1
|
Şen G, Demirci M, Evci Ş, Şenol A, Karsli MA. Effects of High-Fructose Corn Syrup Addition to Broiler Diets on Performance, Carcass Yield, Visceral Weights, Gut pH and Some Blood Parameters. Vet Med Sci 2024; 10:e70058. [PMID: 39324875 PMCID: PMC11425906 DOI: 10.1002/vms3.70058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/20/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024] Open
Abstract
BACKGROUND This study hypothesizes that using different amounts of high-fructose corn syrup (HFCS) in broiler diets may improve performance. OBJECTIVES This study aimed to determine the effects of HFCS added to broiler diets on performance, cecum pH and some biochemical parameters. METHODS A total of 120 Ross 308 chicks at the age of 0 day were divided into three main groups with four subgroups each. The groups consisted of a control (CON), low-HFCS and high-HFCS groups. The CON group received a diet containing no HFCS, the low-HFCS diet contained 50 mg/kg HFCS, and the high-HFCS diet contained 100 mg/kg HFCS. Body weight gain, feed consumption, carcass weight, visceral weight and cecum pH values were examined as performance parameters. Blood samples were taken at the end of the experiment and used to spectrophotometrically determine triglyceride, total cholesterol, high-density lipoprotein (HDL-CHO), low-density lipoprotein (LDL-CHO), glucose (GLU), creatinine (CRE), uric acid and insulin concentrations, as well as aspartate aminotransferase and alanine aminotransferase activities and oxidative stress markers. Proinflammatory cytokine levels were measured using ELISA test kits. RESULTS Feed consumption and body weight gain of the high-HFCS group decreased (p < 0.01). The feed conversion rate was negatively affected in both HFCS groups compared to the CON group (p < 0.01). The carcass yields of the groups linearly decreased with the increase of HFCS (p < 0.001). Serum LDL cholesterol (p < 0.05) and GLU (p < 0.01) levels were significantly lower in the HFCS groups than the CON. Serum CRE levels were higher in the low-HFCS group compared to the other groups (p < 0.001). The oxidative stress index (OSI) levels were lower in the low-HFCS group than the CON group (p < 0.05). CONCLUSION The addition of 100 mg/kg HFCS to broiler diets negatively affected performance parameters, but HFCS supplementation positively affected biochemical parameters. In particular, low-HFCS supplementation decreased the OSI, indicating that it could possibly reduce oxidative stress. Accordingly, HFCS could be added to broiler diets at a level of 50 mg/kg.
Collapse
Affiliation(s)
- Gökhan Şen
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary MedicineKırıkkale UniversityKırıkkaleTürkiye
| | - Mehmet Demirci
- Department of Plant and Animal Production, Delice VHSKırıkkale UniversityKırıkkaleTürkiye
| | - Şevket Evci
- Department of Plant and Animal Production, Delice VHSKırıkkale UniversityKırıkkaleTürkiye
| | - Ali Şenol
- Department of Biochemistry, Faculty of Veterinary MedicineKırıkkale UniversityKırıkkaleTürkiye
| | - Mehmet Akif Karsli
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary MedicineKırıkkale UniversityKırıkkaleTürkiye
| |
Collapse
|
2
|
Westerbeke FHM, Attaye I, Rios-Morales M, Nieuwdorp M. Glycaemic sugar metabolism and the gut microbiota: past, present and future. FEBS J 2024. [PMID: 39359099 DOI: 10.1111/febs.17293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 08/02/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Non-communicable diseases (NCDs), such as type 2 diabetes (T2D) and metabolic dysfunction-associated fatty liver disease, have reached epidemic proportions worldwide. The global increase in dietary sugar consumption, which is largely attributed to the production and widespread use of cheap alternatives such as high-fructose corn syrup, is a major driving factor of NCDs. Therefore, a comprehensive understanding of sugar metabolism and its impact on host health is imperative to rise to the challenge of reducing NCDs. Notably, fructose appears to exert more pronounced deleterious effects than glucose, as hepatic fructose metabolism induces de novo lipogenesis and insulin resistance through distinct mechanisms. Furthermore, recent studies have demonstrated an intricate relationship between sugar metabolism and the small intestinal microbiota (SIM). In contrast to the beneficial role of colonic microbiota in complex carbohydrate metabolism, sugar metabolism by the SIM appears to be less beneficial to the host as it can generate toxic metabolites. These fermentation products can serve as a substrate for fatty acid synthesis, imposing negative health effects on the host. Nevertheless, due to the challenging accessibility of the small intestine, our knowledge of the SIM and its involvement in sugar metabolism remains limited. This review presents an overview of the current knowledge in this field along with implications for future research, ultimately offering potential therapeutic avenues for addressing NCDs.
Collapse
Affiliation(s)
- Florine H M Westerbeke
- Department of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, location AMC, The Netherlands
| | - Ilias Attaye
- Department of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, location AMC, The Netherlands
| | - Melany Rios-Morales
- Department of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, location AMC, The Netherlands
| | - Max Nieuwdorp
- Department of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, location AMC, The Netherlands
| |
Collapse
|
3
|
Kim H, Jo JH, Lee HG, Park W, Lee HK, Park JE, Shin D. Inflammatory response in dairy cows caused by heat stress and biological mechanisms for maintaining homeostasis. PLoS One 2024; 19:e0300719. [PMID: 38527055 PMCID: PMC10962848 DOI: 10.1371/journal.pone.0300719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 03/04/2024] [Indexed: 03/27/2024] Open
Abstract
Climate change increases global temperatures, which is lethal to both livestock and humans. Heat stress is known as one of the various livestock stresses, and dairy cows react sensitively to high-temperature stress. We aimed to better understand the effects of heat stress on the health of dairy cows and observing biological changes. Individual cows were divided into normal (21-22 °C, 50-60% humidity) and high temperature (31-32 °C, 80-95% humidity), respectively, for 7-days. We performed metabolomic and transcriptome analyses of the blood and gut microbiomes of feces. In the high-temperature group, nine metabolites including linoleic acid and fructose were downregulated, and 154 upregulated and 72 downregulated DEGs (Differentially Expressed Genes) were identified, and eighteen microbes including Intestinimonas and Pseudoflavonifractor in genus level were significantly different from normal group. Linoleic acid and fructose have confirmed that associated with various stresses, and functional analysis of DEG and microorganisms showing significant differences confirmed that high-temperature stress is related to the inflammatory response, immune system, cellular energy mechanism, and microbial butyrate production. These biological changes were likely to withstand high-temperature stress. Immune and inflammatory responses are known to be induced by heat stress, which has been identified to maintain homeostasis through modulation at metabolome, transcriptome and microbiome levels. In these findings, heat stress condition can trigger alteration of immune system and cellular energy metabolism, which is shown as reduced metabolites, pathway enrichment and differential microbes. As results of this study did not include direct phenotypic data, we believe that additional validation is required in the future. In conclusion, high-temperature stress contributed to the reduction of metabolites, changes in gene expression patterns and composition of gut microbiota, which are thought to support dairy cows in withstanding high-temperature stress via modulating immune-related genes, and cellular energy metabolism to maintain homeostasis.
Collapse
Affiliation(s)
- Hana Kim
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea
| | - Jang-Hoon Jo
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul, Republic of Korea
| | - Hong-Gu Lee
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul, Republic of Korea
| | - Woncheoul Park
- Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Rural Development Administration, Wanju, Jeollabuk-do, Republic of Korea
| | - Hak-Kyo Lee
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea
| | - Jong-Eun Park
- Department of Animal Biotechnology, College of Applied Life Science, Jeju National University, Jeju, Jeju-do, Republic of Korea
| | - Donghyun Shin
- Agricultural Convergence Technology, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea
| |
Collapse
|
4
|
Mahmoodi M, Shateri Z, Nouri M, Vali M, Nasimi N, Sohrabi Z, Dabbaghmanesh MH, Makhtoomi M. The association between healthy beverage index and sarcopenia in Iranian older adults: a case-control study. BMC Geriatr 2024; 24:244. [PMID: 38468213 PMCID: PMC10929141 DOI: 10.1186/s12877-024-04790-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 02/07/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Sarcopenia is a progressive disease with age-related loss of skeletal muscle mass, strength, and function. No study has investigated the association between healthy beverage index (HBI) and sarcopenia in older adults. Therefore, the present study aimed to investigate the association between HBI and sarcopenia in Iranian older adults. METHODS In the present case-control study, 80 sarcopenic and 80 non-sarcopenic participants matched in sex were included. Body composition was measured using bioelectrical impedance analysis. Handgrip strength (HGS), skeletal muscle mass index (SMI), and gait speed were utilized to confirm sarcopenia. Also, a food frequency questionnaire was used to evaluate food intake. HBI score was calculated based on ten sub-components of the total beverages. Moreover, logistic regression was applied to assess the association between HBI and sarcopenia. RESULTS In the crude model, we observed no significant association between HBI and the odds of sarcopenia. Still, after adjusting the confounders, the odds of developing sarcopenia decreased significantly in the second and last tertiles (T) (T2- odds ratio (OR) = 0.04, 95% confidence interval (CI): 0.01-0.25 and T3- OR = 0.10, 95% CI: 0.01-0.60). CONCLUSIONS Our findings indicated that HBI is inversely related to the chance of sarcopenia. Therefore, to reduce the odds of sarcopenia, it is recommended to consume healthy drinks such as fruit juices and milk.
Collapse
Affiliation(s)
- Marzieh Mahmoodi
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zainab Shateri
- Department of Nutrition and Biochemistry, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Mehran Nouri
- Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mohebat Vali
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasrin Nasimi
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Sohrabi
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Maede Makhtoomi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
5
|
Del Pozo Iribarren R, Mardones L, Villagrán M, Muñoz K, Troncoso L, Mellado M, Muñoz M. Effect of various dietary fructose concentrations on the gallstone formation process in mice. NUTR HOSP 2024; 41:194-201. [PMID: 37705438 DOI: 10.20960/nh.04610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023] Open
Abstract
Introduction Background: little information is availaible on the effect of fructose on bile lipids. The first stage in the formation of gallstones corresponds to biliary cholesterol crystallization, derived from the vesicular transporters. The aim of this study was to investigate the influence of consuming diets with different fructose concentrations on serum lipids and their implications on gallstones formation. Methods: BALB/c mice divided into a control group as well as groups were treated with different fructose concentrations (10 %, 30 %, 50 % or 70 %) for different periods (1, 2 or 5 months). Blood, liver and bile samples were obtained. In bile samples, cholesterol and phospholipids levels were analyzed, and cholesterol transporters (vesicles and micelles) were separated by gel filtration chromatography. Results: treated animals showed: 1) increases in body weight similar to the control group; 2) a significant increase in plasma triglycerides only at very high fructose concentrations; 3) a significant increase in total serum cholesterol in the treatment for 1 month; 4) no variations in HDL-cholesterol; 5) a significant increase in serum glucose only at very high fructose concentrations in the second month of treatment; 6) no differences in the plasma alanine-aminotransferase activity; 7) a significant increase in liver triglyceride levels only at very high fructose concentrations; 8) no change in biliary lipid concentrations or in micellar and vesicular phospholipids. Conclusion: changes in plasma, liver and bile lipids were only observed at very high fructose concentrations diets. We conclude that fructose apparently does not alter the gallstone formation process in our experimental model.
Collapse
Affiliation(s)
| | - Lorena Mardones
- Department of Basic Science. Facultad de Medicina. Universidad Católica de la Santísima Concepción
| | - Marcelo Villagrán
- Department of Basic Science. Facultad de Medicina. Universidad Católica de la Santísima Concepción
| | - Katia Muñoz
- Department of Basic Science. Facultad de Medicina. Universidad Católica de la Santísima Concepción
| | - Luciano Troncoso
- Department of Basic Science. Facultad de Medicina. Universidad Católica de la Santísima Concepción
| | - Maximiliano Mellado
- Department of Basic Science. Facultad de Medicina. Universidad Católica de la Santísima Concepción
| | - Mirna Muñoz
- Department of Basic Science. Facultad de Medicina. Universidad Católica de la Santísima Concepción
| |
Collapse
|
6
|
Jafari A, Faghfouri AH, Nikpayam O. The effect of low-fructose diet on anthropometric and metabolic factors: A systematic review and meta-analysis. Nutr Metab Cardiovasc Dis 2024; 34:281-293. [PMID: 38176960 DOI: 10.1016/j.numecd.2023.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 01/06/2024]
Abstract
AIMS In recent decades, there has been a rise in the consumption of sugars containing fructose, raising concerns about their association with metabolic disorders and obesity. We conducted a systematic review and meta-analysis of randomized controlled trials to assess the effects of a low-fructose diet on anthropometric and metabolic variables. DATA SYNTHESIS We conducted a systematic review and meta-analysis of randomized controlled trials to assess the effects of low-fructose diets on anthropometric and metabolic factors. Relevant studies were identified by searching electronic databases such as PubMed, Scopus, and Web of Science up to January 2023. The quality of the included studies was assessed using the Cochrane risk-of-bias tool. Ten trials with varying intervention durations (ranging from 4 to 24 weeks) and a total of 750 participants were included. The analysis revealed that a low-fructose diet had no significant effect on weight but did have a significant impact on body mass index (SMD = -0.2; 95 % CI: -0.37, -0.04, P = 0.017) and waist circumference (SMD = -0.48; 95 % CI: -0.67, -0.29, P < 0.0001). Furthermore, a low-fructose diet significantly affected systolic blood pressure (SMD = -0.24; 95 % CI: -0.39, -0.09, P = 0.002), fasting blood glucose (SMD = -0.23; 95 % CI: -0.40, -0.07, P = 0.005), hemoglobin A1c (SMD = -0.62; 95 % CI: -0.93, -0.31, P < 0.0001), and triglyceride levels (SMD = -0.17; 95 % CI: -0.33, -0.02, P = 0.028). However, it had no significant effect on diastolic blood pressure, insulin levels, or homeostatic model assessment of insulin resistance. Subgroup analysis indicated that a low-fructose diet had a greater effect on healthy participants aged over 50 years. CONCLUSIONS Meta-analysis results suggest that low-fructose diets significantly reduce body mass index, waist circumference, systolic blood pressure, fasting blood glucose, hemoglobin A1c, and triglyceride levels. Additionally, the results of the current study suggest that a low-fructose diet may be more effective in healthy individuals who are older than 50 years old compared to those younger than 50 years old.
Collapse
Affiliation(s)
- Ali Jafari
- Student Research Committee, Department of Nutrition, School of Health, Golestan University of Medical Sciences, Gorgan, Iran; Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Nutritional Health Team (NHT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amir Hossein Faghfouri
- Maternal and Childhood Obesity Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Omid Nikpayam
- Department of Nutrition, School of Health, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
7
|
Liu P, Li H, Xu H, Gong J, Jiang M, Xu Z, Shi J. Aggravated hepatic fibrosis induced by phenylalanine and tyrosine was ameliorated by chitooligosaccharides supplementation. iScience 2023; 26:107754. [PMID: 37731617 PMCID: PMC10507131 DOI: 10.1016/j.isci.2023.107754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 03/21/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023] Open
Abstract
Hepatic fibrosis is a classic pathological manifestation of metabolic chronic hepatopathy. The pathological process might either gradually deteriorate into cirrhosis and ultimately liver cancer with inappropriate nutrition supply, or be slowed down by several multifunctional nutrients, alternatively. Herein, we found diet with excessive phenylalanine (Phe) and tyrosine (Tyr) exacerbated hepatic fibrosis symptoms of liver dysfunction and gut microflora dysbiosis in mice. Chitooligosaccharides (COS) could ameliorate hepatic fibrosis with the regulation of amino acid metabolism by downregulating the mTORC1 pathway, especially that of Phe and Tyr, and also with the alleviation of the dysbiosis of gut microbiota, simultaneously. Conclusively, this work presents new insight into the role of Phe and Tyr in the pathologic process of hepatic fibrosis, while revealing the effectiveness and molecular mechanism of COS in improving hepatic fibrosis from the perspective of metabolites.
Collapse
Affiliation(s)
- Peng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai 201403, China
| | - Heng Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Hongyu Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Jinsong Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Min Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhenghong Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Jinsong Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
8
|
Bragança MLBM, Coelho CCNDS, de Oliveira BR, Bogea EG, Confortin SC, da Silva AAM. The Frequency of Daily Consumption of Sugar-Sweetened Beverages Is Associated with Reduced Muscle Mass Index in Adolescents. Nutrients 2022; 14:4917. [PMID: 36432603 PMCID: PMC9699446 DOI: 10.3390/nu14224917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/22/2022] Open
Abstract
The consumption of sugar-sweetened beverages (SSBs) has increased in recent years and has become a cause of concern because these beverages pose a risk to human health. Thus, we evaluated the association between SSBs consumption and muscle mass index (MMI) in adolescents. This cross-sectional study evaluated 2393 adolescents (18/19-years-old). Consumption of SSBs was analyzed based on the frequency of daily consumption and energy contribution categorized into tertiles. MMI was examined using the ratio of muscle mass (kilograms) to height (meters squared). The highest tertile of the frequency of daily SSB intake was associated with a reduced MMI in men (β = -0.31; 95%CI: -0.60, -0.01) and women (β = -0.24; 95%CI: -0.45, -0.02). However, these associations were not observed after adjusting for sugar contained in SSBs in men (β = -0.26; 95%CI: -0.69, 0.17) and for carbohydrate, lipid, and protein intake in women (β = -0.19; 95%CI: -0.42, 0.04). The highest energy contribution tertile of SSBs was associated with a reduced MMI in male adolescents (β = -0.34; 95%CI: -0.64, -0.04). This association was not observed after adjusting for intake of sugar in SSBs (β = -0.38; 95%CI: -0.75, 0.01). The frequency of daily consumption of SSBs was considered a risk factor for decreased MMI in both sexes, and the energy contribution of these drinks was a risk factor for MMI reduced only in male adolescents.
Collapse
|
9
|
Turck D, Bohn T, Castenmiller J, de Henauw S, Hirsch‐Ernst KI, Knutsen HK, Maciuk A, Mangelsdorf I, McArdle HJ, Naska A, Peláez C, Pentieva K, Siani A, Thies F, Tsabouri S, Adan R, Emmett P, Galli C, Kersting M, Moynihan P, Tappy L, Ciccolallo L, de Sesmaisons‐Lecarré A, Fabiani L, Horvath Z, Martino L, Muñoz Guajardo I, Valtueña Martínez S, Vinceti M. Tolerable upper intake level for dietary sugars. EFSA J 2022; 20:e07074. [PMID: 35251356 PMCID: PMC8884083 DOI: 10.2903/j.efsa.2022.7074] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Following a request from five European Nordic countries, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was tasked to provide scientific advice on a tolerable upper intake level (UL) or a safe level of intake for dietary (total/added/free) sugars based on available data on chronic metabolic diseases, pregnancy-related endpoints and dental caries. Specific sugar types (fructose) and sources of sugars were also addressed. The intake of dietary sugars is a well-established hazard in relation to dental caries in humans. Based on a systematic review of the literature, prospective cohort studies do not support a positive relationship between the intake of dietary sugars, in isocaloric exchange with other macronutrients, and any of the chronic metabolic diseases or pregnancy-related endpoints assessed. Based on randomised control trials on surrogate disease endpoints, there is evidence for a positive and causal relationship between the intake of added/free sugars and risk of some chronic metabolic diseases: The level of certainty is moderate for obesity and dyslipidaemia (> 50-75% probability), low for non-alcoholic fatty liver disease and type 2 diabetes (> 15-50% probability) and very low for hypertension (0-15% probability). Health effects of added vs. free sugars could not be compared. A level of sugars intake at which the risk of dental caries/chronic metabolic diseases is not increased could not be identified over the range of observed intakes, and thus, a UL or a safe level of intake could not be set. Based on available data and related uncertainties, the intake of added and free sugars should be as low as possible in the context of a nutritionally adequate diet. Decreasing the intake of added and free sugars would decrease the intake of total sugars to a similar extent. This opinion can assist EU Member States in setting national goals/recommendations.
Collapse
|
10
|
Zambon Azevedo V, Silaghi CA, Maurel T, Silaghi H, Ratziu V, Pais R. Impact of Sarcopenia on the Severity of the Liver Damage in Patients With Non-alcoholic Fatty Liver Disease. Front Nutr 2022; 8:774030. [PMID: 35111794 PMCID: PMC8802760 DOI: 10.3389/fnut.2021.774030] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
An extensive body of the literature shows a strong interrelationship between the pathogenic pathways of non-alcoholic fatty liver disease (NAFLD) and sarcopenia through the muscle-liver-adipose tissue axis. NAFLD is one of the leading causes of chronic liver diseases (CLD) affecting more than one-quarter of the general population worldwide. The disease severity spectrum ranges from simple steatosis to non-alcoholic steatohepatitis (NASH), cirrhosis, and its complications: end-stage chronic liver disease and hepatocellular carcinoma. Sarcopenia, defined as a progressive loss of the skeletal muscle mass, reduces physical performances, is associated with metabolic dysfunction and, possibly, has a causative role in NAFLD pathogenesis. Muscle mass is a key determinant of the whole-body insulin-mediated glucose metabolism and impacts fatty liver oxidation and energy homeostasis. These mechanisms drive the accumulation of ectopic fat both in the liver (steatosis, fatty liver) and in the muscle (myosteatosis). Myosteatosis rather than the muscle mass per se, seems to be closely associated with the severity of the liver injury. Sarcopenic obesity is a recently described entity which associates both sarcopenia and obesity and may trigger worse clinical outcomes including hepatic fibrosis progression and musculoskeletal disabilities. Furthermore, the muscle-liver-adipose tissue axis has a pivotal role in changes of the body composition, resulting in a distinct clinical phenotype that enables the identification of the "sarcopenic NAFLD phenotype." This review aims to bring some light into the complex relationship between sarcopenia and NAFLD and critically discuss the key mechanisms linking NAFLD to sarcopenia, as well as some of the clinical consequences associated with the coexistence of these two entities: the impact of body composition phenotypes on muscle morphology, the concept of sarcopenic obesity, the relationship between sarcopenia and the severity of the liver damage and finally, the future directions and the existing gaps in the knowledge.
Collapse
Affiliation(s)
- Vittoria Zambon Azevedo
- Doctoral School Physiology, Physiopathology and Therapeutics 394, Sorbonne Université, Paris, France
- Centre de Recherche de Cordeliers, INSERM UMRS 1138, Paris, France
| | - Cristina Alina Silaghi
- Department of Endocrinology, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Thomas Maurel
- Institute of Cardiometabolism and Nutrition, Paris, France
- Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Horatiu Silaghi
- Department of Surgery V, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Vlad Ratziu
- Centre de Recherche de Cordeliers, INSERM UMRS 1138, Paris, France
- Institute of Cardiometabolism and Nutrition, Paris, France
- Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
- Sorbonne Université, Paris, France
| | - Raluca Pais
- Institute of Cardiometabolism and Nutrition, Paris, France
- Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
- Sorbonne Université, Paris, France
- Centre de Recherche Saint Antoine, INSERM UMRS 938, Paris, France
| |
Collapse
|
11
|
Alam YH, Kim R, Jang C. Metabolism and Health Impacts of Dietary Sugars. J Lipid Atheroscler 2022; 11:20-38. [PMID: 35118020 PMCID: PMC8792817 DOI: 10.12997/jla.2022.11.1.20] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 11/23/2022] Open
Abstract
Consumption of excessive amounts of added sugars and their effects on human health has been a major concern in the last several decades. Epidemiological data suggest that the incidence of metabolic disorders, such as obesity, nonalcoholic fatty liver disease, cardiovascular disease and diabetes, has increased due to chronic surplus consumption of these sugars. While many of these sugars have been isolated and studied for centuries, their health impacts and exact underlying mechanisms are still unclear. In this review, we discuss the pathophysiological role of 6 major simple sugars present in the human diet and the biochemical and molecular pathways related to their metabolism by different organs and gut microbiota, with a focus on the most recent investigations.
Collapse
Affiliation(s)
- Yasmine Henna Alam
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Raymond Kim
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Complex Biological Systems, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
12
|
Cline PM, Tsai TC, Lents CA, Stelzleni AM, Dove CR, Azain M. Interaction of dietary carbohydrate and fat on glucose metabolism in growing pigs. Domest Anim Endocrinol 2022; 78:106655. [PMID: 34478942 DOI: 10.1016/j.domaniend.2021.106655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 11/21/2022]
Abstract
Increased consumption of fructose has been suggested to be a contributing cause of the increased rates of obesity in humans. Rodent studies have shown an increase in de novo lipogenesis and decreased insulin sensitivity in response to feeding high levels of fructose, but it is unclear if these effects occur in the same progression in humans. We aimed to develop a swine model for studying changes in glucose metabolism and insulin resistance resulting from dietary carbohydrate alone or in combination with high dietary fat. Two experiments were conducted to determine if the source of dietary carbohydrate, with or without added fat, had an effect on body weight gain, glucose metabolism, or insulin response in growing pigs. In the first experiment, pigs (24 barrows, initial body weight 28 kg) were fed one of 4 diets in which the source of carbohydrate was varied: 1) 20% starch; 2) 10% glucose + 10% starch; 3) 10% fructose + 10% starch; and 4) 20% fructose for 9 weeks. There were no differences in growth rate or glucose clearance observed. Experiment 2 was conducted as a 3 × 2 factorial with the main effects of carbohydrate source (20% starch, glucose, or fructose) and added fat level (0 vs 10%). Pigs (24 barrows, initial body weight 71 kg) were fed one of 6 experimental diets for 9 weeks. Compared to the other dietary treatments, pigs fed fructose with high fat had an elevated glucose area under the curve during the GTT (Carbohydrate x Fat interaction, P < 0.01). This same group had a lower insulin response (Carbohydrate x Fat, P < 0.05). This work demonstrates that pigs can be a viable model to assess the long-term effects of dietary carbohydrates on metabolism and body composition. Studies of longer duration are needed to determine if these changes are indicative of insulin resistance.
Collapse
Affiliation(s)
- P M Cline
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | - T C Tsai
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | - C A Lents
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | - A M Stelzleni
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | - C R Dove
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | - M Azain
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
13
|
Chronological Appearance of Endocrine and Metabolic Dysfunctions Induced by an Unhealthy Diet in Rats. Medicina (B Aires) 2021; 58:medicina58010008. [PMID: 35056315 PMCID: PMC8781186 DOI: 10.3390/medicina58010008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/10/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022] Open
Abstract
Background and Objectives: The work was aimed to determine the chronological sequence of events triggered by a fructose-rich diet (FRD) (10% w/v in the drinking water) in normal rats. Material and Methods: Serum parameters, liver and islet markers of metabolism, inflammation and oxidative stress were determined weekly for 21 days. Results: At the end of the first week, rats fed with a FRD showed an early increase in circulating triglycerides, fat liver deposit, and enzymatic activity of liver glucokinase and glucose-6-phosphate dehydrogenase (G6P-DH). After two weeks of such a diet, liver glucose-6-phosphatase (G6Pase) activity and liver oxidative stress markers were significantly increased. Liver sterol regulatory element-binding protein 1c (SREBP1c) mRNA also increased in the second week while their target genes fatty acid synthase (FAS) and glycerol-3-phosphate dehydrogenase (GPAT) enhanced their expression at the third week. Liver and pancreatic inflammation markers also enhanced their gene expression in the last week of treatment. Whereas both control and FRD rats remained normoglycemic throughout the entire period of treatment, blood insulin levels were significantly higher in FRD animals at the third week, thereby evidencing an insulin-resistant state (higher HOMA-IR, HOMA-B and HIS indexes). Pancreatic islets isolated from rats fed with a FRD for 3 weeks also increased glucose-induced insulin secretion (8.3 and 16.7 mM). Conclusions: FRD induces asynchronous changes involving early hypertriglyceridemia together with intrahepatic lipid deposit and metabolic disturbances from week one, followed by enhanced liver oxidative stress, liver and pancreas inflammation, pancreatic β-cell dysfunction, and peripheral insulin-resistance registered at the third week. Knowledge of time-course adaptation mechanisms involved in our rat model could be helpful in developing appropriate strategies to prevent the progression from prediabetes to Type 2 diabetes (T2D) triggered by unhealthy diets.
Collapse
|
14
|
Cervantes-Valencia ME, González-Villalva A, Cano-Gutiérrez G, Albarrán-Alonso JC, Fortoul TI. Effects of Vanadium Inhalation and Sweetened Beverage Ingestion in Mice: Morphological and Biochemical Changes in the Liver. Int J Toxicol 2021; 40:466-474. [PMID: 34284608 DOI: 10.1177/10915818211030858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The aim of this report was to evaluate the morphological and biochemical changes in the liver by the inhalation of vanadium and consumption of sweetened beverages in a subchronic murine model. Forty CD-1 male mice were randomly divided into four groups: control, vanadium (V), sucrose 30% (S), and vanadium-sucrose (V + S). V was inhaled (1.4 mg/m3) for 1h, twice/week; 30% sucrose solution was given orally ad libitum. Blood samples were obtained for AST, ALT, and LDH determination. Liver samples were processed for histological and oxidative stress immunohistochemical evaluation with 4-hydroxynonenal at weeks 4 and 8 of exposure. Regarding liver function tests, a statistically significant increase (P < 0.05) was observed in groups V, S, and V + S at weeks 4 and 8 compared to the control group. A greater number of hepatocytes with meganuclei and binuclei were observed in V and V + S at week 8 compared to the other groups. Steatosis and regenerative changes were more extensive in the eighth week V + S group. 4-Hydroxynonenal immunoreactivity increased in the V + S group at both exposure times compared to the other groups; however, the increment was more evident in the V + S group at week 4 compared to the V + S group at week 8. An increase in De Ritis ratio (>1) was noticed in experimental groups at weeks 4 and 8. Findings demonstrate that in the liver, V, S, and V + S induced oxidative stress and regenerative changes that increased with the length of exposure. Results support possible potentiation of liver damage in areas with high air pollution and high-sweetened beverage consumption.
Collapse
Affiliation(s)
- María Eugenia Cervantes-Valencia
- Departamento de Biología Celular y Tisular, Facultad de Medicina, 61589Universidad Nacional Autonoma de México (UNAM), Mexico City, Mexico
| | - Adriana González-Villalva
- Departamento de Biología Celular y Tisular, Facultad de Medicina, 61589Universidad Nacional Autonoma de México (UNAM), Mexico City, Mexico
| | - Gumaro Cano-Gutiérrez
- Departamento de Biología Celular y Tisular, Facultad de Medicina, 61589Universidad Nacional Autonoma de México (UNAM), Mexico City, Mexico
| | - Juan Carlos Albarrán-Alonso
- Departamento de Biología Celular y Tisular, Facultad de Medicina, 61589Universidad Nacional Autonoma de México (UNAM), Mexico City, Mexico
| | - Teresa Imelda Fortoul
- Departamento de Biología Celular y Tisular, Facultad de Medicina, 61589Universidad Nacional Autonoma de México (UNAM), Mexico City, Mexico
| |
Collapse
|
15
|
Jiang H, Lin Q, Ma L, Luo S, Jiang X, Fang J, Lu Z. Fructose and fructose kinase in cancer and other pathologies. J Genet Genomics 2021; 48:531-539. [PMID: 34326012 DOI: 10.1016/j.jgg.2021.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022]
Abstract
Fructose metabolism and fructose kinase KHK-C/A are key factors in the development of lipid oversynthesis-promoted metabolic disorders and cancer. Here, we summarize and discuss the current knowledge about the specific features of fructose metabolism and the distinct roles of KHK-C and KHK-A in metabolic liver diseases and their relevant metabolic disorders and cancer, and we highlight the specific protein kinase activity of KHK-A in tumor development. In addition, different approaches that have been used to inhibit KHK and the exploration of KHK inhibitors in clinical treatment are introduced.
Collapse
Affiliation(s)
- Hongfei Jiang
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao 266061, China
| | - Qian Lin
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao 266061, China
| | - Leina Ma
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao 266061, China
| | - Shudi Luo
- Zhejiang University Cancer Center, Hangzhou 310029, China
| | - Xiaoming Jiang
- Zhejiang University Cancer Center, Hangzhou 310029, China
| | - Jing Fang
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao 266061, China.
| | - Zhimin Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China; Zhejiang University Cancer Center, Hangzhou 310029, China.
| |
Collapse
|
16
|
Adaptive and maladaptive roles for ChREBP in the liver and pancreatic islets. J Biol Chem 2021; 296:100623. [PMID: 33812993 PMCID: PMC8102921 DOI: 10.1016/j.jbc.2021.100623] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/14/2022] Open
Abstract
Excessive sugar consumption is a contributor to the worldwide epidemic of cardiometabolic disease. Understanding mechanisms by which sugar is sensed and regulates metabolic processes may provide new opportunities to prevent and treat these epidemics. Carbohydrate Responsive-Element Binding Protein (ChREBP) is a sugar-sensing transcription factor that mediates genomic responses to changes in carbohydrate abundance in key metabolic tissues. Carbohydrate metabolites activate the canonical form of ChREBP, ChREBP-alpha, which stimulates production of a potent, constitutively active ChREBP isoform called ChREBP-beta. Carbohydrate metabolites and other metabolic signals may also regulate ChREBP activity via posttranslational modifications including phosphorylation, acetylation, and O-GlcNAcylation that can affect ChREBP’s cellular localization, stability, binding to cofactors, and transcriptional activity. In this review, we discuss mechanisms regulating ChREBP activity and highlight phenotypes and controversies in ChREBP gain- and loss-of-function genetic rodent models focused on the liver and pancreatic islets.
Collapse
|
17
|
Kim M, Kim I. Ovariectomy, but not orchiectomy, exacerbates metabolic syndrome after maternal high-fructose intake in adult offspring. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2021; 25:39-49. [PMID: 33361536 PMCID: PMC7756538 DOI: 10.4196/kjpp.2021.25.1.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/30/2020] [Accepted: 11/17/2020] [Indexed: 11/23/2022]
Abstract
High fructose diet is associated with the global metabolic syndrome (MtS) pandemic. MtS develops in early life, depending on prenatal and postnatal nutritional status. We hypothesized that ovariectomy increases the chances of developing MtS in adult offspring following high fructose intake by the mother. Pregnant C57BL/6J mouse dams drank water with or without 20% fructose during pregnancy and lactation. After weaning, the pups were fed regular chow. The offspring were evaluated until they were 7 months of age after the mice in each group, both sexes, were gonadectomized at 4 weeks of age. The offspring (both sexes) of the dams who had high fructose intake developed MtS. In the offspring of dams who drank tap water, orchiectomy increased the body weight gain and body fat accumulation, while ovariectomy increased the body fat accumulation as compared to the sham controls. In the offspring of dams with high fructose intake, orchiectomy decreased the body weight gain, body fat accumulation, visceral adiposity, and glucose intolerance, while ovariectomy exacerbated all of them as compared to the sham operations. These data indicate that ovariectomy encourages the development of MtS in adult offspring after maternal high fructose intake, while orchiectomy prevents the development of MtS. The sex difference indicates that male and female sex hormones play contradictory roles in the development of MtS.
Collapse
Affiliation(s)
- Mina Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu 41944, Korea
| | - Inkyeom Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu 41944, Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
18
|
Tappy L. Metabolism of sugars: A window to the regulation of glucose and lipid homeostasis by splanchnic organs. Clin Nutr 2020; 40:1691-1698. [PMID: 33413911 DOI: 10.1016/j.clnu.2020.12.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/05/2020] [Accepted: 12/16/2020] [Indexed: 01/22/2023]
Abstract
BACKGROUND &AIMS Dietary sugars are absorbed in the hepatic portal circulation as glucose, fructose, or galactose. The gut and liver are required to process fructose and galactose into glucose, lactate, and fatty acids. A high sugar intake may favor the development of cardio-metabolic diseases by inducing Insulin resistance and increased concentrations of triglyceride-rich lipoproteins. METHODS A narrative review of the literature regarding the metabolic effects of fructose-containing sugars. RESULTS Sugars' metabolic effects differ from those of starch mainly due to the fructose component of sucrose. Fructose is metabolized in a set of fructolytic cells, which comprise small bowel enterocytes, hepatocytes, and kidney proximal tubule cells. Compared to glucose, fructose is readily metabolized in an insulin-independent way, even in subjects with diabetes mellitus, and produces minor increases in glycemia. It can be efficiently used for energy production, including during exercise. Unlike commonly thought, fructose when ingested in small amounts is mainly metabolized to glucose and organic acids in the gut, and this organ may thus shield the liver from potentially deleterious effects. CONCLUSIONS The metabolic functions of splanchnic organs must be performed with homeostatic constraints to avoid exaggerated blood glucose and lipid concentrations, and thus to prevent cellular damages leading to non-communicable diseases. Excess fructose intake can impair insulin-induced suppression of glucose production, stimulate de novo lipogenesis, and increase intrahepatic and blood triglyceride concentrations. With chronically high fructose intake, enterocyte can switch to lipid synthesis and accumulation of triglyceride, possibly causing an enterocyte dysfunction.
Collapse
Affiliation(s)
- Luc Tappy
- Faculty of Biology and Medicine, University of Lausanne, Switzerland, Ch. d'Au Bosson 7, CH-1053 Cugy, Switzerland.
| |
Collapse
|
19
|
Doing nutrition research without knowing it: a Monsieur Jourdain's travel through sugar metabolism. Eur J Clin Nutr 2020; 75:575-581. [PMID: 32704099 DOI: 10.1038/s41430-020-0699-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/18/2020] [Accepted: 07/14/2020] [Indexed: 11/08/2022]
|
20
|
Nathanael J, Harsono HCA, Wibawa AD, Suardana P, Vianney YM, Dwi Putra SE. The genetic basis of high-carbohydrate and high-monosodium glutamate diet related to the increase of likelihood of type 2 diabetes mellitus: a review. Endocrine 2020; 69:18-29. [PMID: 32172486 DOI: 10.1007/s12020-020-02256-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/03/2020] [Indexed: 12/27/2022]
Abstract
Diabetes is one of the most common metabolic diseases. Aside from the genetic factor, previous studies stated that other factors such as environment, lifestyle, and paternal-maternal condition play critical roles in diabetes through DNA methylation in specific areas of the genome. One of diabetic cases is caused by insulin resistance and changing the homeostasis of blood glucose control so glucose concentration stood beyond normal rate (hyperglycemia). High fat diet has been frequently studied and linked to triggering diabetes. However, most Asians consume rice (or food with high carbohydrate) and food with monosodium glutamate (MSG). This habit could lead to pathophysiology of type 2 diabetes mellitus (T2D). Previous studies showed that high-carbohydrate or high-MSG diet could change gene expression or modify protein activity in body metabolism. This imbalanced metabolism can lead to pleiotropic effects of diabetes mellitus. In this study, the authors have attempted to relate various changes in genes expression or protein activity to the high-carbohydrate and high-MSG-induced diabetes. The authors have also tried to relate several genes that contribute to pathophysiology of T2D and proposed several ideas of genes as markers and target for curing people with T2D. These are done by investigating altered activities of various genes that cause or are caused by diabetes. These genes are selected based on their roles in pathophysiology of T2D.
Collapse
Affiliation(s)
- Joshua Nathanael
- Department of Biology, Faculty of Biotechnology, University of Surabaya, Raya Kalirungkut, Surabaya, East Java, 60292, Indonesia
| | - Hans Cristian Adhinatya Harsono
- Department of Biology, Faculty of Biotechnology, University of Surabaya, Raya Kalirungkut, Surabaya, East Java, 60292, Indonesia
| | - Aubrey Druce Wibawa
- Department of Biology, Faculty of Biotechnology, University of Surabaya, Raya Kalirungkut, Surabaya, East Java, 60292, Indonesia
| | - Putu Suardana
- Department of Biology, Faculty of Biotechnology, University of Surabaya, Raya Kalirungkut, Surabaya, East Java, 60292, Indonesia
| | - Yoanes Maria Vianney
- Department of Biology, Faculty of Biotechnology, University of Surabaya, Raya Kalirungkut, Surabaya, East Java, 60292, Indonesia
| | - Sulistyo Emantoko Dwi Putra
- Department of Biology, Faculty of Biotechnology, University of Surabaya, Raya Kalirungkut, Surabaya, East Java, 60292, Indonesia.
| |
Collapse
|
21
|
Kim M, Do GY, Kim I. Activation of the renin-angiotensin system in high fructose-induced metabolic syndrome. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2020; 24:319-328. [PMID: 32587126 PMCID: PMC7317175 DOI: 10.4196/kjpp.2020.24.4.319] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 01/02/2023]
Abstract
High fructose intake induces hyperglycemia and hypertension. However, the mechanism by which fructose induces metabolic syndrome is largely unknown. We hypothesized that high fructose intake induces activation of the renin-angiotensin system (RAS), resulting in hypertension and metabolic syndrome. We provided 11-week-old Sprague–Dawley rats with drinking water, with or without 20% fructose, for two weeks. We measured serum renin, angiotensin II (Ang II), and aldosterone (Aldo) using ELISA kits. The expression of RAS genes was determined by quantitative reverse transcription polymerase chain reaction. High fructose intake increased body weight and water retention, regardless of food intake or urine volume. After two weeks, fructose intake induced glucose intolerance and hypertension. High fructose intake increased serum renin, Ang II, triglyceride, and cholesterol levels, but not Aldo levels. High fructose intake increased the expression of angiotensinogen in the liver; angiotensin-converting enzyme in the lungs; and renin, angiotensin II type 1a receptor (AT1aR), and angiotensin II type 1b receptor (AT1bR) in the kidneys. However, expression of AT1aR and AT1bR in the adrenal glands did not increase in rats given fructose. Taken together, these results indicate that high fructose intake induces activation of RAS, resulting in hypertension and metabolic syndrome.
Collapse
Affiliation(s)
- Mina Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Korea.,Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Korea.,Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Ga Young Do
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Inkyeom Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Korea.,Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Korea.,Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
22
|
Obesity and adiposity: the culprit of dietary protein efficacy. Clin Sci (Lond) 2020; 134:389-401. [DOI: 10.1042/cs20190583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/24/2020] [Accepted: 02/10/2020] [Indexed: 12/14/2022]
Abstract
AbstractObesity and increased body adiposity have been alarmingly increasing over the past decades and have been linked to a rise in food intake. Many dietary restrictive approaches aiming at reducing weight have resulted in contradictory results. Additionally, some policies to reduce sugar or fat intake were not able to decrease the surge of obesity. This suggests that food intake is controlled by a physiological mechanism and that any behavioural change only leads to a short-term success. Several hypotheses have been postulated, and many of them have been rejected due to some limitations and exceptions. The present review aims at presenting a new theory behind the regulation of energy intake, therefore providing an eye-opening field for energy balance and a potential strategy for obesity management.
Collapse
|
23
|
Merino B, Fernández-Díaz CM, Cózar-Castellano I, Perdomo G. Intestinal Fructose and Glucose Metabolism in Health and Disease. Nutrients 2019; 12:E94. [PMID: 31905727 PMCID: PMC7019254 DOI: 10.3390/nu12010094] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/26/2019] [Accepted: 12/26/2019] [Indexed: 02/06/2023] Open
Abstract
The worldwide epidemics of obesity and diabetes have been linked to increased sugar consumption in humans. Here, we review fructose and glucose metabolism, as well as potential molecular mechanisms by which excessive sugar consumption is associated to metabolic diseases and insulin resistance in humans. To this end, we focus on understanding molecular and cellular mechanisms of fructose and glucose transport and sensing in the intestine, the intracellular signaling effects of dietary sugar metabolism, and its impact on glucose homeostasis in health and disease. Finally, the peripheral and central effects of dietary sugars on the gut-brain axis will be reviewed.
Collapse
Affiliation(s)
- Beatriz Merino
- Instituto de Biología y Genética Molecular-IBGM (CSIC-Universidad de Valladolid), Valladolid 47003, Spain; (B.M.); (C.M.F.-D.); (G.P.)
| | - Cristina M. Fernández-Díaz
- Instituto de Biología y Genética Molecular-IBGM (CSIC-Universidad de Valladolid), Valladolid 47003, Spain; (B.M.); (C.M.F.-D.); (G.P.)
| | - Irene Cózar-Castellano
- Instituto de Biología y Genética Molecular-IBGM (CSIC-Universidad de Valladolid), Valladolid 47003, Spain; (B.M.); (C.M.F.-D.); (G.P.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid 28029, Spain
| | - German Perdomo
- Instituto de Biología y Genética Molecular-IBGM (CSIC-Universidad de Valladolid), Valladolid 47003, Spain; (B.M.); (C.M.F.-D.); (G.P.)
- Departamento de Ciencias de la Salud, Universidad de Burgos, Burgos 09001, Spain
| |
Collapse
|
24
|
Sun S, Hanzawa F, Kim D, Umeki M, Nakajima S, Sakai K, Ikeda S, Mochizuki S, Oda H. Circadian rhythm-dependent induction of hepatic lipogenic gene expression in rats fed a high-sucrose diet. J Biol Chem 2019; 294:15206-15217. [PMID: 31481463 PMCID: PMC6802514 DOI: 10.1074/jbc.ra119.010328] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/23/2019] [Indexed: 12/30/2022] Open
Abstract
Metabolic syndrome has become a global health challenge and was recently reported to be positively correlated with increased sucrose consumption. Mechanistic analyses of excess sucrose-induced progression of metabolic syndrome have been focused mainly on abnormal hepatic lipogenesis, and the exact contribution of excess sucrose to metabolic disorders remains controversial. Considering that carbohydrate and lipid metabolisms exhibit clear circadian rhythms, here we investigated the possible contribution of diurnal oscillations to responses of hepatic lipid metabolism to excess sucrose. We found that excess sucrose dose-dependently promotes fatty liver and hyperlipidemia in in rats fed a high-sucrose diet (HSD). We observed that excess sucrose enhances the oscillation amplitudes of the expression of clock genes along with the levels of hepatic lipid and carbohydrate metabolism-related mRNAs that increase lipogenesis. We did not observe similar changes in the levels of the transcription factors regulating the expression of these genes. This suggested that the excess sucrose-induced, circadian rhythm-dependent amplification of lipogenesis is post-transcriptionally regulated via the stability of metabolic gene transcripts. Of note, our findings also provide evidence that fructose causes some of the HSD-induced, circadian rhythm-dependent alterations in lipogenic gene expression. Our discovery of HSD-induced circadian rhythm-dependent alterations in lipogenesis at the post-transcriptional level may inform future studies investigating the complex relationships among sucrose uptake, circadian rhythm, and metabolic enzyme expression. Our findings could contribute to the design of chrono-nutritional interventions to prevent or manage the development of fatty liver and hyperlipidemia in sucrose-induced metabolic syndrome.
Collapse
Affiliation(s)
- Shumin Sun
- Laboratory of Nutritional Biochemistry, Nagoya University, Nagoya 464-8601, Japan
| | - Fumiaki Hanzawa
- Department of Nutritional Science, Nagoya University of Arts and Sciences, Nisshin 470-0196, Japan
| | - Daeun Kim
- Laboratory of Nutritional Biochemistry, Nagoya University, Nagoya 464-8601, Japan
| | - Miki Umeki
- Faculty of Food Science and Nutrition, Beppu University, Beppu 874-8501, Japan
| | - Syunsuke Nakajima
- Laboratory of Nutritional Biochemistry, Nagoya University, Nagoya 464-8601, Japan
| | - Kumiko Sakai
- Faculty of Medicine, Oita University, Yufu 879-5593, Japan
| | - Saiko Ikeda
- Department of Nutritional Science, Nagoya University of Arts and Sciences, Nisshin 470-0196, Japan
| | | | - Hiroaki Oda
- Laboratory of Nutritional Biochemistry, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
25
|
Tappy L, Rosset R. Health outcomes of a high fructose intake: the importance of physical activity. J Physiol 2019; 597:3561-3571. [PMID: 31116420 PMCID: PMC6851848 DOI: 10.1113/jp278246] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 05/08/2019] [Indexed: 12/27/2022] Open
Abstract
Fructose metabolism is generally held to occur essentially in cells of the small bowel, the liver, and the kidneys expressing fructolytic enzymes (fructokinase, aldolase B and a triokinase). In these cells, fructose uptake and fructolysis are unregulated processes, resulting in the generation of intracellular triose phosphates proportionate to fructose intake. Triose phosphates are then processed into lactate, glucose and fatty acids to serve as metabolic substrates in other cells of the body. With small oral loads, fructose is mainly metabolized in the small bowel, while with larger loads fructose reaches the portal circulation and is largely extracted by the liver. A small portion, however, escapes liver extraction and is metabolized either in the kidneys or in other tissues through yet unspecified pathways. In sedentary subjects, consumption of a fructose-rich diet for several days stimulates hepatic de novo lipogenesis, increases intrahepatic fat and blood triglyceride concentrations, and impairs insulin effects on hepatic glucose production. All these effects can be prevented when high fructose intake is associated with increased levels of physical activity. There is also evidence that, during exercise, fructose carbons are efficiently transferred to skeletal muscle as glucose and lactate to be used for energy production. Glucose and lactate formed from fructose can also contribute to the re-synthesis of muscle glycogen after exercise. We therefore propose that the deleterious health effects of fructose are tightly related to an imbalance between fructose energy intake on one hand, and whole-body energy output related to a low physical activity on the other hand.
Collapse
Affiliation(s)
- Luc Tappy
- Department of Physiology, University of Lausanne, Lausanne, Switzerland.,Cardiometabolic Center, Broye Hospital, Estavayer-le-lac, Switzerland
| | - Robin Rosset
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
26
|
Kraft G, Vrba A, Scott M, Allen E, Edgerton DS, Williams PE, Vafai SB, Azamian BR, Cherrington AD. Sympathetic Denervation of the Common Hepatic Artery Lessens Glucose Intolerance in the Fat- and Fructose-Fed Dog. Diabetes 2019; 68:1143-1155. [PMID: 30936143 PMCID: PMC6610023 DOI: 10.2337/db18-1209] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/17/2019] [Indexed: 12/20/2022]
Abstract
This study assessed the effectiveness of surgical sympathetic denervation of the common hepatic artery (CHADN) in improving glucose tolerance. CHADN eliminated norepinephrine content in the liver and partially decreased it in the pancreas and the upper gut. We assessed oral glucose tolerance at baseline and after 4 weeks of high-fat high-fructose (HFHF) feeding. Dogs were then randomized to sham surgery (SHAM) (n = 9) or CHADN surgery (n = 11) and retested 2.5 or 3.5 weeks later while still on the HFHF diet. CHADN improved glucose tolerance by ∼60% in part because of enhanced insulin secretion, as indicated by an increase in the insulinogenic index. In a subset of dogs (SHAM, n = 5; CHADN, n = 6), a hyperinsulinemic-hyperglycemic clamp was used to assess whether CHADN could improve hepatic glucose metabolism independent of a change in insulin release. CHADN reduced the diet-induced defect in net hepatic glucose balance by 37%. In another subset of dogs (SHAM, n = 4; CHADN, n = 5) the HFHF diet was continued for 3 months postsurgery and the improvement in glucose tolerance caused by CHADN continued. In conclusion, CHADN has the potential to enhance postprandial glucose clearance in states of diet-induced glucose intolerance.
Collapse
Affiliation(s)
- Guillaume Kraft
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | | | - Melanie Scott
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Eric Allen
- Hormone Assay and Analytical Services Core, Vanderbilt University Medical Center, Nashville, TN
| | - Dale S Edgerton
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
- Hormone Assay and Analytical Services Core, Vanderbilt University Medical Center, Nashville, TN
| | - Phil E Williams
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN
| | | | | | - Alan D Cherrington
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
27
|
Hengist A, Koumanov F, Gonzalez JT. Fructose and metabolic health: governed by hepatic glycogen status? J Physiol 2019; 597:3573-3585. [PMID: 30950506 PMCID: PMC6767689 DOI: 10.1113/jp277767] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/20/2019] [Indexed: 12/28/2022] Open
Abstract
Fructose is a commonly ingested dietary sugar which has been implicated in playing a particularly harmful role in the development of metabolic disease. Fructose is primarily metabolised by the liver in humans, and increases rates of hepatic de novo lipogenesis. Fructose increases hepatic de novo lipogenesis via numerous mechanisms: by altering transcriptional and allosteric regulation, interfering with cellular energy sensing, and disrupting the balance between lipid synthesis and lipid oxidation. Hepatic de novo lipogenesis is also upregulated by the inability to synthesise glycogen, either when storage is inhibited in knock‐down animal models or storage is saturated in glycogen storage disease. Considering that fructose has the capacity to upregulate hepatic glycogen storage, and replenish these stores more readily following glycogen depleting exercise, the idea that hepatic glycogen storage and hepatic de novo lipogenesis are linked is an attractive prospect. We propose that hepatic glycogen stores may be a key factor in determining the metabolic responses to fructose ingestion, and saturation of hepatic glycogen stores could exacerbate the negative metabolic effects of excessive fructose intake. Since physical activity potently modulates glycogen metabolism, this provides a rationale for considering nutrient–physical activity interactions in metabolic health.
![]()
Collapse
|
28
|
Nier A, Brandt A, Baumann A, Conzelmann IB, Özel Y, Bergheim I. Metabolic Abnormalities in Normal Weight Children Are Associated with Increased Visceral Fat Accumulation, Elevated Plasma Endotoxin Levels and a Higher Monosaccharide Intake. Nutrients 2019; 11:nu11030652. [PMID: 30889844 PMCID: PMC6470572 DOI: 10.3390/nu11030652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/07/2019] [Accepted: 03/13/2019] [Indexed: 12/15/2022] Open
Abstract
Being overweight has been identified as the main risk factor for the development of metabolic disorders in adults and children. However, recent studies suggest that normal weight individuals are also frequently affected by metabolic abnormalities with underlying mechanisms not yet fully understood. The aim of the present study was to determine if dietary pattern and markers of intestinal permeability, as well as inflammation, differ between normal weight healthy children and normal weight children suffering from metabolic abnormalities. In total, 45 normal weight children aged 5–9 years were included in the study, of whom nine suffered from metabolic abnormalities. Anthropometric data, dietary intake and markers of inflammation, as well as intestinal permeability, were assessed in fasting blood samples. Neither BMI nor BMI-SDS differed between groups; however, children with metabolic abnormalities had a significantly larger waist circumference (+~5 cm) and a higher leptin to adiponectin ratio. While plasma leptin levels are significantly higher in normal weight children with metabolic abnormalities, neither TNF α nor sCD14, adiponectin, PAI-1 or IL-6 plasma levels differed between groups. Despite similar total calorie and macronutrient intake between groups, mean total fructose and total glucose intake (resulting mainly from sugar sweetened beverages, fruits and sweets) were higher in children with metabolic abnormalities than in healthy children. Time spent physically active was significantly higher in healthy normal weight children whereas time spent physically inactive was similar between groups. Furthermore, bacterial endotoxin levels were significantly higher in the peripheral plasma of normal weight children with metabolic abnormalities than in healthy normal weight children. Our results suggest that metabolic disorders in normal weight children are associated with a high monosaccharide intake and elevated bacterial endotoxin as well as leptin plasma levels, the latter also discussed as being indicative of visceral adiposity.
Collapse
Affiliation(s)
- Anika Nier
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, A-1090 Vienna, Austria.
| | - Annette Brandt
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, A-1090 Vienna, Austria.
| | - Anja Baumann
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, A-1090 Vienna, Austria.
| | - Ina Barbara Conzelmann
- Department of Nutritional Medicine, (180), University of Hohenheim, D-70599 Stuttgart, Germany.
| | - Yelda Özel
- Department of Nutritional Medicine, (180), University of Hohenheim, D-70599 Stuttgart, Germany.
| | - Ina Bergheim
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, A-1090 Vienna, Austria.
| |
Collapse
|
29
|
Puri BK, Kingston MC, Monro JA. Inverse relationship between human erythrocyte fructose-6-phosphate and short-chain fatty acid levels. Med Hypotheses 2018; 121:164-166. [PMID: 30396473 DOI: 10.1016/j.mehy.2018.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/01/2018] [Indexed: 11/30/2022]
Abstract
In muscle cells, fructose is initially metabolised to fructose-6-phosphate. In the liver, fructose is metabolised to fructose-1-phosphate and thence to glyceraldehydes, which in turn can either enter glycogenolysis via pyruvate or gluconeogenesis via fructose-1,6-bisphosphate and fructose-6-phosphate. High levels of fructose-1-phosphate inhibit both glycogenolysis and gluconeogenesis. We hypothesised that, if systemically absorbed short-chain fatty acids constitute a major metabolic fate of unabsorbed dietary fructose, then levels of erythrocyte fructose-6-phosphate would be inversely correlated with plasma levels of short-chain fatty acids. The aim of this study was to test this hypothesis in respect of the three main short-chain fatty acids acetate, propionate and butyrate. Venous blood samples from 39 patients (16 male, 23 female, mean (standard error) age 42.4 (3.3) years) were analysed. Erythrocyte fructose-6-phosphate was measured using quantitative Fourier transform infrared spectrometry following gel electrophoresis, while plasma acetate, propionate and butyrate levels were measured using gas-liquid chromatography. The erythrocyte fructose-6-phosphate level was inversely correlated with the plasma acetate (r = -0.30, p = 0.06), propionate (r = -0.31, p = 0.05) and butyrate (r = -0.40, p = 0.01). These results support our hypothesis. The conversion of unabsorbed dietary fructose into short-chain fatty acids may represent a protective mechanism against the adverse effects of hypoglycaemia.
Collapse
Affiliation(s)
- B K Puri
- Department of Medicine, Imperial College London, UK.
| | - M C Kingston
- Breakspear Medical Group, Hemel Hempstead, Hertfordshire, UK
| | - J A Monro
- Breakspear Medical Group, Hemel Hempstead, Hertfordshire, UK
| |
Collapse
|
30
|
Yokota R, Ronchi FA, Fernandes FB, Jara ZP, Rosa RM, Leite APDO, Fiorino P, Farah V, do Nascimento NRF, Fonteles MC, Casarini DE. Intra-Renal Angiotensin Levels Are Increased in High-Fructose Fed Rats in the Extracorporeal Renal Perfusion Model. Front Physiol 2018; 9:1433. [PMID: 30364140 PMCID: PMC6191567 DOI: 10.3389/fphys.2018.01433] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/20/2018] [Indexed: 11/13/2022] Open
Abstract
Overconsumption of fructose leads to metabolic syndrome as a result of hypertension, insulin resistance, and hyperlipidemia. In this study, the renal function of animals submitted to high fructose intake was analyzed from weaning to adulthood using in vivo and ex vivo methods, being compared with a normal control group. We investigated in ex vivo model of the role of the renin Angiotensin system (RAS) in the kidney. The use of perfused kidney from animals submitted to 8-week fructose treatment showed that high fructose intake caused metabolic and cardiovascular alterations that were consistent with other studies. Moreover, the isolated perfused kidneys obtained from rats under high fructose diet showed a 33% increase in renal perfusion pressure throughout the experimental period due to increased renal vascular resistance and a progressive fall in the glomerular filtration rate, which reached a maximum of 64% decrease. Analysis of RAS peptides in the high fructose group showed a threefold increase in the renal concentrations of angiotensin I (Ang I) and a twofold increase in angiotensin II (Ang II) levels, whereas no change in angiotensin 1-7 (Ang 1-7) was observed when compared with the control animals. We did not detect changes in angiotensin converting enzyme (ACE) activity in renal tissues, but there is a tendency to decrease. These observations suggest that there are alternative ways of producing Ang II in this model. Chymase the enzyme responsible for Ang II formation direct from Ang I was increased in renal tissues in the fructose group, confirming the alternative pathway for the formation of this peptide. Neprilysin (NEP) the Ang 1-7 forming showed a significant decrease in activity in the fructose vs. control group, and a tendency of reduction in ACE2 activity. Thus, these results suggest that the Ang 1-7 vasodilator peptide formation is impaired in this model contributing with the increase of blood pressure. In summary, rats fed high fructose affect renal RAS, which may contribute to several deleterious effects of fructose on the kidneys and consequently an increase in blood pressure.
Collapse
Affiliation(s)
- Rodrigo Yokota
- Nephrology Division, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | | | | | - Zaira Palomino Jara
- Nephrology Division, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Rodolfo Mattar Rosa
- Nephrology Division, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | | | - Patricia Fiorino
- Laboratory of Renal, Cardiovascular, and Metabolic Physiopharmacology, Center for Health and Biological Sciences, Mackenzie Presbyterian University, São Paulo, Brazil
| | - Vera Farah
- Laboratory of Renal, Cardiovascular, and Metabolic Physiopharmacology, Center for Health and Biological Sciences, Mackenzie Presbyterian University, São Paulo, Brazil
| | | | - Manassés C Fonteles
- Laboratory of Renal, Cardiovascular, and Metabolic Physiopharmacology, Center for Health and Biological Sciences, Mackenzie Presbyterian University, São Paulo, Brazil.,Superior Institute of Biomedical Sciences, Ceará State University, Fortaleza, Brazil
| | - Dulce Elena Casarini
- Nephrology Division, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
31
|
Allen RJ, Musante CJ. A mathematical analysis of adaptations to the metabolic fate of fructose in essential fructosuria subjects. Am J Physiol Endocrinol Metab 2018; 315:E394-E403. [PMID: 29664676 DOI: 10.1152/ajpendo.00317.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Fructose is a major component of Western diets and is implicated in the pathogenesis of obesity and type 2 diabetes. In response to an oral challenge, the majority of fructose is cleared during "first-pass" liver metabolism, primarily via phosphorylation by ketohexokinase (KHK). A rare benign genetic deficiency in KHK, called essential fructosuria (EF), leads to altered fructose metabolism. The only reported symptom of EF is the appearance of fructose in the urine following either oral or intravenous fructose administration. Here we develop and use a mathematical model to investigate the adaptations to altered fructose metabolism in people with EF. First, the model is calibrated to fit available data in normal healthy subjects. Then, to mathematically represent EF subjects, we systematically implement metabolic adaptations such that model simulations match available data for this phenotype. We hypothesize that these modifications represent the major metabolic adaptations present in these subjects. This modeling approach suggests that several other aspects of fructose metabolism, beyond hepatic KHK deficiency, are altered and contribute to the etiology of this benign condition. Specifically, we predict that fructose absorption into the portal vein is altered, peripheral metabolism is slowed, renal reabsorption of fructose is mostly ablated, and alternate pathways for hepatic metabolism of fructose are upregulated. Moreover, these findings have implications for drug discovery and development, suggesting that the therapeutic targeting of fructose metabolism could lead to unexpected metabolic adaptations, potentially due to a physiological response to high-fructose conditions.
Collapse
Affiliation(s)
- Richard J Allen
- Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | - Cynthia J Musante
- Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| |
Collapse
|
32
|
De Bandt JP, Jegatheesan P, Tennoune-El-Hafaia N. Muscle Loss in Chronic Liver Diseases: The Example of Nonalcoholic Liver Disease. Nutrients 2018; 10:E1195. [PMID: 30200408 PMCID: PMC6165394 DOI: 10.3390/nu10091195] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 12/13/2022] Open
Abstract
Recent publications highlight a frequent loss of muscle mass in chronic liver diseases, including nonalcoholic fatty liver disease (NAFLD), and its association with a poorer prognosis. In NAFLD, given the role of muscle in energy metabolism, muscle loss promotes disease progression. However, liver damage may be directly responsible of this muscle loss. Indeed, muscle homeostasis depends on the balance between peripheral availability and action of anabolic effectors and catabolic signals. Moreover, insulin resistance of protein metabolism only partially explains muscle loss during NAFLD. Interestingly, some data indicate specific alterations in the liver⁻muscle axis, particularly in situations such as excess fructose/sucrose consumption, associated with increased hepatic de novo lipogenesis (DNL) and endoplasmic reticulum stress. In this context, the liver will be responsible for a decrease in the peripheral availability of anabolic factors such as hormones and amino acids, and for the production of catabolic effectors such as various hepatokines, methylglyoxal, and uric acid. A better understanding of these liver⁻muscle interactions could open new therapeutic opportunities for the management of NAFLD patients.
Collapse
|
33
|
Aguilera-Mendez A, Hernández-Equihua MG, Rueda-Rocha AC, Guajardo-López C, Nieto-Aguilar R, Serrato-Ochoa D, Ruíz Herrera LF, Guzmán-Nateras JA. Protective effect of supplementation with biotin against high-fructose-induced metabolic syndrome in rats. Nutr Res 2018; 57:86-96. [DOI: 10.1016/j.nutres.2018.06.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 05/22/2018] [Accepted: 06/27/2018] [Indexed: 11/15/2022]
|
34
|
Sun S, Hanzawa F, Umeki M, Ikeda S, Mochizuki S, Oda H. Time-restricted feeding suppresses excess sucrose-induced plasma and liver lipid accumulation in rats. PLoS One 2018; 13:e0201261. [PMID: 30110343 PMCID: PMC6093648 DOI: 10.1371/journal.pone.0201261] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/11/2018] [Indexed: 02/05/2023] Open
Abstract
The etiology of metabolic syndrome involves several complicated factors. One of the main factors contributing to metabolic syndrome has been proposed to be excessive intake of sucrose, which disturbs hepatic lipid metabolism, resulting in fatty liver. However, the mechanism by which sucrose induces fatty liver remains to be elucidated. Considering feeding behavior important for metabolism, we investigated whether time-restricted feeding of high sucrose diet (HSD), only in the active phase (the dark phase of the daily light/dark cycle), would ameliorate adverse effects of sucrose on lipid homeostasis in rats. Male Wistar rats, fed either an ad libitum (ad lib.) or time-restricted control starch diet (CD) or HSD were investigated. Rats fed ad lib. (CD and HSD) completed approximately 20% of food intake in the daytime. Time-restricted feeding did not significantly suppress total food intake of rats. However, time-restricted feeding of HSD significantly suppressed the increased plasma triglyceride levels. Moreover, time-restricted feeding also ameliorated HSD-induced liver lipid accumulation, whereas circadian oscillations of liver clock gene or transcriptional factor gene expression for lipid metabolism were not altered significantly. These results demonstrated that restricting sucrose intake only during the active phase in rats ameliorates the abnormal lipid metabolism caused by excess sucrose intake.
Collapse
Affiliation(s)
- Shumin Sun
- Laboratory of Nutritional Biochemistry, Nagoya University, Nagoya, Japan
| | - Fumiaki Hanzawa
- Department of Nutritional Science, Nagoya University of Arts and Sciences, Nisshin, Japan
| | - Miki Umeki
- Faculty of Education and Welfare Science, Oita University, Oita, Japan
| | - Saiko Ikeda
- Department of Nutritional Science, Nagoya University of Arts and Sciences, Nisshin, Japan
| | - Satoshi Mochizuki
- Faculty of Education and Welfare Science, Oita University, Oita, Japan
| | - Hiroaki Oda
- Laboratory of Nutritional Biochemistry, Nagoya University, Nagoya, Japan
- * E-mail:
| |
Collapse
|
35
|
Carreño D, Corro N, Torres-Estay V, Véliz LP, Jaimovich R, Cisternas P, San Francisco IF, Sotomayor PC, Tanasova M, Inestrosa NC, Godoy AS. Fructose and prostate cancer: toward an integrated view of cancer cell metabolism. Prostate Cancer Prostatic Dis 2018; 22:49-58. [PMID: 30104655 DOI: 10.1038/s41391-018-0072-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/13/2018] [Accepted: 06/29/2018] [Indexed: 01/07/2023]
Abstract
Activation of glucose transporter-1 (Glut-1) gene expression is a molecular feature of cancer cells that increases glucose uptake and metabolism. Increased glucose uptake is the basis for the clinical localization of primary tumors using positron emission tomography (PET) and 2-deoxy-2-[18F]-fluoro-D-glucose (FDG) as a radiotracer. However, previous studies have demonstrated that a considerable number of cancers, which include prostate cancer (CaP), express low to undetectable levels of Glut-1 and that FDG-PET has limited clinical applicability in CaP. This observation could be explained by a low metabolic activity of CaP cells that may be overcome using different hexoses, such as fructose, as the preferred energy source. However, these hypotheses have not been examined critically in CaP. This review article summarizes what is currently known about transport and metabolism of hexoses, and more specifically fructose, in CaP and provides experimental evidences indicating that CaP cells may have increased capacity to transport and metabolize fructose in vitro and in vivo. Moreover, this review highlights recent findings that allow better understanding of how metabolism of fructose may regulate cancer cell proliferation and how fructose uptake and metabolism, through the de novo lipogenesis pathway, may provide new opportunities for CaP early diagnosis, staging, and treatment.
Collapse
Affiliation(s)
- Daniela Carreño
- Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Néstor Corro
- Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Loreto P Véliz
- Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Pedro Cisternas
- Centro de Envejecimiento y Regeneración (CARE), Department of Cell Biology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Paula C Sotomayor
- Center for Integrative Medicine and Innovative Science, Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| | - Marina Tanasova
- Department of Chemistry, Michigan Technological University, Houghton, MI, 49931, USA
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Department of Cell Biology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alejandro S Godoy
- Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
| |
Collapse
|
36
|
The effect of maternal intake of sucrose or high-fructose corn syrup (HFCS)-55 during gestation and lactation on lipogenic gene expression in rat offspring at 3 and 12 weeks of age. J Dev Orig Health Dis 2018; 9:481-486. [DOI: 10.1017/s2040174418000260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractPerinatal exposure to sucrose or high-fructose corn syrup-55 (HFCS-55) in rats has previously been associated with altered hepatic fat content and composition post-weaning, although the effects on hepatic metabolism are unknown. The current study aimed to determine the sex-specific effects of maternal consumption of sucrose or HFCS-55 on the expression of hepatic lipogenic genes in the offspring. Liver samples were collected from offspring of albino Wistar rats provided with ad libitum access to either water (control), 10% sucrose or 10% HFCS-55 solution during pregnancy and lactation at 3 weeks (control n=16, sucrose n=22, HFCS-55 n=16) and 12 weeks (control n=16, sucrose n=10, HFCS-55 n=16) of age. Hepatic expression of the transcription factors such as carbohydrate response element-binding protein, sterol regulatory element-binding protein-1c and downstream genes was determined by quantitative real-time PCR. Sucrose-exposed offspring had higher hepatic SREBP-1c messenger RNA expression compared with control and HFCS-55 groups at both 3 weeks (P=0.01) and 12 weeks (P=0.03) of age. There were no differences in the expression of other hepatic lipogenic genes between groups at either 3 or 12 weeks. Thus, perinatal exposure to sucrose may be more detrimental to offspring hepatic metabolism compared with HFCS-55, independent of sex, and it will be important to evaluate the longer-term effects of perinatal sucrose exposure in future studies.
Collapse
|
37
|
Sawani A, Farhangi M, N CA, Maul TM, Parthasarathy S, Smallwood J, Wei JL. Limiting Dietary Sugar Improves Pediatric Sinonasal Symptoms and Reduces Inflammation. J Med Food 2018; 21:527-534. [PMID: 29851540 DOI: 10.1089/jmf.2017.0126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Excessive sugar consumption is associated with many chronic inflammatory diseases in adults. The effects of excessive sugar consumption in children have not been determined. In this study, we hypothesized that sinonasal symptoms and proinflammatory cytokine levels would be related and could be altered through reduction in sugar-sweetened beverage (SSB) consumption. To test this, we conducted a pilot study involving behavior modification and a 2-week follow-up. Seventeen children participants were recruited, and eleven completed the study. The experimental group presented with chronic nasal congestion or rhinorrhea defined by daily symptoms without acute illness for at least 3 months. The control group presented for non-nasal problems. Both groups received counseling to decrease SSB consumption. The Sinus and Nasal Quality of Life (SN-5) Survey was administered, and a blood sample was obtained by venipuncture at baseline and 2 weeks after counseling. Participants kept a 2-week food diary to document sugar intake. Serum lipid profile and inflammatory cytokines were measured. The experimental group reduced daily sugar intake, 46% versus 11% in the control. Baseline SN-5 scores were significantly worse in the experimental group and normalized to controls after intervention. Inflammatory cytokine levels were not different at baseline, but the experimental group significantly reduced in proinflammatory markers and increased the levels of anti-inflammatory markers after intervention. Our pilot data demonstrate higher sugar consumption may be associated with increased inflammatory stress and sinonasal symptoms. Reducing SSB and controlling inflammation in early childhood may have future health benefits.
Collapse
Affiliation(s)
- Ali Sawani
- 1 College of Medicine, University of Central Florida , Orlando, Florida, USA
| | - Monika Farhangi
- 1 College of Medicine, University of Central Florida , Orlando, Florida, USA
| | - Chandrakala Aluganti N
- 2 Burnett School of Biomedical Sciences and College of Medicine, University of Central Florida , Orlando, Florida, USA
| | - Timothy M Maul
- 3 Department of Pediatric Cardiovascular Surgery, Nemours Children's Hospital , Orlando, Florida, USA
| | - Sampath Parthasarathy
- 1 College of Medicine, University of Central Florida , Orlando, Florida, USA.,2 Burnett School of Biomedical Sciences and College of Medicine, University of Central Florida , Orlando, Florida, USA
| | - Jordan Smallwood
- 1 College of Medicine, University of Central Florida , Orlando, Florida, USA.,4 Division of Allergy and Immunology, Nemours Children's Hospital , Orlando, Florida, USA
| | - Julie L Wei
- 1 College of Medicine, University of Central Florida , Orlando, Florida, USA.,5 Division of Pediatric Otolaryngology, Nemours Children's Hospital , Orlando, Florida, USA
| |
Collapse
|
38
|
Tappy L. Fructose-containing caloric sweeteners as a cause of obesity and metabolic disorders. ACTA ACUST UNITED AC 2018. [PMID: 29514881 DOI: 10.1242/jeb.164202] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Compared with other carbohydrates, fructose-containing caloric sweeteners (sucrose, high-fructose corn syrup, pure fructose and fructose-glucose mixtures) are characterized by: a sweet taste generally associated with a positive hedonic tone; specific intestinal fructose transporters, i.e. GLUT5; a two-step fructose metabolism, consisting of the conversion of fructose carbones into ubiquitous energy substrates in splanchnic organs where fructolytic enzymes are expressed, and secondary delivery of these substrates to extrasplanchnic tissues. Fructose is a dispensable nutrient, yet its energy can be stored very efficiently owing to a rapid induction of intestinal fructose transporters and of splanchnic fructolytic and lipogenic enzymes by dietary fructose-containing caloric sweeteners. In addition, compared with fat or other dietary carbohydrates, fructose may be favored as an energy store because it uses different intestinal absorption mechanisms and different inter-organ trafficking pathways. These specific features make fructose an advantageous energy substrate in wild animals, mainly when consumed before periods of scarcity or high energy turnover such as migrations. These properties of fructose storage are also advantageous to humans who are involved in strenuous sport activities. In subjects with low physical activity, however, these same features of fructose metabolism may have the harmful effect of favoring energy overconsumption. Furthermore, a continuous exposure to high fructose intake associated with a low energy turnover leads to a chronic overproduction of intrahepatic trioses-phosphate production, which is secondarily responsible for the development of hepatic insulin resistance, intrahepatic fat accumulation, and increased blood triglyceride concentrations. In the long term, these effects may contribute to the development of metabolic and cardiovascular diseases.
Collapse
Affiliation(s)
- Luc Tappy
- Physiology Department, University of Lausanne Faculty of Biology and Medicine, CH-1005 Lausanne, Switzerland
| |
Collapse
|
39
|
Quines CB, Rosa SG, Chagas PM, Velasquez D, Prado VC, Nogueira CW. (p-ClPhSe) 2 stimulates carbohydrate metabolism and reverses the metabolic alterations induced by high fructose load in rats. Food Chem Toxicol 2017; 107:122-128. [PMID: 28655652 DOI: 10.1016/j.fct.2017.06.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 02/07/2023]
Abstract
The modern life leads to excess consumption of food rich in fructose; however, the long-term changes in carbohydrate and lipid metabolism could lead to metabolic dysfunction in humans. The present study evaluated the in vitro insulin-mimetic action of p-chloro-diphenyl diselenide (p-ClPhSe)2. The second aim of this study was to investigate if (p-ClPhSe)2 reverses metabolic dysfunction induced by fructose load in Wistar rats. The insulin-mimetic action of (p-ClPhSe)2 at concentrations of 50 and 100 μM was determined in slices of rat skeletal muscle. (p-ClPhSe)2 at a concentration of 50 μM stimulated the glucose uptake by 40% in skeletal muscle. A dose-response curve revealed that (p-ClPhSe)2 at a dose of 25 mg/kg reduced (∼20%) glycemia in rats treated with fructose (5 g/kg, i.g.). The administration of fructose impaired the liver homeostasis and (p-ClPhSe)2 (25 mg/kg) protected against the increase (∼25%) in the G-6-Pase and isocitrate dehydrogenase activities and reduced the triglyceride content (∼25%) in the liver. (p-ClPhSe)2 regulated the liver homeostasis by stimulating hexokinase activity (∼27%), regulating the TCA cycle activity (increased the ATP and citrate synthase activity (∼15%)) and increasing the glycogen levels (∼67%). In conclusion, (p-ClPhSe)2 stimulated carbohydrate metabolism and reversed metabolic dysfunction in rats fed with fructose.
Collapse
Affiliation(s)
- Caroline B Quines
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, RS, Brazil
| | - Suzan G Rosa
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, RS, Brazil
| | - Pietro M Chagas
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, RS, Brazil
| | - Daniela Velasquez
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, RS, Brazil
| | - Vinicius C Prado
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, RS, Brazil
| | - Cristina W Nogueira
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, RS, Brazil.
| |
Collapse
|
40
|
Legeza B, Marcolongo P, Gamberucci A, Varga V, Bánhegyi G, Benedetti A, Odermatt A. Fructose, Glucocorticoids and Adipose Tissue: Implications for the Metabolic Syndrome. Nutrients 2017; 9:nu9050426. [PMID: 28445389 PMCID: PMC5452156 DOI: 10.3390/nu9050426] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/16/2017] [Accepted: 04/20/2017] [Indexed: 12/13/2022] Open
Abstract
The modern Western society lifestyle is characterized by a hyperenergetic, high sugar containing food intake. Sugar intake increased dramatically during the last few decades, due to the excessive consumption of high-sugar drinks and high-fructose corn syrup. Current evidence suggests that high fructose intake when combined with overeating and adiposity promotes adverse metabolic health effects including dyslipidemia, insulin resistance, type II diabetes, and inflammation. Similarly, elevated glucocorticoid levels, especially the enhanced generation of active glucocorticoids in the adipose tissue due to increased 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) activity, have been associated with metabolic diseases. Moreover, recent evidence suggests that fructose stimulates the 11β-HSD1-mediated glucocorticoid activation by enhancing the availability of its cofactor NADPH. In adipocytes, fructose was found to stimulate 11β-HSD1 expression and activity, thereby promoting the adipogenic effects of glucocorticoids. This article aims to highlight the interconnections between overwhelmed fructose metabolism, intracellular glucocorticoid activation in adipose tissue, and their metabolic effects on the progression of the metabolic syndrome.
Collapse
Affiliation(s)
- Balázs Legeza
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest 1085, Hungary.
- First Department of Pediatrics, Semmelweis University, Budapest 1085, Hungary.
| | - Paola Marcolongo
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy.
| | - Alessandra Gamberucci
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy.
| | - Viola Varga
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest 1085, Hungary.
| | - Gábor Bánhegyi
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest 1085, Hungary.
- Pathobiochemistry Research Group of the Hungarian Academy of Sciences and Semmelweis University, Budapest 1085, Hungary.
| | - Angiolo Benedetti
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy.
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| |
Collapse
|
41
|
Balakumar M, Raji L, Prabhu D, Sathishkumar C, Prabu P, Mohan V, Balasubramanyam M. High-fructose diet is as detrimental as high-fat diet in the induction of insulin resistance and diabetes mediated by hepatic/pancreatic endoplasmic reticulum (ER) stress. Mol Cell Biochem 2016; 423:93-104. [PMID: 27699590 DOI: 10.1007/s11010-016-2828-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 09/22/2016] [Indexed: 01/05/2023]
Abstract
In the context of high human consumption of fructose diets, there is an imperative need to understand how dietary fructose intake influence cellular and molecular mechanisms and thereby affect β-cell dysfunction and insulin resistance. While evidence exists for a relationship between high-fat-induced insulin resistance and metabolic disorders, there is lack of studies in relation to high-fructose diet. Therefore, we attempted to study the effect of different diets viz., high-fat diet (HFD), high-fructose diet (HFS), and a combination (HFS + HFD) diet on glucose homeostasis and insulin sensitivity in male Wistar rats compared to control animals fed with normal pellet diet. Investigations include oral glucose tolerance test, insulin tolerance test, histopathology by H&E and Masson's trichrome staining, mRNA expression by real-time PCR, protein expression by Western blot, and caspase-3 activity by colorimetry. Rats subjected to high-fat/fructose diets became glucose intolerant, insulin-resistant, and dyslipidemic. Compared to control animals, rats subjected to different combination of fat/fructose diets showed increased mRNA and protein expression of a battery of ER stress markers both in pancreas and liver. Transcription factors of β-cell function (INSIG1, SREBP1c and PDX1) as well as hepatic gluconeogenesis (FOXO1 and PEPCK) were adversely affected in diet-induced insulin-resistant rats. The convergence of chronic ER stress towards apoptosis in pancreas/liver was also indicated by increased levels of CHOP mRNA & increased activity of both JNK and Caspase-3 in rats subjected to high-fat/fructose diets. Our study exposes the experimental support in that high-fructose diet is equally detrimental in causing metabolic disorders.
Collapse
Affiliation(s)
- M Balakumar
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialties Centre, WHO Collaborating Centre for Non-Communicable Diseases Prevention & Control, Gopalapuram, Chennai, 600086, India
| | - L Raji
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialties Centre, WHO Collaborating Centre for Non-Communicable Diseases Prevention & Control, Gopalapuram, Chennai, 600086, India
| | - D Prabhu
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialties Centre, WHO Collaborating Centre for Non-Communicable Diseases Prevention & Control, Gopalapuram, Chennai, 600086, India
| | - C Sathishkumar
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialties Centre, WHO Collaborating Centre for Non-Communicable Diseases Prevention & Control, Gopalapuram, Chennai, 600086, India
| | - P Prabu
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialties Centre, WHO Collaborating Centre for Non-Communicable Diseases Prevention & Control, Gopalapuram, Chennai, 600086, India
| | - V Mohan
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialties Centre, WHO Collaborating Centre for Non-Communicable Diseases Prevention & Control, Gopalapuram, Chennai, 600086, India
| | - M Balasubramanyam
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialties Centre, WHO Collaborating Centre for Non-Communicable Diseases Prevention & Control, Gopalapuram, Chennai, 600086, India.
| |
Collapse
|
42
|
Seyssel K, Meugnier E, Lê KA, Durand C, Disse E, Blond E, Pays L, Nataf S, Brozek J, Vidal H, Tappy L, Laville M. Fructose overfeeding in first-degree relatives of type 2 diabetic patients impacts energy metabolism and mitochondrial functions in skeletal muscle. Mol Nutr Food Res 2016; 60:2691-2699. [PMID: 27468128 DOI: 10.1002/mnfr.201600407] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/06/2016] [Accepted: 07/20/2016] [Indexed: 12/17/2022]
Abstract
SCOPE The aim of the study was to assess the effects of a high-fructose diet (HFrD) on skeletal muscle transcriptomic response in healthy offspring of patients with type 2 diabetes, a subgroup of individuals prone to metabolic disorders. METHODS AND RESULTS Ten healthy normal weight first-degree relatives of type 2 diabetic patients were submitted to a HFrD (+3.5 g fructose/kg fat-free mass per day) during 7 days. A global transcriptomic analysis was performed on skeletal muscle biopsies combined with in vitro experiments using primary myotubes. Transcriptomic analysis highlighted profound effects on fatty acid oxidation and mitochondrial pathways supporting the whole-body metabolic shift with the preferential use of carbohydrates instead of lipids. Bioinformatics tools pointed out possible transcription factors orchestrating this genomic regulation, such as PPARα and NR4A2. In vitro experiments in human myotubes suggested an indirect action of fructose in skeletal muscle, which seemed to be independent from lactate, uric acid, or nitric oxide. CONCLUSION This study shows therefore that a large cluster of genes related to energy metabolism, mitochondrial function, and lipid oxidation was downregulated after 7 days of HFrD, thus supporting the concept that overconsumption of fructose-containing foods could contribute to metabolic deterioration in humans.
Collapse
Affiliation(s)
- Kevin Seyssel
- Lyon University, Oullins, France.,CarMeN Laboratory and CENS, Claude Bernard University, INSA Lyon, Oullins, France.,CRNH Rhône-Alpes, Centre Hospitalier Lyon-Sud, Pierre Bénite, France
| | - Emmanuelle Meugnier
- Lyon University, Oullins, France.,CarMeN Laboratory and CENS, Claude Bernard University, INSA Lyon, Oullins, France
| | - Kim-Anne Lê
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Christine Durand
- Lyon University, Oullins, France.,CarMeN Laboratory and CENS, Claude Bernard University, INSA Lyon, Oullins, France
| | - Emmanuel Disse
- Lyon University, Oullins, France.,CarMeN Laboratory and CENS, Claude Bernard University, INSA Lyon, Oullins, France.,CRNH Rhône-Alpes, Centre Hospitalier Lyon-Sud, Pierre Bénite, France
| | - Emilie Blond
- Lyon University, Oullins, France.,CarMeN Laboratory and CENS, Claude Bernard University, INSA Lyon, Oullins, France.,CRNH Rhône-Alpes, Centre Hospitalier Lyon-Sud, Pierre Bénite, France
| | - Laurent Pays
- Lyon University, Oullins, France.,CarMeN Laboratory and CENS, Claude Bernard University, INSA Lyon, Oullins, France.,Banque de Cellules et de Tissus, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Serge Nataf
- Lyon University, Oullins, France.,CarMeN Laboratory and CENS, Claude Bernard University, INSA Lyon, Oullins, France.,Banque de Cellules et de Tissus, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | | | - Hubert Vidal
- Lyon University, Oullins, France.,CarMeN Laboratory and CENS, Claude Bernard University, INSA Lyon, Oullins, France.,CRNH Rhône-Alpes, Centre Hospitalier Lyon-Sud, Pierre Bénite, France
| | - Luc Tappy
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Martine Laville
- Lyon University, Oullins, France.,CarMeN Laboratory and CENS, Claude Bernard University, INSA Lyon, Oullins, France.,CRNH Rhône-Alpes, Centre Hospitalier Lyon-Sud, Pierre Bénite, France
| |
Collapse
|
43
|
Pinto BAS, Melo TM, Flister KFT, França LM, Kajihara D, Tanaka LY, Laurindo FRM, Paes AMDA. Early and sustained exposure to high-sucrose diet triggers hippocampal ER stress in young rats. Metab Brain Dis 2016; 31:917-27. [PMID: 27154727 DOI: 10.1007/s11011-016-9830-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 04/28/2016] [Indexed: 01/07/2023]
Abstract
Early-life environmental insults have been shown to promote long-term development of chronic non-communicable diseases, including metabolic disturbances and mental illnesses. As such, premature consumption of high-sugar foods has been associated to early onset of detrimental outcomes, whereas underlying mechanisms are still poorly understood. In the present study, we sought to investigate whether early and sustained exposure to high-sucrose diet promotes metabolic disturbances that ultimately might anticipate neurological injuries. At postnatal day 21, weaned male rats started to be fed a standard chow (10 % sucrose, CTR) or a high-sucrose diet (25 % sucrose, HSD) for 9 weeks prior to euthanasia at postnatal day 90. HSD did not alter weight gain and feed efficiency between groups, but increased visceral, non-visceral and brown adipose tissue accumulation. HSD rats demonstrated elevated blood glucose levels in both fasting and fed states, which were associated to impaired glucose tolerance. Peripheral insulin sensitivity did not change, whereas hepatic insulin resistance was supported by increased serum triglyceride levels, as well as higher TyG index values. Assessment of hippocampal gene expression showed endoplasmic reticulum (ER) stress pathways were activated in HSD rats, as compared to CTR. HSD rats had overexpression of unfolded protein response sensors, PERK and ATF6; ER chaperone, PDIA2 and apoptosis-related genes, CHOP and Caspase 3; but decreased expression of chaperone GRP78. Finally, HSD rats demonstrated impaired neuromuscular function and anxious behavior, but preserved cognitive parameters. In conclusion, our data indicate that early exposure to HSD promote metabolic disturbances, which disrupt hippocampus homeostasis and might precociously affect its neurobehavioral functions.
Collapse
Affiliation(s)
- Bruno Araújo Serra Pinto
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - Thamys Marinho Melo
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - Karla Frida Torres Flister
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - Lucas Martins França
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - Daniela Kajihara
- Laboratory of Vascular Biology, Heart Institute of the School of Medicine, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Leonardo Yuji Tanaka
- Laboratory of Vascular Biology, Heart Institute of the School of Medicine, University of São Paulo, São Paulo, São Paulo, Brazil
| | | | - Antonio Marcus de Andrade Paes
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, Maranhão, Brazil.
| |
Collapse
|
44
|
Gut Microbiota and Lifestyle Interventions in NAFLD. Int J Mol Sci 2016; 17:447. [PMID: 27023533 PMCID: PMC4848903 DOI: 10.3390/ijms17040447] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 02/07/2023] Open
Abstract
The human digestive system harbors a diverse and complex community of microorganisms that work in a symbiotic fashion with the host, contributing to metabolism, immune response and intestinal architecture. However, disruption of a stable and diverse community, termed "dysbiosis", has been shown to have a profound impact upon health and disease. Emerging data demonstrate dysbiosis of the gut microbiota to be linked with non-alcoholic fatty liver disease (NAFLD). Although the exact mechanism(s) remain unknown, inflammation, damage to the intestinal membrane, and translocation of bacteria have all been suggested. Lifestyle intervention is undoubtedly effective at improving NAFLD, however, not all patients respond to these in the same manner. Furthermore, studies investigating the effects of lifestyle interventions on the gut microbiota in NAFLD patients are lacking. A deeper understanding of how different aspects of lifestyle (diet/nutrition/exercise) affect the host-microbiome interaction may allow for a more tailored approach to lifestyle intervention. With gut microbiota representing a key element of personalized medicine and nutrition, we review the effects of lifestyle interventions (diet and physical activity/exercise) on gut microbiota and how this impacts upon NAFLD prognosis.
Collapse
|
45
|
Surowska A, De Giorgi S, Theytaz F, Campos V, Hodson L, Stefanoni N, Rey V, Schneiter P, Laville M, Giusti V, Gabert L, Tappy L. Effects of roux-en-Y gastric bypass surgery on postprandial fructose metabolism. Obesity (Silver Spring) 2016; 24:589-96. [PMID: 26916239 DOI: 10.1002/oby.21410] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/24/2015] [Accepted: 10/26/2015] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Fructose is partly metabolized in small bowel enterocytes, where it can be converted into glucose or fatty acids. It was therefore hypothesized that Roux-en-Y gastric bypass (RYGB) may significantly alter fructose metabolism. METHODS We performed a randomized clinical study in eight patients 12-17 months after RYGB and eight control (Ctrl) subjects. Each participant was studied after ingestion of a protein and lipid meal (PL) and after ingestion of a protein+lipid+fructose+glucose meal labeled with (13) C-fructose (PLFG). Postprandial blood glucose, fructose, lactate, apolipoprotein B48 (apoB48), and triglyceride (TG) concentrations, (13) C-palmitate concentrations in chylomicron-TG and VLDL-TG, fructose oxidation ((13) CO2 production), and gluconeogenesis from fructose (GNGf) were measured over 6 hours. RESULTS After ingestion of PLFG, postprandial plasma fructose, glucose, insulin, and lactate concentrations increased earlier and reached higher peak values in RYGB than in Ctrl. GNGf was 33% lower in RYGB than Ctrl (P = 0.041), while fructose oxidation was unchanged. Postprandial incremental areas under the curves for total TG and chylomicrons-TG were 72% and 91% lower in RYGB than Ctrl (P = 0.064 and P = 0.024, respectively). ApoB48 and (13) C-palmitate concentrations were not significantly different. CONCLUSIONS Postprandial fructose metabolism was not grossly altered, but postprandial lipid concentrations were markedly decreased in subjects having had RYGB surgery.
Collapse
Affiliation(s)
- Anna Surowska
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Sara De Giorgi
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Fanny Theytaz
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Vanessa Campos
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | | | - Valentine Rey
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | | | - Martine Laville
- Centre De Recherche En Nutrition Humaine Rhône Alpes, Centre Européen De Nutrition Pour La Santé, Hospices Civils De Lyon, Université Lyon 1, Pierre Bénite, France
| | - Vittorio Giusti
- Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Laure Gabert
- Centre De Recherche En Nutrition Humaine Rhône Alpes, Centre Européen De Nutrition Pour La Santé, Hospices Civils De Lyon, Université Lyon 1, Pierre Bénite, France
| | - Luc Tappy
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
- Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
46
|
Jump DB, Depner CM, Tripathy S, Lytle KA. Impact of dietary fat on the development of non-alcoholic fatty liver disease in Ldlr-/- mice. Proc Nutr Soc 2016; 75:1-9. [PMID: 26282529 PMCID: PMC4720541 DOI: 10.1017/s002966511500244x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) has increased in parallel with central obesity and is now the most common chronic liver disease in developed countries. NAFLD is defined as excessive accumulation of lipid in the liver, i.e. hepatosteatosis. The severity of NAFLD ranges from simple fatty liver (steatosis) to non-alcoholic steatohepatitis (NASH). Simple steatosis is relatively benign until it progresses to NASH, which is characterised by hepatic injury, inflammation, oxidative stress and fibrosis. Hepatic fibrosis is a risk factor for cirrhosis and primary hepatocellular carcinoma. Our studies have focused on the impact of diet on the onset and progression of NASH. We developed a mouse model of NASH by feeding Ldlr-/- mice a western diet (WD), a diet moderately high in saturated and trans-fat, sucrose and cholesterol. The WD induced a NASH phenotype in Ldlr-/- mice that recapitulates many of the clinical features of human NASH. We also assessed the capacity of the dietary n-3 PUFA, i.e. EPA (20 : 5,n-3) and DHA (22 : 6,n-3), to prevent WD-induced NASH in Ldlr-/- mice. Histologic, transcriptomic, lipidomic and metabolomic analyses established that DHA was equal or superior to EPA at attenuating WD-induced dyslipidemia and hepatic injury, inflammation, oxidative stress and fibrosis. Dietary n-3 PUFA, however, had no significant effect on WD-induced changes in body weight, body fat or blood glucose. These studies provide a molecular and metabolic basis for understanding the strengths and weaknesses of using dietary n-3 PUFA to prevent NASH in human subjects.
Collapse
Affiliation(s)
- Donald B. Jump
- Nutrition Program, School of Biological and Population Health Sciences, Linus Pauling Institute, Oregon State University, Corvallis Oregon, 97331, USA
| | - Christopher M. Depner
- Nutrition Program, School of Biological and Population Health Sciences, Linus Pauling Institute, Oregon State University, Corvallis Oregon, 97331, USA
| | - Sasmita Tripathy
- Nutrition Program, School of Biological and Population Health Sciences, Linus Pauling Institute, Oregon State University, Corvallis Oregon, 97331, USA
| | - Kelli A. Lytle
- Nutrition Program, School of Biological and Population Health Sciences, Linus Pauling Institute, Oregon State University, Corvallis Oregon, 97331, USA
| |
Collapse
|
47
|
Montgomery MK, Fiveash CE, Braude JP, Osborne B, Brown SHJ, Mitchell TW, Turner N. Disparate metabolic response to fructose feeding between different mouse strains. Sci Rep 2015; 5:18474. [PMID: 26690387 PMCID: PMC4686880 DOI: 10.1038/srep18474] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 11/19/2015] [Indexed: 02/06/2023] Open
Abstract
Diets enriched in fructose (FR) increase lipogenesis in the liver, leading to hepatic lipid accumulation and the development of insulin resistance. Previously, we have shown that in contrast to other mouse strains, BALB/c mice are resistant to high fat diet-induced metabolic deterioration, potentially due to a lack of ectopic lipid accumulation in the liver. In this study we have compared the metabolic response of BALB/c and C57BL/6 (BL6) mice to a fructose-enriched diet. Both strains of mice increased adiposity in response to FR-feeding, while only BL6 mice displayed elevated hepatic triglyceride (TAG) accumulation and glucose intolerance. The lack of hepatic TAG accumulation in BALB/c mice appeared to be linked to an altered balance between lipogenic and lipolytic pathways, while the protection from fructose-induced glucose intolerance in this strain was likely related to low levels of ER stress, a slight elevation in insulin levels and an altered profile of diacylglycerol species in the liver. Collectively these findings highlight the multifactorial nature of metabolic defects that develop in response to changes in the intake of specific nutrients and the divergent response of different mouse strains to dietary challenges.
Collapse
Affiliation(s)
- M K Montgomery
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia
| | - C E Fiveash
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia
| | - J P Braude
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia
| | - B Osborne
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia
| | - S H J Brown
- School of Health Sciences, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - T W Mitchell
- School of Health Sciences, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - N Turner
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia
| |
Collapse
|
48
|
Jump DB, Depner CM, Tripathy S, Lytle KA. Potential for dietary ω-3 fatty acids to prevent nonalcoholic fatty liver disease and reduce the risk of primary liver cancer. Adv Nutr 2015; 6:694-702. [PMID: 26567194 PMCID: PMC4642422 DOI: 10.3945/an.115.009423] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has increased in parallel with central obesity, and its prevalence is anticipated to increase as the obesity epidemic remains unabated. NAFLD is now the most common cause of chronic liver disease in developed countries and is defined as excessive lipid accumulation in the liver, that is, hepatosteatosis. NAFLD ranges in severity from benign fatty liver to nonalcoholic steatohepatitis (NASH), and NASH is characterized by hepatic injury, inflammation, oxidative stress, and fibrosis. NASH can progress to cirrhosis, and cirrhosis is a risk factor for primary hepatocellular carcinoma (HCC). The prevention of NASH will lower the risk of cirrhosis and NASH-associated HCC. Our studies have focused on NASH prevention. We developed a model of NASH by using mice with the LDL cholesterol receptor gene ablated fed the Western diet (WD). The WD induces a NASH phenotype in these mice that is similar to that seen in humans and includes robust induction of hepatic steatosis, inflammation, oxidative stress, and fibrosis. With the use of transcriptomic, lipidomic, and metabolomic approaches, we examined the capacity of 2 dietary ω-3 (n-3) polyunsaturated fatty acids, eicosapentaenoic acid (20:5ω-3; EPA) and docosahexaenoic acid (22:6ω-3; DHA), to prevent WD-induced NASH. Dietary DHA was superior to EPA at attenuating WD-induced changes in plasma lipids and hepatic injury and at reversing WD effects on hepatic metabolism, oxidative stress, and fibrosis. The outcome of these studies suggests that DHA may be useful in preventing NASH and reducing the risk of HCC.
Collapse
MESH Headings
- Animals
- Diet, Western/adverse effects
- Dietary Fats, Unsaturated/administration & dosage
- Dietary Fats, Unsaturated/therapeutic use
- Disease Models, Animal
- Docosahexaenoic Acids
- Eicosapentaenoic Acid
- Fatty Acids, Omega-3/administration & dosage
- Fatty Acids, Omega-3/therapeutic use
- Fatty Liver
- Hepatitis
- Humans
- Liver Cirrhosis
- Liver Neoplasms/prevention & control
- Mice
- Mice, Knockout
- Mice, Obese
- Non-alcoholic Fatty Liver Disease/etiology
- Non-alcoholic Fatty Liver Disease/prevention & control
- Obesity/complications
- Obesity/epidemiology
- Obesity/etiology
- Oxidative Stress
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
- Risk Factors
Collapse
Affiliation(s)
- Donald B Jump
- Nutrition Program, School of Biological and Population Health Sciences, Linus Pauling Institute, Oregon State University, Corvallis, OR
| | - Christopher M Depner
- Nutrition Program, School of Biological and Population Health Sciences, Linus Pauling Institute, Oregon State University, Corvallis, OR
| | - Sasmita Tripathy
- Nutrition Program, School of Biological and Population Health Sciences, Linus Pauling Institute, Oregon State University, Corvallis, OR
| | - Kelli A Lytle
- Nutrition Program, School of Biological and Population Health Sciences, Linus Pauling Institute, Oregon State University, Corvallis, OR
| |
Collapse
|
49
|
De Stefanis D, Mastrocola R, Nigro D, Costelli P, Aragno M. Effects of chronic sugar consumption on lipid accumulation and autophagy in the skeletal muscle. Eur J Nutr 2015; 56:363-373. [PMID: 26487451 DOI: 10.1007/s00394-015-1086-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/13/2015] [Indexed: 12/23/2022]
Abstract
PURPOSE In recent years, the increasing consumption of soft drinks containing high-fructose corn syrup or sucrose has caused a rise in fructose intake, which has been related to the epidemic of metabolic diseases. As fructose and glucose intake varies in parallel, it is still unclear what the effects of the increased consumption of the two single sugars are. In the present study, the impact of chronic consumption of glucose or fructose on skeletal muscle of healthy mice was investigated. METHODS C57BL/6J male mice received water (C), 15 % fructose (ChF) or 15 % glucose (ChG) to drink for up to 7 months. Lipid metabolism and markers of inflammation and autophagy were assessed in gastrocnemius muscle. RESULTS Increased body weight and gastrocnemius muscle mass, as well as circulating glucose, insulin, and lipid plasma levels were observed in sugar-drinking mice. Although triglycerides increased in the gastrocnemius muscle of both ChF and ChG mice (+32 and +26 %, vs C, respectively), intramyocellular lipids accumulated to a significantly greater extent in ChF than in ChG animals (ChF +10 % vs ChG). Such perturbations were associated with increased muscle interleukin-6 levels (threefold of C) and with the activation of autophagy, as demonstrated by the overexpression of LC3B-II (ChF, threefold and ChG, twofold of C) and beclin-1 (ChF, sevenfold and ChG, tenfold of C). CONCLUSIONS The present results suggest that intramyocellular lipids and the pro-inflammatory signaling could contribute to the onset of insulin resistance and lead to the induction of autophagy, which could be an adaptive response to lipotoxicity.
Collapse
Affiliation(s)
- Daniela De Stefanis
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125, Turin, Italy
| | - Raffaella Mastrocola
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125, Turin, Italy.
| | - Debora Nigro
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125, Turin, Italy
| | - Paola Costelli
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125, Turin, Italy.,Interuniversitary Institute of Myology, Chieti, Italy
| | - Manuela Aragno
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125, Turin, Italy
| |
Collapse
|
50
|
Leermakers ETM, Felix JF, Jaddoe VWV, Raat H, Franco OH, Kiefte-de Jong JC. Sugar-containing beverage intake at the age of 1 year and cardiometabolic health at the age of 6 years: the Generation R Study. Int J Behav Nutr Phys Act 2015; 12:114. [PMID: 26377916 PMCID: PMC4574223 DOI: 10.1186/s12966-015-0278-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 09/10/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Consumption of sugar-containing beverages (SCBs) in adults has been associated with an increased risk of metabolic syndrome. Although the effect of SCB on body weight in children is well established, little is known about the cardiometabolic effects in young children. We studied the associations of SCB intake at the age of 1 year with cardiometabolic health at age 6 years. METHODS This study was performed among 2,045 Dutch children from a population based prospective birth cohort. SCB intake was assessed with a semi-quantitative food frequency questionnaire at the age of 13 months and sex-specific tertiles were created. Children visited the research center at the age of 6 years. We created a continuous cardiometabolic risk factor score including: body fat percentage, blood pressure, insulin, HDL-cholesterol and triglycerides. Age-and sex-specific standard deviation (SD) scores were created for all outcomes. Multivariable linear regression was performed with adjustment for socio-demographic and lifestyle variables of mother and child. RESULTS In the total population, we observed an association between higher SCB intake at 13 months of age and a higher cardiometabolic risk factor score at the age of 6 years (0.13SD (95 % CI 0.01; 0.25), highest vs. lowest tertile) After stratification by sex, we found that boys in the highest tertile of SCB intake had a higher cardiometabolic risk factor score (0.18 SD (95 % CI 0.01; 0.34)), as compared to boys in the lowest tertile of SCB intake. There was no significant association in girls. We did not find associations of SCB intake with the individual cardiometabolic risk factors in the total population, or in the stratified analyses. CONCLUSION Higher SCB intake at 1 year of age was associated with a higher cardiometabolic risk factor score at age 6 years in boys, but not in girls. Further research on sex-specific effects of SCBs is needed.
Collapse
Affiliation(s)
- Elisabeth T M Leermakers
- Generation R Study Group, University Medical Center Rotterdam, Rotterdam, The Netherlands. .,Department of Epidemiology, University Medical Center Rotterdam, room Na 2909, Erasmus MC, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands. .,Department of Pediatrics, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Janine F Felix
- Generation R Study Group, University Medical Center Rotterdam, Rotterdam, The Netherlands. .,Department of Epidemiology, University Medical Center Rotterdam, room Na 2909, Erasmus MC, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands. .,Department of Pediatrics, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Vincent W V Jaddoe
- Generation R Study Group, University Medical Center Rotterdam, Rotterdam, The Netherlands. .,Department of Epidemiology, University Medical Center Rotterdam, room Na 2909, Erasmus MC, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands. .,Department of Pediatrics, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Hein Raat
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Oscar H Franco
- Generation R Study Group, University Medical Center Rotterdam, Rotterdam, The Netherlands. .,Department of Epidemiology, University Medical Center Rotterdam, room Na 2909, Erasmus MC, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands.
| | - Jessica C Kiefte-de Jong
- Department of Epidemiology, University Medical Center Rotterdam, room Na 2909, Erasmus MC, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands. .,Leiden University College, The Hague, The Netherlands.
| |
Collapse
|