1
|
Yang Y, Song H, Cao Y, Li J, Li J, Cui X, Hu X, Mahfuza A, Ning P, Zhang L, Zhao Q, Tian S. Aggregation behavior of photoaging nanoplastics in artificial sweat solutions. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137466. [PMID: 39904158 DOI: 10.1016/j.jhazmat.2025.137466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/20/2025] [Accepted: 01/31/2025] [Indexed: 02/06/2025]
Abstract
The aging process and aggregation behavior of nanoplastics govern their fate and ecological risk in aquatic environments. Unfortunately, the aggregation behavior of nanoplastics in sweat and the effect of aging on this process remains unknown. This study investigated the aggregation kinetics of polystyrene nanoplastics (PS-NPs) in three types of artificial sweat before and after photoaging. The aggregation rates (k) of PS-NPs before and after photoaging followed the order ofAmerican-Association-of-Textile-Chemists-and-Colorists-pH-4.3 (kaged =0.6381 nm/s, koriginal =0.4337 nm/s) > British-Standard-pH-6.5 (kaged =0.3589 nm/s, koriginal =0.1297 nm/s) >International-Standard-Organization-pH-8.0 (kaged =0 nm/s, koriginal =0 nm/s). Photoaging decreased the C-O content on the surface of PS-NPs from 4.47 % to 1.97 %, thus to promote the aggregation of PS-NPs. Moreover, decrease of the pH value of three types of artificial sweat (from 8.0 to 4.3) all increased the aggregation rate of the PS-NPs. Inorganic constituents (NaCl and Na2HPO4) promoted the aggregation of PS-NPs by increasing the positive charges on the surface of PS-NPs, while organic constituents (L-histidine, lactic acid, and urea) stabilized PS-NPs by adsorbing on the surface of PS-NPs. These findings demonstrated that the solution conditions of sweat and photoaging process together determined the transport and distribution of nanoplastics in sweat, offering new insights for assessing and predicting the skin exposure risk of nanoplastics.
Collapse
Affiliation(s)
- Yanlin Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Southwest United Graduate School, Kunming, Yunnan Province 650092, China
| | - Haoran Song
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yan Cao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Jiao Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Jie Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Xiangfen Cui
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Xuewei Hu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Anjum Mahfuza
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Ping Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Linfeng Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Southwest United Graduate School, Kunming, Yunnan Province 650092, China.
| | - Qun Zhao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Senlin Tian
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Southwest United Graduate School, Kunming, Yunnan Province 650092, China.
| |
Collapse
|
2
|
Seghers J, Cella C, Pequeur E, La Spina R, Roncari F, Valsesia A, Mehn D, Gilliland D, Trapmann S, Emteborg H. Approaches for the preparation and evaluation of hydrophilic polyethylene and polyethylene terephthalate microplastic particles suited for toxicological effect studies. Anal Bioanal Chem 2025; 417:2589-2602. [PMID: 39862279 DOI: 10.1007/s00216-024-05726-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/27/2025]
Abstract
When performing effect studies to investigate the impact of microplastic (MP) on cell lines, algae, or daphnia, it is advantageous if such experiments can be performed without the use of surfactants. The need for surfactants arises from the fact that finely milled pristine MP particles generally are hydrophobic. Methods for the preparation of larger amounts of hydrophilic and hence artificially aged MP particles and approaches for their characterization are of high importance. Here we present methods to artificially age polyethylene terephthalate (PET) and low-density polyethylene (PE) using alkaline and acidic treatments that reproducibly result in large quantities of particles below 5 µm with considerably increased hydrophilicity. The artificially aged MP particles were characterized using particle counting by single-particle extinction and scattering (SPES), particle size by laser diffraction measurements, zeta potential using electrophoretic light scattering, hydrophobicity index (Hy) through dark-field (DF) microscopy, chemical composition by inductively coupled plasma-mass spectrometry (ICP-MS), Fourier transform infrared (FTIR) microscopy, and Raman microscopy. The hydrophobicity index values obtained should allow the aged MP particles to be characterized as qualitative reference materials (RMs) with an ordinal property. Evidence for the maintained integrity and hydrophilicity of the artificially aged MP particles (in powder form) over time was obtained by measurements of zeta potential with a 33-month interval. Uniformity of subsampling with respect to particle number concentration in suspensions within a 10-day period was also investigated. It provided evidence for the possibility of reproducible spiking of a specific number of hydrophilic MP particles with relative standard deviations (RSDs) from 6.2 to 13.6%. For the development of future reference materials of artificially aged microplastics, they should be characterized for an ordinal property (artificial age as Hy-index) and nominal property (identity of PET or PE based on spectral matching).
Collapse
Affiliation(s)
- John Seghers
- European Commission, Joint Research Centre (JRC), Geel, Belgium
| | - Claudia Cella
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Emmy Pequeur
- Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, (GhEnToxlab), Ghent University, Ghent, Belgium
| | - Rita La Spina
- European Commission, Joint Research Centre (JRC), Geel, Belgium
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - Andrea Valsesia
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Dora Mehn
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | | | - Håkan Emteborg
- European Commission, Joint Research Centre (JRC), Geel, Belgium.
| |
Collapse
|
3
|
Song K, Gao SH, Pan Y, Gao R, Li T, Xiao F, Zhang W, Fan L, Guo J, Wang A. Ecological and Health Risk Mediated by Micro(nano)plastics Aging Process: Perspectives and Challenges. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5878-5896. [PMID: 40108891 DOI: 10.1021/acs.est.4c11813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Aged micro(nano)plastics (MNPs) are normally the ultimate state of plastics in the environment after aging. The changes in the physical and chemical characteristics of aged MNPs significantly influence their environmental behavior by releasing additives, forming byproducts, and adsorbing contaminants. However, a systematic review is lacking on the effects of aged MNPs on ecological and human health regarding the increasing but scattered studies and results. This Review first summarizes the unique characteristics of aged MNPs and methods for quantifying their aging degree. Then we focused on the potential impacts on organisms, ecosystems, and human health, including the "Trojan horse" under real environmental conditions. Through combining meta-analysis and analytic hierarchy process (AHP) model, we demonstrated that, compared to virgin MNPs, aged MNPs would result in biomass decrease and oxidative stress increase on organisms and lead to total N/P decrease and greenhouse gas emissions increase on ecosystems while causing cell apoptosis, antioxidant system reaction, and inflammation in human health. Within the framework of ecological and human health risk assessment, we used the risk quotient (RQ) and physiologically based pharmacokinetic (PBK) models as examples to illustrate the importance of considering aging characteristics and the degree of MNPs in the process of data acquisition, model building, and formula evaluation. Given the ecological and health risks of aged MNPs, our urgent call for more studies of aged MNPs is to understand the potential hazards of MNPs in real-world environments.
Collapse
Affiliation(s)
- Kexiao Song
- State Key Laboratory of Urban-rural Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shu-Hong Gao
- State Key Laboratory of Urban-rural Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Yusheng Pan
- State Key Laboratory of Urban-rural Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Rui Gao
- State Key Laboratory of Urban-rural Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tianyao Li
- State Key Laboratory of Urban-rural Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Fan Xiao
- State Key Laboratory of Urban-rural Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Wanying Zhang
- State Key Laboratory of Urban-rural Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Lu Fan
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Aijie Wang
- State Key Laboratory of Urban-rural Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
- State Key Laboratory of Urban-rural Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| |
Collapse
|
4
|
Zhuang QL, Yuan HY, Sun M, Deng HG, Zama EF, Tao BX, Zhang BH. Biochar-mediated remediation of low-density polyethylene microplastic-polluted soil-plant systems: Role of phosphorus and protist community responses. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137076. [PMID: 39787863 DOI: 10.1016/j.jhazmat.2024.137076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/09/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025]
Abstract
While the prevalent utilization of plastic products has enabled social advancement, the concomitant microplastics (MPs) pollution presents a serious threat to environmental security and public health. Protists, as regulators of soil microorganisms, are also capable of responding most rapidly to changes in the soil environment. The amelioration mechanisms of biochar in the soil-plant systems polluted by low-density polyethylene microplastics (LDPE-MPs) and the response of protist communities in the soil-plant systems polluted by MPs remain unclear. In this field experiment, the same concentration of biochar (2 %) was applied to remediate different concentrations (1 % and 10 %) of LDPE-MPs pollution in cherry radish soil. The main results indicate that, when compared with the treatment of applying biochar to address high-level LDPE-MPs polluted soil (BP2), the remediation of low-level LDPE-MPs polluted soil by biochar (BP1) led to a 62.02 % reduction in soil available phosphorus. Meanwhile, the abundance of phoD and the activity of alkaline phosphatase increased by 127.75 % and 22.57 % respectively. Moreover, in contrast to BP2, the root biomass and phosphorus content of cherry radish in BP1 increased by 52.80 % and 42.86 % respectively. For protist communities, their structure, niche width, and assembly were altered. The interaction between biochar and LDPE-MPs influenced phosphorus cycling, and protists were closely associated with these processes. Therefore, soil phosphorus cycling indicators and protist community may be important indicators for biochar amelioration on soil MPs pollution. The study highlights the importance of considering these factors for better farmland management in the context of MPs pollution, which is significant for sustainable agriculture and environmental protection.
Collapse
Affiliation(s)
- Qi-Lu Zhuang
- School of Geography and Environment, Liaocheng University, Liaocheng 252000, China; Institute of Huanghe Studies, Liaocheng University, Liaocheng 252000, China
| | - Hai-Yan Yuan
- School of Geography and Environment, Liaocheng University, Liaocheng 252000, China; Institute of Huanghe Studies, Liaocheng University, Liaocheng 252000, China.
| | - Min Sun
- School of Geography and Environment, Liaocheng University, Liaocheng 252000, China
| | - Huan-Guang Deng
- School of Geography and Environment, Liaocheng University, Liaocheng 252000, China
| | - Eric Fru Zama
- Department of Agricultural and Environmental Engineering, College of Technology, University of Bamenda, Bambili, Cameroon
| | - Bao-Xian Tao
- School of Geography and Environment, Liaocheng University, Liaocheng 252000, China
| | - Bao-Hua Zhang
- School of Geography and Environment, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
5
|
Choe Y, Won J, Burns SE. Impact of particle size and oxide phase on microplastic transport through iron oxide-coated sand. WATER RESEARCH 2025; 271:122856. [PMID: 39626544 DOI: 10.1016/j.watres.2024.122856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/08/2024] [Accepted: 11/25/2024] [Indexed: 01/14/2025]
Abstract
The presence of microplastics in aquatic environments threatens the ecological system and human health. This study investigates the transport and retention of polystyrene microplastics (PSMPs) in clean sand, and hematite-, goethite-, and magnetite-coated iron oxide - sands as a function of size ratio and ionic strength. The breakthrough curves (BTCs), retention profiles, and hydraulic pressure were measured through soil-column experiments, and the retention of PSMPs was assessed from the observed BTCs, RPs and first-order attachment coefficients. In addition, the maximum attachment capacity was evaluated to assess the long-term retention of PSMPs. Experimental data showed that the retention of PSMPs increased in the order of goethite-, hematite-, and magnetite-coated sands in all size ratios, which is consistent with the order of attraction energy calculated by extended Derjaguin-Landau-Verwey-Overbeek theory. The findings demonstrated the feasibility of mitigating the transport of microplastic particles using naturally abundant iron-rich soils.
Collapse
Affiliation(s)
- Yongjoon Choe
- School of Civil and Environmental Engineering, Georgia Institute of Technology, 790 Atlantic Drive, N. W., Atlanta, GA, 30332-0355, Georgia.
| | - Jongmuk Won
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulju-gun, Ulsan 44919, Republic of Korea.
| | - Susan E Burns
- School of Civil and Environmental Engineering, Georgia Institute of Technology, 790 Atlantic Drive, N. W., Atlanta, GA, 30332-0355, Georgia.
| |
Collapse
|
6
|
de Ruijter VN, Redondo-Hasselerharm PE, Koelmans AA. A brief history of microplastics effect testing: Guidance and prospect. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125711. [PMID: 39828198 DOI: 10.1016/j.envpol.2025.125711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/16/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Numerous reviews have consistently highlighted the shortcomings of studies evaluating the effects of microplastics (MP), with many of the issues identified in 2016 still relevant in 2024. Here, we summarize the current knowledge on MP effect testing, compare guidelines, and provide an overview of risk assessments conducted at both single species and community levels. We discuss standard test materials, MP characteristics, and mechanisms explaining effects. We have observed that the quality of MP effect studies is gradually improving, and knowledge on enhancing these studies is available. Recommendations include data rescaling and alignment for ecological risk assessment, with preference for using environmentally relevant MPs. A step-by-step protocol for creating polydisperse test materials is provided. Most risk assessments indicate that concentrations observed in ecosystems globally exceed the effect thresholds measured in the laboratory. However, using a higher-tier approach, no risks are expected for freshwater benthic communities at current MP exposure concentrations. Evidence on the mechanisms behind adverse effects is growing; however, more well-designed experiments are needed. A potential solution might involve comparing natural particles with MPs that are as similar in dimensions as possible, providing insight into the mechanisms of food dilution where volume is a critical determinant of toxicity.
Collapse
Affiliation(s)
- Vera N de Ruijter
- Aquatic Ecology and Water Quality Management Group, Wageningen University, the Netherlands
| | | | - Albert A Koelmans
- Aquatic Ecology and Water Quality Management Group, Wageningen University, the Netherlands.
| |
Collapse
|
7
|
Pirade F, Foppen JW, van der Hoek JP, Lompe KM. Polystyrene nanoplastics are unlikely to aggregate in freshwater bodies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125393. [PMID: 39586453 DOI: 10.1016/j.envpol.2024.125393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
The fate and toxicity of nanoplastics (NPs) in the environment is largely determined by their stability. We explored how water composition, nanoplastic size, and surface carboxyl group density influenced the aggregation of polystyrene (PS) NPs in fresh water. Unfunctionalized 200, 300, 500, and 1000 nm PS NPs and 310 nm carboxylated PS NPs with carboxyl group densities of 0.35 and 0.6 mmol g-1 were used to simulate pristine and aged NPs. Natural water matrices tested in this study include synthetic surface water (SSW), water from the Schie canal (Netherlands) and tap water. Suwannee River Natural Organic Matter (SRNOM) was included to mimic organic matter concentrations. In CaCl2, we found PS NPs are more stable as their size increases with the increase of the critical coagulation concentration (CCC) from 44 mM to 59 mM and 77 mM for NP sizes of 200 nm, 300 nm and 500 nm. Conversely, 1000 nm PS NPs remained stable even at 100 mM CaCl2. Increasing the carboxyl group density decreased the stability of NPs as a result of the interaction between Ca2+ and the carboxyl group. These results were consistent with the mass of Ca2+ adsorbed per mass of NPs. The presence of SRNOM decreased the stability of PS NPs via particle bridging facilitated by SRNOM. However, in SSW, Schie water and tap water with low divalent cation concentrations, the hydrodynamic size of PS NPs did not change, even at prolonged durations up to one week. We concluded that PS NPs are unlikely to aggregate in water with low divalent cation concentrations, like natural freshwater bodies. Ecotoxicologists and water treatment engineers will have to consider treating PS NPs as colloidally stable particles as the lack of aggregation in fresh surface water bodies will affect their ecotoxicity and may pose challenges to their removal in water treatment.
Collapse
Affiliation(s)
- Februriyana Pirade
- Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, Netherlands.
| | - Jan Willem Foppen
- Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, Netherlands
| | - Jan Peter van der Hoek
- Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, Netherlands; Waternet, Korte Ouderkerkerdijk 7, 1096AC Amsterdam, Netherlands
| | - Kim Maren Lompe
- Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, Netherlands
| |
Collapse
|
8
|
Xiao X, Hodson ME, Sallach JB. Biodegradable microplastics adsorb more Cd than conventional microplastic and biofilms enhance their adsorption. CHEMOSPHERE 2025; 371:144062. [PMID: 39755213 DOI: 10.1016/j.chemosphere.2025.144062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/29/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025]
Abstract
Biodegradable polylactic acid (PLA) mulch has been developed to replace conventional polyethylene (PE) mulch in agriculture to reduce plastic pollution and the accumulation of microplastics (MPs) in soil. Cadmium (Cd) is a significant soil contaminant, and can be adsorbed by MPs. It is increasingly recognised that in the natural environment biofilms can develop on MPs and that this can affect their adsorption properties. We exposed PLA and PE mulches outdoors for 16 months. MPs were then generated from pristine and weathered mulches. Biofilms developed on the weathered plastics. Oxygen-containing functional groups were detected on the weathered, but not the pristine PE, abundance of these groups increased for the weathered PLA. After removal of the biofilm the observed increases in oxygen-containing functional groups relative to the pristine plastics remained. In adsorption experiments pristine PLA MPs had a greater maximum adsorption capacity than pristine PE MPs (106-126 vs 23.2 mg/kg) despite having a lower specific surface area (0.325 m2/g vs 1.82 m2/g) suggesting that the greater levels of adsorption were due to MP chemistry. The weathered plastics adsorbed more Cd than the pristine plastics (e.g. maximum adsorption capacities of 153-185 and 152 mg/kg for the weathered PLA and PE respectively). However, after removal of the biofilm, adsorption of Cd to the weathered MPs was no greater than for the pristine plastics. This suggests that the increased adsorption of Cd due to weathering was caused primarily by adsorption onto the biofilm.
Collapse
Affiliation(s)
- X Xiao
- Department of Environment and Geography, University of York, York, YO10 5NG, United Kingdom.
| | - M E Hodson
- Department of Environment and Geography, University of York, York, YO10 5NG, United Kingdom
| | - J B Sallach
- Department of Environment and Geography, University of York, York, YO10 5NG, United Kingdom
| |
Collapse
|
9
|
Ducoli S, Rani M, Marchesi C, Speziani M, Zacco A, Gavazzi G, Federici S, Depero LE. Comparison of different fragmentation techniques for the production of true-to-life microplastics. Talanta 2025; 283:127106. [PMID: 39488155 DOI: 10.1016/j.talanta.2024.127106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024]
Abstract
Microplastics are small plastic particles found widely in the environment, posing significant challenges as diverse environmental contaminants. Their pervasive presence and potential impacts on ecosystems and human health underscore the importance of research in this field. However, working with microplastics in the laboratory and field can be challenging due to the difficulty in creating particles that are similar to those found in the environment. The advancement of research in this area is, therefore, dependent on the availability of reference materials or representative test materials that can simulate real-world conditions. One of the biggest challenges in creating more relevant test microplastics is investigating processes that can mimic as close as possible the environmental counterpart. To tackle this challenge, we have explored three distinct cryogenic grinding techniques for generating microplastics on a laboratory scale (ultracentrifugal mill, immersion blender, mixer mill). The resulting products were examined, and the advantages and limitations of the technologies were analyzed to gain deeper insights into the correlation between the various techniques utilized and the distinctive characteristics of the "true-to-life" microplastics produced. This allows us to tailor the production of test materials to the specific research questions they are intended to address. Furthermore, by understanding the characteristics of true-to-life microplastics, we can gain insights into their behavior under various environmental conditions. This knowledge can help in developing better methods for detecting and monitoring microplastics in the environment, as well as developing more effective mitigation strategies to reduce their impact.
Collapse
Affiliation(s)
- S Ducoli
- Department of Mechanical and Industrial Engineering, University of Brescia, via Branze 38, 25123, Brescia, Italy; National Interuniversity Consortium of Materials Science and Technology, INSTM, via G. Giusti 9, 50121, Firenze, Italy
| | - M Rani
- Department of Mechanical and Industrial Engineering, University of Brescia, via Branze 38, 25123, Brescia, Italy
| | - C Marchesi
- Department of Mechanical and Industrial Engineering, University of Brescia, via Branze 38, 25123, Brescia, Italy
| | - M Speziani
- Department of Mechanical and Industrial Engineering, University of Brescia, via Branze 38, 25123, Brescia, Italy; National Interuniversity Consortium of Materials Science and Technology, INSTM, via G. Giusti 9, 50121, Firenze, Italy
| | - A Zacco
- Department of Mechanical and Industrial Engineering, University of Brescia, via Branze 38, 25123, Brescia, Italy; National Interuniversity Consortium of Materials Science and Technology, INSTM, via G. Giusti 9, 50121, Firenze, Italy
| | - G Gavazzi
- Verder Scientific-Retsch, Via Pino Longhi 12, 24066, Pedrengo, Bergamo, Italy
| | - S Federici
- Department of Mechanical and Industrial Engineering, University of Brescia, via Branze 38, 25123, Brescia, Italy; National Interuniversity Consortium of Materials Science and Technology, INSTM, via G. Giusti 9, 50121, Firenze, Italy.
| | - Laura E Depero
- Department of Mechanical and Industrial Engineering, University of Brescia, via Branze 38, 25123, Brescia, Italy; National Interuniversity Consortium of Materials Science and Technology, INSTM, via G. Giusti 9, 50121, Firenze, Italy
| |
Collapse
|
10
|
Beggel S, Kalis EJJ, Geist J. Towards harmonized ecotoxicological effect assessment of micro- and nanoplastics in aquatic systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125504. [PMID: 39662584 DOI: 10.1016/j.envpol.2024.125504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
Micro- and nanoplastics are globally important environmental pollutants. Although research in this field is continuously improving, there are a number of uncertainties, inconsistencies and methodological challenges in the effect assessment of micro- and nanoparticles in freshwater systems. The current understanding of adverse effects is partly biased by the use of non-relevant particle types, unsuitable test setups and environmentally unrealistic dose metrics, which does not take into account realistic processes in particle uptake and consequent effects. Here we summarize the current state of the art by compiling the most recent research with the aim to highlight research gaps and further necessary steps towards more harmonized testing systems. In particular, ecotoxicological scenarios need to mirror environmentally realistic particle diversity and bioavailability. Harmonized test setups should include different uptake pathways, exposures and comparisons with natural reference particles. Effect assessments need to differentiate direct physical particle effects, such as lesions and toxicity caused by the polymer, from indirect effects, such as alterations of ambient environmental conditions by leaching, change of turbidity, food dilution and organisms' behavior. Implementation of these suggestions can contribute to harmonization and more effective, evidence-based assessments of the ecotoxicological effects of micro- and nanoplastics.
Collapse
Affiliation(s)
- Sebastian Beggel
- Aquatic Systems Biology Unit, TUM School of Life Sciences, Technical University of Munich, Mühlenweg 22, 85354, Freising, Germany
| | - Erwin J J Kalis
- Aquatic Systems Biology Unit, TUM School of Life Sciences, Technical University of Munich, Mühlenweg 22, 85354, Freising, Germany
| | - Juergen Geist
- Aquatic Systems Biology Unit, TUM School of Life Sciences, Technical University of Munich, Mühlenweg 22, 85354, Freising, Germany.
| |
Collapse
|
11
|
Janiga-MacNelly A, Hoang TC, Lavado R. Comparative toxicity of microplastics obtained from human consumer products on human cell-based models. Food Chem Toxicol 2025; 196:115194. [PMID: 39662868 DOI: 10.1016/j.fct.2024.115194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/26/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
Originally developed to conserve natural resources, plastic has become a global pollution issue due to inadequate waste management. The dispersion and weathering of plastic waste in the environment generate micro-sized particles. Despite extensive research on the toxicological effects of pristine polymers, the impact of microplastics (MPs) from consumer plastics is poorly understood. This study investigated the cytotoxic and genotoxic effects of cryo-milled single-use plastic products (fork and cup) on eight cell lines (Caco-2, HEK001, MRC-5, HMEC-1, HepaRG, HMC-3, and T47D) at concentrations from 0.01 to 100 μg/mL. Results showed that 100 μg/mL of MPs did not significantly affect cell viability in Caco-2, HEK001, MRC-5, and T47D. However, HMEC-1 and HMC-3 exhibited decreased viability with 10-100 μg/mL of fork particles, while HMC-3 and HepaRG showed reduced viability with 100 μg/mL of cup particles. Conversely, cup particles increased HMEC-1 proliferation at 0.1-100 μg/mL. Comet assay data indicated that both fork and cup exposure led to elevated DNA fragmentation in HMEC-1 and HMC-3 cells. These findings indicate that MPs from consumer-grade plastics may exhibit cytotoxic and genotoxic effects, with endothelial and microglial cells being particularly susceptible.
Collapse
Affiliation(s)
| | - Tham C Hoang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Ramon Lavado
- Department of Environmental Science, Baylor University, Waco, TX, 76712, USA.
| |
Collapse
|
12
|
Shahzad K, Hasan A, Hussain Naqvi SK, Parveen S, Hussain A, Ko KC, Park SH. Recent advances and factors affecting the adsorption of nano/microplastics by magnetic biochar. CHEMOSPHERE 2025; 370:143936. [PMID: 39667528 DOI: 10.1016/j.chemosphere.2024.143936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
The increase in nano/microplastics (NPs/MPs) from various everyday products entering aquatic environments highlights the urgent need to develop mitigation strategies. Biochar (BC), known for its excellent adsorption capabilities, can effectively target various harmful organic and inorganic pollutants. However, traditional methods involving powdered BC necessitate centrifugation and filtration, which can lead to the desorption of pollutants and subsequent secondary pollution. Magnetic biochar (MBC) offers a solution that facilitates straightforward and rapid separation from water through magnetic techniques. This review provides the latest insights into the progress made in MBC applications for the adsorption of NPs/MPs. This review further discusses how external factors such as pH, ionic strength, temperature, competing ions, dissolved organic matter, aging time, and particle size impact the MBC adsorption efficiency of MPs. The use of machine learning (ML) for optimizing the design and properties of BC materials is also briefly addressed. Finally, this review addresses existing challenges and future research directions aimed at improving the large-scale application of MBC for NPs/MPs removal.
Collapse
Affiliation(s)
- Khurram Shahzad
- Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea; Radiation Science, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Areej Hasan
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Syed Kumail Hussain Naqvi
- Graduate School of Integrated Energy-AI, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Saima Parveen
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Abrar Hussain
- Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea; Radiation Science, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Kyong-Cheol Ko
- Korea Preclinical Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34113, Republic of Korea.
| | - Sang Hyun Park
- Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea; Radiation Science, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
13
|
van Loon S, Hurley R, Kernchen S, de Jeu L, Hulscher C, van Gestel CAM. Survival and reproduction effects of microplastics from three agricultural mulching films on Folsomia candida, Sinella curviseta, Heteromurus nitidus and Ceratophysella denticulata (Collembola). THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178137. [PMID: 39700973 DOI: 10.1016/j.scitotenv.2024.178137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024]
Abstract
An estimated 467 kt of plastic used in agriculture annually end up in European soils, potentially breaking down into secondary microplastics (MPs). Not much is known about the possible effects of these MPs on organisms residing in the soil. To properly assess their environmental risk, experimental data is needed on the toxicity of MPs to the survival and reproduction of model organisms. This study aimed at assessing the toxicity of three MP types derived from commonly used agricultural plastics to different Collembola species, representing an important and highly diverse class of soil arthropods. Starch- polybutadiene adipate terephthalate blend (starch-PBAT blend) MPs were produced from mulching films that were artificially aged by mechanical recycling. MPs were also made from virgin low density polyethylene (LDPE) mulching films and from linear low density polyethylene (LLDPE) films that underwent the same mechanical recycling process as the starch-PBAT blend films. Four Collembola species were tested: Folsomia candida, Sinella curviseta, Heteromurus nitidus and Ceratophysella denticulata, representing epedaphic, hemiedaphic and euedaphic, as well as sexually reproducing and parthenogenetic species. Each species was exposed in Lufa 2.2 soil spiked with nine MP concentrations: 0.0016, 0.008, 0.04, 0.2, 1, 2, 3, 4 and 5 % (w/w dry soil) and a control without additional MPs added to the soil. No dose-dependent effects were found for any of the exposed organisms, to any of the MPs tested. The results of this study suggest that the MPs used in this study, derived from commonly applied agricultural plastics, do not pose an immediate hazard to Collembola.
Collapse
Affiliation(s)
- Sam van Loon
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands.
| | - Rachel Hurley
- Norwegian Institute for Water Research (NIVA), Oslo 0579, Norway.
| | - Sarmite Kernchen
- Animal Ecology I, University of Bayreuth, Bayreuth 95440, Germany.
| | - Lotte de Jeu
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands.
| | - Cas Hulscher
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Cornelis A M van Gestel
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands.
| |
Collapse
|
14
|
Benhadji N, Kurniawan SB, Imron MF. Review of mayflies (Insecta Ephemeroptera) as a bioindicator of heavy metals and microplastics in freshwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178057. [PMID: 39674161 DOI: 10.1016/j.scitotenv.2024.178057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/09/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
Heavy metal and microplastic pollutions are prevalent in freshwater ecosystems, with many freshwater bodies being contaminated by one or both of these pollutants. Recent studies reported extreme detections of Cd, Pb and Zn, high concentrations of Cr, Pb and Cu and microplastics acting as vectors of pollutants, including heavy metals. Mayflies can serve as bioindicators of heavy metal contamination in freshwater ecosystems because changes in their community structure, physiology, and behaviour can reflect and help predict the concentrations of metals in these environments. This review discusses the ecological alterations induced by tissue metal concentration in mayflies and other macroinvertebrates. As sensitive taxa to heavy metal contamination, mayflies can reflect the impacts of this pollution through their ethology and relationship to the substrate, highlighting issues such as eutrophication, alterations in community structure, inhibitory effects and sediment toxicity. Mayflies are also highly affected by microplastic exposure, which leads to ingestion, bioaccumulation, biomagnification, habitat and community alteration, behavioural changes, physiology alteration and toxicity. Mayflies bioindication metrics for assessing the impact of heavy metals and microplastics include the examination of community alteration, functional feeding behaviour, molecular structure, dietary and toxicity impacts, bioaccumulation and biomagnification and biomarkers. Current challenges for the utilization of mayflies as bioindicators include temporal variations in sensitivity, lack of universally recognised protocols and need for standardised protocols for microplastic analysis. Additionally, the applicability of mayflies as bioindicators may vary across different ecosystems, emphasising the need for selecting suitable indicators that align with the unique characteristics of the ecosystem.
Collapse
Affiliation(s)
- Nadhira Benhadji
- Institute of Technology and Life Sciences-National Research Institute, Falenty, Hrabska Avenue 3, 05-090 Raszyn, Poland.
| | - Setyo Budi Kurniawan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangor, Malaysia.
| | - Muhammad Fauzul Imron
- Study Program of Environmental Engineering, Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Campus C UNAIR, Jalan Mulyorejo, Surabaya 60115, Indonesia; Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, CN Delft 2628, Netherlands.
| |
Collapse
|
15
|
Chen M, Nan J, Breider F. A comparative study on the stability and coagulation removal of aged vs. nonaged nanoplastics in surface water. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136490. [PMID: 39547043 DOI: 10.1016/j.jhazmat.2024.136490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Nanoplastics (NPs) are released into surface water due to the widespread use of plastics, undergoing aging from environmental and human factors that alter their physical and chemical characteristics. However, detecting NPs remains challenging, resulting in limited research on their behavior in surface water and their removal efficiency by drinking water treatment. This study utilizes palladium-doped polystyrene nanoplastics (PSNPs) as tracers to enable precise detection and quantification through ICP-MS, thereby overcoming the limitations of conventional detection methods. PSNPs are aged using solar irradiation and ozone to simulate both natural and artificial aging processes, affecting the physical and chemical properties of NPs, which in turn influence their behavior in water treatment systems. Moreover, the study investigates the impact of various coagulation conditions, including different coagulants (AlCl3 and PACl), pH levels (4-9), and humic acid (HA) concentrations (0-10 mg/L), on the of both aged and nonaged NPs. The results demonstrate solar aging triggers significant morphological changes in PSNPs, while ozone aging induces more oxygen functional groups on PSNPs (CIozone=20.99; CIsolar=0.70), increasing sensitivity to HA concentrations and resulting in reduced removal efficiencies for ozone aged PSNPs by AlCl3 (68.68 %) and PACl (74.74 %). In addition, PACl achieves higher PSNPs removal efficiencies (REmin=88.59 %) than that of AlCl3 (REmin=85.57 %) under varied pH levels. This research fills a gap in understanding aged NPs behavior in surface water and offers practical solutions for optimizing coagulation for NPs removal, enhancing our ability to predict NPs environmental fate and manage NPs pollution to ensure drinking water safety.
Collapse
Affiliation(s)
- Meng Chen
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China; Ecole Polytechnique Fédérale de Lausanne - EPFL, Central Environmental Laboratory, Station 2, CH-1015 Lausanne, Switzerland
| | - Jun Nan
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Florian Breider
- Ecole Polytechnique Fédérale de Lausanne - EPFL, Central Environmental Laboratory, Station 2, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
16
|
Li C, Bai X, Krause S, Luo D. Prediction of vertical transport of microplastics: Shape- and aging-dependent drag models. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136412. [PMID: 39549398 DOI: 10.1016/j.jhazmat.2024.136412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024]
Abstract
The prediction of vertical transport of microplastics (MPs) is essential for understanding their multidimensional transport, fate, and environmental risks, but drag models applicable to aging MPs are currently understudied. In this study, pristine and UV-aged polyethylene terephthalate (PET) and polystyrene (PS) MPs were used for settling experiments. Combining physicochemical properties and transport data, a shape-dependent drag model based on the Corey shape factor was optimized with average errors of 9.73 % and 10.42 % and coefficients of determination of 0.6878 and 0.8359 for predicting the settling terminal velocities (ut) for PET and PS MPs, respectively. Meanwhile, aging-dependent drag models were constructed by incorporating the carbonyl index as functional forms of the newly defined aging index, which can be used to differentiate the effects of shape and aging characteristics on the vertical transport of MPs. These aging-dependent models showed better predictive abilities with average errors of 3.97 % and 4.56 % in predicting ut for PET MPs, and of 5.89 % and 6.91 % for PS MPs. Additionally, the drag models in this study improved applicability to predict vertical transport of environmentally-collected weathered MPs. With the continuous improvement of the transport database of diverse MPs, this study is expected to provide scientific support for predicting the environmental behaviors of MPs and formulating targeted pollution control strategies.
Collapse
Affiliation(s)
- Chang Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Xue Bai
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, PR China.
| | - Stefan Krause
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), Université Claude Bernard Lyon 1, Lyon, CNRS, ENTPE, UMR5023, Villeurbanne 69622, France
| | - Dan Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
17
|
Xie Y, Ji Z, Abdalkarim SYH, Huang H, Yunusov KE, Yu HY. Investigating interface adhesion of PLA-coated cellulose paper straws: Degradation, plant growth effects, and life cycle assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136101. [PMID: 39405710 DOI: 10.1016/j.jhazmat.2024.136101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 12/01/2024]
Abstract
Although bioplastics and paper straws have been introduced as alternatives to single-use plastic straws, their potential environmental, economic, and social impacts have not been analyzed. This study addresses this gap by designing a polylactic acid layer interface adhesion on cellulose paper-based (PLA-P) composite straws by a dip molding process. This process is simple, efficient, and scalable for massive production. Optimizing key manufacturing parameters, including ice bath ultrasonic, overlapping paper strips (2 strips), winding angle (60°), soaking time (5 min), and drying temperature (50 °C), were systematically evaluated to improve straw quality and manufacturing efficiency. PLA chains were found to deposit onto the cellulose network through intermolecular interactions to form a consistent "sandwich" structure, which can improve adhesion, water resistance, and mechanical properties. Interestingly, PLA-P straws effectively decomposed in soil and compost environments, with a 35-40 % degradation rate within 4 months. Besides, PLA-P straw residues affected seed germination and plant growth, but no significant toxic effects were detected. Further, microplastics were observed in soil and plant tissues (roots, stems, and leaves), and their possible diffusion mechanisms were explored. The results of a comprehensive life cycle assessment (LCA) and cost analysis showed that the process improvements reduced the ecological footprint of PLA-P straws and showed good prospects for commercial application. The study's findings contribute to the understanding of bioplastics and paper straws in effectively reducing environmental impact and fostering sustainable development.
Collapse
Affiliation(s)
- Yao Xie
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Sci-Tech University, l̥Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| | - Ze Ji
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Sci-Tech University, l̥Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| | - Somia Yassin Hussain Abdalkarim
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Sci-Tech University, l̥Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China.
| | - Haicheng Huang
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Sci-Tech University, l̥Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| | - Khaydar E Yunusov
- Institute of Polymer Chemistry and Physics, Academy of Sciences of the Republic of Uzbekistan, Tashkent 100128, Uzbekistan
| | - Hou-Yong Yu
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Sci-Tech University, l̥Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China.
| |
Collapse
|
18
|
Zhao W, Ge ZM, Zhu KH, Lyu Q, Liu SX, Chen HY, Li ZF. Impacts of plastic pollution on soil-plant properties and greenhouse gas emissions in wetlands: A meta-analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136167. [PMID: 39413522 DOI: 10.1016/j.jhazmat.2024.136167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/25/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
Plastic pollution in wetlands has recently emerged as an urgent environmental problem. However, the impacts of plastic contamination on soil-plant properties and greenhouse gas (GHG) emissions in wetlands remain unclear. Thus, this study conducted a meta-analysis based on 44 study sites to explore the influence of plastic pollution on soil physicochemical variables, soil microorganisms, enzyme activity, functional genes, plant characteristics, and GHG emissions (CO2, CH4, and N2O) in different wetland types. Based on the collected dataset, the plastic pollution significantly increased soil organic matter and organic carbon by on average 28.9 % and 34.2 %, respectively, while decreased inorganic nutrient elements, bacteria alpha diversity and enzyme activities by an average of 5.9 -14.2 %. The response of bacterial abundance to plastic pollution varied depending on phylum classes. Plant biomass and photosynthetic efficiency were decreased by an average of 12.8 % and 18.4 % due to plastic pollution. The concentration and exposure time of plastics play a key role in influencing the soil and plant properties in wetlands. Furthermore, plastic exposure notably increased the abundance of the functional genes related to C degradation and the ammonia oxidizing microorganisms, and the consequent CO2 and N2O emissions (with effect sizes of 2.10 and 1.94, respectively). We also found that plastic concentrations and exposure duration affected the wetland soil-plant system. Our results might be helpful to design further investigations on plastic effects and develop appropriate measures for mitigating plastic pollution in wetlands.
Collapse
Affiliation(s)
- Wei Zhao
- State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, Center for Blue Carbon Science and Technology, East China Normal University, Shanghai, China
| | - Zhen-Ming Ge
- State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, Center for Blue Carbon Science and Technology, East China Normal University, Shanghai, China; Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai Science and Technology Committee, Shanghai, China.
| | - Ke-Hua Zhu
- State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, Center for Blue Carbon Science and Technology, East China Normal University, Shanghai, China
| | - Qing Lyu
- State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, Center for Blue Carbon Science and Technology, East China Normal University, Shanghai, China
| | - Shi-Xian Liu
- State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, Center for Blue Carbon Science and Technology, East China Normal University, Shanghai, China
| | - Hua-Yu Chen
- State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, Center for Blue Carbon Science and Technology, East China Normal University, Shanghai, China
| | - Zeng-Feng Li
- State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, Center for Blue Carbon Science and Technology, East China Normal University, Shanghai, China
| |
Collapse
|
19
|
Wang D, Zhang L, Li W, Chang M, Liu X, Zhang Z, Tian ZQ. The influence of water conservancy project on microplastics distribution in river ecosystem: A case study of Lhasa River Basin in Qinghai-Tibet Plateau. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136472. [PMID: 39547040 DOI: 10.1016/j.jhazmat.2024.136472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/29/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
Water conservancy projects affect the migration, suspension, and deposition of microplastic (MP). However, its impact on MP pollution of river ecosystem remains elusive. Herein, we investigated the MP characteristics and the influence of water conservancy projects on MPs in the Lhasa River Basin of the Qinghai-Tibet Plateau, China. The results demonstrated that the MPs concentration in surface water decreased from upstream to downstream, as more MPs in surface water were settling down and stored in reservoir sediments in the midstream. It is postulated that reservoir sedimentation of MPs occurs at a greater rate due to the barrier effect of reservoirs, steady hydrodynamics, and weak salinity-induced buoyancy. To evaluate the ecological risk of the Lhasa River Basin, the pollution load index, the polymer hazard index, and the potential ecological risk index were analyzed. The upstream exhibits elevated polymer hazard index values (>100), and the potential ecological risk index values in the Lhasa River Basin showed ecological risk similar to those of pollution load index values. This research represents the initial exploration of MP distribution within the entire Lhasa River basin, providing a foundational framework for investigating the impact of water conservancy projects on MP migration.
Collapse
Affiliation(s)
- Dan Wang
- Key Laboratory of Biodiversity and Eco-environmental Protection of the Qinghai-Tibetan Plateau (Ministry of Education), Key Laboratory of Environmental Engineering and Pollution Control On Plateau (Tibet Autonomous Region), School of Ecology and Environment, Tibet University, Lhasa 850000, PR China; School of Bioengineering and Health, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, PR China; College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Le Zhang
- Key Laboratory of Biodiversity and Eco-environmental Protection of the Qinghai-Tibetan Plateau (Ministry of Education), Key Laboratory of Environmental Engineering and Pollution Control On Plateau (Tibet Autonomous Region), School of Ecology and Environment, Tibet University, Lhasa 850000, PR China; College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Wangwang Li
- Key Laboratory of Biodiversity and Eco-environmental Protection of the Qinghai-Tibetan Plateau (Ministry of Education), Key Laboratory of Environmental Engineering and Pollution Control On Plateau (Tibet Autonomous Region), School of Ecology and Environment, Tibet University, Lhasa 850000, PR China; College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Meng Chang
- Key Laboratory of Biodiversity and Eco-environmental Protection of the Qinghai-Tibetan Plateau (Ministry of Education), Key Laboratory of Environmental Engineering and Pollution Control On Plateau (Tibet Autonomous Region), School of Ecology and Environment, Tibet University, Lhasa 850000, PR China
| | - Xiaoning Liu
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, PR China.
| | - Zhaowei Zhang
- School of Bioengineering and Health, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, PR China; Hubei Hongshan Laboratory, Wuhan 430062, PR China.
| | - Zhi-Quan Tian
- Key Laboratory of Biodiversity and Eco-environmental Protection of the Qinghai-Tibetan Plateau (Ministry of Education), Key Laboratory of Environmental Engineering and Pollution Control On Plateau (Tibet Autonomous Region), School of Ecology and Environment, Tibet University, Lhasa 850000, PR China; College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
20
|
Hwangbo S, Kim IY, Ko K, Park K, Hong J, Kang G, Wi JS, Kim J, Lee TG. Preparation of fragmented polyethylene nanoplastics using a focused ultrasonic system and assessment of their cytotoxic effects on human cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:125009. [PMID: 39326828 DOI: 10.1016/j.envpol.2024.125009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/03/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024]
Abstract
With the growing prevalence of plastic use, the environmental release of plastic waste is escalating, and fragmented nanoscale plastic particles are emerging as significant environmental threats. This study aimed to evaluate the cytotoxic effects of fragmented polyethylene nanoplastics (PE NPs) manufactured using a focused ultrasonic system. The ultrasonic irradiation process generated fragmented PE NPs with a geometric mean diameter of 85.14 ± 5.37 nm and a size range of 25-350 nm. To assess cytotoxicity, we conducted a series of tests on various human cell lines, including stomach, blood, colon, lung, skin, liver, and brain-derived cells. The testing involved MTS-based cell viability assays to evaluate direct impacts on cell viability, lactate dehydrogenase (LDH) leakage assays to measure membrane damage, and ELISA to quantify TNF-α release as an indicator of inflammation. Although PE-NPs did not immediately induce apoptosis, significant LDH leakage and elevated TNF-α levels were observed across all cell lines, indicating membrane damage and inflammatory responses. Additionally, flow cytometry and TEM analyses revealed the intracellular accumulation of PE-NPs, further supporting their cytotoxic potential. These results demonstrate that fragmented PE-NPs can disrupt cellular membranes and induce inflammatory responses through accumulation within cells. The findings suggest that these NPs pose potential hazards to cell viability and underscore the need for further research into their environmental and health impacts.
Collapse
Affiliation(s)
- Seonae Hwangbo
- Nanobio Measurement Group, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34113, Republic of Korea; Focused Ultra-Sonic Tech. (FUST) lab, Daejeon, 34015, Republic of Korea
| | - In Young Kim
- Nanobio Measurement Group, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34113, Republic of Korea; Ministry of Food and Drug Safety (MFDS), Cheongju, 28159, Republic of Korea
| | - Kwanyoung Ko
- Nanobio Measurement Group, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34113, Republic of Korea
| | - Kyungtae Park
- School of Chemical & Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jinkee Hong
- School of Chemical & Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Gwansuk Kang
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, CA, 94305, USA
| | - Jung-Sub Wi
- Department of Materials Science and Engineering, Hanbat National University, Daejeon, 34158, Republic of Korea
| | - Jaeseok Kim
- Nanobio Measurement Group, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34113, Republic of Korea
| | - Tae Geol Lee
- Nanobio Measurement Group, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
21
|
Adomako MO, Jin L, Li C, Liu J, Adu D, Seshie VI, Yu FH. Mechanisms underpinning microplastic effects on the natural climate solutions of wetland ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176491. [PMID: 39341239 DOI: 10.1016/j.scitotenv.2024.176491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/04/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024]
Abstract
Wetland ecosystems are vital carbon dioxide (CO2) sinks, offering significant nature-based solutions for global climate mitigation. However, the recent influx of microplastic (MP) into wetlands substantially impacts key drivers (e.g., plants and microorganisms) underpinning these wetland functions. While MP-induced greenhouse gas (GHG) emissions and effects on soil organic carbon (SOC) mineralization potentially threaten the long-term wetland C-climate feedbacks, the exact mechanisms and linkage are unclear. This review provides a conceptual framework to elaborate on the interplay between MPs, wetland ecosystems, and the atmospheric milieu. We also summarize published studies that validate possible MP impacts on natural climate solutions of wetlands, as well as provide extensive elaboration on underlying mechanisms. We briefly highlight the relationships between MP influx, wetland degradation, and climate change and conclude by identifying key gaps for future research priorities. Globally, plastic production, MP entry into aquatic systems, and wetland degradation-related emissions are predicted to increase. This means that MP-related emissions and wetland-climate feedback should be addressed in the context of the UN Paris Climate Agreement on net-zero emissions by 2050. This overview serves as a wake-up call on the alarming impacts of MPs on wetland ecosystems and urges a global reconsideration of nature-based solutions in the context of climate mitigation.
Collapse
Affiliation(s)
- Michael Opoku Adomako
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Ling Jin
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong; Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Changchao Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong; Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Jian Liu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Daniel Adu
- School of Management Science and Engineering, Jiangsu University, Zhejiang 212013, Jiangsu, China
| | - Vivian Isabella Seshie
- Department of Environmental and Safety Engineering, University of Mines and Technology, Tarkwa, Ghana
| | - Fei-Hai Yu
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, Zhejiang, China.
| |
Collapse
|
22
|
Kumar C, Singh H, Ghosh D, Jain A, Arya SK, Khatri M. Polystyrene nanoplastics: optimized removal using magnetic nano-adsorbent and toxicity assessment in zebrafish embryos. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2024; 22:593-604. [PMID: 39464815 PMCID: PMC11499579 DOI: 10.1007/s40201-024-00921-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/08/2024] [Indexed: 10/29/2024]
Abstract
Purpose The presence of microplastics (MPs) and nanoplastics (NPs) in aquatic ecosystems has raised serious environmental and health concerns. Polystyrene is one of the most abundant plastic polymers found in the environment. Polystyrene MPs/NPs have harmful implications for human health and their removal from the environment has become a serious challenge. Methods In this study, we investigated the adsorptive uptake of polystyrene nanoplastics (PS NPs) from aqueous solutions using fly ash-loaded magnetic nanoparticles (FAMNPs) as the magnetic nano-adsorbent. During the factor screening study, the adsorption process was studied as a function of four variables namely pH (5-10), adsorption time (30-120 min), amount of FAMNPs (0.01-0.04 g), and stirring speed (50-200 rpm). Central composite design (CCD) and response surface methodology (RSM) were employed to establish the relationship between the variables. Furthermore, toxicity assessments of PS NPs were checked on a zebrafish model, shedding light on its potential ecological effects. Results Two variables namely the pH and amount of FAMNPs significantly influenced the adsorption capacity of FAMNPs and were further optimized for subsequent analysis. The optimum operational readings proposed by the model were pH (8.5), and the amount of FAMNPs (0.03 g), resulting in a good adsorption capacity of 29.12 mg/g for PS NPs. The adequacy of the proposed model was evaluated by analysis of variance (ANOVA). Zebrafish embryos exposed to PS NPs revealed physical deformations such as pericardial edema and malformed notochord. Conclusion The study demonstrates the effectiveness of FAMNPs in the adsorption of PS NPs from aqueous solutions, with optimal conditions identified at pH 8.5 and 0.03 g of FAMNPs using RSM. The adequacy of the model was confirmed through ANOVA analysis. Toxicity assessments on zebrafish embryos exposed to PS NPs revealed significant mortality and physical deformations, highlighting the importance of PS NPs removal for environmental health. Graphical Abstract
Collapse
Affiliation(s)
- Chaitanya Kumar
- Centre for Nanoscience & Nanotechnology, University Institute for Emerging Areas in Science and Technology (UIEAST), Panjab University, Chandigarh, India
- Department of Biotechnology, University Institute of Engineering Technology (UIET), Panjab University, Chandigarh, India
| | - Harpreet Singh
- Department of Biotechnology, University Institute of Engineering Technology (UIET), Panjab University, Chandigarh, India
| | - Debopriya Ghosh
- Department of Biotechnology, University Institute of Engineering Technology (UIET), Panjab University, Chandigarh, India
| | - Atul Jain
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Shailendra Kumar Arya
- Department of Biotechnology, University Institute of Engineering Technology (UIET), Panjab University, Chandigarh, India
| | - Madhu Khatri
- Department of Biotechnology, University Institute of Engineering Technology (UIET), Panjab University, Chandigarh, India
| |
Collapse
|
23
|
Ma J, Niu X, Zhang D, Wang G. Insights into the inhibitory effects of trichloroisocyanuric acid disinfectant on the phototransformation of polypropylene microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175904. [PMID: 39226956 DOI: 10.1016/j.scitotenv.2024.175904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
The chemical components in the natural aquatic environment have the potential to be involved in phototransformation of microplastics (MPs). Little information is available regarding the mediation effects of artificially introduced chemicals on MP phototransformation, especially those used in aquaculture water that are vulnerable to human interference. Herein, this study investigated the phototransformation process and mechanism of polypropylene microplastic (PP MPs) in presence of trichloroisocyanuric acid (TCCA) disinfectant with unique properties unlike the conventional inorganic chlorine disinfectants. The results showed that the presence of TCCA inhibited the surface photooxidation of PP MPs. Analysis of PP MP surface and reaction filtrate indicated that the inhibitory effects were likely derived from TCCA derivatives and the weakening in promoting effect of polypropylene microplastic-derived dissolved organic matter (PP-DOM) as photolytic byproducts, with the more important role of free chlorine in initial period and that of other chlorine species (i.e., the adsorbed chloride ions (Cl-), newly formed carbon-chlorine (CCl) bonds, chlorinated cyanurates, and chlorinated products) in middle and later period. The study highlights for the first time the important role of chlorine species derived from TCCA in phototransformation process of co-existed PP MPs and proposes a previously unrecognized phototransformation pathway, which will provide a new understanding and knowledge for the environmental behavior of MPs in aquaculture environment.
Collapse
Affiliation(s)
- Jinling Ma
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China.
| | - Xiaojun Niu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | - Dongqing Zhang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Gang Wang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China
| |
Collapse
|
24
|
Santhanam SD, Ramamurthy K, Priya PS, Sudhakaran G, Guru A, Arockiaraj J. A combinational threat of micro- and nano-plastics (MNPs) as potential emerging vectors for per- and polyfluoroalkyl substances (PFAS) to human health. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1182. [PMID: 39514026 DOI: 10.1007/s10661-024-13292-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Micro- and nano-plastics (MNPs) and per- and polyfluoroalkyl substances (PFAS) are prevalent in ecosystems due to their exceptional properties and widespread use, profoundly affecting both human health and ecosystem. Upon entering the environment, MNPs and PFAS undergo various transformations, such as weathering, transport, and accumulation, potentially altering their characteristics and structural dynamics. Their interactions, governed by factors like hydrogen bonding, hydrophobic interactions, Van der Waals forces, electrostatic attractions, and environmental conditions, can amplify or mitigate their toxicity toward human health within ecological conditions. Several studies demonstrate the in vivo effects of PFAS and MNPs, encompassing growth and reproductive impairments, oxidative stress, neurotoxicity, apoptosis, DNA damage, genotoxicity, immunological responses, behavioral changes, modifications in gut microbiota, and histopathological alterations. Moreover, in vitro investigations highlight impacts on cellular uptake, affecting survival, proliferation, membrane integrity, reactive oxygen species (ROS) generation, and antioxidant responses. This review combines knowledge on the co-existence and adsorption of PFAS and MNPs in the environment, defining their combined in vivo and in vitro impacts. It provides evidence of potential human health implications. While significant research originates from China, Europe, and the USA, studies from other regions are limited. Only freshwater and marine organisms and their impacts are extensively studied in comparison to terrestrial organisms and humans. Nonetheless, detailed investigations are lacking regarding their fate, combined environmental exposure, mode of action, and implications in human health studies. Ongoing research is imperative to comprehensively understand environmental exposures and interaction mechanisms, addressing the need to elucidate these aspects thoroughly.
Collapse
Affiliation(s)
- Sanjai Dharshan Santhanam
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Karthikeyan Ramamurthy
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India
| | - P Snega Priya
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Gokul Sudhakaran
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, SIMATS, Chennai, 600077, Tamil Nadu, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
25
|
Özen EY, Canbulat Özdemir M, Hatinoğlu MD, Apul OG, İmamoğlu İ. Mechanistic inferences from empirical and LSER modeling approaches concerning sorption of organic compounds by pristine and aged PE microplastics. CHEMOSPHERE 2024; 368:143695. [PMID: 39510265 DOI: 10.1016/j.chemosphere.2024.143695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
This study investigates the effect of aging of polyethylene (PE) microplastics (MP) on its interaction with organic compounds (OCs). Initially, pristine PE MPs were subjected to UV-aging, followed by characterization of their chemical structure and thermal properties. UV-aging resulted in formation of new functional groups such as carbonyl (CO), -OH, and unsaturation, along with changes in crystallinity and melting temperature. Complimentary sorption experiments were conducted with a suite of environmentally significant and structurally related OCs i.e., phenol, 2,3,6-trichlorophenol, triclosan, 1,1,2,2-tetrachloroethane, tetrachloroethylene and hexachloroethane, using pristine and UV-aged PE MPs. In addition to the distribution coefficients (i.e., KPEW) obtained experimentally, relevant data from the literature was also gathered for the purpose of developing a poly-parametric linear free energy relationship (pp-LFER) model. Two models were developed for predicting sorption onto: (i) only UV-aged PE, yielding an R2 = 0.96, RMSE = 0.19 (n = 16), (ii) PE that has undergone various types of aging, yielding an R2 = 0.83, RMSE = 0.68 (n = 36). Lastly, a direct comparison was performed between two pp-LFERs developed for the interaction of the same OCs with pristine vs. aged PE (n = 7). In addition to the predictive strength, the system coefficients enabled mechanistic inferences to be made; such that while molecular volume or non-specific hydrophobic interactions govern OC-pristine PE interactions, polar interactions and H-bonding also play important roles for OC-aged PE interactions. Overall, findings suggested that changes of MP surfaces under environmentally relevant aging conditions indicated an impact on their interactions with OCs in the environment.
Collapse
Affiliation(s)
- Elif Yaren Özen
- Department of Environmental Engineering, Middle East Technical University, 06800, Ankara, Turkey.
| | - Melek Canbulat Özdemir
- Department of Environmental Engineering, Middle East Technical University, 06800, Ankara, Turkey.
| | | | - Onur Güven Apul
- Department of Civil and Environmental Engineering, University of Maine, Orono, ME, 04469, USA.
| | - İpek İmamoğlu
- Department of Environmental Engineering, Middle East Technical University, 06800, Ankara, Turkey.
| |
Collapse
|
26
|
van Loon S, de Jeu L, Hurley R, Kernchen S, Fenner M, van Gestel CAM. Multigenerational toxicity of microplastics derived from two types of agricultural mulching films to Folsomia candida. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175097. [PMID: 39074756 DOI: 10.1016/j.scitotenv.2024.175097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/18/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
Degradation and fragmentation of mulching films represents an increasing source of microplastics (MPs, plastic particles 1 μm to 5 mm in size) to agricultural soils. MPs have been shown to affect many soil invertebrates, including springtails. However, these studies typically use test materials representing less environmentally relevant particle types, such as pristine uniform MPs, which do not represent the large range of particle sizes and morphologies found in the field. This study aimed at providing insight into the adverse effects of MPs originating from agricultural mulching films, by using artificially aged MPs derived from both biodegradable (starch-polybutadiene adipate terephthalate (PBAT)) blend, as well as conventional (linear low-density polyethylene (LLDPE)) plastic polymers. The soil dwelling springtail Folsomia candida was exposed to these MPs for five generations in order to elucidate population effects due to possible reproduction toxicity, endocrine disruption, mutagenesis or developmental toxicity. F. candida were exposed to 0, 0.0016, 0.008, 0.04, 0.2, 1, 2, 3, 4 and 5 % (w/w dry soil) MPs in Lufa 2.2 soil, which includes concentrations within the range of environmental relevance. Juveniles produced at each concentration were transferred to the next generation, with the parental, F2 and F4 generations being exposed for four weeks and F1 and F3 generations for five weeks. No concentration-dependent effects on F. candida survival or reproduction were observed in exposures to either of the MPs, in any of the generations. These results suggest that the particular MPs used in this study, derived from mulching films used on agricultural soils, may not be potent toxicants to F. candida, even after long-term exposure and at elevated concentrations.
Collapse
Affiliation(s)
- Sam van Loon
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands.
| | - Lotte de Jeu
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands
| | - Rachel Hurley
- Norwegian Institute for Water Research (NIVA), Oslo 0579, Norway
| | - Sarmite Kernchen
- Animal Ecology I, University of Bayreuth, Bayreuth 95440, Germany
| | - Marlon Fenner
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands
| | - Cornelis A M van Gestel
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands
| |
Collapse
|
27
|
Meyers N, De Witte B, Schmidt N, Herzke D, Fuda JL, Vanavermaete D, Janssen CR, Everaert G. From microplastics to pixels: testing the robustness of two machine learning approaches for automated, Nile red-based marine microplastic identification. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:61860-61875. [PMID: 39446205 DOI: 10.1007/s11356-024-35289-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
Despite the urgent need for accurate and robust observations of microplastics in the marine environment to assess current and future environmental risks, existing procedures remain labour-intensive, especially for smaller-sized microplastics. In addition to this, microplastic analysis faces challenges due to environmental weathering, impacting the reliability of research relying on pristine plastics. This study addresses these knowledge gaps by testing the robustness of two automated analysis techniques which combine machine learning algorithms with fluorescent colouration of Nile red (NR)-stained particles. Heterogeneously shaped uncoloured microplastics of various polymers-polyethylene (PE), polyethylene terephthalate (PET), polypropylene (PP), polystyrene (PS), and polyvinyl chloride (PVC)-ranging from 100 to 1000 µm in size and weathered under semi-controlled surface and deep-sea conditions, were stained with NR and imaged using fluorescence stereomicroscopy. This study assessed and compared the accuracy of decision tree (DT) and random forest (RF) models in detecting and identifying these weathered plastics. Additionally, their analysis time and model complexity were evaluated, as well as the lower size limit (2-4 µm) and the interoperability of the approach. Decision tree and RF models were comparably accurate in detecting and identifying pristine plastic polymers (both > 90%). For the detection of weathered microplastics, both yielded sufficiently high accuracies (> 77%), although only RF models were reliable for polymer identification (> 70%), except for PET particles. The RF models showed an accuracy > 90% for particle predictions based on 12-30 pixels, which translated to microplastics sized < 10 µm. Although the RF classifier did not produce consistent results across different labs, the inherent flexibility of the method allows for its swift adaptation and optimisation, ensuring the possibility to fine-tune the method to specific research goals through customised datasets, thereby strengthening its robustness. The developed method is particularly relevant due to its ability to accurately analyse microplastics weathered under various marine conditions, as well as ecotoxicologically relevant microplastic sizes, making it highly applicable to real-world environmental samples.
Collapse
Affiliation(s)
- Nelle Meyers
- Flanders Marine Institute (VLIZ), InnovOcean Campus, Jacobsenstraat 1, 8400, Ostend, Belgium.
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Marine Research, InnovOcean Campus, Jacobsenstraat 1, 8400, Ostend, Belgium.
- Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium.
| | - Bavo De Witte
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Marine Research, InnovOcean Campus, Jacobsenstraat 1, 8400, Ostend, Belgium
| | - Natascha Schmidt
- NILU, The FRAM Centre, P.O. Box 6606, 9296, Tromsø, Norway
- Aix Marseille University, Toulon University, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM 110, Marseille, France
| | - Dorte Herzke
- NILU, The FRAM Centre, P.O. Box 6606, 9296, Tromsø, Norway
- Norwegian Institute for Public Health (NIPH), P.O. Box 222, 0213, Skøyen, Oslo, Norway
| | - Jean-Luc Fuda
- Aix Marseille University, Toulon University, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM 110, Marseille, France
| | - David Vanavermaete
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Marine Research, InnovOcean Campus, Jacobsenstraat 1, 8400, Ostend, Belgium
| | - Colin R Janssen
- Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
- Blue Growth Research Lab, Ghent University, Bluebridge, Wetenschapspark 1, 8400, Ostend, Belgium
| | - Gert Everaert
- Flanders Marine Institute (VLIZ), InnovOcean Campus, Jacobsenstraat 1, 8400, Ostend, Belgium
| |
Collapse
|
28
|
Martínez-Pérez S, Schell T, Franco D, Rosal R, Redondo-Hasselerharm PE, Martínez-Hernández V, Rico A. Fate and effects of an environmentally relevant mixture of microplastics in simple freshwater microcosms. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107104. [PMID: 39306962 DOI: 10.1016/j.aquatox.2024.107104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 11/12/2024]
Abstract
Most studies assessing the effects of microplastics (MPs) on freshwater ecosystems use reference materials of a certain size, shape, and polymer type. However, in the environment, aquatic organisms are exposed to a mixture of different polymers with different sizes and shapes, resulting in different bioaccessible fractions and effects. This study assesses the fate and effects of an environmentally relevant mixture of high-density polyethylene (HDPE) fragments, polypropylene (PP) fragments, and polyester (PES) fibres in indoor freshwater microcosms over 28 days. The MP mixture contained common polymers found in freshwater ecosystems, had a size range between 50 and 3887 µm, and was artificially aged using a mercury lamp. The invertebrate species included in the microcosms, Lymnea stagnalis (snail) and Lumbriculus variegatus (worm), were exposed to four MP concentrations: 0.01, 0.05, 0.1 and 1 % of sediment dry weight. MPs fate was assessed by performing a balance of the MPs in the surface water, water column, and sediment after a stabilization period and at the end of the experiment. Sedimentation rates per day were calculated (2.13 % for PES, 1.46 % for HDPE, 1.87 % for PP). The maximum size of MPs taken up by the two species was determined and compared to the added mixture and their mouth size. The size range taken up by L. variegatus was smaller than L. stagnalis and significantly different from the size range in the added mixture. The No Observed Effect Concentrations (NOECs) for the reproduction factor of L. variegatus and the number of egg clutches produced by L. stagnalis were 0.01 % and 0.1 % sediment dry weight, respectively. The EC10 and EC50 for the same endpoint for L. stagnalis were 0.25 % and 0.52 %, respectively. This study shows that current MP exposure levels in freshwater sediments can result in sub-lethal effects on aquatic organisms, highlighting the importance of testing MP mixtures.
Collapse
Affiliation(s)
- Sara Martínez-Pérez
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, 9 Av. Punto Com 2, Alcalá de Henares 28805, Madrid, Spain; Alcalá University, Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering E-28871 Madrid, Spain
| | - Theresa Schell
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, 9 Av. Punto Com 2, Alcalá de Henares 28805, Madrid, Spain
| | - Daniel Franco
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, 9 Av. Punto Com 2, Alcalá de Henares 28805, Madrid, Spain
| | - Roberto Rosal
- Alcalá University, Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering E-28871 Madrid, Spain
| | - Paula E Redondo-Hasselerharm
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, 9 Av. Punto Com 2, Alcalá de Henares 28805, Madrid, Spain
| | - Virtudes Martínez-Hernández
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, 9 Av. Punto Com 2, Alcalá de Henares 28805, Madrid, Spain
| | - Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, 9 Av. Punto Com 2, Alcalá de Henares 28805, Madrid, Spain; Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, c/ Catedrático José Beltrán 2 46980, Paterna, Valencia, Spain.
| |
Collapse
|
29
|
Zhou Y, Zeng F, Cui K, Lan L, Wang H, Liang W. Insight into the dynamic transformation properties of microplastic-derived dissolved organic matter and its contribution to the formation of chlorination disinfection by-products. RSC Adv 2024; 14:34338-34347. [PMID: 39469004 PMCID: PMC11514132 DOI: 10.1039/d4ra05857g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/19/2024] [Indexed: 10/30/2024] Open
Abstract
Microplastics (MPs) can cause adverse effects and pose potential threats to humans and the environment. In addition, dissolved organic matter leached from MPs (MP-DOM) is also a critical issue due to its ecotoxicity and potential to form disinfection by-products (DBPs) during the disinfection process of water treatment plants. However, limited information is available on the dynamic transformation of MP-DOM during UV irradiation and subsequent disinfection, which may further influence the formation of DBPs in MP-DOM. Herein, PSMPs-DOM were leached in aqueous solutions under UV irradiation and the samples were then chlorinated. PSMPs-DOM before and after chlorination were characterized by multiple spectral technologies and methods. With prolonged irradiation time, the aromaticity, molecular weight, humic-like substances and oxygen-containing functional groups of PSMPs-DOM increased, suggesting the continuous transformation of PSMPs-DOM. After chlorination, the aromaticity, molecular weight and humic-like substances of PSMPs-DOM decreased, among which the changes of C2 and oxygen-containing functional groups were more significant. Besides, the PSMPs-DOM formed under prolonged irradiation exhibited higher chlorine reactivity, owing to the more aromatic structures and unsaturated bonds. TCM, DCBM, DBCM and TBM were detected in all chlorinated PSMPs-DOM samples, while the PSMPs-DOM formed at the later stage of irradiation exhibited lower THMs formation potential. The correlation results showed that the conversion of humic-like substances in PSMPs-DOM affected the THMs formation potential, with photo-induced humic-like substance being a more dominant factor. This study provided more information on the relationship between the compositional transformation of MP-DOM and their potential to form DBPs, which may facilitate the assessment of potential toxicity associated with MPs-containing water, as well as the development of more effective water treatment methods.
Collapse
Affiliation(s)
- Yingyue Zhou
- School of Chemistry, Sun Yat-sen University Guangzhou 510000 China +86-020-84114133
| | - Feng Zeng
- School of Chemistry, Sun Yat-sen University Guangzhou 510000 China +86-020-84114133
| | - Kunyan Cui
- School of Chemistry, Sun Yat-sen University Guangzhou 510000 China +86-020-84114133
| | - Longxia Lan
- School of Chemistry, Sun Yat-sen University Guangzhou 510000 China +86-020-84114133
| | - Hao Wang
- School of Chemistry, Sun Yat-sen University Guangzhou 510000 China +86-020-84114133
| | - Weiqian Liang
- School of Chemistry, Sun Yat-sen University Guangzhou 510000 China +86-020-84114133
| |
Collapse
|
30
|
Li R, Hu Y, Sun X, Zhang Z, Chen K, Huang S, Liu S, Liu Q, Chen X. Machine Learning-Aided 3D Dynamic SERS Strategy for Physiological Mapping: Biotoxicity of Environmentally Dimensional Aged Nanoplastics and Corresponding Protein Corona Complexes. Anal Chem 2024; 96:16629-16638. [PMID: 39380359 DOI: 10.1021/acs.analchem.4c02701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Nanoplastics (NPs) are emerging pollutants that undergo inevitable aging in the environment, raising concerns about human exposure and health hazards. Research on the cytotoxicity of various polymer types of NPs, aged nanoplastics (aNPs), and their interactions with proteins (aNPs-protein corona) is still nascent. Traditional cytotoxicity detection methods often rely on end point assays with restricted temporal resolution and analysis of single or multiple biomarkers. Here, we propose a novel approach integrating the 3D dynamic SERS strategy (DSS) with machine learning to rapidly analyze the cell fate and death modes induced by NPs, aNPs, and aNPs-protein corona complexes at the molecular level. PS, PVC, PMMA, and PC products from the water environment were used to prepare the corresponding NPs, and the impact of UV irradiation on their physicochemical properties was examined. DSS systematically maps the molecular changes in the cellular secretome caused by these NPs. Machine learning effectively extracts information from complex spectra, differentiating between biological samples. Results show prolonged UV exposure increases cell sensitivity to ferroptosis and cytotoxicity in various aNPs, while the protein corona on aNPs significantly mitigates toxicity associated with surface oxygen-containing functional groups, resulting in a reduced similarity to ferroptosis signatures. 3D DSS with machine learning technique analyzes the overall metabolite profile at the molecular level rather than individual biomarkers. This study is the first attempt to compare the biotoxicity of diverse polymer NPs, aNPs, and aNPs-protein coronas at cellular and molecular levels in human hepatocytes, enhancing our understanding of the complex biological impacts of NPs.
Collapse
Affiliation(s)
- Ruili Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yuyang Hu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xiaotong Sun
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Zhipeng Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Kecen Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Shuting Huang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Shenghong Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Qi Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- Xiangjiang Laboratory, Changsha 410205, China
| |
Collapse
|
31
|
Zidar P, Kühnel D, Škapin AS, Skalar T, Drobne D, Škrlep L, Mušič B, Jemec Kokalj A. Comparing the effects of pristine and UV-VIS aged microplastics: Behavioural response of model terrestrial and freshwater crustaceans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117020. [PMID: 39276645 DOI: 10.1016/j.ecoenv.2024.117020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
Physico-chemical properties of microplastics (MPs) change during weathering in the environment. There is a lack of knowledge about the effects of such environmentally relevant MPs on organisms. We investigated: 1) the physico-chemical changes of MPs due to UV-VIS weathering, and 2) compared the effect of pristine and aged MPs on the behaviour of the water flea Daphnia magna and terrestrial crustacean Porcellio scaber. Dry powders of MPs were produced from widely used polymer types: disposable three-layer polypropylene (PP) medical masks (inner, middle and outer), polyester textile fibres, car tires and low-density polyethylene (LDPE) bags and were subjected to accelerated ultraviolet-visible (UV-VIS) ageing. Our results show that the extent of transformation depends on the type of polymer, with PP showing the most changes, followed by LDPE, textile fibres and tire particles. Obvious fragmentation was observed in PP and textile fibres. In the case of PP, but not polyester textile fibres, changes in FTIR spectra and surface properties were observed. Tire particles and LDPE did not change in size, but clear changes were observed in their FTIR spectra. Most MPs, aged and pristine, did not affect the swimming of daphnids. The only effect observed was a significant increase in path length and swimming speed for the pristine tire particles when the recording was done with particles remaining in the wells. After transfer to a clean medium, this effect was no longer present, suggesting a physical rather than chemical effect. Similarly, woodlice showed no significant avoidance response to the MPs tested, although there was a noticeable trend to avoid soils contaminated with pristine polyester textile fibers and preference towards the soils contaminated with aged MP of the middle mask layer. Overall, the apparent changes in physico-chemical properties of MPs after accelerated ageing were not reflected in their effects on woodlice and daphnids.
Collapse
Affiliation(s)
- Primož Zidar
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Jamnikarjeva 101, Ljubljana SI-1000, Slovenia
| | - Dana Kühnel
- Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, Leipzig 03418, Germany
| | - Andrijana Sever Škapin
- Slovenian National Building and Civil Engineering Institute, Dimičeva ulica 12, Ljubljana SI-1000, Slovenia; Faculty of Polymer Technology-FTPO, Ozare 19, Slovenj Gradec SI-2380, Slovenia
| | - Tina Skalar
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, Ljubljana SI-1000, Slovenia
| | - Damjana Drobne
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Jamnikarjeva 101, Ljubljana SI-1000, Slovenia
| | - Luka Škrlep
- Slovenian National Building and Civil Engineering Institute, Dimičeva ulica 12, Ljubljana SI-1000, Slovenia
| | - Branka Mušič
- Slovenian National Building and Civil Engineering Institute, Dimičeva ulica 12, Ljubljana SI-1000, Slovenia
| | - Anita Jemec Kokalj
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Jamnikarjeva 101, Ljubljana SI-1000, Slovenia.
| |
Collapse
|
32
|
Fleury JB, Baulin VA. Aging affects the mechanical interaction between microplastics and lipid bilayers. J Chem Phys 2024; 161:144902. [PMID: 39377336 DOI: 10.1063/5.0232678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/25/2024] [Indexed: 10/09/2024] Open
Abstract
Plastic pellets, the pre-production form of many plastic products, undergo oxidation and photodegradation upon exposure to oxygen and sunlight, resulting in visible color changes. This study examines the impact of environmental aging on the mechanical interactions between pellet-derived microplastics and lipid bilayers, a critical component of biological membranes. Polyethylene pellets were collected from La Pineda beach near Tarragona, Spain, and categorized by chemical composition and yellowing index, an indicator of aging. The hydrophilicity of these pellets was assessed using contact angle measurements. Microplastics were produced by grinding and filtering these pellets and subsequently dispersed around a free-standing lipid bilayer within a 3D microfluidic chip to investigate their interactions. Our results reveal that aged microplastics exhibit a significantly increased adhesive interaction with lipid bilayers, leading to greater bilayer stretching. Theoretical modeling indicates a linear relationship between the adhesive interaction and the contact angle of the pellets, reflecting their hydrophilicity. These findings emphasize the increased mechanical impact of aged microplastics on biological membranes, which raises concerns about their potential toxicological effects on living organisms. This study highlights the importance of understanding the interactions between environmentally aged microplastics and biological systems to assess their risks, as these may differ significantly from pristine microplastics often studied under laboratory conditions.
Collapse
Affiliation(s)
- Jean-Baptiste Fleury
- Universitat des Saarlandes, Experimental Physics and Center for Biophysics, 66123 Saarbruecken, Germany
| | - Vladimir A Baulin
- Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
33
|
Tang KHD, Li R. Aged Microplastics and Antibiotic Resistance Genes: A Review of Aging Effects on Their Interactions. Antibiotics (Basel) 2024; 13:941. [PMID: 39452208 PMCID: PMC11504238 DOI: 10.3390/antibiotics13100941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
Background: Microplastic aging affects the dynamics of antibiotic resistance genes (ARGs) on microplastics, yet no review presents the effects of microplastic aging on the associated ARGs. Objectives: This review, therefore, aims to discuss the effects of different types of microplastic aging, as well as the other pollutants on or around microplastics and the chemicals leached from microplastics, on the associated ARGs. Results: It highlights that microplastic photoaging generally results in higher sorption of antibiotics and ARGs due to increased microplastic surface area and functional group changes. Photoaging produces reactive oxygen species, facilitating ARG transfer by increasing bacterial cell membrane permeability. Reactive oxygen species can interact with biofilms, suggesting combined effects of microplastic aging on ARGs. The effects of mechanical aging were deduced from studies showing larger microplastics anchoring more ARGs due to rough surfaces. Smaller microplastics from aging penetrate deeper and smaller places and transport ARGs to these places. High temperatures are likely to reduce biofilm mass and ARGs, but the variation of ARGs on microplastics subjected to thermal aging remains unknown due to limited studies. Biotic aging results in biofilm formation on microplastics, and biofilms, often with unique microbial structures, invariably enrich ARGs. Higher oxidative stress promotes ARG transfer in the biofilms due to higher cell membrane permeability. Other environmental pollutants, particularly heavy metals, antibacterial, chlorination by-products, and other functional genes, could increase microplastic-associated ARGs, as do microplastic additives like phthalates and bisphenols. Conclusions: This review provides insights into the environmental fate of co-existing microplastics and ARGs under the influences of aging. Further studies could examine the effects of mechanical and thermal MP aging on their interactions with ARGs.
Collapse
Affiliation(s)
- Kuok Ho Daniel Tang
- Department of Environmental Science, College of Agriculture, Life & Environmental Sciences, The University of Arizona (UA), Tucson, AZ 85721, USA
- School of Natural Resources and Environment, UA Microcampus, Northwest A&F University (NWAFU), Yangling 712100, China;
| | - Ronghua Li
- School of Natural Resources and Environment, UA Microcampus, Northwest A&F University (NWAFU), Yangling 712100, China;
- Department of Environmental Science and Engineering, College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling 712100, China
| |
Collapse
|
34
|
Saha G, Chandrasekaran N. A comprehensive review on the adverse effect of microplastics in the gastrointestinal system of Artemia sp. Heliyon 2024; 10:e37720. [PMID: 39309788 PMCID: PMC11416537 DOI: 10.1016/j.heliyon.2024.e37720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Microplastic waste in aquatic environments can lead to the mortality of large marine creatures, as it increases the risk of entanglement, strangulation, and starvation. Even though micro- and nano-plastics pose a hidden threat, researchers still know little about them. The food source is an essential factor in gut microbial diversity. A well-balanced intestinal microbiome impacts animal development and health. According to research, microplastics (MPs) like polyethylene (PE) and polystyrene (PS) affected the gut microbiota of Artemia sp., increasing their genetic diversity. Therefore, the present study examined the negative impacts of MPs within the gastrointestinal tract of Artemia sp., the primary protein source of fish. A comprehensive literature review showed that microplastic contamination and its additives impair environmental and aquatic health. The findings of this research show that MPs alter the gut microbiota of Artemia, which in turn affects fish and, ultimately, human health via a cascade of impacts.
Collapse
Affiliation(s)
- Guria Saha
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, India
| | | |
Collapse
|
35
|
Gouin T, Ellis-Hutchings R, Pemberton M, Wilhelmus B. Addressing the relevance of polystyrene nano- and microplastic particles used to support exposure, toxicity and risk assessment: implications and recommendations. Part Fibre Toxicol 2024; 21:39. [PMID: 39334292 PMCID: PMC11429038 DOI: 10.1186/s12989-024-00599-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND There has been an exponential increase in the number of studies reporting on the toxicological effects associated with exposure to nano and microplastic particles (NMPs). The majority of these studies, however, have used monodispersed polystyrene microspheres (PSMs) as 'model' particles. Here we review the differences between the manufacture and resulting physicochemical properties of polystyrene used in commerce and the PSMs most commonly used in toxicity studies. MAIN BODY In general, we demonstrate that significant complexity exists as to the properties of polystyrene particles. Differences in chemical composition, size, shape, surface functionalities and other aspects raise doubt as to whether PSMs are fit-for-purpose for the study of potential adverse effects of naturally occurring NMPs. A realistic assessment of potential health implications of the exposure to environmental NMPs requires better characterisation of the particles, a robust mechanistic understanding of their interactions and effects in biological systems as well as standardised protocols to generate relevant model particles. It is proposed that multidisciplinary engagement is necessary for the development of a timely and effective strategy towards this end. We suggest a holistic framework, which must be supported by a multidisciplinary group of experts to work towards either providing access to a suite of environmentally relevant NMPs and/or developing guidance with respect to best practices that can be adopted by research groups to generate and reliably use NMPs. It is emphasized that there is a need for this group to agree to a consensus regarding what might best represent a model NMP that is consistent with environmental exposure for human health, and which can be used to support a variety of ongoing research needs, including those associated with exposure and hazard assessment, mechanistic toxicity studies, toxicokinetics and guidance regarding the prioritization of plastic and NMPs that likely represent the greatest risk to human health. It is important to acknowledge, however, that establishing a multidisciplinary group, or an expert community of practice, represents a non-trivial recommendation, and will require significant resources in terms of expertise and funding. CONCLUSION There is currently an opportunity to bring together a multidisciplinary group of experts, including polymer chemists, material scientists, mechanical engineers, exposure and life-cycle assessment scientists, toxicologists, microbiologists and analytical chemists, to provide leadership and guidance regarding a consensus on defining what best represents environmentally relevant NMPs. We suggest that given the various complex issues surrounding the environmental and human health implications that exposure to NMPs represents, that a multidisciplinary group of experts are thus critical towards helping to progress the harmonization and standardization of methods.
Collapse
Affiliation(s)
- Todd Gouin
- TG Environmental Research, 18 Wellpond Close, Sharnbrook, UK.
| | | | | | - Bianca Wilhelmus
- INEOS Styrolution Group GmbH, Mainzer Landstraße 50, 60325, Frankfurt am Main, Germany
| |
Collapse
|
36
|
Gong K, Hu S, Zhang W, Peng C, Tan J. Topic modeling discovers trending topics in global research on the ecosystem impacts of microplastics. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:425. [PMID: 39316202 DOI: 10.1007/s10653-024-02218-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024]
Abstract
The ecological threats of microplastics (MPs) have sparked research worldwide. However, changes in the topics of MP research over time and space have not been evaluated quantitatively, making it difficult to identify the next frontiers. Here, we apply topic modeling to assess global spatiotemporal dynamics of MP research. We identified nine leading topics in current MP research. Over time, MP research topics have switched from aquatic to terrestrial ecosystems, from distribution to fate, from ingestion to toxicology, and from physiological toxicity to cytotoxicity and genotoxicity. In most of the nine leading topics, a disproportionate amount of independent and collaborative research activity was conducted in and between a few developed countries which is detrimental to understanding the environmental fates of MPs in a global context. This review recognizes the urgent need for more attention to emerging topics in MP research, particularly in regions that are heavily impacted but currently overlooked.
Collapse
Affiliation(s)
- Kailin Gong
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shuangqing Hu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Wei Zhang
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Cheng Peng
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Jiaqi Tan
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
37
|
Madsen J, Rech A, Hartmann NB, Daugaard AE. Preparation of Block Copolymer-Stabilized Microspheres from Commercial Plastics and Their Use as Microplastic Proxies in Degradation Studies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18988-18998. [PMID: 39180478 DOI: 10.1021/acs.langmuir.4c01719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
This study presents a novel one-pot procedure for preparing sub-10 μm poly(ethylene glycol) (MPEG)-stabilized glycol-modified poly(ethylene terephthalate), poly(ethylene terephthalate) (PET), poly(lactic acid) (PLA), polycarbonate, and polycaprolactone (PCL) particles from commercial plastics. The prepared particles can be dried and directly resuspended in water, making them easy to handle and relevant mimics of microplastics. In addition, the method was extended to the preparation of unstabilized PET particles and somewhat larger polyethylene (PE)-based particles. Selected stabilized microparticles were subjected to aerobic biodegradation studies and compared with nonstabilized PET particles. All of the particles exhibited some degradation. For PLA and PET particles, the degradation corresponded well to the amount of surface-stabilizing MPEG groups or known impurities, confirming that these polymers do not degrade under the applied conditions but that the stabilizing groups do. PCL particles degraded relatively rapidly, which is consistent with the literature data and their relatively small size. PE-based particles degraded more than expected if only degradation of the stabilizing groups was taken into account, indicating that the surface chemistry of these particles plays a role in bulk degradation.
Collapse
Affiliation(s)
- Jeppe Madsen
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Arianna Rech
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Nanna B Hartmann
- Department of Environmental and Resource Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Anders E Daugaard
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
38
|
Galea J, Agius Anastasi A, Briffa SM. Design of a Weathering Chamber for UV Aging of Microplastics in the Mediterranean Region. ACS OMEGA 2024; 9:35627-35633. [PMID: 39184482 PMCID: PMC11339838 DOI: 10.1021/acsomega.4c03735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/25/2024] [Accepted: 07/11/2024] [Indexed: 08/27/2024]
Abstract
Microplastics are an ever-growing concern in the environment. Their degradation may lead to greater absorption of toxic pollutants, which may ultimately pose a threat to human health. In the pursuit of understanding microplastics' fate, behavior, and toxicity, there is a vital need to understand their aging and weathering. For this, multiple weathering setup designs were put forward. However, standardization of a weathering setup presents a significant challenge to the field due to apparatus costs, wide range of experimental parameters, or the lack of detailed reporting. This work seeks to make much-needed data gathering more accessible by constructing a low-cost weathering chamber that simulates Mediterranean shore conditions. The weathering chamber incorporates UV irradiation, mechanical abrasion, and elevated temperatures. After extensive preliminary testing, the chamber was able to achieve the desired outcome along with UV-A irradiance values, which were similar to those in the Mediterranean.
Collapse
Affiliation(s)
- Jack Galea
- Department of Metallurgy
and Materials Engineering, Faculty of Engineering, University of Malta, Msida MSD2080, Malta
| | - Anthea Agius Anastasi
- Department of Metallurgy
and Materials Engineering, Faculty of Engineering, University of Malta, Msida MSD2080, Malta
| | - Sophie M. Briffa
- Department of Metallurgy
and Materials Engineering, Faculty of Engineering, University of Malta, Msida MSD2080, Malta
| |
Collapse
|
39
|
Jiang X, Gallager S, Pàmies RP, Ruff SE, Liu Z. Laboratory-Simulated Photoirradiation Reveals Strong Resistance of Primary Macroplastics to Weathering. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14775-14785. [PMID: 39106281 PMCID: PMC11339922 DOI: 10.1021/acs.est.3c09891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 08/09/2024]
Abstract
The photodegradation of macroplastics in the marine environment remains poorly understood. Here, we investigated the weathering of commercially available plastics (tabs 1.3 × 4.4 × 0.16 cm), including high-density polyethylene, low-density polyethylene, polypropylene, polystyrene, and polycarbonate, in seawater under laboratory-simulated ultraviolet A radiation for 3-9 months, equivalent to 25-75 years of natural sunlight exposure without considering other confounding factors. After the exposure, the physical integrity and thermal stability of the tabs remained relatively intact, suggesting that the bulk polymer chains were not severely altered despite strong irradiation, likely due to their low specific surface area. In contrast, the surface layer (∼1 μm) of the tabs was highly oxidized and eroded after 9 months of accelerated weathering. Several antioxidant additives were identified in the plastics through low temperature pyrolysis coupled with gas chromatography/mass spectrometry (Pyr-GC/MS) analysis. The Pyr-GC/MS results also revealed many new oxygen-containing compounds formed during photodegradation, and these compounds indicated the dominance of chain scission reactions during weathering. These findings highlight the strong resistance of industrial macroplastics to weathering, emphasizing the need for a broader range of plastics with varying properties and sizes to accurately estimate plastic degradation in the marine environment.
Collapse
Affiliation(s)
- Xiangtao Jiang
- The
University of Texas at Austin—Marine Science Institute, Port Aransas, Texas 78373, United States
| | - Scott Gallager
- Coastal
Ocean Vision, North Falmouth, Massachusetts 02556, United States
| | - Rut Pedrosa Pàmies
- The
Ecosystems Center, Marine Biological Laboratory, Woods Hole, Massachusetts 02543, United States
| | - S. Emil Ruff
- The
Ecosystems Center, Marine Biological Laboratory, Woods Hole, Massachusetts 02543, United States
| | - Zhanfei Liu
- The
University of Texas at Austin—Marine Science Institute, Port Aransas, Texas 78373, United States
| |
Collapse
|
40
|
Gambardella C, Miroglio R, Costa E, Cachot J, Morin B, Clérandeau C, Rotander A, Rocco K, d'Errico G, Almeda R, Alonso O, Grau E, Piazza V, Pittura L, Benedetti M, Regoli F, Faimali M, Garaventa F. New insights into the impact of leachates from in-field collected plastics on aquatic invertebrates and vertebrates. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124233. [PMID: 38801877 DOI: 10.1016/j.envpol.2024.124233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/03/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
The impact of leachates from micronized beached plastics of the Mediterranean Sea and Atlantic Ocean on coastal marine ecosystems was investigated by using a multidisciplinary approach. Chemical analysis and ecotoxicological tests on phylogenetically distant species were performed on leachates from the following plastic categories: bottles, pellets, hard plastic (HP) containers, fishing nets (FN) and rapido trawling rubber (RTR). The bacteria Alivibrio fischeri, the nauplii of the crustaceans Amphibalanus amphitrite and Acartia tonsa, the rotifer Brachionus plicatilis, the embryos of the sea urchin Paracentrotus lividus, the ephyrae of the jellyfish Aurelia sp. and the larvae of the medaka Oryzias latipes were exposed to different concentrations of leachates to evaluate lethal and sub-lethal effects. Thirty-one additives were identified in the plastic leachates; benzophenone, benzyl butyl phthalate and ethylparaben were present in all leachates. Ecotoxicity of leachates varied among plastic categories and areas, being RTR, HP and FN more toxic than plastic bottles and pellets to several marine invertebrates. The ecotoxicological results based on 13 endpoints were elaborated within a quantitative weight of evidence (WOE) model, providing a synthetic hazard index for each data typology, before their integrations in an environmental risk index. The WOE assigned a moderate and slight hazard to organisms exposed to leachates of FN and HP collected in the Mediterranean Sea respectively, and a moderate hazard to leachates of HP from the Atlantic Ocean. No hazard was found for pellet, bottles and RTR. These findings suggest that an integrated approach based on WOE on a large set of bioassays is recommended to get a more reliable assessment of the ecotoxicity of beached-plastic leachates. In addition, the additives leached from FN and HP should be further investigated to reduce high concentrations and additive types that could impact marine ecosystem health.
Collapse
Affiliation(s)
- Chiara Gambardella
- Consiglio Nazionale delle Ricerche - Istituto per lo Studio degli Impatti Antropici e Sostenibilità in ambiente marino (CNR-IAS), Via de Marini 6, 16149, Genova, Italy.
| | - Roberta Miroglio
- Consiglio Nazionale delle Ricerche - Istituto per lo Studio degli Impatti Antropici e Sostenibilità in ambiente marino (CNR-IAS), Via de Marini 6, 16149, Genova, Italy
| | - Elisa Costa
- Consiglio Nazionale delle Ricerche - Istituto per lo Studio degli Impatti Antropici e Sostenibilità in ambiente marino (CNR-IAS), Via de Marini 6, 16149, Genova, Italy
| | - Jérôme Cachot
- University of Bordeaux, CNRS, Bordeaux INP, EPOC UMR 5805, F-33600, Pessac, France
| | - Bénédicte Morin
- University of Bordeaux, CNRS, Bordeaux INP, EPOC UMR 5805, F-33600, Pessac, France
| | | | - Anna Rotander
- MTM Research Centre, School of Science and Technology, Örebro University, Örebro, Sweden
| | - Kevin Rocco
- MTM Research Centre, School of Science and Technology, Örebro University, Örebro, Sweden
| | - Giuseppe d'Errico
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Rodrigo Almeda
- EOMAR, ECOAQUA, University of Las Palmas de Gran Canaria (ULPGC), Spain
| | - Olalla Alonso
- EOMAR, ECOAQUA, University of Las Palmas de Gran Canaria (ULPGC), Spain
| | - Etienne Grau
- University of Bordeaux, CNRS, Bordeaux INP, LCPO UMR 5629, F-33600, Pessac, France
| | - Veronica Piazza
- Consiglio Nazionale delle Ricerche - Istituto per lo Studio degli Impatti Antropici e Sostenibilità in ambiente marino (CNR-IAS), Via de Marini 6, 16149, Genova, Italy
| | - Lucia Pittura
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Maura Benedetti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Francesco Regoli
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Marco Faimali
- Consiglio Nazionale delle Ricerche - Istituto per lo Studio degli Impatti Antropici e Sostenibilità in ambiente marino (CNR-IAS), Via de Marini 6, 16149, Genova, Italy
| | - Francesca Garaventa
- Consiglio Nazionale delle Ricerche - Istituto per lo Studio degli Impatti Antropici e Sostenibilità in ambiente marino (CNR-IAS), Via de Marini 6, 16149, Genova, Italy
| |
Collapse
|
41
|
You HJ, Jo YJ, Kim G, Kwon J, Yoon SB, Youn C, Kim Y, Kang MJ, Cho WS, Kim JS. Disruption of early embryonic development in mice by polymethylmethacrylate nanoplastics in an oxidative stress mechanism. CHEMOSPHERE 2024; 361:142407. [PMID: 38795919 DOI: 10.1016/j.chemosphere.2024.142407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024]
Abstract
Polymethylmethacrylate (PMMA) has been used in many products, such as acrylic glass, and is estimated to reach 5.7 million tons of production per year by 2028. Thus, nano-sized PMMA particles in the environment are highly likely due to the weathering process. However, information on the hazards of nanoplastics, including PMMA in mammals, especially reproductive toxicity and action mechanism, is scarce. Herein, we investigated the effect of PMMA nanoplastics on the female reproductive system of mice embryos during pre-implantation. The treated plastic particles in embryos (10, 100, and 1000 μg/mL) were endocytosed into the cytoplasm within 30 min, and the blastocyst development and indices of embryo quality were significantly decreased from at 100 μg/mL. Likewise, the transfer of nanoplastic-treated embryos at 100 μg/mL decreased the morula implantation rate on the oviduct of pseudopregnant mice by 70%, calculated by the pregnant individual, and 31.8% by the number of implanted embryos. The PMMA nanoplastics at 100 μg/mL significantly increased the cellular levels of reactive oxygen species in embryos, which was not related to the intrinsic oxidative potential of nanoplastics. This study highlights that the nanoplastics that enter systemic circulation can affect the early stage of embryos. Thus, suitable action mechanisms can be designed to address nanoplastic occurrence.
Collapse
Affiliation(s)
- Hyeong-Ju You
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), 351-33, Neongme-gil, Ibam-myeon, Jeongeup-si, Jeollabuk-do, 56216, Republic of Korea; Department of Animal Science, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Yu-Jin Jo
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), 351-33, Neongme-gil, Ibam-myeon, Jeongeup-si, Jeollabuk-do, 56216, Republic of Korea
| | - Gyuri Kim
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan, 49315, Republic of Korea
| | - Jeongwoo Kwon
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), 351-33, Neongme-gil, Ibam-myeon, Jeongeup-si, Jeollabuk-do, 56216, Republic of Korea
| | - Seung-Bin Yoon
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), 351-33, Neongme-gil, Ibam-myeon, Jeongeup-si, Jeollabuk-do, 56216, Republic of Korea
| | - Changsic Youn
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), 351-33, Neongme-gil, Ibam-myeon, Jeongeup-si, Jeollabuk-do, 56216, Republic of Korea
| | - Yejin Kim
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), 351-33, Neongme-gil, Ibam-myeon, Jeongeup-si, Jeollabuk-do, 56216, Republic of Korea
| | - Man-Jong Kang
- Department of Animal Science, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Wan-Seob Cho
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan, 49315, Republic of Korea.
| | - Ji-Su Kim
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), 351-33, Neongme-gil, Ibam-myeon, Jeongeup-si, Jeollabuk-do, 56216, Republic of Korea.
| |
Collapse
|
42
|
Matijaković Mlinarić N, Marušić K, Brkić AL, Marciuš M, Fabijanić TA, Tomašić N, Selmani A, Roblegg E, Kralj D, Stanić I, Njegić Džakula B, Kontrec J. Microplastics encapsulation in aragonite: efficiency, detection and insight into potential environmental impacts. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1116-1129. [PMID: 38623703 DOI: 10.1039/d4em00004h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Plastic pollution in aquatic ecosystems has become a significant problem especially microplastics which can encapsulate into the skeletons of organisms that produce calcium carbonates, such as foraminifera, molluscs and corals. The encapsulation of microplastics into precipitated aragonite, which in nature builds the coral skeleton, has not yet been studied. It is also not known how the dissolved organic matter, to which microplastics are constantly exposed in aquatic ecosystems, affects the encapsulation of microplastics into aragonite and how such microplastics affect the mechanical properties of aragonite. We performed aragonite precipitation experiments in artificial seawater in the presence of polystyrene (PS) and polyethylene (PE) microspheres, untreated and treated with humic acid (HA). The results showed that the efficiency of encapsulating PE and PE-HA microspheres in aragonite was higher than that for PS and PS-HA microspheres. The mechanical properties of resulting aragonite changed after the encapsulation of microplastic particles. A decrease in the hardness and indentation modulus of the aragonite samples was observed, and the most substantial effect occurred in the case of PE-HA microspheres encapsulation. These findings raise concerns about possible changes in the mechanical properties of the exoskeleton and endoskeleton of calcifying marine organisms such as corals and molluscs due to the incorporation of pristine microplastics and microplastics exposed to dissolved organic matter.
Collapse
Affiliation(s)
| | - Katarina Marušić
- Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | | | - Marijan Marciuš
- Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Tamara Aleksandrov Fabijanić
- The Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lučića 5, 10000 Zagreb, Croatia
| | - Nenad Tomašić
- Department of Geology, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb, Croatia
| | - Atiđa Selmani
- Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 1, 8010 Graz, Austria
| | - Eva Roblegg
- Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 1, 8010 Graz, Austria
| | - Damir Kralj
- Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Ivana Stanić
- Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Branka Njegić Džakula
- Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Jasminka Kontrec
- Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| |
Collapse
|
43
|
Sui Q, Yang X, Sun X, Zhu L, Zhao X, Feng Z, Xia B, Qu K. Bioaccumulation of polycyclic aromatic hydrocarbons and their human health risks depend on the characteristics of microplastics in marine organisms of Sanggou Bay, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134622. [PMID: 38795479 DOI: 10.1016/j.jhazmat.2024.134622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 05/28/2024]
Abstract
Microplastics pose a threat to marine environments through their physical presence and as vectors of chemical pollutants. However, the impact of microplastics on the accumulation and human health risk of chemical pollutants in marine organisms remains largely unknown. In this study, we investigated the microplastics and polycyclic aromatic hydrocarbons (PAHs) pollution in marine organisms from Sanggou Bay and analyzed their correlations. Results showed that microplastic and PAHs concentration ranged from 1.23 ± 0.23 to 5.77 ± 1.10 items/g, from 6.98 ± 0.45 to 15.07 ± 1.25 μg/kg, respectively. The microplastic abundance, particularly of fibers, transparent and color plastic debris, correlates strongly with PAH contents, indicating that microplastics increase the bioaccumulation of PAHs and microplastics with these characteristics have a significant vector effect on PAHs. Although consuming seafood from Sanggou Bay induce no carcinogenic risk from PAHs, the presence of microplastics in organisms can significantly increases incremental lifetime cancer risk of PAHs. Thus, microplastics can serve as transport vectors for PAHs with implications for the potential health risks to human through consumption. This study provides new insight into the risks of microplastics in marine environments.
Collapse
Affiliation(s)
- Qi Sui
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Xiaobin Yang
- Weihai Changqing Ocean Science and Technology Co., Ltd, Rongcheng 264300, China
| | - Xuemei Sun
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Lin Zhu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Xinguo Zhao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Zhihua Feng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Bin Xia
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China.
| | - Keming Qu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| |
Collapse
|
44
|
Zhang J, Lin Z, Ai F, Du W, Yin Y, Guo H. Effect of ultraviolet aged polytetrafluoroethylene microplastics on copper bioavailability and Microcystis aeruginosa growth. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 272:106967. [PMID: 38833998 DOI: 10.1016/j.aquatox.2024.106967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 06/06/2024]
Abstract
Microplastics (MPs) are ubiquitous in aquatic environments, which can act as carriers to affect the bioavailability of heavy metals. The aging process in the environment changes the physicochemical properties of MPs, thereby affecting their environmental behavior and co-toxicity with other pollutants. However, relevant research is limited. In this study, we compared the properties and Cu2+ adsorption capacity of pristine and aged polytetrafluoroethylene (PTFE) MPs and further explored the influence on copper bioavailability and bio-effects on Microcystis aeruginosa. Aging process induced surface oxidation and cracks of PTFE MPs, and decreased the stability of MPs in water by increasing zeta potential. PTFE MPs had a strong adsorption capacity for Cu2+ and increased the bioavailability of copper to microalgae, which was not affected by the aging process. Pristine and aged PTFE MPs adhered to cyanobacterium surfaces and caused shrinkage and deformation of cells. Inhibition of cyanobacterium growth, photosynthesis and reduction of total antioxidant capacity were observed in the treatment of PTFE MPs. Combined exposure of pristine MPs and Cu2+ had stronger toxic effects to cyanobacterium, and increased Microcystin-LR release, which could cause harm to aquatic environment. Aging reduced the toxic effects of PTFE MPs on microalgae. Furthermore, soluble exopolysaccharide (EPS) content was significantly higher in co-exposure of aged MPs and Cu2+, which could reduce the toxicity to cyanobacterium cells. These results indicate that aging process alleviates the toxicity to microalgae and environmental risks caused by PTFE MPs. This study improves understanding of the combined toxicity of aged MPs and metals in freshwater ecosystems.
Collapse
Affiliation(s)
- Juanjuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Zihan Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Fuxun Ai
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Wenchao Du
- School of Environment, Nanjing Normal University, Nanjing 210036, China
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing 210023, China.
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing 210023, China
| |
Collapse
|
45
|
Karwadiya J, Lützenkirchen J, Darbha GK. Retention of ZnO nanoparticles onto polypropylene and polystyrene microplastics: Aging-associated interactions and the role of aqueous chemistry. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124097. [PMID: 38703985 DOI: 10.1016/j.envpol.2024.124097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Microplastics (MPs) are pervasive and undergo environmental aging processes, which alters potential interaction with the co-contaminants. Hence, to assess their contaminant-carrying capacity, mimicking the weathering characteristics of secondary MPs is crucial. To this end, the present study investigated the interaction of Zinc oxide (nZnO) nanoparticles with non-irradiated (NI) and UV-irradiated (UI) forms of the most abundant MPs, such as polypropylene (PP) and polystyrene (PS), in aqueous environments. SEM images revealed mechanical abrasions on the surfaces of NI-MPs and their subsequent photoaging caused the formation of close-ended and open-ended cracks in UI-PP and UI-PS, respectively. Batch-sorption experiments elucidated nZnO uptake kinetics by PP and PS MPs, suggesting a sorption-desorption pathway due to weaker and stronger sorption sites until equilibrium was achieved. UI-PP showed higher nZnO (∼3000 mg/kg) uptake compared to NI-PP, while UI-PS showed similar or slightly decreased nZnO (∼2000 mg/kg) uptake compared to NI-PS. FTIR spectra and zeta potential measurements revealed electrostatic interaction as the dominant interaction mechanism. Higher nZnO uptake by MPs was noted between pH 6.5 and 8.5, whereas it decreased beyond this range. Despite DOM, MPs always retained ∼874 mg/kg nZnO irrespective of MPs type and extent of aging. The experimental results in river water showed higher nZnO uptake on MPs compared to DI water, attributed to mutual effect of ionic competition, DOM, and MP hydrophobicity. In the case of humic acids, complex synthetic and natural water matrices, NI-MPs retained more nZnO than UI-MPs, suggesting that photoaged MPs sorb less nZnO under environmental conditions than non-photoaged MPs. These findings enhance our understanding on interaction of the MPs with co-contaminants in natural environments.
Collapse
Affiliation(s)
- Jayant Karwadiya
- Environmental nanoscience laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India
| | - Johannes Lützenkirchen
- Institute of Nuclear Waste Disposal (INE), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Gopala Krishna Darbha
- Environmental nanoscience laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India; Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India.
| |
Collapse
|
46
|
Pinto EP, Scott J, Hess K, Paredes E, Bellas J, Gonzalez-Estrella J, Minghetti M. Role of UV radiation and oxidation on polyethylene micro- and nanoplastics: impacts on cadmium sorption, bioaccumulation, and toxicity in fish intestinal cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47974-47990. [PMID: 39017862 PMCID: PMC11297841 DOI: 10.1007/s11356-024-34301-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024]
Abstract
This study investigated the role of ultraviolet (UV) radiation and oxidation in high-density polyethylene microplastics (2-15 μm) and nanoplastics (0.2-9.9 μm) (NMPs) on particle chemistry, morphology, and reactivity with cadmium (Cd). Additionally, toxicity of NMPs alone and with Cd was evaluated using RTgutGC cells, a model of the rainbow trout (Oncorhynchus mykiss) intestine. The role on NMPs on Cd bioaccumulation in RTgutGC cells was also evaluated. Dynamic light scattering indicated that after UV radiation NPs agglomerated size increased from 0.8 to 28 µm, and to 8 µm when Cd was added. Oxidized MPs agglomerated size increased from 11 and 7 to 46 and 27 µm in non-UV- and UV-aged oxidized MPs when adding Cd, respectively. Cd-coated particles exhibited generally significantly higher zeta potential than non-Cd-coated particles, while attenuated total reflectance-Fourier transform infrared spectroscopy showed that the functional chemistry of the particles was oxidized and modified after being exposed to UV radiation. Presence of NMPs resulted in a significant decrease in Cd bioaccumulation in RTgutGC cells (100.5-87.9 ng Cd/mg protein) compared to Cd alone (138.1 ng Cd/mg protein), although this was not quite significant for co-exposures with UV-aged NPs (105.7 ng Cd/mg protein). No toxicity was observed in RTgutGC cells exposed to NMPs alone for 24 h. Moreover, co-exposures with Cd indicated that NMPs reduce the toxicity of Cd. Altogether these results show that UV aging enhances NMP surface reactivity, increasing Cd absorption in solution, which resulted in a reduction in Cd bioavailability and toxicity.
Collapse
Affiliation(s)
- Estefanía Pereira Pinto
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, 74078, USA.
- Centro de Investigación Mariña, Departamento de Ecoloxía e Bioloxía Animal, Laboratorio de Ecoloxía Costeira (ECOCOST), 36310, Universidade de Vigo, Vigo, Spain.
| | - Justin Scott
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Kendra Hess
- School of Civil and Environmental Engineering, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Estefanía Paredes
- Centro de Investigación Mariña, Departamento de Ecoloxía e Bioloxía Animal, Laboratorio de Ecoloxía Costeira (ECOCOST), 36310, Universidade de Vigo, Vigo, Spain
| | - Juan Bellas
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO, CSIC), Subida a Radio Faro 50, 36390, Vigo, Spain
| | - Jorge Gonzalez-Estrella
- School of Civil and Environmental Engineering, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Matteo Minghetti
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| |
Collapse
|
47
|
Haffiez N, Kalantar E, Zakaria BS, Azizi SMM, Farner JM, Dhar BR. Impact of aging of primary and secondary polystyrene nanoplastics on the transmission of antibiotic resistance genes in anaerobic digestion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174213. [PMID: 38914331 DOI: 10.1016/j.scitotenv.2024.174213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Sewage sludge is a significant reservoir of nano/microplastics (NPs/MPs) and antibiotic resistance genes (ARGs). Research has revealed that NPs/MPs may exert an inhibitory effect on anaerobic digestion (AD) of sludge. Moreover, NPs/MPs can influence microbial community diversity and composition, potentially increasing ARGs dissemination. The morphological changes to NPs/MPs surface due to aging contribute to modifying hydrophobic properties. To date, there is limited comprehension regarding how various surface properties of NPs influence ARGs dissemination during AD. This study investigated the impact of primary aged/non-aged and secondary aged/non-aged polystyrene nanoplastics (PSNPs) on ARGs and mobile genetic elements (MGEs) propagation during AD. The findings indicated that the UV-aging process resulted in surface oxidation and distinct morphological characteristics in both primary and secondary PSNPs, while the surface oxidation effect was more pronounced in the secondary aged PSNPs. High concentrations (150 μg/L) of primary and secondary PSNPs inhibited methane production, with secondary PSNPs causing greater inhibition by 16 to 20 % compared to control. In contrast, low concentration (25 μg/L) had negligible or slightly positive effects on methane production. PSNPs at 150 μg/L reduced total VFA concentration, indicating an inhibitory effect on the fermentation step in the AD process. Primary and secondary PSNPs exhibited changes in EPS characteristics. ARGs abundance was enriched in reactors amended with PSNPs, with the highest abundance of 8.54 × 105 copies/g sludge observed in the secondary aged PSNPs (150 μg/L) reactor. Reactors exposed to aged PSNPs exhibited a relatively higher abundance of ARGs compared to reactors exposed to non-aged PSNPs. Exposure to PSNPs increased the microbial community diversity within the digesters and triggered the enrichment of Comamonadaceae and Syntrophaceae, belonging to Proteobacteria phylum. On the other hand, archaeal communities tended to shift towards hydrogenotrophic methanogens in PSNPs reactors. The correlation analysis showed that Comamonadaceae were positively correlated with the majority of ARGs and intl1. A positive correlation was observed between MGEs and most ARGs, suggesting that the increased proliferation of ARGs under PSNPs exposure may be linked to the abundance of MGEs, which in turn promotes the growth of hosts carrying ARGs. These findings suggest that aged and non-aged NPs could substantially impact the spread of ARGs and MGEs, which also led to notable alterations in the composition of the microbial community. Overall, this study provides valuable insights into the multifaceted impacts of PSNPs with various characteristics on AD processes, microbial communities, and ARGs proliferation, highlighting the urgent need for comprehensive assessments of NPs pollutants in the environment.
Collapse
Affiliation(s)
- Nervana Haffiez
- Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada
| | - Elnaz Kalantar
- Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada
| | - Basem S Zakaria
- Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States; Advanced Biofuels and Bioproducts Process Development Unit, Emeryville, CA, United States
| | - Seyed Mohammad Mirsoleimani Azizi
- Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada; Stantec, 10220 103 Ave NW #300, Edmonton, AB T5J 0K4, Canada
| | - Jeffrey M Farner
- Civil and Environmental Engineering, Florida A&M University-Florida State University College of Engineering, Tallahassee, FL, United States.
| | - Bipro Ranjan Dhar
- Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
48
|
Nizzetto L, Binda G, Hurley R, Baann C, Selonen S, Velmala S, van Gestel CAM. Comments to "Degli-Innocenti, F. The pathology of hype, hyperbole and publication bias is creating an unwarranted concern towards biodegradable mulch films" [J. Hazard. Mater. 463 (2024) 132923]. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:133690. [PMID: 38336580 DOI: 10.1016/j.jhazmat.2024.133690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
Some narratives present biodegradable plastic use for soil mulching practices in agriculture as "environmentally friendly" and "sustainable" alternatives to conventional plastics. To verify these narratives, environmental research recently started focusing on their potential impact on soil health, highlighting some concerns. The paper by Degli-Innocenti criticizes this unfolding knowledge arguing that it is affected by communication hypes, alarmistic writing and a focus on exposure scenarios purposedly crafted to yield negative effects. The quest of scientists for increased impact - the paper concludes - is the driver of such behavior. As scholars devoted to the safeguarding of scientific integrity, we set to verify whether this serious claim is grounded in evidence. Through a bibliometric analysis (using number of paper reads, citations and mentions on social media to measure the impact of publications) we found that: i) the papers pointed out by Degli-Innocenti as examples of biased works do not score higher than the median of similar publications; ii) the methodology used to support the conclusion is non-scientific; and iii) the paper does not fulfil the requirements concerning disclosure of conflicts of interests. We conclude that this paper represents a non-scientific opinion, potentially biased by a conflict of interest. We ask the paper to be clearly tagged as such, after the necessary corrections on the ethic section have been made. That being said, the paper does offer some useful insights for the definition of exposure scenarios in risk assessment. We comment and elaborate on these proposed models, hoping that this can help to advance the field.
Collapse
Affiliation(s)
- Luca Nizzetto
- Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579 Oslo, Norway; Research Centre for Toxic Compounds in the Environment, Masaryk University, 62500 Brno, Czech Republic.
| | - Gilberto Binda
- Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579 Oslo, Norway; DISAT Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy
| | - Rachel Hurley
- Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579 Oslo, Norway
| | - Cecilie Baann
- Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579 Oslo, Norway
| | - Salla Selonen
- Finnish Environment Institute (SYKE), Mustialankatu 3, 00790 Helsinki, Finland
| | - Sannakajsa Velmala
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland
| | - Cornelis A M van Gestel
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| |
Collapse
|
49
|
Zeng Z, Jia B, Liu X, Chen L, Zhang P, Qing T, Feng B. Adsorption behavior of triazine pesticides on polystyrene microplastics aging with different processes in natural environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124319. [PMID: 38844042 DOI: 10.1016/j.envpol.2024.124319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
The presence of microplastics in the ecological environment, serving as carriers for other organic pollutants, has garnered widespread attention. These microplastics exposed in the environment may undergo various aging processes. However, there is still a lack of information regarding how these aged microplastics impact the environmental behavior and ecological toxicity of pollutants. In this study, we modified polystyrene microplastics by simulating the aging behavior that may occur under environmental exposure, and then explored the adsorption behavior and adsorption mechanism of microplastics before and after aging for typical triazine herbicides. It was shown that all aging treatments of polystyrene increased the adsorption of herbicides, the composite aged microplastics had the strongest adsorption capacity and the fastest adsorption rate, and of the three herbicides, metribuzin was adsorbed the most by microplastics. The interactions between microplastics and herbicides involved mechanisms such as hydrophobic interactions, surface adsorption, the effect of π-π interactions, and the formation of hydrogen bonds. Further studies confirmed that microplastics adsorbed with herbicides cause greater biotoxicity to E. coli. These findings elucidate the interactions between microplastics before and after aging and triazine herbicides. Acting as carriers, they alter the environmental behavior and ecological toxicity of organic pollutants, providing theoretical support for assessing the ecological risk of microplastics in water environments.
Collapse
Affiliation(s)
- Zihang Zeng
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Bingni Jia
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Xiaofeng Liu
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Lixiang Chen
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Peng Zhang
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Taiping Qing
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Bo Feng
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, Hunan, China.
| |
Collapse
|
50
|
Yu F, Qin Q, Zhang X, Ma J. Characteristics and adsorption behavior of typical microplastics in long-term accelerated weathering simulation. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:882-890. [PMID: 38693902 DOI: 10.1039/d4em00062e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Microplastics can function as carriers in the environment, absorbing various toxins and spreading to diverse ecosystems. Toxins accumulated in microplastics have the potential to be re-released, posing a threat. In this study, two typical plastics, namely polyethylene (PE) and polystyrene (PS), along with the degradable plastic poly(butylene adipate-co-terephthalate) (PBAT), were subjected to a long-term ultraviolet alternating weathering experiment. The study investigated the variations in the weathering process and pollutant adsorption of microplastics of different particle sizes. Furthermore, the adsorption capacity of microplastics for various pollutants was assessed. The findings indicate that particle size significantly influences weathering, leading to variations in adsorption capacity. The weathered PE displays a higher adsorption capacity for azo dyes. Additionally, the adsorption capacity of PBAT for neutral red is double that of antibiotics. Importantly, the maximum adsorption capacity of PBAT for pollutants after aging is approximately 10 times greater than that of PE. Consequently, degradable plastics undergoing weathering in the natural environment may pose a higher ecological risk than traditional plastics.
Collapse
Affiliation(s)
- Fei Yu
- College of Oceanography and Ecological Science, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, P. R. China
| | - Qiyu Qin
- College of Oceanography and Ecological Science, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, P. R. China
| | - Xiaochen Zhang
- College of Oceanography and Ecological Science, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, P. R. China
| | - Jie Ma
- School of Civil Engineering, Kashi University, Kashi 844000, China.
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| |
Collapse
|