1
|
Pál B. On the functions of astrocyte-mediated neuronal slow inward currents. Neural Regen Res 2024; 19:2602-2612. [PMID: 38595279 PMCID: PMC11168512 DOI: 10.4103/nrr.nrr-d-23-01723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/25/2023] [Accepted: 01/24/2024] [Indexed: 04/11/2024] Open
Abstract
Slow inward currents are known as neuronal excitatory currents mediated by glutamate release and activation of neuronal extrasynaptic N-methyl-D-aspartate receptors with the contribution of astrocytes. These events are significantly slower than the excitatory postsynaptic currents. Parameters of slow inward currents are determined by several factors including the mechanisms of astrocytic activation and glutamate release, as well as the diffusion pathways from the release site towards the extrasynaptic receptors. Astrocytes are stimulated by neuronal network activity, which in turn excite neurons, forming an astrocyte-neuron feedback loop. Mostly as a consequence of brain edema, astrocytic swelling can also induce slow inward currents under pathological conditions. There is a growing body of evidence on the roles of slow inward currents on a single neuron or local network level. These events often occur in synchrony on neurons located in the same astrocytic domain. Besides synchronization of neuronal excitability, slow inward currents also set synaptic strength via eliciting timing-dependent synaptic plasticity. In addition, slow inward currents are also subject to non-synaptic plasticity triggered by long-lasting stimulation of the excitatory inputs. Of note, there might be important region-specific differences in the roles and actions triggering slow inward currents. In greater networks, the pathophysiological roles of slow inward currents can be better understood than physiological ones. Slow inward currents are identified in the pathophysiological background of autism, as slow inward currents drive early hypersynchrony of the neural networks. Slow inward currents are significant contributors to paroxysmal depolarizational shifts/interictal spikes. These events are related to epilepsy, but also found in Alzheimer's disease, Parkinson's disease, and stroke, leading to the decline of cognitive functions. Events with features overlapping with slow inward currents (excitatory, N-methyl-D-aspartate-receptor mediated currents with astrocytic contribution) as ischemic currents and spreading depolarization also have a well-known pathophysiological role in worsening consequences of stroke, traumatic brain injury, or epilepsy. One might assume that slow inward currents occurring with low frequency under physiological conditions might contribute to synaptic plasticity and memory formation. However, to state this, more experimental evidence from greater neuronal networks or the level of the individual is needed. In this review, I aimed to summarize findings on slow inward currents and to speculate on the potential functions of it.
Collapse
Affiliation(s)
- Balázs Pál
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
2
|
Bromek E, Haduch A, Pukło R, Daniel WA. LY354740, an agonist of glutamatergic metabotropic receptor mGlu 2/3 increases the cytochrome P450 2D (CYP2D) activity in the frontal cortical area of rat brain. Pharmacol Rep 2024:10.1007/s43440-024-00675-5. [PMID: 39496920 DOI: 10.1007/s43440-024-00675-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/06/2024]
Abstract
BACKGROUND Our previous studies indicated that changes in the functioning of the brain glutamatergic system involving the NMDA receptor may affect cytochrome P450 2D (CYP2D) in the brain. Since CYP2D may contribute to the metabolism of neurotransmitters and neurosteroids engaged in the pathology and pharmacology of neuropsychiatric diseases, in the present work we have investigated the effect of compound LY354740, an agonist of glutamatergic metabotropic receptor mGlu2/3, on brain and liver CYP2D. METHODS The activity (high performance liquid chromatography with fluorescence detection) and protein levels (Western blotting) of CYP2D were measured in the microsomes from the liver and different brain areas of male Wistar rats after 5 day-treatment with LY354740 (10 mg/kg ip). The results were analyzed statistically using Student's t-test. RESULTS Among the investigated brain areas, the highest CYP2D activity was found in the cerebellum and brainstem, which exceeded that in the thalamus, cortex, hippocampus and frontal cortex. The mGlu2/3 receptor agonist LY354740 administered for five consecutive days significantly increased the protein level and activity of CYP2D in the frontal cortex. Such a tendency was also observed in the other brain areas. LY354740 did not affect the CYP2D activity in the liver. CONCLUSIONS Repeated administration of the mGlu2/3 receptor agonist, the compound LY354740 specifically increases the protein level and activity of CYP2D in the frontal cortex, which may accelerate dopamine synthesis via an alternative CYP2D-mediated route in the mesocortical dopaminergic pathway, and thus may contribute to the beneficial pharmacological effect on negative symptoms of schizophrenia.
Collapse
Affiliation(s)
- Ewa Bromek
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Anna Haduch
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Renata Pukło
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Władysława A Daniel
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland.
| |
Collapse
|
3
|
Uliana DL, Lisboa JRF, Gomes FV, Grace AA. The excitatory-inhibitory balance as a target for the development of novel drugs to treat schizophrenia. Biochem Pharmacol 2024; 228:116298. [PMID: 38782077 PMCID: PMC11410545 DOI: 10.1016/j.bcp.2024.116298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
The intricate balance between excitation and inhibition (E/I) in the brain plays a crucial role in normative information processing. Dysfunctions in the E/I balance have been implicated in various psychiatric disorders, including schizophrenia (SCZ). In particular, abnormalities in GABAergic signaling, specifically in parvalbumin (PV)-containing interneurons, have been consistently observed in SCZ pathophysiology. PV interneuron function is vital for maintaining an ideal E/I balance, and alterations in PV interneuron-mediated inhibition contribute to circuit deficits observed in SCZ, including hippocampus hyperactivity and midbrain dopamine system overdrive. While current antipsychotic medications primarily target D2 dopamine receptors and are effective primarily in treating positive symptoms, novel therapeutic strategies aiming to restore the E/I balance could potentially mitigate not only positive symptoms but also negative symptoms and cognitive deficits. This could involve, for instance, increasing the inhibitory drive onto excitatory neurons or decreasing the putative enhanced pyramidal neuron activity due to functional loss of PV interneurons. Compounds targeting the glycine site at glutamate NMDA receptors and muscarinic acetylcholine receptors on PV interneurons that can increase PV interneuron drive, as well as drugs that increase the postsynaptic action of GABA, such as positive allosteric modulators of α5-GABA-A receptors, and decrease glutamatergic output, such as mGluR2/3 agonists, represent promising approaches. Preventive strategies aiming at E/I balance also represent a path to reduce the risk of transitioning to SCZ in high-risk individuals. Therefore, compounds with novel mechanisms targeting E/I balance provide optimism for more effective and tailored interventions in the management of SCZ.
Collapse
Affiliation(s)
- Daniela L Uliana
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joao Roberto F Lisboa
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Felipe V Gomes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Mielecki D, Bratek-Gerej E, Salińska E. Metabotropic glutamate receptors-guardians and gatekeepers in neonatal hypoxic-ischemic brain injury. Pharmacol Rep 2024:10.1007/s43440-024-00653-x. [PMID: 39289333 DOI: 10.1007/s43440-024-00653-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
Injury to the developing central nervous system resulting from perinatal hypoxia-ischemia (HI) is still a clinical challenge. The only approach currently available in clinical practice for severe cases of HI is therapeutic hypothermia, initiated shortly after birth and supported by medications to regulate blood pressure, control epileptic seizures, and dialysis to support kidney function. However, these treatments are not effective enough to significantly improve infant survival or prevent brain damage. The need to create a new effective therapy has focused attention on metabotropic glutamate receptors (mGluR), which control signaling pathways involved in HI-induced neurodegeneration. The complexity of mGluR actions, considering their localization and developmental changes, and the functions of each subtype in HI-evoked brain damage, combined with difficulties in the availability of safe and effective modulators, raises the question whether modulation of mGluRs with subtype-selective ligands can become a new treatment in neonatal HI. Addressing this question, this review presents the available information concerning the role of each of the eight receptor subtypes of the three mGluR groups (group I, II, and III). Data obtained from experiments performed on in vitro and in vivo neonatal HI models show the neuroprotective potential of group I mGluR antagonists, as well as group II and III agonists. The information collected in this work indicates that the neuroprotective effects of manipulating mGluR in experimental HI models, despite the need to create more safe and selective ligands for particular receptors, provide a chance to create new therapies for the sensitive brains of infants at risk.
Collapse
Affiliation(s)
- Damian Mielecki
- Department of Neurochemistry, Mossakowski Medical Research Institute PAS, Pawińskiego 5, 02-106, Warsaw, Poland
| | - Ewelina Bratek-Gerej
- Department of Neurochemistry, Mossakowski Medical Research Institute PAS, Pawińskiego 5, 02-106, Warsaw, Poland
| | - Elżbieta Salińska
- Department of Neurochemistry, Mossakowski Medical Research Institute PAS, Pawińskiego 5, 02-106, Warsaw, Poland.
| |
Collapse
|
5
|
Alonso de Diego SA, Linares ML, García Molina A, de Lucas AI, Del Cerro A, Alonso JM, Ver Donck L, Cid JM, Trabanco AA, Van Gool M. Discovery of 6,7-Dihydropyrazolo[1,5- a]pyrazin-4(5 H)-one Derivatives as mGluR 2 Negative Allosteric Modulators with In Vivo Activity in a Rodent's Model of Cognition. J Med Chem 2024; 67:15569-15585. [PMID: 39208150 DOI: 10.1021/acs.jmedchem.4c01227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Allosteric modulators of the metabotropic group II receptors, mGluR2 and mGluR3, have been widely explored due to their ability to modulate cognitive and neurological functions in mood disorders, although none have been approved yet. In our search for new and selective mGluR2 negative allosteric modulators (NAMs), series of 6,7-dihydropyrazolo[1,5-a]pyrazin-4(5H)-one derivatives were identified from our published series of 1,3,5-trisubstituted pyrazoles. SAR evolution of the initial hit resulted in 100-fold improvement in the mGluR2 NAM potency and subsequent selection of compound 11 based on its overall profile, including selectivity and ADMET properties. Further pharmacokinetic-pharmacodynamic (PK-PD) relationship built showed that compound 11 occupied the mGluR2 receptor in a dose-dependent manner. Additionally, the compound revealed in vivo activity in V-maze as a model of cognition from a dose of 0.32 mg/kg. Compound 11 was selected to be evaluated further.
Collapse
Affiliation(s)
- Sergio A Alonso de Diego
- Global Discovery Chemistry, Janssen Research and Development, Janssen-Cilag, S.A., C/Jarama 75A, 45007 Toledo, Spain
| | - María Lourdes Linares
- Global Discovery Chemistry, Janssen Research and Development, Janssen-Cilag, S.A., C/Jarama 75A, 45007 Toledo, Spain
| | - Aránzazu García Molina
- Global Discovery Chemistry, Janssen Research and Development, Janssen-Cilag, S.A., C/Jarama 75A, 45007 Toledo, Spain
| | - Ana Isabel de Lucas
- Global Discovery Chemistry, Janssen Research and Development, Janssen-Cilag, S.A., C/Jarama 75A, 45007 Toledo, Spain
| | - Alcira Del Cerro
- Global Discovery Chemistry, Janssen Research and Development, Janssen-Cilag, S.A., C/Jarama 75A, 45007 Toledo, Spain
| | - Jose Manuel Alonso
- Global Discovery Chemistry, Janssen Research and Development, Janssen-Cilag, S.A., C/Jarama 75A, 45007 Toledo, Spain
| | - Luc Ver Donck
- Neuroscience Discovery, Janssen Pharmaceutica NV, a Johnson and Johnson Company, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Jose María Cid
- Global Discovery Chemistry, Janssen Research and Development, Janssen-Cilag, S.A., C/Jarama 75A, 45007 Toledo, Spain
| | - Andrés A Trabanco
- Global Discovery Chemistry, Janssen Research and Development, Janssen-Cilag, S.A., C/Jarama 75A, 45007 Toledo, Spain
| | - Michiel Van Gool
- Global Discovery Chemistry, Janssen Research and Development, Janssen-Cilag, S.A., C/Jarama 75A, 45007 Toledo, Spain
| |
Collapse
|
6
|
Notartomaso S, Antenucci N, Mazzitelli M, Rovira X, Boccella S, Ricciardi F, Liberatore F, Gomez-Santacana X, Imbriglio T, Cannella M, Zussy C, Luongo L, Maione S, Goudet C, Battaglia G, Llebaria A, Nicoletti F, Neugebauer V. A 'double-edged' role for type-5 metabotropic glutamate receptors in pain disclosed by light-sensitive drugs. eLife 2024; 13:e94931. [PMID: 39172042 PMCID: PMC11341090 DOI: 10.7554/elife.94931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 07/20/2024] [Indexed: 08/23/2024] Open
Abstract
We used light-sensitive drugs to identify the brain region-specific role of mGlu5 metabotropic glutamate receptors in the control of pain. Optical activation of systemic JF-NP-26, a caged, normally inactive, negative allosteric modulator (NAM) of mGlu5 receptors, in cingulate, prelimbic, and infralimbic cortices and thalamus inhibited neuropathic pain hypersensitivity. Systemic treatment of alloswitch-1, an intrinsically active mGlu5 receptor NAM, caused analgesia, and the effect was reversed by light-induced drug inactivation in the prelimbic and infralimbic cortices, and thalamus. This demonstrates that mGlu5 receptor blockade in the medial prefrontal cortex and thalamus is both sufficient and necessary for the analgesic activity of mGlu5 receptor antagonists. Surprisingly, when the light was delivered in the basolateral amygdala, local activation of systemic JF-NP-26 reduced pain thresholds, whereas inactivation of alloswitch-1 enhanced analgesia. Electrophysiological analysis showed that alloswitch-1 increased excitatory synaptic responses in prelimbic pyramidal neurons evoked by stimulation of presumed BLA input, and decreased BLA-driven feedforward inhibition of amygdala output neurons. Both effects were reversed by optical silencing and reinstated by optical reactivation of alloswitch-1. These findings demonstrate for the first time that the action of mGlu5 receptors in the pain neuraxis is not homogenous, and suggest that blockade of mGlu5 receptors in the BLA may limit the overall analgesic activity of mGlu5 receptor antagonists. This could explain the suboptimal effect of mGlu5 NAMs on pain in human studies and validate photopharmacology as an important tool to determine ideal target sites for systemic drugs.
Collapse
Affiliation(s)
| | - Nico Antenucci
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences CenterLubbockUnited States
| | - Mariacristina Mazzitelli
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences CenterLubbockUnited States
| | - Xavier Rovira
- MCS - Medicinal Chemistry & Synthesis, Institute for Advanced Chemistry of CataloniaBarcelonaSpain
| | - Serena Boccella
- Department of Experimental Medicine, Division of Pharmacology, University of Campania “Luigi Vanvitelli”NaplesItaly
| | - Flavia Ricciardi
- Department of Experimental Medicine, Division of Pharmacology, University of Campania “Luigi Vanvitelli”NaplesItaly
| | | | - Xavier Gomez-Santacana
- MCS - Medicinal Chemistry & Synthesis, Institute for Advanced Chemistry of CataloniaBarcelonaSpain
| | | | - Milena Cannella
- Mediterranean Neurological Institute, IRCCS NeuromedPozzilliItaly
| | - Charleine Zussy
- Institute of Functional Genomics IGF, National Centre for Scientific Research CNRS, INSERM, University of MontpellierMontpellierFrance
| | - Livio Luongo
- Department of Experimental Medicine, Division of Pharmacology, University of Campania “Luigi Vanvitelli”NaplesItaly
| | - Sabatino Maione
- Department of Experimental Medicine, Division of Pharmacology, University of Campania “Luigi Vanvitelli”NaplesItaly
| | - Cyril Goudet
- Institute of Functional Genomics IGF, National Centre for Scientific Research CNRS, INSERM, University of MontpellierMontpellierFrance
| | - Giuseppe Battaglia
- Mediterranean Neurological Institute, IRCCS NeuromedPozzilliItaly
- Department of Physiology and Pharmacology, Sapienza University of RomeRomeItaly
| | - Amadeu Llebaria
- MCS - Medicinal Chemistry & Synthesis, Institute for Advanced Chemistry of CataloniaBarcelonaSpain
| | - Ferdinando Nicoletti
- Mediterranean Neurological Institute, IRCCS NeuromedPozzilliItaly
- Department of Physiology and Pharmacology, Sapienza University of RomeRomeItaly
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences CenterLubbockUnited States
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences CenterLubbockUnited States
- Garrison Institute on Aging, Texas Tech University Health Sciences CenterLubbockUnited States
| |
Collapse
|
7
|
Ramakrishna S, Radhakrishna BK, Kaladiyil AP, Shah NM, Basavaraju N, Freude KK, Kommaddi RP, Muddashetty RS. Distinct calcium sources regulate temporal profiles of NMDAR and mGluR-mediated protein synthesis. Life Sci Alliance 2024; 7:e202402594. [PMID: 38749544 PMCID: PMC11096670 DOI: 10.26508/lsa.202402594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024] Open
Abstract
Calcium signaling is integral for neuronal activity and synaptic plasticity. We demonstrate that the calcium response generated by different sources modulates neuronal activity-mediated protein synthesis, another process essential for synaptic plasticity. Stimulation of NMDARs generates a protein synthesis response involving three phases-increased translation inhibition, followed by a decrease in translation inhibition, and increased translation activation. We show that these phases are linked to NMDAR-mediated calcium response. Calcium influx through NMDARs elicits increased translation inhibition, which is necessary for the successive phases. Calcium through L-VGCCs acts as a switch from translation inhibition to the activation phase. NMDAR-mediated translation activation requires the contribution of L-VGCCs, RyRs, and SOCE. Furthermore, we show that IP3-mediated calcium release and SOCE are essential for mGluR-mediated translation up-regulation. Finally, we signify the relevance of our findings in the context of Alzheimer's disease. Using neurons derived from human fAD iPSCs and transgenic AD mice, we demonstrate the dysregulation of NMDAR-mediated calcium and translation response. Our study highlights the complex interplay between calcium signaling and protein synthesis, and its implications in neurodegeneration.
Collapse
Affiliation(s)
- Sarayu Ramakrishna
- https://ror.org/04dese585 Centre for Brain Research, Indian Institute of Science, Bangalore, India
| | - Bindushree K Radhakrishna
- https://ror.org/04dese585 Centre for Brain Research, Indian Institute of Science, Bangalore, India
- Manipal Academy of Higher Education, Manipal, India
| | - Ahamed P Kaladiyil
- https://ror.org/04dese585 Centre for Brain Research, Indian Institute of Science, Bangalore, India
| | - Nisa Manzoor Shah
- https://ror.org/04dese585 Centre for Brain Research, Indian Institute of Science, Bangalore, India
- Manipal Academy of Higher Education, Manipal, India
| | - Nimisha Basavaraju
- https://ror.org/04dese585 Centre for Brain Research, Indian Institute of Science, Bangalore, India
- Manipal Academy of Higher Education, Manipal, India
| | - Kristine K Freude
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Reddy Peera Kommaddi
- https://ror.org/04dese585 Centre for Brain Research, Indian Institute of Science, Bangalore, India
| | - Ravi S Muddashetty
- https://ror.org/04dese585 Centre for Brain Research, Indian Institute of Science, Bangalore, India
| |
Collapse
|
8
|
Busceti CL, Di Menna L, Castaldi S, D'Errico G, Taddeucci A, Bruno V, Fornai F, Pittaluga A, Battaglia G, Nicoletti F. Adaptive Changes in Group 2 Metabotropic Glutamate Receptors Underlie the Deficit in Recognition Memory Induced by Methamphetamine in Mice. eNeuro 2024; 11:ENEURO.0523-23.2024. [PMID: 38969501 PMCID: PMC11298959 DOI: 10.1523/eneuro.0523-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 07/07/2024] Open
Abstract
Cognitive dysfunction is associated with methamphetamine use disorder (MUD). Here, we used genetic and pharmacological approaches to examine the involvement of either Group 2 metabotropic glutamate (mGlu2) or mGlu3 receptors in memory deficit induced by methamphetamine in mice. Methamphetamine treatment (1 mg/kg, i.p., once a day for 5 d followed by 7 d of withdrawal) caused an impaired performance in the novel object recognition test in wild-type mice, but not in mGlu2-/- or mGlu3-/- mice. Memory deficit in wild-type mice challenged with methamphetamine was corrected by systemic treatment with selectively negative allosteric modulators of mGlu2 or mGlu3 receptors (compounds VU6001966 and VU0650786, respectively). Methamphetamine treatment in wild-type mice caused large increases in levels of mGlu2/3 receptors, the Type 3 activator of G-protein signaling (AGS3), Rab3A, and the vesicular glutamate transporter, vGlut1, in the prefrontal cortex (PFC). Methamphetamine did not alter mGlu2/3-mediated inhibition of cAMP formation but abolished the ability of postsynaptic mGlu3 receptors to boost mGlu5 receptor-mediated inositol phospholipid hydrolysis in PFC slices. Remarkably, activation of presynaptic mGlu2/3 receptors did not inhibit but rather amplified depolarization-induced [3H]-D-aspartate release in synaptosomes prepared from the PFC of methamphetamine-treated mice. These findings demonstrate that exposure to methamphetamine causes changes in the expression and function of mGlu2 and mGlu3 receptors, which might alter excitatory synaptic transmission in the PFC and raise the attractive possibility that selective inhibitors of mGlu2 or mGlu3 receptors (or both) may be used to improve cognitive dysfunction in individuals affected by MUD.
Collapse
Affiliation(s)
| | - Luisa Di Menna
- Department of Molecular Pathology, IRCCS Neuromed, Pozzilli 86077, Italy
| | - Sonia Castaldi
- Department of Physiology and Pharmacology, University Sapienza, Roma 00185, Italy
| | - Giovanna D'Errico
- Department of Molecular Pathology, IRCCS Neuromed, Pozzilli 86077, Italy
| | - Alice Taddeucci
- Department of Pharmacy, University of Genova, Genova 16148, Italy
| | - Valeria Bruno
- Department of Molecular Pathology, IRCCS Neuromed, Pozzilli 86077, Italy
- Department of Physiology and Pharmacology, University Sapienza, Roma 00185, Italy
| | - Francesco Fornai
- Department of Molecular Pathology, IRCCS Neuromed, Pozzilli 86077, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56126, Italy
| | - Anna Pittaluga
- Department of Pharmacy, University of Genova, Genova 16148, Italy
- IRCCS Ospedale Policlinico San Martino, Genova 16145, Italy
| | - Giuseppe Battaglia
- Department of Molecular Pathology, IRCCS Neuromed, Pozzilli 86077, Italy
- Department of Physiology and Pharmacology, University Sapienza, Roma 00185, Italy
| | - Ferdinando Nicoletti
- Department of Molecular Pathology, IRCCS Neuromed, Pozzilli 86077, Italy
- Department of Physiology and Pharmacology, University Sapienza, Roma 00185, Italy
| |
Collapse
|
9
|
Chen T, Li Y, Ren X, Wang Y. The mGluR5-mediated Arc activation protects against experimental traumatic brain injury in rats. CNS Neurosci Ther 2024; 30:e14695. [PMID: 39107945 PMCID: PMC11303269 DOI: 10.1111/cns.14695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 08/10/2024] Open
Abstract
INTRODUCTION Traumatic brain injury (TBI) is a complex pathophysiological process, and increasing attention has been paid to the important role of post-synaptic density (PSD) proteins, such as glutamate receptors. Our previous study showed that a PSD protein Arc/Arg3.1 (Arc) regulates endoplasmic reticulum (ER) stress and neuronal necroptosis in traumatic injury in vitro. AIM In this study, we investigated the expression, regulation and biological function of Arc in both in vivo and in vitro experimental TBI models. RESULTS Traumatic neuronal injury (TNI) induced a temporal upregulation of Arc in cortical neurons, while TBI resulted in sustained increase in Arc expression up to 24 h in rats. The increased expression of Arc was mediated by the activity of metabotropic glutamate receptor 5 (mGluR5), but not dependent on the intracellular calcium (Ca2+) release. By using inhibitors and antagonists, we found that TNI regulates Arc expression via Gq protein and protein turnover. In addition, overexpression of Arc protects against TBI-induced neuronal injury and motor dysfunction both in vivo and in vitro, whereas the long-term cognitive function was not altered. To determine the role of Arc in mGluR5-induced protection, lentivirus-mediated short hairpin RNA (shRNA) transfection was performed to knockdown Arc expression. The mGluR5 agonist (RS)-2-chloro-5-hydroxyphenylglycine (CHPG)-induced protection against TBI was partially prevented by Arc knockdown. Furthermore, the CHPG-induced attenuation of Ca2+ influx after TNI was dependent on Arc activation and followed regulation of AMPAR subunits. The results of Co-IP and Ca2+ imaging showed that the Arc-Homer1 interaction contributes to the CHPG-induced regulation of intracellular Ca2+ release. CONCLUSION In summary, the present data indicate that the mGluR5-mediated Arc activation is a protective mechanism that attenuates neurotoxicity following TBI through the regulation of intracellular Ca2+ hemostasis. The AMPAR-associated Ca2+ influx and ER Ca2+ release induced by Homer1-IP3R pathway might be involved in this protection.
Collapse
Affiliation(s)
- Tao Chen
- Department of NeurosurgeryWuxi Taihu Hospital, Wuxi Clinical Medical School of Anhui Medical UniversityWuxiChina
| | - Yun‐Fei Li
- Department of NeurosurgeryWuxi Taihu Hospital, Wuxi Clinical Medical School of Anhui Medical UniversityWuxiChina
| | - Xu Ren
- Department of NeurosurgeryWuxi Taihu Hospital, Wuxi Clinical Medical School of Anhui Medical UniversityWuxiChina
| | - Yu‐Hai Wang
- Department of NeurosurgeryWuxi Taihu Hospital, Wuxi Clinical Medical School of Anhui Medical UniversityWuxiChina
| |
Collapse
|
10
|
Strauss A, Gonzalez-Hernandez AJ, Lee J, Abreu N, Selvakumar P, Salas-Estrada L, Kristt M, Arefin A, Huynh K, Marx DC, Gilliland K, Melancon BJ, Filizola M, Meyerson J, Levitz J. Structural basis of positive allosteric modulation of metabotropic glutamate receptor activation and internalization. Nat Commun 2024; 15:6498. [PMID: 39090128 PMCID: PMC11294631 DOI: 10.1038/s41467-024-50548-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/12/2024] [Indexed: 08/04/2024] Open
Abstract
The metabotropic glutamate receptors (mGluRs) are neuromodulatory family C G protein coupled receptors which assemble as dimers and allosterically couple extracellular ligand binding domains (LBDs) to transmembrane domains (TMDs) to drive intracellular signaling. Pharmacologically, mGluRs can be targeted at the LBDs by glutamate and synthetic orthosteric compounds or at the TMDs by allosteric modulators. Despite the potential of allosteric compounds as therapeutics, an understanding of the functional and structural basis of their effects is limited. Here we use multiple approaches to dissect the functional and structural effects of orthosteric versus allosteric ligands. We find, using electrophysiological and live cell imaging assays, that both agonists and positive allosteric modulators (PAMs) can drive activation and internalization of group II and III mGluRs. The effects of PAMs are pleiotropic, boosting the maximal response to orthosteric agonists and serving independently as internalization-biased agonists across mGluR subtypes. Motivated by this and intersubunit FRET analyses, we determine cryo-electron microscopy structures of mGluR3 in the presence of either an agonist or antagonist alone or in combination with a PAM. These structures reveal PAM-driven re-shaping of intra- and inter-subunit conformations and provide evidence for a rolling TMD dimer interface activation pathway that controls G protein and beta-arrestin coupling.
Collapse
Affiliation(s)
- Alexa Strauss
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, 10065, USA
- Tri-Institutional Program in Chemical Biology, New York, NY, 10065, USA
| | | | - Joon Lee
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Nohely Abreu
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Purushotham Selvakumar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Leslie Salas-Estrada
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Melanie Kristt
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Anisul Arefin
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Kevin Huynh
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Dagan C Marx
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Kristen Gilliland
- Warren Center for Neuroscience Drug Discovery at Vanderbilt University, Vanderbilt University, Nashville, TN, 37232, USA
| | - Bruce J Melancon
- Warren Center for Neuroscience Drug Discovery at Vanderbilt University, Vanderbilt University, Nashville, TN, 37232, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Marta Filizola
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Joel Meyerson
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, 10065, USA.
- Tri-Institutional Program in Chemical Biology, New York, NY, 10065, USA.
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
11
|
Rombolà L, De Rasis E, Sakurada S, Sakurada T, Corasaniti MT, Bagetta G, Scuteri D, Morrone LA. Motor behavior induced by bergamot essential oil in experimental tasks is differentially modulated by pretreatment with metabotropic glutamate receptor 2/3 or 5 antagonists. Phytother Res 2024; 38:3296-3306. [PMID: 38619875 DOI: 10.1002/ptr.8206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/26/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024]
Abstract
Bergamot essential oil shows anxiolytic-relaxant effects devoid of sedative action and motor impairment typical of benzodiazepines. Considering the potential for clinical of these effects, it is important to understand the underlying mechanisms of the phytocomplex. Modulation of glutamate group I and II metabotropic receptors is involved in stress and anxiety disorders, in cognition and emotions and increases locomotor activity and wakefulness. Interestingly, early data indicate that bergamot essential oil modulates glutamatergic transmission in specific manifestations of the central nervous system. The aim of this work is to investigate if selective antagonists of metabotropic glutamate 2/3 and 5 receptors affect behavioral parameters modulated by the phytocomplex. Male Wistar rats were used to measure behavioral parameters to correlate anxiety and motor activity using elevated plus maze (EPM), open field (OF), and rotarod tasks. Bergamot essential oil increases in EPM the time spent in open/closed arms and reduces total number of entries. The essential oil also increases immobility in EPM and OF and not affect motor coordination in rotarod. Pretreatment with the metabotropic glutamate antagonists does not affect the time spent in open/close arms, however, differently affects motor behavior measured after administration of phytocomplex. Particularly, glutamate 2/3 antagonist reverts immobility and glutamate 5 antagonist potentiates this parameter induced by the phytocomplex. Our data show that modulation of both metabotropic glutamate receptors is likely involved in some of behavioral effects of bergamot essential oil.
Collapse
Affiliation(s)
- Laura Rombolà
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Enrica De Rasis
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Shinobu Sakurada
- Department of Physiology and Anatomy, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Tsukasa Sakurada
- First Department of Pharmacology, Daiichi College of Pharmaceutical Sciences, Fukuoka, Japan
| | | | - Giacinto Bagetta
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Damiana Scuteri
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Luigi Antonio Morrone
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| |
Collapse
|
12
|
Eshak F, Pion L, Scholler P, Nevoltris D, Chames P, Rondard P, Pin JP, Acher FC, Goupil-Lamy A. Epitope Identification of an mGlu5 Receptor Nanobody Using Physics-Based Molecular Modeling and Deep Learning Techniques. J Chem Inf Model 2024; 64:4436-4461. [PMID: 38423996 DOI: 10.1021/acs.jcim.3c01620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The world has witnessed a revolution in therapeutics with the development of biological medicines such as antibodies and antibody fragments, notably nanobodies. These nanobodies possess unique characteristics including high specificity and modulatory activity, making them promising candidates for therapeutic applications. Identifying their binding mode is essential for their development. Experimental structural techniques are effective to get such information, but they are expensive and time-consuming. Here, we propose a computational approach, aiming to identify the epitope of a nanobody that acts as an agonist and a positive allosteric modulator at the rat metabotropic glutamate receptor 5. We employed multiple structure modeling tools, including various artificial intelligence algorithms for epitope mapping. The computationally identified epitope was experimentally validated, confirming the success of our approach. Additional dynamics studies provided further insights on the modulatory activity of the nanobody. The employed methodologies and approaches initiate a discussion on the efficacy of diverse techniques for epitope mapping and later nanobody engineering.
Collapse
Affiliation(s)
- Floriane Eshak
- SPPIN CNRS UMR 8003, Université Paris Cité, 75006 Paris, France
| | - Léo Pion
- Institut de Génomique Fonctionnelle, Université Montpellier, CNRS, Inserm, 34094 Montpellier, France
| | - Pauline Scholler
- Institut de Génomique Fonctionnelle, Université Montpellier, CNRS, Inserm, 34094 Montpellier, France
| | - Damien Nevoltris
- Aix Marseille University, CNRS, Inserm, Institut Paoli-Calmettes, CRCM, 13009 Marseille, France
| | - Patrick Chames
- Aix Marseille University, CNRS, Inserm, Institut Paoli-Calmettes, CRCM, 13009 Marseille, France
| | - Philippe Rondard
- Institut de Génomique Fonctionnelle, Université Montpellier, CNRS, Inserm, 34094 Montpellier, France
| | - Jean-Philippe Pin
- Institut de Génomique Fonctionnelle, Université Montpellier, CNRS, Inserm, 34094 Montpellier, France
| | | | - Anne Goupil-Lamy
- BIOVIA Science Council, Dassault Systèmes, 78140 Vélizy-Villacoublay, France
| |
Collapse
|
13
|
Gawel K. A Review on the Role and Function of Cinnabarinic Acid, a "Forgotten" Metabolite of the Kynurenine Pathway. Cells 2024; 13:453. [PMID: 38474418 DOI: 10.3390/cells13050453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
In the human body, the majority of tryptophan is metabolized through the kynurenine pathway. This consists of several metabolites collectively called the kynurenines and includes, among others, kynurenic acid, L-kynurenine, or quinolinic acid. The wealth of metabolites, as well as the associated molecular targets and biological pathways, bring about a situation wherein even a slight imbalance in the kynurenine levels, both in the periphery and central nervous system, have broad consequences regarding general health. Cinnabarinic acid (CA) is the least known trace kynurenine, and its physiological and pathological roles are not widely understood. Some studies, however, indicate that it might be neuroprotective. Information on its hepatoprotective properties have also emerged, although these are pioneering studies and need to be replicated. Therefore, in this review, I aim to present and critically discuss the current knowledge on CA and its role in physiological and pathological settings to guide future studies.
Collapse
Affiliation(s)
- Kinga Gawel
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8b Str., 20-090 Lublin, Poland
| |
Collapse
|
14
|
Liu D, Wang J, Tian E, Chen J, Kong W, Lu Y, Zhang S. mGluR1/IP3/ERK signaling pathway regulates vestibular compensation in ON UBCs of the cerebellar flocculus. CNS Neurosci Ther 2024; 30:e14419. [PMID: 37622292 PMCID: PMC10848063 DOI: 10.1111/cns.14419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/16/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023] Open
Abstract
AIMS To investigate the role of mGluR1α in cerebellar unipolar brush cells (UBC) in mediating vestibular compensation (VC), using mGluR1α agonist and antagonist to modulate ON UBC neurons, and explore the mGluR1/IP3/extracellular signal-regulated kinase (ERK) signaling pathway. METHODS First, AAV virus that knockdown ON UBC (mGluR1α) were injected into cerebellar UBC by stereotactic, and verified by immunofluorescence and western blot. The effect on VC was evaluated after unilateral labyrinthectomy (UL). Second, saline, (RS)-3,5-dihydroxyphenylglycine (DHPG), and LY367385 were injected into tubes implanted in rats at different time points after UL separately. The effect on ON UBC neuron activity was evaluated by immunofluorescence. Then, Phosphoinositide (PI) and p-ERK1/2 levels of mGluR1α were analyzed by ELISA after UL. The protein levels of p-ERK and total ERK were verified by western blot. In addition, the effect of mGluR1α activation or inhibition on VC-related behavior was observed. RESULTS mGluR1α knockdown induced VC phenotypes. DHPG increased ON UBC activity, while LY367385 reduced ON UBC activity. DHPG group showed an increase in PI and p-ERK1/2 levels, while LY367385 group showed a decrease in PI and p-ERK1/2 levels in cerebellar UBC of rats. The western blot results of p-ERK and total ERK confirm and support the observations. DHPG alleviated VC-related behavior phenotypes, while LY367385 exacerbated vestibular decompensation-like behavior induced by UL. CONCLUSION mGluR1α activity in cerebellar ON UBC is crucial for mediating VC through the mGluR1/IP3/ERK signaling pathway, which affects ON UBC neuron activity and contributes to the pathogenesis of VC.
Collapse
Affiliation(s)
- Dan Liu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jun Wang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - E. Tian
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jingyu Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Weijia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yisheng Lu
- Department of Physiology, School of Basic MedicineHuazhong University of Science and TechnologyWuhanChina
- Institute of Brain Research, Collaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanChina
| | - Sulin Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
15
|
Munguba H, Gutzeit VA, Srivastava I, Kristt M, Singh A, Vijay A, Arefin A, Thukral S, Broichhagen J, Stujenske JM, Liston C, Levitz J. Projection-Targeted Photopharmacology Reveals Distinct Anxiolytic Roles for Presynaptic mGluR2 in Prefrontal- and Insula-Amygdala Synapses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575699. [PMID: 38293136 PMCID: PMC10827048 DOI: 10.1101/2024.01.15.575699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Dissecting how membrane receptors regulate neural circuit function is critical for deciphering basic principles of neuromodulation and mechanisms of therapeutic drug action. Classical pharmacological and genetic approaches are not well-equipped to untangle the roles of specific receptor populations, especially in long-range projections which coordinate communication between brain regions. Here we use viral tracing, electrophysiological, optogenetic, and photopharmacological approaches to determine how presynaptic metabotropic glutamate receptor 2 (mGluR2) activation in the basolateral amygdala (BLA) alters anxiety-related behavior. We find that mGluR2-expressing neurons from the ventromedial prefrontal cortex (vmPFC) and posterior insular cortex (pIC) preferentially target distinct cell types and subregions of the BLA to regulate different forms of avoidant behavior. Using projection-specific photopharmacological activation, we find that mGluR2-mediated presynaptic inhibition of vmPFC-BLA, but not pIC-BLA, connections can produce long-lasting decreases in spatial avoidance. In contrast, presynaptic inhibition of pIC-BLA connections decreased social avoidance, novelty-induced hypophagia, and increased exploratory behavior without impairing working memory, establishing this projection as a novel target for the treatment of anxiety disorders. Overall, this work reveals new aspects of BLA neuromodulation with therapeutic implications while establishing a powerful approach for optical mapping of drug action via photopharmacology.
Collapse
Affiliation(s)
- Hermany Munguba
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Vanessa A. Gutzeit
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ipsit Srivastava
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Melanie Kristt
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ashna Singh
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Akshara Vijay
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Anisul Arefin
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Sonal Thukral
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Johannes Broichhagen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Joseph M. Stujenske
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Conor Liston
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
16
|
Grilli M. Editorial: New insights into presynaptic G protein-coupled receptors and addiction. Front Cell Neurosci 2024; 17:1358243. [PMID: 38259507 PMCID: PMC10800604 DOI: 10.3389/fncel.2023.1358243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Affiliation(s)
- Massimo Grilli
- Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
| |
Collapse
|
17
|
Hakon J, Quattromani MJ, Sjölund C, Talhada D, Kim B, Moyanova S, Mastroiacovo F, Di Menna L, Olsson R, Englund E, Nicoletti F, Ruscher K, Bauer AQ, Wieloch T. Inhibiting metabotropic glutamate receptor 5 after stroke restores brain function and connectivity. Brain 2024; 147:186-200. [PMID: 37656990 PMCID: PMC10766240 DOI: 10.1093/brain/awad293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 06/12/2023] [Accepted: 08/04/2023] [Indexed: 09/03/2023] Open
Abstract
Stroke results in local neural disconnection and brain-wide neuronal network dysfunction leading to neurological deficits. Beyond the hyper-acute phase of ischaemic stroke, there is no clinically-approved pharmacological treatment that alleviates sensorimotor impairments. Functional recovery after stroke involves the formation of new or alternative neuronal circuits including existing neural connections. The type-5 metabotropic glutamate receptor (mGluR5) has been shown to modulate brain plasticity and function and is a therapeutic target in neurological diseases outside of stroke. We investigated whether mGluR5 influences functional recovery and network reorganization rodent models of focal ischaemia. Using multiple behavioural tests, we observed that treatment with negative allosteric modulators (NAMs) of mGluR5 (MTEP, fenobam and AFQ056) for 12 days, starting 2 or 10 days after stroke, restored lost sensorimotor functions, without diminishing infarct size. Recovery was evident within hours after initiation of treatment and progressed over the subsequent 12 days. Recovery was prevented by activation of mGluR5 with the positive allosteric modulator VU0360172 and accelerated in mGluR5 knock-out mice compared with wild-type mice. After stroke, multisensory stimulation by enriched environments enhanced recovery, a result prevented by VU0360172, implying a role of mGluR5 in enriched environment-mediated recovery. Additionally, MTEP treatment in conjunction with enriched environment housing provided an additive recovery enhancement compared to either MTEP or enriched environment alone. Using optical intrinsic signal imaging, we observed brain-wide disruptions in resting-state functional connectivity after stroke that were prevented by mGluR5 inhibition in distinct areas of contralesional sensorimotor and bilateral visual cortices. The levels of mGluR5 protein in mice and in tissue samples of stroke patients were unchanged after stroke. We conclude that neuronal circuitry subserving sensorimotor function after stroke is depressed by a mGluR5-dependent maladaptive plasticity mechanism that can be restored by mGluR5 inhibition. Post-acute stroke treatment with mGluR5 NAMs combined with rehabilitative training may represent a novel post-acute stroke therapy.
Collapse
Affiliation(s)
- Jakob Hakon
- Division of Neurosurgery, Department of Clinical Sciences, Laboratory for Experimental Brain Research, Lund University, Lund 221 84, Sweden
| | - Miriana J Quattromani
- Division of Neurosurgery, Department of Clinical Sciences, Laboratory for Experimental Brain Research, Lund University, Lund 221 84, Sweden
| | - Carin Sjölund
- Division of Neurosurgery, Department of Clinical Sciences, Laboratory for Experimental Brain Research, Lund University, Lund 221 84, Sweden
| | - Daniela Talhada
- Division of Neurosurgery, Department of Clinical Sciences, Laboratory for Experimental Brain Research, Lund University, Lund 221 84, Sweden
| | - Byungchan Kim
- Department of Radiology, Washington University, Saint Louis, MO 63110, USA
| | - Slavianka Moyanova
- Department of Molecular Pathology, IRCCS Neuromed, 86077 Pozzilli, Italy
| | | | - Luisa Di Menna
- Department of Molecular Pathology, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Roger Olsson
- Department of Experimental Medical Sciences, Chemical Biology & Therapeutics, Lund University, Lund 221 84, Sweden
| | - Elisabet Englund
- Division of Pathology, Department of Clinical Sciences, Lund University, Lund 221 84, Sweden
| | - Ferdinando Nicoletti
- Department of Molecular Pathology, IRCCS Neuromed, 86077 Pozzilli, Italy
- Department of Physiology and Pharmacology, University of Rome La Sapienza, 00185 Rome, Italy
| | - Karsten Ruscher
- Division of Neurosurgery, Department of Clinical Sciences, Laboratory for Experimental Brain Research, Lund University, Lund 221 84, Sweden
| | - Adam Q Bauer
- Department of Radiology, Washington University, Saint Louis, MO 63110, USA
| | - Tadeusz Wieloch
- Division of Neurosurgery, Department of Clinical Sciences, Laboratory for Experimental Brain Research, Lund University, Lund 221 84, Sweden
| |
Collapse
|
18
|
Notartomaso S, Antenucci N, Mazzitelli M, Rovira X, Boccella S, Ricciardi F, Liberatore F, Gomez-Santacana X, Imbriglio T, Cannella M, Zussy C, Luongo L, Maione S, Goudet C, Battaglia G, Llebaria A, Nicoletti F, Neugebauer V. A "double-edged" role for type-5 metabotropic glutamate receptors in pain disclosed by light-sensitive drugs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.02.573945. [PMID: 38260426 PMCID: PMC10802266 DOI: 10.1101/2024.01.02.573945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Knowing the site of drug action is important to optimize effectiveness and address any side effects. We used light-sensitive drugs to identify the brain region-specific role of mGlu5 metabotropic glutamate receptors in the control of pain. Optical activation of systemic JF-NP-26, a caged, normally inactive, negative allosteric modulator (NAM) of mGlu5 receptors, in cingulate, prelimbic and infralimbic cortices and thalamus inhibited neuropathic pain hypersensitivity. Systemic treatment of alloswitch-1, an intrinsically active mGlu5 receptor NAM, caused analgesia, and the effect was reversed by light-induced drug inactivation in in the prelimbic and infralimbic cortices, and thalamus. This demonstrates that mGlu5 receptor blockade in the medial prefrontal cortex and thalamus is both sufficient and necessary for the analgesic activity of mGlu5 receptor antagonists. Surprisingly, when light was delivered in the basolateral amygdala, local activation of systemic JF-NP-26 reduced pain thresholds, whereas inactivation of alloswitch-1 enhanced analgesia. Electrophysiological analysis showed that alloswitch-1 increased excitatory synaptic responses in prelimbic pyramidal neurons evoked by stimulation of BLA input, and decreased feedforward inhibition of amygdala output neurons by BLA. Both effects were reversed by optical silencing and reinstated by optical reactivation of alloswitch-1. These findings demonstrate for the first time that the action of mGlu5 receptors in the pain neuraxis is not homogenous, and suggest that blockade of mGlu5 receptors in the BLA may limit the overall analgesic activity of mGlu5 receptor antagonists. This could explain the suboptimal effect of mGlu5 NAMs on pain in human studies and validate photopharmacology as an important tool to determine ideal target sites for systemic drugs.
Collapse
Affiliation(s)
- Serena Notartomaso
- Mediterranean Neurological Institute, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Nico Antenucci
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Mariacristina Mazzitelli
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Xavier Rovira
- MCS - Medicinal Chemistry & Synthesis, Institute for Advanced Chemistry of Catalonia (IQAC−CSIC), Barcelona 08034, Spain
| | - Serena Boccella
- Department of Experimental Medicine, Division of Pharmacology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Flavia Ricciardi
- Department of Experimental Medicine, Division of Pharmacology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | | | - Xavier Gomez-Santacana
- MCS - Medicinal Chemistry & Synthesis, Institute for Advanced Chemistry of Catalonia (IQAC−CSIC), Barcelona 08034, Spain
| | - Tiziana Imbriglio
- Mediterranean Neurological Institute, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Milena Cannella
- Mediterranean Neurological Institute, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Charleine Zussy
- Institute of Functional Genomics IGF, National Centre for Scientific Research CNRS, INSERM, University of Montpellier, F-34094 Montpellier, France
| | - Livio Luongo
- Department of Experimental Medicine, Division of Pharmacology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, Division of Pharmacology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Cyril Goudet
- Institute of Functional Genomics IGF, National Centre for Scientific Research CNRS, INSERM, University of Montpellier, F-34094 Montpellier, France
| | - Giuseppe Battaglia
- Mediterranean Neurological Institute, IRCCS Neuromed, 86077 Pozzilli, Italy
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome 00185, Italy
| | - Amadeu Llebaria
- MCS - Medicinal Chemistry & Synthesis, Institute for Advanced Chemistry of Catalonia (IQAC−CSIC), Barcelona 08034, Spain
| | - Ferdinando Nicoletti
- Mediterranean Neurological Institute, IRCCS Neuromed, 86077 Pozzilli, Italy
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome 00185, Italy
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
19
|
Zhu C, Lan X, Wei Z, Yu J, Zhang J. Allosteric modulation of G protein-coupled receptors as a novel therapeutic strategy in neuropathic pain. Acta Pharm Sin B 2024; 14:67-86. [PMID: 38239234 PMCID: PMC10792987 DOI: 10.1016/j.apsb.2023.07.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/09/2023] [Accepted: 07/12/2023] [Indexed: 01/22/2024] Open
Abstract
Neuropathic pain is a debilitating pathological condition that presents significant therapeutic challenges in clinical practice. Unfortunately, current pharmacological treatments for neuropathic pain lack clinical efficacy and often lead to harmful adverse reactions. As G protein-coupled receptors (GPCRs) are widely distributed throughout the body, including the pain transmission pathway and descending inhibition pathway, the development of novel neuropathic pain treatments based on GPCRs allosteric modulation theory is gaining momentum. Extensive research has shown that allosteric modulators targeting GPCRs on the pain pathway can effectively alleviate symptoms of neuropathic pain while reducing or eliminating adverse effects. This review aims to provide a comprehensive summary of the progress made in GPCRs allosteric modulators in the treatment of neuropathic pain, and discuss the potential benefits and adverse factors of this treatment. We will also concentrate on the development of biased agonists of GPCRs, and based on important examples of biased agonist development in recent years, we will describe universal strategies for designing structure-based biased agonists. It is foreseeable that, with the continuous improvement of GPCRs allosteric modulation and biased agonist theory, effective GPCRs allosteric drugs will eventually be available for the treatment of neuropathic pain with acceptable safety.
Collapse
Affiliation(s)
- Chunhao Zhu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- School of Basic Medical Science, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaobing Lan
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Zhiqiang Wei
- Medicinal Chemistry and Bioinformatics Center, Ocean University of China, Qingdao 266100, China
| | - Jianqiang Yu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Jian Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| |
Collapse
|
20
|
Caridi M, Alborghetti M, Pellicelli V, Orlando R, Pontieri FE, Battaglia G, Arcella A. Metabotropic Glutamate Receptors Type 3 and 5 Feature the "NeuroTransmitter-type" of Glioblastoma: A Bioinformatic Approach. Curr Neuropharmacol 2024; 22:1923-1939. [PMID: 38509672 PMCID: PMC11284726 DOI: 10.2174/1570159x22666240320112926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/11/2023] [Accepted: 09/01/2023] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) represents an aggressive and common tumor of the central nervous system. The prognosis of GBM is poor, and despite a refined genetic and molecular characterization, pharmacological treatment is largely suboptimal. OBJECTIVE Contribute to defining a therapeutic line in GBM targeting the mGlu3 receptor in line with the principles of precision medicine. METHODS Here, we performed a computational analysis focused on the expression of type 3 and 5 metabotropic glutamate receptor subtypes (mGlu3 and mGlu5, respectively) in high- and low-grade gliomas. RESULTS The analysis allowed the identification of a particular high-grade glioma type, characterized by a high expression level of both receptor subtypes and by other markers of excitatory and inhibitory neurotransmission. This so-called neurotransmitter-GBM (NT-GBM) also shows a distinct immunological, metabolic, and vascularization gene signature. CONCLUSION Our findings might lay the groundwork for a targeted therapy to be specifically applied to this putative novel type of GBM.
Collapse
Affiliation(s)
- Matteo Caridi
- Division of Hematology and Clinical Immunology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Marika Alborghetti
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | | | - Rosamaria Orlando
- Department of Physiology and Pharmacology, University Sapienza of Roma, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Francesco Ernesto Pontieri
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giuseppe Battaglia
- Department of Physiology and Pharmacology, University Sapienza of Roma, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | | |
Collapse
|
21
|
Kim J, He MJ, Widmann AK, Lee FS. The role of neurotrophic factors in novel, rapid psychiatric treatments. Neuropsychopharmacology 2024; 49:227-245. [PMID: 37673965 PMCID: PMC10700398 DOI: 10.1038/s41386-023-01717-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/11/2023] [Accepted: 07/26/2023] [Indexed: 09/08/2023]
Abstract
Neurotrophic factors are a family of growth factors that modulate cellular growth, survival, and differentiation. For many decades, it has been generally believed that a lack of neurotrophic support led to the decreased neuronal synaptic plasticity, death, and loss of non-neuronal supportive cells seen in neuropsychiatric disorders. Traditional psychiatric medications that lead to immediate increases in neurotransmitter levels at the synapse have been shown also to elevate synaptic neurotrophic levels over weeks, correlating with the time course of the therapeutic effects of these drugs. Recent advances in psychiatric treatments, such as ketamine and psychedelics, have shown a much faster onset of therapeutic effects (within minutes to hours). They have also been shown to lead to a rapid release of neurotrophins into the synapse. This has spurred a significant shift in understanding the role of neurotrophins and how the receptor tyrosine kinases that bind neurotrophins may work in concert with other signaling systems. In this review, this renewed understanding of synaptic receptor signaling interactions and the clinical implications of this mechanistic insight will be discussed within the larger context of the well-established roles of neurotrophic factors in psychiatric disorders and treatments.
Collapse
Affiliation(s)
- Jihye Kim
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Michelle J He
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Alina K Widmann
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Francis S Lee
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, 10065, USA.
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
22
|
Yang X, Liu Q, Lai MF, Ma XH, Hao XT, Xu JJ, Guo WJ. Case report: Orthostatic leg tremor as the initial manifestation in a patient with metabotropic glutamate receptor-5 encephalitis without cortical dysfunction: complexities in identification and treatment. Front Neurol 2023; 14:1288075. [PMID: 38162450 PMCID: PMC10755007 DOI: 10.3389/fneur.2023.1288075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Objective Metabotropic glutamate receptor 5 (mGluR5) encephalitis is such a rare type of autoimmune encephalitis that its diagnosis remains a challenge. Case report A 19-year-old female patient initially presented with anxiety and orthostatic leg tremors without cortical dysfunction. We found that this patient was positive for mGluR5 antibodies in both serum (1:1,000) and cerebrospinal fluid (1:32). After comprehensive intervention, the patient showed complete recovery at the 18-month follow-up. Discussion This report expands our knowledge of the possible presentations of mGluR5 encephalitis for early diagnosis, which makes it possible to prevent serious consequences and improve the prognosis.
Collapse
Affiliation(s)
- Xia Yang
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qiong Liu
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Ming-feng Lai
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xiao-hong Ma
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Psychiatric Laboratory and Mental Health Center, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xiao-ting Hao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Jia-jun Xu
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wan-jun Guo
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou Seventh People's Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
23
|
Ng AN, Salter EW, Georgiou J, Bortolotto ZA, Collingridge GL. Amyloid-β 1-42 oligomers enhance mGlu 5R-dependent synaptic weakening via NMDAR activation and complement C5aR1 signaling. iScience 2023; 26:108412. [PMID: 38053635 PMCID: PMC10694656 DOI: 10.1016/j.isci.2023.108412] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/13/2023] [Accepted: 11/03/2023] [Indexed: 12/07/2023] Open
Abstract
Synaptic weakening and loss are well-correlated with the pathology of Alzheimer's disease (AD). Oligomeric amyloid beta (oAβ) is considered a major synaptotoxic trigger for AD. Recent studies have implicated hyperactivation of the complement cascade as the driving force for loss of synapses caused by oAβ. However, the initial synaptic cues that trigger pathological complement activity remain elusive. Here, we examined a form of synaptic long-term depression (LTD) mediated by metabotropic glutamate receptors (mGluRs) that is disrupted in rodent models of AD. Exogenous application of oAβ (1-42) to mouse hippocampal slices enhanced the magnitude of mGlu subtype 5 receptor (mGlu5R)-dependent LTD. We found that the enhanced synaptic weakening occurred via both N-methyl-D-aspartate receptors (NMDARs) and complement C5aR1 signaling. Our findings reveal a mechanistic interaction between mGlu5R, NMDARs, and the complement system in aberrant synaptic weakening induced by oAβ, which could represent an early trigger of synaptic loss and degeneration in AD.
Collapse
Affiliation(s)
- Ai Na Ng
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Eric W. Salter
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, 600 University Avenue, Toronto, ON M5G 1X5, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - John Georgiou
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, 600 University Avenue, Toronto, ON M5G 1X5, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
| | - Zuner A. Bortolotto
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Graham L. Collingridge
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, 600 University Avenue, Toronto, ON M5G 1X5, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
| |
Collapse
|
24
|
Lee J, Gonzalez-Hernandez AJ, Kristt M, Abreu N, Roßmann K, Arefin A, Marx DC, Broichhagen J, Levitz J. Distinct beta-arrestin coupling and intracellular trafficking of metabotropic glutamate receptor homo- and heterodimers. SCIENCE ADVANCES 2023; 9:eadi8076. [PMID: 38055809 PMCID: PMC10699790 DOI: 10.1126/sciadv.adi8076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/03/2023] [Indexed: 12/08/2023]
Abstract
The metabotropic glutamate receptors (mGluRs) are family C, dimeric G protein-coupled receptors (GPCRs), which play critical roles in synaptic transmission. Despite an increasing appreciation of the molecular diversity of this family, how distinct mGluR subtypes are regulated remains poorly understood. We reveal that different group II/III mGluR subtypes show markedly different beta-arrestin (β-arr) coupling and endocytic trafficking. While mGluR2 is resistant to internalization and mGluR3 shows transient β-arr coupling, which enables endocytosis and recycling, mGluR8 and β-arr form stable complexes, which leads to efficient lysosomal targeting and degradation. Using chimeras and mutagenesis, we pinpoint carboxyl-terminal domain regions that control β-arr coupling and trafficking, including the identification of an mGluR8 splice variant with impaired internalization. We then use a battery of high-resolution fluorescence assays to find that heterodimerization further expands the diversity of mGluR regulation. Together, this work provides insight into the relationship between GPCR/β-arr complex formation and trafficking while revealing diversity and intricacy in the regulation of mGluRs.
Collapse
Affiliation(s)
- Joon Lee
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | | | - Melanie Kristt
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Nohely Abreu
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Kilian Roßmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Anisul Arefin
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Dagan C. Marx
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | | | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
25
|
Vitale G, Terrone G, Vitale S, Vitulli F, Aiello S, Bravaccio C, Pisano S, Bove I, Rizzo F, Seetahal-Maraj P, Wiese T. The Evolving Landscape of Therapeutics for Epilepsy in Tuberous Sclerosis Complex. Biomedicines 2023; 11:3241. [PMID: 38137462 PMCID: PMC10741146 DOI: 10.3390/biomedicines11123241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/30/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is a rare multisystem genetic disorder characterized by benign tumor growth in multiple organs, including the brain, kidneys, heart, eyes, lungs, and skin. Pathogenesis stems from mutations in either the TSC1 or TSC2 gene, which encode the proteins hamartin and tuberin, respectively. These proteins form a complex that inhibits the mTOR pathway, a critical regulator of cell growth and proliferation. Disruption of the tuberin-hamartin complex leads to overactivation of mTOR signaling and uncontrolled cell growth, resulting in hamartoma formation. Neurological manifestations are common in TSC, with epilepsy developing in up to 90% of patients. Seizures tend to be refractory to medical treatment with anti-seizure medications. Infantile spasms and focal seizures are the predominant seizure types, often arising in early childhood. Drug-resistant epilepsy contributes significantly to morbidity and mortality. This review provides a comprehensive overview of the current state of knowledge regarding the pathogenesis, clinical manifestations, and treatment approaches for epilepsy and other neurological features of TSC. While narrative reviews on TSC exist, this review uniquely synthesizes key advancements across the areas of TSC neuropathology, conventional and emerging pharmacological therapies, and targeted treatments. The review is narrative in nature, without any date restrictions, and summarizes the most relevant literature on the neurological aspects and management of TSC. By consolidating the current understanding of TSC neurobiology and evidence-based treatment strategies, this review provides an invaluable reference that highlights progress made while also emphasizing areas requiring further research to optimize care and outcomes for TSC patients.
Collapse
Affiliation(s)
- Giovanni Vitale
- Neuroscience and Rare Diseases, Discovery and Translational Area, Roche Pharma Research and Early Development (pRED), F. Hoffmann–La Roche, 4070 Basel, Switzerland
| | - Gaetano Terrone
- Department of Translational Medical Sciences, Child and Adolescent Neuropsychiatry, University of Naples Federico II, 80138 Naples, Italy; (G.T.); (C.B.)
| | - Samuel Vitale
- School of Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy;
| | - Francesca Vitulli
- Department of Neurosciences and Reproductive and Dental Sciences, Division of Neurosurgery, University of Naples Federico II, 80138 Naples, Italy (I.B.)
| | - Salvatore Aiello
- Department of Translational Medical Sciences, Child and Adolescent Neuropsychiatry, University of Naples Federico II, 80138 Naples, Italy; (G.T.); (C.B.)
| | - Carmela Bravaccio
- Department of Translational Medical Sciences, Child and Adolescent Neuropsychiatry, University of Naples Federico II, 80138 Naples, Italy; (G.T.); (C.B.)
| | - Simone Pisano
- Department of Translational Medical Sciences, Child and Adolescent Neuropsychiatry, University of Naples Federico II, 80138 Naples, Italy; (G.T.); (C.B.)
| | - Ilaria Bove
- Department of Neurosciences and Reproductive and Dental Sciences, Division of Neurosurgery, University of Naples Federico II, 80138 Naples, Italy (I.B.)
| | - Francesca Rizzo
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy;
| | | | - Thomas Wiese
- Neuroscience and Rare Diseases, Discovery and Translational Area, Roche Pharma Research and Early Development (pRED), F. Hoffmann–La Roche, 4070 Basel, Switzerland
| |
Collapse
|
26
|
Weiss F, Caruso V, De Rosa U, Beatino MF, Barbuti M, Nicoletti F, Perugi G. The role of NMDA receptors in bipolar disorder: A systematic review. Bipolar Disord 2023; 25:624-636. [PMID: 37208966 DOI: 10.1111/bdi.13335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
OBJECTIVES Glutamatergic transmission and N-methyl-D-aspartate receptors (NMDARs) have been implicated in the pathophysiology schizophrenic spectrum and major depressive disorders. Less is known about the role of NMDARs in bipolar disorder (BD). The present systematic review aimed to investigate the role of NMDARs in BD, along with its possible neurobiological and clinical implications. METHODS We performed a computerized literature research on PubMed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement, using the following string: (("Bipolar Disorder"[Mesh]) OR (manic-depressive disorder[Mesh]) OR ("BD") OR ("MDD")) AND ((NMDA [Mesh]) OR (N-methyl-D-aspartate) OR (NMDAR[Mesh]) OR (N-methyl-D-aspartate receptor)). RESULTS Genetic studies yield conflicting results, and the most studied candidate for an association with BD is the GRIN2B gene. Postmortem expression studies (in situ hybridization and autoradiographic and immunological studies) are also contradictory but suggest a reduced activity of NMDARs in the prefrontal, superior temporal cortex, anterior cingulate cortex, and hippocampus. CONCLUSIONS Glutamatergic transmission and NMDARs do not appear to be primarily involved in the pathophysiology of BD, but they might be linked to the severity and chronicity of the disorder. Disease progression could be associated with a long phase of enhanced glutamatergic transmission, with ensuing excitotoxicity and neuronal damage, resulting into a reduced density of functional NMDARs.
Collapse
Affiliation(s)
- Francesco Weiss
- Psychiatry 2 Unit, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Valerio Caruso
- Psychiatry 2 Unit, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Ugo De Rosa
- Psychiatry 2 Unit, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Maria Francesca Beatino
- Psychiatry 2 Unit, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Margherita Barbuti
- Psychiatry 2 Unit, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology, University Sapienza of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Giulio Perugi
- Psychiatry 2 Unit, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| |
Collapse
|
27
|
D'Antoni S, Schiavi S, Buzzelli V, Giuffrida S, Feo A, Ascone F, Busceti CL, Nicoletti F, Trezza V, Catania MV. Group I and group II metabotropic glutamate receptors are upregulated in the synapses of infant rats prenatally exposed to valproic acid. Psychopharmacology (Berl) 2023; 240:2617-2629. [PMID: 37707611 PMCID: PMC10640443 DOI: 10.1007/s00213-023-06457-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/23/2023] [Indexed: 09/15/2023]
Abstract
RATIONALE Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired social interaction and restricted/stereotyped behavior. Prenatal exposure to valproic acid (VPA) is associated with an increased risk of developing ASD in humans and autistic-like behaviors in rodents. Increasing evidence indicates that dysfunctions of glutamate receptors at synapses are associated with ASD. In the VPA rat model, an involvement of glutamate receptors in autism-like phenotypes has been suggested; however, few studies were carried out on metabotropic glutamate (mGlu) receptors. OBJECTIVES We examined the protein expression levels of group I (mGlu1 and mGlu5) and group II (mGlu2/3) mGlu receptors in rats prenatally exposed to VPA and evaluated the effect of mGlu receptor modulation on an early autism-like phenotype in these animals. METHODS We used western blotting analysis on synaptosomes obtained from forebrain of control and VPA rats at different ages (postnatal day P13, 35, 90) and carried out ultrasonic vocalization (USV) emission test in infant control and VPA rats. RESULTS The expression levels of all these receptors were significantly increased in infant VPA rats. No changes were detected in adolescent and adult rats. An acute treatment with the preferential mGlu2/3 antagonist, LY341495, attenuated the impairment in the USV emission in VPA rats. No effect was observed after a treatment with the mGlu5 selective antagonist, MTEP. CONCLUSIONS Our findings demonstrate that the expression of group I and group II mGlu receptors is upregulated at synapses of infant VPA rats and suggest that mGlu2/3 receptor modulation may have a therapeutic potential in ASD.
Collapse
Affiliation(s)
- Simona D'Antoni
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), Catania, Italy
| | - Sara Schiavi
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Rome, Italy
| | - Valeria Buzzelli
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Rome, Italy
| | - Samuele Giuffrida
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), Catania, Italy
| | - Alessandro Feo
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Rome, Italy
| | - Fabrizio Ascone
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Rome, Italy
| | | | - Ferdinando Nicoletti
- IRCCS Neuromed, Pozzilli, Italy
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Viviana Trezza
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Rome, Italy
- Neuroendocrinology, Metabolism and Neuropharmacology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Maria Vincenza Catania
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), Catania, Italy.
| |
Collapse
|
28
|
Chruścicka-Smaga B, Machaczka A, Szewczyk B, Pilc A. Interaction of hallucinogenic rapid-acting antidepressants with mGlu2/3 receptor ligands as a window for more effective therapies. Pharmacol Rep 2023; 75:1341-1349. [PMID: 37932583 PMCID: PMC10660980 DOI: 10.1007/s43440-023-00547-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/08/2023]
Abstract
The desire to find a gold-standard therapy for depression is still ongoing. Developing one universal and effective pharmacotherapy remains troublesome due to the high complexity and variety of symptoms. Over the last decades, the understanding of the mechanism of pathophysiology of depression and its key consequences for brain functioning have undergone significant changes, referring to the monoaminergic theory of the disease. After the breakthrough discovery of ketamine, research began to focus on the modulation of glutamatergic transmission as a new pharmacological target. Glutamate is a crucial player in mechanisms of a novel class of antidepressants, including hallucinogens such as ketamine. The role of glutamatergic transmission is also suggested in the antidepressant (AD) action of scopolamine and psilocybin. Despite fast, robust, and sustained AD action hallucinogens belonging to a group of rapid-acting antidepressants (RAA) exert significant undesired effects, which hamper their use in the clinic. Thus, the synergistic action of more than one substance in lower doses instead of monotherapy may alleviate the likelihood of adverse effects while improving therapeutic outcomes. In this review, we explore AD-like behavioral, synaptic, and molecular action of RAAs such as ketamine, scopolamine, and psilocybin, in combination with mGlu2/3 receptor antagonists.
Collapse
Affiliation(s)
- Barbara Chruścicka-Smaga
- Department of Neurobiology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Agata Machaczka
- Department of Neurobiology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Bernadeta Szewczyk
- Department of Neurobiology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Andrzej Pilc
- Department of Neurobiology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland.
| |
Collapse
|
29
|
Salavatian S, Robbins EM, Kuwabara Y, Castagnola E, Cui XT, Mahajan A. Real-time in vivo thoracic spinal glutamate sensing during myocardial ischemia. Am J Physiol Heart Circ Physiol 2023; 325:H1304-H1317. [PMID: 37737733 PMCID: PMC10908408 DOI: 10.1152/ajpheart.00299.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
In the spinal cord, glutamate serves as the primary excitatory neurotransmitter. Monitoring spinal glutamate concentrations offers valuable insights into spinal neural processing. Consequently, spinal glutamate concentration has the potential to emerge as a useful biomarker for conditions characterized by increased spinal neural network activity, especially when uptake systems become dysfunctional. In this study, we developed a multichannel custom-made flexible glutamate-sensing probe for the large-animal model that is capable of measuring extracellular glutamate concentrations in real time and in vivo. We assessed the probe's sensitivity and specificity through in vitro and ex vivo experiments. Remarkably, this developed probe demonstrates nearly instantaneous glutamate detection and allows continuous monitoring of glutamate concentrations. Furthermore, we evaluated the mechanical and sensing performance of the probe in vivo, within the pig spinal cord. Moreover, we applied the glutamate-sensing method using the flexible probe in the context of myocardial ischemia-reperfusion (I/R) injury. During I/R injury, cardiac sensory neurons in the dorsal root ganglion transmit excitatory signals to the spinal cord, resulting in sympathetic activation that potentially leads to fatal arrhythmias. We have successfully shown that our developed glutamate-sensing method can detect this spinal network excitation during myocardial ischemia. This study illustrates a novel technique for measuring spinal glutamate at different spinal cord levels as a surrogate for the spinal neural network activity during cardiac interventions that engage the cardio-spinal neural pathway.NEW & NOTEWORTHY In this study, we have developed a new flexible sensing probe to perform an in vivo measurement of spinal glutamate signaling in a large animal model. Our initial investigations involved precise testing of this probe in both in vitro and ex vivo environments. We accurately assessed the sensitivity and specificity of our glutamate-sensing probe and demonstrated its performance. We also evaluated the performance of our developed flexible probe during the insertion and compared it with the stiff probe during animal movement. Subsequently, we used this innovative technique to monitor the spinal glutamate signaling during myocardial ischemia and reperfusion that can cause fatal ventricular arrhythmias. We showed that glutamate concentration increases during the myocardial ischemia, persists during the reperfusion, and is associated with sympathoexcitation and increases in myocardial substrate excitability.
Collapse
Affiliation(s)
- Siamak Salavatian
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Elaine Marie Robbins
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Yuki Kuwabara
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Elisa Castagnola
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Center for Neural Basis of Cognition, Pittsburgh, Pennsylvania, United States
- McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, United States
| | - Aman Mahajan
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
30
|
Xie RG, Xu GY, Wu SX, Luo C. Presynaptic glutamate receptors in nociception. Pharmacol Ther 2023; 251:108539. [PMID: 37783347 DOI: 10.1016/j.pharmthera.2023.108539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/19/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
Chronic pain is a frequent, distressing and poorly understood health problem. Plasticity of synaptic transmission in the nociceptive pathways after inflammation or injury is assumed to be an important cellular basis for chronic, pathological pain. Glutamate serves as the main excitatory neurotransmitter at key synapses in the somatosensory nociceptive pathways, in which it acts on both ionotropic and metabotropic glutamate receptors. Although conventionally postsynaptic, compelling anatomical and physiological evidence demonstrates the presence of presynaptic glutamate receptors in the nociceptive pathways. Presynaptic glutamate receptors play crucial roles in nociceptive synaptic transmission and plasticity. They modulate presynaptic neurotransmitter release and synaptic plasticity, which in turn regulates pain sensitization. In this review, we summarize the latest understanding of the expression of presynaptic glutamate receptors in the nociceptive pathways, and how they contribute to nociceptive information processing and pain hypersensitivity associated with inflammation / injury. We uncover the cellular and molecular mechanisms of presynaptic glutamate receptors in shaping synaptic transmission and plasticity to mediate pain chronicity, which may provide therapeutic approaches for treatment of chronic pain.
Collapse
Affiliation(s)
- Rou-Gang Xie
- Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, China.
| | - Guang-Yin Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Sheng-Xi Wu
- Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, China.
| | - Ceng Luo
- Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
31
|
Strauss A, Gonzalez-Hernandez AJ, Lee J, Abreu N, Selvakumar P, Salas-Estrada L, Kristt M, Marx DC, Gilliland K, Melancon BJ, Filizola M, Meyerson J, Levitz J. Structural basis of allosteric modulation of metabotropic glutamate receptor activation and desensitization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.13.552748. [PMID: 37645747 PMCID: PMC10461995 DOI: 10.1101/2023.08.13.552748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The metabotropic glutamate receptors (mGluRs) are neuromodulatory family C G protein coupled receptors which assemble as dimers and allosterically couple extracellular ligand binding domains (LBDs) to transmembrane domains (TMDs) to drive intracellular signaling. Pharmacologically, mGluRs can be targeted either at the LBDs by glutamate and synthetic orthosteric compounds or at the TMDs by allosteric modulators. Despite the potential of allosteric TMD-targeting compounds as therapeutics, an understanding of the functional and structural basis of their effects on mGluRs is limited. Here we use a battery of approaches to dissect the distinct functional and structural effects of orthosteric versus allosteric ligands. We find using electrophysiological and live cell imaging assays that both agonists and positive allosteric modulators (PAMs) can drive activation and desensitization of mGluRs. The effects of PAMs are pleiotropic, including both the ability to boost the maximal response to orthosteric agonists and to serve independently as desensitization-biased agonists across mGluR subtypes. Conformational sensors reveal PAM-driven inter-subunit re-arrangements at both the LBD and TMD. Motivated by this, we determine cryo-electron microscopy structures of mGluR3 in the presence of either an agonist or antagonist alone or in combination with a PAM. These structures reveal PAM-driven re-shaping of intra- and inter-subunit conformations and provide evidence for a rolling TMD dimer interface activation pathway that controls G protein and beta-arrestin coupling. Highlights -Agonists and PAMs drive mGluR activation, desensitization, and endocytosis-PAMs are desensitization-biased and synergistic with agonists-Four combinatorial ligand conditions reveal an ensemble of full-length mGluR structures with novel interfaces-Activation and desensitization involve rolling TMD interfaces which are re-shaped by PAM.
Collapse
|
32
|
Torazza C, Provenzano F, Gallia E, Cerminara M, Balbi M, Bonifacino T, Tessitore S, Ravera S, Usai C, Musante I, Puliti A, Van Den Bosch L, Jafar-nejad P, Rigo F, Milanese M, Bonanno G. Genetic Downregulation of the Metabotropic Glutamate Receptor Type 5 Dampens the Reactive and Neurotoxic Phenotype of Adult ALS Astrocytes. Cells 2023; 12:1952. [PMID: 37566031 PMCID: PMC10416852 DOI: 10.3390/cells12151952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive degeneration of motor neurons (MNs). Astrocytes display a toxic phenotype in ALS, which results in MN damage. Glutamate (Glu)-mediated excitotoxicity and group I metabotropic glutamate receptors (mGluRs) play a pathological role in the disease progression. We previously demonstrated that in vivo genetic ablation or pharmacological modulation of mGluR5 reduced astrocyte activation and MN death, prolonged survival and ameliorated the clinical progression in the SOD1G93A mouse model of ALS. This study aimed to investigate in vitro the effects of mGluR5 downregulation on the reactive spinal cord astrocytes cultured from adult late symptomatic SOD1G93A mice. We observed that mGluR5 downregulation in SOD1G93A astrocytes diminished the cytosolic Ca2+ overload under resting conditions and after mGluR5 simulation and reduced the expression of the reactive glial markers GFAP, S100β and vimentin. In vitro exposure to an anti-mGluR5 antisense oligonucleotide or to the negative allosteric modulator CTEP also ameliorated the altered reactive astrocyte phenotype. Downregulating mGluR5 in SOD1G93A mice reduced the synthesis and release of the pro-inflammatory cytokines IL-1β, IL-6 and TNF-α and ameliorated the cellular bioenergetic profile by improving the diminished oxygen consumption and ATP synthesis and by lowering the excessive lactate dehydrogenase activity. Most relevantly, mGluR5 downregulation hampered the neurotoxicity of SOD1G93A astrocytes co-cultured with spinal cord MNs. We conclude that selective reduction in mGluR5 expression in SOD1G93A astrocytes positively modulates the astrocyte reactive phenotype and neurotoxicity towards MNs, further supporting mGluR5 as a promising therapeutic target in ALS.
Collapse
Affiliation(s)
- Carola Torazza
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy; (C.T.); (F.P.); (E.G.); (M.B.); (T.B.); (S.T.); (G.B.)
| | - Francesca Provenzano
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy; (C.T.); (F.P.); (E.G.); (M.B.); (T.B.); (S.T.); (G.B.)
| | - Elena Gallia
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy; (C.T.); (F.P.); (E.G.); (M.B.); (T.B.); (S.T.); (G.B.)
| | - Maria Cerminara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Largo Paolo Daneo, 16132 Genoa, Italy; (M.C.); (A.P.)
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Matilde Balbi
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy; (C.T.); (F.P.); (E.G.); (M.B.); (T.B.); (S.T.); (G.B.)
| | - Tiziana Bonifacino
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy; (C.T.); (F.P.); (E.G.); (M.B.); (T.B.); (S.T.); (G.B.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| | - Sara Tessitore
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy; (C.T.); (F.P.); (E.G.); (M.B.); (T.B.); (S.T.); (G.B.)
| | - Silvia Ravera
- Department of Experimental Medicine (DIMES), University of Genoa, Via Alberti L.B. 2, 16132 Genova, Italy;
| | - Cesare Usai
- Institute of Biophysics, National Research Council (CNR), Via De Marini 6, 16149 Genoa, Italy;
| | - Ilaria Musante
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Aldamaria Puliti
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Largo Paolo Daneo, 16132 Genoa, Italy; (M.C.); (A.P.)
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, KU Leuven-University of Leuven, 3000 Leuven, Belgium;
- VIB-Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | | | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA 92010, USA; (P.J.-n.); (F.R.)
| | - Marco Milanese
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy; (C.T.); (F.P.); (E.G.); (M.B.); (T.B.); (S.T.); (G.B.)
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Giambattista Bonanno
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy; (C.T.); (F.P.); (E.G.); (M.B.); (T.B.); (S.T.); (G.B.)
| |
Collapse
|
33
|
Di Menna L, Orlando R, D'Errico G, Ginerete RP, Machaczka A, Bonaccorso CM, Arena A, Spatuzza M, Celli R, Alborghetti M, Ciocca E, Zuena AR, Scioli MR, Bruno V, Battaglia G, Nicoletti F, Catania MV. Blunted type-5 metabotropic glutamate receptor-mediated polyphosphoinositide hydrolysis in two mouse models of monogenic autism. Neuropharmacology 2023:109642. [PMID: 37392820 DOI: 10.1016/j.neuropharm.2023.109642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 06/06/2023] [Accepted: 06/20/2023] [Indexed: 07/03/2023]
Abstract
The involvement of the mGlu5 receptors in the pathophysiology of several forms of monogenic autism has been supported by numerous studies following the seminal observation that mGlu5 receptor-dependent long-term depression was enhanced in the hippocampus of mice modeling the fragile-X syndrome (FXS). Surprisingly, there are no studies examining the canonical signal transduction pathway activated by mGlu5 receptors (i.e. polyphosphoinositide - PI - hydrolysis) in mouse models of autism. We have developed a method for in vivo assessment of PI hydrolysis based on systemic injection of lithium chloride followed by treatment with the selective mGlu5 receptor PAM, VU0360172, and measurement of endogenous inositolmonophosphate (InsP) in brain tissue. Here, we report that mGlu5 receptor-mediated PI hydrolysis was blunted in the cerebral cortex, hippocampus, and corpus striatum of Ube3am-/p+ mice modeling Angelman syndrome (AS), and in the cerebral cortex and hippocampus of fmr1 knockout mice modeling FXS. In vivo mGlu5 receptor-mediated stimulation of Akt on threonine 308 was also blunted in the hippocampus of FXS mice. These changes were associated with a significant increase in cortical and striatal Homer1 levels and striatal mGlu5 receptor and Gαq levels in AS mice, and with a reduction in cortical mGlu5 receptor and hippocampal Gαq levels, and an increase in cortical phospholipase-Cβ and hippocampal Homer1 levels in FXS mice. This is the first evidence that the canonical transduction pathway activated by mGlu5 receptors is down-regulated in brain regions of mice modeling monogenic autism.
Collapse
Affiliation(s)
| | - Rosamaria Orlando
- IRCCS Neuromed, Pozzilli, Italy; Department of Physiology and Pharmacology, Sapienza University, Roma, Italy
| | | | | | - Agata Machaczka
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Science, Krakow, Poland
| | | | | | | | | | - Marika Alborghetti
- Department of Neuroscience, Mental Health, and Sensory Organs, Sapienza University, Italy
| | - Eleonora Ciocca
- Department of Physiology and Pharmacology, Sapienza University, Roma, Italy
| | - Anna Rita Zuena
- Department of Physiology and Pharmacology, Sapienza University, Roma, Italy
| | | | - Valeria Bruno
- IRCCS Neuromed, Pozzilli, Italy; Department of Physiology and Pharmacology, Sapienza University, Roma, Italy
| | - Giuseppe Battaglia
- IRCCS Neuromed, Pozzilli, Italy; Department of Physiology and Pharmacology, Sapienza University, Roma, Italy
| | - Ferdinando Nicoletti
- IRCCS Neuromed, Pozzilli, Italy; Department of Physiology and Pharmacology, Sapienza University, Roma, Italy
| | - Maria Vincenza Catania
- Institute for Biomedical Research and Innovation, The National Research Council (IRIB-CNR), Catania, Italy.
| |
Collapse
|
34
|
Matrisciano F. Epigenetic regulation of metabotropic glutamate 2/3 receptors: Potential role for ultra-resistant schizophrenia? Pharmacol Biochem Behav 2023:173589. [PMID: 37348609 DOI: 10.1016/j.pbb.2023.173589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/05/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023]
Abstract
Schizophrenia is a severe and debilitating psychiatric disorder characterized by early cognitive deficits, emotional and behavioral abnormalities resulted by a dysfunctional gene x environment interaction. Genetic and epigenetic abnormalities in cortical parvalbumin-positive GABAergic interneurons lead to alterations in glutamate-mediated excitatory neurotransmission, synaptic plasticity, and neuronal development. Epigenetic alterations during pregnancy or early phases of postnatal life are associated with schizophrenia vulnerability as well as inflammatory processes which are at the basis of brain pathology. An epigenetic animal model of schizophrenia showed specific changes in promoter DNA methylation activity of genes related to schizophrenia such as reelin, BDNF and GAD67, and altered expression and function of mGlu2/3 receptors in the frontal cortex. Although antipsychotic medications represent the main treatment for schizophrenia and generally show an optimal efficacy profile for positive symptoms and relatively poor efficacy for negative or cognitive symptoms, a considerable percentage of individuals show poor response, do not achieve a complete remission, and approximately 30 % of patients show treatment-resistance. Here, we explore the potential role of epigenetic abnormalities linked to metabotropic glutamate 2/3 receptors changes in expression and function as key molecular factors underlying the difference in response to antipsychotics.
Collapse
Affiliation(s)
- Francesco Matrisciano
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois Chicago (UIC), Chicago, IL, USA.
| |
Collapse
|
35
|
Saha S, González-Maeso J. The crosstalk between 5-HT 2AR and mGluR2 in schizophrenia. Neuropharmacology 2023; 230:109489. [PMID: 36889432 PMCID: PMC10103009 DOI: 10.1016/j.neuropharm.2023.109489] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/26/2023] [Accepted: 03/05/2023] [Indexed: 03/08/2023]
Abstract
Schizophrenia is a severe brain disorder that usually produces a lifetime of disability. First generation or typical antipsychotics such as haloperidol and second generation or atypical antipsychotics such as clozapine and risperidone remain the current standard for schizophrenia treatment. In some patients with schizophrenia, antipsychotics produce complete remission of positive symptoms, such as hallucinations and delusions. However, antipsychotic drugs are ineffective against cognitive deficits and indeed treated schizophrenia patients have small improvements or even deterioration in several cognitive domains. This underlines the need for novel and more efficient therapeutic targets for schizophrenia treatment. Serotonin and glutamate have been identified as key parts of two neurotransmitter systems involved in fundamental brain processes. Serotonin (or 5-hydroxytryptamine) 5-HT2A receptor (5-HT2AR) and metabotropic glutamate 2 receptor (mGluR2) are G protein-coupled receptors (GPCRs) that interact at epigenetic and functional levels. These two receptors can form GPCR heteromeric complexes through which their pharmacology, function and trafficking becomes affected. Here we review past and current research on the 5-HT2AR-mGluR2 heterocomplex and its potential implication in schizophrenia and antipsychotic drug action. This article is part of the Special Issue on "The receptor-receptor interaction as a new target for therapy".
Collapse
Affiliation(s)
- Somdatta Saha
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Javier González-Maeso
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA.
| |
Collapse
|
36
|
An Z, Yang J, Xiao F, Lv J, Xing X, Liu H, Wang L, Liu Y, Zhang Z, Guo H. Hippocampal Proteomics Reveals the Role of Glutamatergic Synapse Activation in the Depression Induced by Perfluorooctane Sulfonate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7866-7877. [PMID: 37191230 DOI: 10.1021/acs.jafc.3c01344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Perfluorooctane sulfonate (PFOS), a new type of persistent organic pollutant in the environment of water, has drawn significant attention in recent years due to its widespread prevalence and high toxicity. Neurotoxicity is regarded as one of the major toxic effects of PFOS, while research studies on PFOS-induced depression and the underlying mechanisms remain scarce. In this study, behavioral tests revealed the depressive-like behaviors in PFOS-exposed male mice. Neuron damages including pyknosis and staining deepening were identified through hematoxylin and eosin staining. Then, we noticed the elevation of glutamate and proline levels as well as the decline of glutamine and tryptophan levels. Proteomics analysis identified 105 differentially expressed proteins that change in a dose-dependent manner and revealed that PFOS exposure activated the glutamatergic synapse signaling pathway, which were further confirmed by Western blot, and the data were consistent with the findings of the proteomics analysis. Additionally, the downstream signaling cyclic AMP-responsive element-binding protein (CREB)/brain-derived neurotrophic factor (BDNF) and synaptic plasticity-related postsynaptic density protein 95, synaptophysin, were downregulated. Our results highlight that PFOS exposure may inhibit the synaptic plasticity of the hippocampus via glutamatergic synapse and the CREB/BDNF signaling pathway to cause depressive-like behaviors in male mice.
Collapse
Affiliation(s)
- Ziwen An
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Jing Yang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Fang Xiao
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Junli Lv
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiaoqing Xing
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang 050017, China
| | - Heqiong Liu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Lei Wang
- Department of Medicinal Chemistry, Hebei Medical University, Shijiazhuang 050017, China
| | - Yi Liu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Zhanchi Zhang
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang 050017, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei Medical University, Shijiazhuang 050017, China
| | - Huicai Guo
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| |
Collapse
|
37
|
Olivero G, Grilli M, Marchi M, Pittaluga A. Metamodulation of presynaptic NMDA receptors: New perspectives for pharmacological interventions. Neuropharmacology 2023; 234:109570. [PMID: 37146939 DOI: 10.1016/j.neuropharm.2023.109570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
Metamodulation shifted the scenario of the central neuromodulation from a simplified unimodal model to a multimodal one. It involves different receptors/membrane proteins physically associated or merely colocalized that act in concert to control the neuronal functions influencing each other. Defects or maladaptation of metamodulation would subserve neuropsychiatric disorders or even synaptic adaptations relevant to drug dependence. Therefore, this "vulnerability" represents a main issue to be deeply analyzed to predict its aetiopathogenesis, but also to propose targeted pharmaceutical interventions. The review focusses on presynaptic release-regulating NMDA receptors and on some of the mechanisms of their metamodulation described in the literature. Attention is paid to the interactors, including both ionotropic and metabotropic receptors, transporters and intracellular proteins, which metamodulate their responsiveness in physiological conditions but also undergo adaptation that are relevant to neurological dysfunctions. All these structures are attracting more and more the interest as promising druggable targets for the treatment of NMDAR-related central diseases: these substances would not exert on-off control of the colocalized NMDA receptors (as usually observed with NMDAR full agonists/antagonists), but rather modulate their functions, with the promise of limiting side effects that would favor their translation from preclinic to clinic.
Collapse
Affiliation(s)
- Guendalina Olivero
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
| | - Massimo Grilli
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 16148, Genoa, Italy.
| | - Mario Marchi
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
| | - Anna Pittaluga
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 16148, Genoa, Italy
| |
Collapse
|
38
|
Nicoletti F, Di Menna L, Iacovelli L, Orlando R, Zuena AR, Conn PJ, Dogra S, Joffe ME. GPCR interactions involving metabotropic glutamate receptors and their relevance to the pathophysiology and treatment of CNS disorders. Neuropharmacology 2023; 235:109569. [PMID: 37142158 DOI: 10.1016/j.neuropharm.2023.109569] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/18/2023] [Accepted: 05/02/2023] [Indexed: 05/06/2023]
Abstract
Cellular responses to metabotropic glutamate (mGlu) receptor activation are shaped by mechanisms of receptor-receptor interaction. mGlu receptor subtypes form homodimers, intra- or inter-group heterodimers, and heteromeric complexes with other G protein-coupled receptors (GPCRs). In addition, mGlu receptors may functionally interact with other receptors through the βγ subunits released from G proteins in response to receptor activation or other mechanisms. Here, we discuss the interactions between (i) mGlu1 and GABAB receptors in cerebellar Purkinje cells; (ii) mGlu2 and 5-HT2Aserotonergic receptors in the prefrontal cortex; (iii) mGlu5 and A2A receptors or mGlu5 and D1 dopamine receptors in medium spiny projection neurons of the indirect and direct pathways of the basal ganglia motor circuit; (iv) mGlu5 and A2A receptors in relation to the pathophysiology of Alzheimer's disease; and (v) mGlu7 and A1 adenosine or α- or β1 adrenergic receptors. In addition, we describe in detail a novel form of non-heterodimeric interaction between mGlu3 and mGlu5 receptors, which appears to be critically involved in mechanisms of activity-dependent synaptic plasticity in the prefrontal cortex and hippocampus. Finally, we highlight the potential implication of these interactions in the pathophysiology and treatment of cerebellar disorders, schizophrenia, Alzheimer's disease, Parkinson's disease, l-DOPA-induced dyskinesias, stress-related disorders, and cognitive dysfunctions.
Collapse
Affiliation(s)
- Ferdinando Nicoletti
- Department of Physiology and Pharmacology, Sapienza University of Rome, Italy; IRCCS Neuromed, Pozzilli, Italy.
| | | | - Luisa Iacovelli
- Department of Physiology and Pharmacology, Sapienza University of Rome, Italy
| | - Rosamaria Orlando
- Department of Physiology and Pharmacology, Sapienza University of Rome, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Anna Rita Zuena
- Department of Physiology and Pharmacology, Sapienza University of Rome, Italy
| | - P Jeffrey Conn
- Department of Pharmacology, Italy; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, 37232, USA
| | - Shalini Dogra
- Department of Pharmacology, Italy; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, 37232, USA
| | - Max E Joffe
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| |
Collapse
|
39
|
Zeng S, Tao M, Yuan L, Zhang L, Luo X. Inhibition of mGluR5 ameliorates lipid accumulation and inflammation in HepG2 cells. Biochem Biophys Res Commun 2023; 653:1-11. [PMID: 36842305 DOI: 10.1016/j.bbrc.2023.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 02/21/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease characterized by ectopic lipid accumulation in hepatocytes. To date, no specific drug has been approved for its treatment. Metabotropic glutamate receptor 5 (mGluR5) has been showed expressed in hepatocytes and related to some liver diseases such as alcoholic steatosis. However, the function of mGluR5 in NAFLD is not clear. This work aims to investigate the effect and potential mechanism of mGluR5 in NAFLD. We found that mGluR5 expression was increased in the livers of HFD-fed mice and in palmitate-treated HepG2 cells. Suppression of mGluR5 by the specific antagonist MPEP could ameliorate palmitate-induced lipid accumulation, whereas the mGluR5 agonist CHPG promoted lipid deposition in the cells. Knockdown of mGluR5 by small interfering RNA further demonstrated that inhibition of mGluR5 could reduce lipid accumulation. Furthermore, our results revealed that mGluR5 regulated lipid metabolism by increasing the gene expression of lipogenesis. Inflammatory factors and phosphorylation levels of NF-κB-p65 and JNK were also tested in treated hepatocytes. mGluR5 promoted the inflammatory reaction and JNK phosphorylation. Inhibition of JNK signaling by JNK-IN-8 rescued CHPG-induced lipogenesis and inflammation. This study showed mGluR5 regulated lipid accumulation and inflammation in palmitic acid-treated HepG2 cells via the JNK signaling pathway. mGluR5 might be a potential drug target for NAFLD.
Collapse
Affiliation(s)
- Shu Zeng
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China; Department of Gastroenterology, Institute of Digestive Diseases of PLA, Cholestatic Liver Diseases Center, and Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) of Third Military Medical University (Army Medical University), Chongqing, China.
| | - Min Tao
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Lei Yuan
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Lili Zhang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Xie Luo
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
40
|
Balbi M, Bonanno G, Bonifacino T, Milanese M. The Physio-Pathological Role of Group I Metabotropic Glutamate Receptors Expressed by Microglia in Health and Disease with a Focus on Amyotrophic Lateral Sclerosis. Int J Mol Sci 2023; 24:5240. [PMID: 36982315 PMCID: PMC10048889 DOI: 10.3390/ijms24065240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Microglia cells are the resident immune cells of the central nervous system. They act as the first-line immune guardians of nervous tissue and central drivers of neuroinflammation. Any homeostatic alteration that can compromise neuron and tissue integrity could activate microglia. Once activated, microglia exhibit highly diverse phenotypes and functions related to either beneficial or harmful consequences. Microglia activation is associated with the release of protective or deleterious cytokines, chemokines, and growth factors that can in turn determine defensive or pathological outcomes. This scenario is complicated by the pathology-related specific phenotypes that microglia can assume, thus leading to the so-called disease-associated microglia phenotypes. Microglia express several receptors that regulate the balance between pro- and anti-inflammatory features, sometimes exerting opposite actions on microglial functions according to specific conditions. In this context, group I metabotropic glutamate receptors (mGluRs) are molecular structures that may contribute to the modulation of the reactive phenotype of microglia cells, and this is worthy of exploration. Here, we summarize the role of group I mGluRs in shaping microglia cells' phenotype in specific physio-pathological conditions, including some neurodegenerative disorders. A significant section of the review is specifically focused on amyotrophic lateral sclerosis (ALS) since it represents an entirely unexplored topic of research in the field.
Collapse
Affiliation(s)
- Matilde Balbi
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy (M.M.)
| | - Giambattista Bonanno
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy (M.M.)
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Tiziana Bonifacino
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy (M.M.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| | - Marco Milanese
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy (M.M.)
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| |
Collapse
|
41
|
Masugi-Tokita M, Kubota S, Kobayashi K, Yoshida T, Kageyama S, Sakamoto H, Kawauchi A. Spinal Transection Switches the Effect of Metabotropic Glutamate Receptor Subtype 7 from the Facilitation to Inhibition of Ejaculation. Neuroscience 2023; 509:10-19. [PMID: 36403690 DOI: 10.1016/j.neuroscience.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/03/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
Metabotropic glutamate receptor subtype 7 (mGluR7) is a member of the group III mGluRs, which localize to presynaptic active zones of the central nervous system. We previously reported that mGluR7 knockout (KO) mice exhibit ejaculatory disorders, although they have normal sexual motivation. We hypothesized that mGluR7 regulates ejaculation by potentiating the excitability of the neural circuit in the lumbosacral spinal cord, because administration of the mGluR7-selective antagonist into that region inhibits drug-induced ejaculation. In the present study, to elucidate the mechanism of impaired ejaculation in mGluR7 KO mice, we eliminated the influence of the brain by spinal transection (spinalization). Unexpectedly, sexual responses of male mGluR7 KO mice were stronger than those of wild-type mice after spinalization. Histological examination indicated that mGluR7 controls sympathetic neurons as well as parasympathetic neurons. In view of the complexity of its synaptic regulation, mGluR7 might control ejaculation by multi-level and multi-modal mechanisms. Our study provides insight into the mechanism of ejaculation as well as a strategy for future therapies to treat ejaculatory disorders in humans.
Collapse
Affiliation(s)
- Miwako Masugi-Tokita
- Department of Urology, Shiga University of Medical Science, Otsu, Japan; World Premier International Research Initiative-Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, Japan; Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| | - Shigehisa Kubota
- Department of Urology, Shiga University of Medical Science, Otsu, Japan
| | - Kenichi Kobayashi
- Department of Urology, Shiga University of Medical Science, Otsu, Japan
| | - Tetsuya Yoshida
- Department of Urology, Shiga University of Medical Science, Otsu, Japan
| | - Susumu Kageyama
- Department of Urology, Shiga University of Medical Science, Otsu, Japan
| | - Hirotaka Sakamoto
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Setouchi, Japan
| | - Akihiro Kawauchi
- Department of Urology, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
42
|
Holter KM, Pierce BE, Gould RW. Metabotropic glutamate receptor function and regulation of sleep-wake cycles. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 168:93-175. [PMID: 36868636 PMCID: PMC10973983 DOI: 10.1016/bs.irn.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Metabotropic glutamate (mGlu) receptors are the most abundant family of G-protein coupled receptors and are widely expressed throughout the central nervous system (CNS). Alterations in glutamate homeostasis, including dysregulations in mGlu receptor function, have been indicated as key contributors to multiple CNS disorders. Fluctuations in mGlu receptor expression and function also occur across diurnal sleep-wake cycles. Sleep disturbances including insomnia are frequently comorbid with neuropsychiatric, neurodevelopmental, and neurodegenerative conditions. These often precede behavioral symptoms and/or correlate with symptom severity and relapse. Chronic sleep disturbances may also be a consequence of primary symptom progression and can exacerbate neurodegeneration in disorders including Alzheimer's disease (AD). Thus, there is a bidirectional relationship between sleep disturbances and CNS disorders; disrupted sleep may serve as both a cause and a consequence of the disorder. Importantly, comorbid sleep disturbances are rarely a direct target of primary pharmacological treatments for neuropsychiatric disorders even though improving sleep can positively impact other symptom clusters. This chapter details known roles of mGlu receptor subtypes in both sleep-wake regulation and CNS disorders focusing on schizophrenia, major depressive disorder, post-traumatic stress disorder, AD, and substance use disorder (cocaine and opioid). In this chapter, preclinical electrophysiological, genetic, and pharmacological studies are described, and, when possible, human genetic, imaging, and post-mortem studies are also discussed. In addition to reviewing the important relationships between sleep, mGlu receptors, and CNS disorders, this chapter highlights the development of selective mGlu receptor ligands that hold promise for improving both primary symptoms and sleep disturbances.
Collapse
Affiliation(s)
- Kimberly M Holter
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Bethany E Pierce
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Robert W Gould
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States.
| |
Collapse
|
43
|
Yadav P, Podia M, Kumari SP, Mani I. Glutamate receptor endocytosis and signaling in neurological conditions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 196:167-207. [PMID: 36813358 DOI: 10.1016/bs.pmbts.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The non-essential amino acid glutamate acts as a major excitatory neurotransmitter and plays a significant role in the central nervous system (CNS). It binds with two different types of receptors, ionotropic glutamate receptors (iGluRs) and metabotropic glutamate receptors (mGluRs), responsible for the postsynaptic excitation of neurons. They are important for memory, neural development and communication, and learning. Endocytosis and subcellular trafficking of the receptor are essential for the regulation of receptor expression on the cell membrane and excitation of the cells. The endocytosis and trafficking of the receptor are dependent on its type, ligand, agonist, and antagonist present. This chapter discusses the types of glutamate receptors, their subtypes, and the regulation of their internalization and trafficking. The roles of glutamate receptors in neurological diseases are also briefly discussed.
Collapse
Affiliation(s)
- Prerna Yadav
- Department of Microbiology, University of Delhi, New Delhi, India
| | - Mansi Podia
- Department of Microbiology, University of Delhi, New Delhi, India
| | - Shashi Prabha Kumari
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi, India
| | - Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| |
Collapse
|
44
|
Hoglund BK, Carfagno V, Olive MF, Leyrer-Jackson JM. Metabotropic glutamate receptors and cognition: From underlying plasticity and neuroprotection to cognitive disorders and therapeutic targets. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 168:367-413. [PMID: 36868635 DOI: 10.1016/bs.irn.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metabotropic glutamate (mGlu) receptors are G protein-coupled receptors that play pivotal roles in mediating the activity of neurons and other cell types within the brain, communication between cell types, synaptic plasticity, and gene expression. As such, these receptors play an important role in a number of cognitive processes. In this chapter, we discuss the role of mGlu receptors in various forms of cognition and their underlying physiology, with an emphasis on cognitive dysfunction. Specifically, we highlight evidence that links mGlu physiology to cognitive dysfunction across brain disorders including Parkinson's disease, Alzheimer's disease, Fragile X syndrome, post-traumatic stress disorder, and schizophrenia. We also provide recent evidence demonstrating that mGlu receptors may elicit neuroprotective effects in particular disease states. Lastly, we discuss how mGlu receptors can be targeted utilizing positive and negative allosteric modulators as well as subtype specific agonists and antagonist to restore cognitive function across these disorders.
Collapse
Affiliation(s)
- Brandon K Hoglund
- Department of Medical Education, School of Medicine, Creighton University, Phoenix, AZ, United States
| | - Vincent Carfagno
- School of Medicine, Midwestern University, Glendale, AZ, United States
| | - M Foster Olive
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| | - Jonna M Leyrer-Jackson
- Department of Medical Education, School of Medicine, Creighton University, Phoenix, AZ, United States.
| |
Collapse
|
45
|
Younger DS. Paraneoplastic motor disorders. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:231-250. [PMID: 37620071 DOI: 10.1016/b978-0-323-98817-9.00018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Paraneoplastic neurological disorders (PNDs) are heterogeneous clinicopathologic syndromes that occur throughout the neuraxis resulting from damage to organs or tissues remote from the site of a malignant neoplasm or its metastases. The discordance between severe neurological disability and even an indolent malignancy suggests an underlying neuroimmunologic host immune response that inflicts nervous tissue damage while inhibiting malignant tumor growth. Motor system involvement, like other symptoms and signs, is associated with focal or diffuse involvement of the brain, spinal cord, peripheral nerve, neuromuscular junction or muscle, alone or in combination due to an underlying neuroimmune and neuroinflammatory process targeting neural-specific antigens. Unrecognized and therefore untreated, PNDs are often lethal making early detection and aggressive treatment of paramount importance. While the combination of clinical symptoms and signs, and analysis of detailed body and neuroimaging, clinical neurophysiology and electrodiagnostic studies, and tumor and nervous system tissue biopsies are all vitally important, the certain diagnosis of a PND rests with the discovery of a corresponding neural-specific paraneoplastic autoantibody in the blood and/or spinal cerebrospinal fluid.
Collapse
Affiliation(s)
- David S Younger
- Department of Clinical Medicine and Neuroscience, CUNY School of Medicine, New York, NY, United States; Department of Medicine, Section of Internal Medicine and Neurology, White Plains Hospital, White Plains, NY, United States.
| |
Collapse
|
46
|
Mao LM, Mathur N, Shah K, Wang JQ. Roles of metabotropic glutamate receptor 8 in neuropsychiatric and neurological disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 168:349-366. [PMID: 36868634 PMCID: PMC10162486 DOI: 10.1016/bs.irn.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metabotropic glutamate (mGlu) receptors are G protein-coupled receptors. Among eight mGlu subtypes (mGlu1-8), mGlu8 has drawn increasing attention. This subtype is localized to the presynaptic active zone of neurotransmitter release and is among the mGlu subtypes with high affinity for glutamate. As a Gi/o-coupled autoreceptor, mGlu8 inhibits glutamate release to maintain homeostasis of glutamatergic transmission. mGlu8 receptors are expressed in limbic brain regions and play a pivotal role in modulating motivation, emotion, cognition, and motor functions. Emerging evidence emphasizes the increasing clinical relevance of abnormal mGlu8 activity. Studies using mGlu8 selective agents and knockout mice have revealed the linkage of mGlu8 receptors to multiple neuropsychiatric and neurological disorders, including anxiety, epilepsy, Parkinson's disease, drug addiction, and chronic pain. Expression and function of mGlu8 receptors in some limbic structures undergo long-lasting adaptive changes in animal models of these disorders, which may contribute to the remodeling of glutamatergic transmission critical for the pathogenesis and symptomatology of brain illnesses. This review summarizes the current understanding of mGlu8 biology and the possible involvement of the receptor in several common psychiatric and neurological disorders.
Collapse
Affiliation(s)
- Li-Min Mao
- Department of Biomedical Sciences, University of Missouri-Kansas City, School of Medicine, Kansas City, MO, United States
| | - Nirav Mathur
- Department of Anesthesiology, University of Missouri-Kansas City, School of Medicine, Kansas City, MO, United States
| | - Karina Shah
- Department of Biomedical Sciences, University of Missouri-Kansas City, School of Medicine, Kansas City, MO, United States
| | - John Q Wang
- Department of Biomedical Sciences, University of Missouri-Kansas City, School of Medicine, Kansas City, MO, United States; Department of Anesthesiology, University of Missouri-Kansas City, School of Medicine, Kansas City, MO, United States.
| |
Collapse
|
47
|
Are mGluR2/3 Inhibitors Potential Compounds for Novel Antidepressants? Cell Mol Neurobiol 2022:10.1007/s10571-022-01310-8. [DOI: 10.1007/s10571-022-01310-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 11/18/2022] [Indexed: 11/30/2022]
Abstract
AbstractDepression is the most common mental illness characterized by anhedonia, avolition and loss of appetite and motivation. The majority of conventional antidepressants are monoaminergic system selective inhibitors, yet the efficacies are not sufficient. Up to 30% of depressed patients are resistant to treatment with available antidepressants, underscoring the urgent need for development of novel therapeutics to meet clinical needs. Recent years, compounds acting on the glutamate system have attracted wide attention because of their strong, rapid and sustained antidepressant effects. Among them, selective inhibitors of metabotropic glutamate receptors 2 and 3 (mGluR2/3) have shown robust antidepressant benefits with fewer side-effects in both preclinical and clinical studies. Thus, we here attempt to summarize the antidepressant effects and underlying mechanisms of these inhibitors revealed in recent years as well as analyze the potential value of mGluR2/3 selective inhibitors in the treatment of depression.
Collapse
|
48
|
The role of thalamic group II mGlu receptors in health and disease. Neuronal Signal 2022; 6:NS20210058. [PMID: 36561092 PMCID: PMC9760452 DOI: 10.1042/ns20210058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 12/25/2022] Open
Abstract
The thalamus plays a pivotal role in the integration and processing of sensory, motor, and cognitive information. It is therefore important to understand how the thalamus operates in states of both health and disease. In the present review, we discuss the function of the Group II metabotropic glutamate (mGlu) receptors within thalamic circuitry, and how they may represent therapeutic targets in treating disease states associated with thalamic dysfunction.
Collapse
|
49
|
Matrisciano F, Locci V, Dong E, Nicoletti F, Guidotti A, Grayson DR. Altered Expression and In Vivo Activity of mGlu5 Variant a Receptors in the Striatum of BTBR Mice: Novel Insights Into the Pathophysiology of Adult Idiopathic Forms of Autism Spectrum Disorders. Curr Neuropharmacol 2022; 20:2354-2368. [PMID: 35139800 PMCID: PMC9890299 DOI: 10.2174/1567202619999220209112609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND mGlu5 metabotropic glutamate receptors are considered as candidate drug targets in the treatment of "monogenic" forms of autism spectrum disorders (ASD), such as Fragile- X syndrome (FXS). However, despite promising preclinical data, clinical trials using mGlu5 receptor antagonists to treat FXS showed no beneficial effects. OBJECTIVE Here, we studied the expression and function of mGlu5 receptors in the striatum of adult BTBR mice, which model idiopathic forms of ASD, and behavioral phenotype. METHODS Behavioral tests were associated with biochemistry analysis including qPCR and western blot for mRNA and protein expression. In vivo analysis of polyphosphoinositides hydrolysis was performed to study the mGlu5-mediated intracellular signaling in the striatum of adult BTBR mice under basal conditions and after MTEP exposure. RESULTS Expression of mGlu5 receptors and mGlu5 receptor-mediated polyphosphoinositides hydrolysis were considerably high in the striatum of BTBR mice, sensitive to MTEP treatment. Changes in the expression of genes encoding for proteins involved in excitatory and inhibitory neurotransmission and synaptic plasticity, including Fmr1, Dlg4, Shank3, Brd4, bdnf-exon IX, Mef2c, and Arc, GriA2, Glun1, Nr2A, and Grm1, Grm2, GriA1, and Gad1 were also found. Behaviorally, BTBR mice showed high repetitive stereotypical behaviors, including self-grooming and deficits in social interactions. Acute or repeated injections with MTEP reversed the stereotyped behavior and the social interaction deficit. Similar effects were observed with the NMDA receptor blockers MK-801 or ketamine. CONCLUSION These findings support a pivotal role of mGlu5 receptor abnormal expression and function in idiopathic ASD adult forms and unveil novel potential targets for therapy.
Collapse
Affiliation(s)
- Francesco Matrisciano
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Valentina Locci
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Erbo Dong
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
- Center for Alcohol Research in Epigenetics Department of Psychiatry College of Medicine University of Illinois Chicago, Chicago, IL 60612, USA
| | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Alessandro Guidotti
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
- Center for Alcohol Research in Epigenetics Department of Psychiatry College of Medicine University of Illinois Chicago, Chicago, IL 60612, USA
| | - Dennis R. Grayson
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
- Center for Alcohol Research in Epigenetics Department of Psychiatry College of Medicine University of Illinois Chicago, Chicago, IL 60612, USA
| |
Collapse
|
50
|
Matulewicz P, Ramos-Prats A, Gómez-Santacana X, Llebaria A, Ferraguti F. Control of Theta Oscillatory Activity Underlying Fear Expression by mGlu 5 Receptors. Cells 2022; 11:cells11223555. [PMID: 36428984 PMCID: PMC9688906 DOI: 10.3390/cells11223555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/19/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022] Open
Abstract
Metabotropic glutamate 5 receptors (mGlu5) are thought to play an important role in mediating emotional information processing. In particular, negative allosteric modulators (NAMs) of mGlu5 have received a lot of attention as potential novel treatments for several neuropsychiatric diseases, including anxiety-related disorders. The aim of this study was to assess the influence of pre- and post-training mGlu5 inactivation in cued fear conditioned mice on neuronal oscillatory activity during fear retrieval. For this study we used the recently developed mGlu5 NAM Alloswicth-1 administered systemically. Injection of Alloswicth-1 before, but not after, fear conditioning resulted in a significant decrease in freezing upon fear retrieval. Mice injected with Alloswicth-1 pre-training were also implanted with recording microelectrodes into both the medial prefrontal cortex (mPFC) and ventral hippocampus (vHPC). The recordings revealed a reduction in theta rhythmic activity (4-12 Hz) in both the mPFC and vHPC during fear retrieval. These results indicate that inhibition of mGlu5 signaling alters local oscillatory activity in principal components of the fear brain network underlying a reduced response to a predicted threat.
Collapse
Affiliation(s)
- Pawel Matulewicz
- Institute of Pharmacology, Medical University of Innsbruck, Peter-Mayr-Str. 1, 6020 Innsbruck, Austria
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Jana Bazynskiego 8, 80-309 Gdansk, Poland
- Correspondence:
| | - Arnau Ramos-Prats
- Institute of Pharmacology, Medical University of Innsbruck, Peter-Mayr-Str. 1, 6020 Innsbruck, Austria
| | - Xavier Gómez-Santacana
- Laboratory of Medicinal Chemistry & Synthesis (MCS), Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Amadeu Llebaria
- Laboratory of Medicinal Chemistry & Synthesis (MCS), Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Francesco Ferraguti
- Institute of Pharmacology, Medical University of Innsbruck, Peter-Mayr-Str. 1, 6020 Innsbruck, Austria
| |
Collapse
|