1
|
de Souza KA, Jackson M, Chen J, Reyes J, Muayad J, Tran E, Jackson W, Newell-Rogers MK, Earnest DJ. Shift work schedules alter immune cell regulation and accelerate cognitive impairment during aging. J Neuroinflammation 2025; 22:4. [PMID: 39780172 PMCID: PMC11716134 DOI: 10.1186/s12974-024-03324-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Disturbances of the sleep-wake cycle and other circadian rhythms typically precede the age-related deficits in learning and memory, suggesting that these alterations in circadian timekeeping may contribute to the progressive cognitive decline during aging. The present study examined the role of immune cell activation and inflammation in the link between circadian rhythm dysregulation and cognitive impairment in aging. METHODS C57Bl/6J mice were exposed to shifted light-dark (LD) cycles (12 h advance/5d) during early adulthood (from ≈ 4-6mo) or continuously to a "fixed" LD12:12 schedule. At middle age (13-14mo), the long-term effects of circadian rhythm dysregulation on cognitive performance, immune cell regulation and hippocampal microglia were analyzed using behavioral, flow cytometry and immunohistochemical assays. RESULTS Entrainment of the activity rhythm was stable in all mice on a fixed LD 12:12 cycle but was fully compromised during exposure to shifted LD cycles. Even during "post-treatment" exposure to standard LD 12:12 conditions, re-entrainment in shifted LD mice was marked by altered patterns of entrainment and increased day-to-day variability in activity onset times that persisted into middle-age. These alterations in light-dark entrainment were closely associated with dramatic impairment in the Barnes maze test for the entire group of shifted LD mice at middle age, well before cognitive decline was first observed in aged (18-22mo) animals maintained on fixed LD cycles. In conjunction with the effects of circadian dysregulation on cognition, shifted LD mice at middle age were distinguished by significant expansion of splenic B cells and B cell subtypes expressing the activation marker CD69 or inflammatory marker MHC Class II Invariant peptide (CLIP), differential increases in CLIP+, 41BB-Ligand+, and CD74 + B cells in the meningeal lymphatics, alterations in splenic T cell subtypes, and increased number and altered functional state of microglia in the dentate gyrus. In shifted LD mice, the expansion in splenic B cells was negatively correlated with cognitive performance; when B cell numbers were higher, performance was worse in the Barnes maze. These results indicate that disordered circadian timekeeping associated with early exposure to shift work-like schedules alone accelerates cognitive decline during aging in conjunction with altered regulation of immune cells and microglia in the brain.
Collapse
Affiliation(s)
- Karienn A de Souza
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M Health Science Center, Bryan, TX, 77807-3260, USA.
- Department of NExT, Texas A&M Health Science Center, 8447 State Highway 47, 2004 MREB, Bryan, TX, 77807-3260, USA.
| | - Morgan Jackson
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M Health Science Center, Bryan, TX, 77807-3260, USA
| | - Justin Chen
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M Health Science Center, Bryan, TX, 77807-3260, USA
| | - Jocelin Reyes
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M Health Science Center, Bryan, TX, 77807-3260, USA
| | - Judy Muayad
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M Health Science Center, Bryan, TX, 77807-3260, USA
| | - Emma Tran
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M Health Science Center, Bryan, TX, 77807-3260, USA
| | - William Jackson
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M Health Science Center, Bryan, TX, 77807-3260, USA
| | - M Karen Newell-Rogers
- Department of Medical Physiology, College of Medicine, Texas A&M Health Science Center, Bryan, TX, 77807-3260, USA
| | - David J Earnest
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M Health Science Center, Bryan, TX, 77807-3260, USA.
- Department of NExT, Texas A&M Health Science Center, 8447 State Highway 47, 2004 MREB, Bryan, TX, 77807-3260, USA.
| |
Collapse
|
2
|
Hayden MR, Tyagi N. Sodium Thiosulfate: An Innovative Multi-Target Repurposed Treatment Strategy for Late-Onset Alzheimer's Disease. Pharmaceuticals (Basel) 2024; 17:1741. [PMID: 39770582 PMCID: PMC11676759 DOI: 10.3390/ph17121741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Late-onset Alzheimer's disease (LOAD) is a chronic, multifactorial, and progressive neurodegenerative disease that associates with aging and is highly prevalent in our older population (≥65 years of age). This hypothesis generating this narrative review will examine the important role for the use of sodium thiosulfate (STS) as a possible multi-targeting treatment option for LOAD. Sulfur is widely available in our environment and is responsible for forming organosulfur compounds that are known to be associated with a wide range of biological activities in the brain. STS is known to have (i) antioxidant and (ii) anti-inflammatory properties; (iii) chelation properties for calcium and the pro-oxidative cation metals such as iron and copper; (iv) donor properties for hydrogen sulfide production; (v) possible restorative properties for brain endothelial-cell-derived bioavailable nitric oxide. Thus, it becomes apparent that STS has the potential for neuroprotection and neuromodulation and may allow for an attenuation of the progressive nature of neurodegeneration and impaired cognition in LOAD. STS has been successfully used to prevent cisplatin oxidative-stress-induced ototoxicity in the treatment of head and neck and solid cancers, cyanide and arsenic poisoning, and fungal skin diseases. Most recently, intravenous STS has become part of the treatment plan for calciphylaxis globally due to vascular calcification and ischemia-induced skin necrosis and ulceration. Side effects have been minimal with reports of metabolic acidosis and increased anion gap; as with any drug treatment, there is also the possibility of allergic reactions, possible long-term osteoporosis from animal studies to date, and minor side-effects of nausea, headache, and rhinorrhea if infused too rapidly. While STS poorly penetrates the intact blood-brain barrier(s) (BBBs), it could readily penetrate BBBs that are dysfunctional and disrupted to deliver its neuroprotective and neuromodulating effects in addition to its ability to penetrate the blood-cerebrospinal fluid barrier of the choroid plexus. Novel strategies such as the future use of nano-technology may be helpful in allowing an increased entry of STS into the brain.
Collapse
Affiliation(s)
- Melvin R. Hayden
- Department of Internal Medicine, Endocrinology Diabetes and Metabolism, Diabetes and Cardiovascular Disease Center, University of Missouri School of Medicine, One Hospital Drive, Columbia, MO 65211, USA
| | - Neetu Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA;
| |
Collapse
|
3
|
Kehs Z, Cross AC, Li YM. From defense to disease: IFITM3 in immunity and Alzheimer's disease. Neurotherapeutics 2024:e00482. [PMID: 39516072 DOI: 10.1016/j.neurot.2024.e00482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Innate immunity protein interferon induced transmembrane protein 3 (IFITM3) is a transmembrane protein that has a wide array of functions, including in viral infections, Alzheimer's Disease (AD), and cancer. As an interferon stimulated gene (ISG), IFITM3's expression is upregulated by type-I, II, and III interferons. Moreover, the antiviral activity of IFITM3 is modulated by post-translational modifications. IFITM3 functions in innate immunity to disrupt viral fusion and entry to the plasma membrane as well as prevent viral escape from endosomes. As a γ-secretase modulatory protein, IFITM3 distinctly modulates the processing of amyloid precursor protein (APP) to generate amyloid beta peptides (Aβ) and Notch1 cleavages. Increased IFITM3 expression, which can result from aging, cytokine activation, inflammation, and infection, can lead to an upregulation of γ-secretase for Aβ production that causes a risk of AD. Therefore, the prevention of IFITM3 upregulation has potential in the development of novel therapies for the treatment of AD.
Collapse
Affiliation(s)
- Zoe Kehs
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Programs of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Abigail C Cross
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Programs of Neuroscience, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Yue-Ming Li
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Programs of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA.
| |
Collapse
|
4
|
Kulik V, Edler MK, Raghanti MA, Imam A, Sherwood CC. Amyloid-Beta, Tau, and Microglial Activation in Aged Felid Brains. J Comp Neurol 2024; 532:e25679. [PMID: 39474737 PMCID: PMC11572721 DOI: 10.1002/cne.25679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/23/2024] [Accepted: 10/03/2024] [Indexed: 11/20/2024]
Abstract
Alzheimer's disease (AD) and its associated pathology have been primarily identified in humans, who have relatively large brains and long lifespans. To expand what is known about aging and neurodegeneration across mammalian species, we characterized amyloid-beta (Aβ) and tau lesions in five species of aged felids (n = 9; cheetah, clouded leopard, African lion, serval, Siberian tiger). We performed immunohistochemistry to detect Aβ40 and Aβ42 in plaques and vessels and hyperphosphorylated tau in the temporal lobe gyrus sylvius and in the CA1 and CA3 subfields of the hippocampus. We also quantified the densities and morphological types of microglia expressing IBA1. We found that diffuse Aβ42 plaques, but not dense-core plaques, were present more frequently in the temporal cortex and tended to be more common than Aβ40 plaques across species. Conversely, vascular Aβ was labeled more consistently with Aβ40 for each species on average. Although all individuals showed some degree of Aβ40 and/or Aβ42 immunoreactivity, only the cheetahs and clouded leopards exhibited intraneuronal hyperphosphorylated tau (i.e., pretangles), which was more common in the hippocampus. Reactive, intermediate microglia were significantly associated with total Aβ40 vessel area and pretangle load in the hippocampus. This study demonstrates the co-occurrence of Aβ and tau pathology in two felid species, cheetahs and clouded leopards. Overall, these results provide an initial view of the manifestation of Aβ and tau pathology in aged, large-brained felids, which can be compared with markers of neurodegeneration across different taxa, including domestic cats, nonhuman primates, and humans.
Collapse
Affiliation(s)
- Veronika Kulik
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC
| | - Melissa K. Edler
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH
| | - Mary Ann Raghanti
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH
| | - Aminu Imam
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC
- Department of Anatomy, University of Ilorin, Ilorin, Nigeria
| | - Chet C. Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC
| |
Collapse
|
5
|
Kim Y, Ryu SH, Hyun J, Cho YS, Jung YK. TLR2 immunotherapy suppresses neuroinflammation, tau spread, and memory loss in rTg4510 mice. Brain Behav Immun 2024; 121:291-302. [PMID: 39098437 DOI: 10.1016/j.bbi.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024] Open
Abstract
In Alzheimer's disease, chronic neuroinflammation is accompanied by amyloid and tau pathologies. Especially, aberrant microglial activation is known to precede the regional tau pathology development, but the mechanisms how microglia affect tau spread remain largely unknown. Here, we found that toll-like receptor 2 (TLR2) in microglia recognizes oligomeric tau as a pathogenic ligand and induces inflammatory responses. Knockout of TLR2 reduced tau pathology and microglial activation in rTg4510 tau transgenic mice. Treatment of oligomeric tau induced TLR2 activation and increased inflammatory responses in microglial cells. TLR2 further mediated the tau-induced microglial activation and promoted tau uptake into neurons in neuron-microglia co-culture system and in mouse hippocampus after intracranial tau injection. Importantly, treatment with anti-TLR2 monoclonal antibody Tomaralimab blocked TLR2 activation and inflammatory responses in a dose-dependent manner, and significantly reduced tau spread and memory loss in rTg4510 mice. These results suggest that TLR2 plays a crucial role in tau spread by causing aberrant microglial activation in response to pathological tau, and blocking TLR2 with immunotherapy may ameliorate tau pathogenesis in Alzheimer's disease.
Collapse
Affiliation(s)
- Youbin Kim
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul 08826, Republic of Korea; Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Shin-Hyeon Ryu
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Junho Hyun
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Young-Sin Cho
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yong-Keun Jung
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul 08826, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
6
|
Han X, Liu G, Lee SS, Yang X, Wu MN, Lu H, Wei Z. Metabolic and vascular imaging markers for investigating Alzheimer's disease complicated by sleep fragmentation in mice. Front Physiol 2024; 15:1456690. [PMID: 39371598 PMCID: PMC11449888 DOI: 10.3389/fphys.2024.1456690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/11/2024] [Indexed: 10/08/2024] Open
Abstract
Background Sleep problem is a common complication of Alzheimer's disease (AD). Extensive preclinical studies have been performed to investigate the AD pathology. However, the pathophysiological consequence of AD complicated by sleep problem remains to be further determined. Purpose To investigate brain metabolism and perfusion in an AD mouse model complicated by sleep problem, and subsequently identify potential imaging markers to better understand the associated pathophysiology. Methods We examined the oxygen extraction fraction (OEF), cerebral metabolic rate of oxygen (CMRO2), and cerebral blood flow (CBF) using state-of-the-art MRI techniques in a cohort of 5xFAD model mice. Additionally, neuroinflammation, indicated by activated microglia, was assessed using histology techniques. Sleep fragmentation (SF) was utilized as a representative for sleep problems. Results SF was associated with significant increases in OEF (P = 0.023) and CMRO2 (P = 0.029), indicating a state of hypermetabolism. CBF showed a significant genotype-by-sleep interaction effect (P = 0.026), particularly in the deep brain regions such as the hippocampus and thalamus. Neuroinflammation was primarily driven by genotype rather than SF, especially in regions with significant interaction effect in CBF measurements. Conclusion These results suggest that brain metabolism and perfusion measurements are promising markers for studying the co-pathogenesis of AD and SF.
Collapse
Affiliation(s)
- Xiaoning Han
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Guanshu Liu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, United States
| | - Sang Soo Lee
- Department of Neurology, Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Xiuli Yang
- Department of Neurology, Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mark N. Wu
- Department of Neurology, Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Hanzhang Lu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, United States
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Zhiliang Wei
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, United States
| |
Collapse
|
7
|
Dongol A, Xie Y, Zheng P, Chen X, Huang XF. Olanzapine attenuates amyloid-β-induced microglia-mediated progressive neurite lesions. Int Immunopharmacol 2024; 137:112469. [PMID: 38908083 DOI: 10.1016/j.intimp.2024.112469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024]
Abstract
The accumulation of amyloid-β (Aβ) in the brain is the first pathological mechanism to initiate Alzheimer's disease (AD) pathogenesis. However, the precise role of Aβ in the disease progression remains unclear. Through decades of research, prolonged inflammation has emerged as an important core pathology in AD. Previously, a study has demonstrated the neurotoxic effect of Aβ-induced neuroinflammation in neuron-glia co-culture at 72 h. Here, we hypothesise that initial stage Aβ may trigger microglial inflammation, synergistically contributing to the progression of neurite lesions relevant to AD progression. In the present study, we aimed to determine whether olanzapine, an antipsychotic drug possessing anti-inflammatory properties, can ameliorate Aβ-induced progressive neurite lesions. Our study reports that Aβ induces neurite lesions with or without inflammatory microglial cells in vitro. More intriguingly, the present study revealed that Aβ exacerbates neurite lesions in synergy with microglia. Moreover, the time course study revealed that Aβ promotes microglia-mediated neurite lesions by eliciting the secretion of pro-inflammatory cytokines. Furthermore, our study shows that olanzapine at lower doses prevents Aβ-induced microglia-mediated progressive neurite lesions. The increase in pro-inflammatory cytokines induced by Aβ is attenuated by olanzapine administration, associated with a reduction in microglial inflammation. Finally, this study reports that microglial senescence induced by Aβ was rescued by olanzapine. Thus, our study provides the first evidence that 1 µM to 5 µM of olanzapine can effectively prevent Aβ-induced microglia-mediated progressive neurite lesions by modulating microglial inflammation. These observations reinforce the potential of targeting microglial remodelling to slow disease progression in AD.
Collapse
Affiliation(s)
- Anjila Dongol
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, Northfields Avenue, NSW 2522, Australia
| | - Yuanyi Xie
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, Northfields Avenue, NSW 2522, Australia
| | - Peng Zheng
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, Northfields Avenue, NSW 2522, Australia
| | - Xi Chen
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, Northfields Avenue, NSW 2522, Australia
| | - Xu-Feng Huang
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, Northfields Avenue, NSW 2522, Australia.
| |
Collapse
|
8
|
Fernandes S, Revanna J, Pratt J, Hayes N, Marchetto MC, Gage FH. Modeling Alzheimer's disease using human cell derived brain organoids and 3D models. Front Neurosci 2024; 18:1434945. [PMID: 39156632 PMCID: PMC11328153 DOI: 10.3389/fnins.2024.1434945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/10/2024] [Indexed: 08/20/2024] Open
Abstract
Age-related neurodegenerative diseases, like Alzheimer's disease (AD), are challenging diseases for those affected with no cure and limited treatment options. Functional, human derived brain tissues that represent the diverse genetic background and cellular subtypes contributing to sporadic AD (sAD) are limited. Human stem cell derived brain organoids recapitulate some features of human brain cytoarchitecture and AD-like pathology, providing a tool for illuminating the relationship between AD pathology and neural cell dysregulation leading to cognitive decline. In this review, we explore current strategies for implementing brain organoids in the study of AD as well as the challenges associated with investigating age-related brain diseases using organoid models.
Collapse
Affiliation(s)
- Sarah Fernandes
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, United States
- Department of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Jasmin Revanna
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, United States
- Department of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Joshua Pratt
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, United States
- Department of Biology, San Diego State University, San Diego, CA, United States
| | - Nicholas Hayes
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, United States
- Department of Biological Sciences, California State University, San Marcos, CA, United States
| | - Maria C. Marchetto
- Department of Anthropology, Center for Academic Research and Training in Anthropogeny (CARTA), University of California, San Diego, La Jolla, CA, United States
| | - Fred H. Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, United States
| |
Collapse
|
9
|
Mei SY, Zhang N, Wang MJ, Lv PR, Liu Q. Microglial purinergic signaling in Alzheimer's disease. Purinergic Signal 2024:10.1007/s11302-024-10029-8. [PMID: 38910192 DOI: 10.1007/s11302-024-10029-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 06/03/2024] [Indexed: 06/25/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive and fatal neurodegenerative disease. The prevalent features of AD pathogenesis are the appearance of β-amyloid (Aβ) plaques and neurofibrillary tangles, which cause microglial activation, synaptic deficiency, and neuronal loss. Microglia accompanies AD pathological processes and is also linked to cognitive deficits. Purinergic signaling has been shown to play a complex and tight interplay with the chemotaxis, phagocytosis, and production of pro-inflammatory factors in microglia, which is an important mechanism for regulating microglia activation. Here, we review recent evidence for interactions between AD, microglia, and purinergic signaling and find that the purinergic P2 receptors pertinently expressed on microglia are the ionotropic receptors P2X4 and P2X7, and the subtypes of P2YRs expressed by microglia are metabotropic receptors P2Y2, P2Y6, P2Y12, and P2Y13. The adenosine P1 receptors expressed in microglia include A1R, A2AR, and A2BR. Among them, the activation of P2X4, P2X7, and adenosine A1, A2A receptors expressed in microglia can aggravate the pathological process of AD, whereas P2Y2, P2Y6, P2Y12, and P2Y13 receptors expressed by microglia can induce neuroprotective effects. However, A1R activation also has a strong neuroprotective effect and has a significant anti-inflammatory effect in chronic neuroinflammation. These receptors regulate a variety of pathophysiological processes in AD, including APP processing, Aβ production, tau phosphorylation, neuroinflammation, synaptic dysfunction, and mitochondrial dysfunction. This review also provides key pharmacological advances in purinergic signaling receptors.
Collapse
Affiliation(s)
- Shu-Ya Mei
- School of Acupuncture and Tuina, Shaanxi University of Traditional Chinese Medicine, No. 1 Middle Section of Shi-Ji Avenue, Xianyang, Shaanxi, 712046, People's Republic of China
| | - Ning Zhang
- School of Acupuncture and Tuina, Shaanxi University of Traditional Chinese Medicine, No. 1 Middle Section of Shi-Ji Avenue, Xianyang, Shaanxi, 712046, People's Republic of China
| | - Meng-Jing Wang
- School of Acupuncture and Tuina, Shaanxi University of Traditional Chinese Medicine, No. 1 Middle Section of Shi-Ji Avenue, Xianyang, Shaanxi, 712046, People's Republic of China
| | - Pei-Ran Lv
- School of Acupuncture and Tuina, Shaanxi University of Traditional Chinese Medicine, No. 1 Middle Section of Shi-Ji Avenue, Xianyang, Shaanxi, 712046, People's Republic of China.
| | - Qi Liu
- School of Acupuncture and Tuina, Shaanxi University of Traditional Chinese Medicine, No. 1 Middle Section of Shi-Ji Avenue, Xianyang, Shaanxi, 712046, People's Republic of China.
| |
Collapse
|
10
|
Umoh IO, dos Reis HJ, de Oliveira ACP. Molecular Mechanisms Linking Osteoarthritis and Alzheimer's Disease: Shared Pathways, Mechanisms and Breakthrough Prospects. Int J Mol Sci 2024; 25:3044. [PMID: 38474288 PMCID: PMC10931612 DOI: 10.3390/ijms25053044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/04/2024] [Accepted: 02/09/2024] [Indexed: 03/14/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease mostly affecting the elderly population. It is characterized by cognitive decline that occurs due to impaired neurotransmission and neuronal death. Even though deposition of amyloid beta (Aβ) peptides and aggregation of hyperphosphorylated TAU have been established as major pathological hallmarks of the disease, other factors such as the interaction of genetic and environmental factors are believed to contribute to the development and progression of AD. In general, patients initially present mild forgetfulness and difficulty in forming new memories. As it progresses, there are significant impairments in problem solving, social interaction, speech and overall cognitive function of the affected individual. Osteoarthritis (OA) is the most recurrent form of arthritis and widely acknowledged as a whole-joint disease, distinguished by progressive degeneration and erosion of joint cartilage accompanying synovitis and subchondral bone changes that can prompt peripheral inflammatory responses. Also predominantly affecting the elderly, OA frequently embroils weight-bearing joints such as the knees, spine and hips leading to pains, stiffness and diminished joint mobility, which in turn significantly impacts the patient's standard of life. Both infirmities can co-occur in older adults as a result of independent factors, as multiple health conditions are common in old age. Additionally, risk factors such as genetics, lifestyle changes, age and chronic inflammation may contribute to both conditions in some individuals. Besides localized peripheral low-grade inflammation, it is notable that low-grade systemic inflammation prompted by OA can play a role in AD pathogenesis. Studies have explored relationships between systemic inflammatory-associated diseases like obesity, hypertension, dyslipidemia, diabetes mellitus and AD. Given that AD is the most common form of dementia and shares similar risk factors with OA-both being age-related and low-grade inflammatory-associated diseases, OA may indeed serve as a risk factor for AD. This work aims to review literature on molecular mechanisms linking OA and AD pathologies, and explore potential connections between these conditions alongside future prospects and innovative treatments.
Collapse
Affiliation(s)
| | - Helton Jose dos Reis
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Av. Antonio Carlos 6627, Belo Horizonte 31270-901, MG, Brazil;
| | - Antonio Carlos Pinheiro de Oliveira
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Av. Antonio Carlos 6627, Belo Horizonte 31270-901, MG, Brazil;
| |
Collapse
|
11
|
Wang J, He Y, Chen X, Huang L, Li J, You Z, Huang Q, Ren S, He K, Schibli R, Mu L, Guan Y, Guo Q, Zhao J, Xie F. Metabotropic glutamate receptor 5 (mGluR5) is associated with neurodegeneration and amyloid deposition in Alzheimer's disease: A [ 18F]PSS232 PET/MRI study. Alzheimers Res Ther 2024; 16:9. [PMID: 38217040 PMCID: PMC10785459 DOI: 10.1186/s13195-024-01385-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/04/2024] [Indexed: 01/14/2024]
Abstract
BACKGROUND Metabotropic glutamate receptor 5 (mGluR5) is involved in regulating integrative brain function and synaptic transmission. Aberrant mGluR5 signaling and relevant synaptic failure play a key role in the initial pathophysiological mechanism of Alzheimer's disease (AD). The study aims to investigate the association between mGluR5 availability and AD's biomarkers and cognitive function. METHODS We examined 35 individuals with mGluR5 tracer [18F]PSS232 to assess mGluR5 availability, and with [18F]Florbetapir PET to assess global amyloid deposition, and [18F]FDG PET to assess glucose metabolism. The plasma neurofilament light (NfL) and p-tau181 levels in a subset of individuals were measured (n = 27). The difference in mGluR5 availability between the AD and normal control (NC) groups was explored. The associations of mGluR5 availability with amyloid deposition, glucose metabolism, gray matter volume (GMV), neuropsychological assessment scores, and plasma biomarkers were analyzed. RESULTS The mGluR5 availability was significantly reduced in AD patients' hippocampus and parahippocampal gyrus compared to NCs. Global amyloid deposition was positively associated with mGluR5 availability in the AD group and reversely associated in the NC group. The mGluR5 availability was positively correlated with regional glucose metabolism in the overall and stratified analyses. The availability of mGluR5 in the hippocampus and parahippocampal gyrus demonstrated a strong relationship with the GMV of the medial temporal lobe, plasma p-tau181 or NfL levels, and global cognitive performance. CONCLUSIONS [18F]PSS232 PET can quantify the changes of mGluR5 availability in the progression of AD. mGluR5 availability correlated not only with neuropathological biomarkers of AD but also with neurodegenerative biomarkers and cognitive performance. mGluR5 may be a novel neurodegenerative biomarker, and whether mGluR5 could be a potential therapeutic target for AD needs to be further studied.
Collapse
Affiliation(s)
- Jie Wang
- Department of Nuclear Medicine &PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yingfang He
- Department of Chemistry and Applied Biosciences, Center for Radiopharmaceutical Sciences, Institute of Pharmaceutical Sciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Xing Chen
- Department of Nuclear Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lin Huang
- Department of Gerontology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Junpeng Li
- Department of Nuclear Medicine &PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhiwen You
- Department of Nuclear Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qi Huang
- Department of Nuclear Medicine &PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Shuhua Ren
- Department of Nuclear Medicine &PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Kun He
- Department of Nuclear Medicine &PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Roger Schibli
- Department of Chemistry and Applied Biosciences, Center for Radiopharmaceutical Sciences, Institute of Pharmaceutical Sciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Linjing Mu
- Department of Chemistry and Applied Biosciences, Center for Radiopharmaceutical Sciences, Institute of Pharmaceutical Sciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Yihui Guan
- Department of Nuclear Medicine &PET Center, Huashan Hospital, Fudan University, Shanghai, China.
| | - Qihao Guo
- Department of Gerontology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Jun Zhao
- Department of Nuclear Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Fang Xie
- Department of Nuclear Medicine &PET Center, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
12
|
Sheremeta CL, Yarlagadda S, Smythe ML, Noakes PG. Prostaglandins in the Inflamed Central Nervous System: Potential Therapeutic Targets. Curr Drug Targets 2024; 25:885-908. [PMID: 39177131 PMCID: PMC11774313 DOI: 10.2174/0113894501323980240815113851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 08/24/2024]
Abstract
The global burden of neurological disorders is evident, yet there remains limited efficacious therapeutics for their treatment. There is a growing recognition of the role of inflammation in diseases of the central nervous system (CNS); among the numerous inflammatory mediators involved, prostaglandins play a crucial role. Prostaglandins are small lipid mediators derived from arachidonic acid via multi-enzymatic pathways. The actions of prostaglandins are varied, with each prostaglandin having a specific role in maintaining homeostasis. In the CNS, prostaglandins can have neuroprotective or neurotoxic properties depending on their specific G-protein receptor. These G-protein receptors have varying subfamilies, tissue distribution, and signal transduction cascades. Further studies into the impact of prostaglandins in CNS-based diseases may contribute to the clarification of their actions, hopefully leading to the development of efficacious therapeutic strategies. This review focuses on the roles played by prostaglandins in neural degeneration, with a focus on Alzheimer's Disease, Multiple Sclerosis, and Amyotrophic Lateral Sclerosis in both preclinical and clinical settings. We further discuss current prostaglandin-related agonists and antagonists concerning suggestions for their use as future therapeutics.
Collapse
Affiliation(s)
- Chynna-Loren Sheremeta
- Institute for Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Sai Yarlagadda
- Institute for Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Mark L. Smythe
- Institute for Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Peter G. Noakes
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
13
|
Galizzi G, Di Carlo M. Mitochondrial DNA and Inflammation in Alzheimer's Disease. Curr Issues Mol Biol 2023; 45:8586-8606. [PMID: 37998717 PMCID: PMC10670154 DOI: 10.3390/cimb45110540] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/15/2023] [Accepted: 10/20/2023] [Indexed: 11/25/2023] Open
Abstract
Mitochondrial dysfunction and neuroinflammation are implicated in the pathogenesis of most neurodegenerative diseases, such as Alzheimer's disease (AD). In fact, although a growing number of studies show crosstalk between these two processes, there remain numerous gaps in our knowledge of the mechanisms involved, which requires further clarification. On the one hand, mitochondrial dysfunction may lead to the release of mitochondrial damage-associated molecular patterns (mtDAMPs) which are recognized by microglial immune receptors and contribute to neuroinflammation progression. On the other hand, inflammatory molecules released by glial cells can influence and regulate mitochondrial function. A deeper understanding of these mechanisms may help identify biomarkers and molecular targets useful for the treatment of neurodegenerative diseases. This review of works published in recent years is focused on the description of the mitochondrial contribution to neuroinflammation and neurodegeneration, with particular attention to mitochondrial DNA (mtDNA) and AD.
Collapse
Affiliation(s)
- Giacoma Galizzi
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), Via Ugo La Malfa, 153-90146 Palermo, Italy;
| | | |
Collapse
|
14
|
Terstege DJ, Epp JR. Parvalbumin as a sex-specific target in Alzheimer's disease research - A mini-review. Neurosci Biobehav Rev 2023; 153:105370. [PMID: 37619647 DOI: 10.1016/j.neubiorev.2023.105370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, and both the incidence of this disease and its associated cognitive decline disproportionally effect women. While the etiology of AD is unknown, recent work has demonstrated that the balance of excitatory and inhibitory activity across the brain may serve as a strong predictor of cognitive impairments in AD. Across the cortex, the most prominent source of inhibitory signalling is from a class of parvalbumin-expressing interneurons (PV+). In this mini-review, the impacts of sex- and age-related factors on the function of PV+ neurons are examined within the context of vulnerability to AD pathology. These primary factors of influence include changes in brain metabolism, circulating sex hormone levels, and inflammatory response. In addition to positing the increased vulnerability of PV+ neurons to dysfunction in AD, this mini-review highlights the critical importance of presenting sex stratified data in the study of AD.
Collapse
Affiliation(s)
- Dylan J Terstege
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Jonathan R Epp
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada.
| |
Collapse
|
15
|
Tamburini B, Badami GD, La Manna MP, Shekarkar Azgomi M, Caccamo N, Dieli F. Emerging Roles of Cells and Molecules of Innate Immunity in Alzheimer's Disease. Int J Mol Sci 2023; 24:11922. [PMID: 37569296 PMCID: PMC10418700 DOI: 10.3390/ijms241511922] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
The inflammatory response that marks Alzheimer's disease (neuroinflammation) is considered a double-edged sword. Microglia have been shown to play a protective role at the beginning of the disease. Still, persistent harmful stimuli further activate microglia, inducing an exacerbating inflammatory process which impairs β-amyloid peptide clearance capability and leads to neurotoxicity and neurodegeneration. Moreover, microglia also appear to be closely involved in the spread of tau pathology. Soluble TREM2 also represents a crucial player in the neuroinflammatory processes. Elevated levels of TREM2 in cerebrospinal fluid have been associated with increased amyloid plaque burden, neurodegeneration, and cognitive decline in individuals with Alzheimer's disease. Understanding the intricate relationship between innate immunity and Alzheimer's disease will be a promising strategy for future advancements in diagnosis and new therapeutic interventions targeting innate immunity, by modulating its activity. Still, additional and more robust studies are needed to translate these findings into effective treatments. In this review, we focus on the role of cells (microglia, astrocytes, and oligodendrocytes) and molecules (TREM2, tau, and β-amyloid) of the innate immune system in the pathogenesis of Alzheimer's disease and their possible exploitation as disease biomarkers and targets of therapeutical approaches.
Collapse
Affiliation(s)
- Bartolo Tamburini
- Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (G.D.B.); (M.P.L.M.); (M.S.A.); (F.D.)
| | - Giusto Davide Badami
- Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (G.D.B.); (M.P.L.M.); (M.S.A.); (F.D.)
| | - Marco Pio La Manna
- Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (G.D.B.); (M.P.L.M.); (M.S.A.); (F.D.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP Paolo Giaccone, 90127 Palermo, Italy
| | - Mojtaba Shekarkar Azgomi
- Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (G.D.B.); (M.P.L.M.); (M.S.A.); (F.D.)
| | - Nadia Caccamo
- Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (G.D.B.); (M.P.L.M.); (M.S.A.); (F.D.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP Paolo Giaccone, 90127 Palermo, Italy
| | - Francesco Dieli
- Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (G.D.B.); (M.P.L.M.); (M.S.A.); (F.D.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP Paolo Giaccone, 90127 Palermo, Italy
| |
Collapse
|
16
|
Sunna S, Bowen CA, Ramelow CC, Santiago JV, Kumar P, Rangaraju S. Advances in proteomic phenotyping of microglia in neurodegeneration. Proteomics 2023; 23:e2200183. [PMID: 37060300 PMCID: PMC10528430 DOI: 10.1002/pmic.202200183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/16/2023]
Abstract
Microglia are dynamic resident immune cells of the central nervous system (CNS) that sense, survey, and respond to changes in their environment. In disease states, microglia transform from homeostatic to diverse molecular phenotypic states that play complex and causal roles in neurologic disease pathogenesis, as evidenced by the identification of microglial genes as genetic risk factors for neurodegenerative disease. While advances in transcriptomic profiling of microglia from the CNS of humans and animal models have provided transformative insights, the transcriptome is only modestly reflective of the proteome. Proteomic profiling of microglia is therefore more likely to provide functionally and therapeutically relevant targets. In this review, we discuss molecular insights gained from transcriptomic studies of microglia in the context of Alzheimer's disease as a prototypic neurodegenerative disease, and highlight existing and emerging approaches for proteomic profiling of microglia derived from in vivo model systems and human brain.
Collapse
Affiliation(s)
- Sydney Sunna
- Department of Neurology, Emory University,201 Dowman Drive Atlanta Georgia, 30322, United States of America
- Center for Neurodegenerative Diseases, Emory University, Atlanta, GA 30322, USA
| | - Christine A. Bowen
- Department of Neurology, Emory University,201 Dowman Drive Atlanta Georgia, 30322, United States of America
- Center for Neurodegenerative Diseases, Emory University, Atlanta, GA 30322, USA
- Department of Biochemistry, Emory University, Atlanta, GA 30322, USA
| | - Christina C. Ramelow
- Department of Neurology, Emory University,201 Dowman Drive Atlanta Georgia, 30322, United States of America
- Center for Neurodegenerative Diseases, Emory University, Atlanta, GA 30322, USA
| | - Juliet V. Santiago
- Department of Neurology, Emory University,201 Dowman Drive Atlanta Georgia, 30322, United States of America
- Center for Neurodegenerative Diseases, Emory University, Atlanta, GA 30322, USA
| | - Prateek Kumar
- Department of Neurology, Emory University,201 Dowman Drive Atlanta Georgia, 30322, United States of America
- Center for Neurodegenerative Diseases, Emory University, Atlanta, GA 30322, USA
| | - Srikant Rangaraju
- Department of Neurology, Emory University,201 Dowman Drive Atlanta Georgia, 30322, United States of America
- Center for Neurodegenerative Diseases, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
17
|
Wang H, Li J, Zhang H, Wang M, Xiao L, Wang Y, Cheng Q. Regulation of microglia polarization after cerebral ischemia. Front Cell Neurosci 2023; 17:1182621. [PMID: 37361996 PMCID: PMC10285223 DOI: 10.3389/fncel.2023.1182621] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Stroke ranks second as a leading cause of death and permanent disability globally. Microglia, innate immune cells in the brain, respond rapidly to ischemic injury, triggering a robust and persistent neuroinflammatory reaction throughout the disease's progression. Neuroinflammation plays a critical role in the mechanism of secondary injury in ischemic stroke and is a significant controllable factor. Microglia activation takes on two general phenotypes: the pro-inflammatory M1 type and the anti-inflammatory M2 type, although the reality is more complex. The regulation of microglia phenotype is crucial to controlling the neuroinflammatory response. This review summarized the key molecules and mechanisms of microglia polarization, function, and phenotypic transformation following cerebral ischemia, with a focus on the influence of autophagy on microglia polarization. The goal is to provide a reference for the development of new targets for the treatment for ischemic stroke treatment based on the regulation of microglia polarization.
Collapse
Affiliation(s)
- Hao Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Province Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Jingjing Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Province Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Han Zhang
- School of Medicine, Nantong University, Nantong, China
| | - Mengyao Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Province Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Lifang Xiao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Province Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Yitong Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Province Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Qiong Cheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Province Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| |
Collapse
|
18
|
Gąssowska-Dobrowolska M, Chlubek M, Kolasa A, Tomasiak P, Korbecki J, Skowrońska K, Tarnowski M, Masztalewicz M, Baranowska-Bosiacka I. Microglia and Astroglia-The Potential Role in Neuroinflammation Induced by Pre- and Neonatal Exposure to Lead (Pb). Int J Mol Sci 2023; 24:9903. [PMID: 37373050 DOI: 10.3390/ijms24129903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Neuroinflammation is one of the postulated mechanisms for Pb neurotoxicity. However, the exact molecular mechanisms responsible for its pro-inflammatory effect are not fully elucidated. In this study, we examined the role of glial cells in neuroinflammation induced by Pb exposure. We investigated how microglia, a type of glial cell, responded to the changes caused by perinatal exposure to Pb by measuring the expression of Iba1 at the mRNA and protein levels. To assess the state of microglia, we analyzed the mRNA levels of specific markers associated with the cytotoxic M1 phenotype (Il1b, Il6, and Tnfa) and the cytoprotective M2 phenotype (Arg1, Chi3l1, Mrc1, Fcgr1a, Sphk1, and Tgfb1). Additionally, we measured the concentration of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α). To assess the reactivity and functionality status of astrocytes, we analyzed the GFAP (mRNA expression and protein concentration) as well as glutamine synthase (GS) protein level and activity. Using an electron microscope, we assessed ultrastructural abnormalities in the examined brain structures (forebrain cortex, cerebellum, and hippocampus). In addition, we measured the mRNA levels of Cxcl1 and Cxcl2, and their receptor, Cxcr2. Our data showed that perinatal exposure to Pb at low doses affected both microglia and astrocyte cells' status (their mobilization, activation, function, and changes in gene expression profile) in a brain-structure-specific manner. The results suggest that both microglia and astrocytes represent a potential target for Pb neurotoxicity, thus being key mediators of neuroinflammation and further neuropathology evoked by Pb poisoning during perinatal brain development.
Collapse
Affiliation(s)
- Magdalena Gąssowska-Dobrowolska
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Mikołaj Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Agnieszka Kolasa
- Department of Histology and Embryology, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Patrycja Tomasiak
- Department of Physiology in Health Sciences, Pomeranian Medical University in Szczecin, Żołnierska 54, 70-210 Szczecin, Poland
| | - Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28 St., 65-046 Zielona Góra, Poland
| | - Katarzyna Skowrońska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Maciej Tarnowski
- Department of Physiology in Health Sciences, Pomeranian Medical University in Szczecin, Żołnierska 54, 70-210 Szczecin, Poland
| | - Marta Masztalewicz
- Department of Neurology, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| |
Collapse
|
19
|
Kloske CM, Barnum CJ, Batista AF, Bradshaw EM, Brickman AM, Bu G, Dennison J, Gearon MD, Goate AM, Haass C, Heneka MT, Hu WT, Huggins LKL, Jones NS, Koldamova R, Lemere CA, Liddelow SA, Marcora E, Marsh SE, Nielsen HM, Petersen KK, Petersen M, Piña-Escudero SD, Qiu WQ, Quiroz YT, Reiman E, Sexton C, Tansey MG, Tcw J, Teunissen CE, Tijms BM, van der Kant R, Wallings R, Weninger SC, Wharton W, Wilcock DM, Wishard TJ, Worley SL, Zetterberg H, Carrillo MC. APOE and immunity: Research highlights. Alzheimers Dement 2023; 19:2677-2696. [PMID: 36975090 DOI: 10.1002/alz.13020] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 03/29/2023]
Abstract
INTRODUCTION At the Alzheimer's Association's APOE and Immunity virtual conference, held in October 2021, leading neuroscience experts shared recent research advances on and inspiring insights into the various roles that both the apolipoprotein E gene (APOE) and facets of immunity play in neurodegenerative diseases, including Alzheimer's disease and other dementias. METHODS The meeting brought together more than 1200 registered attendees from 62 different countries, representing the realms of academia and industry. RESULTS During the 4-day meeting, presenters illuminated aspects of the cross-talk between APOE and immunity, with a focus on the roles of microglia, triggering receptor expressed on myeloid cells 2 (TREM2), and components of inflammation (e.g., tumor necrosis factor α [TNFα]). DISCUSSION This manuscript emphasizes the importance of diversity in current and future research and presents an integrated view of innate immune functions in Alzheimer's disease as well as related promising directions in drug development.
Collapse
Affiliation(s)
| | | | - Andre F Batista
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Departments of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Elizabeth M Bradshaw
- Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| | - Adam M Brickman
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, G.H. Sergievsky Center, and Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Jessica Dennison
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Mary D Gearon
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Alison M Goate
- Department of Genetics & Genomic Sciences, Ronald M. Loeb Center for Alzheimer's disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Christian Haass
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany 3 Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine (LCSB) University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - William T Hu
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School and Center for Healthy Aging, Rutgers Institute for Health, Health Care Policy, and Aging Research, New Brunswick, New Jersey, USA
| | - Lenique K L Huggins
- Department of Biology, Duke University, Durham, North Carolina, USA
- Yale School of Medicine, New Haven, Connecticut, USA
| | - Nahdia S Jones
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, District of Columbia, USA
| | - Radosveta Koldamova
- EOH, School of Public Health University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Cynthia A Lemere
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Departments of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Shane A Liddelow
- Neuroscience Institute and Departments of Neuroscience & Physiology and of Ophthalmology, NYU Grossman School of Medicine, New York, New York, USA
| | - Edoardo Marcora
- Ronald M. Loeb Center for Alzheimer's disease, Dept. of Genetics & Genomic Sciences, Dept. of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Samuel E Marsh
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Henrietta M Nielsen
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Kellen K Petersen
- The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Melissa Petersen
- Department of Family Medicine, Institute of Translational Research, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Stefanie D Piña-Escudero
- Global Brain Health Institute, Department of Neurology, University of California, San Francisco, California, USA
| | - Wei Qiao Qiu
- Boston University School of Medicine, Boston, Massachusetts, USA
| | - Yakeel T Quiroz
- Departments of Psychiatry and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Eric Reiman
- Banner Alzheimer's Institute, Phoenix, Arizona, USA
- Banner Research, Phoenix, Arizona, USA
| | | | - Malú Gámez Tansey
- Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Julia Tcw
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Clinical Chemistry department, Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Betty M Tijms
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Rik van der Kant
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Rebecca Wallings
- CTRND, Department of Neuroscience, University of Florida, Florida, USA
| | | | | | - Donna M Wilcock
- Sanders-Brown Center on Aging and Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Tyler James Wishard
- Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California, USA
| | - Susan L Worley
- Independent science writer, Bryn Mawr, Pennsylvania, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | | |
Collapse
|
20
|
Zhang B, Zhao Y, Guo K, Tian H, Wang C, Wang R, Chen Y, Chen X, Zheng H, Gao B, Shen J, Tian W. Macromolecular nanoparticles to attenuate both reactive oxygen species and inflammatory damage for treating Alzheimer's disease. Bioeng Transl Med 2023; 8:e10459. [PMID: 37206236 PMCID: PMC10189435 DOI: 10.1002/btm2.10459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022] Open
Abstract
Prevention and early intervention are the current focus of treatment for Alzheimer's disease (AD). An increase in reactive oxygen species (ROS) is a feature of the early stages of AD, thus suggesting that the removal of excess ROS can be a viable method of improving AD. Natural polyphenols are able to scavenge ROS and thus promising for treating AD. However, some issues need to be addressed. Among them, important are that most polyphenols are hydrophobic, have low bioavailability in the body, are easily degraded, and that single polyphenols have insufficient antioxidant capacity. In this study, we employed two polyphenols, resveratrol (RES) and oligomeric proanthocyanidin (OPC), and creatively grafted them with hyaluronic acid (HA) to form nanoparticles to address the aforementioned issues. Meanwhile, we strategically grafted the nanoparticles with the B6 peptide, enabling the nanoparticles to cross the blood-brain barrier (BBB) and enter the brain for AD treatment. Our results illustrate that B6-RES-OPC-HA nanoparticles can significantly scavenge ROS, reduce brain inflammation, and improve learning and memory ability in AD mice. B6-RES-OPC-HA nanoparticles have the potential to prevent and alleviate early AD.
Collapse
Affiliation(s)
- Bosong Zhang
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbinChina
| | - Yufang Zhao
- Laboratory for Space Environment and Physical SciencesHarbin Institute of TechnologyHarbinChina
| | - Kai Guo
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbinChina
| | - Hui Tian
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbinChina
| | - Cao Wang
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbinChina
| | - Ruiqi Wang
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbinChina
| | - Yue Chen
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbinChina
| | - Xiongbiao Chen
- Department of Mechanical Engineering, College of EngineeringUniversity of SaskatchewanSaskatoonCanada
- Division of Biomedical Engineering, College of EngineeringUniversity of SaskatchewanSaskatoonCanada
| | | | - Bingxin Gao
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbinChina
| | - Jieyi Shen
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbinChina
| | - Weiming Tian
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbinChina
| |
Collapse
|
21
|
Canet G, Zussy C, Hernandez C, Maurice T, Desrumaux C, Givalois L. The pathomimetic oAβ25–35 model of Alzheimer's disease: Potential for screening of new therapeutic agents. Pharmacol Ther 2023; 245:108398. [PMID: 37001735 DOI: 10.1016/j.pharmthera.2023.108398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly, currently affecting more than 40 million people worldwide. The two main histopathological hallmarks of AD were identified in the 1980s: senile plaques (composed of aggregated amyloid-β (Aβ) peptides) and neurofibrillary tangles (composed of hyperphosphorylated tau protein). In the human brain, both Aβ and tau show aggregation into soluble and insoluble oligomers. Soluble oligomers of Aβ include their most predominant forms - Aβ1-40 and Aβ1-42 - as well as shorter peptides such as Aβ25-35 or Aβ25-35/40. Most animal models of AD have been developed using transgenesis, based on identified human mutations. However, these familial forms of AD represent less than 1% of AD cases. In this context, the idea emerged in the 1990s to directly inject the Aβ25-35 fragment into the rodent brain to develop an acute model of AD that could mimic the disease's sporadic forms (99% of all cases). This review aims to: (1) summarize the biological activity of Aβ25-35, focusing on its impact on the main structural and functional alterations observed in AD (cognitive deficits, APP misprocessing, tau system dysfunction, neuroinflammation, oxidative stress, cholinergic and glutamatergic alterations, HPA axis dysregulation, synaptic deficits and cell death); and (2) confirm the interest of this pathomimetic model in AD research, as it has helped identify and characterize many molecules (marketed, in clinical development, and in preclinical testing), and to the development of alternative approaches for AD prevention and therapy. Today, the Aβ25-35 model appears as a first-intent choice model to rapidly screen the symptomatic or neuroprotective potencies of new compounds, chemical series, or innovative therapeutic strategies.
Collapse
|
22
|
Tan Y, Tang W, Xiao W, Huang R, Li X, Peng W, Yan K, Cao Y, Zeng Y, Kang J. lncRNA-associated ceRNA network revealing the potential regulatory roles of ferroptosis and immune infiltration in Alzheimer's disease. Front Aging Neurosci 2023; 15:1105690. [PMID: 36875702 PMCID: PMC9979855 DOI: 10.3389/fnagi.2023.1105690] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/05/2023] [Indexed: 02/18/2023] Open
Abstract
Background Alzheimer's disease (AD) is the most common form of dementia characterized by a prominent cognitive deterioration of sufficient magnitude to impair daily living. Increasing studies indicate that non-coding RNAs (ncRNAs) are involved in ferroptosis and AD progression. However, the role of ferroptosis-related ncRNAs in AD remains unexplored. Methods We obtained the intersection of differentially expressed genes in GSE5281 (brain tissue expression profile of patients with AD) from the GEO database and ferroptosis-related genes (FRGs) from the ferrDb database. Least absolute shrinkage and selection operator model along with weighted gene co-expression network analysis screened for FRGs highly associated with AD. Results A total of five FRGs were identified and further validated in GSE29378 (area under the curve = 0.877, 95% confidence interval = 0.794-0.960). A competing endogenous RNA (ceRNA) network of ferroptosis-related hub genes (EPT1, KLHL24, LRRFIP1, CXCL2 and CD44) was subsequently constructed to explore the regulatory mechanism between hub genes, lncRNAs and miRNAs. Finally, CIBERSORT algorithms were used to unravel the immune cell infiltration landscape in AD and normal samples. M1 macrophages and mast cells were more infiltrated whereas memory B cells were less infiltrated in AD samples than in normal samples. Spearman's correlation analysis revealed that LRRFIP1 was positively correlated with M1 macrophages (r = -0.340, P < 0.001) whereas ferroptosis-related lncRNAs were negatively correlated with immune cells, wherein miR7-3HG correlated with M1 macrophages and NIFK-AS1, EMX2OS and VAC14-AS1 correlated with memory B cells (|r| > 0.3, P < 0.001). Conclusion We constructed a novel ferroptosis-related signature model including mRNAs, miRNAs and lncRNAs, and characterized its association with immune infiltration in AD. The model provides novel ideas for the pathologic mechanism elucidation and targeted therapy development of AD.
Collapse
Affiliation(s)
- Yejun Tan
- Department of Rheumatology and Immunology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,School of Mathematics, University of Minnesota Twin Cities, Minneapolis, MN, United States
| | - Wang Tang
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wenbiao Xiao
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Roujie Huang
- Department of Rheumatology and Immunology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xin Li
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Weijun Peng
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Kuipo Yan
- Department of Cardiology, The First Affiliated Hospital of Henan University of CM, Zhengzhou, Henan, China
| | - Yuan Cao
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yi Zeng
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jin Kang
- Department of Rheumatology and Immunology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
23
|
Differential compartmentalization of myeloid cell phenotypes and responses towards the CNS in Alzheimer's disease. Nat Commun 2022; 13:7210. [PMID: 36418303 PMCID: PMC9684147 DOI: 10.1038/s41467-022-34719-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 11/01/2022] [Indexed: 11/27/2022] Open
Abstract
Myeloid cells are suggested as an important player in Alzheimer´s disease (AD). However, its continuum of phenotypic and functional changes across different body compartments and their use as a biomarker in AD remains elusive. Here, we perform multiple state-of-the-art analyses to phenotypically and metabolically characterize immune cells between peripheral blood (n = 117), cerebrospinal fluid (CSF, n = 117), choroid plexus (CP, n = 13) and brain parenchyma (n = 13). We find that CSF cells increase expression of markers involved in inflammation, phagocytosis, and metabolism. Changes in phenotype of myeloid cells from AD patients are more pronounced in CP and brain parenchyma and upon in vitro stimulation, suggesting that AD-myeloid cells are more vulnerable to environmental changes. Our findings underscore the importance of myeloid cells in AD and the detailed characterization across body compartments may serve as a resource for future studies focusing on the assessment of these cells as biomarkers in AD.
Collapse
|
24
|
Olwenyi OA, Johnson SD, Bidokhti M, Thakur V, Pandey K, Thurman M, Acharya A, Uppada S, Callen S, Giavedoni L, Ranga U, Buch SJ, Byrareddy SN. Systems biology analyses reveal enhanced chronic morphine distortion of gut-brain interrelationships in simian human immunodeficiency virus infected rhesus macaques. Front Neurosci 2022; 16:1001544. [PMID: 36312033 PMCID: PMC9613112 DOI: 10.3389/fnins.2022.1001544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Background Commonly used opioids, such as morphine have been implicated in augmented SIV/HIV persistence within the central nervous system (CNS). However, the extent of myeloid cell polarization and viral persistence in different brain regions remains unclear. Additionally, the additive effects of morphine on SIV/HIV dysregulation of gut-brain crosstalk remain underexplored. Therefore, studies focused on understanding how drugs of abuse such as morphine affect immune dynamics, viral persistence and gut-brain interrelationships are warranted. Materials and methods For a total of 9 weeks, rhesus macaques were ramped-up, and twice daily injections of either morphine (n = 4) or saline (n = 4) administered. This was later followed with infection with SHIVAD8EO variants. At necropsy, mononuclear cells were isolated from diverse brain [frontal lobe, cerebellum, medulla, putamen, hippocampus (HIP) and subventricular zone (SVZ)] and gut [lamina propria (LP) and muscularis (MUSC) of ascending colon, duodenum, and ileum] regions. Multiparametric flow cytometry was used to were profile for myeloid cell polarity/activation and results corroborated with indirect immunofluorescence assays. Simian human immunodeficiency virus (SHIV) DNA levels were measured with aid of the digital droplet polymerase chain reaction (PCR) assay. Luminex assays were then used to evaluate soluble plasma/CSF biomarker levels. Finally, changes in the fecal microbiome were evaluated using 16S rRNA on the Illumina NovaSeq platform. Results Flow Cytometry-based semi-supervised analysis revealed that morphine exposure led to exacerbated M1 (CD14/CD16)/M2 (CD163/CD206) polarization in activated microglia that spanned across diverse brain regions. This was accompanied by elevated SHIV DNA within the sites of neurogenesis-HIP and SVZ. HIP/SVZ CD16+ activated microglia positively correlated with SHIV DNA levels in the brain (r = 0.548, p = 0.042). Simultaneously, morphine dependence depleted butyrate-producing bacteria, including Ruminococcus (p = 0.05), Lachnospira (p = 0.068) genera and Roseburia_sp_831b (p = 0.068). Finally, morphine also altered the regulation of CNS inflammation by reducing the levels of IL1 Receptor antagonist (IL1Ra). Conclusion These findings are suggestive that morphine promotes CNS inflammation by altering receptor modulation, increasing myeloid brain activation, distorting gut-brain crosstalk, and causing selective enhancement of SHIV persistence in sites of neurogenesis.
Collapse
Affiliation(s)
- Omalla A. Olwenyi
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Samuel D. Johnson
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Mehdi Bidokhti
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Vandana Thakur
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kabita Pandey
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Michellie Thurman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Arpan Acharya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Srijayaprakash Uppada
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Shannon Callen
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Luis Giavedoni
- Department of Biology, Trinity University, San Antonio, TX, United States
| | - Udaykumar Ranga
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Shilpa J. Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
25
|
Barczuk J, Siwecka N, Lusa W, Rozpędek-Kamińska W, Kucharska E, Majsterek I. Targeting NLRP3-Mediated Neuroinflammation in Alzheimer’s Disease Treatment. Int J Mol Sci 2022; 23:ijms23168979. [PMID: 36012243 PMCID: PMC9409081 DOI: 10.3390/ijms23168979] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia in the general population and, to date, constitutes a major therapeutic challenge. In the pathogenesis of AD, aggregates of amyloid β (Aβ) and neurofibrillary tangles (NFTs) containing Tau-microtubule-associated protein (tau) are known to trigger a neuroinflammatory response with subsequent formation of an inflammasome. In particular, the NOD-like receptor pyrin domain-containing 3 (NLRP3) inflammasome is thought to play a crucial role in AD-related pathology. While the mechanisms for NLRP3 activation are not fully understood, it has been demonstrated that, after detection of protein aggregates, NLRP3 induces pro-inflammatory cytokines, such as interleukin 18 (IL-18) or interleukin 1β (IL-1β), that further potentiate AD progression. Specific inhibitors of NLRP3 that exhibit various mechanisms to attenuate the activity of NLRP3 have been tested in in vivo studies and have yielded promising results, as shown by the reduced level of tau and Aβ aggregates and diminished cognitive impairment. Herein, we would like to summarize the current state of knowledge on NLRP3 inflammasome priming, activation, and its actual role in AD pathogenesis, and to characterize the NLRP3 inhibitors that have been studied most and their impact on AD-related pathology.
Collapse
Affiliation(s)
- Julia Barczuk
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland
| | - Natalia Siwecka
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland
| | - Weronika Lusa
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland
| | | | - Ewa Kucharska
- Department of Gerontology, Geriatrics and Social Work, Jesuit University Ignatianum, 31-501 Krakow, Poland
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland
- Correspondence: ; Tel.: +48-42-272-53-00
| |
Collapse
|
26
|
Trinh PNH, Baltos JA, Hellyer SD, May LT, Gregory KJ. Adenosine receptor signalling in Alzheimer’s disease. Purinergic Signal 2022; 18:359-381. [PMID: 35870032 PMCID: PMC9391555 DOI: 10.1007/s11302-022-09883-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/02/2022] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common dementia in the elderly and its increasing prevalence presents treatment challenges. Despite a better understanding of the disease, the current mainstay of treatment cannot modify pathogenesis or effectively address the associated cognitive and memory deficits. Emerging evidence suggests adenosine G protein-coupled receptors (GPCRs) are promising therapeutic targets for Alzheimer’s disease. The adenosine A1 and A2A receptors are expressed in the human brain and have a proposed involvement in the pathogenesis of dementia. Targeting these receptors preclinically can mitigate pathogenic β-amyloid and tau neurotoxicity whilst improving cognition and memory. In this review, we provide an accessible summary of the literature on Alzheimer’s disease and the therapeutic potential of A1 and A2A receptors. Although there are no available medicines targeting these receptors approved for treating dementia, we provide insights into some novel strategies, including allosterism and the targeting of oligomers, which may increase drug discovery success and enhance the therapeutic response.
Collapse
Affiliation(s)
- Phuc N. H. Trinh
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052 Australia
- Department of Pharmacology, Monash University, Parkville, VIC 3052 Australia
| | - Jo-Anne Baltos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052 Australia
- Department of Pharmacology, Monash University, Parkville, VIC 3052 Australia
| | - Shane D. Hellyer
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052 Australia
| | - Lauren T. May
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052 Australia
- Department of Pharmacology, Monash University, Parkville, VIC 3052 Australia
| | - Karen J. Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052 Australia
- Department of Pharmacology, Monash University, Parkville, VIC 3052 Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Parkville, 3052 Australia
| |
Collapse
|
27
|
Salehipour A, Bagheri M, Sabahi M, Dolatshahi M, Boche D. Combination Therapy in Alzheimer’s Disease: Is It Time? J Alzheimers Dis 2022; 87:1433-1449. [DOI: 10.3233/jad-215680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia globally. There is increasing evidence showing AD has no single pathogenic mechanism, and thus treatment approaches focusing only on one mechanism are unlikely to be meaningfully effective. With only one potentially disease modifying treatment approved, targeting amyloid-β (Aβ), AD is underserved regarding effective drug treatments. Combining multiple drugs or designing treatments that target multiple pathways could be an effective therapeutic approach. Considering the distinction between added and combination therapies, one can conclude that most trials fall under the category of added therapies. For combination therapy to have an actual impact on the course of AD, it is likely necessary to target multiple mechanisms including but not limited to Aβ and tau pathology. Several challenges have to be addressed regarding combination therapy, including choosing the correct agents, the best time and stage of AD to intervene, designing and providing proper protocols for clinical trials. This can be achieved by a cooperation between the pharmaceutical industry, academia, private research centers, philanthropic institutions, and the regulatory bodies. Based on all the available information, the success of combination therapy to tackle complicated disorders such as cancer, and the blueprint already laid out on how to implement combination therapy and overcome its challenges, an argument can be made that the field has to move cautiously but quickly toward designing new clinical trials, further exploring the pathological mechanisms of AD, and re-examining the previous studies with combination therapies so that effective treatments for AD may be finally found.
Collapse
Affiliation(s)
- Arash Salehipour
- Neurosurgery Research Group (NRG), Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Motahareh Bagheri
- Neurosurgery Research Group (NRG), Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammadmahdi Sabahi
- Neurosurgery Research Group (NRG), Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahsa Dolatshahi
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Students’ Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, United Kingdom
| |
Collapse
|
28
|
Kok FK, van Leerdam SL, de Lange ECM. Potential Mechanisms Underlying Resistance to Dementia in Non-Demented Individuals with Alzheimer's Disease Neuropathology. J Alzheimers Dis 2022; 87:51-81. [PMID: 35275527 PMCID: PMC9198800 DOI: 10.3233/jad-210607] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Alzheimer’s disease (AD) is the most common form of dementia and typically characterized by the accumulation of amyloid-β plaques and tau tangles. Intriguingly, there also exists a group of elderly which do not develop dementia during their life, despite the AD neuropathology, the so-called non-demented individuals with AD neuropathology (NDAN). In this review, we provide extensive background on AD pathology and normal aging and discuss potential mechanisms that enable these NDAN individuals to remain cognitively intact. Studies presented in this review show that NDAN subjects are generally higher educated and have a larger cognitive reserve. Furthermore, enhanced neural hypertrophy could compensate for hippocampal and cingulate neural atrophy in NDAN individuals. On a cellular level, these individuals show increased levels of neural stem cells and ‘von Economo neurons’. Furthermore, in NDAN brains, binding of Aβ oligomers to synapses is prevented, resulting in decreased glial activation and reduced neuroinflammation. Overall, the evidence stated here strengthens the idea that some individuals are more resistant to AD pathology, or at least show an elongation of the asymptomatic state of the disease compared to others. Insights into the mechanisms underlying this resistance could provide new insight in understanding normal aging and AD itself. Further research should focus on factors and mechanisms that govern the NDAN cognitive resilience in order to find clues on novel biomarkers, targets, and better treatments of AD.
Collapse
Affiliation(s)
- Frédérique K Kok
- Predictive Pharmacology, Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands
| | - Suzanne L van Leerdam
- Predictive Pharmacology, Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands
| | - Elizabeth C M de Lange
- Predictive Pharmacology, Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
29
|
Bairamian D, Sha S, Rolhion N, Sokol H, Dorothée G, Lemere CA, Krantic S. Microbiota in neuroinflammation and synaptic dysfunction: a focus on Alzheimer's disease. Mol Neurodegener 2022; 17:19. [PMID: 35248147 PMCID: PMC8898063 DOI: 10.1186/s13024-022-00522-2] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/15/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The implication of gut microbiota in the control of brain functions in health and disease is a novel, currently emerging concept. Accumulating data suggest that the gut microbiota exert its action at least in part by modulating neuroinflammation. Given the link between neuroinflammatory changes and neuronal activity, it is plausible that gut microbiota may affect neuronal functions indirectly by impacting microglia, a key player in neuroinflammation. Indeed, increasing evidence suggests that interplay between microglia and synaptic dysfunction may involve microbiota, among other factors. In addition to these indirect microglia-dependent actions of microbiota on neuronal activity, it has been recently recognized that microbiota could also affect neuronal activity directly by stimulation of the vagus nerve. MAIN MESSAGES The putative mechanisms of the indirect and direct impact of microbiota on neuronal activity are discussed by focusing on Alzheimer's disease, one of the most studied neurodegenerative disorders and the prime cause of dementia worldwide. More specifically, the mechanisms of microbiota-mediated microglial alterations are discussed in the context of the peripheral and central inflammation cross-talk. Next, we highlight the role of microbiota in the regulation of humoral mediators of peripheral immunity and their impact on vagus nerve stimulation. Finally, we address whether and how microbiota perturbations could affect synaptic neurotransmission and downstream cognitive dysfunction. CONCLUSIONS There is strong increasing evidence supporting a role for the gut microbiome in the pathogenesis of Alzheimer's disease, including effects on synaptic dysfunction and neuroinflammation, which contribute to cognitive decline. Putative early intervention strategies based on microbiota modulation appear therapeutically promising for Alzheimer's disease but still require further investigation.
Collapse
Affiliation(s)
- Diane Bairamian
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Immune System and Neuroinflammation Laboratory, Hôpital Saint-Antoine, F-75012 Paris, France
| | - Sha Sha
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Immune System and Neuroinflammation Laboratory, Hôpital Saint-Antoine, F-75012 Paris, France
- Department of Physiology, Nanjing Medical University, Nanjing, 211166 China
| | - Nathalie Rolhion
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Microbiota, Gut and Inflammation Laboratory, Hôpital Saint-Antoine, F-75012 Paris, France
- Paris Center for Microbiome Medicine, PaCeMM, FHU, Paris, France
| | - Harry Sokol
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Microbiota, Gut and Inflammation Laboratory, Hôpital Saint-Antoine, F-75012 Paris, France
- Paris Center for Microbiome Medicine, PaCeMM, FHU, Paris, France
- Gastroenterology Department, AP-HP, Saint Antoine Hospital, F-75012 Paris, France
- INRAE Micalis & AgroParisTech, Jouy en Josas, France
| | - Guillaume Dorothée
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Immune System and Neuroinflammation Laboratory, Hôpital Saint-Antoine, F-75012 Paris, France
| | - Cynthia A. Lemere
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115 USA
| | - Slavica Krantic
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Immune System and Neuroinflammation Laboratory, Hôpital Saint-Antoine, F-75012 Paris, France
| |
Collapse
|
30
|
Fernandes A, Caldeira C, Cunha C, Ferreiro E, Vaz AR, Brites D. Differences in Immune-Related Genes Underlie Temporal and Regional Pathological Progression in 3xTg-AD Mice. Cells 2022; 11:cells11010137. [PMID: 35011699 PMCID: PMC8750089 DOI: 10.3390/cells11010137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 01/27/2023] Open
Abstract
The prevalence of Alzheimer’s disease (AD), the most common cause of age-associated dementia, is estimated to increase over the next decades. Evidence suggests neuro-immune signaling deregulation and risk genes beyond the amyloid-β (Aβ) deposition in AD pathology. We examined the temporal profile of inflammatory mediators and microglia deactivation/activation in the brain cortex and hippocampus of 3xTg-AD mice at 3- and 9-month-old. We found upregulated APP processing, decreased expression of CD11b, CX3CR1, MFG-E8, TNF-α, IL-1β, MHC-II and C/EBP-α and increased miR-146a in both brain regions in 3-month-old 3xTG-AD mice, suggestive of a restrictive regulation. Enhanced TNF-α, IL-1β, IL-6, iNOS, SOCS1 and Arginase 1 were only present in the hippocampus of 9-month-old animals, though elevation of HMGB1 and reduction of miR-146a and miR-124 were common features in the hippocampus and cortex regions. miR-155 increased early in the cortex and later in both regions, supporting its potential as a biomarker. Candidate downregulated target genes by cortical miR-155 included Foxo3, Runx2 and CEBPβ at 3 months and Foxo3, Runx2 and Socs1 at 9 months, which are implicated in cell survival, but also in Aβ pathology and microglia/astrocyte dysfunction. Data provide new insights across AD state trajectory, with divergent microglia phenotypes and inflammatory-associated features, and identify critical targets for drug discovery and combinatorial therapies.
Collapse
Affiliation(s)
- Adelaide Fernandes
- Central Nervous System, Blood and Peripheral Inflammation, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- Correspondence: (A.F.); (D.B.); Tel.: +351-217946450 (D.B.)
| | - Cláudia Caldeira
- Neuroinflammation, Signaling and Neuroregeneration, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (C.C.); (C.C.)
| | - Carolina Cunha
- Neuroinflammation, Signaling and Neuroregeneration, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (C.C.); (C.C.)
- Bruno Silva-Santos Lab, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Elisabete Ferreiro
- MitoXT-Mitochondrial Toxicologu and Experimental Therapeutics Laboratory, CNC-Center for Neuroscience and Cell Biology, Universidade de Coimbra, 3004-516 Coimbra, Portugal;
- III-Institute for Interdisciplinary Research (IIIUC), Universidade de Coimbra, 3004-516 Coimbra, Portugal
| | - Ana Rita Vaz
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- Neuroinflammation, Signaling and Neuroregeneration, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (C.C.); (C.C.)
| | - Dora Brites
- Neuroinflammation, Signaling and Neuroregeneration, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (C.C.); (C.C.)
- Correspondence: (A.F.); (D.B.); Tel.: +351-217946450 (D.B.)
| |
Collapse
|
31
|
Eve M, Gandawijaya J, Yang L, Oguro-Ando A. Neuronal Cell Adhesion Molecules May Mediate Neuroinflammation in Autism Spectrum Disorder. Front Psychiatry 2022; 13:842755. [PMID: 35492721 PMCID: PMC9051034 DOI: 10.3389/fpsyt.2022.842755] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/15/2022] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by restrictive and repetitive behaviors, alongside deficits in social interaction and communication. The etiology of ASD is largely unknown but is strongly linked to genetic variants in neuronal cell adhesion molecules (CAMs), cell-surface proteins that have important roles in neurodevelopment. A combination of environmental and genetic factors are believed to contribute to ASD pathogenesis. Inflammation in ASD has been identified as one of these factors, demonstrated through the presence of proinflammatory cytokines, maternal immune activation, and activation of glial cells in ASD brains. Glial cells are the main source of cytokines within the brain and, therefore, their activity is vital in mediating inflammation in the central nervous system. However, it is unclear whether the aforementioned neuronal CAMs are involved in modulating neuroimmune signaling or glial behavior. This review aims to address the largely unexplored role that neuronal CAMs may play in mediating inflammatory cascades that underpin neuroinflammation in ASD, primarily focusing on the Notch, nuclear factor-κB (NF-κB), and mitogen-activated protein kinase (MAPK) cascades. We will also evaluate the available evidence on how neuronal CAMs may influence glial activity associated with inflammation. This is important when considering the impact of environmental factors and inflammatory responses on ASD development. In particular, neural CAM1 (NCAM1) can regulate NF-κB transcription in neurons, directly altering proinflammatory signaling. Additionally, NCAM1 and contactin-1 appear to mediate astrocyte and oligodendrocyte precursor proliferation which can alter the neuroimmune response. Importantly, although this review highlights the limited information available, there is evidence of a neuronal CAM regulatory role in inflammatory signaling. This warrants further investigation into the role other neuronal CAM family members may have in mediating inflammatory cascades and would advance our understanding of how neuroinflammation can contribute to ASD pathology.
Collapse
Affiliation(s)
- Madeline Eve
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Josan Gandawijaya
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Liming Yang
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Asami Oguro-Ando
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
32
|
Jiao H, Jia J. Ginsenoside compound K acts via LRP1 to alleviate Amyloid β 42-induced neuroinflammation in microglia by suppressing NF-κB. Biochem Biophys Res Commun 2021; 590:14-19. [PMID: 34968779 DOI: 10.1016/j.bbrc.2021.12.071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Alzheimer's disease (AD), has caused a mass of disability and mortality in elder populations, which increases global health burden. There are still limited effective disease-modifying drugs. Alleviating microglia-evoked neuroinflammation has become a promising treatment strategy for AD. Ginsenoside Compound K has been demonstrated to exhibit anti-inflammatory and neuroprotective benefits. Here we measured the effects of Ginsenoside Compound K in inhibiting amyloid-induced microglia inflammation and the possible molecular mechanisms and target of action in vitro. METHODS The cytotoxicity of all chemical reagents on BV2 cells were evaluated using the MTT assay. qRT-PCR and ELISA were carried out to detect the inflammatory cytokines levels. Western blot was utilized to determine the effect of Ginsenoside Compound K on the nuclear factor-κB (NF-κB) p65 nuclear translocation. Antagonist Receptor Associated Protein (RAP) was used to verify the engagement of low-density lipoprotein receptor-related protein 1(LRP1). RESULTS Ginsenoside Compound K diminished inflammatory cytokine production and reversed NF-κB p65 nuclear translocation induced by Aβ42 oligomers. LRP1 expression was up-regulated by Ginsenoside Compound K. When LRP1 was blocked by antagonist RAP, the protective effect of Ginsenoside Compound K was massively eliminated. CONCLUSION These observations provide evidence for anti-inflammatory effect of Ginsenoside Compound K through NF-κB pathway via LRP1 activation, and support further evaluation of Ginsenoside Compound K as a potential effective modulator for AD.
Collapse
Affiliation(s)
- Haishan Jiao
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, 45 Changchun Street, Beijing, China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, 45 Changchun Street, Beijing, China; Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China; Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, China; Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China; Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China.
| |
Collapse
|
33
|
Zou J, Huang GF, Xia Q, Li X, Shi J, Sun N. Electroacupuncture promotes microglial M2 polarization in ischemic stroke via annexin A1. Acupunct Med 2021; 40:258-267. [PMID: 34894768 DOI: 10.1177/09645284211057570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Neuroinflammation is the leading cause of neurological sequelae in ischemic stroke. Recently, we reported that the anti-inflammatory mediator annexin A1 (ANXA1) favored microglial M2 polarization in brain injury. The purpose of this study was to investigate electroacupuncture (EA) treatment and its potentially ANXA1-mediated anti-inflammatory effects in the middle cerebral artery occlusion/reperfusion (MCAO/R) mouse model of stroke. METHODS Treatment with EA consisted of dense-sparse frequencies (alternating 4 Hz sparse waves for 1.5 s and 16 Hz dense waves for 1.5 s) at CV24 and GV26. Intracerebroventricular (ICV) injection of Boc-2 (5 µM) or short hairpin RNA (sh)ANXA1 (2 µL) 3 days before EA was performed to block the effects of ANXA1. RESULTS EA pretreatment enhanced expression of ANXA1 and its receptor, formyl peptide receptor (FPR), when compared to MCAO/R alone. EA treatment also rescued MCAO/R-induced deficits in neurological performance, and learning and memory, and reduced infarct volume. Double immunofluorescent labeling showed that EA prevented MCAO/R-induced changes in microglial activation and morphology. EA also reduced the release of pro-inflammatory cytokines, such as interleukin (IL)-1β, inducible nitric oxide synthase (iNOS) and tumor necrosis factor (TNF)-α, while increasing the release of anti-inflammatory cytokines, such as arginase-1 (Arg-1) and brain-derived neurotrophic factor (BDNF). All EA-induced effects were either partially or completely prevented by prior administration of FPR antagonist Boc-2 or shANXA1. CONCLUSION The current study provides strong evidence that EA treatment has protective effects against ischemic stroke in the MCAO/R mouse model and that the mechanism likely involves the promotion of M2 polarization in microglia via ANXA1.
Collapse
Affiliation(s)
- Jing Zou
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guo-Fu Huang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Xia
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Shi
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ning Sun
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
34
|
Czapski GA, Strosznajder JB. Glutamate and GABA in Microglia-Neuron Cross-Talk in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms222111677. [PMID: 34769106 PMCID: PMC8584169 DOI: 10.3390/ijms222111677] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/18/2022] Open
Abstract
The physiological balance between excitation and inhibition in the brain is significantly affected in Alzheimer’s disease (AD). Several neuroactive compounds and their signaling pathways through various types of receptors are crucial in brain homeostasis, among them glutamate and γ-aminobutyric acid (GABA). Activation of microglial receptors regulates the immunological response of these cells, which in AD could be neuroprotective or neurotoxic. The novel research approaches revealed the complexity of microglial function, including the interplay with other cells during neuroinflammation and in the AD brain. The purpose of this review is to describe the role of several proteins and multiple receptors on microglia and neurons, and their involvement in a communication network between cells that could lead to different metabolic loops and cell death/survival. Our review is focused on the role of glutamatergic, GABAergic signaling in microglia–neuronal cross-talk in AD and neuroinflammation. Moreover, the significance of AD-related neurotoxic proteins in glutamate/GABA-mediated dialogue between microglia and neurons was analyzed in search of novel targets in neuroprotection, and advanced pharmacological approaches.
Collapse
|
35
|
Kloske CM, Dugan AJ, Weekman EM, Winder Z, Patel E, Nelson PT, Fardo DW, Wilcock DM. Inflammatory Pathways Are Impaired in Alzheimer Disease and Differentially Associated With Apolipoprotein E Status. J Neuropathol Exp Neurol 2021; 80:922-932. [PMID: 34486652 PMCID: PMC8557334 DOI: 10.1093/jnen/nlab085] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Alzheimer disease (AD) is a neurodegenerative disease characterized by a cognitive decline leading to dementia. The most impactful genetic risk factor is apolipoprotein E (APOE). APOE-ε4 significantly increases AD risk, APOE-ε3 is the most common gene variant, and APOE-ε2 protects against AD. However, the underlying mechanisms of APOE-ε4 on AD risk remains unclear, with APOE-ε4 impacting many pathways. We investigated how the APOE isoforms associated with the neuroinflammatory state of the brain with and without AD pathology. Frozen brain tissue from the superior and middle temporal gyrus was analyzed from APOE-ε3/3 (n = 9) or APOE-ε4/4 (n = 10) participants with AD pathology and APOE-ε3/3 (n = 9) participants without AD pathology. We determined transcript levels of 757 inflammatory related genes using the NanoString Human Neuroinflammation Panel. We found significant pathways impaired in APOE-ε4/4-AD individuals compared to APOE-ε3/3-AD. Of interest, expression of genes related to microglial activation (SALL1), motility (FSCN1), epigenetics (DNMT1), and others showed altered expression. Additionally, we performed immunohistochemistry of P2RY12 to confirm reduced microglial activation. Our results suggest APOE-ε3 responds to AD pathology while potentially having a harmful long-term inflammatory response, while APOE-ε4 shows a weakened response to pathology. Overall, APOE isoforms appear to modulate the brain immune response to AD-type pathology.
Collapse
Affiliation(s)
- Courtney M Kloske
- From the Department of Physiology, Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Adam J Dugan
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, Kentucky, USA
| | - Erica M Weekman
- From the Department of Physiology, Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Zachary Winder
- From the Department of Physiology, Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Ela Patel
- Department of Pathology and Laboratory Medicine, Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Peter T Nelson
- Department of Pathology and Laboratory Medicine, Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - David W Fardo
- Department of Biostatics, Sanders-Brown Center on Aging, College of Public Health, University of Kentucky, Lexington, Kentucky, USA
| | - Donna M Wilcock
- From the Department of Physiology, Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
36
|
Tan MS, Cheah PL, Chin AV, Looi LM, Chang SW. A review on omics-based biomarkers discovery for Alzheimer's disease from the bioinformatics perspectives: Statistical approach vs machine learning approach. Comput Biol Med 2021; 139:104947. [PMID: 34678481 DOI: 10.1016/j.compbiomed.2021.104947] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 12/26/2022]
Abstract
Alzheimer's Disease (AD) is a neurodegenerative disease that affects cognition and is the most common cause of dementia in the elderly. As the number of elderly individuals increases globally, the incidence and prevalence of AD are expected to increase. At present, AD is diagnosed clinically, according to accepted criteria. The essential elements in the diagnosis of AD include a patients history, a physical examination and neuropsychological testing, in addition to appropriate investigations such as neuroimaging. The omics-based approach is an emerging field of study that may not only aid in the diagnosis of AD but also facilitate the exploration of factors that influence the development of the disease. Omics techniques, including genomics, transcriptomics, proteomics and metabolomics, may reveal the pathways that lead to neuronal death and identify biomolecular markers associated with AD. This will further facilitate an understanding of AD neuropathology. In this review, omics-based approaches that were implemented in studies on AD were assessed from a bioinformatics perspective. Current state-of-the-art statistical and machine learning approaches used in the single omics analysis of AD were compared based on correlations of variants, differential expression, functional analysis and network analysis. This was followed by a review of the approaches used in the integration and analysis of multi-omics of AD. The strengths and limitations of multi-omics analysis methods were explored and the issues and challenges associated with omics studies of AD were highlighted. Lastly, future studies in this area of research were justified.
Collapse
Affiliation(s)
- Mei Sze Tan
- Bioinformatics Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Phaik-Leng Cheah
- Department of Pathology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ai-Vyrn Chin
- Division of Geriatric Medicine, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Lai-Meng Looi
- Department of Pathology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Siow-Wee Chang
- Bioinformatics Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
37
|
Wang S, Ma J, Zeng Y, Zhou G, Wang Y, Zhou W, Sun X, Wu M. Icariin, an Up-and-Coming Bioactive Compound Against Neurological Diseases: Network Pharmacology-Based Study and Literature Review. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:3619-3641. [PMID: 34447243 PMCID: PMC8384151 DOI: 10.2147/dddt.s310686] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022]
Abstract
Icariin is a biologically active substance in Epimedii herba that is used for the treatment of neurologic disorders. However, a comprehensive analysis of the molecular mechanisms of icariin is lacking. In this review, we present a brief history of the use of icariin for medicinal purposes; describe the active chemical components of Epimedii herba; and examine the evidence from experimental studies that have uncovered molecular targets of icariin in different diseases. We also constructed a protein–protein interaction network and carried out Gene Ontology and Kyoto Encyclopedia of Genes and Genomes functional enrichment analyses to predict the therapeutic actions of icariin in nervous system diseases including Alzheimer disease, Parkinson disease, ischemic stroke, depressive disorder, multiple sclerosis, glioblastoma, and hereditary spastic paraplegias. The results of our analyses can guide future studies on the application of icariin to the treatment of neurologic disorders.
Collapse
Affiliation(s)
- Shuangqiu Wang
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, People's Republic of China.,Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210046, People's Republic of China.,State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210046, Jiangsu, People's Republic of China
| | - Jiarui Ma
- Provincial Key Laboratory of Drug Target and Drug for Degenerative Disease, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, Jiangsu, People's Republic of China
| | - Yanqi Zeng
- First Clinical Medical School, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210046, Jiangsu, People's Republic of China
| | - Guowei Zhou
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Yuxuan Wang
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, People's Republic of China.,Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210046, People's Republic of China.,State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210046, Jiangsu, People's Republic of China
| | - Wenjuan Zhou
- First Clinical Medical School, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210046, Jiangsu, People's Republic of China
| | - Xiaohe Sun
- First Clinical Medical School, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210046, Jiangsu, People's Republic of China
| | - Minghua Wu
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, People's Republic of China.,First Clinical Medical School, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210046, Jiangsu, People's Republic of China
| |
Collapse
|
38
|
Uddin MS, Kabir MT, Jalouli M, Rahman MA, Jeandet P, Behl T, Alexiou A, Albadrani GM, Abdel-Daim MM, Perveen A, Ashraf GM. Neuroinflammatory Signaling in the Pathogenesis of Alzheimer's Disease. Curr Neuropharmacol 2021; 20:126-146. [PMID: 34525932 PMCID: PMC9199559 DOI: 10.2174/1570159x19666210826130210] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 04/16/2021] [Accepted: 05/10/2021] [Indexed: 11/22/2022] Open
Abstract
Alzheimer’s disease (AD) is a chronic neurodegenerative disease characterized by the formation of intracellular neurofibrillary tangles (NFTs) and extracellular amyloid plaques. Growing evidence has suggested that AD pathogenesis is not only limited to the neuronal compartment but also strongly interacts with immunological processes in the brain. On the other hand, aggregated and misfolded proteins can bind with pattern recognition receptors located on astroglia and microglia and can, in turn, induce an innate immune response, characterized by the release of inflammatory mediators, ultimately playing a role in both the severity and the progression of the disease. It has been reported by genome-wide analysis that several genes which elevate the risk for sporadic AD encode for factors controlling the inflammatory response and glial clearance of misfolded proteins. Obesity and systemic inflammation are examples of external factors which may interfere with the immunological mechanisms of the brain and can induce disease progression. In this review, we discussed the mechanisms and essential role of inflammatory signaling pathways in AD pathogenesis. Indeed, interfering with immune processes and modulation of risk factors may lead to future therapeutic or preventive AD approaches.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka. Bangladesh
| | | | - Maroua Jalouli
- College of Science, King Saud University, P.O. Box 2455, Riyadh 11451. Saudi Arabia
| | - Md Ataur Rahman
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul. Korea
| | - Philippe Jeandet
- Research Unit "Induced Resistance and Plant Bioprotection", EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims Cedex 2. France
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab. India
| | - Athanasios Alexiou
- Novel Global Community Educational Foundation, 2770 Hebersham. Australia
| | - Ghadeer M Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474. Saudi Arabia
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522. Egypt
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur. India
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah. Saudi Arabia
| |
Collapse
|
39
|
Kuwar R, Rolfe A, Di L, Blevins H, Xu Y, Sun X, Bloom GS, Zhang S, Sun D. A Novel Inhibitor Targeting NLRP3 Inflammasome Reduces Neuropathology and Improves Cognitive Function in Alzheimer's Disease Transgenic Mice. J Alzheimers Dis 2021; 82:1769-1783. [PMID: 34219728 DOI: 10.3233/jad-210400] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disorder, and the most common type of dementia. A growing body of evidence has implicated neuroinflammation as an essential player in the etiology of AD. Inflammasomes are intracellular multiprotein complexes and essential components of innate immunity in response to pathogen- and danger-associated molecular patterns. Among the known inflammasomes, the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome plays a critical role in the pathogenesis of AD. OBJECTIVE We recently developed a novel class of small molecule inhibitors that selectively target the NLRP3 inflammasome. One of the lead compounds, JC124, has shown therapeutic efficacy in a transgenic animal model of AD. In this study we tested the preventative efficacy of JC124 in another strain of transgenic AD mice. METHODS In this study, 5-month-old female APP/PS1 and matched wild type mice were treated orally with JC124 for 3 months. After completion of treatment, cognitive functions and AD pathologies, as well as protein expression levels of synaptic proteins, were assessed. RESULTS We found that inhibition of NLRP3 inflammasome with JC124 significantly decreased multiple AD pathologies in APP/PS1 mice, including amyloid-β (Aβ) load, neuroinflammation, and neuronal cell cycle re-entry, accompanied by preserved synaptic plasticity with higher expression of pre- and post-synaptic proteins, increased hippocampal neurogenesis, and improved cognitive functions. CONCLUSION Our study demonstrates the importance of the NLRP3 inflammasome in AD pathological development, and pharmacological inhibition of NLRP3 inflammasome with small molecule inhibitors represents a potential therapy for AD.
Collapse
Affiliation(s)
- Ram Kuwar
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Andrew Rolfe
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Long Di
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Hallie Blevins
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Yiming Xu
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Xuehan Sun
- Departments of Biology, University of Virginia, Charlottesville, VA, USA
| | - George S Bloom
- Departments of Biology, University of Virginia, Charlottesville, VA, USA.,Departments of Cell Biology, University of Virginia, Charlottesville, VA, USA.,Departments of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Shijun Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Dong Sun
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
40
|
Kaur D, Behl T, Sehgal A, Singh S, Sharma N, Bungau S. Multifaceted Alzheimer's Disease: Building a Roadmap for Advancement of Novel Therapies. Neurochem Res 2021; 46:2832-2851. [PMID: 34357520 DOI: 10.1007/s11064-021-03415-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is one of the most prevailing neurodegenerative disorders of elderly humans associated with cognitive damage. Biochemical, epigenetic, and pathophysiological factors all consider a critical role of extracellular amyloid-beta (Aß) plaques and intracellular neurofibrillary tangles (NFTs) as pathological hallmarks of AD. In an endeavor to describe the intricacy and multifaceted nature of AD, several hypotheses based on the roles of Aß accumulation, tau hyperphosphorylation, impaired cholinergic signaling, neuroinflammation, and autophagy during the initiation and advancement of the disease have been suggested. However, in no way do these theories have the potential of autonomously describing the pathophysiological alterations located in AD. The complex pathological nature of AD has hindered the recognition and authentication of successful biomarkers for the progression of its diagnosis and therapeutic strategies. There has been a significant research effort to design multi-target-directed ligands for the treatment of AD, an approach which is developed by the knowledge that AD is a composite and multifaceted disease linked with several separate but integrated molecular pathways.
Collapse
Affiliation(s)
- Dapinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
41
|
Cone AS, Yuan X, Sun L, Duke LC, Vreones MP, Carrier AN, Kenyon SM, Carver SR, Benthem SD, Stimmell AC, Moseley SC, Hike D, Grant SC, Wilber AA, Olcese JM, Meckes DG. Mesenchymal stem cell-derived extracellular vesicles ameliorate Alzheimer's disease-like phenotypes in a preclinical mouse model. Theranostics 2021; 11:8129-8142. [PMID: 34373732 PMCID: PMC8344012 DOI: 10.7150/thno.62069] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/04/2021] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is an irreversible neurodegenerative disorder that affects more than 44 million people worldwide. Despite the high disease burden, there is no effective treatment for people suffering from AD. Mesenchymal stem cells (MSCs) are multipotent stromal cells that have been widely studied due to their therapeutic potential. However, administration of cells has been found to have a multitude of limitations. Recently, extracellular vesicles (EVs) derived from MSCs have been studied as a therapeutic candidate, as they exhibit similar immunoprotective and immunomodulatory abilities as the host human MSCs. Methods: To test the potential therapeutic effects of MSC EVs, human bone-marrow derived MSCs were grown in three-dimensional (3D) cell culture, and small EVs were harvested using differential ultracentrifugation. These small EVs were given to non-transgenic (NT) or 5XFAD (5 familial Alzheimer's disease mutations) mice intranasally (IN) every 4 days for 4 months. The mice were then required to perform a variety of behavioral assays to measure changes in learning and memory. Afterwards, immunohistochemistry was performed on brain slices to measure amyloid beta (Aβ) and glial fibrillary acidic protein (GFAP) levels. Results: The data revealed that 5XFAD mice that received hMSC-EV treatment behaved significantly better in cognitive tests than saline treated 5XFAD mice, with no significant change between EV-treated 5XFAD mice and NT mice. Additionally, we found lower Aβ plaque load in the hippocampus of the EV-treated mice. Finally, less colocalization between GFAP and Aβ plaques was found in the brain of EV-treated mice compared to saline. Conclusions: Taken together, these data suggest that IN administration of MSC-derived EVs can slow down AD pathogenesis.
Collapse
Affiliation(s)
- Allaura S. Cone
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| | - Xuegang Yuan
- Department of Chemical and Biomedical Engineering, Florida A&M University and Florida State University College of Engineering, Tallahassee, FL 32306, USA
- The National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA
| | - Li Sun
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| | - Leanne C. Duke
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| | - Michael P. Vreones
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| | - Allison N. Carrier
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| | - Stephanie M. Kenyon
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| | - Spencer R. Carver
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| | - Sarah D. Benthem
- Department of Neuroscience, Florida State University College of Psychology, Tallahassee, FL 32306, USA
| | - Alina C. Stimmell
- Department of Neuroscience, Florida State University College of Psychology, Tallahassee, FL 32306, USA
| | - Shawn C. Moseley
- The National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA
| | - David Hike
- Department of Chemical and Biomedical Engineering, Florida A&M University and Florida State University College of Engineering, Tallahassee, FL 32306, USA
- The National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA
| | - Samuel C. Grant
- Department of Chemical and Biomedical Engineering, Florida A&M University and Florida State University College of Engineering, Tallahassee, FL 32306, USA
- The National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA
| | - Aaron A. Wilber
- Department of Neuroscience, Florida State University College of Psychology, Tallahassee, FL 32306, USA
| | - James M. Olcese
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| | - David G. Meckes
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| |
Collapse
|
42
|
Levit A, Gibson A, Hough O, Jung Y, Agca Y, Agca C, Hachinski V, Allman BL, Whitehead SN. Precocious White Matter Inflammation and Behavioural Inflexibility Precede Learning and Memory Impairment in the TgAPP21 Rat Model of Alzheimer Disease. Mol Neurobiol 2021; 58:5014-5030. [PMID: 34232476 DOI: 10.1007/s12035-021-02476-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 06/26/2021] [Indexed: 11/26/2022]
Abstract
Neuroinflammation and behavioural inflexibility are both common in late adulthood but far more profound in Alzheimer disease (AD). To investigate the relationship between ageing, AD, neuroinflammation, and behavioural flexibility, male wild-type Fischer 344 (Wt) and the transgenic APP21 (TgAPP21) rats were aged to 4, 8, 13, and 22 months and evaluated for neuroinflammation and cognitive impairment. TgAPP21 rats overexpress a pathogenic variant of the human amyloid precursor protein (hAPP; Swedish and Indiana mutations) but do not spontaneously develop overt pathology related to AD. In both genotypes, learning and memory were similarly impaired in older rats. However, at 8 months of age, TgAPP21 rats demonstrated behavioural inflexibility in set shifting, reversal, and the Morris water maze, while Wt rats showed inflexibility at 13 and 22 months of age. This early inflexibility in TgAPP21 rats was accompanied by a precocious increase in microglia activation within the corpus callosum; 8- and 13-month-old TgAPP21 rats had similar levels of microglia activation as 13- and 22-month-old Wt rats, respectively. However, while neuroinflammation within the white matter continued to progress with age, behavioural inflexibility peaked in 8-month-old TgAPP21 rats; in older TgAPP21 rats, memory and learning impairments masked inflexibility. These findings suggest that the behavioural inflexibility and white matter inflammation seen in normal ageing are accelerated in AD and may precede impairments of learning and memory.
Collapse
Affiliation(s)
- Alexander Levit
- Vulnerable Brain Laboratory, Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Andrew Gibson
- Vulnerable Brain Laboratory, Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Olivia Hough
- Vulnerable Brain Laboratory, Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Youngkyung Jung
- Vulnerable Brain Laboratory, Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Yuksel Agca
- Department of Veterinary Pathobiology, University of Missouri College of Veterinary Medicine, Columbia, MO, USA
| | - Cansu Agca
- Department of Veterinary Pathobiology, University of Missouri College of Veterinary Medicine, Columbia, MO, USA
| | - Vladimir Hachinski
- Department of Clinical Neurological Sciences, University Hospital, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Brian L Allman
- Vulnerable Brain Laboratory, Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Shawn N Whitehead
- Vulnerable Brain Laboratory, Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada.
- Department of Clinical Neurological Sciences, University Hospital, University of Western Ontario, London, ON, N6A 5C1, Canada.
| |
Collapse
|
43
|
Semaphorin3A increases M1-like microglia and retinal ganglion cell apoptosis after optic nerve injury. Cell Biosci 2021; 11:97. [PMID: 34039431 PMCID: PMC8157735 DOI: 10.1186/s13578-021-00603-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/04/2021] [Indexed: 11/10/2022] Open
Abstract
Background The mechanisms leading to retinal ganglion cell (RGC) death after optic nerve injury have not been fully elucidated. Current evidence indicates that microglial activation and M1- and M2-like dynamics may be an important factor in RGC apoptosis after optic nerve crush (ONC). Semaphorin3A (Sema3A) is a classic axonal guidance protein,which has been found to have a role in neuroinflammation processes. In this study, we investigated the contribution of microglial-derived Sema3A to progressive RGC apoptosis through regulating paradigm of M1- and M2-like microglia after ONC. Method
A mouse ONC model and a primary microglial-RGC co-culture system were used in the present study. The expression of M1- and M2-like microglial activation markers were assessed by real-time polymerase chain reaction (RT-qPCR). Histological and Western blot (WB) analyses were used to investigate the polarization patterns of microglia transitions and the levels of Sema3A. RGC apoptosis was investigated by TUNEL staining and caspase-3 detection. Results Levels of Sema3A in the mouse retina increased after ONC. Treatment of mice with the stimulating factor 1 receptor antagonist PLX3397 resulted in a decrease of retinal microglia. The levels of CD16/32 (M1) were up-regulated at days 3 and 7 post-ONC. However, CD206 (M2) declined on day 7 after ONC. Exposure to anti-Sema3A antibodies (anti-Sema3A) resulted in a decrease in the number of M1-like microglia, an increase in the number of M2-like microglia, and the amelioration of RGC apoptosis. Conclusions An increase in microglia-derived Sema3A in the retina after ONC partially leads to a continuous increase of M1-like microglia and plays an important role in RGC apoptosis. Inhibition of Sema3A activity may be a novel approach to the prevention of RGC apoptosis after optic nerve injury. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00603-7.
Collapse
|
44
|
Preclinical Marmoset Model for Targeting Chronic Inflammation as a Strategy to Prevent Alzheimer's Disease. Vaccines (Basel) 2021; 9:vaccines9040388. [PMID: 33920929 PMCID: PMC8071309 DOI: 10.3390/vaccines9040388] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 11/17/2022] Open
Abstract
Due to the aging population, modern society is facing an increasing prevalence of neurological diseases such as Alzheimer’s disease (AD). AD is an age-related chronic neurodegenerative disorder for which no satisfying therapy exists. Understanding the mechanisms underlying the onset of AD is necessary to find targets for protective treatment. There is growing awareness of the essential role of the immune system in the early AD pathology. Amyloidopathy, the main feature of early-stage AD, has a deregulating effect on the immune function. This is reciprocal as the immune system also affects amyloidopathy. It seems that the inflammatory reaction shows a heterogeneous pattern depending on the stage of the disease and the variation between individuals, making not only the target but also the timing of treatment important. The lack of relevant translational animal models that faithfully reproduce clinical and pathogenic features of AD is a major cause of the delay in developing new disease-modifying therapies and their optimal timing of administration. This review describes the communication between amyloidopathy and inflammation and the possibility of using nonhuman primates as a relevant animal model for preclinical AD research.
Collapse
|
45
|
Babcock KR, Page JS, Fallon JR, Webb AE. Adult Hippocampal Neurogenesis in Aging and Alzheimer's Disease. Stem Cell Reports 2021; 16:681-693. [PMID: 33636114 PMCID: PMC8072031 DOI: 10.1016/j.stemcr.2021.01.019] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 12/19/2022] Open
Abstract
Cognitive deficits associated with Alzheimer's disease (AD) severely impact daily life for the millions of affected individuals. Progressive memory impairment in AD patients is associated with degeneration of the hippocampus. The dentate gyrus of the hippocampus, a region critical for learning and memory functions, is a site of adult neurogenesis in mammals. Recent evidence in humans indicates that hippocampal neurogenesis likely persists throughout life, but declines with age and is strikingly impaired in AD. Our understanding of how neurogenesis supports learning and memory in healthy adults is only beginning to emerge. The extent to which decreased neurogenesis contributes to cognitive decline in aging and AD remains poorly understood. However, studies in rodent models of AD and other neurodegenerative diseases raise the possibility that targeting neurogenesis may ameliorate cognitive dysfunction in AD. Here, we review recent progress in understanding how adult neurogenesis is impacted in the context of aging and AD.
Collapse
Affiliation(s)
- Kelsey R Babcock
- Graduate Program in Neuroscience, Brown University, Providence, RI 02912, USA
| | - John S Page
- Warren Alpert Medical School of Brown University, Providence, RI 02912, USA; Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Justin R Fallon
- Department of Neuroscience, Brown University, Providence, RI 02912, USA; Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA; Center for Translational Neuroscience, Brown University, Providence, RI 02912, USA
| | - Ashley E Webb
- Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA; Center for Translational Neuroscience, Brown University, Providence, RI 02912, USA; Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA; Center on the Biology of Aging, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
46
|
Lomeli N, Lepe J, Gupta K, Bota DA. Cognitive complications of cancer and cancer-related treatments - Novel paradigms. Neurosci Lett 2021; 749:135720. [PMID: 33582187 PMCID: PMC8423125 DOI: 10.1016/j.neulet.2021.135720] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 01/07/2023]
Abstract
As advances in diagnostics and therapeutic strategies in oncology have increased the number of cancer survivors, the investigation of the mechanisms associated with long-term cognitive complications of cancer treatment has become an important topic of interest. The neurotoxic effects of chemotherapeutic agents have been described in pre-clinical and clinical research. In vitro and rodent studies have identified some underlying mechanisms contributing to chemotherapy-induced neurotoxicity and cognitive impairment for various chemotherapy drugs and other cancer treatments. However, investigation of the direct biological effects of cancer and other potential contributing factors in the pathogenesis of cancer-related cognitive impairment (CRCI) has only recently come into focus. This review will highlight evidence from pre-clinical tumor-bearing rodent models suggesting that cancer influences the cognitive and behavioral changes reported in human cancer populations through direct or indirect pathways that alter the normal neuroinflammatory responses, induce structural brain deficits, and decrease neurogenesis. We reflect on human clinical cancer research indicating that cognitive and behavioral changes precede cancer treatment in some malignancies. We also highlight implications for future areas of CRCI research based on novel findings on the interplay between cancer, chemotherapy, inflammation, tau pathology, and dysregulation of the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Naomi Lomeli
- Department of Neurology, University of California Irvine, Irvine, CA, USA.
| | - Javier Lepe
- Department of Pathology & Laboratory Medicine, University of California Irvine, Irvine, CA, USA.
| | - Kalpna Gupta
- Department of Medicine, University of California Irvine, Irvine, CA, USA.
| | - Daniela A Bota
- Department of Neurology, University of California Irvine, Irvine, CA, USA; Department of Pathology & Laboratory Medicine, University of California Irvine, Irvine, CA, USA; Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
47
|
Herr D, Jew K, Wong C, Kennell A, Gelein R, Chalupa D, Raab A, Oberdörster G, Olschowka J, O'Banion MK, Elder A. Effects of concentrated ambient ultrafine particulate matter on hallmarks of Alzheimer's disease in the 3xTgAD mouse model. Neurotoxicology 2021; 84:172-183. [PMID: 33794265 DOI: 10.1016/j.neuro.2021.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Exposure to air pollution has been identified as a possible environmental contributor to Alzheimer's Disease (AD) risk. As the number of people with AD worldwide continues to rise, it becomes vital to understand the nature of this potential gene-environment interaction. This study assessed the effects of short-term exposures to concentrated ambient ultrafine particulates (UFP, <100 nm) on measurements of amyloid-β, tau, and microglial morphology. METHODS Two cohorts of aged (12.5-14 months) 3xTgAD and NTg mice were exposed to concentrated ambient UFP or filtered air for 2 weeks (4-h/day, 4 days/week). Bronchoalveolar lavage fluid and brain tissue were collected twenty-four hours following the last exposure to evaluate lung inflammation, tau pathology, amyloid-β pathology, and glial cell morphology. RESULTS No exposure- or genotype-related changes were found with any of the measures of lung inflammation or in the hippocampal staining density of astrocyte marker glial fibrillary acidic protein. The microglia marker, ionized calcium binding adaptor molecule 1, and amyloid-β marker, 6E10, exhibited significant genotype by exposure interactions such that levels were lower in the UFP-exposed as compared to filtered air-exposed 3xTgAD mice. When microglia morphology was assessed by Sholl analysis, microglia from both NTg mouse groups were ramified. The 3xTgAD air-exposed mice had the most ameboid microglia, while the 3xTgAD UFP-exposed mice had microglia that were comparatively more ramified. The 3xTgAD air-exposed mice had more plaques per region of interest as measured by Congo red staining as well as more plaque-associated microglia than the 3xTgAD UFP-exposed mice. The number of non-plaque-associated microglia was not affected by genotype or exposure. Levels of soluble and insoluble human amyloid-β42 protein were measured in both 3xTgAD groups and no exposure effect was found. In contrast, UFP-exposure led to significant elevations in phosphorylated tau in 3xTgAD mice as compared to those that were exposed to air, as measured by pT205 staining. CONCLUSIONS Exposure to environmentally relevant levels of ultrafine particulates led to changes in tau phosphorylation and microglial morphology in the absence of overt lung inflammation. Such changes highlight the need to develop greater mechanistic understanding of the link between air pollution exposure and Alzheimer's disease.
Collapse
Affiliation(s)
- Denise Herr
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Katrina Jew
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Candace Wong
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Andrea Kennell
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Robert Gelein
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - David Chalupa
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Alexandria Raab
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Günter Oberdörster
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - John Olschowka
- Department of Neuroscience and Del Monte Neuroscience Institute, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - M Kerry O'Banion
- Department of Neuroscience and Del Monte Neuroscience Institute, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA; Department of Neurology, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Alison Elder
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA.
| |
Collapse
|
48
|
Microglial Heterogeneity and Its Potential Role in Driving Phenotypic Diversity of Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22052780. [PMID: 33803478 PMCID: PMC7967159 DOI: 10.3390/ijms22052780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 01/03/2023] Open
Abstract
Alzheimer’s disease (AD) is increasingly recognized as a highly heterogeneous disorder occurring under distinct clinical and neuropathological phenotypes. Despite the molecular determinants of such variability not being well defined yet, microglial cells may play a key role in this process by releasing distinct pro- and/or anti-inflammatory cytokines, potentially affecting the expression of the disease. We carried out a neuropathological and biochemical analysis on a series of AD brain samples, gathering evidence about the heterogeneous involvement of microglia in AD. The neuropathological studies showed differences concerning morphology, density and distribution of microglial cells among AD brains. Biochemical investigations showed increased brain levels of IL-4, IL-6, IL-13, CCL17, MMP-7 and CXCL13 in AD in comparison with control subjects. The molecular profiling achieved by measuring the brain levels of 25 inflammatory factors known to be involved in neuroinflammation allowed a stratification of the AD patients in three distinct “neuroinflammatory clusters”. These findings strengthen the relevance of neuroinflammation in AD pathogenesis suggesting, in particular, that the differential involvement of neuroinflammatory molecules released by microglial cells during the development of the disease may contribute to modulate the characteristics and the severity of the neuropathological changes, driving—at least in part—the AD phenotypic diversity.
Collapse
|
49
|
Abstract
The history of Alzheimer's disease (AD) started in 1907, but we needed to wait until the end of the century to identify the components of pathological hallmarks and genetic subtypes and to formulate the first pathogenic hypothesis. Thanks to biomarkers and new technologies, the concept of AD then rapidly changed from a static view of an amnestic dementia of the presenium to a biological entity that could be clinically manifested as normal cognition or dementia of different types. What is clearly emerging from studies is that AD is heterogeneous in each aspect, such as amyloid composition, tau distribution, relation between amyloid and tau, clinical symptoms, and genetic background, and thus it is probably impossible to explain AD with a single pathological process. The scientific approach to AD suffers from chronological mismatches between clinical, pathological, and technological data, causing difficulty in conceiving diagnostic gold standards and in creating models for drug discovery and screening. A recent mathematical computer-based approach offers the opportunity to study AD in real life and to provide a new point of view and the final missing pieces of the AD puzzle.
Collapse
Affiliation(s)
- Camilla Ferrari
- Department of Neuroscience, Psychology, Drug Research, and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research, and Child Health (NEUROFARBA), University of Florence, Florence, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| |
Collapse
|
50
|
Cho J, Park YJ, Gonzales-Portillo B, Saft M, Cozene B, Sadanandan N, Borlongan CV. Gut dysbiosis in stroke and its implications on Alzheimer's disease-like cognitive dysfunction. CNS Neurosci Ther 2021; 27:505-514. [PMID: 33464726 PMCID: PMC8025625 DOI: 10.1111/cns.13613] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/22/2022] Open
Abstract
Various neurological disorders, such as stroke and Alzheimer's disease (AD), involve neuroinflammatory responses. The advent of the gut‐brain axis enhances our understanding of neurological disease progression and secondary cell death. Gut microbiomes, especially those associated with inflammation, may reflect the dysbiosis of both the brain and the gut, opening the possibility to utilize inflammatory microbiomes as biomarkers and therapeutic targets. The gut‐brain axis may serve as a contributing factor to disease pathology and offer innovative approaches in cell‐based regenerative medicine for the treatment of neurological diseases. In reviewing the pathogenesis of stroke and AD, we also discuss the effects of gut microbiota on cognitive decline and brain pathology. Although the underlying mechanism of primary cell death from either disease is clearly distinct, both may be linked to gut‐microbial dysfunction as a consequential aberration that is unique to each disease. Targeting peripheral cell death pathways that exacerbate disease symptoms, such as those arising from the gut, coupled with conventional central therapeutic approach, may improve stroke and AD outcomes.
Collapse
Affiliation(s)
- Justin Cho
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - You Jeong Park
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | | | | | | | | | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| |
Collapse
|