1
|
Li MY, Lu M, Cao DM, Han Q, Ma XH, Wei CC, Zhang WJ. Characterization of Ucp1-iCre knockin mice reveals the recombination activity in male germ cells. Am J Physiol Endocrinol Metab 2024; 327:E544-E551. [PMID: 39230395 DOI: 10.1152/ajpendo.00128.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024]
Abstract
Ucp1 promoter-driven Cre transgenic mice are useful in the manipulation of gene expression specifically in thermogenic adipose tissues. However, the wildly used Ucp1-Cre line was generated by random insertion into the genome and showed ectopic activity in some tissues beyond adipose tissues. Here, we characterized a knockin mouse line Ucp1-iCre generated by targeting IRES-Cre cassette immediately downstream the stop codon of the Ucp1 gene. The Cre insertion had little to no effect on uncoupling protein 1 (UCP1) levels in brown adipose tissue. Ucp1-iCre mice of both genders exhibited normal thermogenesis and cold tolerance. When crossed with Rosa-tdTomato reporter mice, Ucp1-iCre mice showed robust Cre activity in thermogenic adipose tissues. In addition, limited Cre activity was sparsely present in the ventromedial hypothalamus (VMH), choroid plexus, kidney, adrenal glands, ovary, and testis in Ucp1-iCre mice, albeit to a much lesser extent and with reduced intensity compared with the conventional Ucp1-Cre line. Single-cell transcriptome analysis revealed Ucp1 mRNA expression in male spermatocytes. Moreover, male Ucp1-iCre mice displayed a high frequency of Cre-mediated recombination in the germline, whereas no such effect was observed in female Ucp1-iCre mice. These findings suggest that Ucp1-iCre mice offer promising utility in the context of conditional gene manipulation in thermogenic adipose tissues, while also highlighting the need for caution in mouse mating and genotyping procedures.NEW & NOTEWORTHY Ucp1 promoter-driven Cre transgenic mice are useful in the manipulation of gene expression specifically in thermogenic adipose tissues. The widely used Ucp1-Cre mouse line (Ucp1-CreEvdr), which was generated using the bacterial artificial chromosome (BAC) strategy, exhibits major brown and white fat transcriptomic dysregulation and ectopic activity beyond adipose tissues. Here, we comprehensively validate Ucp1-iCre knockin mice, which serve as another optional model besides Ucp1-CreEvdr mice for specific genetic manipulation in thermogenic tissue.
Collapse
Affiliation(s)
- Meng-Yue Li
- National Key Laboratory of Immunity and Inflammation, Department of Pathophysiology, Obesity and Diabetes Center, Naval Medical University, Shanghai, People's Republic of China
| | - Ming Lu
- National Key Laboratory of Immunity and Inflammation, Department of Pathophysiology, Obesity and Diabetes Center, Naval Medical University, Shanghai, People's Republic of China
| | - Dong-Mei Cao
- National Key Laboratory of Immunity and Inflammation, Department of Pathophysiology, Obesity and Diabetes Center, Naval Medical University, Shanghai, People's Republic of China
| | - Qing Han
- National Key Laboratory of Immunity and Inflammation, Department of Pathophysiology, Obesity and Diabetes Center, Naval Medical University, Shanghai, People's Republic of China
| | - Xian-Hua Ma
- National Key Laboratory of Immunity and Inflammation, Department of Pathophysiology, Obesity and Diabetes Center, Naval Medical University, Shanghai, People's Republic of China
| | - Chun-Chun Wei
- National Key Laboratory of Immunity and Inflammation, Department of Pathophysiology, Obesity and Diabetes Center, Naval Medical University, Shanghai, People's Republic of China
| | - Weiping J Zhang
- National Key Laboratory of Immunity and Inflammation, Department of Pathophysiology, Obesity and Diabetes Center, Naval Medical University, Shanghai, People's Republic of China
| |
Collapse
|
2
|
Samanta S, Bagchi D, Bagchi M. Physiological and metabolic functions of the β 3-adrenergic receptor and an approach to therapeutic achievements. J Physiol Biochem 2024:10.1007/s13105-024-01040-z. [PMID: 39145850 DOI: 10.1007/s13105-024-01040-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024]
Abstract
A specific type of beta-adrenergic receptor was discovered in the decade of 1980s and subsequently recognized as a new type of beta-adrenergic receptor, called beta3-adrenoceptor (β3-AR). β3-AR expresses in different tissues, including adipose tissue, gall bladder, stomach, small intestine, cardiac myocytes, urinary bladder, and brain. Structurally, β3-AR is very similar to β1- and β2-AR and belongs to a G-protein coupled receptor that uses cAMP as an intracellular second messenger. Alternatively, it also activates the NO-cGMP cascade. Stimulation of the β3-AR increases lipolysis, fatty acid oxidation, energy expenditure, and insulin action, leading to anti-obesity and anti-diabetic activity. Moreover, β3-AR differentially regulates the myocardial contraction and relaxes the urinary bladder to balance the cardiac activity and delay the micturition reflex, respectively. In recent years, this receptor has served as an attractive target for the treatment of obesity, type 2 diabetes, congestive heart failure, and overactive bladder syndrome. Several β3-AR agonists are in the emerging stage that can exert novel pharmacological benefits in different therapeutic areas. The present review focuses on the structure, signaling, physiological, and metabolic activities of β3-AR. Additionally, therapeutic approaches of β3-AR have also been considered.
Collapse
Affiliation(s)
- Saptadip Samanta
- Department of Physiology, Midnapore College, Paschim Medinipur, Midnapore, West Bengal, 721101, India.
| | - Debasis Bagchi
- Department of Biology, College of Arts and Sciences, Adelphi University, Garden City, NY, USA
- Department of Psychology, Gordon F. Derner School of Psychology, Adelphi University, Garden City, NY, USA
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Southern University, Houston, TX, 77004, USA
| | - Manashi Bagchi
- Creighton University Health Sciences Center, Omaha, NE, 68178, USA
| |
Collapse
|
3
|
Lai P, Zhang L, Qiu Y, Ren J, Sun X, Zhang T, Wang L, Cheng S, Liu S, Zhuang H, Lu D, Zhang S, Liang H, Chen S. Heat stress reduces brown adipose tissue activity by exacerbating mitochondrial damage in type 2 diabetic mice. J Therm Biol 2024; 119:103799. [PMID: 38342042 DOI: 10.1016/j.jtherbio.2024.103799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/13/2024]
Abstract
Epidemiological evidence shows that diabetic patients are susceptible to high temperature weather, and brown adipose tissue (BAT) activity is closely related to type 2 diabetes (T2DM). Activation of BAT under cold stress helps improve T2DM. However, the impact of high temperature on the activity of BAT is still unclear. The study aimed to investigate the impact of heat stress on glucose and lipid metabolism in T2DM mice by influencing BAT activity. High-fat feeding and injecting streptozotocin (STZ) induced model of T2DM mice. All mice were randomly divided into three groups: a normal(N) group, a diabetes (DM) group and a heat stress diabetes (DMHS) group. The DMHS group received heat stress intervention for 3 days. Fasting blood glucose, fasting serum insulin and blood lipids were measured in all three groups. The activity of BAT was assessed by using quantitative real-time PCR (qRT-PCR), electron microscopy, and PET CT. Furthermore, the UHPLC-Q-TOF MS technique was employed to perform metabolomics analysis of BAT on both DM group and DMHS group. The results of this study indicated that heat stress aggravated the dysregulation of glucose and lipid metabolism, exacerbated mitochondrial dysfunction in BAT and reduced the activity of BAT in T2DM mice. This may be related to the abnormal accumulation of branched-chain amino acids (BCAAs) in the mitochondria of BAT.
Collapse
Affiliation(s)
- Penghua Lai
- School of Medicine, Xiamen University, Xiamen, 361102, Fujian Province, China; School of Traditional Chinese Medicine, Xiamen University, Malaysia
| | - Linlin Zhang
- School of Medicine, Xiamen University, Xiamen, 361102, Fujian Province, China
| | - Yan Qiu
- School of Medicine, Xiamen University, Xiamen, 361102, Fujian Province, China
| | - Jie Ren
- School of Medicine, Xiamen University, Xiamen, 361102, Fujian Province, China
| | - Xue Sun
- School of Medicine, Xiamen University, Xiamen, 361102, Fujian Province, China
| | - Ting Zhang
- School of Medicine, Xiamen University, Xiamen, 361102, Fujian Province, China
| | - Liuyi Wang
- School of Medicine, Xiamen University, Xiamen, 361102, Fujian Province, China
| | - Sijie Cheng
- School of Medicine, Xiamen University, Xiamen, 361102, Fujian Province, China
| | - Sijia Liu
- School of Medicine, Xiamen University, Xiamen, 361102, Fujian Province, China
| | - Hongli Zhuang
- Department of Traditional Chinese Medicine, First Affiliated Hospital of Xiamen University, China
| | - Daiwei Lu
- School of Medicine, Xiamen University, Xiamen, 361102, Fujian Province, China
| | - Shaoliang Zhang
- School of Medicine, Xiamen University, Xiamen, 361102, Fujian Province, China
| | - Huiqing Liang
- Liver Disease Center, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, 361009, Fujian Province, China; School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Shaodong Chen
- School of Medicine, Xiamen University, Xiamen, 361102, Fujian Province, China; School of Traditional Chinese Medicine, Xiamen University, Malaysia.
| |
Collapse
|
4
|
Palacios-Marin I, Serra D, Jiménez-Chillarón JC, Herrero L, Todorčević M. Childhood obesity: Implications on adipose tissue dynamics and metabolic health. Obes Rev 2023; 24:e13627. [PMID: 37608466 DOI: 10.1111/obr.13627] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 08/24/2023]
Abstract
Obesity is the leading risk factor for the development of type 2 diabetes and cardiovascular diseases. Childhood obesity represents an alarming health challenge because children with obesity are prone to remain with obesity throughout their life and have an increased morbidity and mortality risk. The ability of adipose tissue to store lipids and expand in size during excessive calorie intake is its most remarkable characteristic. Cellular and lipid turnovers determine adipose tissue size and are closely related with metabolic status. The mechanisms through which adipose tissue expands and how this affects systemic metabolic homeostasis are still poorly characterized. Furthermore, the mechanism through which increased adiposity extends from childhood to adulthood and its implications in metabolic health are in most part, still unknown. More studies on adipose tissue development in healthy and children with obesity are urgently needed. In the present review, we summarize the dynamics of white adipose tissue, from developmental origins to the mechanisms that allows it to grow and expand throughout lifetime and during obesity in children and in different mouse models used to address this largely unknown field. Specially, highlighting the role that excessive adiposity during the early life has on future's adipose tissue dynamics and individual's health.
Collapse
Affiliation(s)
- Ivonne Palacios-Marin
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), Barcelona, Spain
| | - Dolors Serra
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Josep C Jiménez-Chillarón
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Department of Physiological Sciences, School of Medicine, Universitat de Barcelona, L'Hospitalet de Llobregat, Catalonia, Spain
| | - Laura Herrero
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Marijana Todorčević
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
5
|
Li Y, He C, Liu R, Xiao Z, Sun B. Stem cells therapy for diabetes: from past to future. Cytotherapy 2023; 25:1125-1138. [PMID: 37256240 DOI: 10.1016/j.jcyt.2023.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/05/2023] [Accepted: 04/24/2023] [Indexed: 06/01/2023]
Abstract
Diabetes mellitus is a chronic disease of carbohydrate metabolism characterized by uncontrolled hyperglycemia due to the body's impaired ability to produce or respond to insulin. Oral or injectable exogenous insulin and its analogs cannot mimic endogenous insulin secreted by healthy individuals, and pancreatic and islet transplants face a severe shortage of sources and transplant complications, all of which limit the widespread use of traditional strategies in diabetes treatment. We are now in the era of stem cells and their potential in ameliorating human disease. At the same time, the rapid development of gene editing and cell-encapsulation technologies has added to the wings of stem cell therapy. However, there are still many unanswered questions before stem cell therapy can be applied clinically to patients with diabetes. In this review, we discuss the progress of strategies to obtain insulin-producing cells from different types of stem cells, the application of gene editing in stem cell therapy for diabetes, as well as summarize the current advanced cell encapsulation technologies in diabetes therapy and look forward to the future development of stem cell therapy in diabetes.
Collapse
Affiliation(s)
- Yumin Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Cong He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China; Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital,The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Rui Liu
- Department of Genetic Engineering, College of Natural Science, University of Suwon, Kyunggi-Do, Republic of Korea
| | - Zhongdang Xiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.
| | - Bo Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.
| |
Collapse
|
6
|
Yalçın T, Kaya S, Kuloğlu T, Yiğin A. N-Acetylcysteine May Regulate Altered Meteorin-Like Levels in Testicular Tissue due to Aluminum Exposure. Biol Trace Elem Res 2023; 201:5335-5345. [PMID: 37016183 DOI: 10.1007/s12011-023-03656-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/30/2023] [Indexed: 04/06/2023]
Abstract
Aluminum (AL) is a heavy metal known to have toxic effects on the reproductive system. It is known that N-acetylcysteine (NAC), which has an antioxidant effect, is a useful chelator for heavy metals. This study aimed to determine whether NAC may reduce AL-induced oxidative stress, inflammation, and germ cell apoptosis in testicular tissues and its effects on meteorin-like (METRNL) levels, which are known to play a role in energy metabolism. In this experimental study, 28 Sprague-Dawley male rats were randomly divided into 4 groups (n = 7): control, AL (30 mg/kg/day AL), AL + NAC (30 mg/kg/day AL + 150 mg/kg/day NAC), and NAC (150 mg/kg/day NAC). All AL and NAC applications were performed intraperitoneally for 14 days. At the end of the experiment, the effects of AL and/or NAC applications on testicular tissue were examined histomorphometrically, histopathologically, immunohistochemically, and biochemically. It was determined that AL exposure caused histomorphometric and histopathological changes, oxidative stress, apoptosis of germ cells, and inflammation in testicular tissues. In addition, AL caused an increase in METRNL levels. It was determined that NAC treatment significantly reduced the negative effects of AL. NAC therapy may be a protective strategy in reproductive toxicity due to AL exposure.
Collapse
Affiliation(s)
- Tuba Yalçın
- Vocational Higher School of Healthcare Studies, Batman University, Batman, Turkey
| | - Sercan Kaya
- Vocational Higher School of Healthcare Studies, Batman University, Batman, Turkey.
| | - Tuncay Kuloğlu
- Department of Histology and Embryology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Akın Yiğin
- Department of Genetics, Faculty of Veterinary Medicine, Harran University, Sanliurfa, Turkey
| |
Collapse
|
7
|
Guilherme A, Rowland LA, Wetoska N, Tsagkaraki E, Santos KB, Bedard AH, Henriques F, Kelly M, Munroe S, Pedersen DJ, Ilkayeva OR, Koves TR, Tauer L, Pan M, Han X, Kim JK, Newgard CB, Muoio DM, Czech MP. Acetyl-CoA carboxylase 1 is a suppressor of the adipocyte thermogenic program. Cell Rep 2023; 42:112488. [PMID: 37163372 PMCID: PMC10286105 DOI: 10.1016/j.celrep.2023.112488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 03/03/2023] [Accepted: 04/24/2023] [Indexed: 05/12/2023] Open
Abstract
Disruption of adipocyte de novo lipogenesis (DNL) by deletion of fatty acid synthase (FASN) in mice induces browning in inguinal white adipose tissue (iWAT). However, adipocyte FASN knockout (KO) increases acetyl-coenzyme A (CoA) and malonyl-CoA in addition to depletion of palmitate. We explore which of these metabolite changes triggers adipose browning by generating eight adipose-selective KO mouse models with loss of ATP-citrate lyase (ACLY), acetyl-CoA carboxylase 1 (ACC1), ACC2, malonyl-CoA decarboxylase (MCD) or FASN, or dual KOs ACLY/FASN, ACC1/FASN, and ACC2/FASN. Preventing elevation of acetyl-CoA and malonyl-CoA by depletion of adipocyte ACLY or ACC1 in combination with FASN KO does not block the browning of iWAT. Conversely, elevating malonyl-CoA levels in MCD KO mice does not induce browning. Strikingly, adipose ACC1 KO induces a strong iWAT thermogenic response similar to FASN KO while also blocking malonyl-CoA and palmitate synthesis. Thus, ACC1 and FASN are strong suppressors of adipocyte thermogenesis through promoting lipid synthesis rather than modulating the DNL intermediates acetyl-CoA or malonyl-CoA.
Collapse
Affiliation(s)
- Adilson Guilherme
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| | - Leslie A Rowland
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Nicole Wetoska
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Emmanouela Tsagkaraki
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Kaltinaitis B Santos
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Alexander H Bedard
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Felipe Henriques
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Mark Kelly
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Sean Munroe
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - David J Pedersen
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Olga R Ilkayeva
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27705, USA
| | - Timothy R Koves
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27705, USA
| | - Lauren Tauer
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Meixia Pan
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jason K Kim
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Christopher B Newgard
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27705, USA; Departments of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27705, USA
| | - Deborah M Muoio
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27705, USA; Departments of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27705, USA
| | - Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
8
|
Zhu Y, Qi Z, Ding S. Exercise-Induced Adipose Tissue Thermogenesis and Browning: How to Explain the Conflicting Findings? Int J Mol Sci 2022; 23:13142. [PMID: 36361929 PMCID: PMC9657384 DOI: 10.3390/ijms232113142] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 07/25/2023] Open
Abstract
Brown adipose tissue (BAT) has been widely studied in targeting against metabolic diseases such as obesity, type 2 diabetes and insulin resistance due to its role in nutrient metabolism and energy regulation. Whether exercise promotes adipose tissue thermogenesis and browning remains controversial. The results from human and rodent studies contradict each other. In our opinion, fat thermogenesis or browning promoted by exercise should not be a biomarker of health benefits, but an adaptation under the stress between body temperature regulation and energy supply and expenditure of multiple organs. In this review, we discuss some factors that may contribute to conflicting experimental results, such as different thermoneutral zones, gender, training experience and the heterogeneity of fat depots. In addition, we explain that a redox state in cells potentially causes thermogenesis heterogeneity and different oxidation states of UCP1, which has led to the discrepancies noted in previous studies. We describe a network by which exercise orchestrates the browning and thermogenesis of adipose tissue with total energy expenditure through multiple organs (muscle, brain, liver and adipose tissue) and multiple pathways (nerve, endocrine and metabolic products), providing a possible interpretation for the conflicting findings.
Collapse
Affiliation(s)
- Yupeng Zhu
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai 200241, China
- School of Physical Education and Health, East China Normal University, Shanghai 200241, China
- Sino-French Joint Research Center of Sport Science, East China Normal University, Shanghai 200241, China
| | - Zhengtang Qi
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai 200241, China
- School of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Shuzhe Ding
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai 200241, China
- Sino-French Joint Research Center of Sport Science, East China Normal University, Shanghai 200241, China
| |
Collapse
|
9
|
Reinisch I, Klymiuk I, Michenthaler H, Moyschewitz E, Galhuber M, Krstic J, Domingo M, Zhang F, Karbiener M, Vujić N, Kratky D, Schreiber R, Schupp M, Lenihan-Geels G, Schulz TJ, Malli R, Madl T, Prokesch A. p53 Regulates a miRNA-Fructose Transporter Axis in Brown Adipose Tissue Under Fasting. Front Genet 2022; 13:913030. [PMID: 35734423 PMCID: PMC9207587 DOI: 10.3389/fgene.2022.913030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/02/2022] [Indexed: 11/25/2022] Open
Abstract
Active thermogenic adipocytes avidly consume energy substrates like fatty acids and glucose to maintain body temperature upon cold exposure. Despite strong evidence for the involvement of brown adipose tissue (BAT) in controlling systemic energy homeostasis upon nutrient excess, it is unclear how the activity of brown adipocytes is regulated in times of nutrient scarcity. Therefore, this study aimed to scrutinize factors that modulate BAT activity to balance thermogenic and energetic needs upon simultaneous fasting and cold stress. For an unbiased view, we performed transcriptomic and miRNA sequencing analyses of BAT from acutely fasted (24 h) mice under mild cold exposure. Combining these data with in-depth bioinformatic analyses and in vitro gain-of-function experiments, we define a previously undescribed axis of p53 inducing miR-92a-1-5p transcription that is highly upregulated by fasting in thermogenic adipocytes. p53, a fasting-responsive transcription factor, was previously shown to control genes involved in the thermogenic program and miR-92a-1-5p was found to negatively correlate with human BAT activity. Here, we identify fructose transporter Slc2a5 as one direct downstream target of this axis and show that fructose can be taken up by and metabolized in brown adipocytes. In sum, this study delineates a fasting-induced pathway involving p53 that transactivates miR-92a-1-5p, which in turn decreases Slc2a5 expression, and suggests fructose as an energy substrate in thermogenic adipocytes.
Collapse
Affiliation(s)
- Isabel Reinisch
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Ingeborg Klymiuk
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Helene Michenthaler
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Elisabeth Moyschewitz
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Markus Galhuber
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Jelena Krstic
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Magnus Domingo
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Fangrong Zhang
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | | | - Nemanja Vujić
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Dagmar Kratky
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Renate Schreiber
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz, Austria
- BioHealth Graz, Graz, Austria
| | - Michael Schupp
- Cardiovascular Metabolic Renal (CMR)- Research Center, Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt- Universität zu Berlin, Berlin, Germany
| | - Georgia Lenihan-Geels
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Tim J. Schulz
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Roland Malli
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Andreas Prokesch
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
- *Correspondence: Andreas Prokesch,
| |
Collapse
|
10
|
Zhou HR, Wang TX, Hao YY, Hou YL, Wei C, Yao B, Wu X, Huang D, Zhang H, Wu YL. Jinlida Granules Reduce Obesity in db/db Mice by Activating Beige Adipocytes. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4483009. [PMID: 35647185 PMCID: PMC9135524 DOI: 10.1155/2022/4483009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 12/15/2022]
Abstract
Recent studies indicate existence of beige adipocytes in adults. Upon activation, beige adipocytes burn energy for thermogenesis and contribute to regulation of energy balance. In this study, we have analyzed whether Jinlida granules (JLD) could activate beige adipocytes. JLD suspended in 0.5% carboxymethyl cellulose (CMC) was gavage fed to db/db mice at a daily dose of 3.8 g/kg. After 10 weeks, body weight, biochemical, and histological analyses were performed. In situ hybridization, immunofluorescence, and western blotting were conducted to test beige adipocyte activation in mice. X9 cells were induced with induction medium and maintenance medium containing 400 μg/mL of JLD. After completion of induction, cells were analyzed by Nile red staining, time polymerase chain reaction (PCR), western blotting, and immunofluorescence to understand the effect of JLD on the activation of beige adipocytes. A molecular docking method was used to preliminarily identify compounds in JLD, which hold the potential activation effect on uncoupling protein 1 (UCP1). JLD treatment significantly improved obesity in db/db mice. Biochemical results showed that JLD reduced blood glucose (GLU), triglyceride (TG), and low-density lipoprotein cholesterol (LDL) levels as well as liver aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels in mice. Hematoxylin and eosin staining (H&E) showed that JLD reduced hepatocyte ballooning changes in the liver. Immunofluorescence showed that JLD increased the expression of the thermogenic protein, UCP1, in the beige adipose tissue of mice. JLD also increased the expression of UCP1 and inhibited the expression of miR-27a in X9 cells. Molecular docking results showed that epmedin B, epmedin C, icariin, puerarin, and salvianolic acid B had potential activation effects on UCP1. The results suggest that JLD may activate beige adipocytes by inhibiting miR-27a expression, thereby promoting thermogenesis in beige adipocytes. This study provides a new pharmacological basis for the clinical use of JLD.
Collapse
Affiliation(s)
- Hong-ru Zhou
- Hebei Medical University, No. 361 Zhongshan Road, Chang'an District, Shijiazhuang, Hebei Province, China
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Diseases), Shijiazhuang, China
| | - Tong-xing Wang
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Diseases), Shijiazhuang, China
| | - Yuan-yuan Hao
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Diseases), Shijiazhuang, China
- Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yun-long Hou
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Diseases), Shijiazhuang, China
| | - Cong Wei
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Diseases), Shijiazhuang, China
| | - Bing Yao
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Diseases), Shijiazhuang, China
| | - Xuan Wu
- Hebei Medical University, No. 361 Zhongshan Road, Chang'an District, Shijiazhuang, Hebei Province, China
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Diseases), Shijiazhuang, China
| | - Dan Huang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Hui Zhang
- The First Affiliated Hospital of Henan University of CM, Zhengzhou, China
| | - Yi-ling Wu
- Hebei Medical University, No. 361 Zhongshan Road, Chang'an District, Shijiazhuang, Hebei Province, China
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Diseases), Shijiazhuang, China
| |
Collapse
|
11
|
Engelhard CA, Huang C, Khani S, Kasparek P, Prochazka J, Rozman J, Reguera DP, Sedlacek R, Kornfeld JW. Comprehensive Transcriptional Profiling and Mouse Phenotyping Reveals Dispensable Role for Adipose Tissue Selective Long Noncoding RNA Gm15551. Noncoding RNA 2022; 8:ncrna8030032. [PMID: 35645339 PMCID: PMC9149892 DOI: 10.3390/ncrna8030032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 12/20/2022] Open
Abstract
Cold and nutrient-activated brown adipose tissue (BAT) is capable of increasing systemic energy expenditure via the uncoupled respiration and secretion of endocrine factors, thereby protecting mice against diet-induced obesity and improving insulin response and glucose tolerance in men. Long non-coding RNAs (lncRNAs) have recently been identified as fine-tuning regulators of cellular function. While certain lncRNAs have been functionally characterised in adipose tissue, their overall contribution in the activation of BAT remains elusive. We identified lncRNAs correlating to interscapular brown adipose tissue (iBAT) function in a high fat diet (HFD) and cold stressed mice. We focused on Gm15551, which has an adipose tissue specific expression profile, is highly upregulated during adipogenesis, and downregulated by β-adrenergic activation in mature adipocytes. Although we performed comprehensive transcriptional and adipocyte physiology profiling in vitro and in vivo, we could not detect an effect of gain or loss of function of Gm15551.
Collapse
Affiliation(s)
- Christoph Andreas Engelhard
- Department for Biochemistry and Molecular Biology (BMB), University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark; (C.A.E.); (C.H.)
| | - Chien Huang
- Department for Biochemistry and Molecular Biology (BMB), University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark; (C.A.E.); (C.H.)
- Laboratory of Animal Physiology, Department of Animal Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Sajjad Khani
- Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Köln, Germany;
- Institute for Diabetes and Cancer (IDC), Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine, University Hospital of Cologne, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Petr Kasparek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prumyslova 595, 25250 Vestec, Czech Republic; (P.K.); (J.P.); (J.R.); (D.P.R.); (R.S.)
| | - Jan Prochazka
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prumyslova 595, 25250 Vestec, Czech Republic; (P.K.); (J.P.); (J.R.); (D.P.R.); (R.S.)
| | - Jan Rozman
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prumyslova 595, 25250 Vestec, Czech Republic; (P.K.); (J.P.); (J.R.); (D.P.R.); (R.S.)
| | - David Pajuelo Reguera
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prumyslova 595, 25250 Vestec, Czech Republic; (P.K.); (J.P.); (J.R.); (D.P.R.); (R.S.)
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prumyslova 595, 25250 Vestec, Czech Republic; (P.K.); (J.P.); (J.R.); (D.P.R.); (R.S.)
| | - Jan-Wilhelm Kornfeld
- Department for Biochemistry and Molecular Biology (BMB), University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark; (C.A.E.); (C.H.)
- Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Köln, Germany;
- Correspondence:
| |
Collapse
|
12
|
Wang J, Onogi Y, Krueger M, Oeckl J, Karlina R, Singh I, Hauck SM, Feederle R, Li Y, Ussar S. PAT2 regulates vATPase assembly and lysosomal acidification in brown adipocytes. Mol Metab 2022; 61:101508. [PMID: 35513259 PMCID: PMC9114668 DOI: 10.1016/j.molmet.2022.101508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE Brown adipocytes play a key role in maintaining body temperature as well as glucose and lipid homeostasis. However, brown adipocytes need to adapt their thermogenic activity and substrate utilization to changes in nutrient availability. Amongst the multiple factors influencing brown adipocyte activity, autophagy is an important regulatory element of thermogenic capacity and activity. Nevertheless, a specific sensing mechanism of extracellular amino acid availability linking autophagy to nutrient availability in brown adipocytes is unknown. METHODS To characterize the role of the amino acid transporter PAT2/SLC36A2 in brown adipocytes, loss or gain of function of PAT2 were studied with respect to differentiation, subcellular localization, lysosomal activity and autophagy. Activity of vATPase was evaluated by quenching of EGFP fused to LC3 or FITC-dextran loaded lysosomes in brown adipocytes upon amino acid starvation, whereas the effect of PAT2 on assembly of the vATPase was investigated by Native-PAGE. RESULTS We show that PAT2 translocates from the plasma membrane to the lysosome in response to amino acid withdrawal. Loss or overexpression of PAT2 impair lysosomal acidification and starvation induced S6K re-phosphorylation, as PAT2 facilitates the assembly of the lysosomal vATPase, by recruitment of the cytoplasmic V1 subunit to the lysosome. CONCLUSION PAT2 is an important sensor of extracellular amino acids and regulator of lysosomal acidification in brown adipocytes.
Collapse
Affiliation(s)
- Jiefu Wang
- RG Adipocytes & Metabolism, Institute for Diabetes & Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Yasuhiro Onogi
- RG Adipocytes & Metabolism, Institute for Diabetes & Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Martin Krueger
- Institute for Anatomy, University of Leipzig, 04103, Leipzig, Germany
| | - Josef Oeckl
- Chair for Molecular Nutritional Medicine TUM School for Life Sciences,Technical University Munich, Munich, Germany
| | - Ruth Karlina
- RG Adipocytes & Metabolism, Institute for Diabetes & Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Inderjeet Singh
- RG Adipocytes & Metabolism, Institute for Diabetes & Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Stefanie M Hauck
- German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany; Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Regina Feederle
- German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany; Monoclonal Antibody Core Facility, Institute for Diabetes & Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany
| | - Yongguo Li
- Chair for Molecular Nutritional Medicine TUM School for Life Sciences,Technical University Munich, Munich, Germany
| | - Siegfried Ussar
- RG Adipocytes & Metabolism, Institute for Diabetes & Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany; Department of Medicine, Technische Universität München, Munich, Germany.
| |
Collapse
|
13
|
Crandall J, Fraum TJ, Wahl RL. Brown adipose tissue: a protective mechanism in "pre-prediabetes"? J Nucl Med 2022; 63:1433-1440. [PMID: 35393347 DOI: 10.2967/jnumed.121.263357] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/21/2022] [Indexed: 11/16/2022] Open
Abstract
Brown adipose tissue (BAT) is present in a significant number of adult humans and has been postulated to exert beneficial metabolic effects. Lean, non-diabetic patients undergoing clinical positron emission tomography (PET)/computed tomography (CT) imaging are more likely to exhibit incidental BAT activation. The aim of this study was to assess metabolic changes associated with the cold-activation of BAT and to compare baseline blood metabolites in participants with varying amounts of active BAT. Methods: Serum blood samples were collected from healthy adult volunteers (body mass index 18.0-25.0 and age≤35 years) before and after 2 h cold exposure. 18F-flurodeoxyglucose (FDG) PET/CT imaging was performed immediately following cold exposure. Activated BAT was segmented and fasting glucose, insulin, lipid, and other blood metabolite levels were correlated with volume and intensity of active BAT. Using a median cutoff, subjects were classified as BATHIGH or BATLOW. Results: A higher volume of activated BAT was associated with significantly higher pre-cooling glucose and insulin levels (P<0.001 for each). Pre-cooling thyroid stimulating hormone (TSH) and triglyceride levels were significantly higher in the BATHIGH than in the BATLOW group (P = 0.002 and P<0.001, respectively). Triglyceride levels tended to increase over the cooling period in both BAT groups, but increased significantly more in the BATHIGH group (15.7±13.2 md/dl; P<0.001) than in the BATLOW group (4.5±12.2 mg/dl; P = 0.061). Conclusion: These findings may indicate that BAT is recruited to counteract incipient "pre-prediabetic" states, potentially serving as a first-line protective mechanism against very early metabolic or hormonal variations.
Collapse
|
14
|
Tsagkaraki E, Nicoloro SM, DeSouza T, Solivan-Rivera J, Desai A, Lifshitz LM, Shen Y, Kelly M, Guilherme A, Henriques F, Amrani N, Ibraheim R, Rodriguez TC, Luk K, Maitland S, Friedline RH, Tauer L, Hu X, Kim JK, Wolfe SA, Sontheimer EJ, Corvera S, Czech MP. CRISPR-enhanced human adipocyte browning as cell therapy for metabolic disease. Nat Commun 2021; 12:6931. [PMID: 34836963 PMCID: PMC8626495 DOI: 10.1038/s41467-021-27190-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/08/2021] [Indexed: 12/13/2022] Open
Abstract
Obesity and type 2 diabetes are associated with disturbances in insulin-regulated glucose and lipid fluxes and severe comorbidities including cardiovascular disease and steatohepatitis. Whole body metabolism is regulated by lipid-storing white adipocytes as well as "brown" and "brite/beige" adipocytes that express thermogenic uncoupling protein 1 (UCP1) and secrete factors favorable to metabolic health. Implantation of brown fat into obese mice improves glucose tolerance, but translation to humans has been stymied by low abundance of primary human beige adipocytes. Here we apply methods to greatly expand human adipocyte progenitors from small samples of human subcutaneous adipose tissue and then disrupt the thermogenic suppressor gene NRIP1 by CRISPR. Ribonucleoprotein consisting of Cas9 and sgRNA delivered ex vivo are fully degraded by the human cells following high efficiency NRIP1 depletion without detectable off-target editing. Implantation of such CRISPR-enhanced human or mouse brown-like adipocytes into high fat diet fed mice decreases adiposity and liver triglycerides while enhancing glucose tolerance compared to implantation with unmodified adipocytes. These findings advance a therapeutic strategy to improve metabolic homeostasis through CRISPR-based genetic enhancement of human adipocytes without exposing the recipient to immunogenic Cas9 or delivery vectors.
Collapse
Affiliation(s)
- Emmanouela Tsagkaraki
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
- University of Crete School of Medicine, Crete, 71003, Greece
| | - Sarah M Nicoloro
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Tiffany DeSouza
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Javier Solivan-Rivera
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Anand Desai
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Lawrence M Lifshitz
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Yuefei Shen
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Mark Kelly
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Adilson Guilherme
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Felipe Henriques
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Nadia Amrani
- University of Crete School of Medicine, Crete, 71003, Greece
| | - Raed Ibraheim
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Tomas C Rodriguez
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Kevin Luk
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Stacy Maitland
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Randall H Friedline
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Lauren Tauer
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Xiaodi Hu
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Jason K Kim
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Scot A Wolfe
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Erik J Sontheimer
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Silvia Corvera
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| | - Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
15
|
Barakat B, Almeida MEF. Biochemical and immunological changes in obesity. Arch Biochem Biophys 2021; 708:108951. [PMID: 34102165 DOI: 10.1016/j.abb.2021.108951] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/25/2021] [Accepted: 05/31/2021] [Indexed: 12/18/2022]
Abstract
Obesity is a syndemia that promotes high expenditures for public health, and is defined by the excess of adipose tissue that is classified according to its function and anatomical distribution. In obese people, this tissue generates oxidative stress associated with a chronic inflammatory response, in which there is an imbalance in relation to the release of hormones and adipokines that cause loss of body homeostasis and predisposition to the development of some comorbidities. The purpose of this review is to summarize the main events that occur during the onset and progression of obesity with a special focus on biochemical and immunological changes. Hypertrophied and hyperplasia adipocytes have biomarkers and release adipokines capable of regulating pathways and expressing genes that culminate in the development of metabolic changes, such as changes in energy balance and intestinal microbiota, and the development of some comorbidities, diabetes mellitus, dyslipidemias, arterial hypertension, liver disease, cancer, allergies, osteoporosis, sarcopenia and obstructive sleep apnea. Thus, it is necessary to treat and/or prevent pathology, using traditional methods based on healthy eating, and regular physical and leisure activities.
Collapse
Affiliation(s)
- Beatriz Barakat
- Institute of Biological and Health Sciences, Federal University of Viçosa (UFV), Rio Paranaíba Campus, Rio Paranaíba, Minas Gerais, Brazil.
| | - Martha E F Almeida
- Institute of Biological and Health Sciences, Federal University of Viçosa (UFV), Rio Paranaíba Campus, Rio Paranaíba, Minas Gerais, Brazil
| |
Collapse
|
16
|
Donjuán-Loredo G, Espinosa-Tanguma R, León-Bejarano F, Ramírez-Elías JA, Salgado-Delgado R, González FJ, Guevara E, Ramírez-Elías MG. Raman Spectroscopy for Adipose Tissue Assessment in Rat Models of Obesity and Type 1 Diabetes. APPLIED SPECTROSCOPY 2021; 75:1189-1197. [PMID: 33464156 DOI: 10.1177/0003702821990357] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Adipose tissue presents structural and functional changes in obesity and type 1 diabetes mellitus (T1DM). In obesity, the size and number of adipocytes and adipokine secretion increases. In T1DM, a loss of adipose tissue suggests changes in the metabolic activity of this tissue. A significant challenge is to find alternative noninvasive methods to evaluate molecular changes in adipose tissue related to obesity and T1DM. Recently, Raman spectroscopy and chemometrics techniques have emerged as a tool for biological tissue analysis. In this work, we propose the use of Raman spectroscopy to characterize spectral differences in adipose tissue from different rat groups (control, obese, and T1DM). The Raman spectra were analyzed using direct band analysis, ratiometric analysis, and chemometric methods (principal component analysis (PCA) and support vector machines (SVMs)). We found that the Raman spectra of obese rats showed significant spectral differences compared to control and diabetic groups related to fatty acids Raman bands. Also, the obese group has a significant decrease in the degree of unsaturation of lipids. The PCA-SVM models showed classification performance ranging from 71.43% to 71.79% accuracy for brown and white adipose tissue samples, respectively. In conclusion, the results demonstrate that Raman spectroscopy can be used as a nondestructive method to assess adipose tissue according to a metabolic condition.
Collapse
Affiliation(s)
| | | | - Fabiola León-Bejarano
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Jordi A Ramírez-Elías
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | | | - Francisco J González
- Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACyT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Edgar Guevara
- Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACyT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
- CONACYT-Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | | |
Collapse
|
17
|
Verduci E, Calcaterra V, Di Profio E, Fiore G, Rey F, Magenes VC, Todisco CF, Carelli S, Zuccotti GV. Brown Adipose Tissue: New Challenges for Prevention of Childhood Obesity. A Narrative Review. Nutrients 2021; 13:nu13051450. [PMID: 33923364 PMCID: PMC8145569 DOI: 10.3390/nu13051450] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Pediatric obesity remains a challenge in modern society. Recently, research has focused on the role of the brown adipose tissue (BAT) as a potential target of intervention. In this review, we revised preclinical and clinical works on factors that may promote BAT or browning of white adipose tissue (WAT) from fetal age to adolescence. Maternal lifestyle, type of breastfeeding and healthy microbiota can affect the thermogenic activity of BAT. Environmental factors such as exposure to cold or physical activity also play a role in promoting and activating BAT. Most of the evidence is preclinical, although in clinic there is some evidence on the role of omega-3 PUFAs (EPA and DHA) supplementation on BAT activation. Clinical studies are needed to dissect the early factors and their modulation to allow proper BAT development and functions and to prevent onset of childhood obesity.
Collapse
Affiliation(s)
- Elvira Verduci
- Department of Health Sciences, University of Milan, 20146 Milan, Italy
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
- Correspondence: (E.V.); (S.C.)
| | - Valeria Calcaterra
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
- Pediatric and Adolescent Unit, Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy
| | - Elisabetta Di Profio
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
- Department of Animal Sciences for Health, Animal Production and Food Safety, University of Milan, 20133 Milan, Italy
| | - Giulia Fiore
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
| | - Federica Rey
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy;
- Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, University of Milan, 20157 Milan, Italy
| | - Vittoria Carlotta Magenes
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
| | - Carolina Federica Todisco
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
| | - Stephana Carelli
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy;
- Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, University of Milan, 20157 Milan, Italy
- Correspondence: (E.V.); (S.C.)
| | - Gian Vincenzo Zuccotti
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy;
- Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, University of Milan, 20157 Milan, Italy
| |
Collapse
|
18
|
Finlin BS, Memetimin H, Zhu B, Confides AL, Vekaria HJ, El Khouli RH, Johnson ZR, Westgate PM, Chen J, Morris AJ, Sullivan PG, Dupont-Versteegden EE, Kern PA. Pioglitazone does not synergize with mirabegron to increase beige fat or further improve glucose metabolism. JCI Insight 2021; 6:143650. [PMID: 33571166 PMCID: PMC8026187 DOI: 10.1172/jci.insight.143650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Beige and brown adipose tissue (BAT) are associated with improved metabolic homeostasis. We recently reported that the β3-adrenergic receptor agonist mirabegron induced beige adipose tissue in obese insulin-resistant subjects, and this was accompanied by improved glucose metabolism. Here we evaluated pioglitazone treatment with a combination pioglitazone and mirabegron treatment and compared these with previously published data evaluating mirabegron treatment alone. Both drugs were used at FDA-approved dosages. METHODS We measured BAT by PET CT scans, measured beige adipose tissue by immunohistochemistry, and comprehensively characterized glucose and lipid homeostasis and insulin sensitivity by euglycemic clamp and oral glucose tolerance tests. Subcutaneous white adipose tissue, muscle fiber type composition and capillary density, lipotoxicity, and systemic inflammation were evaluated by immunohistochemistry, gene expression profiling, mass spectroscopy, and ELISAs. RESULTS Treatment with pioglitazone or the combination of pioglitazone and mirabegron increased beige adipose tissue protein marker expression and improved insulin sensitivity and glucose homeostasis, but neither treatment induced BAT in these obese subjects. When the magnitude of the responses to the treatments was evaluated, mirabegron was found to be the most effective at inducing beige adipose tissue. Although monotherapy with either mirabegron or pioglitazone induced adipose beiging, combination treatment resulted in less beiging than either alone. The 3 treatments also had different effects on muscle fiber type switching and capillary density. CONCLUSION The addition of pioglitazone to mirabegron treatment does not enhance beiging or increase BAT in obese insulin-resistant research participants. TRIAL REGISTRATION ClinicalTrials.gov NCT02919176. FUNDING NIH DK112282 and P20GM103527 and Clinical and Translational Science Awards grant UL1TR001998.
Collapse
Affiliation(s)
- Brian S Finlin
- Division of Endocrinology, Department of Internal Medicine, College of Medicine.,Barnstable Brown Diabetes and Obesity Center
| | - Hasiyet Memetimin
- Division of Endocrinology, Department of Internal Medicine, College of Medicine.,Barnstable Brown Diabetes and Obesity Center
| | - Beibei Zhu
- Division of Endocrinology, Department of Internal Medicine, College of Medicine.,Barnstable Brown Diabetes and Obesity Center
| | - Amy L Confides
- Department of Physical Therapy and Center for Muscle Biology, College of Health Sciences
| | | | | | - Zachary R Johnson
- Division of Endocrinology, Department of Internal Medicine, College of Medicine
| | | | - Jianzhong Chen
- Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, Kentucky, USA.,Lexington Veterans Affairs Medical Center, Lexington, Kentucky, USA
| | - Andrew J Morris
- Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, Kentucky, USA.,Lexington Veterans Affairs Medical Center, Lexington, Kentucky, USA
| | | | | | - Philip A Kern
- Division of Endocrinology, Department of Internal Medicine, College of Medicine.,Barnstable Brown Diabetes and Obesity Center
| |
Collapse
|
19
|
Wang Z, Yu X, Chen Y. Recruitment of Thermogenic Fat: Trigger of Fat Burning. Front Endocrinol (Lausanne) 2021; 12:696505. [PMID: 34367068 PMCID: PMC8341719 DOI: 10.3389/fendo.2021.696505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/04/2021] [Indexed: 11/17/2022] Open
Abstract
Brown and beige adipose tissues possess the remarkable capacity to convert energy into heat, which potentially opens novel therapeutic perspectives targeting the epidemic of metabolic syndromes such as obesity and type 2 diabetes. These thermogenic fats implement mitochondrial oxidative phosphorylation and uncouple respiration to catabolize fatty acids and glucose, which leads to an increase in energy expenditure. In particular, beige adipocytes that arise in white adipose tissue display their thermogenic capacity through various noncanonical mechanisms. This review aims to summarize the general overview of thermogenic fat, especially including the UCP1-independent adaptive thermogenesis and the emerging mechanisms of "beiging", which may provide more evidence of targeting thermogenic fat to counteract obesity and other metabolic disorders in humans.
Collapse
Affiliation(s)
- Zhihan Wang
- Division of Endocrinology, Internal Medicine, Tongji Hospital, Huazhong University of Science & Technology, Wuhan, China
- Laboratory of Endocrinology, Tongji Hospital, Huazhong University of Science & Technology, Wuhan, China
| | - Xuefeng Yu
- Division of Endocrinology, Internal Medicine, Tongji Hospital, Huazhong University of Science & Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Yong Chen
- Division of Endocrinology, Internal Medicine, Tongji Hospital, Huazhong University of Science & Technology, Wuhan, China
- Laboratory of Endocrinology, Tongji Hospital, Huazhong University of Science & Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
- *Correspondence: Yong Chen,
| |
Collapse
|
20
|
Zhou Z, Moore TM, Drew BG, Ribas V, Wanagat J, Civelek M, Segawa M, Wolf DM, Norheim F, Seldin MM, Strumwasser AR, Whitney KA, Lester E, Reddish BR, Vergnes L, Reue K, Rajbhandari P, Tontonoz P, Lee J, Mahata SK, Hewitt SC, Shirihai O, Gastonbury C, Small KS, Laakso M, Jensen J, Lee S, Drevon CA, Korach KS, Lusis AJ, Hevener AL. Estrogen receptor α controls metabolism in white and brown adipocytes by regulating Polg1 and mitochondrial remodeling. Sci Transl Med 2020; 12:eaax8096. [PMID: 32759275 PMCID: PMC8212422 DOI: 10.1126/scitranslmed.aax8096] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 11/04/2019] [Accepted: 07/16/2020] [Indexed: 12/14/2022]
Abstract
Obesity is heightened during aging, and although the estrogen receptor α (ERα) has been implicated in the prevention of obesity, its molecular actions in adipocytes remain inadequately understood. Here, we show that adipose tissue ESR1/Esr1 expression inversely associated with adiposity and positively associated with genes involved in mitochondrial metabolism and markers of metabolic health in 700 Finnish men and 100 strains of inbred mice from the UCLA Hybrid Mouse Diversity Panel. To determine the anti-obesity actions of ERα in fat, we selectively deleted Esr1 from white and brown adipocytes in mice. In white adipose tissue, Esr1 controlled oxidative metabolism by restraining the targeted elimination of mitochondria via the E3 ubiquitin ligase parkin. mtDNA content was elevated, and adipose tissue mass was reduced in adipose-selective parkin knockout mice. In brown fat centrally involved in body temperature maintenance, Esr1 was requisite for both mitochondrial remodeling by dynamin-related protein 1 (Drp1) and uncoupled respiration thermogenesis by uncoupled protein 1 (Ucp1). In both white and brown fat of female mice and adipocytes in culture, mitochondrial dysfunction in the context of Esr1 deletion was paralleled by a reduction in the expression of the mtDNA polymerase γ subunit Polg1 We identified Polg1 as an ERα target gene by showing that ERα binds the Polg1 promoter to control its expression in 3T3L1 adipocytes. These findings support strategies leveraging ERα action on mitochondrial function in adipocytes to combat obesity and metabolic dysfunction.
Collapse
Affiliation(s)
- Zhenqi Zhou
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Timothy M Moore
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Brian G Drew
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Vicent Ribas
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Jonathan Wanagat
- Division of Geriatrics, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Mete Civelek
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Mayuko Segawa
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Dane M Wolf
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Frode Norheim
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Marcus M Seldin
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Alexander R Strumwasser
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Kate A Whitney
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Ellen Lester
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Britany R Reddish
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Laurent Vergnes
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Prashant Rajbhandari
- Department of Pathology and Laboratory Medicine and the Howard Hughes Research Institute, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine and the Howard Hughes Research Institute, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Jason Lee
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Sushil K Mahata
- VA San Diego Healthcare System, San Diego, CA 92161, USA
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Sylvia C Hewitt
- Receptor Biology Section, NIEHS, NIH, Research Triangle Park, NC 27709, USA
| | - Orian Shirihai
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Craig Gastonbury
- Department of Twin Research and Genetic Epidemiology, King's College London, London SE17EH, UK
| | - Kerrin S Small
- Department of Twin Research and Genetic Epidemiology, King's College London, London SE17EH, UK
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio 70210, Finland
| | - Jorgen Jensen
- Department of Physical Performance, Norwegian School of Sport Science, Oslo 0806, Norway
| | - Sindre Lee
- University Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo 0316, Norway
| | - Christian A Drevon
- University Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo 0316, Norway
| | - Kenneth S Korach
- Receptor Biology Section, NIEHS, NIH, Research Triangle Park, NC 27709, USA
| | - Aldons J Lusis
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Andrea L Hevener
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, CA 90095, USA.
- Iris Cantor-UCLA Women's Health Research Center, Los Angeles, CA 90095, USA
| |
Collapse
|
21
|
Reinisch I, Schreiber R, Prokesch A. Regulation of thermogenic adipocytes during fasting and cold. Mol Cell Endocrinol 2020; 512:110869. [PMID: 32439414 DOI: 10.1016/j.mce.2020.110869] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022]
Abstract
Cold exposure activates brown and brown-like adipocytes that dissipate large amounts of glucose and fatty acids via uncoupling protein 1 (UCP1) to drive non-shivering thermogenesis (NST). Evidence for the existence of these thermogenic adipocytes in adult humans gave rise to a renaissance in research on brown adipose tissue, establishing it as linchpin of energy homeostasis and metabolic health. Besides low ambient temperature, shortage or excess of food affect thermoregulation. Upon high caloric meals thermogenic adipocytes burn excess calories and maintain energy balance. In contrast, in conditions of nutrient deprivation, counter-regulatory mechanisms prevent thermogenic adipocytes from "wasting" energy substrates that need to be conserved. In this review, we discuss cell-autonomous mechanisms, metabolites, and hormones that modify NST in response to nutrient fluctuations. In particular, we focus on how thermogenic adipocytes balance thermogenesis with systemic energy homeostasis during fasting periods.
Collapse
Affiliation(s)
- Isabel Reinisch
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism & Aging, Medical University of Graz, 8010, Graz, Austria
| | - Renate Schreiber
- Institute of Molecular Biosciences, University of Graz, 8010, Graz, Austria
| | - Andreas Prokesch
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism & Aging, Medical University of Graz, 8010, Graz, Austria; BioTechMed-Graz, 8010, Graz, Austria.
| |
Collapse
|
22
|
Chondronikola M. The role of brown adipose tissue and the thermogenic adipocytes in glucose metabolism: recent advances and open questions. Curr Opin Clin Nutr Metab Care 2020; 23:282-287. [PMID: 32412979 DOI: 10.1097/mco.0000000000000662] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Brown adipose tissue (BAT) and the thermogenic adipocytes in white adipose tissue (WAT) are considered emerging targets against obesity-related metabolic perturbations given their high capacity for thermogenesis and glucose and lipid disposal. This manuscript summarizes and critically evaluates the recent advances on the role of BAT and thermogenic adipocytes in glucose homeostasis in humans. RECENT FINDINGS Recent studies support that BAT has high capacity for glucose disposal not only during cold but during rewarming and thermoneutrality as well. Moreover, BAT is now considered a metabolic sink for the disposal of branched-chain amino acids improving whole-body glucose metabolism in rodents and, potentially, in humans. β3 adrenergic agonism and glucagon-like peptide 1 increase BAT metabolic activity for glucose and/or induce the browning of WAT. Finally, recent findings support the association of glucose disposal in BAT with subclinical atherosclerosis and the reproducibility of two advanced medical imaging methods for the assessment of BAT using a glucose radiotracer. SUMMARY Recent studies provide new insights on the role of human BAT and thermogenic adipocytes in glucose metabolism. However, further research is needed to unequivocally establish the clinical significance of BAT and the thermogenic adipocytes in glucose homeostasis in humans.
Collapse
Affiliation(s)
- Maria Chondronikola
- Department of Nutrition, University of California, Davis, California, USA
- Department of Nutritional Sciences and Dietetics, Harokopio University of Athens, Athens, Greece
| |
Collapse
|
23
|
Li J, Li J, Zhao WG, Sun HD, Guo ZG, Liu XY, Tang XY, She ZF, Yuan T, Liu SN, Liu Q, Fu Y, Sun W. Comprehensive proteomics and functional annotation of mouse brown adipose tissue. PLoS One 2020; 15:e0232084. [PMID: 32374735 PMCID: PMC7202602 DOI: 10.1371/journal.pone.0232084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
Knowledge about the mouse brown adipose tissue (BAT) proteome can provide a deeper understanding of the function of mammalian BAT. Herein, a comprehensive analysis of interscapular BAT from C57BL/6J female mice was conducted by 2DLC and high-resolution mass spectrometry to construct a comprehensive proteome dataset of mouse BAT proteins. A total of 4949 nonredundant proteins were identified, and 4495 were quantified using the iBAQ method. According to the iBAQ values, the BAT proteome was divided into high-, middle- and low-abundance proteins. The functions of the high-abundance proteins were mainly related to glucose and fatty acid oxidation to produce heat for thermoregulation, while the functions of the middle- and low-abundance proteins were mainly related to protein synthesis and apoptosis, respectively. Additionally, 497 proteins were predicted to have signal peptides using SignalP4 software, and 75 were confirmed in previous studies. This study, for the first time, comprehensively profiled and functionally annotated the BAT proteome. This study will be helpful for future studies focused on biomarker identification and BAT molecular mechanisms.
Collapse
Affiliation(s)
- Jing Li
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Juan Li
- Key Laboratory of Endocrinology of Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wei-Gang Zhao
- Key Laboratory of Endocrinology of Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- * E-mail: (WS); (W-GZ)
| | - Hai-Dan Sun
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Zheng-Guang Guo
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xiao-Yan Liu
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xiao-Yue Tang
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Zhu-Fang She
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, China
| | - Tao Yuan
- Key Laboratory of Endocrinology of Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Shuai-Nan Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, China
| | - Quan Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, China
| | - Yong Fu
- Key Laboratory of Endocrinology of Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wei Sun
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing, China
- * E-mail: (WS); (W-GZ)
| |
Collapse
|
24
|
Finlin BS, Memetimin H, Zhu B, Confides AL, Vekaria HJ, El Khouli RH, Johnson ZR, Westgate PM, Chen J, Morris AJ, Sullivan PG, Dupont-Versteegden EE, Kern PA. The β3-adrenergic receptor agonist mirabegron improves glucose homeostasis in obese humans. J Clin Invest 2020; 130:2319-2331. [PMID: 31961829 PMCID: PMC7190997 DOI: 10.1172/jci134892] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/14/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUNDBeige adipose tissue is associated with improved glucose homeostasis in mice. Adipose tissue contains β3-adrenergic receptors (β3-ARs), and this study was intended to determine whether the treatment of obese, insulin-resistant humans with the β3-AR agonist mirabegron, which stimulates beige adipose formation in subcutaneous white adipose tissue (SC WAT), would induce other beneficial changes in fat and muscle and improve metabolic homeostasis.METHODSBefore and after β3-AR agonist treatment, oral glucose tolerance tests and euglycemic clamps were performed, and histochemical analysis and gene expression profiling were performed on fat and muscle biopsies. PET-CT scans quantified brown adipose tissue volume and activity, and we conducted in vitro studies with primary cultures of differentiated human adipocytes and muscle.RESULTSThe clinical effects of mirabegron treatment included improved oral glucose tolerance (P < 0.01), reduced hemoglobin A1c levels (P = 0.01), and improved insulin sensitivity (P = 0.03) and β cell function (P = 0.01). In SC WAT, mirabegron treatment stimulated lipolysis, reduced fibrotic gene expression, and increased alternatively activated macrophages. Subjects with the most SC WAT beiging showed the greatest improvement in β cell function. In skeletal muscle, mirabegron reduced triglycerides, increased the expression of PPARγ coactivator 1 α (PGC1A) (P < 0.05), and increased type I fibers (P < 0.01). Conditioned media from adipocytes treated with mirabegron stimulated muscle fiber PGC1A expression in vitro (P < 0.001).CONCLUSIONMirabegron treatment substantially improved multiple measures of glucose homeostasis in obese, insulin-resistant humans. Since β cells and skeletal muscle do not express β3-ARs, these data suggest that the beiging of SC WAT by mirabegron reduces adipose tissue dysfunction, which enhances muscle oxidative capacity and improves β cell function.TRIAL REGISTRATIONClinicaltrials.gov NCT02919176.FUNDINGNIH: DK112282, P30GM127211, DK 71349, and Clinical and Translational science Awards (CTSA) grant UL1TR001998.
Collapse
Affiliation(s)
- Brian S. Finlin
- Division of Endocrinology, Department of Internal Medicine, and
- Barnstable Brown Diabetes and Obesity Center, College of Medicine
| | - Hasiyet Memetimin
- Division of Endocrinology, Department of Internal Medicine, and
- Barnstable Brown Diabetes and Obesity Center, College of Medicine
| | - Beibei Zhu
- Division of Endocrinology, Department of Internal Medicine, and
- Barnstable Brown Diabetes and Obesity Center, College of Medicine
| | - Amy L. Confides
- Department of Physical Therapy, College of Health Sciences
- Center for Muscle Biology
| | | | | | - Zachary R. Johnson
- Division of Endocrinology, Department of Internal Medicine, and
- Barnstable Brown Diabetes and Obesity Center, College of Medicine
| | | | - Jianzhong Chen
- Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
- Lexington Veterans Affairs Medical Center, Lexington, Kentucky, USA
| | - Andrew J. Morris
- Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
- Lexington Veterans Affairs Medical Center, Lexington, Kentucky, USA
| | | | | | - Philip A. Kern
- Division of Endocrinology, Department of Internal Medicine, and
- Barnstable Brown Diabetes and Obesity Center, College of Medicine
| |
Collapse
|
25
|
Czech MP. Mechanisms of insulin resistance related to white, beige, and brown adipocytes. Mol Metab 2020; 34:27-42. [PMID: 32180558 PMCID: PMC6997501 DOI: 10.1016/j.molmet.2019.12.014] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The diminished glucose lowering effect of insulin in obesity, called "insulin resistance," is associated with glucose intolerance, type 2 diabetes, and other serious maladies. Many publications on this topic have suggested numerous hypotheses on the molecular and cellular disruptions that contribute to the syndrome. However, significant uncertainty remains on the mechanisms of its initiation and long-term maintenance. SCOPE OF REVIEW To simplify insulin resistance analysis, this review focuses on the unifying concept that adipose tissue is a central regulator of systemic glucose homeostasis by controlling liver and skeletal muscle metabolism. Key aspects of adipose function related to insulin resistance reviewed are: 1) the modes by which specific adipose tissues control hepatic glucose output and systemic glucose disposal, 2) recently acquired understanding of the underlying mechanisms of these modes of regulation, and 3) the steps in these pathways adversely affected by obesity that cause insulin resistance. MAJOR CONCLUSIONS Adipocyte heterogeneity is required to mediate the multiple pathways that control systemic glucose tolerance. White adipocytes specialize in sequestering triglycerides away from the liver, muscle, and other tissues to limit toxicity. In contrast, brown/beige adipocytes are very active in directly taking up glucose in response to β adrenergic signaling and insulin and enhancing energy expenditure. Nonetheless, white, beige, and brown adipocytes all share the common feature of secreting factors and possibly exosomes that act on distant tissues to control glucose homeostasis. Obesity exerts deleterious effects on each of these adipocyte functions to cause insulin resistance.
Collapse
Affiliation(s)
- Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
26
|
The emerging roles of lactate as a redox substrate and signaling molecule in adipose tissues. J Physiol Biochem 2020; 76:241-250. [PMID: 31898016 DOI: 10.1007/s13105-019-00723-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 12/17/2019] [Indexed: 12/17/2022]
Abstract
Thermogenic (brown and beige) adipose tissues improve glucose and lipid homeostasis and therefore represent putative targets to cure obesity and related metabolic diseases including type II diabetes. Beside decades of research and the very well-described role of noradrenergic signaling, mechanisms underlying adipocytes plasticity and activation of thermogenic adipose tissues remain incompletely understood. Recent studies show that metabolites such as lactate control the oxidative capacity of thermogenic adipose tissues. Long time viewed as a metabolic waste product, lactate is now considered as an important metabolic substrate largely feeding the oxidative metabolism of many tissues, acting as a signaling molecule and as an inter-cellular and inter-tissular redox carrier. In this review, we provide an overview of the recent findings highlighting the importance of lactate in adipose tissues, from its production to its role as a browning inducer and its metabolic links with brown adipose tissue. We also discuss additional function(s) than thermogenesis ensured by brown and beige adipose tissues, i.e., their ability to dissipate high redox pressure and oxidative stress thanks to the activity of the uncoupling protein-1, helping to maintain tissue and whole organism redox homeostasis and integrity.
Collapse
|
27
|
Liu H, Xu Y, Hu F. AMPK in the Ventromedial Nucleus of the Hypothalamus: A Key Regulator for Thermogenesis. Front Endocrinol (Lausanne) 2020; 11:578830. [PMID: 33071984 PMCID: PMC7538541 DOI: 10.3389/fendo.2020.578830] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/24/2020] [Indexed: 12/19/2022] Open
Abstract
Obesity has become a global health issue, but effective therapies remain very limited. Adaptive thermogenesis promotes weight loss by dissipating energy in the form of heat, thereby representing a promising target to counteract obesity. Notably, the regulation of thermogenesis is tightly orchestrated by complex neuronal networks, especially those in the hypothalamus. Recent evidence highlights the importance of adenosine monophosphate-activated protein kinase (AMPK) within the ventromedial nucleus of the hypothalamus (VMH) in modulating thermogenesis. Various molecules, such as GLP-1, leptin, estradiol, and thyroid hormones, have been reported to act on the VMH to inhibit AMPK, which subsequently increases thermogenesis through the activation of the sympathetic nervous system (SNS). In this review, we summarize the critical role of AMPK within the VMH in the control of energy balance, focusing on its contribution to thermogenesis and the associated mechanisms.
Collapse
Affiliation(s)
- Hailan Liu
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Pediatrics, Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, United States
| | - Yong Xu
- Department of Pediatrics, Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Fang Hu
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Fang Hu
| |
Collapse
|
28
|
González-García I, Milbank E, Martinez-Ordoñez A, Diéguez C, López M, Contreras C. HYPOTHesizing about central comBAT against obesity. J Physiol Biochem 2019; 76:193-211. [PMID: 31845114 DOI: 10.1007/s13105-019-00719-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 12/02/2019] [Indexed: 12/12/2022]
Abstract
The hypothalamus is a brain region in charge of many vital functions. Among them, BAT thermogenesis represents an essential physiological function to maintain body temperature. In the metabolic context, it has now been established that energy expenditure attributed to BAT function can contribute to the energy balance in a substantial extent. Thus, therapeutic interest in this regard has increased in the last years and some studies have shown that BAT function in humans can make a real contribution to improve diabetes and obesity-associated diseases. Nevertheless, how the hypothalamus controls BAT activity is still not fully understood. Despite the fact that much has been known about the mechanisms that regulate BAT activity in recent years, and that the central regulation of thermogenesis offers a very promising target, many questions remain still unsolved. Among them, the possible human application of knowledge obtained from rodent studies, and drug administration strategies able to specifically target the hypothalamus. Here, we review the current knowledge of homeostatic regulation of BAT, including the molecular insights of brown adipocytes, its central control, and its implication in the development of obesity.
Collapse
Affiliation(s)
- Ismael González-García
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.
| | - Edward Milbank
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782, Santiago de Compostela, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Santiago de Compostela, Spain
| | - Anxo Martinez-Ordoñez
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782, Santiago de Compostela, Spain
| | - Carlos Diéguez
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782, Santiago de Compostela, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Santiago de Compostela, Spain
| | - Miguel López
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782, Santiago de Compostela, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Santiago de Compostela, Spain
| | - Cristina Contreras
- Department of Physiology, Pharmacy School, Complutense University of Madrid, 28040, Madrid, Spain.
| |
Collapse
|