1
|
Streba L, Popovici V, Mihai A, Mititelu M, Lupu CE, Matei M, Vladu IM, Iovănescu ML, Cioboată R, Călărașu C, Busnatu ȘS, Streba CT. Integrative Approach to Risk Factors in Simple Chronic Obstructive Airway Diseases of the Lung or Associated with Metabolic Syndrome-Analysis and Prediction. Nutrients 2024; 16:1851. [PMID: 38931206 PMCID: PMC11206714 DOI: 10.3390/nu16121851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/01/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
We conducted an epidemiological non-interventional cross-sectional and case-control study from 1 January 2023 until 26 May 2023 in Oltenia region, southwestern Romania. Throughout the research, 160 consecutive patients were included from two different clinical departments (1-Pneumology; 2-Diabetes and Nutritional Diseases). Subjects were voluntary adult individuals of any gender who expressed their written consent. The clinical data of the patients were correlated with the exposure to behavioral risk factors (diet, lifestyle, exposure to pollutants) to identify some negative implications that could be corrected to improve the quality of life of patients with simple chronic obstructive airway diseases of the lung or associated with metabolic syndrome (MS). In the first group of patients with respiratory diseases, there was a higher degree of exposure to toxic substances (43.75%) compared to the second group of patients with diabetes (18.75%); it is also noticeable that in the first group, there were noticeably fewer individuals who have never smoked (25%) compared to the second group (50%). Respiratory function impairment was observed to be more severe in overweight individuals. In the group of patients with known lung diseases, a positive correlation was noted between the presence of MS and respiratory dysfunctions of greater severity. Additionally, potential exacerbating factors affecting lung function, such as direct exposure to toxins and smoking, were considered. Potential secondary factors exacerbating respiratory dysfunction were considered by correlating biochemical parameters with dietary habits. These included reduced consumption of vegetables, inadequate hydration, and increased intake of sweets and products high in saturated or trans fats (commonly found in junk food), primarily due to their potential contribution to excess weight. Compared to patients without MS, the severity of the pulmonary function impairment correlated with the number of criteria met for MS and, independently, with an increase in weight.
Collapse
Affiliation(s)
- Liliana Streba
- Department of Oncology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Violeta Popovici
- Center for Mountain Economics, “Costin C. Kiriţescu” National Institute of Economic Research (INCE-CEMONT), Romanian Academy, 725700 Vatra-Dornei, Romania;
| | - Andreea Mihai
- Department of Pulmonology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (R.C.); (C.C.); (C.-T.S.)
| | - Magdalena Mititelu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Carmen Elena Lupu
- Department of Mathematics and Informatics, Faculty of Pharmacy, “Ovidius” University of Constanta, 900001 Constanta, Romania;
| | - Marius Matei
- Department of Histology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Ionela Mihaela Vladu
- Department of Diabetes, Nutrition and Metabolic Diseases, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Maria Livia Iovănescu
- Department of Cardiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Ramona Cioboată
- Department of Pulmonology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (R.C.); (C.C.); (C.-T.S.)
| | - Cristina Călărașu
- Department of Pulmonology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (R.C.); (C.C.); (C.-T.S.)
| | - Ștefan Sebastian Busnatu
- Department of Cardio-Thoracic Pathology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Costin-Teodor Streba
- Department of Pulmonology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (R.C.); (C.C.); (C.-T.S.)
| |
Collapse
|
2
|
Tian X, Gao Y, Kong M, Zhao L, Xing E, Sun Q, He J, Lu Y, Feng Z. GLP‑1 receptor agonist protects palmitate-induced insulin resistance in skeletal muscle cells by up-regulating sestrin2 to promote autophagy. Sci Rep 2023; 13:9446. [PMID: 37296162 PMCID: PMC10256699 DOI: 10.1038/s41598-023-36602-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023] Open
Abstract
In this study, we aimed to determine whether liraglutide could effectively reduce insulin resistance (IR) by regulating Sestrin2 (SESN2) expression in L6 rat skeletal muscle cells by examining its interactions with SESN2, autophagy, and IR. L6 cells were incubated with liraglutide (10-1000 nM) in the presence of palmitate (PA; 0.6 mM), and cell viability was detected using the cell counting kit-8 (CCK-8) assay. IR-related and autophagy-related proteins were detected using western blotting, and IR and autophagy-related genes were analyzed using quantitative real-time polymerase chain reaction. Silencing SESN2 was used to inhibit the activities of SESN2. A reduction in insulin-stimulated glucose uptake was observed in PA-treated L6 cells, confirming IR. Meanwhile, PA decreased the levels of GLUT4 and phosphorylation of Akt and affected SESN2 expression. Further investigation revealed that autophagic activity decreased following PA treatment, but that liraglutide reversed this PA-induced reduction in autophagic activity. Additionally, silencing SESN2 inhibited the ability of liraglutide to up-regulate the expression of IR-related proteins and activate autophagy signals. In summary, the data showed that liraglutide improved PA-induced IR in L6 myotubes by increasing autophagy mediated by SESN2.
Collapse
Affiliation(s)
- Xue Tian
- Department of Endocrinology, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Yu Gao
- Department of Endocrinology, Affiliated Hospital of Chengde Medical University, Chengde, China.
| | - Mowei Kong
- Department of Endocrinology, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Lihua Zhao
- Department of Endocrinology, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Enhong Xing
- Central Laboratory, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Qitian Sun
- Department of Endocrinology, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Jianqiu He
- Department of Endocrinology, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Yanan Lu
- Department of Endocrinology, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Zengbin Feng
- Department of Endocrinology, Affiliated Hospital of Chengde Medical University, Chengde, China
| |
Collapse
|
3
|
Lee HH, Jeong GW, Ye BJ, Yoo EJ, Son KS, Kim DK, Park HK, Kang BH, Lee-Kwon W, Kwon HM, Choi SY. TonEBP in Myeloid Cells Promotes Obesity-Induced Insulin Resistance and Inflammation Through Adipose Tissue Remodeling. Diabetes 2022; 71:2557-2571. [PMID: 36170666 PMCID: PMC9862453 DOI: 10.2337/db21-1099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 09/20/2022] [Indexed: 02/05/2023]
Abstract
The phenotypic and functional plasticity of adipose tissue macrophages (ATMs) during obesity plays a crucial role in orchestration of adipose and systemic inflammation. Tonicity-responsive enhancer binding protein (TonEBP) (also called NFAT5) is a stress protein that mediates cellular responses to a range of metabolic insults. Here, we show that myeloid cell-specific TonEBP depletion reduced inflammation and insulin resistance in mice with high-fat diet-induced obesity but did not affect adiposity. This phenotype was associated with a reduced accumulation and a reduced proinflammatory phenotype of metabolically activated macrophages, decreased expression of inflammatory factors related to insulin resistance, and enhanced insulin sensitivity. TonEBP expression was elevated in the ATMs of obese mice, and Sp1 was identified as a central regulator of TonEBP induction. TonEBP depletion in macrophages decreased induction of insulin resistance-related genes and promoted induction of insulin sensitivity-related genes under obesity-mimicking conditions and thereby improved insulin signaling and glucose uptake in adipocytes. mRNA expression of TonEBP in peripheral blood mononuclear cells was positively correlated with blood glucose levels in mice and humans. These findings suggest that TonEBP in macrophages promotes obesity-associated systemic insulin resistance and inflammation, and downregulation of TonEBP may induce a healthy metabolic state during obesity.
Collapse
Affiliation(s)
- Hwan Hee Lee
- School of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Gyu Won Jeong
- School of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Byeong Jin Ye
- School of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Eun Jin Yoo
- School of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Keoung Sun Son
- School of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Dong Ki Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hye-Kyung Park
- School of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Byoung Heon Kang
- School of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Whaseon Lee-Kwon
- School of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Hyug Moo Kwon
- School of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
- Corresponding author: Soo Youn Choi, , or Hyug Moo Kwon,
| | - Soo Youn Choi
- School of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
- Department of Biology, Jeju National University, Jeju, Republic of Korea
- Corresponding author: Soo Youn Choi, , or Hyug Moo Kwon,
| |
Collapse
|
4
|
Ling Q, Chen J, Liu X, Xu Y, Ma J, Yu P, Zheng K, Liu F, Luo J. The triglyceride and glucose index and risk of nonalcoholic fatty liver disease: A dose-response meta-analysis. Front Endocrinol (Lausanne) 2022; 13:1043169. [PMID: 36743937 PMCID: PMC9892833 DOI: 10.3389/fendo.2022.1043169] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The triglyceride and glucose (TyG) index is associated with the risk of nonalcoholic fatty liver disease (NAFLD), but the dose-response relationship between them is still unknown. We conducted a comprehensive meta-analysis to study the dose-response association between the TyG index and the risk of NAFLD. METHODS We systematically searched the Cochrane Library, PubMed, and Embase databases until July 2022 for relevant studies. The robust error meta-regression method was used to investigate the dose-response association between the TyG index and NAFLD. Summary relative risks (ORs) and 95% CIs were estimated by using a random-effects model. RESULTS A total of 4 cohort and 8 cross-sectional studies were included, with 28,788 NAFLD cases among the 105,365 participants. A positive association for the risk of NAFLD was observed for each additional unit of the TyG index with a linear association (p=0.82), and the summary OR was 2.84 (95% CI, 2.01-4.01). In the subgroup analyses, a stronger association of the TyG index with NAFLD was shown in females than in males (men: OR=2.97, 95% CI 2.55-3.46, women: OR=4.80, 95% CI 3.90-5.90, Psubgroup<0.001). CONCLUSION The TyG index may be a novel independent risk factor for NAFLD beyond traditional risk factors. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/prospero, identifier (CRD42022347813).
Collapse
Affiliation(s)
- Qin Ling
- Department of Cardiology, the Affiliated Ganzhou Hospital of Nanchang University, Jiangxi, China
- The Second Clinical Medical College of Nanchang University, Jiangxi, China
| | - Jiawei Chen
- Department of Cardiology, the Affiliated Ganzhou Hospital of Nanchang University, Jiangxi, China
- The Second Clinical Medical College of Nanchang University, Jiangxi, China
| | - Xiao Liu
- Department of Cardiology, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yi Xu
- Department of Cardiology, the Affiliated Ganzhou Hospital of Nanchang University, Jiangxi, China
- The Second Clinical Medical College of Nanchang University, Jiangxi, China
| | - Jianyong Ma
- Department of Pharmacology and Systems Physiology, University of Cinnati College of Medicine, Cincinnati, OH, United States
| | - Peng Yu
- Department of Endocrine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Kai Zheng
- Medical Care Strategic Customer Department, China Merchants Bank Shenzhen Branch, Shenzhen, China
| | - Fuwei Liu
- Department of Cardiology, the Affiliated Ganzhou Hospital of Nanchang University, Jiangxi, China
- *Correspondence: Jun Luo, ; Fuwei Liu,
| | - Jun Luo
- Department of Cardiology, the Affiliated Ganzhou Hospital of Nanchang University, Jiangxi, China
- *Correspondence: Jun Luo, ; Fuwei Liu,
| |
Collapse
|
5
|
Mokwena MAM, Engwa GA, Nkeh-Chungag BN, Sewani-Rusike CR. Athrixia phylicoides tea infusion (bushman tea) improves adipokine balance, glucose homeostasis and lipid parameters in a diet-induced metabolic syndrome rat model. BMC Complement Med Ther 2021; 21:292. [PMID: 34844584 PMCID: PMC8628465 DOI: 10.1186/s12906-021-03459-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/03/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Central obesity and insulin resistance are associated with metabolic syndrome (MetS) which is aggravated by diet and sedentary lifestyle. Athrixia phylicoides (AP) is reported by rural communities to have medicinal benefits associated with MetS such as obesity and type 2 diabetes. This study was aimed to investigate the effects of AP on diet-induced MetS in Wistar rats to validate its ethnopharmacological use. METHODS AP was profiled for phytochemicals by LC-MS. After induction of MetS with high energy diet (HED), 30 male rats were divided into five treatment groups (n = 6): normal diet control, HED control, HED + AP 50 mg/Kg BW, HED + AP 100 mg/Kg BW and HED + 50 mg/Kg BW metformin. The rats were treated daily for 8 weeks orally after which weight gain, visceral fat, total cholesterol, free fatty acids (FFAs) and adipokine regulation; leptin: adiponectin ratio (LAR) were assessed. Also, glucose homeostatic parameters including fasting blood glucose (FBG), oral glucose tolerance test (OGTT), glucose transporter 4 (GLUT 4), insulin and homeostatic model assessment of insulin resistance (HOMA-IR) were determined. RESULTS Findings showed that AP was rich in polyphenols. The HED control group showed derangements of the selected blood parameters of MetS. AP reversed diet-induced weight gain by reducing visceral fat, total blood cholesterol and circulating FFAs (p ≤ 0.05). Treatment with AP improved adipokine regulation depicted by reduced LAR (p<0.05). Treatment with AP improved parameters of glucose homeostasis as demonstrated by reduced FBG and HOMA-IR (p ≤ 0.05) and increased GLUT 4 (p<0.05). CONCLUSION Athrixia phylicoides tea infusion was shown to possess anti-obesity and anti-inflammatory properties, improved glucose uptake and reduce insulin resistance in diet-induced MetS in rats which could be attributed to its richness in polyphenols. Therefore, AP could have potential benefits against type 2 diabetes and obesity which are components of MetS validating its ethnopharmacological use.
Collapse
Affiliation(s)
- Madigoahle A M Mokwena
- Department of Human Biology, Faculty of Health Sciences, Walter Sisulu University PBX1, Mthatha, 5117, South Africa
| | - Godwill Azeh Engwa
- Department of Biological and Environmental Sciences, Faculty of Natural Sciences, Walter Sisulu University PBX1, Mthatha, 5117, South Africa
| | - Benedicta N Nkeh-Chungag
- Department of Biological and Environmental Sciences, Faculty of Natural Sciences, Walter Sisulu University PBX1, Mthatha, 5117, South Africa
| | - Constance R Sewani-Rusike
- Department of Human Biology, Faculty of Health Sciences, Walter Sisulu University PBX1, Mthatha, 5117, South Africa.
| |
Collapse
|
6
|
Ma Y, Xiong J, Zhang X, Qiu T, Pang H, Li X, Zhu J, Wang J, Pan C, Yang X, Chu X, Yang B, Wang C, Zhang J. Potential biomarker in serum for predicting susceptibility to type 2 diabetes mellitus: Free fatty acid 22:6. J Diabetes Investig 2021; 12:950-962. [PMID: 33068491 PMCID: PMC8169352 DOI: 10.1111/jdi.13443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/19/2020] [Accepted: 10/12/2020] [Indexed: 01/22/2023] Open
Abstract
AIMS/INTRODUCTION Type 2 diabetes mellitus is closely linked to increased levels of free fatty acids (FFAs) in obese individuals, although which FFA is most associated with type 2 diabetes mellitus is unclear. This study aimed to identify the specific FFAs that best predict the occurrence of type 2 diabetes mellitus in obese individuals, and assess their potential application value. MATERIALS AND METHODS Participants were divided into three groups: a normal weight group (n = 20), an obese group (n = 10) and a type 2 diabetes mellitus group (n = 10). FFAs in serum samples were determined by ultra-high-pressure liquid chromatography-mass spectrometry, and orthogonal partial least squares discriminant analysis models were used to study the FFA profile among the three groups. RESULTS Compared with the normal weight group, 14 FFAs (C8:0/10:0/14:0/16:1/18:1/20:2/ 20:3 /20:4/ 20:5/ 22:6/7:0/9:0/11:0 and C13:0) were significantly increased in the obese group, and nine FFAs (C14:0, C18:1, C20:1, C 18:2, C20:2, C20:3, C18:3, C20:5 and C22:6) were significantly increased in the type 2 diabetes mellitus group. Subsequently, the Venn diagram results showed that six FFAs (C14:0, C18:1, C20:2, C20:3, C20:5 and C22:6) were significantly increased in both the obese and type 2 diabetes mellitus groups. Among these six, C22:6 was finally identified as an independent risk factor for type 2 diabetes mellitus, and had a great potential to predict the susceptibility to type 2 diabetes mellitus (area under the curve 0.803). CONCLUSIONS C22:6 can be an independent risk factor for type 2 diabetes mellitus, and it has a great potential to predict the susceptibility to type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Yinghua Ma
- Department of Biochemistry and Molecular BiologyShihezi University School of MedicineShiheziChina
| | - Jianyu Xiong
- Department of GeneticsShihezi University School of MedicineShiheziChina
| | - Xueting Zhang
- Department of Biochemistry and Molecular BiologyShihezi University School of MedicineShiheziChina
| | - Tongtong Qiu
- Department of Biochemistry and Molecular BiologyShihezi University School of MedicineShiheziChina
| | - Huai Pang
- Department of Biochemistry and Molecular BiologyShihezi University School of MedicineShiheziChina
| | - Xue Li
- Department of Biochemistry and Molecular BiologyShihezi University School of MedicineShiheziChina
| | - Jiaojiao Zhu
- Department of Biochemistry and Molecular BiologyShihezi University School of MedicineShiheziChina
| | - Jingzhou Wang
- Department of Biochemistry and Molecular BiologyShihezi University School of MedicineShiheziChina
| | - Chongge Pan
- Department of Biochemistry and Molecular BiologyShihezi University School of MedicineShiheziChina
| | - Xin Yang
- Department of Biochemistry and Molecular BiologyShihezi University School of MedicineShiheziChina
| | - Xiaolong Chu
- Department of Biochemistry and Molecular BiologyShihezi University School of MedicineShiheziChina
| | - Bingqi Yang
- Department of Biochemistry and Molecular BiologyShihezi University School of MedicineShiheziChina
| | - Cuizhe Wang
- Department of Biochemistry and Molecular BiologyShihezi University School of MedicineShiheziChina
| | - Jun Zhang
- Ministry of Education Key Laboratory of Xinjiang Endemic and Ethnic DiseaseShiheziChina
| |
Collapse
|
7
|
Ding S, Chen M, Liao Y, Chen Q, Lin X, Chen S, Chai Y, Li C, Asakawa T. Serum Metabolic Profiles of Chinese Women With Perimenopausal Obesity Explored by the Untargeted Metabolomics Approach. Front Endocrinol (Lausanne) 2021; 12:637317. [PMID: 34630316 PMCID: PMC8498571 DOI: 10.3389/fendo.2021.637317] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/22/2021] [Indexed: 11/30/2022] Open
Abstract
By far, no study has focused on observing the metabolomic profiles in perimenopause-related obesity. This study attempted to identify the metabolic characteristics of subjects with perimenopause obesity (PO). Thirty-nine perimenopausal Chinese women, 21 with PO and 18 without obesity (PN), were recruited in this study. A conventional ultra-high-performance liquid chromatography-quadrupole time-of-flight/mass spectrometry (UHPLC-QTOF/MS) followed by principal component analysis (PCA) and orthogonal partial least-squares discriminant analysis (OPLS-DA) were used as untargeted metabolomics approaches to explore the serum metabolic profiles. Kyoto Encyclopedia of Genes and Genomes (KEGG) and MetaboAnalyst were used to identify the related metabolic pathways. A total of 46 differential metabolites, along with seven metabolic pathways relevant to PO were identified, which belonged to lipid, amino acids, carbohydrates, and organic acids. As for amino acids, we found a significant increase in l-arginine and d-ornithine in the positive ion (POS) mode and l-leucine, l-valine, l-tyrosine, and N-acetyl-l-tyrosine in the negative ion (NEG) mode and a significant decrease in l-proline in the POS mode of the PO group. We also found phosphatidylcholine (PC) (16:0/16:0), palmitic acid, and myristic acid, which are associated with the significant upregulation of lipid metabolism. Moreover, the serum indole lactic acid and indoleacetic acid were upregulated in the NEG mode. With respect to the metabolic pathways, the d-arginine and d-ornithine metabolisms and the arginine and proline metabolism pathways in POS mode were the most dominant PO-related pathways. The changes of metabolisms of lipid, amino acids, and indoleacetic acid provided a pathophysiological scenario for Chinese women with PO. We believe that the findings of this study are helpful for clinicians to take measures to prevent the women with PO from developing severe incurable obesity-related complications, such as cardiovascular disease and stroke.
Collapse
Affiliation(s)
- Shanshan Ding
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Mingyi Chen
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Ying Liao
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Qiliang Chen
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuejuan Lin
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Shujiao Chen
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yujuan Chai
- School of Medical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Candong Li
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Tetsuya Asakawa
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Neurology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
- *Correspondence: Tetsuya Asakawa,
| |
Collapse
|
8
|
Insulin and β-adrenergic receptors mediate lipolytic and anti-lipolytic signalling that is not altered by type 2 diabetes in human adipocytes. Biochem J 2020; 476:2883-2908. [PMID: 31519735 PMCID: PMC6792037 DOI: 10.1042/bcj20190594] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 12/21/2022]
Abstract
Control of fatty acid storage and release in adipose tissue is fundamental in energy homeostasis and the development of obesity and type 2 diabetes. We here take the whole signalling network into account to identify how insulin and β-adrenergic stimulation in concert controls lipolysis in mature subcutaneous adipocytes obtained from non-diabetic and, in parallel, type 2 diabetic women. We report that, and show how, the anti-lipolytic effect of insulin can be fully explained by protein kinase B (PKB/Akt)-dependent activation of the phosphodiesterase PDE3B. Through the same PKB-dependent pathway β-adrenergic receptor signalling, via cAMP and PI3Kα, is anti-lipolytic and inhibits its own stimulation of lipolysis by 50%. Through this pathway both insulin and β-adrenergic signalling control phosphorylation of FOXO1. The dose–response of lipolysis is bell-shaped, such that insulin is anti-lipolytic at low concentrations, but at higher concentrations of insulin lipolysis was increasingly restored due to inhibition of PDE3B. The control of lipolysis was not altered in adipocytes from diabetic individuals. However, the release of fatty acids was increased by 50% in diabetes due to reduced reesterification of lipolytically liberated fatty acids. In conclusion, our results reveal mechanisms of control by insulin and β-adrenergic stimulation — in human adipocytes — that define a network of checks and balances ensuring robust control to secure uninterrupted supply of fatty acids without reaching concentrations that put cellular integrity at risk. Moreover, our results define how selective insulin resistance leave lipolytic control by insulin unaltered in diabetes, while the fatty acid release is substantially increased.
Collapse
|
9
|
Sano M, Shimazaki S, Kaneko Y, Karasawa T, Takahashi M, Ohkuchi A, Takahashi H, Kurosawa A, Torii Y, Iwata H, Kuwayama T, Shirasuna K. Palmitic acid activates NLRP3 inflammasome and induces placental inflammation during pregnancy in mice. J Reprod Dev 2020; 66:241-248. [PMID: 32101829 PMCID: PMC7297640 DOI: 10.1262/jrd.2020-007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Maternal obesity is one of the major risk factors for pregnancy complications and is associated with low-grade chronic systemic inflammation due to higher levels of pro-inflammatory cytokines such as interleukin (IL)-1β. Pregnant women with obesity have abnormal lipid profiles, characterized by higher levels of free fatty acids, especially palmitic acid (PA). Previously, we reported that PA stimulated IL-1β secretion via activation of NLRP3 inflammasome in human placental cells. These observations led us to hypothesize that higher levels of PA induce NLRP3 inflammasome activation and placental inflammation, resulting in pregnancy complications. However, the effects of PA on NLRP3 inflammasome during pregnancy in vivo remain unclear. Therefore, PA solutions were administered intravenously into pregnant mice on day 12 of gestation. Maternal body weight was significantly decreased and absorption rates were significantly higher in PA-injected mice. The administration of PA significantly increased IL-1β protein and the mRNA expression of NLRP3 inflammasome components (NLRP3, ASC, and caspase-1) within the placenta. In murine placental cell culture, PA significantly stimulated IL-1β secretion, and this secretion was suppressed by a specific NLRP3 inhibitor (MCC950). Simultaneously, the number of macrophages/monocytes and neutrophils, together with the mRNA expression of these chemokines increased significantly in the placentas of PA-treated mice. Treatment with PA induced ASC assembling and IL-1β secretion in macrophages, and this PA-induced IL-1β secretion was significantly suppressed in NLRP3-knockdown macrophages. These results indicate that transient higher levels of PA exposure in pregnant mice activates NLRP3 inflammasome and induces placental inflammation, resulting in the incidence of absorption.
Collapse
Affiliation(s)
- Michiya Sano
- Laboratory of Animal Reproduction, Department of Agriculture, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Sayaka Shimazaki
- Laboratory of Animal Reproduction, Department of Agriculture, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Yasuaki Kaneko
- Laboratory of Animal Reproduction, Department of Agriculture, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Tadayoshi Karasawa
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Masafumi Takahashi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Akihide Ohkuchi
- Department of Obstetrics and Gynecology, Jichi Medical University, Tochigi 329-0498, Japan
| | - Hironori Takahashi
- Department of Obstetrics and Gynecology, Jichi Medical University, Tochigi 329-0498, Japan
| | - Akira Kurosawa
- Laboratory of Animal Nutrition, Department of Agriculture, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Yasushi Torii
- Laboratory of Animal Health, Department of Agriculture, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Hisataka Iwata
- Laboratory of Animal Reproduction, Department of Agriculture, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Takehito Kuwayama
- Laboratory of Animal Reproduction, Department of Agriculture, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Koumei Shirasuna
- Laboratory of Animal Reproduction, Department of Agriculture, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| |
Collapse
|
10
|
Mak IL, Lavery P, Agellon S, Rauch F, Murshed M, Weiler HA. Arachidonic acid exacerbates diet-induced obesity and reduces bone mineral content without impacting bone strength in growing male rats. J Nutr Biochem 2019; 73:108226. [PMID: 31520815 DOI: 10.1016/j.jnutbio.2019.108226] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/28/2019] [Accepted: 08/09/2019] [Indexed: 12/30/2022]
Abstract
Long-chain polyunsaturated fatty acids modulate bone mass and adipocyte metabolism. Arachidonic acid (AA, C20:4 n-6) is elevated in obesity and postulated to stimulate bone resorption. This study aimed to determine the effect of AA on bone mass, quality, and adiposity in diet-induced obesity during growth. Male Sprague-Dawley rats (n=42, 4-week) were randomized into groups fed a control diet (CTRL, AIN-93G), high-fat diet (HFD, 35% kcal fat) or HFD + AA (1% w/w diet) for 6 weeks. Body composition, bone mineral density and microarchitecture were measured using dual-energy X-ray absorptiometry and micro-computed tomography. Red blood cell fatty acid profile was measured with gas chromatography. Group differences were evaluated using repeated measures two-way analysis of variance with Tukey-Kramer post hoc testing. Total energy intake did not differ among diet groups. At week 6, HFD + AA had significantly greater body fat % (12%), body weight (6%) and serum leptin concentrations (125%) than CTRL, whereas visceral fat (mass and %, assessed with micro-computed tomography) was increased in both HFD and HFD + AA groups. HFD + AA showed reduced whole body bone mineral content and femur mid-diaphyseal cortical bone cross-sectional area than HFD and CTRL, without impairment in bone strength. Contrarily, HFD + AA had greater femur metaphyseal trabecular vBMD (35%) and bone volume fraction (5%) compared to controls. Inclusion of AA elevated leptin concentrations in male rats. The early manifestations of diet-induced obesity on bone mass were accelerated with AA. Studies of longer duration are needed to clarify the effect of AA on peak bone mass following growth cessation.
Collapse
Affiliation(s)
- Ivy L Mak
- School of Human Nutrition, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC, Canada H9X 3V9
| | - Paula Lavery
- School of Human Nutrition, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC, Canada H9X 3V9
| | - Sherry Agellon
- School of Human Nutrition, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC, Canada H9X 3V9
| | - Frank Rauch
- Shriners' Hospital for Children, 1003 Decarie Boulevard, Montreal, QC, Canada H4A 0A9
| | - Monzur Murshed
- Shriners' Hospital for Children, 1003 Decarie Boulevard, Montreal, QC, Canada H4A 0A9; Faculty of Dentistry, McGill University, 3640 rue University, Montreal, QC, Canada H3A 0C7
| | - Hope A Weiler
- School of Human Nutrition, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC, Canada H9X 3V9.
| |
Collapse
|
11
|
Cobbs A, Chen X, Zhang Y, George J, Huang MB, Bond V, Thompson W, Zhao X. Saturated fatty acid stimulates production of extracellular vesicles by renal tubular epithelial cells. Mol Cell Biochem 2019; 458:113-124. [PMID: 30993495 PMCID: PMC7027953 DOI: 10.1007/s11010-019-03535-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/10/2019] [Indexed: 12/30/2022]
Abstract
Lipotoxicity, an accumulation of intracellular lipid metabolites, has been proposed as an important pathogenic mechanism contributing to kidney dysfunction in the context of metabolic disease. Palmitic acid, a predominant lipid derivative, can cause lipoapoptosis and the release of inflammatory extracellular vesicles (EVs) in hepatocytes, but the effect of lipids on EV production in chronic kidney disease remains vaguely explored. This study was aimed to investigate whether palmitic acid would stimulate EV release from renal proximal tubular epithelial cells. Human and rat proximal tubular epithelial cells, HK-2 and NRK-52E, were incubated with 1% bovine serum albumin (BSA), BSA-conjugated palmitic acid (PA), and BSA-conjugated oleic acid (OA) for 24-48 h. The EVs released into conditioned media were isolated by ultracentrifugation and quantified by nanoparticle-tracking analysis (NTA). According to NTA, the size distribution of EVs was 30-150 nm with similar mode sizes in all experimental groups. Moreover, BSA-induced EV release was significantly enhanced in the presence of PA, whereas EV release was not altered by the addition of OA. In NRK-52E cells, PA-enhanced EV release was associated with an induction of cell apoptosis reflected by an increase in cleaved caspase-3 protein by Western blot and Annexin V positive cells analyzed by flow cytometry. Additionally, confocal microscopy confirmed the uptake of lipid-induced EVs by recipient renal proximal tubular cells. Collectively, our results indicate that PA stimulates EV release from cultured proximal tubular epithelial cells. Thus, extended characterization of lipid-induced EVs may constitute new signaling paradigms contributing to chronic kidney disease pathology.
Collapse
Affiliation(s)
- Alyssa Cobbs
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Xiaoming Chen
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Yuanyuan Zhang
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Jasmine George
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Ming-Bo Huang
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Vincent Bond
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Winston Thompson
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Xueying Zhao
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA.
| |
Collapse
|
12
|
Korbecki J, Bajdak-Rusinek K. The effect of palmitic acid on inflammatory response in macrophages: an overview of molecular mechanisms. Inflamm Res 2019; 68:915-932. [PMID: 31363792 PMCID: PMC6813288 DOI: 10.1007/s00011-019-01273-5] [Citation(s) in RCA: 278] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 02/06/2023] Open
Abstract
Palmitic acid is a saturated fatty acid whose blood concentration is elevated in obese patients. This causes inflammatory responses, where toll-like receptors (TLR), TLR2 and TLR4, play an important role. Nevertheless, palmitic acid is not only a TLR agonist. In the cell, this fatty acid is converted into phospholipids, diacylglycerol and ceramides. They trigger the activation of various signaling pathways that are common for LPS-mediated TLR4 activation. In particular, metabolic products of palmitic acid affect the activation of various PKCs, ER stress and cause an increase in ROS generation. Thanks to this, palmitic acid also strengthens the TLR4-induced signaling. In this review, we discuss the mechanisms of inflammatory response induced by palmitic acid. In particular, we focus on describing its effect on ER stress and IRE1α, and the mechanisms of NF-κB activation. We also present the mechanisms of inflammasome NLRP3 activation and the effect of palmitic acid on enhanced inflammatory response by increasing the expression of FABP4/aP2. Finally, we focus on the consequences of inflammatory responses, in particular, the effect of TNF-α, IL-1β and IL-6 on insulin resistance. Due to the high importance of macrophages and the production of proinflammatory cytokines by them, this work mainly focuses on these cells.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Molecular Biology, School of Medicine in Katowice, Medical University of Silesia, Medyków 18 St., 40-752, Katowice, Poland.
| | - Karolina Bajdak-Rusinek
- Department of Medical Genetics, School of Medicine in Katowice, Medical University of Silesia, Medyków 18 St., 40-752, Katowice, Poland
| |
Collapse
|
13
|
Ness KM, Strayer SM, Nahmod NG, Chang AM, Buxton OM, Shearer GC. Two nights of recovery sleep restores the dynamic lipemic response, but not the reduction of insulin sensitivity, induced by five nights of sleep restriction. Am J Physiol Regul Integr Comp Physiol 2019; 316:R697-R703. [PMID: 30892916 DOI: 10.1152/ajpregu.00336.2018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chronic inadequate sleep is associated with increased risk of cardiometabolic diseases. The mechanisms involved are poorly understood but involve changes in insulin sensitivity, including within adipose tissue. The aim of this study was to assess the effects of sleep restriction on nonesterified fatty acid (NEFA) suppression profiles in response to an intravenous glucose tolerance test (IVGTT) and to assess whether 2 nights of recovery sleep (a "weekend") is sufficient to restore metabolic health. We hypothesized that sleep restriction impairs both glucose and lipid metabolism, specifically adipocyte insulin sensitivity, and the dynamic lipemic response of adipocyte NEFA release during an IVGTT. Fifteen healthy men completed an inpatient study of 3 baseline nights (10 h of time in bed/night), followed by 5 nights of 5 h of time in bed/night and 2 recovery nights (10 h of time in bed/night). IVGTTs were performed on the final day of each condition. Reductions in insulin sensitivity without a compensatory change in acute insulin response to glucose were consistent with prior studies (insulin sensitivity P = 0.002; acute insulin response to glucose P = 0.23). The disposition index was suppressed by sleep restriction and did not recover after recovery sleep (P < 0.0001 and P = 0.01, respectively). Fasting NEFAs were not different from baseline in either the restriction or recovery conditions. NEFA rebound was significantly suppressed by sleep restriction (P = 0.01) but returned to baseline values after recovery sleep. Our study indicates that sleep restriction impacts NEFA metabolism and demonstrates that 2 nights of recovery sleep may not be adequate to restore glycemic health.
Collapse
Affiliation(s)
- Kelly M Ness
- The Huck Institutes of the Life Sciences, Pennsylvania State University , University Park, Pennsylvania.,Department of Biobehavioral Health, Pennsylvania State University , University Park, Pennsylvania.,Department of Nutritional Sciences, Pennsylvania State University , University Park, Pennsylvania
| | - Stephen M Strayer
- The Huck Institutes of the Life Sciences, Pennsylvania State University , University Park, Pennsylvania.,Department of Biobehavioral Health, Pennsylvania State University , University Park, Pennsylvania
| | - Nicole G Nahmod
- Department of Biobehavioral Health, Pennsylvania State University , University Park, Pennsylvania
| | - Anne-Marie Chang
- Department of Biobehavioral Health, Pennsylvania State University , University Park, Pennsylvania
| | - Orfeu M Buxton
- The Huck Institutes of the Life Sciences, Pennsylvania State University , University Park, Pennsylvania.,Department of Biobehavioral Health, Pennsylvania State University , University Park, Pennsylvania.,Division of Sleep and Circadian Disorders, Harvard Medical School , University Park, Pennsylvania.,Department of Social and Behavioral Sciences, Harvard Chan School of Public Health , Boston, Massachusetts.,Sleep Health Institute, Departments of Medicine and Neurology, Brigham and Women's Hospital , Boston, Massachusetts
| | - Gregory C Shearer
- The Huck Institutes of the Life Sciences, Pennsylvania State University , University Park, Pennsylvania.,Department of Nutritional Sciences, Pennsylvania State University , University Park, Pennsylvania
| |
Collapse
|
14
|
Zhang Q, Kong X, Yuan H, Guan H, Li Y, Niu Y. Mangiferin Improved Palmitate-Induced-Insulin Resistance by Promoting Free Fatty Acid Metabolism in HepG2 and C2C12 Cells via PPAR α: Mangiferin Improved Insulin Resistance. J Diabetes Res 2019; 2019:2052675. [PMID: 30809553 PMCID: PMC6369470 DOI: 10.1155/2019/2052675] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/29/2018] [Accepted: 10/23/2018] [Indexed: 01/10/2023] Open
Abstract
Elevated free fatty acid (FFA) is a key risk factor for insulin resistance (IR). Our previous studies found that mangiferin could decrease serum FFA levels in obese rats induced by a high-fat diet. Our research was to determine the effects and mechanism of mangiferin on improving IR by regulating FFA metabolism in HepG2 and C2C12 cells. The model was used to quantify PA-induced lipid accumulation in the two cell lines treated with various concentrations of mangiferin simultaneously for 24 h. We found that mangiferin significantly increased insulin-stimulated glucose uptake, via phosphorylation of protein kinase B (P-AKT), glucose transporter 2 (GLUT2), and glucose transporter 4 (GLUT4) protein expressions, and markedly decreased glucose content, respectively, in HepG2 and C2C12 cells induced by PA. Mangiferin significantly increased FFA uptake and decreased intracellular FFA and triglyceride (TG) accumulations. The activity of the peroxisome proliferator-activated receptor α (PPARα) protein and its downstream proteins involved in fatty acid translocase (CD36) and carnitine palmitoyltransferase 1 (CPT1) and the fatty acid β-oxidation rate corresponding to FFA metabolism were also markedly increased by mangiferin in HepG2 and C2C12 cells. Furthermore, the effects were reversed by siRNA-mediated knockdown of PPARα. Mangiferin ameliorated IR by increasing the consumption of glucose and promoting the FFA oxidation via the PPARα pathway in HepG2 and C2C12 cells.
Collapse
Affiliation(s)
- Qiao Zhang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin 150086, China
| | - Xiangju Kong
- Department of Gynaecology, First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Hang Yuan
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin 150086, China
| | - Hongjun Guan
- Public Health College, Mudanjiang Medical University, Mudanjiang 157011, China
| | - Ying Li
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin 150086, China
| | - Yucun Niu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin 150086, China
| |
Collapse
|
15
|
Wood LG, Li Q, Scott HA, Rutting S, Berthon BS, Gibson PG, Hansbro PM, Williams E, Horvat J, Simpson JL, Young P, Oliver BG, Baines KJ. Saturated fatty acids, obesity, and the nucleotide oligomerization domain-like receptor protein 3 (NLRP3) inflammasome in asthmatic patients. J Allergy Clin Immunol 2018; 143:305-315. [PMID: 29857009 DOI: 10.1016/j.jaci.2018.04.037] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/29/2018] [Accepted: 04/30/2018] [Indexed: 01/17/2023]
Abstract
BACKGROUND Both obesity and high dietary fat intake activate the nucleotide oligomerization domain-like receptor protein 3 (NLRP3) inflammasome. OBJECTIVE We aimed to examine NLRP3 inflammasome activity in the airways of obese asthmatic patients after macronutrient overload and in immune cells challenged by inflammasome triggers. METHODS Study 1 was a cross-sectional observational study of nonobese (n = 51) and obese (n = 76) asthmatic adults. Study 2 was a randomized, crossover, acute feeding study in 23 asthmatic adults (n = 12 nonobese and n = 11 obese subjects). Subjects consumed 3 isocaloric meals on 3 separate occasions (ie, saturated fatty acid, n-6 polyunsaturated fatty acid, and carbohydrate) and were assessed at 0 and 4 hours. For Studies 1 and 2, airway inflammation was measured based on sputum differential cell counts, IL-1β protein levels (ELISA), and sputum cell gene expression (Nanostring nCounter). In Study 3 peripheral blood neutrophils and monocytes were isolated by using Ficoll density gradient and magnetic bead separation and incubated with or without palmitic acid, LPS, or TNF-α for 24 hours, and IL-1β release was measured (ELISA). RESULTS In Study 1 NLRP3 and nucleotide oligomerization domain 1 (NOD1) gene expression was upregulated, and sputum IL-1β protein levels were greater in obese versus nonobese asthmatic patients. In Study 2 the saturated fatty acid meal led to increases in sputum neutrophil percentages and sputum cell gene expression of Toll-like receptor 4 (TLR4) and NLRP3 at 4 hours in nonobese asthmatic patients. In Study 3 neutrophils and monocytes released IL-1β when challenged with a combination of palmitic acid and LPS or TNF-α. CONCLUSION The NLRP3 inflammasome is a potential therapeutic target in asthmatic patients. Behavioral interventions that reduce fatty acid exposure, such as weight loss and dietary saturated fat restriction, warrant further exploration.
Collapse
Affiliation(s)
- Lisa G Wood
- Priority Research Centre for Healthy Lungs, University of Newcastle, Newcastle, Australia.
| | - Qian Li
- Priority Research Centre for Healthy Lungs, University of Newcastle, Newcastle, Australia
| | - Hayley A Scott
- Priority Research Centre for Healthy Lungs, University of Newcastle, Newcastle, Australia
| | - Sandra Rutting
- Priority Research Centre for Healthy Lungs, University of Newcastle, Newcastle, Australia; Woolcock Institute of Medical Research, Sydney, Australia
| | - Bronwyn S Berthon
- Priority Research Centre for Healthy Lungs, University of Newcastle, Newcastle, Australia
| | - Peter G Gibson
- Priority Research Centre for Healthy Lungs, University of Newcastle, Newcastle, Australia; Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, University of Newcastle, Newcastle, Australia
| | - Evan Williams
- Priority Research Centre for Healthy Lungs, University of Newcastle, Newcastle, Australia
| | - Jay Horvat
- Priority Research Centre for Healthy Lungs, University of Newcastle, Newcastle, Australia
| | - Jodie L Simpson
- Priority Research Centre for Healthy Lungs, University of Newcastle, Newcastle, Australia
| | - Paul Young
- Woolcock Institute of Medical Research, Sydney, Australia
| | - Brian G Oliver
- Woolcock Institute of Medical Research, Sydney, Australia
| | - Katherine J Baines
- Priority Research Centre for Healthy Lungs, University of Newcastle, Newcastle, Australia
| |
Collapse
|
16
|
Chopra S, Rathore A, Younas H, Pham LV, Gu C, Beselman A, Kim IY, Wolfe RR, Perin J, Polotsky VY, Jun JC. Obstructive Sleep Apnea Dynamically Increases Nocturnal Plasma Free Fatty Acids, Glucose, and Cortisol During Sleep. J Clin Endocrinol Metab 2017; 102:3172-3181. [PMID: 28595341 PMCID: PMC5587067 DOI: 10.1210/jc.2017-00619] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/12/2017] [Indexed: 11/19/2022]
Abstract
CONTEXT Obstructive sleep apnea (OSA) is associated with diabetes and cardiovascular disease. This association may be related to metabolic changes that transpire during sleep in OSA. OBJECTIVE To examine the impact of OSA, elicited by cessation of continuous positive airway pressure (CPAP), on frequently sampled nocturnal metabolic markers including plasma free fatty acids (FFAs), glucose, insulin, triglycerides (TGs), cortisol, and lactate, as well as glucose production, oral glucose tolerance, blood pressure (BP), endothelial function, cholesterol, and high-sensitivity C-reactive protein (hsCRP). DESIGN AND SETTING Randomized crossover trial of CPAP vs CPAP withdrawal. PATIENTS Thirty-one patients with moderate to severe OSA acclimated to CPAP. INTERVENTION Patients underwent attended polysomnography while sleeping with therapeutic CPAP, or after CPAP withdrawal, in random order. Venous blood was sampled at ∼20-minute intervals on both nights. In 11 patients, we assessed glucose kinetics with an infusion of 6,6-[2H2]glucose. RESULTS CPAP withdrawal caused recurrence of OSA associated with hypoxemia, sleep disruption, and heart rate (HR) elevation. CPAP withdrawal dynamically increased nocturnal FFA (P = 0.007), glucose (P = 0.028), and cortisol (P = 0.037), in proportion to respiratory event frequency, HR elevation, or sleep fragmentation. Diabetes predisposed to glucose elevation. CPAP withdrawal also increased systolic BP (P = 0.017) and augmentation index (P = 0.008), but did not affect insulin, TGs, glucose production, oral glucose tolerance, cholesterol, or hsCRP. CONCLUSION OSA recurrence during CPAP withdrawal increases FFA and glucose during sleep, associated with sympathetic and adrenocortical activation. Recurring exposure to these metabolic changes may foster diabetes and cardiovascular disease.
Collapse
Affiliation(s)
- Swati Chopra
- Division of Pulmonary and Critical Care, Department of Medicine, Johns Hopkins University, Baltimore, Maryland 21224
| | - Aman Rathore
- Division of Pulmonary and Critical Care, Department of Medicine, Johns Hopkins University, Baltimore, Maryland 21224
| | - Haris Younas
- Division of Pulmonary and Critical Care, Department of Medicine, Johns Hopkins University, Baltimore, Maryland 21224
| | - Luu V. Pham
- Division of Pulmonary and Critical Care, Department of Medicine, Johns Hopkins University, Baltimore, Maryland 21224
| | - Chenjuan Gu
- Department of Respiratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Aleksandra Beselman
- Department of Pharmacy Services, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224
| | - Il-Young Kim
- Center for Translational Research in Aging & Longevity, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Robert R. Wolfe
- Center for Translational Research in Aging & Longevity, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Jamie Perin
- School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205
| | - Vsevolod Y. Polotsky
- Division of Pulmonary and Critical Care, Department of Medicine, Johns Hopkins University, Baltimore, Maryland 21224
| | - Jonathan C. Jun
- Division of Pulmonary and Critical Care, Department of Medicine, Johns Hopkins University, Baltimore, Maryland 21224
| |
Collapse
|
17
|
Chen C, Huang Q, Li C, Fu X. Hypoglycemic effects of a Fructus Mori polysaccharide in vitro and in vivo. Food Funct 2017. [DOI: 10.1039/c7fo00417f] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Mulberry fruit polysaccharide (MFP), one of the major active ingredients isolated from the mulberry fruit, possesses numerous bioactivities.
Collapse
Affiliation(s)
- Chun Chen
- College of Light Industry and Food Sciences
- South China University of Technology
- Guangzhou 510640
- China
| | - Qiang Huang
- College of Light Industry and Food Sciences
- South China University of Technology
- Guangzhou 510640
- China
| | - Chao Li
- College of Light Industry and Food Sciences
- South China University of Technology
- Guangzhou 510640
- China
| | - Xiong Fu
- College of Light Industry and Food Sciences
- South China University of Technology
- Guangzhou 510640
- China
| |
Collapse
|
18
|
Pereira MJ, Skrtic S, Katsogiannos P, Abrahamsson N, Sidibeh CO, Dahgam S, Månsson M, Risérus U, Kullberg J, Eriksson JW. Impaired adipose tissue lipid storage, but not altered lipolysis, contributes to elevated levels of NEFA in type 2 diabetes. Degree of hyperglycemia and adiposity are important factors. Metabolism 2016; 65:1768-1780. [PMID: 27832864 DOI: 10.1016/j.metabol.2016.09.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 09/06/2016] [Accepted: 09/22/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND Elevated levels of circulating non-esterified fatty acids (NEFA) mediate many adverse metabolic effects. In this work we aim to determine the impact of type 2 diabetes (T2D), glycemic control and obesity on lipolysis regulation. DESIGN AND PARTICIPANTS 20 control and 20 metformin-treated T2D subjects were matched for sex (10M/10 F), age (58±11 vs 58±9 y) and BMI (30.8±4.6 vs 30.7±4.9kg/m2). In vivo lipolysis was assessed during a 3h-OGTT with plasma glycerol and NEFA levels. Subcutaneous adipose tissue (SAT) biopsies were obtained to measure mRNA and metabolite levels of factors related to lipolysis and lipid storage and to assess in vitro lipolysis in isolated subcutaneous adipocytes. RESULTS Plasma NEFA AUC during the OGTT where higher 30% (P=0.005) in T2D than in control subjects, but plasma glycerol AUC and subcutaneous adipocyte lipolysis in vitro were similar, suggesting that adipose tissue lipolysis is not altered. Expression in SAT of genes involved in lipid storage (FABP4, DGAT1, FASN) were reduced in T2D subjects compared with controls, but no differences were seen for genes involved in lipolysis. T2D subjects had elevated markers of beta-oxidation, α-hydroxybutyrate (1.4-fold, P<0.01) and β-hydroxybutyrate (1.7-fold, P<0.05) in plasma. In multivariate analysis, HbA1c, visceral adipose tissue volume and sex (male) were significantly associated with NEFA AUC in T2D subjects. CONCLUSIONS In T2D subjects, NEFA turnover is impaired, but not due to defects in lipolysis or lipid beta-oxidation. Impaired adipose NEFA re-esterification or de novo lipogenesis is likely to contribute to higher NEFA plasma levels in T2D. The data suggest that hyperglycemia and adiposity are important contributing factors for the regulation of plasma NEFA concentrations.
Collapse
Affiliation(s)
- Maria J Pereira
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Stanko Skrtic
- AstraZeneca R&D, Mölndal, Sweden; Department of Endocrinology, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | | | - Cherno O Sidibeh
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | | | | | - Ulf Risérus
- Clinical Nutrition and Metabolism, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Joel Kullberg
- Radiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Jan W Eriksson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
19
|
Affiliation(s)
- Parvaiz A Koul
- Department of Internal and Pulmonary Medicine, Sher I Kashmir Institute of Medical Sciences, Srinagar, Jammu and Kashmir, India. E-mail:
| |
Collapse
|
20
|
Li L, Wang B, Yu P, Wen X, Gong D, Zeng Z. Medium and Long Chain Fatty Acids Differentially Modulate Apoptosis and Release of Inflammatory Cytokines in Human Liver Cells. J Food Sci 2016; 81:H1546-52. [PMID: 27145239 DOI: 10.1111/1750-3841.13321] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 03/14/2016] [Accepted: 03/26/2016] [Indexed: 01/01/2023]
Abstract
Medium chain fatty acids (MCFA) can be more easily absorbed and supply energy more rapidly than long chain fatty acids (LCFA). However, little is known about the inflammatory response by the treatment of MCFA in human liver cells. Thus this study used human liver cells (LO2) to evaluate the effects of MCFA on apoptosis and inflammatory response. Tetrazolim-based colorimetric assay and lactate dehydrogenase assay were used to measure the viability of LO2 cells, isolated spleens and liver cells from BALB/C mice. Inverted fluorescence microscopy and flow cytometry were used to assess the cell apoptosis. Activity of superoxide dismutase and malondialdehyde level were measured to determine the oxidative damage. mRNA or protein levels of classical pro-inflammatory cytokines were analyzed by quantitative real-time polymerase chain reaction (qPCR), enzyme-linked immunosorbent assay and western blotting. The results showed that the liver cells treated with the fatty acids at 200 μM for 24 h exhibited good viability. Fatty acids induced inflammatory cytokines at transcriptional and translational levels to a lesser extent than lipopolysaccharide. LCFA (oleic acid) up-regulated tumor necrosis fator-α, monocyte chemoattractant-1 and interleukin-1β while down-regulated IL-6 and IL-8 secretion to a higher extent than MCFA in mRNA and protein levels. These findings suggested that MCFA may induce apoptosis to a less extent and exert more gentle inflammation than LCFA in human liver cells.
Collapse
Affiliation(s)
- Lumin Li
- State Key Laboratory of Food Science and Technology, Nanchang Univ, Nanchang, 330047, China
| | - Baogui Wang
- State Key Laboratory of Food Science and Technology, Nanchang Univ, Nanchang, 330047, China
| | - Ping Yu
- School of Environmental and Chemical Engineering, Nanchang Univ, Nanchang, 330031, China
| | - Xuefang Wen
- State Key Laboratory of Food Science and Technology, Nanchang Univ, Nanchang, 330047, China
| | - Deming Gong
- School of Biological Sciences, The Univ. of Auckland, Private Bag, 92019, Auckland, New Zealand
| | - Zheling Zeng
- School of Environmental and Chemical Engineering, Nanchang Univ, Nanchang, 330031, China.,Jiangxi Province Key Laboratory of Edible and Medicinal Plant Resources, Nanchang Univ, Nanchang, 330031, China
| |
Collapse
|
21
|
Baffi CW, Wood L, Winnica D, Strollo PJ, Gladwin MT, Que LG, Holguin F. Metabolic Syndrome and the Lung. Chest 2016; 149:1525-34. [PMID: 26836925 DOI: 10.1016/j.chest.2015.12.034] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/04/2015] [Accepted: 12/24/2015] [Indexed: 01/01/2023] Open
Abstract
A link between metabolic syndrome (MetS) and lung diseases has been observed in several cross-sectional and longitudinal studies. This syndrome has been identified as an independent risk factor for worsening respiratory symptoms, greater lung function impairment, pulmonary hypertension, and asthma. This review will discuss several potential mechanisms to explain these associations, including dietary factors and the effect of adiposity and fat-induced inflammation on the lungs, and the role of other comorbidities that frequently coexist with MetS, such as OSA and obesity. In contrast to the well-known association between asthma and obesity, the recognition that MetS affects the lung is relatively new. Although some controversy remains as to whether MetS is a unique disease entity, its individual components have independently been associated with changes in pulmonary function or lung disease. There is, however, uncertainty as to the relative contribution that each metabolic factor has in adversely affecting the respiratory system; also, it is unclear how much of the MetS-related lung effects occur independently of obesity. In spite of these epidemiological limitations, the proposed mechanistic pathways strongly suggest that this association is likely to be causal. Given the wide prevalence of MetS in the general population, it is imperative that we continue to further understand how this metabolic disorder impacts the lung and how to prevent its complications.
Collapse
Affiliation(s)
- Cynthia W Baffi
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Lisa Wood
- Hunter Medical Research Institute and University of Newcastle, NSW, Australia
| | - Daniel Winnica
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | | | - Mark T Gladwin
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | | | - Fernando Holguin
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA.
| |
Collapse
|
22
|
Aizawa Y, Shirai T, Kobayashi T, Hino O, Tsujii Y, Inoue H, Kazami M, Tadokoro T, Suzuki T, Kobayashi KI, Yamamoto Y. The tuberous sclerosis complex model Eker (TSC2+/-) rat exhibits hyperglycemia and hyperketonemia due to decreased glycolysis in the liver. Arch Biochem Biophys 2015; 590:48-55. [PMID: 26550928 DOI: 10.1016/j.abb.2015.10.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 10/29/2015] [Accepted: 10/29/2015] [Indexed: 12/17/2022]
Abstract
Tuberous sclerosis complex (TSC) presents as benign tumors that affect the brain, kidneys, lungs and skin. The inactivation of TSC2 gene, through loss of heterozygosity is responsible for tumor development in TSC. Since TSC patients are carriers of heterozygous a TSC2; mutation, to reveal the risk factors which these patients carry prior to tumor development is important. In this experiment, Eker rat which carry a mutation in this TSC2 gene were analyzed for their metabolic changes. Wild-type (TSC2+/+) and heterozygous mutant TSC2 (TSC2+/-) Eker rats were raised for 100 days. As a result, the Eker rats were found to exhibit hyperglycemia and hyperketonemia. However the high ketone body production in the liver was observed without accompanying increased levels of plasma free fatty acids or insulin. Further, production of the ketone body β-hydroxybutyrate was inhibited due to the low NADH/NAD(+) ratio resulting from the restraint on glycolysis, which was followed by inhibition of the malate-aspartate shuttle and TCA cycle. Therefore, we conclude that glycolysis is restrained in the livers of TSC2 heterozygous mutant rats, and these defects lead to abnormal production of acetoacetate.
Collapse
Affiliation(s)
- Yumi Aizawa
- Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Tomomi Shirai
- Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Toshiyuki Kobayashi
- Department of Pathology and Oncology Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Okio Hino
- Department of Pathology and Oncology Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yoshimasa Tsujii
- Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Hirofumi Inoue
- Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Machiko Kazami
- Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Tadahiro Tadokoro
- Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Tsukasa Suzuki
- Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Ken-Ichi Kobayashi
- Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Yuji Yamamoto
- Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan.
| |
Collapse
|
23
|
He J, Xu C, Kuang J, Liu Q, Jiang H, Mo L, Geng B, Xu G. Thiazolidinediones attenuate lipolysis and ameliorate dexamethasone-induced insulin resistance. Metabolism 2015; 64:826-36. [PMID: 25825274 DOI: 10.1016/j.metabol.2015.02.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 02/16/2015] [Accepted: 02/18/2015] [Indexed: 02/05/2023]
Abstract
BACKGROUND Elevated levels of circulating free fatty acids induce insulin resistance and often occur in obese and diabetic conditions. One pharmacological basis for the antidiabetic effects of thiazolidinediones (TZDs) is that TZDs reduce levels of circulating FFAs by accelerating their uptake and reesterification from plasma into adipocytes. Here, we investigated whether TZDs affect adipose lipolysis, a process controlling triglyceride hydrolysis and FFA efflux to the bloodstream. METHODS The effects of TZDs on lipolysis were investigated in primary rat adipocytes in vitro and in rats in vivo. RESULTS In rat primary adipocytes, the TZDs pioglitazone, rosiglitazone and troglitazone inhibited the lipolytic reaction dose- and time-dependently and in a post-receptor pathway by decreasing cAMP level and total lipase activity. TZDs increased the phosphorylation of Akt/protein kinase B, an action required for activating cyclic-nucleotide phosphodiesterase 3B, a major enzyme responsible for cAMP hydrolysis in adipocytes. Furthermore, rosiglitazone inhibited the lipolytic action in dexamethasone-stimulated adipocytes, thereby preventing the increased level of circulating FFAs, and ameliorated insulin resistance in vivo in dexamethasone-treated rats. CONCLUSIONS TZDs may attenuate lipolysis and FFA efflux by activating Akt signaling to decrease cAMP level and hence reduce lipase activity in adipocytes. Inhibiting lipolysis and FFA efflux with TZDs could be a pharmacological basis by which TZDs antagonize diabetes, particularly in patients with hypercortisolemia or glucocorticoid challenge.
Collapse
Affiliation(s)
- Jinhan He
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - Chong Xu
- Astronaut Research and Training Center of China, Beijing 100094, China
| | - Jiangying Kuang
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qinhui Liu
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Hongfeng Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Li Mo
- Department of Geriatrics, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Bin Geng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Guoheng Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
24
|
Thijssen E, van Caam A, van der Kraan PM. Obesity and osteoarthritis, more than just wear and tear: pivotal roles for inflamed adipose tissue and dyslipidaemia in obesity-induced osteoarthritis. Rheumatology (Oxford) 2014; 54:588-600. [PMID: 25504962 DOI: 10.1093/rheumatology/keu464] [Citation(s) in RCA: 228] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
OA is a degenerative joint disease characterized by articular cartilage degradation, osteophyte formation, synovitis, and subchondral bone sclerosis. One of OAs main risk factors is obesity. To date, it is not fully understood how obesity results in OA. Historically, this link was ascribed to excessive joint loading as a result of increased body weight. However, the association between obesity and OA in non-weight-bearing joints suggests a more complex aetiology for obesity-induced OA. In the present review, the link between obesity and OA is discussed. First, the historical view of altered joint loading leading to wear and tear of the joint is addressed. Subsequently, the effects of a disturbed lipid metabolism, low-grade inflammation, and adipokines on joint tissues are discussed and linked to OA. Taken together, inflamed adipose tissue and dyslipidaemia play pivotal roles in obesity-induced OA. It becomes increasingly clear that the link between obesity and OA transcends excessive loading.
Collapse
Affiliation(s)
- Eva Thijssen
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Arjan van Caam
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter M van der Kraan
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
25
|
Yu X, Ye L, Zhang H, Zhao J, Wang G, Guo C, Shang W. Ginsenoside Rb1 ameliorates liver fat accumulation by upregulating perilipin expression in adipose tissue of db/db obese mice. J Ginseng Res 2014. [PMID: 26199550 PMCID: PMC4506369 DOI: 10.1016/j.jgr.2014.11.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Ginsenoside Rb1 (G-Rb1), the major active constituent of ginseng, improves insulin sensitivity and exerts antidiabetic effects. We tested whether the insulin-sensitizing and antidiabetic effects of G-Rb1 results from a reduction in ectopic fat accumulation, mediated by inhibition of lipolysis in adipocytes. Methods Obese and diabetic db/db mice were treated with daily doses of 20 mg/kg G-Rb1 for 14 days. Hepatic fat accumulation was evaluated by measuring liver weight and triglyceride content. Levels of blood glucose and serum insulin were used to evaluate insulin sensitivity in db/db mice. Lipolysis in adipocytes was evaluated by measuring plasma-free fatty acids and glycerol release from 3T3-L1 adipocytes treated with G-Rb1. The expression of relevant genes was analyzed by western blotting, quantitative real-time polymerase chain reaction, and enzyme-linked immunosorbent assay kit. Results G-Rb1 increased insulin sensitivity and alleviated hepatic fat accumulation in obese diabetic db/db mice, and these effects were accompanied by reduced liver weight and hepatic triglyceride content. Furthermore, G-Rb1 lowered the levels of free fatty acids in obese mice, which may contribute to a decline in hepatic lipid accumulation. Corresponding to these results, G-Rb1 significantly suppressed lipolysis in 3T3-L1 adipocytes and upregulated the perilipin expression in both 3T3-L1 adipocytes and mouse epididymal fat pads. Moreover, G-Rb1 increased the level of adiponectin and reduced that of tumor necrosis factor-α in obese mice, and these effects were confirmed in 3T3-L1 adipocytes. Conclusion G-Rb1 may improve insulin sensitivity in obese and diabetic db/db mice by reducing hepatic fat accumulation and suppressing adipocyte lipolysis; these effects may be mediated via the upregulation of perilipin expression in adipocytes.
Collapse
Affiliation(s)
- Xizhong Yu
- Medical Research Center, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lifang Ye
- Department of Endocrinology, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Hao Zhang
- Medical Research Center, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Juan Zhao
- Medical Research Center, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guoqiang Wang
- Medical Research Center, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chao Guo
- Medical Research Center, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenbin Shang
- Medical Research Center, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China ; Department of Endocrinology, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
26
|
Gunes O, Tascilar E, Sertoglu E, Tas A, Serdar MA, Kaya G, Kayadibi H, Ozcan O. Associations between erythrocyte membrane fatty acid compositions and insulin resistance in obese adolescents. Chem Phys Lipids 2014; 184:69-75. [PMID: 25262585 DOI: 10.1016/j.chemphyslip.2014.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND/OBJECTIVE Cytokines released from the adipose tissue and fatty acids (FAs) derived from lipolysis or uptake of fats go in to competition with glucose to be uptaken from the liver leads to insulin resistance (IR). We aimed to show the associations among serum lipid profile, FA compositions and IR. METHODS Anthropometrical measurements, biochemical parameters and erythrocyte membrane (EM) FA levels of 95 obese adolescents (41 with IR) and 40 healthy controls were compared. RESULTS LDL-C, fasting insulin levels, HOMA-IR were significantly higher and HDL-C levels were significantly lower in obese patients than in controls (p=0.013, p<0.001, p<0.001 and p<0.001, respectively). EM C 24:0, C 16:1 ω7 and C 22:1 ω9 FA levels were significantly higher, while C 20:5 ω3 (EPA) levels were significantly lower in obese subjects than in controls (p<0.001, p=0.018, p<0.001, p=0.043 and p<0.001, respectively). Moreover, when obese subjects divided into two groups according to the presence of IR; EM C 16:1 ω7 levels were still significantly higher and EPA levels were still significantly lower in both obese subjects with and without IR compared to controls (p<0.001 for both). CONCLUSION Saturated FA intake should be decreased because of its role in the development of obesity and IR, and ω-3 group FA intake should be increased.
Collapse
Affiliation(s)
- Omer Gunes
- Agri Military Hospital, Department of Pediatrics, Agri, Turkey.
| | - Emre Tascilar
- Gulhane School of Medicine, Department of Pediatrics, Ankara, Turkey
| | - Erdim Sertoglu
- Ankara Mevki Military Hospital, Anittepe Dispensary, Ankara, Turkey
| | - Ahmet Tas
- Gulhane School of Medicine, Department of Medical Biochemistry, Ankara, Turkey
| | - Muhittin A Serdar
- Acıbadem University School Of Medicine, Department of Medical Biochemistry, Istanbul, Turkey
| | - Güven Kaya
- Gulhane School of Medicine, Department of Pediatrics, Ankara, Turkey
| | - Huseyin Kayadibi
- Adana Military Hospital, Department of Medical Biochemistry, Adana, Turkey
| | - Okan Ozcan
- Gulhane School of Medicine, Department of Pediatrics, Ankara, Turkey
| |
Collapse
|
27
|
Liu W, Zheng Y, Zhang Z, Yao W, Gao X. Hypoglycemic, hypolipidemic and antioxidant effects of Sarcandra glabra polysaccharide in type 2 diabetic mice. Food Funct 2014; 5:2850-60. [DOI: 10.1039/c4fo00430b] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Sarcandra glabra(Thunb.) Nakai is a traditional Chinese herbal medicine and dietary supplement used for treating several diseases.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009, PR China
- Department of Food Quality and Safety
- China Pharmaceutical University
| | - Ying Zheng
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009, PR China
- School of Life Science and Technology
- China Pharmaceutical University
| | - Zhenzhen Zhang
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009, PR China
- School of Life Science and Technology
- China Pharmaceutical University
| | - Wenbing Yao
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009, PR China
- School of Life Science and Technology
- China Pharmaceutical University
| | - Xiangdong Gao
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009, PR China
- School of Life Science and Technology
- China Pharmaceutical University
| |
Collapse
|
28
|
Klop B, Elte JWF, Cabezas MC. Dyslipidemia in obesity: mechanisms and potential targets. Nutrients 2013; 5:1218-40. [PMID: 23584084 PMCID: PMC3705344 DOI: 10.3390/nu5041218] [Citation(s) in RCA: 964] [Impact Index Per Article: 80.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 02/14/2013] [Accepted: 03/27/2013] [Indexed: 12/13/2022] Open
Abstract
Obesity has become a major worldwide health problem. In every single country in the world, the incidence of obesity is rising continuously and therefore, the associated morbidity, mortality and both medical and economical costs are expected to increase as well. The majority of these complications are related to co-morbid conditions that include coronary artery disease, hypertension, type 2 diabetes mellitus, respiratory disorders and dyslipidemia. Obesity increases cardiovascular risk through risk factors such as increased fasting plasma triglycerides, high LDL cholesterol, low HDL cholesterol, elevated blood glucose and insulin levels and high blood pressure. Novel lipid dependent, metabolic risk factors associated to obesity are the presence of the small dense LDL phenotype, postprandial hyperlipidemia with accumulation of atherogenic remnants and hepatic overproduction of apoB containing lipoproteins. All these lipid abnormalities are typical features of the metabolic syndrome and may be associated to a pro-inflammatory gradient which in part may originate in the adipose tissue itself and directly affect the endothelium. An important link between obesity, the metabolic syndrome and dyslipidemia, seems to be the development of insulin resistance in peripheral tissues leading to an enhanced hepatic flux of fatty acids from dietary sources, intravascular lipolysis and from adipose tissue resistant to the antilipolytic effects of insulin. The current review will focus on these aspects of lipid metabolism in obesity and potential interventions to treat the obesity related dyslipidemia.
Collapse
Affiliation(s)
- Boudewijn Klop
- Department of Internal Medicine, Diabetes and Vascular Centre, Sint Franciscus Gasthuis, Rotterdam, P.O. Box 10900, 3004 BA, The Netherlands.
| | | | | |
Collapse
|
29
|
Effects of metformin on the regulation of free Fatty acids in insulin resistance: a double-blind, placebo-controlled study. J Nutr Metab 2012; 2012:394623. [PMID: 23094143 PMCID: PMC3475305 DOI: 10.1155/2012/394623] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 09/10/2012] [Accepted: 09/24/2012] [Indexed: 12/31/2022] Open
Abstract
Introduction. Impaired free fatty acid (FFA) metabolism is closely linked to insulin resistance. Our aim was to evaluate plasma FFA changes in insulin resistance in a physiological situation after improvement of insulin sensitivity by metformin. Methods. A double-blind, placebo-controlled intervention with metformin was carried out in patients with insulin resistance. Nineteen patients were randomized to receive metformin 850 mg b.i.d. during 6 weeks or placebo. Participants underwent a mental stress test and an oral glucose tolerance test (OGTT) before and after treatment. Results. Fasting plasma glucose, FFA, and HOMA-IR tended to decrease after metformin, suggesting improved insulin sensitivity. FFA concentrations during the mental stress test showed a similar pattern after metformin, albeit lower at all time points, in contrast to the placebo group. The decrease in fasting plasma FFAs was positively associated to the decrease in HbA1c (r = 0.70; P = 0.03) and in fasting glucose (r = 0.74; P = 0.01). The suppression of plasma FFAs during OGTT did not change by metformin or placebo. Conclusion. Metformin in insulin resistance did not lead to improved FFA dynamics despite a trend of improved insulin sensitivity. Metformin most likely decreases plasma FFAs mainly by suppressing fasting FFA concentrations and not by suppression of acute stress-induced lipolysis.
Collapse
|
30
|
Huang JV, Greyson CR, Schwartz GG. PPAR-γ as a therapeutic target in cardiovascular disease: evidence and uncertainty. J Lipid Res 2012; 53:1738-54. [PMID: 22685322 DOI: 10.1194/jlr.r024505] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPAR-γ) is a key regulator of fatty acid metabolism, promoting its storage in adipose tissue and reducing circulating concentrations of free fatty acids. Activation of PPAR-γ has favorable effects on measures of adipocyte function, insulin sensitivity, lipoprotein metabolism, and vascular structure and function. Despite these effects, clinical trials of thiazolidinedione PPAR-γ activators have not provided conclusive evidence that they reduce cardiovascular morbidity and mortality. The apparent disparity between effects on laboratory measurements and clinical outcomes may be related to limitations of clinical trials, adverse effects of PPAR-γ activation, or off-target effects of thiazolidinedione agents. This review addresses these issues from a clinician's perspective and highlights several ongoing clinical trials that may help to clarify the therapeutic role of PPAR-γ activators in cardiovascular disease.
Collapse
Affiliation(s)
- Janice V Huang
- Cardiology Section, Denver VA Medical Center, US Department of Veterans Affairs, Denver, CO, USA
| | | | | |
Collapse
|
31
|
Signaling mechanisms in the restoration of impaired immune function due to diet-induced obesity. Proc Natl Acad Sci U S A 2011; 108:2867-72. [PMID: 21282635 DOI: 10.1073/pnas.1019270108] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Our previous data have linked obesity with immune dysfunction. It is known that physical exercise with dietary control has beneficial effects on immune function and the comorbidities of obesity. However, the mechanisms underlying the improvement of immune function in obesity after physical exercise with dietary control remain unknown. Here we show that moderate daily exercise with dietary control restores the impaired cytokine responses in diet-induced obese (DIO) mice and improves the resolution of Porphyromonas gingivalis-induced periodontitis. This restoration of immune responses is related to the reduction of circulating free fatty acids (FFAs) and TNF. Both FFAs and TNF induce an Akt inhibitor, carboxyl-terminal modulator protein (CTMP). The expression of CTMP is also observed increased in bone marrow-derived macrophages (BMMΦ) from DIO mice and restored after moderate daily exercise with dietary control. Toll-like receptor 2 (TLR2), which increases CTMP induction by FFAs, is inhibited in BMMΦ from DIO mice or after either FFA or TNF treatment, but unexpectedly is not restored by moderate daily exercise with dietary control. Furthermore, BMMΦ from DIO mice display reduced histone H3 (Lys-9) acetylation and NF-κB recruitment to TNF, IL-10, and TLR2 promoters after P. gingivalis infection. However, moderate daily exercise with dietary control restores these defects at promoters for TNF and IL-10, but not for TLR2. Thus, metabolizing FFAs and TNF by moderate daily exercise with dietary control improves innate immune responses to infection in DIO mice via restoration of CTMP and chromatin modification.
Collapse
|
32
|
Chen Y, Li Y, Wang Y, Wen Y, Sun C. Berberine improves free-fatty-acid-induced insulin resistance in L6 myotubes through inhibiting peroxisome proliferator-activated receptor gamma and fatty acid transferase expressions. Metabolism 2009; 58:1694-702. [PMID: 19767038 DOI: 10.1016/j.metabol.2009.06.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 05/15/2009] [Accepted: 06/15/2009] [Indexed: 11/16/2022]
Abstract
The plant alkaloid berberine (BBR) has been reported to have antidiabetic effect in humans and animals. However, the mechanism of action is not well understood. The present study was conducted to determine the effect and mechanism of action of BBR on the free-fatty-acid (FFA)-induced insulin resistance in muscle cells. The FFA-induced insulin-resistant cell model was established in L6 myotubes by treating them with 250 mumol/L of palmitic acid. The inclusion of FFA in the medium increased peroxisome proliferator-activated receptor gamma (PPARgamma) and fatty acid transferase (FAT/CD36) expressions by 26% and 50% and decreased glucose consumption by 43% and insulin-mediated glucose uptake by 63%, respectively. Berberine treatment increased the glucose consumption and insulin-stimulated glucose uptake in normal cells and improved glucose uptake in the FFA-induced insulin-resistant cells. The improved glucose uptake by BBR was accompanied with a dose-dependent decrease in PPARgamma and FAT/CD36 protein expressions. In insulin-resistant myotubes, BBR (5 micromol/L) decreased PPARgamma and FAT/CD36 proteins by 31% and 24%, whereas PPARgamma antagonist GW9662 reduced both proteins by 56% and 46%, respectively. In contrast, PPARgamma agonist rosiglitazone increased the expression of PPARgamma and FAT/CD36 by 34% and 21%, respectively. Our results suggest that BBR improves the FFA-induced insulin resistance in myotubes through inhibiting fatty acid uptake at least in part by reducing PPARgamma and FAT/CD36 expressions.
Collapse
Affiliation(s)
- Yanfeng Chen
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | | | | | | | | |
Collapse
|
33
|
Ichikawa T, Nakao K, Miyaaki H, Eguchi S, Takatsuki M, Fujimito M, Akiyama M, Miuma S, Ozawa E, Shibata H, Takeshita S, Kanematsu T, Eguchi K. Hepatitis C virus kinetics during the first phase of pegylated interferon-alpha-2b with ribavirin therapy in patients with living donor liver transplantation. Hepatol Res 2009; 39:856-64. [PMID: 19624776 DOI: 10.1111/j.1872-034x.2009.00524.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AIM To identify the problems of pegylated interferon (PEG IFN) with ribavirin therapy against hepatitis C virus (HCV) reinfection in living donor liver transplantation (LDLT) patients. HCV kinetics during the PEG IFN with ribavirin therapy were analyzed in LDLT patients, as well as in chronic hepatitis C (CHC) patients. METHODS The study included 80 consecutive HCV infected patients undergoing PEG IFN with ribavirin therapy (64 CHC and 16 LDLT patients) who attended the Nagasaki University Hospital for an initial visit between January 2005 and December 2007. RESULTS The sustained viral response (VR) rate of the CHC group (80%) was superior to the LDLT group (22%). The viral disappearance rate of the CHC group was also superior to the LDLT group, regardless of the HCV serotype. The HCV core antigen (cAg) titer under treatment in the LDLT group was more than that of the CHC group from day 0 to week 12. The HCV cAg decrease rate of the LDLT group on the first day of treatment was less than that of the CHC group. CONCLUSION The HCV infection of a transplanted liver is more refractory to treatment than a non-transplanted liver. The low reduction HCV cAg rate on day 1 is one of the problems of the combination therapy.
Collapse
Affiliation(s)
- Tatsuki Ichikawa
- The First Department of Internal Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Lennon R, Pons D, Sabin MA, Wei C, Shield JP, Coward RJ, Tavaré JM, Mathieson PW, Saleem MA, Welsh GI. Saturated fatty acids induce insulin resistance in human podocytes: implications for diabetic nephropathy. Nephrol Dial Transplant 2009; 24:3288-96. [PMID: 19556298 PMCID: PMC7614380 DOI: 10.1093/ndt/gfp302] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Cellular insulin resistance is the hallmark of type 2 diabetes and predominantly affects adipose and muscle cells. The saturated free fatty acid palmitate is elevated in insulin-resistant states and may directly contribute to cellular insulin resistance. A spectrum of renal disease is associated with increased markers of insulin resistance, although direct causal mechanisms are not known. In the kidney, glomerular podocytes are novel insulin-sensitive cells that have the ability to rapidly transport glucose. In this study, we tested the hypothesis that palmitate would induce insulin resistance in podocytes. METHODS Conditionally immortalized human podocytes were cultured for up to 24 h with 375-750 muM palmitate. Functional effects on glucose uptake and ceramide production were measured. Gene expression was investigated using a focused gene array, and protein signalling and trafficking were studied with Western blotting and immunofluorescence. RESULTS We found that palmitate blocked insulin-stimulated glucose uptake in human podocytes. This was associated with increased ceramide production, and use of the ceramide inhibitors myriocin and fumonisin B1 partially recovered the insulin sensitivity. At the level of transcription, palmitate downregulated genes associated with several pathways involved in insulin signalling. At the protein level, phosphorylation of the insulin receptor, IRS1 and PKB was reduced and there was impaired translocation of GLUT4 to the cell surface. CONCLUSION This is the first study to demonstrate a direct effect of saturated fatty acids on podocyte function. These findings may represent a novel link between systemic insulin resistance and the development of nephropathy.
Collapse
Affiliation(s)
- Rachel Lennon
- Academic and Children's, Renal Unit, Paul O'Gorman Lifeline Centre, University of Bristol, Southmead Hospital, Bristol BS10, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Signaling mechanisms involved in altered function of macrophages from diet-induced obese mice affect immune responses. Proc Natl Acad Sci U S A 2009; 106:10740-5. [PMID: 19541650 DOI: 10.1073/pnas.0904412106] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Recent research links diet-induced obesity (DIO) with impaired immunity, although the underlying mechanisms remain unclear. We find that the induction of inducible NO synthase (iNOS) and cytokines is suppressed in mice with DIO and in bone marrow macrophages (BMMPhi) from mice with DIO exposed to an oral pathogen, Porphyromonas gingivalis. BMMPhi from lean mice pre-treated with free fatty acids (FFAs) and exposed to P. gingivalis also exhibit a diminished induction of iNOS and cytokines. BMMPhi from lean and obese mice exposed to P. gingivalis and analyzed by a phosphorylation protein array show a reduction of Akt only in BMMPhi from mice with DIO. This reduction is responsible for diminished NF-kappaB activation and diminished induction of iNOS and cytokines. We next observed that Toll-like receptor 2 (TLR2) is suppressed in BMMPhi from DIO mice whereas carboxy-terminal modulator protein (CTMP), a known suppressor of Akt phosphorylation, is elevated. This elevation stems from defective TLR2 signaling. In BMMPhi from lean mice, both FFAs and TNF-alpha--via separate pathways--induce an increase in CMTP. However, in BMMPhi from DIO mice, TLR2 can no longer inhibit the TNF-alpha-induced increase in CTMP caused by P. gingivalis challenge. This defect can then be restored by transfecting WT TLR2 into BMMPhi from DIO mice. Thus, feeding mice a high-fat diet over time elevates the CTMP intracellular pool, initially via FFAs activating TLR2 and later when the defective TLR2 is unable to inhibit TNF-alpha-induced CTMP. These findings unveil a link between obesity and innate immunity.
Collapse
|
36
|
MacKenzie J, Koekemoer T, van de Venter M, Dealtry G, Roux S. Sutherlandia frutescens
limits the development of insulin resistance by decreasing plasma free fatty acid levels. Phytother Res 2009; 23:1609-14. [DOI: 10.1002/ptr.2830] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
37
|
Lu G, Thomas-Geevarghese A, Anuurad E, Raghavan S, Minolfo R, Ormsby B, Karmally W, El-Sadr WM, Albu J, Berglund L. Relationship of postprandial nonesterified fatty acids, adipokines, and insulin across gender in human immunodeficiency virus-positive patients undergoing highly active antiretroviral therapy. Metab Syndr Relat Disord 2009; 7:199-204. [PMID: 19320559 DOI: 10.1089/met.2008.0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Metabolic derangements are common in human immunodeficiency virus (HIV)-positive subjects undergoing antiretroviral therapy, but little is known about postprandial conditions. METHODS We investigated the relationship between leptin, adiponectin, nonesterified fatty acids (NEFA), and insulin in response to a day-long meal pattern and evaluated gender differences in HIV-positive men (n = 12) and women (n = 13) undergoing highly active antiretroviral therapy (HAART). RESULTS For both men and women, a significant decrease in postprandial NEFA levels was observed following breakfast (0.53 vs. 0.22 mmol/L, P < 0.001, baseline and at 3 hours, respectively), whereas day-long postprandial leptin and adiponectin levels showed small nonsignificant oscillations. In contrast to NEFA and adiponectin, postprandial leptin levels were significantly higher among women compared to men (P < 0.05). Postprandial NEFA levels correlated positively with fasting insulin levels (r(2) = 0.25, P = 0.016), and the postbreakfast decrease in NEFA levels correlated significantly with the postbreakfast increase in insulin levels (r(2) = 0.17, P = 0.038). No significant association between postprandial adipokines and insulin was observed. CONCLUSIONS In HAART-treated, HIV-infected men and women, levels of NEFA, but not adipokines, showed significant postprandial variation. Furthermore, food intake resulted in significant NEFA suppression in proportion to the food-stimulated insulin increase.
Collapse
Affiliation(s)
- Guijing Lu
- Department of Medicine, University of California Davis, Sacramento, California 95817, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Gorjão R, Cury-Boaventura MF, de Lima TM, Curi R. Regulation of human lymphocyte proliferation by fatty acids. Cell Biochem Funct 2007; 25:305-15. [PMID: 17195961 DOI: 10.1002/cbf.1388] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In the present study, the effect of increasing concentrations of palmitic (PA, C16:0), stearic (SA, C18:0), oleic (OA, C18:1, n-9), linoleic (LA, C18:2n-6), docosahexaenoic (DHA, C22:6 n-3) and eicosapentaenoic (EPA, C20:5 n-3) acids on lymphocyte proliferation was investigated. The maximal non-toxic concentrations of these fatty acids for human lymphocytes in vitro were determined. It was also evaluated whether these fatty acids at non-toxic concentrations affect IL-2 induced lymphocyte proliferation and cell cycle progression. OA and LA at 25 microM increased lymphocyte proliferation and at higher concentrations (75 microM and 100 microM) inhibited it. Both fatty acids promoted cell death at 200 microM concentration. PA and SA decreased lymphocyte proliferation at 50 microM and promoted cell death at concentrations of 100 microM and above. EPA and DHA decreased lymphocyte proliferation at 25 and 50 microM being toxic at 50 and 100 microM, respectively. PA, SA, DHA and EPA decreased the stimulatory effect of IL-2 on lymphocyte proliferation, increasing the percentage of cells in G1 phase and decreasing the proportion of cells in S and G2/M phases. OA and LA caused an even greater pronounced effect. The treatment with all fatty acids increased neutral lipid accumulation in the cells but the effect was more pronounced with PA and DHA. In conclusion, PA, SA, DHA and EPA decreased lymphocyte proliferation, whereas OA and LA stimulated it at non-toxic concentrations.
Collapse
Affiliation(s)
- Renata Gorjão
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| | | | | | | |
Collapse
|
39
|
Blackburn GL, Wang KA. Dietary fat reduction and breast cancer outcome: results from the Women's Intervention Nutrition Study (WINS). Am J Clin Nutr 2007; 86:s878-81. [PMID: 18265482 DOI: 10.1093/ajcn/86.3.878s] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Given that existing epidemiologic data on the correlation between dietary fat and breast cancer have been mixed, the Women's Intervention Nutrition Study was launched in 1987. This randomized clinical trial of 2437 women between the ages of 48 and 79 y with early-stage breast cancer tested the hypothesis that dietary fat reduction would increase the relapse-free survival rate. The study determined that low-fat dietary interventions can influence body weight and decrease breast cancer recurrence. Results showing a differential effect of diet on hormone-receptor-positive and -negative disease suggest that metabolic mechanisms involving insulin and insulin-like growth factor-1 may be involved in tumorigenesis. The results of the Women's Intervention Nutrition Study may therefore contribute to knowledge of the role of insulin resistance in cancer risk.
Collapse
Affiliation(s)
- George L Blackburn
- Beth Israel Deaconess Medical Center, Center for the Study of Nutrition Medicine, Boston, MA 02215, USA.
| | | |
Collapse
|
40
|
Xia Y, Wan X, Duan Q, He S, Wang X. Inhibition of protein kinase B by palmitate in the insulin signaling of HepG2 cells and the preventive effect of arachidonic acid on insulin resistance. ACTA ACUST UNITED AC 2007; 1:200-6. [PMID: 24557677 DOI: 10.1007/s11684-007-0038-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Accepted: 02/28/2007] [Indexed: 11/27/2022]
Abstract
Elevated plasma levels of free fatty acids (FFAs) may contribute to insulin resistance (IR) that is characteristic of type 2 diabetes mellitus. In this study, we investigated the effects of two fatty acids, palmitate (PA) and arachidonic acid (AA) on glycogenesis under insulin signaling in HepG2cells, a transformed hepatic carcinoma cell line. In the presence of 200 μmol of palmitate, insulin (10(-7) mol/L) stimulation of glycogenesis was inhibited, as evidenced by increased glucose in the medium and decreased intracellular glycogen. Wortmannin (WM), a specific inhibitor of PI3K, dramatically decreased the amount of intracellular glycogen in cells without PA incubation. However, glycogen in PA treated cells was not significantly changed by WM, indicating that PA may also act on PI3K. Interestingly, AA restored the effects of WM inhibition on glycogenesis in PA cells. Western blot analysis demonstrated that PA in the absence of WM increased phosphorylated glycogen synthase (inactive form of GS) and decreased phosphorylated protein kinase B (active form of PKB), causing a reduction of intracellular glycogen. AA, however, reversed the effects of PA on GS and PKB. Furthermore, inhibition of protein kinase C (PKC) by a specific inhibitor chelerythrine chloride (CC) abolished the inhibitory effect of PA on glycogen synthesis by decreasing phosphorylated GS and increasing phosphorylated PKB. However, the effect of CC in the presence of PA disappeared when AA was also present.Our results suggest that there is a disruption of the insulin signaling pathway between PKB and GS when the cells were exposed to PA, contributing to IR. PA may also interrupt the PKC signaling pathway. In contrast, AA could rescue glycogenesis impaired by PA.
Collapse
Affiliation(s)
- Yanzhi Xia
- Department of Medical Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | | | | | | | | |
Collapse
|
41
|
Kim HK, Della-Fera M, Lin J, Baile CA. Docosahexaenoic acid inhibits adipocyte differentiation and induces apoptosis in 3T3-L1 preadipocytes. J Nutr 2006; 136:2965-9. [PMID: 17116704 DOI: 10.1093/jn/136.12.2965] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Docosahexaenoic acid (DHA, C22:6), a (n-3) fatty acid in fish oil, has been shown to decrease body fat and fat accumulation in rodents. We investigated the direct effect of DHA on cell growth, differentiation, apoptosis, and lipolysis using 3T3-L1 adipocytes. Cells were treated with 25-200 mumol/L DHA containing 0.2 mmol/L alpha-tocopherol or bovine serum albumin vehicle as a control. Proliferation of preconfluent preadipocytes was not affected by the DHA treatment. When added to postconfluent preadipocytes, all concentrations of DHA inhibited differentiation-associated mitotic clonal expansion (P < 0.01). Postconfluent preadipocytes demonstrated apoptosis after 48 h with 100 mumol/L DHA and after 24 and 48 h with 200 mumol/L DHA (P < 0.01). Differentiation was examined by Oil Red O staining and glycerol-3-phosphate dehydrogenase (GPDH) activity after DHA treatment for 6 d. DHA decreased mean droplet size and percent lipid area in a dose-dependent manner (P < 0.01). GPDH activity was also decreased by DHA treatment (P < 0.01). In fully differentiated adipocytes, DHA increased basal lipolysis compared with the control (P < 0.01). These results demonstrate that DHA may exert its antiobesity effect by inhibiting differentiation to adipocytes, inducing apoptosis in postconfluent preadipocytes and promoting lipolysis.
Collapse
Affiliation(s)
- Hye-Kyeong Kim
- Department of Animal and Dairy Science, and 3Department of Foods and Nutrition, University of Georgia, Athens, GA 30602
| | | | | | | |
Collapse
|
42
|
Jacobs KA, Krauss RM, Fattor JA, Horning MA, Friedlander AL, Bauer TA, Hagobian TA, Wolfel EE, Brooks GA. Endurance training has little effect on active muscle free fatty acid, lipoprotein cholesterol, or triglyceride net balances. Am J Physiol Endocrinol Metab 2006; 291:E656-65. [PMID: 16684856 DOI: 10.1152/ajpendo.00020.2006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We evaluated the hypothesis that net leg total FFA, LDL-C, and TG uptake and HDL-C release during moderate-intensity cycling exercise would be increased following endurance training. Eight sedentary men (26 +/- 1 yr, 77.4 +/- 3.7 kg) were studied in the postprandial state during 90 min of rest and 60 min of exercise twice before (45% and 65% V(O2 peak)) and twice after 9 wk of endurance training (55% and 65% posttraining V(O2 peak)). Measurements across an exercising leg were taken to be a surrogate for active skeletal muscle. To determine limb lipid exchange, femoral arterial and venous blood samples drawn simultaneously at rest and during exercise were analyzed for total and individual FFA (e.g., palmitate, oleate), LDL-C, HDL-C, and TG concentrations, and limb blood flow was determined by thermodilution. The transition from rest to exercise resulted in a shift from net leg total FFA release (-44 +/- 16 micromol/min) to uptake (193 +/- 49 micromol/min) that was unaffected by either exercise intensity or endurance training. The relative net leg release and uptake of individual FFA closely resembled their relative abundances in the plasma with approximately 21 and 41% of net leg total FFA uptake during exercise accounted for by palmitate and oleate, respectively. Endurance training resulted in significant changes in arterial concentrations of HDL-C (49 +/- 5 vs. 52 +/- 5 mg/dl, pre vs. post) and LDL-C (82 +/- 9 vs. 76 +/- 9 mg/dl, pre vs. post), but there was no net TG or LDL-C uptake or HDL-C release across the resting or active leg before or after endurance training. In conclusion, endurance training favorably affects blood lipoprotein profiles, even in young, healthy normolipidemic men, but muscle contractions per se have little effect on net leg LDL-C, or TG uptake or HDL-C release during moderate-intensity cycling exercise. Therefore, the favorable effects of physical activity on the lipid profiles of young, healthy normolipidemic men in the postprandial state are not attributable to changes in HDL-C or LDL-C exchange across active skeletal muscle.
Collapse
MESH Headings
- Adolescent
- Adult
- Apolipoproteins/blood
- Body Composition
- Body Weight
- Body Weights and Measures
- Cholesterol, HDL/blood
- Cholesterol, HDL/metabolism
- Cholesterol, LDL/blood
- Cholesterol, LDL/metabolism
- Fatty Acids/analysis
- Fatty Acids/blood
- Fatty Acids/metabolism
- Fatty Acids, Nonesterified/analysis
- Fatty Acids, Nonesterified/blood
- Fatty Acids, Nonesterified/metabolism
- Fatty Acids, Unsaturated/analysis
- Fatty Acids, Unsaturated/blood
- Fatty Acids, Unsaturated/metabolism
- Heart Rate/physiology
- Humans
- Leg/blood supply
- Lipid Metabolism/physiology
- Lipoproteins, LDL/chemistry
- Male
- Muscle, Skeletal/metabolism
- Physical Endurance/physiology
- Pulmonary Gas Exchange/physiology
- Regional Blood Flow/physiology
- Triglycerides/blood
- Triglycerides/metabolism
Collapse
|
43
|
Gryzunov YA, Koplik EV, Smolina NV, Kopaeva LB, Dobretsov GE, Sudakov KV. Conformational properties of serum albumin binding sites in rats with different behaviour in the open field test. Stress 2006; 9:53-60. [PMID: 16753933 DOI: 10.1080/10253890600677790] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
In this study, the hypothesis was tested that behaviour of rats under the open field test condition and effects of subsequent acute stress relate to conformational properties of the main plasma carrier protein, albumin.To evaluate albumin properties, fluorescence intensity of a molecular probe CAPIDAN (N-carboxyphenylimide of dimethylaminonaphthalic acid) at N (at pH 7.4) and F (at pH 4.2) albumin conformations was measured and the N-F signal ratio was calculated. The data obtained showed that CAPIDAN fluoresces selectively from albumin in rat serum and its fluorescence is sensitive to binding of fatty acids and some other ligands to albumin. Behaviour of 78 Wistar male rats was characterized from the fraction of time taken for exploratory and ambulatory activity during the open field test. In rats not subjected to stress (n = 40), a negative correlation was revealed between open field activity and CAPIDAN N-to-F ratio for albumin (r = - 0.55, p < 0.0005). In the group of rats subjected to acute stress (immobilization plus stochastic electrocutaneous stimulation) the correlation between behavioural activity and the albumin conformational properties was significantly positive (r = 0.59, p < 0.0001): the CAPIDAN albumin fluorescence ratio increased in the highly active rats and decreased in the low-activity rats. The mechanisms of the observed effects may involve differences in nonesterified fatty acid production during stress.
Collapse
Affiliation(s)
- Yu A Gryzunov
- Department of Biophysics, Research Institute for Physical Chemical Medicine, 1-A Malaya Street, Moscow 119992, Russia.
| | | | | | | | | | | |
Collapse
|
44
|
Ajuwon KM, Spurlock ME. Palmitate activates the NF-kappaB transcription factor and induces IL-6 and TNFalpha expression in 3T3-L1 adipocytes. J Nutr 2005; 135:1841-6. [PMID: 16046706 DOI: 10.1093/jn/135.8.1841] [Citation(s) in RCA: 259] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fatty acids and their metabolites regulate gene expression and immunological pathways. Furthermore, obese individuals frequently have increased circulating fatty acid concentrations, and localized inflammation in adipose tissue may facilitate the systemic inflammation associated with the insulin resistance of obesity. Although palmitate induces inflammation (i.e., activates proinflammatory pathways) in myotubes, the effects of fatty acids on inflammatory processes in adipocytes have not been established. Therefore, we examined the potential for palmitate, laurate, and docosahexaenoic acid (DHA) to modulate inflammation in 3T3-L1 adipocytes. Palmitate, but not DHA or laurate, induced nuclear factor kappaB (NF-kappaB)-driven luciferase activity and interleukin-6 (IL-6) expression (P < 0.05). Inhibition of fatty acyl Co-A synthase (FACS) with triacsin C suppressed palmitate-induced NF-kappaB activation (P < 0.05), but caused an additive increase in palmitate-induced IL-6 expression (P < 0.05). Disrupting mitogen-activated protein kinase/Erk kinase (MEK) and protein kinase C (PKC) activity with U0126 and Bisindolylmaleimide (Bis), respectively, suppressed palmitate-induced IL-6 expression (P < 0.05), but had no effect on NF-kappaB reporter gene activity (P > 0.05). However, the phosphoinositide-3 kinase (PI3K) inhibitor, wortmannin, alone and additively with palmitate, activated the NF-kappaB reporter gene and induced IL-6 expression (P < 0.05). Palmitate also induced the mRNA expression of tumor necrosis factor alpha (TNFalpha) (P < 0.05), but the increase in mRNA abundance was not reflected in a greater protein concentration in the media (P > 0.05). These data indicate that palmitate induces inflammation in adipocytes, and that this is not a generalized effect of all SFA. Furthermore, PI3K may act constitutively to suppress inflammation. Consequently, inhibition of this enzyme may promote and exacerbate the inflammation in adipose tissue that is associated with obesity and insulin resistance.
Collapse
Affiliation(s)
- Kolapo M Ajuwon
- Department of Animal Sciences, Center for Comparative Medicine, Purdue University, West Lafayette, IN 47907-2054, USA
| | | |
Collapse
|
45
|
Wang Y, Sun Y, Qiu H. Expression of resistin mRNA in adipose tissue of rat model with polycystic ovarian syndrome and its implication. Curr Med Sci 2004; 24:621-4. [PMID: 15791860 DOI: 10.1007/bf02911374] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2004] [Indexed: 11/28/2022]
Abstract
To investigate the relationship between the insulin resistance (IR) of polycystic ovarian syndrome (PCOS) rat model induced by dehydroeplandrosterone (DHEA) and hormonal changes in the ovarium and the resistin mRNA levels in adipose tissue, 21-day-old female SD rats were divided into two groups in pairs. The rats in group 1 were injected daily (s.c.) with DHEA for up to 20 days and the rats in group 2 injected with oil at the same time. Ovarian weight, serum insulin levels and sex hormone levels in rat blood of both groups were determined. Oral glucose tolerance tests, light microscopic and electronic microscopic examination were performed. The levels of resistin mRNA in adipose tissue were measured by reverse transcription-polymerase chain reaction (RT-PCR). Our results showed that the ovarian weight in group 1 was greater than that in group 2 (P<0.05). The ovaria in group 1 showed multiple follicular cysts, The serum testeosterone and etrasdiol concentration were significantly higher in group 1 than those in group 2 (P<0.001 and P<0.05 respectively), so as the fasting serum glucose (P<0.001) and fasting serum insulin (P<0.05). The value of 1/FINS x FGC was significantly higher in group 1 than that in group 2 (P<0.001). Moreover, the resistin mRNA level of white adipose tissue in the DHEA-induced group was significantly higher than that in the control rats (P<0.05). It is concluded that the DHEA-induced PCOS rat models were similar to those of the patients with PCOS, and the IR was observed. Resistin secreted by adipose tissue may mediate IR in PCOS, and it is likely involved in the pathogenesis and development of PCOS.
Collapse
Affiliation(s)
- Yuxia Wang
- Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Wuhan 430022, China
| | | | | |
Collapse
|