8 to 17 years from the 2013-2018 NHANES in the United States. High performance liquid chromatography-electrospray ionization-tandem mass spectrometry was used to measure urinary concentrations of 19 phthalate metabolites. Systolic/diastolic BP were derived from the average of three valid measurements, and MAP was calculated as (systolic BP + 2 × diastolic BP)/3. Hypertension was defined as mean systolic BP and/or diastolic BP that was ≥ 95th percentile for gender, age, and height reference. Linear regression, logistic regression, and weighted quantile sum (WQS) regression models were employed to assess the associations between phthalate exposure and systolic/diastolic BP, MAP, and hypertension. RESULTS Ten of 19 phthalate metabolites including MCNP, MCOP, MECPP, MBP, MCPP, MEP, MEHHP, MiBP, MEOHP, and MBzP had detection frequencies > 85% with samples more than 1000. MCNP, MCOP, MECPP, MBP, MCPP, MEHHP, MiBP, MEOHP, and MBzP were generally negatively associated with systolic/diastolic BP and MAP, but not protective factors for hypertension. These associations were not modified by age (8-12 and 13-17 years) or sex (boys and girls). The above-mentioned associations were further confirmed by the application of the WQS analysis, and MCOP was identified as the chemical with the highest weight. CONCLUSION Phthalate metabolites were associated with modest reductions in systolic/diastolic BP, and MAP in children, while appeared not protective factors for hypertension. Given the inconsistent results among existing studies, our findings should be confirmed by other cohort studies.
Collapse
Affiliation(s)
- Tan Cheng
- Department of Cardiothoracic Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengcheng Lou
- Department of Anesthesiology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Xiaoping Jing
- Department of Traditional Chinese Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Sirui Ding
- Department of Cardiothoracic Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haifa Hong
- Department of Cardiothoracic Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guodong Ding
- Department of Pediatric Respiratory Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Li Shen
- Department of Cardiothoracic Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
15
|
McEachan RRC, Santorelli G, Watmuff A, Mason D, Barber SE, Bingham DD, Bird PK, Lennon L, Lewer D, Mon-Williams M, Shire KA, Waiblinger D, West J, Yang TC, Lawlor DA, Pickett KE, Wright J. Cohort Profile Update: Born in Bradford. Int J Epidemiol 2024; 53:dyae037. [PMID: 38552669 PMCID: PMC11065350 DOI: 10.1093/ije/dyae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/27/2024] [Indexed: 05/04/2024] Open
Affiliation(s)
- Rosemary R C McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, West Yorkshire, UK
| | - Gillian Santorelli
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, West Yorkshire, UK
| | - Aidan Watmuff
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, West Yorkshire, UK
| | - Dan Mason
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, West Yorkshire, UK
| | - Sally E Barber
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, West Yorkshire, UK
| | - Daniel D Bingham
- Faculty of Health Studies, University of Bradford, Bradford, West Yorkshire, UK
| | - Philippa K Bird
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, West Yorkshire, UK
| | - Laura Lennon
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, West Yorkshire, UK
| | - Dan Lewer
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, West Yorkshire, UK
| | - Mark Mon-Williams
- School of Psychology, University of Leeds, Leeds, West Yorkshire, UK
| | - Katy A Shire
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, West Yorkshire, UK
| | - Dagmar Waiblinger
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, West Yorkshire, UK
| | - Jane West
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, West Yorkshire, UK
| | - Tiffany C Yang
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, West Yorkshire, UK
| | - Deborah A Lawlor
- MRC Integrative Epidemiology Unit, University of Bristol, Clifton, Bristol, UK
- Bristol Medical School, University of Bristol, Clifton, Bristol, UK
| | - Kate E Pickett
- Department of Health Sciences, University of York, York, West Yorkshire, UK
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, West Yorkshire, UK
| |
Collapse
|
16
|
Hahad O, Al-Kindi S. The Prenatal and Early Life Exposome: Shaping Health Across the Lifespan. JACC. ADVANCES 2024; 3:100807. [PMID: 38939401 PMCID: PMC11198030 DOI: 10.1016/j.jacadv.2023.100807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Affiliation(s)
- Omar Hahad
- Department of Cardiology–Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site Rhine-Main, Mainz, Germany
| | - Sadeer Al-Kindi
- Cardiovascular Prevention & Wellness Center for CV Computational & Precision Health, Houston Methodist DeBakey Heart & Vascular Center, Houston, Texas, USA
| |
Collapse
|
17
|
Gonçalves Soares A, Santos S, Seyve E, Nedelec R, Puhakka S, Eloranta AM, Mikkonen S, Yuan WL, Lawlor DA, Heron J, Vrijheid M, Lepeule J, Nieuwenhuijsen M, Fossati S, Jaddoe VW, Lakka T, Sebert S, Heude B, Felix JF, Elhakeem A, Timpson NJ. Prenatal Urban Environment and Blood Pressure Trajectories From Childhood to Early Adulthood. JACC. ADVANCES 2024; 3:100808. [PMID: 38939392 PMCID: PMC11198279 DOI: 10.1016/j.jacadv.2023.100808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/25/2023] [Accepted: 10/23/2023] [Indexed: 06/29/2024]
Abstract
Background Prenatal urban environmental exposures have been associated with blood pressure in children. The dynamic of these associations across childhood and later ages is unknown. Objectives The purpose of this study was to assess associations of prenatal urban environmental exposures with blood pressure trajectories from childhood to early adulthood. Methods Repeated measures of systolic blood pressure (SBP) and diastolic blood pressure (DBP) were collected in up to 7,454 participants from a UK birth cohort. Prenatal urban exposures (n = 43) covered measures of noise, air pollution, built environment, natural spaces, traffic, meteorology, and food environment. An exposome-wide association study approach was used. Linear spline mixed-effects models were used to model associations of each exposure with trajectories of blood pressure. Replication was sought in 4 independent European cohorts (up to 9,261). Results In discovery analyses, higher humidity was associated with a faster increase (mean yearly change in SBP for an interquartile range increase in humidity: 0.29 mm Hg/y, 95% CI: 0.20-0.39) and higher temperature with a slower increase (mean yearly change in SBP per interquartile range increase in temperature: -0.17 mm Hg/y, 95% CI: -0.28 to -0.07) in SBP in childhood. Higher levels of humidity and air pollution were associated with faster increase in DBP in childhood and slower increase in adolescence. There was little evidence of an association of other exposures with change in SBP or DBP. Results for humidity and temperature, but not for air pollution, were replicated in other cohorts. Conclusions Replicated findings suggest that higher prenatal humidity and temperature could modulate blood pressure changes across childhood.
Collapse
Affiliation(s)
- Ana Gonçalves Soares
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Susana Santos
- The Generation R Study Group, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Porto, Portugal
| | - Emie Seyve
- Inserm, CNRS, Institute for Advanced Biosciences, Grenoble Alpes University, Grenoble, France
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), Paris, France
| | - Rozenn Nedelec
- Faculty of Medicine, Research Unit of Population Health, University of Oulu, Oulu, Finland
| | - Soile Puhakka
- Faculty of Medicine, Research Unit of Population Health, University of Oulu, Oulu, Finland
- Department of Sports and Exercise Medicine, Oulu Deaconess Institute, Oulu, Finland
| | - Aino-Maija Eloranta
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
| | - Santtu Mikkonen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Wen Lun Yuan
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), Paris, France
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research (A∗STAR), Singapore, Singapore
| | - Deborah A. Lawlor
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Jon Heron
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Martine Vrijheid
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Johanna Lepeule
- Inserm, CNRS, Institute for Advanced Biosciences, Grenoble Alpes University, Grenoble, France
| | - Mark Nieuwenhuijsen
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Serena Fossati
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Vincent W.V. Jaddoe
- The Generation R Study Group, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Timo Lakka
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Sylvain Sebert
- Faculty of Medicine, Research Unit of Population Health, University of Oulu, Oulu, Finland
| | - Barbara Heude
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), Paris, France
| | - Janine F. Felix
- The Generation R Study Group, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ahmed Elhakeem
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Nicholas J. Timpson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
18
|
Guillien A, Slama R, Andrusaityte S, Casas M, Chatzi L, de Castro M, de Lauzon-Guillain B, Granum B, Grazuleviciene R, Julvez J, Krog NH, Lepeule J, Maitre L, McEachan R, Nieuwenhuijsen M, Oftedal B, Urquiza J, Vafeiadi M, Wright J, Vrijheid M, Basagaña X, Siroux V. Associations between combined urban and lifestyle factors and respiratory health in European children. ENVIRONMENTAL RESEARCH 2024; 242:117774. [PMID: 38036203 DOI: 10.1016/j.envres.2023.117774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/22/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
INTRODUCTION Previous studies identified some environmental and lifestyle factors independently associated with children respiratory health, but few focused on exposure mixture effects. This study aimed at identifying, in pregnancy and in childhood, combined urban and lifestyle environment profiles associated with respiratory health in children. METHODS This study is based on the European Human Early-Life Exposome (HELIX) project, combining six birth cohorts. Associations between profiles of pregnancy (38 exposures) and childhood (84 exposures) urban and lifestyle factors, identified by clustering analysis, and respiratory health were estimated by regression models adjusted for confounders. RESULTS Among the 1033 included children (mean ± standard-deviation (SD) age: 8.2 ± 1.6 years old, 47% girls) the mean ± SD forced expiratory volume in 1s (FEV1) and forced vital capacity (FVC) were 99 ± 13% and 101 ± 14%, respectively, and 12%, 12% and 24% reported ever-asthma, wheezing and rhinitis, respectively. Four profiles of pregnancy exposures and four profiles of childhood exposures were identified. Compared to the reference childhood exposure profile (low exposures), two exposure profiles were associated with lower levels of FEV1. One profile was characterized by few natural spaces in the surroundings and high exposure to the built environment and road traffic. The second profile was characterized by high exposure to meteorological factors and low levels of all other exposures and was also associated with an increased risk of ever-asthma and wheezing. A pregnancy exposure profile characterized by high exposure levels to all risk factors, but a healthy maternal lifestyle, was associated with a lower risk of wheezing and rhinitis in children, compared to the reference pregnancy profile (low exposures). CONCLUSION This comprehensive approach revealed pregnancy and childhood profiles of urban and lifestyle exposures associated with lung function and/or respiratory conditions in children. Our findings highlight the need to pursue the study of combined exposures to improve prevention strategies for multifactorial diseases such as asthma.
Collapse
Affiliation(s)
- Alicia Guillien
- University of Grenoble Alpes, French National Institute of Health and Medical Research, French National Center for Scientific Research, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France.
| | - Rémy Slama
- University of Grenoble Alpes, French National Institute of Health and Medical Research, French National Center for Scientific Research, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Sandra Andrusaityte
- Department of Environmental Sciences, Faculty of Natural Sciences, Vytautas Magnus University, 53361, Academia, Lithuania
| | - Maribel Casas
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Leda Chatzi
- Department of Preventive Medicine, University of Southern California, Los Angeles, USA
| | - Montserrat de Castro
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Blandine de Lauzon-Guillain
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), Paris, France
| | - Berit Granum
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Regina Grazuleviciene
- Department of Environmental Sciences, Faculty of Natural Sciences, Vytautas Magnus University, 53361, Academia, Lithuania
| | - Jordi Julvez
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain; Clinical and Epidemiological Neuroscience Group (NeuroÈpia), Institut d'Investigatió Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Norun Hjertager Krog
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Johanna Lepeule
- University of Grenoble Alpes, French National Institute of Health and Medical Research, French National Center for Scientific Research, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Léa Maitre
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Rosemary McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Mark Nieuwenhuijsen
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Bente Oftedal
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Jose Urquiza
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Marina Vafeiadi
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Martine Vrijheid
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Xavier Basagaña
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Valérie Siroux
- University of Grenoble Alpes, French National Institute of Health and Medical Research, French National Center for Scientific Research, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| |
Collapse
|
19
|
He X, Barnett LM, Jeon J, Zhang Q, Alqahtani S, Black M, Shannahan J, Wright C. Real-Time Exposure to 3D-Printing Emissions Elicits Metabolic and Pro-Inflammatory Responses in Human Airway Epithelial Cells. TOXICS 2024; 12:67. [PMID: 38251022 PMCID: PMC10818734 DOI: 10.3390/toxics12010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
Three-dimensional (3D) printer usage in household and school settings has raised health concerns regarding chemical and particle emission exposures during operation. Although the composition of 3D printer emissions varies depending on printer settings and materials, little is known about the impact that emissions from different filament types may have on respiratory health and underlying cellular mechanisms. In this study, we used an in vitro exposure chamber system to deliver emissions from two popular 3D-printing filament types, acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA), directly to human small airway epithelial cells (SAEC) cultured in an air-liquid interface during 3D printer operation. Using a scanning mobility particle sizer (SMPS) and an optical particle sizer (OPS), we monitored 3D printer particulate matter (PM) emissions in terms of their particle size distribution, concentrations, and calculated deposited doses. Elemental composition of ABS and PLA emissions was assessed using scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX). Finally, we compared the effects of emission exposure on cell viability, inflammation, and metabolism in SAEC. Our results reveal that, although ABS filaments emitted a higher total concentration of particles and PLA filaments emitted a higher concentration of smaller particles, SAEC were exposed to similar deposited doses of particles for each filament type. Conversely, ABS and PLA emissions had distinct elemental compositions, which were likely responsible for differential effects on SAEC viability, oxidative stress, release of inflammatory mediators, and changes in cellular metabolism. Specifically, while ABS- and PLA-emitted particles both reduced cellular viability and total glutathione levels in SAEC, ABS emissions had a significantly greater effect on glutathione relative to PLA emissions. Additionally, pro-inflammatory cytokines including IL-1β, MMP-9, and RANTES were significantly increased due to ABS emissions exposure. While IL-6 and IL-8 were stimulated in both exposure scenarios, VEGF was exclusively increased due to PLA emissions exposures. Notably, ABS emissions induced metabolic perturbation on amino acids and energy metabolism, as well as redox-regulated pathways including arginine, methionine, cysteine, and vitamin B3 metabolism, whereas PLA emissions exposures caused fatty acid and carnitine dysregulation. Taken together, these results advance our mechanistic understanding of 3D-printer-emissions-induced respiratory toxicity and highlight the role that filament emission properties may play in mediating different respiratory outcomes.
Collapse
Affiliation(s)
- Xiaojia He
- Chemical Insights Research Institute, UL Research Institutes, Marietta, GA 30067, USA; (X.H.); (L.M.B.); (J.J.); (Q.Z.); (M.B.)
| | - Lillie Marie Barnett
- Chemical Insights Research Institute, UL Research Institutes, Marietta, GA 30067, USA; (X.H.); (L.M.B.); (J.J.); (Q.Z.); (M.B.)
| | - Jennifer Jeon
- Chemical Insights Research Institute, UL Research Institutes, Marietta, GA 30067, USA; (X.H.); (L.M.B.); (J.J.); (Q.Z.); (M.B.)
| | - Qian Zhang
- Chemical Insights Research Institute, UL Research Institutes, Marietta, GA 30067, USA; (X.H.); (L.M.B.); (J.J.); (Q.Z.); (M.B.)
| | - Saeed Alqahtani
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA; (S.A.); (J.S.)
- Advanced Diagnostic and Therapeutics Technologies Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 12354, Saudi Arabia
| | - Marilyn Black
- Chemical Insights Research Institute, UL Research Institutes, Marietta, GA 30067, USA; (X.H.); (L.M.B.); (J.J.); (Q.Z.); (M.B.)
| | - Jonathan Shannahan
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA; (S.A.); (J.S.)
| | - Christa Wright
- Chemical Insights Research Institute, UL Research Institutes, Marietta, GA 30067, USA; (X.H.); (L.M.B.); (J.J.); (Q.Z.); (M.B.)
| |
Collapse
|
20
|
Nacher M, Basurko C, Douine M, Lambert Y, Rousseau C, Michaud C, Garlantezec R, Adenis A, Gomes MM, Alsibai KD, Sabbah N, Lambert V, Epelboin L, Sukul RG, Terlutter F, Janvier C, Hcini N. Contrasted life trajectories: reconstituting the main population exposomes in French Guiana. Front Public Health 2024; 11:1247310. [PMID: 38274531 PMCID: PMC10808558 DOI: 10.3389/fpubh.2023.1247310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 12/21/2023] [Indexed: 01/27/2024] Open
Abstract
In French Guiana, life expectancy is between 2 and 3 years below that of France, reflecting differences in mortality rates that are largely sensitive to primary healthcare and thus preventable. However, because poverty affects half of the population in French Guiana, global measurements of life expectancy presumably conflate at least two distinct situations: persons who have similar life expectancies as in mainland France and persons living in precariousness who have far greater mortality rates than their wealthier counterparts. We thus aimed to synthesize what is known about statistical regularities regarding exposures and sketch typical French Guiana exposomes in relation to health outcomes. We conducted a narrative review on common exposures in French Guiana and made comparisons between French Guiana and mainland France, between rich and poor in French Guiana, and between urban and rural areas within French Guiana. The most striking fact this panorama shows is that being a fetus or a young child in French Guiana is fraught with multiple threats. In French Guiana, poverty and poor pregnancy follow-up; renouncing healthcare; wide variety of infectious diseases; very high prevalence of food insecurity; psychosocial stress; micronutrient deficiencies; obesity and metabolic problems; and frequent exposure to lead and mercury in rural areas constitute a stunningly challenging exposome for a new human being to develop into. A substantial part of the population's health is hence affected by poverty and its sources of nutrition.
Collapse
Affiliation(s)
- Mathieu Nacher
- CIC INSERM, Centre Hospitalier de Cayenne, Cayenne, French Guiana
- Université de Guyane, Cayenne, French Guiana
- Amazonian Infrastructures for Population Health, Cayenne, French Guiana
| | - Célia Basurko
- CIC INSERM, Centre Hospitalier de Cayenne, Cayenne, French Guiana
- Amazonian Infrastructures for Population Health, Cayenne, French Guiana
| | - Maylis Douine
- CIC INSERM, Centre Hospitalier de Cayenne, Cayenne, French Guiana
- Université de Guyane, Cayenne, French Guiana
- Amazonian Infrastructures for Population Health, Cayenne, French Guiana
| | - Yann Lambert
- CIC INSERM, Centre Hospitalier de Cayenne, Cayenne, French Guiana
- Université de Guyane, Cayenne, French Guiana
- Amazonian Infrastructures for Population Health, Cayenne, French Guiana
| | - Cyril Rousseau
- Centres délocalisés de Prévention et de Soins, Centre hospitalier de Cayenne, Cayenne, French Guiana
| | - Celine Michaud
- Centres délocalisés de Prévention et de Soins, Centre hospitalier de Cayenne, Cayenne, French Guiana
| | - Ronan Garlantezec
- Épidémiologie et science de l’exposition en santé-environnement (Elixir), Institut de Recherche en Santé Environnement et Travail (IRSET), Rennes, France
- Santé publique et épidémiologie, CHU de Rennes, Rennes, France
| | - Antoine Adenis
- CIC INSERM, Centre Hospitalier de Cayenne, Cayenne, French Guiana
- Université de Guyane, Cayenne, French Guiana
- Amazonian Infrastructures for Population Health, Cayenne, French Guiana
| | | | - Kinan Drak Alsibai
- Amazonian Infrastructures for Population Health, Cayenne, French Guiana
- Centre de Ressources Biologiques Amazonie, Centre Hospitalier de Cayenne, Cayenne, French Guiana
| | - Nadia Sabbah
- Amazonian Infrastructures for Population Health, Cayenne, French Guiana
- Service d’endocrinologie diabétologie, Centre hospitalier de Cayenne, Cayenne, French Guiana
| | - Véronique Lambert
- Amazonian Infrastructures for Population Health, Cayenne, French Guiana
- Western French Guiana Hospital, Saint Laurent du Maroni, French Guiana
| | - Loïc Epelboin
- CIC INSERM, Centre Hospitalier de Cayenne, Cayenne, French Guiana
- Université de Guyane, Cayenne, French Guiana
- Amazonian Infrastructures for Population Health, Cayenne, French Guiana
- Service des Maladies Infectieuses et Tropicales, Centre hospitalier de Cayenne, Cayenne, French Guiana
| | | | - Fredrik Terlutter
- Western French Guiana Hospital, Saint Laurent du Maroni, French Guiana
| | - Caroline Janvier
- Service de Psychiatrie, Centre hospitalier de Cayenne, Cayenne, French Guiana
| | - Najeh Hcini
- Amazonian Infrastructures for Population Health, Cayenne, French Guiana
- Western French Guiana Hospital, Saint Laurent du Maroni, French Guiana
| |
Collapse
|
21
|
Anguita-Ruiz A, Amine I, Stratakis N, Maitre L, Julvez J, Urquiza J, Luo C, Nieuwenhuijsen M, Thomsen C, Grazuleviciene R, Heude B, McEachan R, Vafeiadi M, Chatzi L, Wright J, Yang TC, Slama R, Siroux V, Vrijheid M, Basagaña X. Beyond the single-outcome approach: A comparison of outcome-wide analysis methods for exposome research. ENVIRONMENT INTERNATIONAL 2023; 182:108344. [PMID: 38016387 DOI: 10.1016/j.envint.2023.108344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/16/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023]
Abstract
Outcome-wide analysis can offer several benefits, including increased power to detect weak signals and the ability to identify exposures with multiple effects on health, which may be good targets for preventive measures. Recently, advanced statistical multivariate techniques for outcome-wide analysis have been developed, but they have been rarely applied to exposome analysis. In this work, we provide an overview of a selection of methods that are well-suited for outcome-wide exposome analysis and are implemented in the R statistical software. Our work brings together six different methods presenting innovative solutions for typical problems arising from outcome-wide approaches in the context of the exposome, including dependencies among outcomes, high dimensionality, mixed-type outcomes, missing data records, and confounding effects. The identified methods can be grouped into four main categories: regularized multivariate regression techniques, multi-task learning approaches, dimensionality reduction approaches, and bayesian extensions of the multivariate regression framework. Here, we compare each technique presenting its main rationale, strengths, and limitations, and provide codes and guidelines for their application to exposome data. Additionally, we apply all selected methods to a real exposome dataset from the Human Early-Life Exposome (HELIX) project, demonstrating their suitability for exposome research. Although the choice of the best method will always depend on the challenges to be faced in each application, for an exposome-like analysis we find dimensionality reduction and bayesian methods such as reduced rank regression (RRR) or multivariate bayesian shrinkage priors (MBSP) particularly useful, given their ability to deal with critical issues such as collinearity, high-dimensionality, missing data or quantification of uncertainty.
Collapse
Affiliation(s)
- Augusto Anguita-Ruiz
- ISGlobal, 08003 Barcelona, Spain; CIBEROBN (CIBER Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ines Amine
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, 38000 Grenoble, France
| | | | - Lea Maitre
- ISGlobal, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Jordi Julvez
- ISGlobal, 08003 Barcelona, Spain; CIBEROBN (CIBER Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain; Epidemiology and Environmental Health Joint Research Unit, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, FISABIO-Universitat Jaume I-Universitat de València, Av. Catalunya 21, 46020 Valencia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Clinical and Epidemiological Neuroscience Group (NeuroÈpia), 43204 Reus (Tarragona), Catalonia, Spain
| | | | - Chongliang Luo
- Division of Public Health Sciences, Washington University School of Medicine in St. Louis, 600 S Taylor Ave, St. Louis, MO 63110, USA
| | - Mark Nieuwenhuijsen
- ISGlobal, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Cathrine Thomsen
- Department of Food Safety, Norwegian Institute of Public Health (NIPH), Oslo, Norway
| | - Regina Grazuleviciene
- Department of Environmental Science, Vytautas Magnus University, 44248 Kaunas, Lithuania
| | - Barbara Heude
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), F-75004 Paris, France
| | - Rosemary McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Marina Vafeiadi
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Leda Chatzi
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Tiffany C Yang
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Rémy Slama
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, 38000 Grenoble, France
| | - Valérie Siroux
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, 38000 Grenoble, France
| | - Martine Vrijheid
- ISGlobal, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Xavier Basagaña
- ISGlobal, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain.
| |
Collapse
|
22
|
Warembourg C, Anguita-Ruiz A, Siroux V, Slama R, Vrijheid M, Richiardi L, Basagaña X. Statistical Approaches to Study Exposome-Health Associations in the Context of Repeated Exposure Data: A Simulation Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16232-16243. [PMID: 37844068 PMCID: PMC10621661 DOI: 10.1021/acs.est.3c04805] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 10/18/2023]
Abstract
The exposome concept aims to consider all environmental stressors simultaneously. The dimension of the data and the correlation that may exist between exposures lead to various statistical challenges. Some methodological studies have provided insight regarding the efficiency of specific modeling approaches in the context of exposome data assessed once for each subject. However, few studies have considered the situation in which environmental exposures are assessed repeatedly. Here, we conduct a simulation study to compare the performance of statistical approaches to assess exposome-health associations in the context of multiple exposure variables. Different scenarios were tested, assuming different types and numbers of exposure-outcome causal relationships. An application study using real data collected within the INMA mother-child cohort (Spain) is also presented. In the simulation experiment, assessed methods showed varying performance across scenarios, making it challenging to recommend a one-size-fits-all strategy. Generally, methods such as sparse partial least-squares and the deletion-substitution-addition algorithm tended to outperform the other tested methods (ExWAS, Elastic-Net, DLNM, or sNPLS). Notably, as the number of true predictors increased, the performance of all methods declined. The absence of a clearly superior approach underscores the additional challenges posed by repeated exposome data, such as the presence of more complex correlation structures and interdependencies between variables, and highlights that careful consideration is essential when selecting the appropriate statistical method. In this regard, we provide recommendations based on the expected scenario. Given the heightened risk of reporting false positive or negative associations when applying these techniques to repeated exposome data, we advise interpreting the results with caution, particularly in compromised contexts such as those with a limited sample size.
Collapse
Affiliation(s)
- Charline Warembourg
- Univ
Rennes, Inserm, EHESP, Irset (Institut de recherche en santé,
environnement et travail)—UMR_S 1085, F-35000 Rennes, France
| | - Augusto Anguita-Ruiz
- ISGlobal, 08003 Barcelona, Spain
- CIBEROBN
(CIBER Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Valérie Siroux
- Team
of Environmental Epidemiology Applied to Development and Respiratory
Health, Institute for Advanced Biosciences, Université Grenoble Alpes, INSERM, CNRS, 38700 La Tronche, France
| | - Rémy Slama
- Team
of Environmental Epidemiology Applied to Development and Respiratory
Health, Institute for Advanced Biosciences, Université Grenoble Alpes, INSERM, CNRS, 38700 La Tronche, France
| | - Martine Vrijheid
- ISGlobal, 08003 Barcelona, Spain
- Spanish
Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid 28029, Spain
- Universitat
Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Lorenzo Richiardi
- Department
of Medical Sciences, University of Turin
and CPO-Piemonte, 10124 Turin, Italy
| | - Xavier Basagaña
- ISGlobal, 08003 Barcelona, Spain
- Spanish
Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid 28029, Spain
- Universitat
Pompeu Fabra (UPF), 08003 Barcelona, Spain
| |
Collapse
|
23
|
Xu Z, Du B, Wang H, Li Z, Wu Y, Wang Q, Niu Y, Zhang Q, Sun K, Wang J, Chen S. Perfluoroalkyl substances in umbilical cord blood and blood pressure in offspring: a prospective cohort study. Environ Health 2023; 22:72. [PMID: 37858165 PMCID: PMC10585876 DOI: 10.1186/s12940-023-01023-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Humans are widely exposed to perfluoroalkyl substances (PFAS), which have been found to be associated with various adverse birth outcomes. As blood pressure (BP) is an important parameter reflecting cardiovascular health in early life, it is necessary to investigate the association of PFAS exposure during early lifetime and BP in childhood. Therefore, we investigated the potential association between PFAS levels in umbilical cord blood and BP of the offspring at 4 years of age in a prospective cohort study. METHODS PFAS in umbilical cord blood samples after birth were measured with high-performance liquid chromatography/tandem mass spectrometry in the Shanghai Birth Cohort. BP was measured at 4 years of age in the offspring. Multiple linear regression model was used to investigate the association between individual PFAS level and BP of the offspring. Bayesian kernel machine regression (BKMR) was used to analyze the relationship between the PFAS mixture and BP of the offspring, while weighted quantile sum (WQS) regression was utilized for sensitivity analysis. RESULTS A total of 129 mother-child pairs were included in our analysis. In multiple linear regressions, we observed that long-chain PFAS, mainly including perfluorooctane sulfonate (PFOS), perfluorodecanoic acid (PFDA) and perfluoroundecanoic acid (PFUA), was negatively associated with systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean arterial blood pressure (MAP). BKMR showed that an increase in umbilical cord blood PFAS mixture levels was significantly associated with a decrease in SBP, DBP and MAP [Estimated differences (SD): -0.433 (0.161); -0.437 (0.176); -0.382 (0.179), respectively]. The most important component in the association with SBP, DBP, and MAP was PFUA. PFDoA was found to be positively associated with SBP, DBP and MAP in both models. Sensitivity analysis with WQS regression showed consistent results. CONCLUSION Our findings suggested that umbilical blood PFAS exposure was negatively associated with BP in offspring at 4 years of age, including SBP, DBP, and MAP.
Collapse
Affiliation(s)
- Zhikang Xu
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai, 200092, China
| | - Bowen Du
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai, 200092, China
| | - Hualin Wang
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai, 200092, China
| | - Zhuoyan Li
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai, 200092, China
| | - Yujian Wu
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai, 200092, China
| | - Qianchuo Wang
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai, 200092, China
| | - Yiwei Niu
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai, 200092, China
| | - Qianlong Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kun Sun
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai, 200092, China
| | - Jian Wang
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai, 200092, China.
| | - Sun Chen
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai, 200092, China.
| |
Collapse
|
24
|
Li JX, Luan Q, Li B, Dharmage SC, Heinrich J, Bloom MS, Knibbs LD, Popovic I, Li L, Zhong X, Xu A, He C, Liu KK, Liu XX, Chen G, Xiang M, Yu Y, Guo Y, Dong GH, Zou X, Yang BY. Outdoor environmental exposome and the burden of tuberculosis: Findings from nearly two million adults in northwestern China. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132222. [PMID: 37557043 DOI: 10.1016/j.jhazmat.2023.132222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/19/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023]
Abstract
We simultaneously assessed the associations for a range of outdoor environmental exposures with prevalent tuberculosis (TB) cases in a population-based health program with 1940,622 participants ≥ 15 years of age. TB status was confirmed through bacteriological and clinical assessment. We measured 14 outdoor environmental exposures at residential addresses. An exposome-wide association study (ExWAS) approach was used to estimate cross-sectional associations between environmental exposures and prevalent TB, an adaptive elastic net model (AENET) was implemented to select important exposure(s), and the Extreme Gradient Boosting algorithm was subsequently applied to assess their relative importance. In ExWAS analysis, 12 exposures were significantly associated with prevalent TB. Eight of the exposures were selected as predictors by the AENET model: particulate matter ≤ 2.5 µm (odds ratio [OR]=1.01, p = 0.3295), nitrogen dioxide (OR=1.09, p < 0.0001), carbon monoxide (OR=1.19, p < 0.0001), and wind speed (OR=1.08, p < 0.0001) were positively associated with the odds of prevalent TB while sulfur dioxide (OR=0.95, p = 0.0017), altitude (OR=0.97, p < 0.0001), artificial light at night (OR=0.98, p = 0.0001), and proportion of forests, shrublands, and grasslands (OR=0.95, p < 0.0001) were negatively associated with the odds of prevalent TB. Air pollutants had higher relative importance than meteorological and geographical factors, and the outdoor environment collectively explained 11% of TB prevalence.
Collapse
Affiliation(s)
- Jia-Xin Li
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Qiyun Luan
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Kashi (The Affiliated Kashi Hospital of Sun Yat-Sen University), Kashgar City 844000, China
| | - Beibei Li
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Kashi (The Affiliated Kashi Hospital of Sun Yat-Sen University), Kashgar City 844000, China
| | - Shyamali C Dharmage
- Allergy and Lung Health Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Joachim Heinrich
- Allergy and Lung Health Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC 3010, Australia; Comprehensive Pneumology Center (CPC) Munich, Member DZL, Germany; Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, Ludwig Maximilian University of Munich, Member DZL, Germany; German Center for Lung Research, Ziemssenstraße 1, 80336 Munich, Germany
| | - Michael S Bloom
- Department of Global and Community Health, George Mason University, Fairfax, VA 22030, USA
| | - Luke D Knibbs
- School of Public Health, The University of Sydney, NSW 2006, Australia
| | - Igor Popovic
- UQ Spatial Epidemiology Laboratory, School of Veterinary Science, University of Queensland, Gatton 4343, Australia; Faculty of Medicine, School of Public Health, University of Queensland, Herston, 4006, Australia, School of Veterinary Science, University of Queensland, Gatton 4343, Australia
| | - Li Li
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Kashi (The Affiliated Kashi Hospital of Sun Yat-Sen University), Kashgar City 844000, China
| | - Xuemei Zhong
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Kashi (The Affiliated Kashi Hospital of Sun Yat-Sen University), Kashgar City 844000, China
| | - Aimin Xu
- Department of Laboratory Medicine, The First People's Hospital of Kashgar, Kashgar 844000, China
| | - Chuanjiang He
- Department of Laboratory Medicine, The First People's Hospital of Kashgar, Kashgar 844000, China; Department of Laboratory Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Kang-Kang Liu
- Department of Research Center for Medicine, the Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Xiao-Xuan Liu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Gongbo Chen
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Mingdeng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510080, China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510080, China
| | - Yuming Guo
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Guang-Hui Dong
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xiaoguang Zou
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Kashi (The Affiliated Kashi Hospital of Sun Yat-Sen University), Kashgar City 844000, China.
| | - Bo-Yi Yang
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| |
Collapse
|
25
|
Shen M, Li Y, Li S, Chen X, Zou B, Lu Y. Association of exposure to artificial light at night during adolescence with blood pressure in early adulthood. Chronobiol Int 2023; 40:1419-1426. [PMID: 37818634 DOI: 10.1080/07420528.2023.2266485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 09/28/2023] [Indexed: 10/12/2023]
Abstract
Artificial light at night (ALAN) is related to various diseases, such as cancer, obesity, and coronary heart disease. However, its impact on blood pressure in adolescents is not well understood. To investigate this, we conducted a cross-sectional study with a nationwide sample of college students in China, who were freshmen from four disperse universities during Sep. and Oct. 2018. Mean levels of ALAN at participants' residential addresses during 2013-2018 were estimated using time-varying satellite data. The association of the 6-y average of ALAN with blood pressure was estimated by using generalized linear mixed models. A total of 17 046 participants (18.2 ± 0.7 y of age, 46.79% female) from 2,412 counties and cities were included in the final analysis. After a full adjustment for potential confounders, ALAN was positively associated with systolic blood pressure (β = 0.20, p = 0.032) and pulse pressure (β = 0.28, p = 0.001), but there was no association between ALAN and diastolic blood pressure (β = -0.08, p = 0.213). In the sensitivity analysis, the results consistent with the main analysis were observed. The blood pressure of males and those with a BMI ≤24 kg/m2 were more susceptible to ALAN exposure. Our findings highlight the importance of ALAN management for blood pressure control, particularly among male and normal-weight individuals.
Collapse
Affiliation(s)
- Minxue Shen
- Department of Social Medicine and Health Management, Xiangya School of Public Health, Central South University, Changsha, China
| | - Yalan Li
- Clinical Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shenxin Li
- Department of Surveying and Remote Sensing Science, School of Geosciences and Info-physics, Central South University, Changsha, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Zou
- Department of Surveying and Remote Sensing Science, School of Geosciences and Info-physics, Central South University, Changsha, China
| | - Yao Lu
- Clinical Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
- Faculty of Life Sciences & Medicine, King's College London, London, UK
| |
Collapse
|
26
|
Xue Y, Li J, Xu YN, Cui JS, Li Y, Lu YQ, Luo XZ, Liu DZ, Huang F, Zeng ZY, Huang RJ. Mediating effect of body fat percentage in the association between ambient particulate matter exposure and hypertension: a subset analysis of China hypertension survey. BMC Public Health 2023; 23:1897. [PMID: 37784103 PMCID: PMC10544618 DOI: 10.1186/s12889-023-16815-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/22/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND Hypertension caused by air pollution exposure is a growing concern in China. The association between air pollutant exposure and hypertension has been found to be potentiated by obesity, however, little is known about the processes mediating this association. This study investigated the association between fine particulate matter (aerodynamic equivalent diameter ≤ 2.5 microns, PM2.5) exposure and the prevalence of hypertension in a representative population in southern China and tested whether obesity mediated this association. METHODS A total of 14,308 adults from 48 communities/villages in southern China were selected from January 2015 to December 2015 using a stratified multistage random sampling method. Hourly PM2.5 measurements were collected from the China National Environmental Monitoring Centre. Restricted cubic splines were used to analyze the nonlinear dose-response relationship between PM2.5 exposure and hypertension risk. The mediating effect mechanism of obesity on PM2.5-associated hypertension was tested in a causal inference framework following the approach proposed by Imai and Keele. RESULTS A total of 20.7% (2966/14,308) of participants in the present study were diagnosed with hypertension. Nonlinear exposure-response analysis revealed that exposure to an annual mean PM2.5 concentration above 41.8 µg/m3 was associated with increased hypertension risk at an incremental gradient. 9.1% of the hypertension burden could be attributed to exposure to elevated annual average concentrations of PM2.5. It is noteworthy that an increased body fat percentage positively mediated 59.3% of the association between PM2.5 exposure and hypertension risk, whereas body mass index mediated 34.3% of this association. CONCLUSIONS This study suggests that a significant portion of the estimated effect of exposure to PM2.5 on the risk of hypertension appears to be attributed to its effect on alterations in body composition and the development of obesity. These findings could inform intersectoral actions in future studies to protect populations with excessive fine particle exposure from developing hypertension.
Collapse
Affiliation(s)
- Yan Xue
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, China
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, China
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, China
| | - Jin Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, China
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, China
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, China
| | - Yu-Nan Xu
- Department of Medical Research, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jia-Sheng Cui
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, China
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, China
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, China
| | - Yue Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, China
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, China
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, China
| | - Yao-Qiong Lu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, China
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, China
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, China
| | - Xiao-Zhi Luo
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, China
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, China
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, China
| | - De-Zhao Liu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, China
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, China
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, China
| | - Feng Huang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, China.
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, China.
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, China.
| | - Zhi-Yu Zeng
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, China.
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, China.
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, China.
| | - Rong-Jie Huang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, China.
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, China.
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, China.
| |
Collapse
|
27
|
Münzel T, Sørensen M, Hahad O, Nieuwenhuijsen M, Daiber A. The contribution of the exposome to the burden of cardiovascular disease. Nat Rev Cardiol 2023; 20:651-669. [PMID: 37165157 DOI: 10.1038/s41569-023-00873-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/27/2023] [Indexed: 05/12/2023]
Abstract
Large epidemiological and health impact assessment studies at the global scale, such as the Global Burden of Disease project, indicate that chronic non-communicable diseases, such as atherosclerosis and diabetes mellitus, caused almost two-thirds of the annual global deaths in 2020. By 2030, 77% of all deaths are expected to be caused by non-communicable diseases. Although this increase is mainly due to the ageing of the general population in Western societies, other reasons include the increasing effects of soil, water, air and noise pollution on health, together with the effects of other environmental risk factors such as climate change, unhealthy city designs (including lack of green spaces), unhealthy lifestyle habits and psychosocial stress. The exposome concept was established in 2005 as a new strategy to study the effect of the environment on health. The exposome describes the harmful biochemical and metabolic changes that occur in our body owing to the totality of different environmental exposures throughout the life course, which ultimately lead to adverse health effects and premature deaths. In this Review, we describe the exposome concept with a focus on environmental physical and chemical exposures and their effects on the burden of cardiovascular disease. We discuss selected exposome studies and highlight the relevance of the exposome concept for future health research as well as preventive medicine. We also discuss the challenges and limitations of exposome studies.
Collapse
Affiliation(s)
- Thomas Münzel
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| | - Mette Sørensen
- Danish Cancer Society, Copenhagen, Denmark
- Department of Natural Science and Environment, Roskilde University, Roskilde, Denmark
| | - Omar Hahad
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Mark Nieuwenhuijsen
- Institute for Global Health (ISGlobal), Barcelona Biomedical Research Park (PRBB), Barcelona, Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), PRBB building (Mar Campus), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Andreas Daiber
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| |
Collapse
|
28
|
Zhang M, Aris IM, Lin PD, Rifas‐Shiman SL, Brady TM, James‐Todd T, Oken E, Hivert M. Prenatal and Childhood Per- and Polyfluoroalkyl Substance (PFAS) Exposures and Blood Pressure Trajectories From Birth to Late Adolescence in a Prospective US Prebirth Cohort. J Am Heart Assoc 2023; 12:e030760. [PMID: 37642023 PMCID: PMC10547341 DOI: 10.1161/jaha.123.030760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/26/2023] [Indexed: 08/31/2023]
Abstract
Background Evidence is limited regarding the associations of prenatal and childhood per- and polyfluoroalkyl substance (PFAS) exposures with blood pressure (BP) trajectories in children. Methods and Results Participants are from Project Viva, a prospective prebirth cohort in eastern Massachusetts. We measured PFAS in early-pregnancy maternal (median, 9.6 weeks) and midchildhood (median, 7.7 years) plasma samples. We conducted standardized BP measurements at 6 research visits: birth, infancy (median, 6.3 months), early childhood (median, 3.2 years), midchildhood (median, 7.7 years), early adolescence (median, 12.9 years), and late adolescence (median, 17.5 years). We used linear regression to examine associations of individual PFASs with BP at each visit, linear spline mixed-effects regression to model BP trajectories, and a mixture approach to estimate PFAS exposure burden. We included 9036 BP measures from 1506 participants. We observed associations between particular individual prenatal PFASs and child BP at specific time points, for example, prenatal 2-(N-ethyl-perfluorooctane sulfonamido) acetate (EtFOSAA) and 2-(N-methyl-perfluorooctane sulfonamido) acetate (MeFOSAA) with higher systolic BP at birth; prenatal perfluorooctane sulfonate (PFOS) and EtFOSAA with lower diastolic BP in infancy; and prenatal PFOS, perfluorooctanoate (PFOA), and EtFOSAA with higher systolic BP at midchildhood. No prenatal or childhood PFAS was consistently associated with BP across all visits. Diastolic BP trajectories from 0 to 20 years differed slightly by prenatal PFOA, perfluorohexane sulfonate (PFHxS), and perfluorononanoate (PFNA) (P values 0.01-0.09). Diastolic BP trajectories from 6 to 20 years differed slightly by midchildhood PFHxS and MeFOSAA (P-values 0.03-0.08). Prenatal or childhood PFAS mixture burden scores were not associated with BP. Conclusions We found associations of prenatal and childhood PFAS exposures with BP at specific time points between birth and late adolescence but no consistent associations across all time points or PFAS types.
Collapse
Affiliation(s)
- Mingyu Zhang
- Department of Population MedicineHarvard Medical School and Harvard Pilgrim Health Care InstituteBostonMAUSA
| | - Izzuddin M. Aris
- Department of Population MedicineHarvard Medical School and Harvard Pilgrim Health Care InstituteBostonMAUSA
| | - Pi‐I Debby Lin
- Department of Population MedicineHarvard Medical School and Harvard Pilgrim Health Care InstituteBostonMAUSA
| | - Sheryl L. Rifas‐Shiman
- Department of Population MedicineHarvard Medical School and Harvard Pilgrim Health Care InstituteBostonMAUSA
| | - Tammy M. Brady
- Department of PediatricsJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Tamarra James‐Todd
- Departments of Environmental Health and EpidemiologyHarvard T.H. Chan School of Public HealthBostonMAUSA
| | - Emily Oken
- Department of Population MedicineHarvard Medical School and Harvard Pilgrim Health Care InstituteBostonMAUSA
- Department of NutritionHarvard T.H. Chan School of Public HealthBostonMAUSA
| | - Marie‐France Hivert
- Department of Population MedicineHarvard Medical School and Harvard Pilgrim Health Care InstituteBostonMAUSA
- Diabetes UnitMassachusetts General HospitalBostonMAUSA
| |
Collapse
|
29
|
Yang L, Yang P, Lip GYH, Ren J. Copper homeostasis and cuproptosis in cardiovascular disease therapeutics. Trends Pharmacol Sci 2023; 44:573-585. [PMID: 37500296 DOI: 10.1016/j.tips.2023.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/08/2023] [Accepted: 07/08/2023] [Indexed: 07/29/2023]
Abstract
Copper (Cu) homeostasis is gaining increasing attention in human health as both Cu overload and deficiency evokes pathological changes including cardiovascular diseases (CVDs). Cu supplementation, nanocarriers, and chelators have all exhibited therapeutic promise in some human diseases, although how Cu dyshomeostasis and cuproptosis, a novel form of regulated cell death, contribute to CVD pathology remains elusive. Here, we discuss Cu dyshomeostasis and the potential role of cuproptosis in various CVDs. We evaluate underlying cellular mechanisms, aiming to provide some insights regarding the utility of targeting Cu dyshomeostasis and cuproptosis as a novel strategy in the management of CVDs.
Collapse
Affiliation(s)
- Lifang Yang
- Department of Anesthesiology, Xi'an Children Hospital, Xi'an, Shaanxi, China
| | - Pingping Yang
- Department of Anesthesiology, Xi'an Children Hospital, Xi'an, Shaanxi, China
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart and Chest Hospital, Liverpool, UK; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
30
|
Rouxel E, Costet N, Monfort C, Audouze K, Cirugeda L, Gaudreau E, Grimalt JO, Ibarluzea J, Lainé F, Llop S, Lopez-Espinosa MJ, Rouget F, Santa-Marina L, Vrijheid M, Chevrier C, Casas M, Warembourg C. Prenatal exposure to multiple persistent organic pollutants in association with adiposity markers and blood pressure in preadolescents. ENVIRONMENT INTERNATIONAL 2023; 178:108056. [PMID: 37379720 DOI: 10.1016/j.envint.2023.108056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/13/2023] [Accepted: 06/17/2023] [Indexed: 06/30/2023]
Abstract
BACKGROUND Several studies have reported that prenatal exposure to some persistent organic pollutants (POPs) is associated with higher adiposity in childhood. Few studies have assessed whether this finding persists into adolescence, and few have considered exposure to POPs as a mixture. This study aims to assess the association between prenatal exposure to multiple POPs and adiposity markers and blood pressure in preadolescents. METHODS This study included 1667 mother-child pairs enrolled in the PELAGIE (France) and the INMA (Spain) mother-child cohorts. Three polychlorobiphenyls (PCB 138, 153 and 180, treated as a sum of PCBs) and three organochlorine pesticides (p,p'-Dichlorodiphenyldichloroethylene [p,p'-DDE], β-hexachlorocyclohexane [β-HCH], and hexachlorobenzene [HCB]) were assessed in maternal or cord serum. Body mass index z-score (zBMI), abdominal obesity (waist-to-height ratio > 0.5), percentage of fat mass, and blood pressure (mmHg) were measured at around 12 years of age. Single-exposure associations were studied using linear or logistic regressions, and the POP mixture effect was evaluated using quantile G-computation (qgComp) and Bayesian Kernel Machine Regression (BKMR). All models were adjusted for potential confounders and performed for boys and girls together and separately. RESULTS Prenatal exposure to the POP mixture was associated with higher zBMI (beta [95 % CI] of the qgComp = 0.15 [0.07; 0.24]) and percentage of fat mass (0.83 [0.31; 1.35]), with no evidence of sex-specific association. These mixture effects were also statistically significant using BKMR. These associations were driven mainly by exposure to HCB and, to a lesser extent, to β-HCH. In addition, the single-exposure models showed an association between β-HCH and p,p'-DDE and higher systolic blood pressure, especially in girls (p,p'-DDE for girls = 1.00 [0.15; 1.86]). No significant associations were found for PCBs. CONCLUSION This study suggests that prenatal exposure to POPs, particularly organochlorine pesticides, remains associated with unfavorable cardiometabolic health up to the age of 12.
Collapse
Affiliation(s)
- Elke Rouxel
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Nathalie Costet
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Christine Monfort
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Karine Audouze
- Université Paris Cité, T3S, Inserm UMR S-1124, 75006 Paris, France
| | - Lourdes Cirugeda
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid 28029, Spain; ISGlobal, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Eric Gaudreau
- Centre de Toxicologie du Québec (CTQ), Institut national de santé publique du Québec (INSPQ), Québec, Canada
| | - Joan O Grimalt
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Catalonia, Spain
| | - Jesus Ibarluzea
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid 28029, Spain; Biodonostia Health Research Institute, Group of Environmental Epidemiology and Child Development, Paseo Doctor Begiristain S/n, 20014 Donostia-San Sebastián, Spain; Faculty of Psychology, University of the Basque Country UPV/EHU, Avenida Tolosa 70, 20018 Donostia - San Sebastián, Spain
| | - Fabrice Lainé
- Univ Rennes, CHU Rennes, INSERM CIC1414, F-35000 Rennes, France
| | - Sabrina Llop
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid 28029, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, 46020 Valencia, Spain
| | - Maria-Jose Lopez-Espinosa
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid 28029, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, 46020 Valencia, Spain; Faculty of Nursing and Chiropody, University of Valencia, 46010 Valencia, Spain
| | - Florence Rouget
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Loreto Santa-Marina
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid 28029, Spain; Biodonostia Health Research Institute, Group of Environmental Epidemiology and Child Development, Paseo Doctor Begiristain S/n, 20014 Donostia-San Sebastián, Spain; Ministry of Health of the Basque Government, SubDirectorate for Public Health and Addictions of Gipuzkoa, 20013 San Sebastian, Spain
| | - Martine Vrijheid
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid 28029, Spain; ISGlobal, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Cécile Chevrier
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Maribel Casas
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid 28029, Spain; ISGlobal, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Charline Warembourg
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| |
Collapse
|
31
|
Wu J, Li S, Duan J, Li Y, Wang J, Deng P, Meng C, Wang W, Yuan H, Lu Y, Shen M, Zhao Q. Association of joint exposure to various ambient air pollutants during adolescence with blood pressure in young adulthood. J Clin Hypertens (Greenwich) 2023; 25:708-714. [PMID: 37409562 PMCID: PMC10423767 DOI: 10.1111/jch.14685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/16/2023] [Accepted: 05/28/2023] [Indexed: 07/07/2023]
Abstract
The association of various air pollutants exposure during adolescence with blood pressure (BP) in young adulthood is uncertain. We intended to evaluate the long-term association of individual and joint air pollutants exposure during adolescence with BP in young adulthood. This cross-sectional study of incoming students was conducted in five geographically disperse universities in China during September and October 2018. Mean concentrations of particulate matter with diameters ≤2.5 μm (PM2.5 ), ≤10 μm (PM10 ), nitrogen dioxides (NO2 ), carbon monoxide (CO), sulfur dioxide (SO2 ), and ozone (O3 ) at participants' residential addresses during 2013-2018 were collected from the Chinese Air Quality Reanalysis dataset. Generalized linear mixed models (GLM) and quantile g-computation (QgC) models were utilized to estimate the association between individual and joint air pollutants exposure and systolic blood pressure (SBP), diastolic blood pressure (DBP), and pulse pressure (PP). A total of 16,242 participants were included in the analysis. The GLM analyses showed that PM2.5 , PM10 , NO2 , CO, and SO2 were significantly positively associated with SBP and PP, while O3 was positively associated with DBP. The QgC analyses indicated that long-term exposure to a mixture of the six air pollutants had a significant positive joint association with SBP and PP. In conclusion, air pollutant co-exposure during adolescence may influence BP in young adulthood. The findings of this study emphasized the impacts of multiple air pollutants interactions on potential health and the need of minimizing pollution exposures in the environment.
Collapse
Affiliation(s)
- Jingjing Wu
- Clinical Research Center, The Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Shenxin Li
- Department of Surveying and Remote Sensing Science, School of Geosciences and Info‐physicsCentral South UniversityChangshaChina
| | - Jingwen Duan
- Clinical Research Center, The Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Yalan Li
- Clinical Research Center, The Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Jie Wang
- Clinical Research Center, The Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Peizhi Deng
- Clinical Research Center, The Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Changjiang Meng
- Clinical Research Center, The Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Wei Wang
- Clinical Research Center, The Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Hong Yuan
- Clinical Research Center, The Third Xiangya HospitalCentral South UniversityChangshaHunanChina
- Health Management Center, The Third Xiangya HospitalCentral South UniversityChangshaChina
| | - Yao Lu
- Clinical Research Center, The Third Xiangya HospitalCentral South UniversityChangshaHunanChina
- Health Management Center, The Third Xiangya HospitalCentral South UniversityChangshaChina
- School of Life Course SciencesKing's College LondonLondonUK
| | - Minxue Shen
- Department of Social Medicine and Health Management, Xiangya School of Public HealthCentral South UniversityChangshaChina
| | - Qiuping Zhao
- Fuwai Central China Cardiovascular HospitalHeart Center of Henan Provincial People's HospitalZhengzhouChina
| |
Collapse
|
32
|
Amine I, Guillien A, Philippat C, Anguita-Ruiz A, Casas M, de Castro M, Dedele A, Garcia-Aymerich J, Granum B, Grazuleviciene R, Heude B, Haug LS, Julvez J, López-Vicente M, Maitre L, McEachan R, Nieuwenhuijsen M, Stratakis N, Vafeiadi M, Wright J, Yang T, Yuan WL, Basagaña X, Slama R, Vrijheid M, Siroux V. Environmental exposures in early-life and general health in childhood. Environ Health 2023; 22:53. [PMID: 37480033 PMCID: PMC10360263 DOI: 10.1186/s12940-023-01001-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/28/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND Early-life environmental exposures are suspected to be involved in the development of chronic diseases later in life. Most studies conducted so far considered single or few exposures and single-health parameter. Our study aimed to identify a childhood general health score and assess its association with a wide range of pre- and post-natal environmental exposures. METHODS The analysis is based on 870 children (6-12 years) from six European birth cohorts participating in the Human Early-Life Exposome project. A total of 53 prenatal and 105 childhood environmental factors were considered, including lifestyle, social, urban and chemical exposures. We built a general health score by averaging three sub-scores (cardiometabolic, respiratory/allergy and mental) built from 15 health parameters. By construct, a child with a low score has a low general health status. Penalized multivariable regression through Least Absolute Shrinkage and Selection Operator (LASSO) was fitted in order to identify exposures associated with the general health score. FINDINGS The results of LASSO show that a lower general health score was associated with maternal passive and active smoking during pregnancy and postnatal exposure to methylparaben, copper, indoor air pollutants, high intake of caffeinated drinks and few contacts with friends and family. Higher child's general health score was associated with prenatal exposure to a bluespace near residency and postnatal exposures to pets, cobalt, high intakes of vegetables and more physical activity. Against our hypotheses, postnatal exposure to organochlorine compounds and perfluorooctanoate were associated with a higher child's general health score. CONCLUSION By using a general health score summarizing the child cardiometabolic, respiratory/allergy and mental health, this study reinforced previously suspected environmental factors associated with various child health parameters (e.g. tobacco, air pollutants) and identified new factors (e.g. pets, bluespace) warranting further investigations.
Collapse
Affiliation(s)
- Ines Amine
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France.
| | - Alicia Guillien
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Claire Philippat
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Augusto Anguita-Ruiz
- Parc de Recerca Biomèdica de Barcelona (PRBB), ISGlobal-Instituto de Salud Global de Barcelona Campus MAR, 08003, Barcelona, Spain
- CIBEROBN, (Physiopathology of Obesity and Nutrition CB12/03/30038), Institute of Health Carlos III (ISCIII), 28029, Madrid, Spain
| | - Maribel Casas
- Parc de Recerca Biomèdica de Barcelona (PRBB), ISGlobal-Instituto de Salud Global de Barcelona Campus MAR, 08003, Barcelona, Spain
- Pompeu Fabra University (UPF), 08002, Barcelona, Spain
- Spanish Consortium for Research On Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029, Madrid, Spain
| | - Montserrat de Castro
- Parc de Recerca Biomèdica de Barcelona (PRBB), ISGlobal-Instituto de Salud Global de Barcelona Campus MAR, 08003, Barcelona, Spain
- Pompeu Fabra University (UPF), 08002, Barcelona, Spain
- Spanish Consortium for Research On Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029, Madrid, Spain
- Epidemiology and Environmental Health Joint Research Unit, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, FISABIO-Universitat Jaume I-Universitat de València, Av. Catalunya 21, 46020, Valencia, Spain
| | - Audrius Dedele
- Department of Environmental Science, Vytautas Magnus University, 44248, Kaunas, Lithuania
| | - Judith Garcia-Aymerich
- Parc de Recerca Biomèdica de Barcelona (PRBB), ISGlobal-Instituto de Salud Global de Barcelona Campus MAR, 08003, Barcelona, Spain
- Pompeu Fabra University (UPF), 08002, Barcelona, Spain
- Spanish Consortium for Research On Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029, Madrid, Spain
| | - Berit Granum
- Division for Climate and Environmental Health, Norwegian Institute of Public Health, 0213, Oslo, Norway
| | - Regina Grazuleviciene
- Department of Environmental Science, Vytautas Magnus University, 44248, Kaunas, Lithuania
| | - Barbara Heude
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), 75004, Paris, France
| | - Line Småstuen Haug
- Division for Climate and Environmental Health, Norwegian Institute of Public Health, 0213, Oslo, Norway
| | - Jordi Julvez
- Parc de Recerca Biomèdica de Barcelona (PRBB), ISGlobal-Instituto de Salud Global de Barcelona Campus MAR, 08003, Barcelona, Spain
- Clinical and Epidemiological Neuroscience (NeuroÈpia), Institut d'Investigació Sanitària Pere Virgili (IISPV), 43204, Reus, Spain
| | - Mónica López-Vicente
- Parc de Recerca Biomèdica de Barcelona (PRBB), ISGlobal-Instituto de Salud Global de Barcelona Campus MAR, 08003, Barcelona, Spain
| | - Léa Maitre
- Parc de Recerca Biomèdica de Barcelona (PRBB), ISGlobal-Instituto de Salud Global de Barcelona Campus MAR, 08003, Barcelona, Spain
- Pompeu Fabra University (UPF), 08002, Barcelona, Spain
- Spanish Consortium for Research On Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029, Madrid, Spain
| | - Rosemary McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Mark Nieuwenhuijsen
- Parc de Recerca Biomèdica de Barcelona (PRBB), ISGlobal-Instituto de Salud Global de Barcelona Campus MAR, 08003, Barcelona, Spain
- Pompeu Fabra University (UPF), 08002, Barcelona, Spain
- Spanish Consortium for Research On Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029, Madrid, Spain
| | - Nikos Stratakis
- Parc de Recerca Biomèdica de Barcelona (PRBB), ISGlobal-Instituto de Salud Global de Barcelona Campus MAR, 08003, Barcelona, Spain
| | - Marina Vafeiadi
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Tiffany Yang
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Wen Lun Yuan
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), 75004, Paris, France
- Singapore Institute for Clinical Science, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Xavier Basagaña
- Parc de Recerca Biomèdica de Barcelona (PRBB), ISGlobal-Instituto de Salud Global de Barcelona Campus MAR, 08003, Barcelona, Spain
- Pompeu Fabra University (UPF), 08002, Barcelona, Spain
- Spanish Consortium for Research On Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029, Madrid, Spain
| | - Rémy Slama
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Martine Vrijheid
- Parc de Recerca Biomèdica de Barcelona (PRBB), ISGlobal-Instituto de Salud Global de Barcelona Campus MAR, 08003, Barcelona, Spain
- Pompeu Fabra University (UPF), 08002, Barcelona, Spain
- Spanish Consortium for Research On Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029, Madrid, Spain
| | - Valérie Siroux
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| |
Collapse
|
33
|
Li W, Huang G, Tang N, Lu P, Jiang L, Lv J, Qin Y, Lin Y, Xu F, Lei D. Effects of heavy metal exposure on hypertension: A machine learning modeling approach. CHEMOSPHERE 2023; 337:139435. [PMID: 37422210 DOI: 10.1016/j.chemosphere.2023.139435] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Heavy metal exposure is a common risk factor for hypertension. To develop an interpretable predictive machine learning (ML) model for hypertension based on levels of heavy metal exposure, data from the NHANES (2003-2016) were employed. Random forest (RF), support vector machine (SVM), decision tree (DT), multilayer perceptron (MLP), ridge regression (RR), AdaBoost (AB), gradient boosting decision tree (GBDT), voting classifier (VC), and K-nearest neighbour (KNN) algorithms were utilized to generate an optimal predictive model for hypertension. Three interpretable methods, the permutation feature importance analysis, partial dependence plot (PDP), and Shapley additive explanations (SHAP) methods, were integrated into a pipeline and embedded in ML for model interpretation. A total of 9005 eligible individuals were randomly allocated into two distinct sets for predictive model training and validation. The results showed that among the predictive models, the RF model demonstrated the highest performance, achieving an accuracy rate of 77.40% in the validation set. The AUC and F1 score for the model were 0.84 and 0.76, respectively. Blood Pb, urinary Cd, urinary Tl, and urinary Co levels were identified as the main influencers of hypertension, and their contribution weights were 0.0504 ± 0.0482, 0.0389 ± 0.0256, 0.0307 ± 0.0179, and 0.0296 ± 0.0162, respectively. Blood Pb (0.55-2.93 μg/dL) and urinary Cd (0.06-0.15 μg/L) levels exhibited the most pronounced upwards trend with the risk of hypertension within a specific value range, while urinary Tl (0.06-0.26 μg/L) and urinary Co (0.02-0.32 μg/L) levels demonstrated a declining trend with hypertension. The findings on the synergistic effects indicated that Pb and Cd were the primary determinants of hypertension. Our findings underscore the predictive value of heavy metals for hypertension. By utilizing interpretable methods, we discerned that Pb, Cd, Tl, and Co emerged as noteworthy contributors within the predictive model.
Collapse
Affiliation(s)
- Wenxiang Li
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530021, China.
| | - Guangyi Huang
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530021, China
| | - Ningning Tang
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530021, China
| | - Peng Lu
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530021, China
| | - Li Jiang
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530021, China
| | - Jian Lv
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530021, China
| | - Yuanjun Qin
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530021, China
| | - Yunru Lin
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530021, China
| | - Fan Xu
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530021, China.
| | - Daizai Lei
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530021, China.
| |
Collapse
|
34
|
Reimann B, Sleurs H, Dockx Y, Rasking L, De Boever P, Pirard C, Charlier C, Nawrot TS, Plusquin M. Exposure to endocrine disrupters and cardiometabolic health effects in preschool children: Urinary parabens are associated with wider retinal venular vessels. CHEMOSPHERE 2023; 328:138570. [PMID: 37019399 DOI: 10.1016/j.chemosphere.2023.138570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND AND AIM Parabens are widely used as antimicrobial preservatives in personal care products. Studies investigating obesogenic or cardiovascular effects of parabens show discordant results, while data on preschool children are lacking. Paraben exposure during early childhood could have profound cardiometabolic effects later in life. METHODS In this cross-sectional study paraben concentrations [methyl (MeP), ethyl (EtP), propyl (PrP), butyl (BuP)] were measured by ultra-performance liquid chromatography/tandem mass spectrometry in 300 urinary samples of 4-6-year-old children of the ENVIRONAGE birth cohort. Paraben values below the limit of quantitation (LOQ) were imputed by censored likelihood multiple imputation. The associations between log-transformed paraben values and cardiometabolic measurements (BMI z-scores, waist circumference, blood pressure and retinal microvasculature) were analyzed in multiple linear regression models with a priori selected covariates. Effect modification by sex was investigated by including interaction terms. RESULTS Geometric means (geometric SD) of urinary MeP, EtP, and PrP levels above the LOQ were 32.60 (6.64), 1.26 (3.45), and 4.82 (4.11) μg/L, respectively. For BuP more than 96% of all measurements were below the LOQ. Regarding the microvasculature, we found direct associations between MeP and central retinal venular equivalent (β = 1.23, p = 0.039) and PrP with the retinal tortuosity index (x103)(β = 1.75, p = 0.0044). Furthermore, we identified inverse associations between MeP and ∑parabens with BMI z-scores (β = -0.067, p = 0.015 and β = -0.070, p = 0.014 respectively), and EtP with mean arterial pressure (β = -0.69, p = 0.048). The direction of association between EtP and BMI z-scores showed evidence for sex-specific differences with a direct trend in boys (β = 0.10, p = 0.060). CONCLUSIONS Already at young age paraben exposure is associated with potentially adverse changes in the retinal microvasculature.
Collapse
Affiliation(s)
- Brigitte Reimann
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Hanne Sleurs
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Yinthe Dockx
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Leen Rasking
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Patrick De Boever
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium; Health Unit, Flemish Institute for Technological Research, Mol, Belgium
| | - Catherine Pirard
- Laboratory of Clinical, Forensic and Environmental Toxicology, CHU of Liege, B35, 4000, Liege, Belgium; Center for Interdisciplinary Research on Medicines (CIRM), University of Liege (ULg), CHU, (B35), 4000, Liege, Belgium
| | - Corinne Charlier
- Laboratory of Clinical, Forensic and Environmental Toxicology, CHU of Liege, B35, 4000, Liege, Belgium; Center for Interdisciplinary Research on Medicines (CIRM), University of Liege (ULg), CHU, (B35), 4000, Liege, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium; Department of Public Health, Environment & Health Unit, Leuven University (KU Leuven), 3000, Leuven, Belgium
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium.
| |
Collapse
|
35
|
Zhang M, Qiao J, Xie P, Li Z, Hu C, Li F. The Association between Maternal Urinary Phthalate Concentrations and Blood Pressure in Pregnancy: A Systematic Review and Meta-Analysis. Metabolites 2023; 13:812. [PMID: 37512519 PMCID: PMC10384991 DOI: 10.3390/metabo13070812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/15/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023] Open
Abstract
Phthalates are commonly found in a wide range of environments and have been linked to several negative health outcomes. While earlier research indicated a potential connection between phthalate exposure and blood pressure (BP) during pregnancy, the results of these studies remain inconclusive. The objective of this meta-analysis was to elucidate the relationship between phthalate exposure and BP in pregnancy. A comprehensive literature search was carried out with PubMed, EMBASE, and Web of Science, and pertinent studies published up until 5 March 2023 were reviewed. Random-effects models were utilized to consolidate the findings of continuous outcomes, such as diastolic and systolic BP, as well as the binary outcomes of hypertensive disorders of pregnancy (HDP). The present study included a total of 10 studies. First-trimester MBP exposure exhibited a positive association with mean systolic and diastolic BP during both the second and third trimesters (β = 1.05, 95% CI: 0.27, 1.83, I2 = 93%; β = 0.40, 95% CI: 0.05, 0.74, I2 = 71%, respectively). Second-trimester monobenzyl phthalate (MBzP) exposure was positively associated with systolic and diastolic BP in the third trimester (β = 0.57, 95% CI: 0.01, 1.13, I2 = 0; β = 0.70, 95% CI: 0.27, 1.13, I2 = 0, respectively). Conversely, first-trimester mono-2-ethylhexyl phthalate (MEHP) exposure demonstrated a negative association with mean systolic and diastolic BP during the second and third trimesters (β = -0.32, 95% CI: -0.60, -0.05, I2 = 0; β = -0.32, 95% CI: -0.60, -0.05, I2 = 0, respectively). Additionally, monoethyl phthalate (MEP) exposure was found to be associated with an increased risk of HDP (OR = 1.12, 95% CI: 1.02, 1.23, I2 = 26%). Our study found that several phthalate metabolites were associated with increased systolic and diastolic BP, as well as the risk of HDP across pregnancies. Nevertheless, given the limited number of studies analyzed, additional research is essential to corroborate these findings and elucidate the molecular mechanisms linking phthalates to BP changes during pregnancy.
Collapse
Affiliation(s)
- Mengyue Zhang
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
- Department of Prevention and Health Care, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Jianchao Qiao
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Pinpeng Xie
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Zhuoyan Li
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Chengyang Hu
- Department of Humanistic Medicine, School of Humanistic Medicine, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Fei Li
- Department of Prevention and Health Care, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| |
Collapse
|
36
|
Gao H, Chen LW, Gong C, Shen SC, Zhao JY, Xu DD, Wang Y, Tao FB, Fan XC. The associations between prenatal phthalate exposure and childhood glycolipid metabolism and blood pressure: An updated systematic review and a pilot meta-analysis of prospective cohort studies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115157. [PMID: 37348219 DOI: 10.1016/j.ecoenv.2023.115157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 06/24/2023]
Abstract
This is the first pilot meta-analysis on the association of prenatal phthalate exposure with childhood cardiometabolic risks. A systematic literature search was performed in MEDLINE, Web of Science and CNKI (Chinese National Knowledge Infrastructure) until June 5, 2023. A total of seven studies with 5746 children (2646 girls and 3100 boys) were finally included. Four, three and two studies investigated the effects of maternal phthalate exposure on childhood blood pressure (BP), blood lipids and blood glucose profiles, respectively. The pilot meta-analysis suggested that di-2-ethylhexyl phthalate (DEHP) metabolite exposure was associated with a decrease in childhood z-systolic BP (SBP, β = -0.169, 95% CI = -0.338-0.001). Furthermore, the pooled results showed negative relationships of prenatal ∑DEHP exposure with z-SBP (β = -0.109, 95% CI = -0.163 to -0.055) and z-diastolic BP (DBP, β = -0.126, 95% CI = -0.182 to -0.069) in girls. In addition, MEP exposure was associated with z-SBP in girls (β = -0.227, 95% CI = -0.387 to -0.066). The pooled result showed a positive relationship between prenatal ∑DEHP exposure and triglycerides (β = 0.103, 95% CI = 0.028-0.178). The overall results revealed that exposure to ∑DEHP throughout gestation was associated with a decrease in insulin (β = -0.074, 95% CI = -0.144 to -0.004) and glucose (β = -0.129, 95% CI = -0.199 to -0.058) in boys. Interestingly, there was an inverse relationship of prenatal mono- 3 -carboxypropyl phthalate (MCPP) exposure with glucose in pubertal boys (β = -3.749, 95% CIs = -6.758 to -0.741) but not found in postpubertal children. In conclusion, prenatal phthalate exposure interfered with cardiovascular risk in children with gender-specific differences and was influenced by puberty. Overall, prenatal ∑DEHP was negatively associated with systolic blood pressure in girls and with insulin and glucose in boys but increased the level of triglycerides.
Collapse
Affiliation(s)
- Hui Gao
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Li-Wen Chen
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, Anhui, China
| | - Chen Gong
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, Anhui, China
| | - Shi-Chun Shen
- The First Affiliated Hospital of USTC (University of Science and Technology of China), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jia-Ying Zhao
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, Anhui, China
| | - Dou-Dou Xu
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, Anhui, China
| | - Yang Wang
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, Anhui, China
| | - Fang-Biao Tao
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China.
| | - Xiao-Chen Fan
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, Anhui, China.
| |
Collapse
|
37
|
Mariana M, Castelo-Branco M, Soares AM, Cairrao E. Phthalates' exposure leads to an increasing concern on cardiovascular health. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131680. [PMID: 37269565 DOI: 10.1016/j.jhazmat.2023.131680] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/05/2023]
Abstract
Being an essential component in the plastics industry, phthalates are ubiquitous in the environment and in everyday life. They are considered environmental contaminants that have been classified as endocrine-disrupting compounds. Despite di-2-ethylhexyl phthalate (DEHP) being the most common plasticizer and the most studied to date, there are many others that, in addition to being widely used in the plastic, are also applied in the medical and pharmaceutical industries and cosmetics. Due to their wide use, phthalates are easily absorbed by the human body where they can disrupt the endocrine system by binding to molecular targets and interfering with hormonal homeostasis. Thus, phthalates exposure has been implicated in the development of several diseases in different age groups. Collecting information from the most recent available literature, this review aims to relate human phthalates' exposure with the development of cardiovascular diseases throughout all ages. Overall, most of the studies presented demonstrated an association between phthalates and several cardiovascular diseases, either from prenatal or postnatal exposure, affecting foetuses, infants, children, young and older adults. However, the mechanisms underlying these effects remain poorly explored. Thus, considering the cardiovascular diseases incidence worldwide and the constant human exposure to phthalates, this topic should be extensively studied to understand the mechanisms involved.
Collapse
Affiliation(s)
- Melissa Mariana
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Miguel Castelo-Branco
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; FCS-UBI - Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Amadeu M Soares
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Elisa Cairrao
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; FCS-UBI - Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal.
| |
Collapse
|
38
|
Hua S, Shi F, Xie Z, Wu L, Dai M, Zhang Y, Xu X, Zhu Y, Jiang J. Di-n-butyl phthalate induces oversecretion of vascular endothelium-derived NAP-2 and promotes epithelial-mesenchymal transition of urothelial cells in newborn hypospadias rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114892. [PMID: 37059017 DOI: 10.1016/j.ecoenv.2023.114892] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/19/2023] [Accepted: 04/08/2023] [Indexed: 06/19/2023]
Abstract
Di-n-butyl phthalate (DBP) is a plasticizer commonly used in industrial production and is present in our daily life. It has been confirmed that DBP causes genitourinary malformations, especially hypospadias. However, the research of hypospadias mainly focusses on the genital tubercle in previous studies. In this study, we found DBP could affect the exocrine function of the vascular endothelium which disturb the development of genital nodules and induced hypospadias. We used cytokine array to find that vascular endothelium-derived NAP-2 may be a major abnormal secreted cytokine with biological functions. The transcriptomic sequencing analysis showed that abnormal activation of the RhoA/ROCK signaling pathway was the main reason for increased NAP-2 secretion. The expression levels of epithelial-mesenchymal transition (EMT) biomarkers and NAP-2 in hypospadias animal models were detected with Immunohistochemistry, Western blot, Immunofluorescence, and ELISA methods. The expression levels of NAP-2, RhoA/ROCK signaling pathway related proteins, reactive oxygen species (ROS) levels in HUVEC cells, EMT biomarkers and migration capacity of urothelial cells cocultured with HUVEC were measured with ELISA, flow cytometry, Western blot or Transwell assay for further cell experiments. The results showed that DBP leaded to NAP-2 oversecretion from vascular endothelium mainly rely on the activation of RhoA/ROCK signaling pathway and ROS accumulation. The RhoA/ROCK inhibitor fasudil could partially decrease ROS production, and both fasudil and N-acetyl-L-cysteine (NAC) could decrease NAP-2 secretion. Meanwhile, the oversecretion of NAP-2 from HUVEC in coculture system promoted EMT and migration capacity of urothelial cells, and TGF-β inhibitor LY219761 could block the aberrant activation of EMT process. Therefore, it could be concluded that DBP increase NAP-2 secretion from vascular endothelium by RhoA/ROCK/ROS pathway, and further promote EMT in urothelial cells through TGF-β pathway. This study provided a novel direction for studying the occurrence of hypospadias and may provide a hypospadias predictive marker in the future.
Collapse
Affiliation(s)
- Shan Hua
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Fei Shi
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zhiwen Xie
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Lei Wu
- Department of Urology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, China
| | - Mengqiao Dai
- Shanghai University of Traditional Chinese Medicine, School of Nursing, Shanghai 201203, China
| | - Yongqing Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Xinyu Xu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yiping Zhu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Juntao Jiang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| |
Collapse
|
39
|
Liu Y, Li Y, Xu H, Zhao X, Zhu Y, Zhao B, Yao Q, Duan H, Guo C, Li Y. Pre- and postnatal particulate matter exposure and blood pressure in children and adolescents: A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2023; 223:115373. [PMID: 36731599 DOI: 10.1016/j.envres.2023.115373] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/10/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Early life is a susceptible period of air pollution-related adverse health effects. Hypertension in children might be life-threatening without prevention or treatment. Nevertheless, the causative association between environmental factors and childhood hypertension was limited. In the light of particulate matter (PM) as an environmental risk factor for cardiovascular diseases, this study investigated the association of pre- and postnatal PM exposure with blood pressure (BP) and hypertension among children and adolescents. METHOD Four electronic databases were searched for related epidemiological studies published up to September 13, 2022. Stata 14.0 was applied to examine the heterogeneity among the studies and evaluate the combined effect sizes per 10 μg/m3 increase of PM by selecting the corresponding models. Besides, subgroup analysis, sensitivity analysis, and publication bias test were also conducted. RESULTS Prenatal PM2.5 exposure was correlated with increased diastolic blood pressure (DBP) in offspring [1.14 mmHg (95% CI: 0.12, 2.17)]. For short-term postnatal exposure effects, PM2.5 (7-day average) was significantly associated with systolic blood pressure (SBP) [0.20 mmHg (95% CI: 0.16, 0.23)] and DBP [0.49 mmHg (95% CI: 0.45, 0.53)]; and also, PM10 (7-day average) was significantly associated with SBP [0.14 mmHg (95% CI: 0.12, 0.16)]. For long-term postnatal exposure effects, positive associations were manifested in SBP with PM2.5 [β = 0.44, 95% CI: 0.40, 0.48] and PM10 [β = 0.35, 95% CI: 0.19, 0.51]; DBP with PM1 [β = 0.45, 95% CI: 0.42, 0.49], PM2.5 [β = 0.31, 95% CI: 0.27, 0.35] and PM10 [β = 0.32, 95% CI: 0.19, 0.45]; and hypertension with PM1 [OR = 1.43, 95% CI: 1.40, 1.46], PM2.5 [OR = 1.65, 95% CI: 1.29, 2.11] and PM10 [OR = 1.26, 95% CI: 1.09, 1.45]. CONCLUSION Both prenatal and postnatal exposure to PM can increase BP, contributing to a higher prevalence of hypertension in children and adolescents.
Collapse
Affiliation(s)
- Yufan Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yan Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Hailin Xu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xinying Zhao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yawen Zhu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Bosen Zhao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Qing Yao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Huawei Duan
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Caixia Guo
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China.
| | - Yanbo Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
40
|
Mouat JS, Li X, Neier K, Zhu Y, Mordaunt CE, La Merrill MA, Lehmler HJ, Jones MP, Lein PJ, Schmidt RJ, LaSalle JM. Networks of placental DNA methylation correlate with maternal serum PCB concentrations and child neurodevelopment. ENVIRONMENTAL RESEARCH 2023; 220:115227. [PMID: 36608759 PMCID: PMC10518186 DOI: 10.1016/j.envres.2023.115227] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Gestational exposure to polychlorinated biphenyls (PCBs) has been associated with elevated risk for neurodevelopmental disorders. Placental epigenetics may serve as a potential mechanism of risk or marker of altered placental function. Prior studies have associated differential placental DNA methylation with maternal PCB exposure or with increased risk of autism spectrum disorder (ASD). However, sequencing-based placental methylomes have not previously been tested for simultaneous associations with maternal PCB levels and child neurodevelopmental outcomes. OBJECTIVES We aimed to identify placental DNA methylation patterns associated with maternal PCB levels and child neurodevelopmental outcomes in the high-risk ASD MARBLES cohort. METHODS We measured 209 PCB congeners in 104 maternal serum samples collected at delivery. We identified networks of DNA methylation from 147 placenta samples using the Comethyl R package, which performs weighted gene correlation network analysis for whole genome bisulfite sequencing data. We tested placental DNA methylation modules for association with maternal serum PCB levels, child neurodevelopment, and other participant traits. RESULTS PCBs 153 + 168, 170, 180 + 193, and 187 were detected in over 50% of maternal serum samples and were highly correlated with one another. Consistent with previous findings, maternal age was the strongest predictor of serum PCB levels, alongside year of sample collection, pre-pregnancy BMI, and polyunsaturated fatty acid levels. Twenty seven modules of placental DNA methylation were identified, including five which significantly correlated with one or more PCBs, and four which correlated with child neurodevelopment. Two modules associated with maternal PCB levels as well as child neurodevelopment, and mapped to CSMD1 and AUTS2, genes previously implicated in ASD and identified as differentially methylated regions in mouse brain and placenta following gestational PCB exposure. CONCLUSIONS Placental DNA co-methylation modules were associated with maternal PCBs and child neurodevelopment. Methylation of CSMD1 and AUTS2 could be markers of altered placental function and/or ASD risk following maternal PCB exposure.
Collapse
Affiliation(s)
- Julia S Mouat
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA; Perinatal Origins of Disparities Center, University of California, Davis, CA, USA; Genome Center, University of California, Davis, CA, USA; MIND Institute, University of California, Davis, CA, USA
| | - Xueshu Li
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Kari Neier
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA; Perinatal Origins of Disparities Center, University of California, Davis, CA, USA; Genome Center, University of California, Davis, CA, USA; MIND Institute, University of California, Davis, CA, USA
| | - Yihui Zhu
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA; Perinatal Origins of Disparities Center, University of California, Davis, CA, USA; Genome Center, University of California, Davis, CA, USA; MIND Institute, University of California, Davis, CA, USA
| | - Charles E Mordaunt
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA; Perinatal Origins of Disparities Center, University of California, Davis, CA, USA; Genome Center, University of California, Davis, CA, USA; MIND Institute, University of California, Davis, CA, USA
| | - Michele A La Merrill
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA; Department of Environmental Toxicology, University of California, Davis, CA, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Michael P Jones
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Pamela J Lein
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA; MIND Institute, University of California, Davis, CA, USA; Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Rebecca J Schmidt
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA; MIND Institute, University of California, Davis, CA, USA; Department of Public Health Sciences, School of Medicine, University of California, Davis, CA, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA; Perinatal Origins of Disparities Center, University of California, Davis, CA, USA; Genome Center, University of California, Davis, CA, USA; MIND Institute, University of California, Davis, CA, USA.
| |
Collapse
|
41
|
Fabbri L, Garlantézec R, Audouze K, Bustamante M, Carracedo Á, Chatzi L, Ramón González J, Gražulevičienė R, Keun H, Lau CHE, Sabidó E, Siskos AP, Slama R, Thomsen C, Wright J, Lun Yuan W, Casas M, Vrijheid M, Maitre L. Childhood exposure to non-persistent endocrine disrupting chemicals and multi-omic profiles: A panel study. ENVIRONMENT INTERNATIONAL 2023; 173:107856. [PMID: 36867994 DOI: 10.1016/j.envint.2023.107856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Individuals are exposed to environmental pollutants with endocrine disrupting activity (endocrine disruptors, EDCs) and the early stages of life are particularly susceptible to these exposures. Previous studies have focused on identifying molecular signatures associated with EDCs, but none have used repeated sampling strategy and integrated multiple omics. We aimed to identify multi-omic signatures associated with childhood exposure to non-persistent EDCs. METHODS We used data from the HELIX Child Panel Study, which included 156 children aged 6 to 11. Children were followed for one week, in two time periods. Twenty-two non-persistent EDCs (10 phthalate, 7 phenol, and 5 organophosphate pesticide metabolites) were measured in two weekly pools of 15 urine samples each. Multi-omic profiles (methylome, serum and urinary metabolome, proteome) were measured in blood and in a pool urine samples. We developed visit-specific Gaussian Graphical Models based on pairwise partial correlations. The visit-specific networks were then merged to identify reproducible associations. Independent biological evidence was systematically sought to confirm some of these associations and assess their potential health implications. RESULTS 950 reproducible associations were found among which 23 were direct associations between EDCs and omics. For 9 of them, we were able to find corroborating evidence from previous literature: DEP - serotonin, OXBE - cg27466129, OXBE - dimethylamine, triclosan - leptin, triclosan - serotonin, MBzP - Neu5AC, MEHP - cg20080548, oh-MiNP - kynurenine, oxo-MiNP - 5-oxoproline. We used these associations to explore possible mechanisms between EDCs and health outcomes, and found links to health outcomes for 3 analytes: serotonin and kynurenine in relation to neuro-behavioural development, and leptin in relation to obesity and insulin resistance. CONCLUSIONS This multi-omics network analysis at two time points identified biologically relevant molecular signatures related to non-persistent EDC exposure in childhood, suggesting pathways related to neurological and metabolic outcomes.
Collapse
Affiliation(s)
- Lorenzo Fabbri
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Ronan Garlantézec
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail), UMR_S 1085, Rennes, France
| | - Karine Audouze
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France
| | - Mariona Bustamante
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; CIBER Epidemiologa y Salud Pública (CIBERESP), Madrid, Spain
| | - Ángel Carracedo
- Medicine Genomics Group, Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), University of Santiago de Compostela, CEGEN-PRB3, Santiago de Compostela, Spain; Galician Foundation of Genomic Medicine, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
| | - Leda Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Juan Ramón González
- ISGlobal, Barcelona, Spain; CIBER Epidemiologa y Salud Pública (CIBERESP), Madrid, Spain; Department of Mathematics, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | - Hector Keun
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery and Cancer & Division of Systems Medicine, Department of Metabolism, Digestion & Reproduction, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Chung-Ho E Lau
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK; Division of Systems Medicine, Department of Metabolism, Digestion & Reproduction, Imperial College, South Kensington, London, UK
| | - Eduard Sabidó
- Universitat Pompeu Fabra (UPF), Barcelona, Spain; Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Alexandros P Siskos
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery and Cancer & Division of Systems Medicine, Department of Metabolism, Digestion & Reproduction, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Rémy Slama
- Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Inserm, CNRS, Université Grenoble Alpes, Grenoble, France
| | - Cathrine Thomsen
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Wen Lun Yuan
- Université de Paris, Centre for Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Paris, France; Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Maribel Casas
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiologa y Salud Pública (CIBERESP), Madrid, Spain
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiologa y Salud Pública (CIBERESP), Madrid, Spain
| | - Léa Maitre
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiologa y Salud Pública (CIBERESP), Madrid, Spain.
| |
Collapse
|
42
|
Baker-Smith CM, Yang W, McDuffie MJ, Nescott EP, Wolf BJ, Wu CH, Zhang Z, Akins RE. Association of Area Deprivation With Primary Hypertension Diagnosis Among Youth Medicaid Recipients in Delaware. JAMA Netw Open 2023; 6:e233012. [PMID: 36920393 PMCID: PMC10018318 DOI: 10.1001/jamanetworkopen.2023.3012] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/30/2023] [Indexed: 03/16/2023] Open
Abstract
Importance The association between degree of neighborhood deprivation and primary hypertension diagnosis in youth remains understudied. Objective To assess the association between neighborhood measures of deprivation and primary hypertension diagnosis in youth. Design, Setting, and Participants This cross-sectional study included 65 452 Delaware Medicaid-insured youths aged 8 to 18 years between January 1, 2014, and December 31, 2019. Residence was geocoded by national area deprivation index (ADI). Exposures Higher area deprivation. Main Outcomes and Measures The main outcome was primary hypertension diagnosis based on International Classification of Diseases, Ninth Revision and Tenth Revision codes. Data were analyzed between September 1, 2021, and December 31, 2022. Results A total of 65 452 youths were included in the analysis, including 64 307 (98.3%) without a hypertension diagnosis (30 491 [47%] female and 33 813 [53%] male; mean [SD] age, 12.5 (3.1) years; 12 500 [19%] Hispanic, 25 473 [40%] non-Hispanic Black, 24 565 [38%] non-Hispanic White, and 1769 [3%] other race or ethnicity; 13 029 [20%] with obesity; and 31 548 [49%] with an ADI ≥50) and 1145 (1.7%) with a diagnosis of primary hypertension (mean [SD] age, 13.3 [2.8] years; 464 [41%] female and 681 [59%] male; 271 [24%] Hispanic, 460 [40%] non-Hispanic Black, 396 [35%] non-Hispanic White, and 18 [2%] of other race or ethnicity; 705 [62%] with obesity; and 614 [54%] with an ADI ≥50). The mean (SD) duration of full Medicaid benefit coverage was 61 (16) months for those with a diagnosis of primary hypertension and 46.0 (24.3) months for those without. By multivariable logistic regression, residence within communities with ADI greater than or equal to 50 was associated with 60% greater odds of a hypertension diagnosis (odds ratio [OR], 1.61; 95% CI 1.04-2.51). Older age (OR per year, 1.16; 95%, CI, 1.14-1.18), an obesity diagnosis (OR, 5.16; 95% CI, 4.54-5.85), and longer duration of full Medicaid benefit coverage (OR, 1.03; 95% CI, 1.03-1.04) were associated with greater odds of primary hypertension diagnosis, whereas female sex was associated with lower odds (OR, 0.68; 95%, 0.61-0.77). Model fit including a Medicaid-by-ADI interaction term was significant for the interaction and revealed slightly greater odds of hypertension diagnosis for youths with ADI less than 50 (OR, 1.03; 95% CI, 1.03-1.04) vs ADI ≥50 (OR, 1.02; 95% CI, 1.02-1.03). Race and ethnicity were not associated with primary hypertension diagnosis. Conclusions and Relevance In this cross-sectional study, higher childhood neighborhood ADI, obesity, age, sex, and duration of Medicaid benefit coverage were associated with a primary hypertension diagnosis in youth. Screening algorithms and national guidelines may consider the importance of ADI when assessing for the presence and prevalence of primary hypertension in youth.
Collapse
Affiliation(s)
- Carissa M. Baker-Smith
- Cardiovascular Research and Innovation Program, Nemours Cardiac Center, Nemours Children’s Health, Wilmington, Delaware
| | - Wei Yang
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Mary J. McDuffie
- Center for Community Research and Service, University of Delaware Biden School of Public Policy and Administration, University of Delaware, Newark
| | - Erin P. Nescott
- Center for Community Research and Service, University of Delaware Biden School of Public Policy and Administration, University of Delaware, Newark
| | | | - Cathy H. Wu
- Data Science Institute, University of Delaware, Newark
| | - Zugui Zhang
- Institute for Research in Equity and Community Health, Christiana Care Health Services, Inc, Newark, Delaware
| | - Robert E. Akins
- Center for Pediatric Clinical Research and Development, Nemours Children’s Health, Wilmington, Delaware
| |
Collapse
|
43
|
Wang J, Du B, Wu Y, Li Z, Wang H, Niu Y, Ye Y, Chen Q, Wang Q, Wu Y, Chen S, Zhang X, Zhang J, Sun K. Maternal plasma perfluoroalkyl substances concentrations in early pregnancy and cardiovascular development in offspring: A prospective cohort study. ENVIRONMENT INTERNATIONAL 2023; 173:107748. [PMID: 36848830 DOI: 10.1016/j.envint.2023.107748] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/25/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND High maternal plasma perfluoroalkyl substances (PFAS) concentrations has been associated with adverse birth outcomes, but data on early childhood cardiovascular health is limited. This study aimed to assess the potential association between maternal plasma PFAS concentrations during early pregnancy and cardiovascular development in offspring. MATERIAL AND METHODS Cardiovascular development was assessed through blood pressure measurement, echocardiography and carotid ultrasound examinations among 957 children from the Shanghai Birth Cohort aged at 4 years old. Maternal plasma concentrations of PFAS were measured at mean gestational age of 14.4 (SD:1.8) weeks. The joint associations between PFAS mixture concentrations and cardiovascular parameters were analyzed using a Bayesian kernel machine regression (BKMR). The potential association of individual PFAS chemicals concentrations was explored using multiple linear regression. RESULTS In BKMR analyses, carotid intima media thickness (cIMT), interventricular septum thickness in diastole and systole, posterior wall thicknesses in diastole and systole, and relative wall thickness were significantly lower when all log10-transformed PFAS were fixed at 75th percentile in comparison to at their 50th percentile[Estimated overall Risk:-0.31 (95%CI: -0.42, -0.20), -0.09 (95%CI: -0.11, -0.07), -0.21 (95%CI: -0.26, -0.16), -0.09 (95%CI: -0.11, -0.07), -0.07 (95%CI: -0.10, -0.04) and -0.005 (95%CI: -0.006, -0.004)].Furthermore, maternal plasma concentrations of individual short-chain PFAS was associated with a decrease in left ventricular wall thickness, intraventricular septum thickness and enlarged chamber volume, and long-chain with a decrease in cIMT. CONCLUSIONS Our findings suggest that maternal plasma PFAS concentrations during early pregnancy was adversely associated with cardiovascular development in offspring, including thinner cardiac wall thickness and cIMT.
Collapse
Affiliation(s)
- Jian Wang
- Department of Pediatric Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bowen Du
- Department of Pediatric Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yujian Wu
- Department of Pediatric Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuoyan Li
- Department of Pediatric Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hualin Wang
- Department of Pediatric Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwei Niu
- Department of Pediatric Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yujiao Ye
- Department of Pediatric Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Chen
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianchuo Wang
- Department of Pediatric Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yurong Wu
- Department of Pediatric Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sun Chen
- Department of Pediatric Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi Zhang
- Clinical Research Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Kun Sun
- Department of Pediatric Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
44
|
Figaroa MNS, Gielen M, Casas L, Loos RJF, Derom C, Weyers S, Nawrot TS, Zeegers MP, Bijnens EM. Early-life residential green spaces and traffic exposure in association with young adult body composition: a longitudinal birth cohort study of twins. Environ Health 2023; 22:18. [PMID: 36800959 PMCID: PMC9936720 DOI: 10.1186/s12940-023-00964-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Globally, the rapid increase of obesity is reaching alarming proportions. A new approach to reduce obesity and its comorbidities involves tackling the built environment. Environmental influences seem to play an important role, but the environmental influences in early life on adult body composition have not been thoroughly investigated. This study seeks to fill the research gap by examining early-life exposure to residential green spaces and traffic exposure in association with body composition among a population of young adult twins. METHODS As part of the East Flanders Prospective Twin Survey (EFPTS) cohort, this study included 332 twins. Residential addresses of the mothers at time of birth of the twins were geocoded to determine residential green spaces and traffic exposure. To capture body composition, body mass index, waist-to-hip ratio (WHR), waist circumference, skinfold thickness, leptin levels, and fat percentage were measured at adult age. Linear mixed modelling analyses were conducted to investigate early-life environmental exposures in association with body composition, while accounting for potential confounders. In addition, moderator effects of zygosity/chorionicity, sex and socio-economic status were tested. RESULTS Each interquartile range (IQR) increase in distance to highway was found associated with an increase of 1.2% in WHR (95%CI 0.2-2.2%). For landcover of green spaces, each IQR increase was associated with 0.8% increase in WHR (95%CI 0.4-1.3%), 1.4% increase in waist circumference (95%CI 0.5-2.2%), and 2.3% increase in body fat (95%CI 0.2-4.4%). Stratified analyses by zygosity/chorionicity type indicated that in monozygotic monochorionic twins, each IQR increase in land cover of green spaces was associated with 1.3% increase in WHR (95%CI 0.5-2.1%). In monozygotic dichorionic twins, each IQR increase in land cover of green spaces was associated with 1.4% increase in waist-circumference (95%CI 0.6-2.2%). CONCLUSIONS The built environment in which mothers reside during pregnancy might play a role on body composition among young adult twins. Our study revealed that based on zygosity/chorionicity type differential effects of prenatal exposure to green spaces on body composition at adult age might exist.
Collapse
Affiliation(s)
- M N S Figaroa
- Department of Epidemiology and Social Medicine, University of Antwerp, Antwerp, Belgium
| | - M Gielen
- Department of Epidemiology, NUTRIM School for Translational Research in Metabolism, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, The Netherlands.
| | - L Casas
- Social Epidemiology and Health Policy, Department of Family Medicine and Population Health, University of Antwerp, Antwerp, Belgium
- Institute for Environment and Sustainable Development (IMDO), University of Antwerp, Antwerp, Belgium
| | - R J F Loos
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - C Derom
- Department of Human Structure and Repair, University Ghent, Ghent, Belgium
| | - S Weyers
- Department of Human Structure and Repair, University Ghent, Ghent, Belgium
| | - T S Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - M P Zeegers
- Department of Epidemiology, NUTRIM School for Translational Research in Metabolism, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, The Netherlands
- Department of Epidemiology, Care and Public Health Research Institute, Maastricht University, Maastricht, The Netherlands
| | - E M Bijnens
- Department of Human Structure and Repair, University Ghent, Ghent, Belgium
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
- Department of Environmental Sciences, Faculty of Science, Open University, Heerlen, The Netherlands
| |
Collapse
|
45
|
Ma Y, Liang C, Wang Z, Wang X, Xie L, Tao S, Yan S, Wu X, Wei Z, Tong J, Tao X, Tao F. Association between prenatal metals exposure and blood pressure in 5-6 years children: A birth cohort study. ENVIRONMENTAL RESEARCH 2023; 219:114974. [PMID: 36463992 DOI: 10.1016/j.envres.2022.114974] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/20/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The trajectory of blood pressure (BP) from childhood to early middle age suggested that individuals with elevated BP in early childhood were more likely to be affected by cardiovascular disease in adulthood. Exposure to metals may affect BP in children, and pregnancy is a sensitive time for metal exposure. This study assessed the relationship between different stages of prenatal exposure to metals or metal mixtures and BP in children aged 5-6 years. METHODS The study included 2535, 2680, 2534 mother-child pairs in three trimesters, from the Ma'anshan birth cohort study (MABC). We collected maternal blood samples during pregnancy and measured the serum levels of four metals (arsenic, selenium, cadmium, and mercury). BP was measured in children aged 5-6 years. A linear regression model and Bayesian kernel machine regression (BKMR) were used to explore associations between prenatal exposure to metals at different stages and multiple metal exposure with BP in children aged 5-6 years. RESULTS Associations were observed between the arsenic in the third trimester and children's diastolic blood pressure (DBP) (β = 0.88, 95% CI: 0.44, 1.33), systolic blood pressure (SBP) (β = 0.72, 95% CI: 0.19, 1.24) and mean arterial pressure (MAP) (β = 0.83, 95% CI: 0.42, 1.23), as well as between the mercury and children's DBP (β = 0.65, 95% CI: 0.13, 1.16) and MAP (β = 0.60, 95% CI: 0.14, 1.07). The BKMR analysis showed that multiple metals had a significant positive joint effect on children's DBP, SBP and MAP. A potential interaction between arsenic and mercury was observed (β = -0.85, 95% CI: -1.62, -0.08). CONCLUSIONS Exposure to arsenic and mercury during pregnancy was associated with altered BP in children. The third trimester may represent an important window of opportunity to reduce the effects of metal exposure on children's blood pressure and long-term health.
Collapse
Affiliation(s)
- Yufan Ma
- Department of Maternal, Child and Adolescent Health, Anhui Medical University, Hefei, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Chunmei Liang
- Department of Maternal, Child and Adolescent Health, Anhui Medical University, Hefei, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, Anhui, China
| | - Zihan Wang
- Department of Maternal, Child and Adolescent Health, Anhui Medical University, Hefei, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xing Wang
- Department of Maternal, Child and Adolescent Health, Anhui Medical University, Hefei, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Liangliang Xie
- Ma'anshan Maternal and Child Health Center, No 446 Jiashan Road, Ma'anshan, Anhui Province, China
| | - Shuman Tao
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, Anhui, China
| | - Shuangqin Yan
- Ma'anshan Maternal and Child Health Center, No 446 Jiashan Road, Ma'anshan, Anhui Province, China
| | - Xiaoyan Wu
- Department of Maternal, Child and Adolescent Health, Anhui Medical University, Hefei, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, Anhui, China
| | - Zhaolian Wei
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Juan Tong
- Department of Maternal, Child and Adolescent Health, Anhui Medical University, Hefei, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, Anhui, China
| | - Xingyong Tao
- Department of Maternal, Child and Adolescent Health, Anhui Medical University, Hefei, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, Anhui, China.
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, Anhui Medical University, Hefei, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, Anhui, China
| |
Collapse
|
46
|
Guo C, Chang LY, Bo Y, Lin C, Lau AKH, Tam T, Lao XQ. Life-course exposure to ambient fine particulate matter and hypertension in adulthood: a longitudinal cohort study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:788-797. [PMID: 35904742 DOI: 10.1007/s11356-022-22272-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
PM2.5-hypertension association were well documented in adults, while the effects of life-course exposure to PM2.5 on adulthood hypertension remained unclear. This study aimed to investigate the associations between life-course exposure to ambient PM2.5 and incident hypertension in adulthood in Asia. We included 4272 participants with 17,814 medical visits from two open cohorts in Taiwan and Hong Kong between 2000 and 2018. We used a satellite-based model to assess 2-year average PM2.5 exposure at a resolution of 1 km2. A linear mixed model was used to examine the association with blood pressure. A Cox regression model with time-dependent covariates was used to examine the overall association with the development of hypertension in adulthood. Life-course mixed models were used to examine the effects of PM2.5 exposure at different life stages on blood pressure and hypertension. For every 10 μg/m3 increase in PM2.5, the overall risk of adulthood hypertension increased by 40% (95% confidence interval [CI] 8-80%). The health effects of PM2.5 exposure at different life-stages on incident hypertension were generally independent of each other. In critical model, the risk of developing hypertension increased 23%, 27%, and 55% for each 10 μg/m3 increase in PM2.5 exposure during school age, adolescence, and adulthood, respectively. Similar associations were found between life-course PM2.5 exposure and blood pressure. Association between PM2.5 and adulthood hypertension can be traced back to childhood. Our study suggests that life-course control of air pollution exposure should be implemented to alleviate the huge burden of adulthood hypertension.
Collapse
Affiliation(s)
- Cui Guo
- Jockey Club School of Public Health and Primary Care, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ly-Yun Chang
- Institute of Sociology, Academia Sinica, Taipei, Taiwan
| | - Yacong Bo
- Jockey Club School of Public Health and Primary Care, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Changqing Lin
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Alexis K H Lau
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Department of Civil and Environmental Engineering, the Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Tony Tam
- Department of Sociology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiang Qian Lao
- Jockey Club School of Public Health and Primary Care, the Chinese University of Hong Kong, Hong Kong SAR, China.
- Shenzhen Research Institute of the Chinese University of Hong Kong, Shenzhen, China.
| |
Collapse
|
47
|
Gao H, Geng ML, Tong J, Wang BL, Huang K, Zhang Y, Gan H, Zhu BB, Ding P, Wang QN, Wang JQ, Zhang C, Zhu P, Tao FB. Combined effects of prenatal phthalate exposure on cardiometabolic risk score among 4- to 7-year-old children: MABC study. CHEMOSPHERE 2023; 311:137135. [PMID: 36343738 DOI: 10.1016/j.chemosphere.2022.137135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/23/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
There is currently no consensus about the impact of prenatal phthalate exposure on blood pressure and glycolipids in children. Few studies consider the health effects as an integrated indicator. The combined effect of multiple phthalate exposures is often ignored. Based on the Ma'anshan Birth Cohort, 2298 woman-child pairs were included in this study. Maternal urine was collected in each trimester to analyze 6 phthalate metabolites. The overall cardiometabolic risk (CMR) score was calculated based on serum glycolipids and blood pressure for children aged 4-7 years. A higher score represents a less favorable CMR profile. The restricted cubic spline model was used to explore the relationship between prenatal phthalate exposure and childhood CMR score. In addition, the quantile g-computation and the Bayesian kernel machine regression were used to evaluate the combined effect. The MBP exposure in the 1st trimester (MBP-1st) and the MEP-2nd were non-linearly associated with the CMR score (Fnonlinear = 3.28 and 5.60, Pnonlinear = 0.0378 and 0.0038, respectively). The MBP-3rd (Flinear = 5.31, Plinear = 0.0012) and the ∑LMWP-3rd (Flinear = 4.37, Plinear = 0.0045) were negatively associated with the score in a linear manner. The phthalate mixture in the 2nd trimester increased the score (psil = 0.1747, 95% CI = 0.0077-0.3416), with the MEP being the most common [weights = 0.5290; posterior inclusion probability (PIP) = 0.40]. The phthalate mixture in the 3rd trimester decreased the score (psil = -0.2024, 95% CI = -0.4097-0.0048), with the MEHP (weights = -0.5101; PIP = 0.14) and the MBP (weights = -0.3993, PIP = 1.00) being the greatest contributors. In conclusion, the MBP-1st and the MEP-2nd are non-linearly associated with the cardiometabolic risk in children. The MBP-3rd and the ∑LMWP-3rd decrease the childhood risk. The combined exposure to phthalate mixture in the second and third trimester elevates and decreases the risk of childhood cardiometabolism, respectively.
Collapse
Affiliation(s)
- Hui Gao
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Meng-Long Geng
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Juan Tong
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Bao-Lin Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Kun Huang
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yi Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Hong Gan
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Bei-Bei Zhu
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Peng Ding
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Qu-Nan Wang
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jian-Qing Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Cheng Zhang
- Anhui Provincial Cancer Institute, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, China
| | - Peng Zhu
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Fang-Biao Tao
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
48
|
Zhang M, Brady TM, Buckley JP, Appel LJ, Hong X, Wang G, Liang L, Wang X, Mueller NT. Metabolome-Wide Association Study of Cord Blood Metabolites With Blood Pressure in Childhood and Adolescence. Hypertension 2022; 79:2806-2820. [PMID: 36111548 PMCID: PMC9649875 DOI: 10.1161/hypertensionaha.122.20139] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/28/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND No studies have examined whether the cord blood metabolome-a reflection of in utero metabolism-influences blood pressure (BP) in children. OBJECTIVES To examine prospective associations of cord blood metabolites with systolic BP (SBP), diastolic BP (DBP), and risk of elevated BP in childhood and adolescence. METHODS In the Boston Birth Cohort, we measured metabolites in cord blood plasma, and SBP and DBP at clinic visits between 3 and 18 years. We examined associations of cord metabolites with SBP and DBP percentiles using linear mixed models and with elevated BP using mixed-effects Poisson regression. RESULTS Our study included 902 mother-child dyads (60% Black, 23% Hispanic, 45% female). Children were followed for a median of 9.2 (interquartile range, 6.7-11.7) years, and the median number of BP observations per child was 7 (interquartile range, 4-11). After false discovery rate correction, 3 metabolites were associated with SBP, 96 with DBP, and 24 with elevated BP; 2 metabolites (1-methylnicotinamide, dimethylguanidino valeric acid) were associated with all 3 outcomes, and 21 metabolites were associated with both DBP and elevated BP. After multivariable adjustment, 48 metabolites remained significantly associated with DBP. Metabolites that showed the strongest associations with SBP, DBP, and elevated BP included nucleotides (eg, xanthosine, hypoxanthine, xanthine) and acylcarnitines (eg, C6 and C7 carnitines), which represent fatty acid oxidation and purine metabolism pathways. CONCLUSIONS In our urban and predominantly racial/ethnic minority cohort, we provide evidence that metabolomic alterations in utero, in particular, acylcarnitine- and purine-metabolism metabolites, may be involved in the early life origins of hypertension.
Collapse
Affiliation(s)
- Mingyu Zhang
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD
| | - Tammy M Brady
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jessie P Buckley
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Lawrence J Appel
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD
- Division of General Internal Medicine, Johns Hopkins School of Medicine, Baltimore, MD
| | - Xiumei Hong
- Center on the Early Life Origins of Disease, Johns Hopkins University, Baltimore, MD
- Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Guoying Wang
- Center on the Early Life Origins of Disease, Johns Hopkins University, Baltimore, MD
- Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Xiaobin Wang
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
- Center on the Early Life Origins of Disease, Johns Hopkins University, Baltimore, MD
- Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Noel T Mueller
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
49
|
Yim G, Reynaga L, Nunez V, Howe CG, Romano ME, Chen Y, Karagas MR, Toledo-Corral C, Farzan SF. Perinatal Metal and Metalloid Exposures and Offspring Cardiovascular Health Risk. Curr Environ Health Rep 2022; 9:714-734. [PMID: 35980568 PMCID: PMC11559654 DOI: 10.1007/s40572-022-00377-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW Toxic metal exposures have been associated with cardiovascular disease in adults and growing evidence suggests metal exposures also adversely affect cardiovascular phenotypes in childhood and adolescence. However, to our knowledge, the influence of perinatal metals exposure, particularly metal mixtures, in relation to cardiovascular-related outcomes have not been comprehensively reviewed. RECENT FINDINGS We summarized 17 contemporary studies (2017-2021) that investigated the impact of perinatal metal exposures on measures of cardiovascular health in children. Accumulating evidence supports a potential adverse impact of perinatal Pb exposure on BP in children. Fewer recent studies have focused on perinatal As, Hg, and Cd; thus, the cardiovascular impacts of these metals are less clear. Studies of metal mixtures demonstrate that interactions between metals may be complex and have identified numerous understudied elements and essential metals, including Mo, Co, Ni, Se, Zn, and Mn, which may influence cardiovascular risk. A key question that remains is whether perinatal metals exposure influences cardiovascular health into adulthood. Comparisons across studies remain challenging due to several factors, including differences in the timing of exposure/outcome assessments and exposure biomarkers, as well as variability in exposure levels and mixture compositions across populations. Future studies longitudinally investigating trajectories of cardiovascular outcomes could help determine the influence of perinatal metals exposure on long-term effects of clinical relevance in later life and whether interventions, which reduce metals exposures during this key developmental window, could alter disease development.
Collapse
Affiliation(s)
- Gyeyoon Yim
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Lorena Reynaga
- Department of Health Sciences, California State University at Northridge, Northridge, CA, USA
| | - Velia Nunez
- Department of Health Sciences, California State University at Northridge, Northridge, CA, USA
| | - Caitlin G Howe
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Megan E Romano
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Yu Chen
- Department of Population Health, NYU School of Medicine, New York, NY, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Claudia Toledo-Corral
- Department of Health Sciences, California State University at Northridge, Northridge, CA, USA
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 1845 N Soto Street, Los Angeles, CA, 90032, USA
| | - Shohreh F Farzan
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 1845 N Soto Street, Los Angeles, CA, 90032, USA.
| |
Collapse
|
50
|
Maitre L, Bustamante M, Hernández-Ferrer C, Thiel D, Lau CHE, Siskos AP, Vives-Usano M, Ruiz-Arenas C, Pelegrí-Sisó D, Robinson O, Mason D, Wright J, Cadiou S, Slama R, Heude B, Casas M, Sunyer J, Papadopoulou EZ, Gutzkow KB, Andrusaityte S, Grazuleviciene R, Vafeiadi M, Chatzi L, Sakhi AK, Thomsen C, Tamayo I, Nieuwenhuijsen M, Urquiza J, Borràs E, Sabidó E, Quintela I, Carracedo Á, Estivill X, Coen M, González JR, Keun HC, Vrijheid M. Multi-omics signatures of the human early life exposome. Nat Commun 2022; 13:7024. [PMID: 36411288 PMCID: PMC9678903 DOI: 10.1038/s41467-022-34422-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 10/25/2022] [Indexed: 11/23/2022] Open
Abstract
Environmental exposures during early life play a critical role in life-course health, yet the molecular phenotypes underlying environmental effects on health are poorly understood. In the Human Early Life Exposome (HELIX) project, a multi-centre cohort of 1301 mother-child pairs, we associate individual exposomes consisting of >100 chemical, outdoor, social and lifestyle exposures assessed in pregnancy and childhood, with multi-omics profiles (methylome, transcriptome, proteins and metabolites) in childhood. We identify 1170 associations, 249 in pregnancy and 921 in childhood, which reveal potential biological responses and sources of exposure. Pregnancy exposures, including maternal smoking, cadmium and molybdenum, are predominantly associated with child DNA methylation changes. In contrast, childhood exposures are associated with features across all omics layers, most frequently the serum metabolome, revealing signatures for diet, toxic chemical compounds, essential trace elements, and weather conditions, among others. Our comprehensive and unique resource of all associations ( https://helixomics.isglobal.org/ ) will serve to guide future investigation into the biological imprints of the early life exposome.
Collapse
Affiliation(s)
- Léa Maitre
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Mariona Bustamante
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Carles Hernández-Ferrer
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Denise Thiel
- Department of Mathematics, Imperial College London, South Kensington, London, UK
| | - Chung-Ho E Lau
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Alexandros P Siskos
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery & Cancer, Imperial College London, London, UK
| | - Marta Vives-Usano
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Carlos Ruiz-Arenas
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Dolors Pelegrí-Sisó
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Oliver Robinson
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Dan Mason
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Solène Cadiou
- Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Inserm, CNRS, Université Grenoble Alpes, Grenoble, France
| | - Rémy Slama
- Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Inserm, CNRS, Université Grenoble Alpes, Grenoble, France
| | - Barbara Heude
- Centre for Research in Epidemiology and Statistics (CRESS), Inserm, Université de Paris, Paris, France
| | - Maribel Casas
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Jordi Sunyer
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Eleni Z Papadopoulou
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Kristine B Gutzkow
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Sandra Andrusaityte
- Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | | | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Leda Chatzi
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Amrit K Sakhi
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Cathrine Thomsen
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ibon Tamayo
- Computational Biology program, CIMA-University of Navarra, Pamplona, Spain
| | - Mark Nieuwenhuijsen
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Jose Urquiza
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Eva Borràs
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Eduard Sabidó
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Inés Quintela
- Medicine Genomics Group, Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), University of Santiago de Compostela, CIMUS, Santiago de Compostela, Spain
| | - Ángel Carracedo
- Medicine Genomics Group, Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), University of Santiago de Compostela, CIMUS, Santiago de Compostela, Spain
- Galician Foundation of Genomic Medicine, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Galicia, Spain
| | - Xavier Estivill
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Muireann Coen
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Oncology Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Juan R González
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Hector C Keun
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery & Cancer, Imperial College London, London, UK
| | - Martine Vrijheid
- Institute for Global Health (ISGlobal), Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| |
Collapse
|