1
|
Liu YT, Yan BF, Cai X, Zheng HX, Qiu RL, Tang YT. Foliar-applied zinc promotes cadmium allocation from leaf surfaces to grains in rice. J Environ Sci (China) 2025; 151:582-593. [PMID: 39481964 DOI: 10.1016/j.jes.2024.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 11/03/2024]
Abstract
The accumulation of Cd by rice poses significant health risks. Foliar fertilization with Zn can reduce grain Cd contents in rice grown in Cd-contaminated soils. However, atmospheric deposition on leaves is another vector of Cd contamination, and it remains unclear how Zn application affects the allocation of such Cd. We conducted an experiment where the flag leaves of rice plants were treated with solutions with various Zn concentrations and a constant Cd concentration. The 111Cd stable isotope was used to trace the flux of foliar-applied Cd. Higher levels of foliar-applied Zn enhanced Cd efflux and grain allocation. This is attributed to limited sequestration of foliar-applied Cd in the leaf cell symplasm and increased Cd desorption from leaf cell walls when a high Zn2+ concentration occurs in the apoplast. Nonionic Zn oxide nanoparticles mitigated these effects. Additionally, the expressions of OsLCT1 and OsZIP7 in flag leaves and OsHMA2 and OsZIP7 in the uppermost nodes were upregulated under high-Zn2+ treatment, which may facilitate Cd phloem loading and grain allocation. Caution is advised in using foliar Zn in areas with high atmospheric Cd due to potential grain-contamination risks.
Collapse
Affiliation(s)
- Ya-Ting Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Bo-Fang Yan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Institute of Facility Agriculture, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China.
| | - Xuan Cai
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Hong-Xiang Zheng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Rong-Liang Qiu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Ye-Tao Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
2
|
Chen Q, Xing G, Cao X, Liang T, Chen L, Dai L, Ci L, Yan M. Functional carbon nanodots enhance tomato tolerance to zinc deficient soils: Mechanisms and structure-function relationships. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176113. [PMID: 39260510 DOI: 10.1016/j.scitotenv.2024.176113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
Zinc (Zn) deficiency is a global problem disorder affecting both crops and humans. Herein, modified functional carbon nanodots (MFCNs) with various structures and characteristics were developed to regulate tomato yields and Zn migration in plant-soil systems affected by Zn deficiency through structure-function relationships. Sulfur-doped FCNs (S-FCNs), nitrogen-doped FCNs (N-FCNs), and nitrogen‑sulfur co-doped FCNs (N,S-FCNs) were hydrothermally modified using FCNs as precursors. Their regulatory effects on tomatoes growing in Zn-deficient alkaline soils were studied in pot culture experiments. Specifically, 8 mg kg-1 of FCNs and S-FCNs improved tomato yields by 132 % and 108 %, respectively, compared with the control. However, N-FCNs and N,S-FCNs showed no significant effect on yield compared with the control (P < 0.05). Moreover, the application of FCNs or S-FCNs significantly improved fruit quality and nutritional value, including Zn content (by 26.3 % and 22.0 %, respectively) and naturally occurring antioxidants (by 3.37- and 2.08-fold for lycopene, 1.31- and 1.18-fold for flavonoids, and 2.28- and 1.89-fold for phenolics, respectively; P < 0.05). Although N-FCNs and N,S-FCNs increased Zn contents, they inhibited the synthesis of naturally occurring antioxidants in fruits. Zn bioaccessibility, uptake, and transportation in plant-soil systems were regulated by MFCNs through both direct and indirect mechanisms, including ionic reactions, plant physiology, and environmental effects. MFCNs regulated plant tolerance to Zn deficiency not only by affecting root activity, redox homeostasis, micronutrient balance, chelator synthesis, genetic expression, and plant photosynthesis but also by influencing rhizosphere soil properties and the microbial environment. Based on their dual role as "plant growth regulators" and "soil conditioners", MFCNs may have general applicability in agriculture. This study highlights the behavior of MFCNs in plant-soil systems, providing innovative nanotools for enhancing Zn availability, crop stress resistance and environmental preservation in sustainable agriculture.
Collapse
Affiliation(s)
- Qiong Chen
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| | - Guling Xing
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Xiufeng Cao
- School of Municipal & Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Taibo Liang
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, PR China
| | - Lijuan Chen
- College of Tobacco Science and Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Linna Dai
- School of Science, Hubei University of Technology, Wuhan 430068, PR China
| | - Lijie Ci
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China.
| | - Mei Yan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| |
Collapse
|
3
|
Hassan MU, Guoqin H, Ahmad N, Khan TA, Nawaz M, Shah AN, Rasheed A, Asseri TAY, Ercisli S. Multifaceted roles of zinc nanoparticles in alleviating heavy metal toxicity in plants: a comprehensive review and future perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-35018-7. [PMID: 39424645 DOI: 10.1007/s11356-024-35018-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/13/2024] [Indexed: 10/21/2024]
Abstract
Heavy metal (HM) toxicity is a serious concern across the globe owing to their harmful impacts on plants, animals, and humans. Zinc oxide nanoparticles (ZnO-NPs) have gained appreciable attention in mitigating the adverse effects of abiotic stresses. The exogenous application of ZnO-NPs induces tolerance against HMs by improving plant physiological, metabolic, and molecular responses. They also interact with potential osmolytes and phyto-hormones to regulate the plant performance under HM stress. Moreover, ZnO-NPs also work synergistically with microbes and gene expression which helps to withstand HM toxicity. Additionally, ZnO-NPs also restrict the uptake and accumulation of HMs in plants which improves the plant performance. This review highlights the promising role of ZnO-NPs in mitigating the adverse impacts of HMs in plants. In this review, we explained the different mechanisms mediated by ZnO-NPs to counter the toxic effects of HMs. We also discussed the interactions of ZnO-NPs with osmolytes, phytohormones, and microbes in mitigating the toxic effects of HMs in plants. This review will help to learn more about the role of ZnO-NPs to mitigate HM toxicity in plants. Therefore, it will provide new insights to ensure sustainable and safer production with ZnO-NPs in HM-polluted soils.
Collapse
Affiliation(s)
- Muhammad Umair Hassan
- Research Center On Ecological Sciences, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Huang Guoqin
- Research Center On Ecological Sciences, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Naeem Ahmad
- College of Agronomy, Key Laboratory of Crop Physi-Ecology and Tillage Science in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Tahir Abbas Khan
- Research Center On Ecological Sciences, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Muhammad Nawaz
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan.
- Jiangxi Provincial Key Laboratory of Ex Situ Plant Conservation and Utilization, Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang, 332900, China.
| | - Adnan Rasheed
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Tahani A Y Asseri
- College of Science, Department of Biology, King Khalid University, 61413, Abha, Saudi Arabia
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture Ataturk University, 25240, Erzurum, Turkey
- HGF Agro, Ata Teknokent, TR-25240, Erzurum, Turkey
| |
Collapse
|
4
|
Zheng Z, Sun Z, Li M, Yang J, Yang Y, Liang H, Xiang H, Meng J, Zhou X, Liu L, Wu Z, Yang S. An update review on biopolymer Xanthan gum: Properties, modifications, nanoagrochemicals, and its versatile applications in sustainable agriculture. Int J Biol Macromol 2024; 281:136562. [PMID: 39423988 DOI: 10.1016/j.ijbiomac.2024.136562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
During the development of green agriculture and pesticide use, "reducing pesticides use and improving control efficiency" is imperative. To date, new pesticide formulations created by nanotechnology can be expected to overcome the difficulties that cannot be solved by the traditional pesticide processes and make pesticide formulations close to the needs of green agricultural production. As natural polysaccharides, Xanthan gum (XG) charactered by a repeated units and side chain of d-glucose, d-mannose, and d-glucuronic acid, and thereby having the unprecedented features in response to wide practice in various fields. This review introduces the properties of the natural polymer XG and its current status of application in agriculture, focusing on the pesticide adjuvant and preparation of novel pesticide and fertilizer delivery systems (such as core-shell and hydrogel), and combined with the applications in mulch film and soil engineering. Furthermore, the properties of Xantho-oligosaccharides suitable for agriculture were discussed. Finally, the potential of XG for the creation of nanopesticides and its future prospects are highlighted. Taken together, XG's excellent performance endows it with a wide range of applications in the agriculture field, and result in strong stimulating the sustainable development of agriculture and evolution of agricultural industry.
Collapse
Affiliation(s)
- Zhicheng Zheng
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhaoju Sun
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Mei Li
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jingsha Yang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yike Yang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hong Liang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hongmei Xiang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jiao Meng
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiang Zhou
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Liwei Liu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhibing Wu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Song Yang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| |
Collapse
|
5
|
Yan B, Deng T, Shi L. Towards Sustainable Productivity of Greenhouse Vegetable Soils: Limiting Factors and Mitigation Strategies. PLANTS (BASEL, SWITZERLAND) 2024; 13:2885. [PMID: 39458833 PMCID: PMC11511448 DOI: 10.3390/plants13202885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Greenhouse vegetable production has become increasingly important in meeting the increasing global food demand. Yet, it faces severe challenges in terms of how to maintain soil productivity from a long-term perspective. This review discusses the main soil productivity limiting factors for vegetables grown in greenhouses and identifies strategies that attempt to overcome these limitations. The main processes leading to soil degradation include physical (e.g., compaction), chemical (e.g., salinization, acidification, and nutrient imbalances), and biological factors (e.g., biodiversity reduction and pathogen buildup). These processes are often favored by intensive greenhouse cultivation. Mitigation strategies involve managing soil organic matter and mineral nutrients and adopting crop rotation. Future research should focus on precisely balancing soil nutrient supply with vegetable crop demands throughout their life cycle and using targeted organic amendments to manage specific soil properties. To ensure the successful adoption of recommended strategies, socioeconomic considerations are also necessary. Future empirical research is required to adapt socioeconomic frameworks, such as Science and Technology Backyard 2.0, from cereal production systems to greenhouse vegetable production systems. Addressing these issues will enable the productivity of greenhouse vegetable soils that meet growing vegetable demand to be sustained using limited soil resources.
Collapse
Affiliation(s)
- Bofang Yan
- Institute of Facility Agriculture, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Tenghaobo Deng
- Institute of Quality Standard and Monitoring Technology for Agro-Products, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Liangliang Shi
- Institute of Facility Agriculture, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| |
Collapse
|
6
|
Xu WL, Li R, Zhang XY, Chen YQ, Ni DJ, Wang ML. Zinc/Iron-Regulated Transporter-like Protein CsZIP4 Enhances Zinc and Nitrogen Uptake and Alleviates Zinc Stresses with Nitrogen Supply in Camellia sinensis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21193-21207. [PMID: 39258382 DOI: 10.1021/acs.jafc.4c05011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Zinc (Zn) and nitrogen (N) are the two crucial nutrients for tea plant growth and development and contribute to the quality formation of tea fresh leaves. In this study, a zinc/iron-regulated transporter-like protein 4 gene (i.e., CsZIP4) was functionally characterized. Expression profiling showed that CsZIP4 could be induced by Zn stresses and a N deficiency. Heterologous expression of CsZIP4 in yeast revealed that CsZIP4 possessed the capacity for Zn transport but not ammonium. Moreover, CsZIP4 overexpression in Arabidopsis thaliana promoted Zn and N uptake and transport and contributed to alleviate Zn stresses by collaborating with N supply, which might be interrelated to the expression of N or Zn metabolism-related genes, such as AtNRT1.1 and AtZIP4. Additionally, CsZIP4 was localized in the plasma membrane and chloroplast, which was helpful in maintaining cellular homeostasis under a Zn excess. Furthermore, silencing of CsZIP4 in tea plants by virus-induced gene silencing increased the chlorophyll content but decreased the Zn content. Finally, the yeast one-hybrid assay demonstrated that CsbZIP2 bound to the CsZIP4 promoter. These results will shed light on the functions of CsZIP4 in the N and Zn interaction in tea plants.
Collapse
Affiliation(s)
- Wen-Luan Xu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
- Joint International Research Laboratory of Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Rui Li
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
- Joint International Research Laboratory of Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Xu-Yang Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
- Joint International Research Laboratory of Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Yu-Qiong Chen
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
- Joint International Research Laboratory of Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - De-Jiang Ni
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
- Joint International Research Laboratory of Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Ming-Le Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
- Joint International Research Laboratory of Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| |
Collapse
|
7
|
Vichi E, Francini A, Raffaelli A, Sebastiani L. Effects of Caffeine, Zinc, and Their Combined Treatments on the Growth, Yield, Mineral Elements, and Polyphenols of Solanum lycopersicum L. Antioxidants (Basel) 2024; 13:1100. [PMID: 39334759 PMCID: PMC11428628 DOI: 10.3390/antiox13091100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/29/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
(1) Background: The effects of Zn and caffeine as promoters of fruit quality in the Solanum lycopersicum L. cultivar 'Panarea' were tested. (2) Methods: During the 56 days of the experiment, plants were treated weekly with 100 mL of 1 mM Zn (Zn), 1 mg L-1 caffeine trimethyl-13C (caffeine), and 1 mM Zn + 1 mg L-1 caffeine trimethyl-13C (Zn + caffeine) and compared to plants that were given tap water (control). (3) Results: Caffeine was taken up by the roots and translocated to the leaves, which positively influenced the number of fruits per plant. After 56 days of treatment, Zn induced a positive increase in tomato dry weight, reducing shoot length (-16.7%) compared to the other treatments. Zn + caffeine had a positive effect on the phenylpropanoid pathway of fruits, and 4-coumaric acid, caffeic acid, and t-ferulic acid were significantly increased, as well as the total antioxidant capacity of the tomatoes. In the flavonoid pathway, only apigenin and luteolin contents were reduced by treatments. The tomatoes showed similar concentrations of the mineral elements Cu, Mn, Fe, Na, Ca, Mg, and K. The Zn and caffeine target hazard quotients were <1, indicating that health risks via the consumption of these tomatoes did not occur. (4) Conclusions: Tomato plants could be irrigated with water containing lower values of Zn, caffeine, and a combination of the two. The treated fruits are rich in antioxidant compounds, such as coumaric acid, caffeic acid, and t-ferulic acid, which are beneficial for human health. No considerable health risks associated with human consumption have been detected.
Collapse
Affiliation(s)
- Elena Vichi
- Institute of Crop Science (ICS), Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy; (E.V.); (A.R.); (L.S.)
| | - Alessandra Francini
- Institute of Crop Science (ICS), Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy; (E.V.); (A.R.); (L.S.)
| | - Andrea Raffaelli
- Institute of Crop Science (ICS), Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy; (E.V.); (A.R.); (L.S.)
- Institute of Agricultural Biology and Biotechnology—National Research Council (IBBA-CNR), Via Moruzzi 1, 56124 Pisa, Italy
| | - Luca Sebastiani
- Institute of Crop Science (ICS), Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy; (E.V.); (A.R.); (L.S.)
| |
Collapse
|
8
|
Zahra A, Kayani S, Shahzad A, Sert TD, Ozcelik H, Qin M, Naeem M, Billah M. Wood biochar induced metal tolerance in Maize (Zea mays L.) plants under heavy metal stress. ENVIRONMENTAL RESEARCH 2024; 262:119940. [PMID: 39243839 DOI: 10.1016/j.envres.2024.119940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/12/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Due to metal toxicity, widespread industrialization has negatively impacted crop yield and soil quality. The current study was aimed to prepare and characterize biochar made from wood shavings of Pinus roxburghii and to determine the plant growth promoting and heavy metal detoxification of cadmium (Cd) and chromium (Cr) contaminated soil. FTIR SEM coupled with EDX characterization of biochar was performed; Cd and Cr were used at a rate of 20 mg/kg. Biochar was used at the rate of 50 mg/kg for various treatments. The completely randomized design (CRD) was used for the experiment and three replicates of each treatment were made. Various agronomic and enzymatic parameters were determined. The results indicated that all growth and enzymatic parameters were enhanced by the prepared biochar treatments. The most prominent results were observed in treatment T5 (in which shoot length, root length, peroxidase dismutase (POD), superoxide dismutase (SOD) catalyzes (CAT), and chlorophyll a and b increased by 28%, 23%, 40%, 41%, 42%, and 27%, respectively, compared to the control). This study demonstrated that biochar is a sustainable and cost-effective approach for the remediation of heavy metals, and plays a role in plant growth promotion. Farmers may benefit from the current findings, as prepared biochar is easier to deliver and more affordable than chemical fertilizers. Future research could clarify how to use biochar optimally, applying the minimum amount necessary while maximizing its benefits and increasing yield.
Collapse
Affiliation(s)
- Atiqa Zahra
- Department of Botany, Mohi-ud-Din Islamic University, Nerian Sharif, 12080, Azad Jammu and Kashmir, Pakistan.
| | - Sadaf Kayani
- Department of Botany, Mohi-ud-Din Islamic University, Nerian Sharif, 12080, Azad Jammu and Kashmir, Pakistan; Department of Biology, Faculty of Engineering and Natural Science, Suleyman Demiral University, East Campus, Isparta, Turkiye.
| | - Asim Shahzad
- College of Geography and Environmental Sciences, Henan University, Jinming Ave, Kaifeng, 475004, China; Department of Botany, Mohi-ud-Din Islamic University, Nerian Sharif, 12080, Azad Jammu and Kashmir, Pakistan.
| | - Tijen Demiral Sert
- Department of Biology, Faculty of Engineering and Natural Science, Suleyman Demiral University, East Campus, Isparta, Turkiye.
| | - Hasan Ozcelik
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Mingzhou Qin
- College of Geography and Environmental Sciences, Henan University, Jinming Ave, Kaifeng, 475004, China.
| | - Muhammad Naeem
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Motsim Billah
- Directorate of ORIC, Rawalpindi Women University, Rawalpindi, Pakistan.
| |
Collapse
|
9
|
Yu XF, Zeng XX, Wang XY, Du J, Wang XH, Liu YJ, Chen ML, Zhang XY, Xiao X, Yang LJ, Lei T, Gao SP, Li X, Jiang MY, Tao Q. Integrated cell wall and transcriptomic analysis revealed the mechanism underlying zinc-induced alleviation of cadmium toxicity in Cosmos bipinnatus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108940. [PMID: 39024781 DOI: 10.1016/j.plaphy.2024.108940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/20/2024]
Abstract
Plant growth is severely harmed by cadmium (Cd) contamination, while the addition of zinc (Zn) can reduce the toxic effects of Cd. However, the interaction between Cd and Zn on the molecular mechanism and cell wall of Cosmosbipinnatus is unclear. In this study, a transcriptome was constructed using RNA-sequencing. In C. bipinnatus root transcriptome data, the expression of 996, 2765, and 3023 unigenes were significantly affected by Cd, Zn, and Cd + Zn treatments, respectively, indicating different expression patterns of some metal transporters among the Cd, Zn, and Cd + Zn treatments. With the addition of Zn, the damage to the cell wall was reduced, both the proportion and content of polysaccharides in the cell wall were changed, and Cd accumulation was decreased by 32.34%. In addition, we found that Cd and Zn mainly accumulated in pectins, the content of which increased by 30.79% and 61.4% compared to the CK treatment. Thus, Zn could alleviate the toxicity of Cd to C. bipinnatus. This study revealed the interaction between Cd and Zn at the physiological and molecular levels, broadening our understanding of the mechanisms of tolerance to Cd and Zn stress in cosmos.
Collapse
Affiliation(s)
- Xiao-Fang Yu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xiao-Xuan Zeng
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiao-Yu Wang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jie Du
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xin-Hao Wang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yu-Jia Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mao-Lin Chen
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xin-Yu Zhang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xue Xiao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Li-Juan Yang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ting Lei
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Su-Ping Gao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xi Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ming-Yan Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qi Tao
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
10
|
Muro K, Segami S, Kawachi M, Horikawa N, Namiki A, Hashiguchi K, Maeshima M, Takano J. Localization of the MTP4 transporter to trans-Golgi network in pollen tubes of Arabidopsis thaliana. JOURNAL OF PLANT RESEARCH 2024; 137:939-950. [PMID: 39069582 DOI: 10.1007/s10265-024-01559-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/17/2024] [Indexed: 07/30/2024]
Abstract
Zinc (Zn) is an essential element for plants. Numerous proteins in different cellular compartments require Zn for their structure and function. Zn can be toxic when it accumulates in high levels in the cytoplasm. Therefore, Zn homeostasis at tissue, cell, and organelle levels is vital for plant growth. A part of the metal tolerance protein (MTP) / Cation Diffusion Facilitator (CDF) transporters functions as Zn transporters, exporting Zn from the cytosol to various membrane compartments. In Arabidopsis thaliana, MTP1, MTP2, MTP3, MTP4, MTP5, and MTP12 are classified as Zn transporters (Zn-CDF). In this study, we systematically analyzed the localization of GFP-fused Zn-CDFs in the leaf epidermal cells of Nicotiana benthamiana. As previously reported, MTP1 and MTP3 were localized to tonoplast, MTP2 to endoplasmic reticulum, and MTP5 to Golgi. In addition, we identified the localization of MTP4 to trans-Golgi Network (TGN). Since MTP4 is specifically expressed in pollen, we analyzed the localization of MTP4-GFP in the Arabidopsis pollen tubes and confirmed that it is in the TGN. We also showed the Zn transport capability of MTP4 in yeast cells. We then analyzed the phenotype of an mtp4 T-DNA insertion mutant under both limited and excess Zn conditions. We found that their growth and fertility were not largely different from the wild-type. Our study has paved the way for investigating the possible roles of MTP4 in metallating proteins in the secretory pathway or in exporting excess Zn through exocytosis. In addition, our system of GFP-fused MTPs will help study the mechanisms for targeting transporters to specific membrane compartments.
Collapse
Affiliation(s)
- Keita Muro
- Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka, 599-8531, Japan
| | - Shoji Segami
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki, Aichi, 444-8585, Japan
| | - Miki Kawachi
- Division of Crop Plant Genetics, Georg-August-Universität Göttingen, 37075, Göttingen, Germany
| | - Nodoka Horikawa
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 37075, Japan
| | - Ayane Namiki
- Department of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Komachi Hashiguchi
- Department of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Masayoshi Maeshima
- College of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, 487-8501, Japan
| | - Junpei Takano
- Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka, 599-8531, Japan.
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 37075, Japan.
- Department of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan.
| |
Collapse
|
11
|
Murawska-Wlodarczyk K, van der Ent A, Wlodarczyk T, Słomka A, Paterson DJ, Brueckner D, Przybyłowicz WJ, Mesjasz-Przybyłowicz J, Ryan CC, Maier RM, Babst-Kostecka A. Habitat-specific allocations of elements in Atriplex lentiformis seeds indicate adaptation to metal toxicity. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5076-5090. [PMID: 38761108 DOI: 10.1093/jxb/erae229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/16/2024] [Indexed: 05/20/2024]
Abstract
Self-sustaining vegetation in metal-contaminated areas is essential for rebuilding ecological resilience and community stability in degraded lands. Metal-tolerant plants originating from contaminated post-mining areas may hold the key to successful plant establishment and growth. Yet, little is known about the impact of metal toxicity on reproductive strategies, metal accumulation, and allocation patterns at the seed stage. Our research focused on the metal tolerant Atriplex lentiformis. Specifically, we examined the effects of toxic metal(loid) concentration in soils on variability in its reproductive strategies, including germination patterns, elemental uptake, and allocation within the seeds. We employed advanced imaging techniques like synchrotron X-ray fluorescence microscopy (2D scans and 3D tomograms) combined with inductively coupled plasma mass spectrometry to reveal significant differences in metal(loid) concentration and distribution within the seed structures of A. lentiformis from contrasting habitats. Exclusive Zn hotspots of high concentrations were found in the seeds of the metallicolous accession, primarily in the sensitive tissues of shoot apical meristems and root zones of the seed embryos. Our findings offer novel insights into phenotypic variability and metal tolerance and accumulation in plants from extreme environments. This knowledge can be applied to enhance plant survival and performance in land restoration efforts.
Collapse
Affiliation(s)
| | - Antony van der Ent
- Laboratory of Genetics, Wageningen University and Research, Wageningen, The Netherlands
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, St Lucia, Queensland, Australia
- Laboratoire Sols et Environnement, INRAE, Université de Lorraine, Nancy, France
| | - Tomasz Wlodarczyk
- Department of Environmental Science, The University of Arizona, Tucson, AZ, USA
| | - Aneta Słomka
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | | | | | - Wojciech J Przybyłowicz
- AGH University of Science and Technology, Faculty of Physics & Applied Computer Science, Krakow, Poland
- Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
| | | | - Chris C Ryan
- CSIRO, Mineral Resources, Clayton, Victoria, Australia
| | - Raina M Maier
- Department of Environmental Science, The University of Arizona, Tucson, AZ, USA
| | | |
Collapse
|
12
|
Li Z, Huang L, Chen X, Liu Q, Liu Y, Liu C, Yu C, Feng Y. Contribution of plant growth-promoting endophytic bacteria from hyperaccumulator to non-host plant zinc nutrition and health. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024:1-13. [PMID: 39185733 DOI: 10.1080/15226514.2024.2395983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Application of microbial agents is a novel strategy to improve the quality and health of plant, which can be used to increase zinc (Zn) uptake and alleviate Zn toxicity. Here, endophytic bacteria with Zn solubilizing and growth-promoting properties were isolated from hyperaccumulating ecotype (HE) of Sedum alfredii Hance and their effects on Zn absorption and accumulation of non-hyperaccumulating ecotype (NHE) were studied. The results showed that most endophytic bacteria of HE have good Zn solubilizing or growth-promoting properties. Under the condition of 20 μM ZnSO4, the biomass of NHE inoculated with SaPS1, SaEN2, SaPR2, SaBA2, SaBA3 was 2.8-3.2 times higher than that of non-inoculation control, and the Zn concentration of shoots was increased by 45.9, 89.0, 53.7, 77.5, and 42.6% after inoculation with SaPA1, SaP1, SaEN2, SaBA1, and SaBA2. Under the condition of 100 μM ZnSO4, inoculation with SaVA1, SaPS3, SaB1, SaPR1, and SaEN3 alleviated Zn stress and significantly reduced Zn concentration of shoots. Therefore, endophytic bacteria can be an effective means of improving plant Zn nutrition quality in the normal condition and benefit plant health in the stress environment.
Collapse
Affiliation(s)
- Zhesi Li
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China
| | - Lukuan Huang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China
| | - Xuan Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Qizhen Liu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China
| | - Yaru Liu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China
| | - Chanjuan Liu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China
| | - Chao Yu
- Livestock Industrial Development Center of Shengzhou, Shengzhou, China
| | - Ying Feng
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Ahmed N, Deng L, Narejo MUN, Baloch I, Deng L, Chachar S, Li Y, Li J, Bozdar B, Chachar Z, Hayat F, Chachar M, Gong L, Tu P. Bridging agro-science and human nutrition: zinc nanoparticles and biochar as catalysts for enhanced crop productivity and biofortification. FRONTIERS IN PLANT SCIENCE 2024; 15:1435086. [PMID: 39220014 PMCID: PMC11361987 DOI: 10.3389/fpls.2024.1435086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
The integration of zinc nanoparticles (Zn NPs) with biochar offers a transformative approach to sustainable agriculture by enhancing plant productivity and human nutrition. This combination improves soil health, optimizes nutrient uptake, and increases resilience to environmental stressors, leading to superior crop performance. Our literature review shows that combining Zn NPs with biochar significantly boosts the crop nutrient composition, including proteins, vitamins, sugars, and secondary metabolites. This enhancement improves the plant tolerance to environmental challenges, crop quality, and shelf life. This technique addresses the global issue of Zn deficiency by biofortifying food crops with increased Zn levels, such as mung beans, lettuce, tomatoes, wheat, maize, rice, citrus, apples, and microgreens. Additionally, Zn NPs and biochar improve soil properties by enhancing water retention, cation exchange capacity (CEC), and microbial activity, making soils more fertile and productive. The porous structure of biochar facilitates the slow and sustained release of Zn, ensuring its bioavailability over extended periods and reducing the need for frequent fertilizer applications. This synergy promotes sustainable agricultural practices and reduces the environmental footprint of the traditional farming methods. However, potential ecological risks such as biomagnification, nanoparticle accumulation, and toxicity require careful consideration. Comprehensive risk assessments and management strategies are essential to ensure that agricultural benefits do not compromise the environmental or human health. Future research should focus on sustainable practices for deploying Zn NPs in agriculture, balancing food security and ecological integrity and positioning this approach as a viable solution for nutrient-efficient and sustainable agriculture.
Collapse
Affiliation(s)
- Nazir Ahmed
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Lifang Deng
- Institute of Biomass Engineering, South China Agricultural University, Guangzhou, China
| | | | - Iqra Baloch
- Faculty of Crop Production, Sindh Agriculture University, Tandojam, Pakistan
| | - Lansheng Deng
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Sadaruddin Chachar
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Yongquan Li
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Juan Li
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Bilquees Bozdar
- Faculty of Crop Production, Sindh Agriculture University, Tandojam, Pakistan
| | - Zaid Chachar
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Faisal Hayat
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | | | - Lin Gong
- Dongguan Yixiang Liquid Fertilizer Co. Ltd., Dongguan, China
| | - Panfeng Tu
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| |
Collapse
|
14
|
Cruz-Álvarez O, Sánchez-Chávez E, Benavides-Mendoza A, Hernández-Rodríguez O, Parra-Quezada R, Ciscomani-Larios J, Martínez-Damián M, Ojeda-Barrios D. Foliar applications of zinc oxide nanoparticles and boric acid affect leaf oxidative metabolism and productivity in young pecan trees. Heliyon 2024; 10:e34742. [PMID: 39144945 PMCID: PMC11320133 DOI: 10.1016/j.heliyon.2024.e34742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 07/13/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024] Open
Abstract
Zinc and boron are nutrients that often suffer low bioavailability to pecan trees grown in calcareous soils whereas adequate supplies of these two elements is essential for commercial pecan production. Working with young pecan trees, we evaluated changes in oxidative metabolism, levels of bioactive compounds, yield components and foliar nutrient concentrations in response to foliar sprays (50 or 100 mg L-1) of zinc oxide nanoparticles (ZnO NPs) and boron (H3BO3). Four different treatment solutions were applied in a completely randomised design with six replications per treatment (24 trees in total). Zinc and B treatments were applied before pistil receptivity (3 weeks before anthesis) and at stem elongation stage 31, 39/60; flowering stage 69; fruit stages 7-75 and continued for a total of five applications at 14-day intervals. We evaluated enzyme activities (SOD, H2O2, CAT and GPx), AC, phenols, flavonoids, leaf area, chlorophyll, total anthocyanins and nut yield and quality (nut weight and % kernel). The mineral concentrations in the leaflets were also determined. The mineral concentrations (N, P, K, Ca, Mg, Fe, Cu, Mn, Ni, Zn and B) in the leaflets were also determined. Spraying ZnO NPs and B increased SOD activity, CA, chlorophyll concentration, mineral nutrients (N, K, Ca, Zn and B) and yield. However, reductions were observed for CAT activity, nut quality and concentrations of phenol, flavonoid, anthocyanin and Fe. Boron increased GPx activity and P concentration. These results demonstrate that spraying low doses (50 mg L-1) of ZnO NPs and B can help reduce oxidative stress and increase yield, nut quality and leaf concentrations of Zn and B in young cv. Wichita pecan trees established on a calcareous soil.
Collapse
Affiliation(s)
- O. Cruz-Álvarez
- Facultad de Ciencias Agrotecnológicas, Universidad Autónoma de Chihuahua, Chihuahua, 31350, Mexico
| | - E. Sánchez-Chávez
- Unidad Delicias, Centro de Investigación en Alimentación y Desarrollo, Delicias, Chihuahua, 33089, Mexico
| | - A. Benavides-Mendoza
- Departamento de Horticultura, Universidad Agraria Antonio Narro, Buenavista, Saltillo, 25315, Mexico
| | - O.A. Hernández-Rodríguez
- Facultad de Ciencias Agrotecnológicas, Universidad Autónoma de Chihuahua, Chihuahua, 31350, Mexico
| | - R.A. Parra-Quezada
- Facultad de Ciencias Agrotecnológicas, Universidad Autónoma de Chihuahua, Chihuahua, 31350, Mexico
| | - J.P. Ciscomani-Larios
- Facultad de Ciencias Agrotecnológicas, Universidad Autónoma de Chihuahua, Chihuahua, 31350, Mexico
| | - M.T. Martínez-Damián
- Departamento de Fitotecnia, Universidad Autónoma Chapingo, Texcoco de Mora, Estado de México, 56230, Mexico
| | - D.L. Ojeda-Barrios
- Facultad de Ciencias Agrotecnológicas, Universidad Autónoma de Chihuahua, Chihuahua, 31350, Mexico
| |
Collapse
|
15
|
Lockwood TD. Coordination chemistry suggests that independently observed benefits of metformin and Zn 2+ against COVID-19 are not independent. Biometals 2024; 37:983-1022. [PMID: 38578560 PMCID: PMC11255062 DOI: 10.1007/s10534-024-00590-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/12/2024] [Indexed: 04/06/2024]
Abstract
Independent trials indicate that either oral Zn2+ or metformin can separately improve COVID-19 outcomes by approximately 40%. Coordination chemistry predicts a mechanistic relationship and therapeutic synergy. Zn2+ deficit is a known risk factor for both COVID-19 and non-infectious inflammation. Most dietary Zn2+ is not absorbed. Metformin is a naked ligand that presumably increases intestinal Zn2+ bioavailability and active absorption by cation transporters known to transport metformin. Intracellular Zn2+ provides a natural buffer of many protease reactions; the variable "set point" is determined by Zn2+ regulation or availability. A Zn2+-interactive protease network is suggested here. The two viral cysteine proteases are therapeutic targets against COVID-19. Viral and many host proteases are submaximally inhibited by exchangeable cell Zn2+. Inhibition of cysteine proteases can improve COVID-19 outcomes and non-infectious inflammation. Metformin reportedly enhances the natural moderating effect of Zn2+ on bioassayed proteome degradation. Firstly, the dissociable metformin-Zn2+ complex could be actively transported by intestinal cation transporters; thereby creating artificial pathways of absorption and increased body Zn2+ content. Secondly, metformin Zn2+ coordination can create a non-natural protease inhibitor independent of cell Zn2+ content. Moderation of peptidolytic reactions by either or both mechanisms could slow (a) viral multiplication (b) viral invasion and (c) the pathogenic host inflammatory response. These combined actions could allow development of acquired immunity to clear the infection before life-threatening inflammation. Nirmatrelvir (Paxlovid®) opposes COVID-19 by selective inhibition the viral main protease by a Zn2+-independent mechanism. Pending safety evaluation, predictable synergistic benefits of metformin and Zn2+, and perhaps metformin/Zn2+/Paxlovid® co-administration should be investigated.
Collapse
Affiliation(s)
- Thomas D Lockwood
- Department Pharmacology and Toxicology, School of Medicine, Wright State University, Dayton, OH, 45435, USA.
| |
Collapse
|
16
|
Hu C, Wang C, Wu Y, Liang L, Yin L, Cheng X, Li C, Hu T. Synergistic effects of selenium and zinc on Bletilla striata (Thunb.) Reichb. F. growth and polysaccharide antioxidation. Biometals 2024:10.1007/s10534-024-00621-1. [PMID: 39023790 DOI: 10.1007/s10534-024-00621-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024]
Abstract
Selenium (Se) is a beneficial trace element for plants, while zinc (Zn) is a vital micronutrient. Bletilla striata (Thunb.) Reichb. F. is widely recognized as a medicinal herb. In this study, Se and Zn were introduced to determine the medicinal properties of B. striata. The plant's biomass, polysaccharides, Se and Zn contents, and the antioxidant properties of polysaccharide solutions were all examined. A notable increase in polysaccharide synthesis in B. striata tubers was observed following the application of 0.2 kg ha-1 of Se, and 1.0 kg ha-1 of Zn, either individually or in combination. Se and Zn content in polysaccharides were 3.33 to 3.77 mg kg-1 and 82.82 to 121.78 mg kg-1, at 1.0 kg ha-1 Se and 10.0 kg ha-1 Zn treatments, respectively. These values were 2.1-3.1 times and 1.8-2.8 times higher than those observed in control samples. Polysaccharide antioxidation has resulted in an increase in antioxidant activity as the concentration of polysaccharide solutions increased. The largest scavenging of 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radicals and the most excellent reducing power of the polysaccharide solutions were observed when a mixture of Se and Zn was applied at a rate of 1.0 kg ha-1 and 10.0 kg ha-1. The individual application of Se at 1.0 kg ha-1 and Zn at 10.0 kg ha-1 also resulted in significant DPPH radicals scavenging and reduced power. These data suggested that Se-Zn enriched B. striata is a new source of Se and Zn supplementation and an antioxidant resource.
Collapse
Affiliation(s)
- Changli Hu
- College of Life Science, Anqing Normal University, Anhui, 246000, China
| | - Chengying Wang
- College of Life Science, Anqing Normal University, Anhui, 246000, China
| | - Yan Wu
- College of Life Science, Anqing Normal University, Anhui, 246000, China
| | - Long Liang
- Management Science and Engineering, Guizhou University of Finance and Economics, Guiyang, 550025, China
| | - Liwei Yin
- College of Life Science, Anqing Normal University, Anhui, 246000, China
| | - Xu Cheng
- College of Life Science, Anqing Normal University, Anhui, 246000, China
- Collaborative Innovation Center of Targeted Development of Medicinal Resources (iCTM), Anhui, 246000, China
| | - Conghu Li
- College of Life Science, Anqing Normal University, Anhui, 246000, China
- Collaborative Innovation Center of Targeted Development of Medicinal Resources (iCTM), Anhui, 246000, China
| | - Ting Hu
- College of Life Science, Anqing Normal University, Anhui, 246000, China.
- Collaborative Innovation Center of Targeted Development of Medicinal Resources (iCTM), Anhui, 246000, China.
| |
Collapse
|
17
|
Krämer U. Metal Homeostasis in Land Plants: A Perpetual Balancing Act Beyond the Fulfilment of Metalloproteome Cofactor Demands. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:27-65. [PMID: 38277698 DOI: 10.1146/annurev-arplant-070623-105324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
One of life's decisive innovations was to harness the catalytic power of metals for cellular chemistry. With life's expansion, global atmospheric and biogeochemical cycles underwent dramatic changes. Although initially harmful, they permitted the evolution of multicellularity and the colonization of land. In land plants as primary producers, metal homeostasis faces heightened demands, in part because soil is a challenging environment for nutrient balancing. To avoid both nutrient metal limitation and metal toxicity, plants must maintain the homeostasis of metals within tighter limits than the homeostasis of other minerals. This review describes the present model of protein metalation and sketches its transfer from unicellular organisms to land plants as complex multicellular organisms. The inseparable connection between metal and redox homeostasis increasingly draws our attention to more general regulatory roles of metals. Mineral co-option, the use of nutrient or other metals for functions other than nutrition, is an emerging concept beyond that of nutritional immunity.
Collapse
Affiliation(s)
- Ute Krämer
- Molecular Genetics and Physiology of Plants, Ruhr University Bochum, Bochum, Germany;
| |
Collapse
|
18
|
Li Q, Zhang X, Zhao P, Chen Y, Ni D, Wang M. Metal tolerance protein CsMTP4 has dual functions in maintaining zinc homeostasis in tea plant. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134308. [PMID: 38631255 DOI: 10.1016/j.jhazmat.2024.134308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/05/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024]
Abstract
Plants have evolved a series of zinc (Zn) homeostasis mechanisms to cope with the fluctuating Zn in the environment. How Zn is taken up, translocated and tolerate by tea plant remains unknown. In this study, on the basis of RNA-Sequencing, we isolated a plasma membrane-localized Metal Tolerance Protein (MTP) family member CsMTP4 from Zn-deficient tea plant roots and investigated its role in regulation of Zn homeostasis in tea plant. Heterologous expression of CsMTP4 specifically enhanced the tolerance of transgenic yeast to Zn excess. Moreover, overexpression of CsMTP4 in tea plant hairy roots stimulated Zn uptake under Zn deficiency. In addition, CsMTP4 promoted the growth of transgenic Arabidopsis plants by translocating Zn from roots to shoots under Zn deficiency and conferred the tolerance to Zn excess by enhancing the efflux of Zn from root cells. Transcriptome analysis of the CsMTP4 transgenic Arabidopsis found that the expression of Zn metabolism-related genes were differentially regulated compared with wild-type plants when exposed to Zn deficiency and excess conditions. This study provides a mechanistic understanding of Zn uptake and translocation in plants and a new strategy to improve phytoremediation efficiency.
Collapse
Affiliation(s)
- Qinghui Li
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China; Joint International Research Laboratory of Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xuyang Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China; Joint International Research Laboratory of Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Peiling Zhao
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China; Joint International Research Laboratory of Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yuqiong Chen
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China; Joint International Research Laboratory of Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Dejiang Ni
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China; Joint International Research Laboratory of Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Mingle Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China; Joint International Research Laboratory of Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
19
|
Spielmann J, Schloesser M, Hanikenne M. Reduced expression of bZIP19 and bZIP23 increases zinc and cadmium accumulation in Arabidopsis halleri. PLANT, CELL & ENVIRONMENT 2024; 47:2093-2108. [PMID: 38404193 DOI: 10.1111/pce.14862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/03/2024] [Accepted: 02/11/2024] [Indexed: 02/27/2024]
Abstract
Zinc is an essential micronutrient for all living organisms. When challenged by zinc-limiting conditions, Arabidopsis thaliana plants use a strategy centered on two transcription factors, bZIP19 and bZIP23, to enhance the expression of several zinc transporters to improve their zinc uptake capacity. In the zinc and cadmium hyperaccumulator plant Arabidopsis halleri, highly efficient root-to-shoot zinc translocation results in constitutive local zinc deficiency in roots and in constitutive high expression of zinc deficiency-responsive ZIP genes, supposedly boosting zinc uptake and accumulation. Here, to disrupt this process and to analyze the functions of AhbZIP19, AhbZIP23 and their target genes in hyperaccumulation, the genes encoding both transcriptional factors were knocked down using artificial microRNAs (amiRNA). Although AhbZIP19, AhbZIP23, and their ZIP target genes were downregulated, amiRNA lines surprisingly accumulated more zinc and cadmium compared to control lines in both roots and shoot driving to shoot toxicity symptoms. These observations suggested the existence of a substitute metal uptake machinery in A. halleri to maintain hyperaccumulation. We propose that the iron uptake transporter AhIRT1 participates in this alternative pathway in A. halleri.
Collapse
Affiliation(s)
- Julien Spielmann
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, Belgium
| | - Marie Schloesser
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, Belgium
| | - Marc Hanikenne
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, Belgium
- InBioS-PhytoSystems, Translational Plant Biology, University of Liège, Liège, Belgium
| |
Collapse
|
20
|
Adil MF, Sehar S, Ma Z, Tahira K, Askri SMH, El-Sheikh MA, Ahmad A, Zhou F, Zhao P, Shamsi IH. Insights into the alleviation of cadmium toxicity in rice by nano-zinc and Serendipita indica: Modulation of stress-responsive gene expression and antioxidant defense system activation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:123952. [PMID: 38641035 DOI: 10.1016/j.envpol.2024.123952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/17/2024] [Accepted: 04/08/2024] [Indexed: 04/21/2024]
Abstract
The adversities of cadmium (Cd) contamination are quite distinguished among other heavy metals (HMs), and so is the efficacy of zinc (Zn) nutrition in mitigating Cd toxicity. Rice (Oryza sativa) crop, known for its ability to absorb HMs, inadvertently facilitates the bioaccumulation of Cd, posing a significant risk to both the plant itself and to humans consuming its edible parts, and damaging the environment as well. The use of nanoparticles, such as nano-zinc oxide (nZnO), to improve the nutritional quality of crops and combat the harmful effects of HMs, have gained substantial attention among scientists and farmers. While previous studies have explored the individual effects of nZnO or Serendipita indica (referred to as S.i) on Cd toxicity, the synergistic action of these two agents has not been thoroughly investigated. Therefore, the gift of nature, i.e., S. indica, was incorporated alongside nZnO (50 mg L-1) against Cd stress (15 μM L-1) and their alliance manifested as phenotypic level modifications in two rice genotypes (Heizhan43; Hz43 and Yinni801; Yi801). Antioxidant activities were enhanced, specifically peroxidase (61.5 and 122.5% in Yi801 and Hz43 roots, respectively), leading to a significant decrease in oxidative burst; moreover, Cd translocation was reduced (85% for Yi801 and 65.5% for Hz43 compared to Cd alone treatment). Microstructural study showed a decrease in number of vacuoles and starch granules with ameliorative treatments. Overall, plants treated with nZnO displayed gene expression pattern (particularly of ZIP genes), different from the ones with alone or combined S.i and Cd. Inferentially, the integration of nZnO and S.i holds great promise as an effective strategy for alleviating Cd toxicity in rice plants. By immobilizing Cd ions in the soil and promoting their detoxification, this novel approach contributes to environmental restoration and ensures food safety worldwide.
Collapse
Affiliation(s)
- Muhammad Faheem Adil
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Shafaque Sehar
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhengxin Ma
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Khajista Tahira
- University Institute of Biochemistry and Biotechnology, PMAS-Arid Agriculture University, Rawalpindi 46000, Pakistan
| | - Syed Muhammad Hassan Askri
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Mohamed A El-Sheikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Aqeel Ahmad
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fanrui Zhou
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of State Forestry and Grassland Administration on Highly Efficient Utilization of Forestry Biomass Resources in Southwest China, College of Material and Chemical Engineering, Southwest Forestry University, Kunming, 650224, China
| | - Ping Zhao
- Key Laboratory of State Forestry and Grassland Administration on Highly Efficient Utilization of Forestry Biomass Resources in Southwest China, College of Material and Chemical Engineering, Southwest Forestry University, Kunming, 650224, China; Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Imran Haider Shamsi
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
21
|
Qing T, Xie TC, Zhu QY, Lu HP, Liu JX. Regulation of metal homoeostasis by two F-group bZIP transcription factors bZIP48 and bZIP50 in rice. PLANT, CELL & ENVIRONMENT 2024; 47:1852-1864. [PMID: 38334305 DOI: 10.1111/pce.14852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 12/02/2023] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
Zinc (Zn) deficiency not only impairs plant growth and development but also has negative effects on human health. Rice (Oryza Sativa L.) is a staple food for over half of the global population, yet the regulation of Zn deficiency response in rice remains largely unknown. In this study, we provide evidence that two F-group bZIP transcription factors, OsbZIP48/50, play a crucial role in Zn deficiency response. Mutations in OsbZIP48/50 result in impaired growth and reduced Zn/Fe/Cu content under Zn deficiency conditions. The N-terminus of OsbZIP48/OsbZIP50 contains two Zn sensor motifs (ZSMs), deletion or mutation of these ZSMs leads to increased nuclear localization. Both OsbZIP48 and OsbZIP50 exhibit transcriptional activation activity, and the upregulation of 1117 genes involved in metal uptake and other processes by Zn deficiency is diminished in the OsbZIP48/50 double mutant. Both OsbZIP48 and OsbZIP50 bind to the promoter of OsZIP10 and activate the ZDRE cis-element. Amino acid substitution mutation of the ZSM domain of OsbZIP48 in OsbZIP50 mutant background increases the content of Zn/Fe/Cu in brown rice seeds and leaves. Therefore, this study demonstrates that OsbZIP48/50 play a crucial role in regulating metal homoeostasis and identifies their downstream genes involved in the Zn deficiency response in rice.
Collapse
Affiliation(s)
- Tao Qing
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Tian-Ci Xie
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Qiao-Yun Zhu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Hai-Ping Lu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jian-Xiang Liu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
22
|
Khan WA, Penrose B, Yun P, Zhou M, Shabala S. Exogenous zinc application mitigates negative effects of salinity on barley ( Hordeum vulgare) growth by improving root ionic homeostasis. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23266. [PMID: 38753957 DOI: 10.1071/fp23266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/25/2024] [Indexed: 05/18/2024]
Abstract
Detrimental effects of salinity could be mitigated by exogenous zinc (Zn) application; however, the mechanisms underlying this amelioration are poorly understood. This study demonstrated the interaction between Zn and salinity by measuring plant biomass, photosynthetic performance, ion concentrations, ROS accumulation, antioxidant activity and electrophysiological parameters in barley (Hordeum vulgare L.). Salinity stress (200mM NaCl for 3weeks) resulted in a massive reduction in plant biomass; however, both fresh and dry weight of shoots were increased by ~30% with adequate Zn supply. Zinc supplementation also maintained K+ and Na+ homeostasis and prevented H2 O2 toxicity under salinity stress. Furthermore, exposure to 10mM H2 O2 resulted in massive K+ efflux from root epidermal cells in both the elongation and mature root zones, and pre-treating roots with Zn reduced ROS-induced K+ efflux from the roots by 3-4-fold. Similar results were observed for Ca2+ . The observed effects may be causally related to more efficient regulation of cation-permeable non-selective channels involved in the transport and sequestration of Na+ , K+ and Ca2+ in various cellular compartments and tissues. This study provides valuable insights into Zn protective functions in plants and encourages the use of Zn fertilisers in barley crops grown on salt-affected soils.
Collapse
Affiliation(s)
- Waleed Amjad Khan
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas. 7001, Australia
| | - Beth Penrose
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas. 7001, Australia
| | - Ping Yun
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas. 7001, Australia
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas. 7001, Australia
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas. 7001, Australia; and International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China; and School of Biological Science, University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
23
|
Yang Y, Zhang J, Chang X, Chen L, Liu Y, Xu Q, Wang M, Yu H, Huang R, Zhang J, Hu Y, Hu Q, Shi X, Zhang Y. Green manure incorporation enhanced soil labile phosphorus and fruit tree growth. FRONTIERS IN PLANT SCIENCE 2024; 15:1356224. [PMID: 38469331 PMCID: PMC10926847 DOI: 10.3389/fpls.2024.1356224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/05/2024] [Indexed: 03/13/2024]
Abstract
Introduction The incorporation of green manures substantially enhances the conversion of external phosphorus (P) fertilizers and soil-reserved P into forms readily available to plants. The study aims to evaluate the influence of green manure additions on soil phosphorus dynamics and citrus growth, considering different green manure species and initial soil phosphorus levels. Additionally, the research seeks to elucidate the microbiological mechanisms underlying the observed effects. Methods A citrus pot experiment was conducted under both P-surplus (1.50 g·P·kg-1) and P-deficient (0.17 g·P·kg-1) soils with incorporating legume (Leg), non-legume (Non-Leg) or no green manure residues (CK), and 18O-P labeled KH2PO4 (0.5 g, containing 80‰ δ18Op) was additionally introduced to trace the turnover characteristics of chemical P fertilizer mediated by soil microorganisms. Results and discussion In P-surplus soil, compared with the CK treatment, the Leg treatment significantly increased soil H2O-Pi (13.6%), NaHCO3-Po (8.9%), NaOH-Pi (9.5%) and NaOH-Po (30.0%) content. It also promoted rapid turnover of P sources into H2O-Pi and NaHCO3-Pi pools by enhancing the phoC (576.6%) gene abundance. In contrast, the Non-Leg treatment significantly augmented soil H2O-Pi (9.2%) and NaHCO3-Po (8.5%) content, facilitating the turnover of P sources into NaHCO3-Pi pools. Under P-deficient soil conditions, compared with the CK treatment, the Leg treatment notably raised soil H2O-Pi (150.0%), NaHCO3-Pi (66.3%), NaHCO3-Po (34.8%) and NaOH-Pi (59.0%) content, contributing to the transfer of P sources into NaHCO3-Pi and NaOH-Pi pools. This effect was achieved through elevated ALP (33.8%) and ACP (12.9%) activities and increased pqqC (48.1%), phoC (42.9%), phoD (21.7%), and bpp (27.4%) gene abundances. The Non-Leg treatment, on the other hand, led to significant increases in soil NaHCO3-Pi (299.0%) and NaHCO3-Po (132.6%) content, thereby facilitating the turnover of P sources into NaHCO3-Pi and NaOH-Pi pools, except for the phoC gene abundance. Both Leg and Non-Leg treatments significantly improved citrus growth (7.3-20.0%) and P uptake (15.4-42.1%) in P-deficient soil but yielded no substantial effects in P-surplus soil. In summary, introducing green manure crops, particularly legume green manure, emerges as a valuable approach to enhance soil P availability and foster fruit tree growth in orchard production.
Collapse
Affiliation(s)
- Yuanyu Yang
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Jianwei Zhang
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Xia Chang
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Lunlun Chen
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Yongmin Liu
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Qingwei Xu
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Mengjuan Wang
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Haiyan Yu
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Renmei Huang
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Jie Zhang
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Yingxiao Hu
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Qijuan Hu
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Xiaojun Shi
- College of Resources and Environment, Southwest University, Chongqing, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, China
| | - Yuting Zhang
- College of Resources and Environment, Southwest University, Chongqing, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, China
| |
Collapse
|
24
|
Rahman A, Ahmad MA, Mehmood S, Rauf A, Iqbal A, Ali B, Ullah M, Ali M, Mohamed HI, Uddin I. Isolation and Screening of Zn (Zn) Solubilizing Rhizosphere Bacteria from Different Vegetations for Their Ability to Improve Growth, Zn Uptake, and Expression of Zn Transporter Genes in Tomato. Curr Microbiol 2024; 81:83. [PMID: 38294556 DOI: 10.1007/s00284-023-03610-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 12/30/2023] [Indexed: 02/01/2024]
Abstract
Zinc-solubilizing bacteria (ZSB) can convert insoluble zinc to an accessible form and increase Zn bioavailability in soil, which helps mitigate Zn deficiency in crops. In this study, different bacterial strains were screened for different Zn solubilization and plant growth promotion traits. Two bacterial strains, Acinetobacter pittii DJ55 and Stenotrophomonas maltophilia DJ24, were tested for their Zn-solubilizing potential on plate media, and both showed variable levels of Zn solubilization. The results showed that the bacterial strains applied to the plants in the pot experiment caused improvements in growth parameters compared to control conditions. DJ55, when applied with an insoluble source, enhanced plant height, leaf number, and leaf area compared to DJ24 and control conditions, while the maximum fruit weight was noticed in plants treated with ZnSO4. An increase in chlorophyll contents was noted in plants treated with ZnSO4, while maximum carotenoid contents were observed in plants treated with DJ55 + ZnO when compared with their controls. Plants supplemented with ZnO and DJ55 showed higher zinc content and iron content as compared to their respective controls. The expression patterns of the SLZIP5 and SLZIP4 genes were changed in the root and shoot. Application of ZnO stimulates both gene expression and protein synthesis in tomato roots and shoots. Inoculation of tomato plants with ZSB and insoluble ZnO reduced the expression of the SLZIP5 and SLZIP4 genes in the root and shoot. In conclusion, both strains can be considered as potential zinc-solubilizing bioinoculants to promote the growth and production yield of tomato.
Collapse
Affiliation(s)
- Attequr Rahman
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, Peshawar, KP, Pakistan
| | - Mian Afaq Ahmad
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, Peshawar, KP, Pakistan.
| | - Shiraz Mehmood
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, Peshawar, KP, Pakistan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Abdur Rauf
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, Peshawar, KP, Pakistan
| | - Aqib Iqbal
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, Peshawar, KP, Pakistan
| | - Bakhtiar Ali
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, Peshawar, KP, Pakistan
| | - Mohib Ullah
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, Peshawar, KP, Pakistan
| | - Murad Ali
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, Peshawar, KP, Pakistan
| | - Heba I Mohamed
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt.
| | - Israr Uddin
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, Peshawar, KP, Pakistan
| |
Collapse
|
25
|
Zhang L, Liu Z, Song Y, Sui J, Hua X. Advances in the Involvement of Metals and Metalloids in Plant Defense Response to External Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:313. [PMID: 38276769 PMCID: PMC10820295 DOI: 10.3390/plants13020313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
Plants, as sessile organisms, uptake nutrients from the soil. Throughout their whole life cycle, they confront various external biotic and abiotic threats, encompassing harmful element toxicity, pathogen infection, and herbivore attack, posing risks to plant growth and production. Plants have evolved multifaceted mechanisms to cope with exogenous stress. The element defense hypothesis (EDH) theory elucidates that plants employ elements within their tissues to withstand various natural enemies. Notably, essential and non-essential trace metals and metalloids have been identified as active participants in plant defense mechanisms, especially in nanoparticle form. In this review, we compiled and synthetized recent advancements and robust evidence regarding the involvement of trace metals and metalloids in plant element defense against external stresses that include biotic stressors (such as drought, salinity, and heavy metal toxicity) and abiotic environmental stressors (such as pathogen invasion and herbivore attack). We discuss the mechanisms underlying the metals and metalloids involved in plant defense enhancement from physiological, biochemical, and molecular perspectives. By consolidating this information, this review enhances our understanding of how metals and metalloids contribute to plant element defense. Drawing on the current advances in plant elemental defense, we propose an application prospect of metals and metalloids in agricultural products to solve current issues, including soil pollution and production, for the sustainable development of agriculture. Although the studies focused on plant elemental defense have advanced, the precise mechanism under the plant defense response still needs further investigation.
Collapse
Affiliation(s)
- Lingxiao Zhang
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China; (Z.L.); (J.S.)
| | - Zhengyan Liu
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China; (Z.L.); (J.S.)
| | - Yun Song
- School of Life Sciences, Liaocheng University, Liaocheng 252000, China;
| | - Junkang Sui
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China; (Z.L.); (J.S.)
| | - Xuewen Hua
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China; (Z.L.); (J.S.)
| |
Collapse
|
26
|
Noor M, Kiran A, Shahbaz M, Sanaullah M, Wakeel A. Root system architecture associated zinc variability in wheat (Triticum aestivum L.). Sci Rep 2024; 14:1781. [PMID: 38245570 PMCID: PMC10799890 DOI: 10.1038/s41598-024-52338-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/17/2024] [Indexed: 01/22/2024] Open
Abstract
Root system architecture (RSA) plays a fundamental role in nutrient uptake, including zinc (Zn). Wheat grains are inheritably low in Zn. As Zn is an essential nutrient for plants, improving its uptake will not only improve their growth and yield but also the nutritional quality of staple grains. A rhizobox study followed by a pot study was conducted to evaluate Zn variability with respect to RSA and its impact on grain Zn concentration. The grain Zn content of one hundred wheat varieties was determined and grown in rhizoboxes with differential Zn (no Zn and 0.05 mg L-1 ZnSO4). Seedlings were harvested 12 days after sowing, and root images were taken and analyzed by SmartRoot software. Using principal component analysis, twelve varieties were screened out based on vigorous and weaker RSA with high and low grain Zn content. The screened varieties were grown in pots with (11 mg ZnSO4 kg-1 soil) and without Zn application to the soil. Zinc translocation, localization, and agronomic parameters were recorded after harvesting at maturity. In the rhizobox experiment, 4% and 8% varieties showed higher grain Zn content with vigorous and weaker RSA, respectively, while 45% and 43% varieties had lower grain Zn content with vigorous and weaker RSA. However, the pot experiment revealed that varieties with vigorous root system led to higher grain yield, though the grain Zn concentration were variable, while all varieties with weaker root system had lower yield as well as grain Zn concentration. Zincol-16 revealed the highest Zn concentration (28.07 mg kg-1) and grain weight (47.9 g). Comparatively higher level of Zn was localized in the aleurone layer than in the embryonic region and endosperm. It is concluded that genetic variability exists among wheat varieties for RSA and grain Zn content, with a significant correlation. Therefore, RSA attributes are promising targets for the Zn biofortification breeding program. However, Zn localization in endosperm needs to be further investigated to achieve the goal of reducing Zn malnutrition.
Collapse
Affiliation(s)
- Mehwish Noor
- Department of Botany, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Aysha Kiran
- Department of Botany, University of Agriculture, Faisalabad, 38040, Pakistan.
| | - Muhammad Shahbaz
- Department of Botany, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Sanaullah
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Abdul Wakeel
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan.
| |
Collapse
|
27
|
Han H, Du K, An X, Song Y, Zhao Z, Xu J, Jiang L, Wang G, Wang Y, Su S, Hu S, Xiang J. Migration and transformation of trace elements during sewage sludge and coal slime Co-combustion. CHEMOSPHERE 2023; 345:140342. [PMID: 37783355 DOI: 10.1016/j.chemosphere.2023.140342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 09/29/2023] [Accepted: 09/30/2023] [Indexed: 10/04/2023]
Abstract
Co-combustion of sewage sludge (SS) and coal slime (CS) could improve the combustion properties of the two materials, however, high levels of trace elements (TEs) can be released from the two wastes, resulting in secondary pollution. The migration and transformation behavior of As, Cr, Pb, Zn, and Mn during co-combustion is explored in current research. The results showed co-combustion could inhibit the emission of Zn, As, Pb, and Mn, and the effect was more pronounced for Zn, As and Mn. Meanwhile, minerals like kaolinite and gypsum were found to generated in the ash from co-combustion but not solo-combustion. Model experiments demonstrated that kaolinite captured As, Pb and Mn, while gypsum captured Zn, As and Mn but facilitated the emission of Pb and Cr. This well explained the distinct TEs emission characteristics between co-combustion and solo combustion. As the temperature elevated, kaolinite in co-combustion ash decomposed and the generation of gypsum was promoted. In this way, the emission ratios of Zn, As, and Mn initially increased but subsequently decreased between 700 and 1300 °C, whereas Pb and Cr emission ratios increased by twofold within the same temperature range. Leaching characteristics and risk assessment code on co-combustion ashes were also conducted in this study. The results indicated a marginal elevation in the risk associated with trace elements (TEs) following co-combustion, provided that all five TEs remained within the limits of national standards.
Collapse
Affiliation(s)
- Hengda Han
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Kuan Du
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaoxue An
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yajie Song
- China Resources Power Technology Research Institute Co., Ltd, Shenzhen, 518000, China
| | - Zheng Zhao
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jun Xu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Long Jiang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Guang Wang
- State Environment Protection key Laboratory of Environmental Monitoring Quality Control, China National Environmental Monitoring Centre, Beijing, 100012, China
| | - Yi Wang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Sheng Su
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Song Hu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jun Xiang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
28
|
Zhang B, Sun Q, Chen Z, Shu F, Chen J. Evaluation of zinc tolerance and accumulation in eight cultivars of bermudagrass (Cynodon spp.): implications for zinc phytoremediation. Biometals 2023; 36:1377-1390. [PMID: 37530928 DOI: 10.1007/s10534-023-00524-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 07/24/2023] [Indexed: 08/03/2023]
Abstract
Zinc (Zn) is a vital element for plant growth and development, however, excessive Zn is toxic to plants. Common bermudagrass (Cynodon dactylon (L.) Pers.) and hybrid bermudagrass (C. dactylon (L.) Pers. × C. transvaalensis Burtt-Davy) are widely used turfgrass species with strong tolerance to diverse abiotic stresses, including excessive Zn2+ stress. However, the variation of zinc tolerance and accumulation in different bermudagrass cultivars remain unclear. In this study, we systematically analyzed the growth performance, physiological index and ion concentration in eight commercial cultivars of common and hybrid bermudagrass under different concentration of Zn2+ treatments using pot experiments. The results indicated that four cultivars of common bermudagrass could tolerate 20 mM Zn2+, whereas four cultivars of hybrid bermudagrass could only tolerate 10 mM Zn2+. Among the four common bermudagrass cultivars, cultivar Guanzhong and Common showed stronger Zn tolerance and accumulation abilities than other two cultivars. Further analyses of the expression of selected Zn homeostasis-related genes indicated that bermudagrass cultivars with stronger tolerance to excessive Zn have at least one expression-elevated gene involved in Zn homeostasis. These results not only expanded our understanding of Zn tolerance and accumulation in bermudagrass but also facilitated the application of commercial bermudagrass cultivars in phytoremediation of Zn pollution.
Collapse
Affiliation(s)
- Bing Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| | - Qixue Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Zhuoting Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Fangzhi Shu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Jingbo Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| |
Collapse
|
29
|
Song Y, Liu Y, Li H, Fang Y, Lu D, Yang Z. The crucial elements for lettuce (Lactuca sativa L.) growth under DMA stress and the linkage with DMA behavior: A new application of ionome. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119124. [PMID: 37776798 DOI: 10.1016/j.jenvman.2023.119124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/12/2023] [Accepted: 09/17/2023] [Indexed: 10/02/2023]
Abstract
Dimethylarsinic acid (DMA) is one of the common arsenic (As) species present in soil and is more toxic to plants than others. Identifying the crucial elements for plant growth under DMA stress is essential to enhance plant tolerance to DMA. Herein, we provided for the first time an ionome-based approach to address this issue. The phenotype, As species and concentrations of 11 essential elements in lettuce tissues were monitored under exposures of 0.1, 0.5, 1, 2, 5 mg L-1 DMA in hydroponic culture for 32 days. Lettuces remained normal (no significant difference in phenotype from the control) under 0.1-2 mg L-1 DMA stress, and were inhibited with fresh weights of leaf and root under 5 mg L-1 DMA stress. Integrating the difference in ionome profiles between the two growth states (normal and inhibited) and the responses of the individual element, Mg and S were clarified as the most possible candidates for the crucial elements for lettuce growth under DMA stress. Under 5 mg L-1 DMA stress, the accumulation of Mg and S declined, yet their BCF values were significantly increased, which was consistent with the change in BCF of DMA. Based on the physiological functions of Mg and S and the toxicity of DMA, it could be inferred that the enhanced transfer of Mg and S to leaves should be induced by the potential damage caused by the increased DMA accumulation in leaves, and would result in a shortage of both elements in roots as well as the growth inhibition.
Collapse
Affiliation(s)
- Yang Song
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, China.
| | - Yang Liu
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, China
| | - Haipu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, China.
| | - Ying Fang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, China
| | - Denglong Lu
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, China
| | - Zhaoguang Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, China.
| |
Collapse
|
30
|
Ayesiga SB, Rubaihayo P, Oloka BM, Dramadri IO, Sserumaga JP. Genome-wide association study and pathway analysis to decipher loci associated with Fusarium ear rot resistance in tropical maize germplasm. GENETIC RESOURCES AND CROP EVOLUTION 2023; 71:2435-2448. [PMID: 39026943 PMCID: PMC11252232 DOI: 10.1007/s10722-023-01793-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/25/2023] [Indexed: 07/20/2024]
Abstract
Breeding for host resistance is the most efficient and environmentally safe method to curb the spread of fusarium ear rot (FER). However, conventional breeding for resistance to FER is hampered by the complex polygenic nature of this trait, which is highly influenced by environmental conditions. This study aimed to identify genomic regions, single nucleotide polymorphisms (SNPs), and putative candidate genes associated with FER resistance as well as candidate metabolic pathways and pathway genes involved in it. A panel of 151 tropical inbred maize lines were used to assess the genetic architecture of FER resistance over two seasons. During the study period, seven SNPs associated with FER resistance were identified on chromosomes 1, 2, 4, 5, and 9, accounting for 4-11% of the phenotypic variance. These significant markers were annotated into four genes. Seven significant metabolic pathways involved in FER resistance were identified using the Pathway Association Study Tool, the most significant being the superpathway of the glyoxylate cycle. Overall, this study confirmed that resistance to FER is indeed a complex mechanism controlled by several small to medium-effect loci. Our findings may contribute to fast-tracking the efforts to develop disease-resistant maize lines through marker-assisted selection. Supplementary Information The online version contains supplementary material available at 10.1007/s10722-023-01793-4.
Collapse
Affiliation(s)
- Stella Bigirwa Ayesiga
- Department of Agricultural Production, College of Agriculture and Environmental Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda
- National Livestock Resources Research Institute, National Agricultural Research Organization, PO Box 5704, Kampala, Uganda
| | - Patrick Rubaihayo
- Department of Agricultural Production, College of Agriculture and Environmental Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Bonny Michael Oloka
- Department of Horticultural Sciences, North Carolina State University, Raleigh, NC USA
| | - Isaac Ozinga Dramadri
- Department of Agricultural Production, College of Agriculture and Environmental Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Julius Pyton Sserumaga
- National Livestock Resources Research Institute, National Agricultural Research Organization, PO Box 5704, Kampala, Uganda
| |
Collapse
|
31
|
Khan AR, Azhar W, Fan X, Ulhassan Z, Salam A, Ashraf M, Liu Y, Gan Y. Efficacy of zinc-based nanoparticles in alleviating the abiotic stress in plants: current knowledge and future perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:110047-110068. [PMID: 37807024 DOI: 10.1007/s11356-023-29993-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/16/2023] [Indexed: 10/10/2023]
Abstract
Due to sessile, plants are unable to avoid unfavorable environmental conditions which leads to inducing serious negative effects on plant growth, crop yield, and food safety. Instead, various approaches were employed to mitigate the phytotoxicity of these emerging contaminants from the soil-plant system. However, recent studies based on the exogenous application of ZnO NPs approve of their important positive potential for alleviating abiotic stress-induced phytotoxicity leads to ensuring global food security. In this review, we have comprehensively discussed the promising role of ZnO NPs as alone or in synergistic interactions with other plant growth regulators (PGRs) in the mitigation of various abiotic stresses, i.e., heavy metals (HMs), drought, salinity, cold and high temperatures from different crops. ZnO NPs have stress-alleviating effects by regulating various functionalities by improving plant growth and development. ZnO NPs are reported to improve plant growth by stimulating diverse alterations at morphological, physiological, biochemical, and ultrastructural levels under abiotic stress factors. We have explained the recent advances and pointed out research gaps in studies conducted in earlier years with future recommendations. Thus, in this review, we have also addressed the opportunities and challenges together with aims to uplift future studies toward effective applications of ZnO NPs in stress management.
Collapse
Affiliation(s)
- Ali Raza Khan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310027, China
| | - Wardah Azhar
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310027, China
| | - Xingming Fan
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, 65020, China
| | - Zaid Ulhassan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310027, China
| | - Abdul Salam
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310027, China
| | - Muhammad Ashraf
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yihua Liu
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, 276000, China
| | - Yinbo Gan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
32
|
Chen Z, Chen T, Zhang H, Li Y, Fan J, Yao L, Zeng B, Zhang Z. Functional role of a novel zinc finger protein, AoZFA, in growth and kojic acid synthesis in Aspergillus oryzae. Appl Environ Microbiol 2023; 89:e0090923. [PMID: 37702504 PMCID: PMC10617589 DOI: 10.1128/aem.00909-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/20/2023] [Indexed: 09/14/2023] Open
Abstract
Kojic acid (KA) is a valuable secondary metabolite that is regulated by zinc finger proteins in Aspergillus oryzae. However, only two such proteins have been characterized to function in kojic acid production of A. oryzae to date. In this study, we identified a novel zinc finger protein, AoZFA, required for kojic acid biosynthesis in A. oryzae. Our results showed that disruption of AozfA led to increased expression of kojA and kojR involved in kojic acid synthesis, resulting in enhanced kojic acid production, while overexpression of AozfA had the opposite effect. Furthermore, deletion of kojR in the AozfA disruption strain abolished kojic acid production, whereas overexpression of kojR enhanced it, indicating that AoZFA regulates kojic acid production by affecting kojR. Transcriptional activation assay revealed that AoZFA is a transcriptional activator. Interestingly, when kojR was overexpressed in the AozfA overexpression strain, the production of kojic acid failed to be rescued, suggesting that AozfA plays a distinct role from kojR in kojic acid biosynthesis. Moreover, we found that AozfA was highly induced by zinc during early growth stages, and its overexpression inhibited the growth promoted by zinc, whereas its deletion had no effect, suggesting that AoZFA is non-essential but has a role in the response of A. oryzae to zinc. Overall, these findings provide new insights into the roles of zinc finger proteins in the growth and kojic acid production of A. oryzae.IMPORTANCEKojic acid (KA) is an economically valuable secondary metabolite produced by Aspergillus oryzae due to its vast biological activities. Genetic modification of A. oryzae has emerged as an efficient strategy for enhancing kojic acid production, which is dependent on the mining of genes involved in kojic acid synthesis. In this study, we have characterized a novel zinc-finger protein, AoZFA, as a negative regulator of kojic acid production by affecting kojR. AozfA is an excellent target for improving kojic acid production without any effects on the growth of A. oryzae. Furthermore, the simultaneous modification of AozfA and kojR exerts a more significant promotional effect on kojic acid production than the modification of single genes. This study provides new insights for the regulatory mechanism of zinc finger proteins in the growth and kojic acid production of A. oryzae.
Collapse
Affiliation(s)
- Ziming Chen
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Tianming Chen
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Huanxin Zhang
- Institute of Horticulture, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Yuzhen Li
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Junxia Fan
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Lihua Yao
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Bin Zeng
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Zhe Zhang
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| |
Collapse
|
33
|
Zhang J, Yang T, Zhang C, Zhang T, Pu L, Zhao W. Effects of exogenous zinc on the physiological characteristics and enzyme activities of Passiflora edulis Sims f . edulis seedlings. PeerJ 2023; 11:e16280. [PMID: 37868066 PMCID: PMC10590096 DOI: 10.7717/peerj.16280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
Passionflower (Passiflora edulis Sims) is widely distributed in tropical and subtropical areas for edible, medicinal and skin care product processing, and the market demand is large. Zinc (Zn) is a necessary trace element for plant growth and development. In many countries, the content of Zn in soil is low and/or bioavailability is low. The exogenous application of Zn has become a common agronomic measure in agriculture. However, the effect of Zn on the physiological characteristics and enzyme activity of passionflower seedlings is not clear. In this study, pot experiments were conducted to analyse the effects of different concentrations of Zn (0, 200, 400, 800 mg kg-1) on the plant growth, photosynthetic pigments, osmotic regulators, membrane system and antioxidant enzyme system of purple passionflower (Passiflora edulis Sims f. edulis) seedlings, and Pearson correlation and principal component analyses were performed. The results showed that (1) the 200 mg kg-1 Zn treatment increased the contents of chlorophyll a (37.65%), chlorophyll b (41.22%), chlorophyll a+b (38.59%) and carotenoids (29.74%). The value of chlorophyll a/b changed little and had no effect on leaf growth. (2) The contents of proline (Pro) and malondialdehyde (MDA) in P. edulis Sims f. edulis seedlings treated with 400 mg kg-1 Zn increased significantly by 116.84% and 42.69%, respectively. The activities of catalase (CAT) and peroxidase (POD) increased by 16.82% and 18.70%, respectively. Superoxide dismutase (SOD), leaf area (LA), leaf perimeter (LP) and leaf width (LW) decreased significantly by 47.20%, 19.75%, 8.32% and 11.97%, respectively. (3) 800 mg kg-1 Zn significantly increased the contents of Pro (202.56%) and MDA (26.7%) and the activities of CAT (16.00%) and POD (67.00%), while the soluble sugar (SS), SOD, LA, LP and LW decreased significantly by 36.67%, 32.86%, 23.36%, 8.32% and 11.18%, respectively. (4) There was a significant positive correlation between Pro and photosynthetic pigments and between SOD and leaf growth and a significant negative correlation between POD and SS and between SOD and MDA. (5) A low concentration (200 mg kg-1) of Zn promoted the growth of P. edulis Sims f. edulis seedlings and allowed stress caused by high Zn concentrations to be tolerated. The results of this study can provide a reference for the application of Zn fertilizer to P. edulis Sims f. edulis.
Collapse
Affiliation(s)
- Jianli Zhang
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, Asia, China
| | - Tao Yang
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, Asia, China
| | - Chen Zhang
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, Asia, China
| | - Ting Zhang
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, Asia, China
| | - Lihua Pu
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, Asia, China
| | - Weiquan Zhao
- Institute of Mountain Resources of Guizhou Province, Guizhou Academy of Sciences, Guiyang, Asia, China
| |
Collapse
|
34
|
Stałanowska K, Szablińska-Piernik J, Okorski A, Lahuta LB. Zinc Oxide Nanoparticles Affect Early Seedlings' Growth and Polar Metabolite Profiles of Pea ( Pisum sativum L.) and Wheat ( Triticum aestivum L.). Int J Mol Sci 2023; 24:14992. [PMID: 37834440 PMCID: PMC10573449 DOI: 10.3390/ijms241914992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
The growing interest in the use of zinc oxide nanoparticles (ZnO NPs) in agriculture creates a risk of soil contamination with ZnO NPs, which can lead to phytotoxic effects on germinating seeds and seedlings. In the present study, the susceptibility of germinating seeds/seedlings of pea and wheat to ZnO NPs of various sizes (≤50 and ≤100 nm) applied at concentrations in the range of 100-1000 mg/L was compared. Changes in metabolic profiles in seedlings were analyzed by GC and GC-MS methods. The size-dependent harmful effect of ZnO NPs on the seedling's growth was revealed. The more toxic ZnO NPs (50 nm) at the lowest concentration (100 mg/L) caused a 2-fold decrease in the length of the wheat roots. In peas, the root elongation was slowed down by 20-30% only at 1000 mg/L ZnO NPs. The metabolic response to ZnO NPs, common for all tested cultivars of pea and wheat, was a significant increase in sucrose (in roots and shoots) and GABA (in roots). In pea seedlings, an increased content of metabolites involved in the aspartate-glutamate pathway and the TCA cycle (citrate, malate) was found, while in wheat, the content of total amino acids (in all tissues) and malate (in roots) decreased. Moreover, a decrease in products of starch hydrolysis (maltose and glucose) in wheat endosperm indicates the disturbances in starch mobilization.
Collapse
Affiliation(s)
- Karolina Stałanowska
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (K.S.); (J.S.-P.)
| | - Joanna Szablińska-Piernik
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (K.S.); (J.S.-P.)
| | - Adam Okorski
- Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 5, 10-727 Olsztyn, Poland
| | - Lesław B. Lahuta
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (K.S.); (J.S.-P.)
| |
Collapse
|
35
|
Wang S, Fang R, Yuan X, Chen J, Mi K, Wang R, Zhang H, Zhang H. Foliar Spraying of ZnO Nanoparticles Enhanced the Yield, Quality, and Zinc Enrichment of Rice Grains. Foods 2023; 12:3677. [PMID: 37835330 PMCID: PMC10572805 DOI: 10.3390/foods12193677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/18/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Zinc deficiency in rice can lead to reduced nutritional value and taste. This study investigates the potential of zinc oxide nanoparticles (ZnO NPs) as a foliar fertilizer during the jointing stage to improve rice yield, quality, and grain zinc enrichment. Over a two-year field experiment (2019-2020), six doses of ZnO NPs (ranging from 0 to 12 kg hm-2) were applied during the jointing stage (46 days after transplanting). The results revealed that foliar spraying of ZnO NPs increased the number of spikelets per spike and the thousand-grain weight by 7.4% to 9.2% and 4.2% to 7.1%, respectively, resulting in a substantial increase in rice yield. Furthermore, it led to a reduction in chalky white and chalky whiteness by 6.23% to 23.6% and 2.2% to 27.9%. ZnO NPs effectively boosted zinc content in rice grains while decreasing the phytic acid to zinc ratio, indicating improved zinc enrichment. Remarkably, protein and amylose content remained unaffected. These findings underscore the potential of ZnO NPs as a foliar fertilizer to enhance rice production, quality, and zinc enrichment. Further research can explore optimal application strategies and long-term effects for sustainable rice production.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Haipeng Zhang
- Jiangsu Key Laboratory of Crop Cultivation and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Innovation Center of Rice Cultivation Technology in Yangtze Valley, Ministry of Agriculture and Rural Affairs, Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou 225009, China; (S.W.); (R.F.); (X.Y.); (J.C.); (K.M.); (R.W.); (H.Z.)
| | | |
Collapse
|
36
|
Sánchez-Palacios JT, Henry D, Penrose B, Bell R. Formulation of zinc foliar sprays for wheat grain biofortification: a review of current applications and future perspectives. FRONTIERS IN PLANT SCIENCE 2023; 14:1247600. [PMID: 37854115 PMCID: PMC10581344 DOI: 10.3389/fpls.2023.1247600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023]
Abstract
Agronomic biofortification of wheat grain with zinc can improve the condition of about one billion people suffering from zinc (Zn) deficiency. However, with the challenge of cultivating high-yielding wheat varieties in Zn-deficient soils and the global need to produce higher-quality food that nourishes the growing population, innovation in the strategies to deliver Zn directly to plants will come into play. Consequently, existing foliar formulations will need further refinement to maintain the high agronomic productivity required in competitive global grain markets while meeting the dietary Zn intake levels recommended for humans. A new generation of foliar fertilisers that increase the amount of Zn assimilated in wheat plants and the translocation efficiency of Zn from leaves to grains can be a promising solution. Research on the efficacy of adjuvants and emerging nano-transporters relative to conventional Zn forms applied as foliar fertilisers to wheat has expanded rapidly in recent years. This review scopes the range of evidence available in the literature regarding the biofortification of bread wheat (Triticum aestivum L.) resulting from foliar applications of conventional Zn forms, Zn nanoparticles and novel Zn-foliar formulations. We examine the foliar application strategies and the attained final concentration of grain Zn. We propose a conceptual model for the response of grain Zn biofortification of wheat to foliar Zn application rates. This review discusses some physiological aspects of transportation of foliarly applied Zn that need further investigation. Finally, we explore the prospects of engineering foliar nano-formulations that could effectively overcome the physicochemical barrier to delivering Zn to wheat grains.
Collapse
Affiliation(s)
- José Tonatiuh Sánchez-Palacios
- SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - David Henry
- Chemistry, Murdoch University, Murdoch, Western Australia, Australia
| | - Beth Penrose
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
- Research Institute for Northern Agriculture, Charles Darwin University, Casuarina, Brinkin, Northern Territory, Australia
| | - Richard Bell
- SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
37
|
Hanikenne M, Bouché F. Iron and zinc homeostasis in plants: a matter of trade-offs. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5426-5430. [PMID: 37773264 PMCID: PMC10540728 DOI: 10.1093/jxb/erad304] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
This article comments on:
Stanton C, Rodríguez-Celma J, Krämer U, Sanders D, Balk J. 2023. BRUTUS-LIKE (BTSL) E3 ligase-mediated fine-tuning of Fe regulation negatively affects Zn tolerance of Arabidopsis. Journal of Experimental Botany 74, 5767–5782.
Collapse
Affiliation(s)
- Marc Hanikenne
- InBioS-PhytoSYSTEMS, Translational Plant Biology, University of Liège, B-4000 Liège, Belgium
| | - Frédéric Bouché
- InBioS-PhytoSYSTEMS, Translational Plant Biology, University of Liège, B-4000 Liège, Belgium
- InBioS-PhytoSYSTEMS, Plant Physiology, University of Liège, B-4000 Liège, Belgium
| |
Collapse
|
38
|
Li R, Tang F, Che Y, Fernie AR, Zhou Q, Ding Z, Yao Y, Liu J, Wang Y, Hu X, Guo J. MeGLYI-13, a Glyoxalase I Gene in Cassava, Enhances the Tolerance of Yeast and Arabidopsis to Zinc and Copper Stresses. PLANTS (BASEL, SWITZERLAND) 2023; 12:3375. [PMID: 37836115 PMCID: PMC10574700 DOI: 10.3390/plants12193375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
Although zinc and copper are the two essential nutrients necessary for plant growth, their excessive accumulation in soil not only causes environmental pollution but also seriously threatens human health and inhibits plant growth. The breeding of plants with novel zinc or copper toxicity tolerance capacities represents one strategy to address this problem. Glyoxalase I (GLYI) family genes have previously been suggested to be involved in the resistance to a wide range of abiotic stresses, including those invoked by heavy metals. Here, a MeGLYI-13 gene cloned from a cassava SC8 cultivar was characterized with regard to its potential ability in resistance to zinc or copper stresses. Sequence alignment indicated that MeGLYI-13 exhibits sequence differences between genotypes. Transient expression analysis revealed the nuclear localization of MeGLYI-13. A nuclear localization signal (NLS) was found in its C-terminal region. There are 12 Zn2+ binding sites and 14 Cu2+ binding sites predicted by the MIB tool, of which six binding sites were shared by Zn2+ and Cu2+. The overexpression of MeGLYI-13 enhanced both the zinc and copper toxicity tolerances of transformed yeast cells and Arabidopsis seedlings. Taken together, our study shows the ability of the MeGLYI-13 gene to resist zinc and copper toxicity, which provides genetic resources for the future breeding of plants resistant to zinc and copper and potentially other heavy metals.
Collapse
Affiliation(s)
- Ruimei Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (R.L.); (F.T.); (Y.C.); (Q.Z.); (Z.D.); (Y.Y.); (J.L.); (Y.W.)
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
- Root Biology and Symbiosis, Max-Planck-Institute of Molecular Plant Physiology, Am Muhlenberg 1, 14476 Potsdam-Golm, Germany;
| | - Fenlian Tang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (R.L.); (F.T.); (Y.C.); (Q.Z.); (Z.D.); (Y.Y.); (J.L.); (Y.W.)
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Yannian Che
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (R.L.); (F.T.); (Y.C.); (Q.Z.); (Z.D.); (Y.Y.); (J.L.); (Y.W.)
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Alisdair R. Fernie
- Root Biology and Symbiosis, Max-Planck-Institute of Molecular Plant Physiology, Am Muhlenberg 1, 14476 Potsdam-Golm, Germany;
| | - Qin Zhou
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (R.L.); (F.T.); (Y.C.); (Q.Z.); (Z.D.); (Y.Y.); (J.L.); (Y.W.)
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Zhongping Ding
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (R.L.); (F.T.); (Y.C.); (Q.Z.); (Z.D.); (Y.Y.); (J.L.); (Y.W.)
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Yuan Yao
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (R.L.); (F.T.); (Y.C.); (Q.Z.); (Z.D.); (Y.Y.); (J.L.); (Y.W.)
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
| | - Jiao Liu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (R.L.); (F.T.); (Y.C.); (Q.Z.); (Z.D.); (Y.Y.); (J.L.); (Y.W.)
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
| | - Yajie Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (R.L.); (F.T.); (Y.C.); (Q.Z.); (Z.D.); (Y.Y.); (J.L.); (Y.W.)
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
| | - Xinwen Hu
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Jianchun Guo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (R.L.); (F.T.); (Y.C.); (Q.Z.); (Z.D.); (Y.Y.); (J.L.); (Y.W.)
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| |
Collapse
|
39
|
Jiang Y, Wei C, Jiao Q, Li G, Alyemeni MN, Ahmad P, Shah T, Fahad S, Zhang J, Zhao Y, Liu F, Liu S, Liu H. Interactive effect of silicon and zinc on cadmium toxicity alleviation in wheat plants. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131933. [PMID: 37421854 DOI: 10.1016/j.jhazmat.2023.131933] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/12/2023] [Accepted: 06/23/2023] [Indexed: 07/10/2023]
Abstract
Silicon (Si) and Zinc (Zn) have been frequently used to alleviate cadmium (Cd) toxicity, which are feasible strategies for crop safety production. However, the mechanisms underlying the interaction of Si and Zn on alleviating Cd toxicity are not well understood. A hydroponic system was adopted to evaluate morphological, physiological-biochemical responses, and related gene expression of wheat seedlings to Si (1 mM) and Zn (50 µM) addition under Cd stress (10 µM). Cd induced obvious inhibition of wheat growth by disturbing photosynthesis and chlorophyll synthesis, provoking generation of reactive oxygen species (ROS) and interfering ion homeostasis. Cd concentration was decreased by 68.3%, 43.1% and 73.3% in shoot, and 78.9%, 44.1% and 85.8% in root by Si, Zn, and combination of Si with Zn, relative to Cd only, respectively. Si and Zn effectively ameliorated Cd toxicity and enhanced wheat growth; but single Si or combination of Si with Zn had more efficient ability on alleviating Cd stress than only Zn, indicating Si and Zn have synergistic effect on Cd toxicity; Interaction of them alleviated oxidative stress by reducing ROS content, improving AsA-GSH cycle and antioxidant enzymes activities, and regulating Cd into vacuole through PC-Cd complexes transported by HMA3 transporter. Our results suggest that fertilizers including Si and Zn should be made to reduce Cd content, which will beneficial for food production and safety.
Collapse
Affiliation(s)
- Ying Jiang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Chang Wei
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Qiujuan Jiao
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Gezi Li
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Parvaiz Ahmad
- Department of Botany, GDC Pulwama, 192301 Jammu and Kashmir, India
| | - Tariq Shah
- Plant Science Research Unit, United States Department for Agriculture (USDA), ARS, Raleigh, NC, USA
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan
| | - Jingjing Zhang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Ying Zhao
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Fang Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Shiliang Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Haitao Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China.
| |
Collapse
|
40
|
He X, Liu S, Huang X, Yu F, Li Y, Li F, Liu K. Effects of sulfate on the photosynthetic physiology characteristics of Hydrocotyle vulgaris under zinc stress. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:724-735. [PMID: 37544656 DOI: 10.1071/fp23054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023]
Abstract
The effects of sulfate on the zinc (Zn) bioaccumulation characteristics and photophysiological mechanisms of the ornamental plant Hydrocotyle vulgaris were explored using a hydroponic culture under three Zn concentrations (300, 500 and 700mgL-1 ) with (400μmolL-1 ) or without the addition of sulfate. Results showed that: (1) tissue Zn concentrations and total Zn contents increased with increasing hydroponic culture Zn concentrations; and sulfate addition decreased Zn uptake and translocation from roots to shoots; (2) Zn exposure decreased photosynthetic pigment synthesis, while sulfate changed this phenomenon, especially for chlorophyll a under 300mgL-1 Zn treatment; (3) Zn exposure decreased photosynthetic function, while sulfate had positive effects, especially on the photosynthetic rate (Pn ) and stomatal conductance (Gs ); and (4) chlorophyll fluorescence parameters related to light energy capture, transfer and assimilation were generally downregulated under Zn stress, while sulfate had a positive effect on these processes. Furthermore, compared to photosynthetic pigment synthesis and photosynthesis, chlorophyll fluorescence was more responsive, especially under 300mgL-1 Zn treatment with sulfate addition. In general, Zn stress affected photophysiological processes at different levels, while sulfate decreased Zn uptake, translocation, and bioaccumulation and showed a positive function in alleviating Zn stress, ultimately resulting in plant growth promotion. All of these results provide a theoretical reference for combining H. vulgaris with sulfate application in the bioremediation of Zn-contaminated environments at the photophysiological level.
Collapse
Affiliation(s)
- Xiaoyan He
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
| | - Shiling Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
| | - Xiaoqian Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
| | - Fangming Yu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
| | - Yi Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
| | - Furong Li
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Kehui Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
| |
Collapse
|
41
|
Lu J, Ye R, Qu M, Wang Y, Liang T, Lin J, Xie R, Ke Y, Gao J, Li C, Guo J, Tang W, Li W, Chen S. Combined transcriptome and proteome analysis revealed the molecular regulation mechanisms of zinc homeostasis and antioxidant machinery in tobacco in response to different zinc supplies. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107919. [PMID: 37557018 DOI: 10.1016/j.plaphy.2023.107919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/11/2023]
Abstract
Zinc (Zn) is an essential micronutrient for plants. Adequate regulation of Zn uptake, transport and distribution, and adaptation to Zn-deficiency stress or Zn-excess toxicity are crucial for plant growth and development. However, little has been done to understand the molecular responses of plants toward different Zn supply levels. In the present study, we investigated the growth and physiological responses of tobacco seedlings grown under Zn-completely deficient, Zn-limiting, Zn-normal, and Zn-4-fold sufficient conditions, respectively, and demonstrated that Zn deficiency/limitation caused oxidative stress and impaired growth of tobacco plants. Combined transcriptome and proteome analysis revealed up-regulation of genes/proteins associated with Zn uptake and distribution, including ZIPs, NAS3s, and HMA1s, and up-regulation of genes/proteins involved in regulation of oxidative stress, including SODs, APX1s, GPX6, and GSTs in tobacco seedlings in response to Zn deficiency/limitation, suggesting that tobacco possessed mechanisms to regulate Zn homeostasis primarily through up-regulation of the ZIPs-NAS3s module, and to alleviate Zn deficiency/limitation-induced oxidative stress through activation of the antioxidant machinery. Our results provide novel insights into the adaptive mechanisms of tobacco in response to different Zn supplies, and would lay a theoretical foundation for development of varieties of tobacco or its relatives with high tolerance to Zn-deficiency.
Collapse
Affiliation(s)
- Jianjun Lu
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Rongrong Ye
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Mengyu Qu
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China; College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuemin Wang
- Fujian Institute of Tobacco Sciences, Fuzhou 350003, China
| | - Tingmin Liang
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China; College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinbin Lin
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China; College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rongrong Xie
- Fujian Institute of Tobacco Sciences, Fuzhou 350003, China; International Magnesium Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuqin Ke
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jingjuan Gao
- Fujian Institute of Tobacco Sciences, Fuzhou 350003, China; International Magnesium Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chunying Li
- Fujian Institute of Tobacco Sciences, Fuzhou 350003, China
| | - Jinping Guo
- Fujian Institute of Tobacco Sciences, Fuzhou 350003, China
| | - Weiqi Tang
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China.
| | - Wenqing Li
- Fujian Institute of Tobacco Sciences, Fuzhou 350003, China.
| | - Songbiao Chen
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China.
| |
Collapse
|
42
|
Kushwah AS, Dixit H, Upadhyay V, Yadav S, Verma SK, Prasad R. Elucidating the zinc-binding proteome of Fusarium oxysporum f. sp. lycopersici with particular emphasis on zinc-binding effector proteins. Arch Microbiol 2023; 205:298. [PMID: 37516670 DOI: 10.1007/s00203-023-03638-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/29/2023] [Accepted: 07/14/2023] [Indexed: 07/31/2023]
Abstract
Fusarium oxysporum f. sp. lycopersici is a soil-borne phytopathogenic species which causes vascular wilt disease in the Solanum lycopersicum (tomato). Due to the continuous competition for zinc usage by Fusarium and its host during infection makes zinc-binding proteins a hotspot for focused investigation. Zinc-binding effector proteins are pivotal during the infection process, working in conjunction with other essential proteins crucial for its biological activities. This work aims at identifying and analysing zinc-binding proteins and zinc-binding proteins effector candidates of Fusarium. We have identified three hundred forty-six putative zinc-binding proteins; among these proteins, we got two hundred and thirty zinc-binding proteins effector candidates. The functional annotation, subcellular localization, and Gene Ontology analysis of these putative zinc-binding proteins revealed their probable role in wide range of cellular and biological processes such as metabolism, gene expression, gene expression regulation, protein biosynthesis, protein folding, cell signalling, DNA repair, and RNA processing. Sixteen proteins were found to be putatively secretory in nature. Eleven of these were putative zinc-binding protein effector candidates may be involved in pathogen-host interaction during infection. The information obtained here may enhance our understanding to design, screen, and apply the zinc-metal ion-based antifungal agents to protect the S. lycopersicum and control the vascular wilt caused by F. oxysporum.
Collapse
Affiliation(s)
- Ankita Singh Kushwah
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Himisha Dixit
- Centre for Computational Biology & Bioinformatics, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, 176206, India
| | - Vipin Upadhyay
- Centre for Computational Biology & Bioinformatics, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, 176206, India
| | - Siddharth Yadav
- Department of Computer Science and Engineering, Thapar Institute of Engineering & Technology, Patiala, Punjab, 147004, India
| | - Shailender Kumar Verma
- Centre for Computational Biology & Bioinformatics, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, 176206, India
- Department of Environmental Studies, University of Delhi, New Delhi, Delhi, 110007, India
| | - Ramasare Prasad
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
43
|
Chen X, Zhao Y, Zhong Y, Chen J, Qi X. Deciphering the functional roles of transporter proteins in subcellular metal transportation of plants. PLANTA 2023; 258:17. [PMID: 37314548 DOI: 10.1007/s00425-023-04170-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023]
Abstract
MAIN CONCLUSION The role of transporters in subcellular metal transport is of great significance for plants in coping with heavy metal stress and maintaining their proper growth and development. Heavy metal toxicity is a serious long-term threat to plant growth and agricultural production, becoming a global environmental concern. Excessive heavy metal accumulation not only damages the biochemical and physiological functions of plants but also causes chronic health hazard to human beings through the food chain. To deal with heavy metal stress, plants have evolved a series of elaborate mechanisms, especially a variety of spatially distributed transporters, to strictly regulate heavy metal uptake and distribution. Deciphering the subcellular role of transporter proteins in controlling metal absorption, transport and separation is of great significance for understanding how plants cope with heavy metal stress and improving their adaptability to environmental changes. Hence, we herein introduce the detrimental effects of excessive common essential and non-essential heavy metals on plant growth, and describe the structural and functional characteristics of transporter family members, with a particular emphasis on their roles in maintaining heavy metal homeostasis in various organelles. Besides, we discuss the potential of controlling transporter gene expression by transgenic approaches in response to heavy metal stress. This review will be valuable to researchers and breeders for enhancing plant tolerance to heavy metal contamination.
Collapse
Affiliation(s)
- Xingqi Chen
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215011, China
| | - Yuanchun Zhao
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215011, China
| | - Yuqing Zhong
- Environmental Monitoring Station of Suzhou City, Suzhou, 215004, China
| | - Jiajia Chen
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215011, China
| | - Xin Qi
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215011, China.
| |
Collapse
|
44
|
Pang C, Chai J, Zhu P, Shanklin J, Liu Q. Structural mechanism of intracellular autoregulation of zinc uptake in ZIP transporters. Nat Commun 2023; 14:3404. [PMID: 37296139 PMCID: PMC10256678 DOI: 10.1038/s41467-023-39010-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Zinc is an essential micronutrient that supports all living organisms through regulating numerous biological processes. However, the mechanism of uptake regulation by intracellular Zn2+ status remains unclear. Here we report a cryo-electron microscopy structure of a ZIP-family transporter from Bordetella bronchiseptica at 3.05 Å resolution in an inward-facing, inhibited conformation. The transporter forms a homodimer, each protomer containing nine transmembrane helices and three metal ions. Two metal ions form a binuclear pore structure, and the third ion is located at an egress site facing the cytoplasm. The egress site is covered by a loop, and two histidine residues on the loop interact with the egress-site ion and regulate its release. Cell-based Zn2+ uptake and cell growth viability assays reveal a negative regulation of Zn2+ uptake through sensing intracellular Zn2+ status using a built-in sensor. These structural and biochemical analyses provide mechanistic insight into the autoregulation of zinc uptake across membranes.
Collapse
Affiliation(s)
- Changxu Pang
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Jin Chai
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Ping Zhu
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Qun Liu
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA.
- NSLS-II, Brookhaven National Laboratory, Upton, NY, USA.
| |
Collapse
|
45
|
Seebach H, Radow G, Brunek M, Schulz F, Piotrowski M, Krämer U. Arabidopsis nicotianamine synthases comprise a common core-NAS domain fused to a variable autoinhibitory C terminus. J Biol Chem 2023; 299:104732. [PMID: 37086785 PMCID: PMC10248798 DOI: 10.1016/j.jbc.2023.104732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/07/2023] [Accepted: 04/12/2023] [Indexed: 04/24/2023] Open
Abstract
Nicotianamine synthase (NAS) catalyzes the biosynthesis of the low-molecular-mass metal chelator nicotianamine (NA) from the 2-aminobutyrate moieties of three SAM molecules. NA has central roles in metal nutrition and metal homeostasis of flowering plants. The enzymatic function of NAS remains poorly understood. Crystal structures are available for archaeal and bacterial NAS-like proteins that carry out simpler aminobutanoyl transferase reactions. Here, we report amino acids essential for the activity of AtNAS1 based on structural modeling and site-directed mutagenesis. Using a newly developed enzyme-coupled continuous activity assay, we compare differing NAS proteins identified through multiple sequence alignments and phylogenetic analyses. In most NAS of dicotyledonous and monocotyledonous plants (class Ia and Ib), the core-NAS domain is fused to a variable C-terminal domain. Compared to fungal and moss NAS that comprise merely a core-NAS domain (class III), NA biosynthetic activities of the four paralogous Arabidopsis thaliana NAS proteins were far lower. C-terminally trimmed core-AtNAS variants exhibited strongly elevated activities. Of 320 amino acids of AtNAS1, twelve, 287-TRGCMFMPCNCS-298, accounted for the autoinhibitory effect of the C terminus, of which approximately one-third was attributed to N296 within a CNCS motif that is fully conserved in Arabidopsis. No detectable NA biosynthesis was mediated by two representative plant NAS proteins that naturally lack the C-terminal domain, class Ia Arabidopsis halleri NAS5 and Medicago truncatula NAS2 of class II which is found in dicots and diverged early during the evolution of flowering plants. Next, we will address a possible posttranslational release of autoinhibition in class I NAS proteins.
Collapse
Affiliation(s)
- Hiroyuki Seebach
- Department of Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Gabriel Radow
- Department of Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Michael Brunek
- Department of Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Frank Schulz
- Chemistry and Biochemistry of Natural Products Research Group, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Markus Piotrowski
- Department of Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany.
| | - Ute Krämer
- Department of Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
46
|
Liu Y, Huang L, Wen Z, Fu Y, Liu Q, Xu S, Li Z, Liu C, Yu C, Feng Y. Effects of intercropping on safe agricultural production and phytoremediation of heavy metal-contaminated soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162700. [PMID: 36906036 DOI: 10.1016/j.scitotenv.2023.162700] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Intercropping with hyperaccumulators is believed to be an important and efficient way to achieve simultaneous safe agricultural production and phytoremediation of polluted soils. However, some studies have suggested that this technique might facilitate the uptake of heavy metals by crops. To investigate the effects of intercropping on the heavy metal contents of plants and soil, data from 135 global studies were collected and analyzed by meta-analysis. The results showed that intercropping could significantly reduce the contents of heavy metals in the main plants and soils. Plant species was the main factor that affected plant and soil metal contents in the intercropping system, and the heavy metal content could be significantly reduced when members of the Poaceae and Crassulaceae were used as main plants or when legumes were used as intercropped plants. Among all the intercropped plants, the best one for removing heavy metals from the soil was a Crassulaceae hyperaccumulator. These results not only highlight the main factors affecting intercropping systems but also provide reliable reference information for the practice of safe agricultural production coupled with phytoremediation of heavy metal-contaminated farmland.
Collapse
Affiliation(s)
- Yaru Liu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lukuan Huang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zheyu Wen
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yingyi Fu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qizhen Liu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shunan Xu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhesi Li
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chanjuan Liu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chao Yu
- Livestock Industrial Development Center of Shengzhou, Shengzhou 312400, China
| | - Ying Feng
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
47
|
Beljin J, Arsenov D, Slijepčević N, Maletić S, Đukanović N, Chalot M, Župunski M, Tomašević Pilipović D. Recycling of polluted dredged sediment - Building new materials for plant growing. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 166:13-24. [PMID: 37141783 DOI: 10.1016/j.wasman.2023.04.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/06/2023]
Abstract
The worldwide concern is caused by a large quantity of dredged sediment. The issue becomes more severe when contaminated sediment has to be landfilled. Therefore, researchers involved in the dredged sediment management are increasingly motivated to improve circularity in sediment management processes. Prior to the dredged sediment usage in agriculture, its necessary to confirm conclusively its safety in the context of trace elements (TEs) levels. This study reports the use of different solidification/stabilization (S/S) sediment amendments (cement, clay, fly ash and green synthetized nano-zerovalent iron-nZVI) to remediate dredged sediment. The aim was to identify the effects of applied sediment S/S treatments on the growth and development of Brassica napus. The results showed that in all S/S mixtures TEs levels in the highly labile and bioavailable fraction were significantly decreased (less than 10%, while untreated sediment contained up to 36% of TEs). Simultaneously, the highest share of metals (69-92%) was in the residual fraction, which is considered as chemically stable and biologically inert fraction. Nevertheless, it was noticed that different S/S treatments trigger plants' functional traits indicating that plants' establishment in S/S treated sediment can be limited to certain extent. Besides, based on primary and secondary metabolites (elevated specific leaf area along with declined malondialdehyde content) it was concluded that Brassica plants employ a conservative resource use strategy aiming to buffer phenotypes against stress condition. Lastly, it was inferred that among all analyzed S/S treatments, green synthetized nZVI from oak leaves can effectively promote TEs stabilization in dredged sediment, concurrently enabling plant's establishment and fitness.
Collapse
Affiliation(s)
- J Beljin
- Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad, Novi Sad, Serbia
| | - D Arsenov
- Faculty of Sciences, Department of Biology and Ecology, University of Novi Sad, Novi Sad, Serbia.
| | - N Slijepčević
- Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad, Novi Sad, Serbia
| | - S Maletić
- Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad, Novi Sad, Serbia
| | - N Đukanović
- Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad, Novi Sad, Serbia
| | - M Chalot
- Chrono-Environnement UMR6249, CNRS, Université Bourgogne Franche-Comté, F-25000 Besançon, France; Université de Lorraine, Faculté des Sciences et Technologies, 54000 Nancy, France
| | - M Župunski
- Faculty of Sciences, Department of Biology and Ecology, University of Novi Sad, Novi Sad, Serbia
| | - D Tomašević Pilipović
- Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
48
|
M'Rah S, Marichali A, M'Rabet Y, Chatti S, Casabianca H, Hosni K. Morphology, physiology, and biochemistry of zinc-stressed caraway plants. PROTOPLASMA 2023; 260:853-868. [PMID: 36329347 DOI: 10.1007/s00709-022-01818-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
A greenhouse pot experiment was conducted to evaluate the impact of zinc supply (0, 1, and 2 mM Zn as ZnSO4) on morpho-physiological and biochemical parameters of caraway (Carum carvi L.). Exposure to different Zn concentrations for 12 weeks compromised severely all growth parameters (plant height, number of secondary branches, diameter of primary and secondary branches, fresh and dry weight of aerial parts and roots) yield and its components (number of umbels per primary branches and secondary branches; number of umbel per plant; number of seeds per plant; and the weight of 1000 seeds). These manifestations were intimately linked with excessive accumulation of Zn in roots and leaves, alteration of the content of photosynthetic pigments, and extended lipid peroxidation. A manifest increment of proline and soluble sugar content was also observed in response to Zn application. Lipid content in seeds was dropped in Zn-treated plants and the fatty acid profiles were profoundly affected as they were enriched with saturated fatty acids at the expense of unsaturated ones. While improving their oxidative stability as revealed by the reduced values calculated oxidizability and oxidative susceptibility, Zn treatment reduced the lipid nutritional quality of caraway seeds. Moreover, Zn treatment reduced the essential oil yield and its main component carvone while it enhanced the content of its precursor limonene. It also induced alteration of terpene metabolism as revealed in the redirection of the carbon flux to the shikimate/phenylpropanoid pathway resulting in the stimulation of the production of phenolic compounds and their subsequent antioxidant activities.
Collapse
Affiliation(s)
- Sabah M'Rah
- Laboratoire Des Substances Naturelles, Institut National de Recherche Et d'Analyse Physico-Chimique (INRAP), Biorechpôle de Sidi Thabet, 2020, Ariana, Tunisia
- Laboratoire Productivité Végétale Et Contraintes Environnementales, Faculté Des Sciences de Tunis, Université Tunis El-Manar, 2092, Tunis, Tunisia
| | - Ahmed Marichali
- Laboratoire Des Substances Naturelles, Institut National de Recherche Et d'Analyse Physico-Chimique (INRAP), Biorechpôle de Sidi Thabet, 2020, Ariana, Tunisia
| | - Yassine M'Rabet
- Laboratoire Des Substances Naturelles, Institut National de Recherche Et d'Analyse Physico-Chimique (INRAP), Biorechpôle de Sidi Thabet, 2020, Ariana, Tunisia
| | - Saber Chatti
- Laboratoire Des Substances Naturelles, Institut National de Recherche Et d'Analyse Physico-Chimique (INRAP), Biorechpôle de Sidi Thabet, 2020, Ariana, Tunisia
| | - Hervé Casabianca
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, Institut Des Sciences Analytiques, UMR 5280, 5 Rue de La Doua, 69100, Villeurbanne, France
| | - Karim Hosni
- Laboratoire Des Substances Naturelles, Institut National de Recherche Et d'Analyse Physico-Chimique (INRAP), Biorechpôle de Sidi Thabet, 2020, Ariana, Tunisia.
| |
Collapse
|
49
|
Seregin IV, Ivanova TV, Voronkov AS, Kozhevnikova AD, Schat H. Zinc- and nickel-induced changes in fatty acid profiles in the zinc hyperaccumulator Arabidopsis halleri and non-accumulator Arabidopsis lyrata. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107640. [PMID: 36958152 DOI: 10.1016/j.plaphy.2023.107640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
This pilot study aimed at comparing zinc (Zn) and nickel (Ni) effects on the fatty acid (FA) profiles, oxidative stress and desaturase activity in the Zn hyperaccumulator Arabidopsis halleri and the excluder Arabidopsis lyrata to allow a better picture of the physiological mechanisms which may contribute to metal tolerance or acclimation. The most significant changes in the FA composition were observed in the shoots of the hyperaccumulator and in the roots of the excluder, and were not only metal-dependent, but also species-specific, since the most significant changes in the shoots of A. halleri were observed under Ni treatment, though Ni, in contrast to Zn, was accumulated mainly in its roots. Several FAs appeared in the roots and shoots of A. lyrata only upon metal exposure, whereas they were already found in control A. halleri. In both species, there was an increase in oleic acid under Ni treatment in both organs, whereas in Zn-treated plants the increase was shown only for the shoots. A rare conjugated α-parinaric acid was identified only in the shoots of metal-treated A. halleri. In the shoots of the hyperaccumulator, there was an increase in the content of saturated FAs and a decrease in the content of unsaturated FAs, while in the roots of the excluder, the opposite pattern was observed. These metal-induced changes in FA composition in the shoots of A. halleri can lead to a decrease in the fluidity of membranes, which could diminish the penetration of ROS into the membrane and thus maintain its stability.
Collapse
Affiliation(s)
- Ilya V Seregin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya st. 35, Moscow, 127276, Russia.
| | - Tatiana V Ivanova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya st. 35, Moscow, 127276, Russia
| | - Alexander S Voronkov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya st. 35, Moscow, 127276, Russia
| | - Anna D Kozhevnikova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya st. 35, Moscow, 127276, Russia
| | - Henk Schat
- Laboratory of Genetics, Wageningen University and Research, Droevendaalsesteeg 1, 6708, PB Wageningen, the Netherlands; Department of Ecological Science, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| |
Collapse
|
50
|
Yao J, Zhang A, Qiu Y, Li Z, Wu X, Li Z, Wu A, Yang F. Navigating zinc-involved nanomedicine in oncotherapy. NANOSCALE 2023; 15:4261-4276. [PMID: 36756840 DOI: 10.1039/d2nr06857e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Zinc (Zn), extolled as "the flower of life" in modern medicine, has been extensively highlighted with its physiological functions to maintain growth, development, and metabolism homeostasis. Driven by the substantial advancement of nanotechnology and oncology, Zn-involved nanomedicines integrating the intrinsic bioactivity of Zn species and the physiochemical attributes of Zn-composed nanosystems have blazed a highly efficient and relatively biosafe antineoplastic path. In this review, we aim to highlight and discuss the recent representative modalities of emerging Zn-involved oncology nanomedicine, mainly emphasizing the rational design, biological effect and biosafety, and therapeutic strategies. In addition, we provide the underlying critical obstacles and future perspectives of Zn-involved oncology nanomedicines, primarily focusing on the chances and challenges of clinical translation. Furthermore, we hope the review can give rise to opportunities within oncology nanomedicine and other biomedical fields, promoting the prosperity and progress of the "Zincic Age".
Collapse
Affiliation(s)
- Junlie Yao
- Ningbo Cixi Institute of BioMedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P.R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Aoran Zhang
- Ningbo Cixi Institute of BioMedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P.R. China.
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, P. R. China
| | - Yue Qiu
- Ningbo Cixi Institute of BioMedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P.R. China.
| | - Zihou Li
- Ningbo Cixi Institute of BioMedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P.R. China.
| | - Xiaoxia Wu
- Ningbo Cixi Institute of BioMedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P.R. China.
| | - Zhouhua Li
- Ningbo Cixi Institute of BioMedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P.R. China.
| | - Aiguo Wu
- Ningbo Cixi Institute of BioMedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P.R. China.
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, P. R. China
| | - Fang Yang
- Ningbo Cixi Institute of BioMedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P.R. China.
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, P. R. China
| |
Collapse
|