1
|
Suresh K, Bhattacharyya S, Carvajal J, Ghosh R, Zeisler-Diehl VV, Böckem V, Nagel KA, Wojciechowski T, Schreiber L. Effects of water stress on apoplastic barrier formation in soil grown roots differ from hydroponically grown roots: Histochemical, biochemical and molecular evidence. PLANT, CELL & ENVIRONMENT 2024; 47:4917-4931. [PMID: 39110071 DOI: 10.1111/pce.15067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/25/2024] [Accepted: 07/20/2024] [Indexed: 11/06/2024]
Abstract
In root research, hydroponic plant cultivation is commonly used and soil experiments are rare. We investigated the response of 12-day-old barley roots, cultivated in soil-filled rhizotrons, to different soil water potentials (SWP) comparing a modern cultivar (cv. Scarlett) with a wild accession ICB181243 from Pakistan. Water potentials were quantified in soils with different relative water contents. Root anatomy was studied using histochemistry and microscopy. Suberin and lignin amounts were quantified by analytical chemistry. Transcriptomic changes were observed by RNA-sequencing. Compared with control with decreasing SWP, total root length decreased, the onset of endodermal suberization occurred much closer towards the root tips, amounts of suberin and lignin increased, and corresponding biosynthesis genes were upregulated in response to decreasing SWP. We conclude that decreasing water potentials enhanced root suberization and lignification, like osmotic stress experiments in hydroponic cultivation. However, in soil endodermal cell suberization was initiated very close towards the root tip, and root length as well as suberin amounts were about twofold higher compared with hydroponic cultivation.
Collapse
Affiliation(s)
- Kiran Suresh
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - Sabarna Bhattacharyya
- Plant Cell Biology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - Jorge Carvajal
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - Rajdeep Ghosh
- Department of Experimental Plant Biology, Charles University, Praha, Czech Republic
| | - Viktoria V Zeisler-Diehl
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - Vera Böckem
- Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Kerstin A Nagel
- Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| | | | - Lukas Schreiber
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| |
Collapse
|
2
|
Du S, Wan H, Luo J, Duan X, Zou Z. Metabolic profiling of Citrus maxima L. seedlings in response to cadmium stress using UPLC-QTOF-MS. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108920. [PMID: 38996714 DOI: 10.1016/j.plaphy.2024.108920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/25/2024] [Accepted: 07/06/2024] [Indexed: 07/14/2024]
Abstract
Cadmium (Cd) pollution significantly reduces agricultural crop yields. In our research, metabolomic changes in Citrus maxima L. subjected to Cd stress were investigated using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) in tandem with multivariate analytical techniques. This integrative method, coupled with physiological evaluations, aimed to elucidate the core adaptive mechanisms to Cd stress. We found that under Cd stress, C. maxima seedlings exhibited elevated levels of reactive oxygen species, malondialdehyde, and electrolyte leakage. Furthermore, principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) demonstrated distinct a separation of the metabolome among the different treatment groups under Cd stress, indicating dynamic metabolic changes. Metabolic analysis suggested that genes involved are initially induced by Cd treatment, followed by the activation of the flavonoid biosynthesis pathway. This investigation provides new insights into the complex metabolic responses of C. maxima seedlings to Cd exposure.
Collapse
Affiliation(s)
- Shangguang Du
- College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, China; Jiangxi Province Key Laboratory of Biodiversity Conservation and Bioresource Utilization, Nanchang, 330022, China
| | - Hao Wan
- College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, China
| | - Jun Luo
- College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, China
| | - Xiaohua Duan
- College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, China.
| | - Zhengrong Zou
- College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, China; Jiangxi Province Key Laboratory of Biodiversity Conservation and Bioresource Utilization, Nanchang, 330022, China.
| |
Collapse
|
3
|
Cao S, Zhao X, Li Z, Yu R, Li Y, Zhou X, Yan W, Chen D, He C. Comprehensive integration of single-cell transcriptomic data illuminates the regulatory network architecture of plant cell fate specification. PLANT DIVERSITY 2024; 46:372-385. [PMID: 38798726 PMCID: PMC11119547 DOI: 10.1016/j.pld.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 05/29/2024]
Abstract
Plant morphogenesis relies on precise gene expression programs at the proper time and position which is orchestrated by transcription factors (TFs) in intricate regulatory networks in a cell-type specific manner. Here we introduced a comprehensive single-cell transcriptomic atlas of Arabidopsis seedlings. This atlas is the result of meticulous integration of 63 previously published scRNA-seq datasets, addressing batch effects and conserving biological variance. This integration spans a broad spectrum of tissues, including both below- and above-ground parts. Utilizing a rigorous approach for cell type annotation, we identified 47 distinct cell types or states, largely expanding our current view of plant cell compositions. We systematically constructed cell-type specific gene regulatory networks and uncovered key regulators that act in a coordinated manner to control cell-type specific gene expression. Taken together, our study not only offers extensive plant cell atlas exploration that serves as a valuable resource, but also provides molecular insights into gene-regulatory programs that varies from different cell types.
Collapse
Affiliation(s)
- Shanni Cao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xue Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Zhuojin Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ranran Yu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yuqi Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinkai Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Wenhao Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Dijun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Chao He
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
4
|
Liu C, Chang J, Yang J, Li H, Wu J, Wu J, Dai X, Wei F, Zhang X, Su X, Xia Z. Overexpression of NtDOGL4 improves cadmium tolerance through abscisic acid signaling pathway in tobacco. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133462. [PMID: 38215520 DOI: 10.1016/j.jhazmat.2024.133462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
The DELAY OF GERMINATION1-LIKE (DOGL) genes play an essential role in diverse biological processes in plants. However, their exact involvement in the response to cadmium (Cd) stress via the ABA pathway remains unclear. Here, we focused on NtDOGL4, a tobacco DOGL gene whose expression is highly induced upon exposure to Cd. Overexpression of NtDOGL4 in tobacco resulted in elevated endogenous ABA levels, reduced Cd accumulation, and increased tolerance to Cd. Moreover, NtDOGL4 overexpression led to decreased accumulation of reactive oxygen species (ROS) and improved ROS scavenging capacity under Cd stress. Further analyses revealed the direct binding of the transcription factor ABSCISIC ACID-INSENSITIVE 5 (ABI5) to the NtDOGL4 promoter, positively regulating its expression in tobacco. Notably, NtDOGL4 overexpression promoted suberin formation and deposition, while suppressing the expression of Cd transporter genes in tobacco roots, as evidenced by histochemical staining, suberin fraction determination, and qRT-PCR assays. Collectively, our results demonstrate that NtDOGL4 overexpression reduces Cd accumulation, thereby improving Cd stress tolerance through the modulation of antioxidant system, transcription of Cd transporters, and suberin deposition. Notably, the NtABI5-NtDOGL4 module functions as a positive regulator in tobacco's Cd tolerance, underscoring its potential as a molecular target for developing low-Cd crops to ensure environmental safety.
Collapse
Affiliation(s)
- Can Liu
- College of Life Science, Henan Agricultural University, Zhengzhou 450046, China; College of Tobacco Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Jianbo Chang
- Henan Provincial Tobacco Company, Zhengzhou 450018, China
| | - Jianxin Yang
- Henan Provincial Tobacco Company, Zhengzhou 450018, China
| | - Hongchen Li
- Henan Provincial Tobacco Company, Zhengzhou 450018, China
| | - Jiang Wu
- Henan Provincial Tobacco Company, Zhengzhou 450018, China
| | - Junlin Wu
- Henan Provincial Tobacco Company, Zhengzhou 450018, China
| | - Xiaoyan Dai
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450046, China.
| | - Fengjie Wei
- Henan Provincial Tobacco Company, Zhengzhou 450018, China.
| | - Xiaoquan Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450046, China.
| | - Xinhong Su
- Henan Provincial Tobacco Company, Zhengzhou 450018, China.
| | - Zongliang Xia
- College of Life Science, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
5
|
Zhang X, Gao H, Liu Y, Zhao H, Lü S. Function identification of Arabidopsis GPAT4 and GPAT8 in the biosynthesis of suberin and cuticular wax. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 339:111933. [PMID: 38036221 DOI: 10.1016/j.plantsci.2023.111933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/21/2023] [Accepted: 11/25/2023] [Indexed: 12/02/2023]
Abstract
Surface lipids in plants include cutin, cuticular wax and suberin. sn-Glycerol-3-phosphate acyltransferases (GPATs) facilitate the acylation of sn-glycerol-3-phosphate (G3P) utilizing a fatty acyl group from acyl-coenzyme A (acyl-CoA) or acyl-acyl carrier protein (acyl-ACP) as substrates for the biosynthesis of plant extracellular lipids such as suberin and cutin. Here we found that Arabidopsis GPAT4 and GPAT8 are specifically expressed in endodermis cells of roots where suberin was accumulated. GPAT4 mutation significantly decreased the amounts of the C16 and C18 ω-oxidized suberin monomers, whereas the mutation of GPAT8 had little effect on the suberin production, and the functions of both were not redundant. Root suberin phenotype analysis of gpat4-1 and gpat6-1 single or double mutant revealed that GPAT4 and GPAT6 play redundant functions. Interestingly, the gpat4-1 gpat8-1 double mutant displayed a glossy stem phenotype since fewer wax crystals were accumulated. This phenotype was not shown in either parent. Further study showed that the amounts of most wax components were significantly decreased. Taken together, our findings revealed that GPAT4 has an additive effect with GPAT6 in the root suberin biosynthesis, and plays a redundant role in wax production with GPAT8.
Collapse
Affiliation(s)
- Xuanhao Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Huani Gao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yi Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Huayan Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Shiyou Lü
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| |
Collapse
|
6
|
Chang LF, Fei J, Wang YS, Ma XY, Zhao Y, Cheng H. Comparative Analysis of Cd Uptake and Tolerance in Two Mangrove Species ( Avicennia marina and Rhizophora stylosa) with Distinct Apoplast Barriers. PLANTS (BASEL, SWITZERLAND) 2023; 12:3786. [PMID: 38005683 PMCID: PMC10674663 DOI: 10.3390/plants12223786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/29/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023]
Abstract
Mangrove plants demonstrate an impressive ability to tolerate environmental pollutants, but excessive levels of cadmium (Cd) can impede their growth. Few studies have focused on the effects of apoplast barriers on heavy metal tolerance in mangrove plants. To investigate the uptake and tolerance of Cd in mangrove plants, two distinct mangrove species, Avicennia marina and Rhizophora stylosa, are characterized by unique apoplast barriers. The results showed that both mangrove plants exhibited the highest concentration of Cd2+ in roots, followed by stems and leaves. The Cd2+ concentrations in all organs of R. stylosa consistently exhibited lower levels than those of A. marina. In addition, R. stylosa displayed a reduced concentration of apparent PTS and a smaller percentage of bypass flow when compared to A. marina. The root anatomical characteristics indicated that Cd treatment significantly enhanced endodermal suberization in both A. marina and R. stylosa roots, and R. stylosa exhibited a higher degree of suberization. The transcriptomic analysis of R. stylosa and A. marina roots under Cd stress revealed 23 candidate genes involved in suberin biosynthesis and 8 candidate genes associated with suberin regulation. This study has confirmed that suberized apoplastic barriers play a crucial role in preventing Cd from entering mangrove roots.
Collapse
Affiliation(s)
- Li-Fang Chang
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (L.-F.C.); (J.F.); (Y.-S.W.); (X.-Y.M.)
- College of Life Science and Agroforestry, Qiqihaer University, Qiqihaer 161006, China
| | - Jiao Fei
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (L.-F.C.); (J.F.); (Y.-S.W.); (X.-Y.M.)
| | - You-Shao Wang
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (L.-F.C.); (J.F.); (Y.-S.W.); (X.-Y.M.)
| | - Xiao-Yu Ma
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (L.-F.C.); (J.F.); (Y.-S.W.); (X.-Y.M.)
- College of Life Science and Agroforestry, Qiqihaer University, Qiqihaer 161006, China
| | - Yan Zhao
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (L.-F.C.); (J.F.); (Y.-S.W.); (X.-Y.M.)
- College of Life Science and Agroforestry, Qiqihaer University, Qiqihaer 161006, China
| | - Hao Cheng
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (L.-F.C.); (J.F.); (Y.-S.W.); (X.-Y.M.)
| |
Collapse
|
7
|
Kim GE, Sung J. ABA-dependent suberization and aquaporin activity in rice ( Oryza sativa L.) root under different water potentials. FRONTIERS IN PLANT SCIENCE 2023; 14:1219610. [PMID: 37746006 PMCID: PMC10512726 DOI: 10.3389/fpls.2023.1219610] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/01/2023] [Indexed: 09/26/2023]
Abstract
Drought is one of the most stressful environments limiting crop growth and yield throughout the world. Therefore, most efforts have been made to document drought-derived genetic and physiological responses and to find better ways to improve drought tolerance. The interaction among them is unclear and/or less investigated. Therefore, the current study is to find a clue of metabolic connectivity among them in rice root experiencing different levels of drought condition. We selected 19 genes directly involved in abscisic acid (ABA) metabolism (6), suberization (6), and aquaporins (AQPs) activity (7) and analyzed the relatively quantitative gene expression using qRT-PCR from rice roots. In addition, we also analyzed proline, chlorophyll, and fatty acids and observed cross-sectional root structure (aerenchyma) and suberin lamella deposition in the endodermis. All drought conditions resulted in an obvious development of aerenchyma and two- to fourfold greater accumulation of proline. The limited water supply (-1.0 and -1.5 MPa) significantly increased gene expression (ABA metabolism, suberization, and AQPs) and developed greater layer of suberin lamella in root endodermis. In addition, the ratio of the unsaturated to the saturated fatty acids was increased, which could be considered as an adjusted cell permeability. Interestingly, these metabolic adaptations were an exception with a severe drought condition (hygroscopic coefficient, -3.1 MPa). Accordingly, we concluded that the drought-tolerant mechanism in rice roots is sophisticatedly regulated until permanent wilting point (-1.5 MPa), and ABA metabolism, suberization, and AQPs activity might be independent and/or concurrent process as a survival strategy against drought.
Collapse
Affiliation(s)
| | - Jwakyung Sung
- Deptment of Crop Science, Chungbuk National University, Cheong-ju, Republic of Korea
| |
Collapse
|
8
|
Li M, Niu X, Li S, Fu S, Li Q, Xu M, Wang C, Wu S. CRISPR/Cas9 Based Cell-Type Specific Gene Knock-Out in Arabidopsis Roots. PLANTS (BASEL, SWITZERLAND) 2023; 12:2365. [PMID: 37375990 DOI: 10.3390/plants12122365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023]
Abstract
CRISPR/Cas9 (hereafter Cas9)-mediated gene knockout is one of the most important tools for studying gene function. However, many genes in plants play distinct roles in different cell types. Engineering the currently used Cas9 system to achieve cell-type-specific knockout of functional genes is useful for addressing the cell-specific functions of genes. Here we employed the cell-specific promoters of the WUSCHEL RELATED HOMEOBOX 5 (WOX5), CYCLIND6;1 (CYCD6;1), and ENDODERMIS7 (EN7) genes to drive the Cas9 element, allowing tissue-specific targeting of the genes of interest. We designed the reporters to verify the tissue-specific gene knockout in vivo. Our observation of the developmental phenotypes provides strong evidence for the involvement of SCARECROW (SCR) and GIBBERELLIC ACID INSENSITIVE (GAI) in the development of quiescent center (QC) and endodermal cells. This system overcomes the limitations of traditional plant mutagenesis techniques, which often result in embryonic lethality or pleiotropic phenotypes. By allowing cell-type-specific manipulation, this system has great potential to help us better understand the spatiotemporal functions of genes during plant development.
Collapse
Affiliation(s)
- Meng Li
- College of Life Sciences and Horticultural Plant Biology Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xufang Niu
- College of Life Sciences and Horticultural Plant Biology Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuang Li
- College of Life Sciences and Horticultural Plant Biology Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shasha Fu
- College of Life Sciences and Horticultural Plant Biology Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qianfang Li
- College of Life Sciences and Horticultural Plant Biology Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meizhi Xu
- College of Life Sciences and Horticultural Plant Biology Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chunhua Wang
- College of Life Sciences and Horticultural Plant Biology Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuang Wu
- College of Life Sciences and Horticultural Plant Biology Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
9
|
Nong ML, Luo XH, Zhu LX, Zhang YN, Dun XY, Huang L. Insights into the Adaptation to High Altitudes from Transcriptome Profiling: A Case Study of an Endangered Species, Kingdonia uniflora. Genes (Basel) 2023; 14:1291. [PMID: 37372473 DOI: 10.3390/genes14061291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Kingdonia uniflora is an endangered alpine herb that is distributed along an altitudinal gradient. The unique traits and important phylogenetic position make K. uniflora an ideal model for exploring how endangered plants react to altitude variation. In this study, we sampled nine individuals from three representative locations and adopted RNA-seq technology to sequence 18 tissues, aiming to uncover how K. uniflora responded to different altitudes at the gene expression level. We revealed that genes that responded to light stimuli and circadian rhythm genes were significantly enriched in DEGs in the leaf tissue group, while genes that were related to root development and peroxidase activity or involved in the pathways of cutin, suberin, wax biosynthesis, and monoterpenoid biosynthesis were significantly enriched in DEGs in the flower bud tissue group. All of the above genes may play an important role in the response of K. uniflora to various stresses, such as low temperatures and hypoxia in high-altitude environments. Furthermore, we proved that the discrepancy in gene expression patterns between leaf and flower bud tissues varied along the altitudinal gradient. Overall, our findings provide new insights into the adaptation of endangered species to high-altitude environments and further encourage parallel research to focus on the molecular mechanisms of alpine plant evolution.
Collapse
Affiliation(s)
- Man-Li Nong
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
- Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xiao-Hui Luo
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
- Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Li-Xin Zhu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
- Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Ya-Nan Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
- Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xue-Yi Dun
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
- Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Lei Huang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
- Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
10
|
Liu H, Jiao Q, Fan L, Jiang Y, Alyemeni MN, Ahmad P, Chen Y, Zhu M, Liu H, Zhao Y, Liu F, Liu S, Li G. Integrated physio-biochemical and transcriptomic analysis revealed mechanism underlying of Si-mediated alleviation to cadmium toxicity in wheat. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131366. [PMID: 37030231 DOI: 10.1016/j.jhazmat.2023.131366] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/25/2023] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
Cadmium (Cd) contamination has resulted in serious reduction of crop yields. Silicon (Si), as a beneficial element, regulates plant growth to heavy metal toxicity mainly through reducing metal uptake and protecting plants from oxidative injury. However, the molecular mechanism underlying Si-mediated Cd toxicity in wheat has not been well understood. This study aimed to reveal the beneficial role of Si (1 mM) in alleviating Cd-induced toxicity in wheat (Triticum aestivum) seedlings. The results showed that exogenous supply of Si decreased Cd concentration by 67.45% (root) and 70.34% (shoot), and maintained ionic homeostasis through the function of important transporters, such as Lsi, ZIP, Nramp5 and HIPP. Si ameliorated Cd-induced photosynthetic performance inhibition through up-regulating photosynthesis-related genes and light harvesting-related genes. Si minimized Cd-induced oxidative stress by decreasing MDA contents by 46.62% (leaf) and 75.09% (root), and helped re-establish redox homeostasis by regulating antioxidant enzymes activities, AsA-GSH cycle and expression of relevant genes through signal transduction pathway. The results revealed molecular mechanism of Si-mediated wheat tolerance to Cd toxicity. Si fertilizer is suggested to be applied in Cd contaminated soil for food safety production as a beneficial and eco-friendly element.
Collapse
Affiliation(s)
- Haitao Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Qiujuan Jiao
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Lina Fan
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Ying Jiang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; Department of Botany, GDC Pulwama, 192301, Jammu and Kashmir, India
| | - Yinglong Chen
- The UWA Institute of Agriculture & School of Agriculture and Environment, The University of Western Australia, Perth 6009, Australia
| | - Mo Zhu
- College of Life Sciences, Henan Normal University, Xinxiang 453007, PR China; Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang 453007, PR China
| | - Haiping Liu
- School of Civil Engineering and Architecture, Zhengzhou University of Aeronautics, Zhengzhou 450046, PR China
| | - Ying Zhao
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Fang Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Shiliang Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Gezi Li
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, PR China.
| |
Collapse
|
11
|
Luciano G, Vignali A, Vignolo M, Utzeri R, Bertini F, Iannace S. Biocomposite Foams with Multimodal Cellular Structures Based on Cork Granulates and Microwave Processed Egg White Proteins. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3063. [PMID: 37109899 PMCID: PMC10145632 DOI: 10.3390/ma16083063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Abstract
In an effort to reduce greenhouse gas emission, reduce the consumption of natural resources, and increase the sustainability of biocomposite foams, the present study focuses on the recycling of cork processing waste for the production of lightweight, non-structural, fireproof thermal and acoustic insulating panels. Egg white proteins (EWP) were used as a matrix model to introduce an open cell structure via a simple and energy-efficient microwave foaming process. Samples with different compositions (ratio of EWP and cork) and additives (eggshells and inorganic intumescent fillers) were prepared with the aim of correlating composition, cellular structures, flame resistance, and mechanical properties.
Collapse
|
12
|
Zhang J, Liu ZY, Zhang YF, Zhang C, Li X, Liu X, Wang CL. PpyMYB144 transcriptionally regulates pear fruit skin russeting by activating the cytochrome P450 gene PpyCYP86B1. PLANTA 2023; 257:69. [PMID: 36854938 DOI: 10.1007/s00425-023-04102-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
PpyMYB144 directly activates the promoter of PpyCYP86B1, promotes the synthesis of α, ω-diacids, and involves in pear fruit skin russeting. Russeting is an economically important surface disorder in pear (Pyrus pyrifolia) fruit. Previous research has demonstrated that suberin is the pivotal chemical component contributing to pear fruit skin russeting, and fruit bagging treatment effectively reduces the amount of suberin of fruits, and thereby reduces the russeting phenotype. However, the mechanisms of pear fruit skin russeting remain largely unclear, particularly the transcriptional regulation. Here, we dissected suberin concentration and composition of pear fruits along fruit development and confirmed that α, ω-diacids are the predominant constituents in russeted pear fruit skins. Two cytochrome P450 monooxygenase (CYP) family genes (PpyCYP86A1 and PpyCYP86B1) and nine MYB genes were isolated from pear fruit. Expressions of PpyCYP86A1, PpyCYP86B1, and five MYB genes (PpyMYB34, PpyMYB138, PpyMYB138-like, PpyMYB139, and PpyMYB144) were up-regulated during fruit russeting and showed significant correlations with the changes of α, ω-diacids. In addition, dual-luciferase assays indicated that PpyMYB144 could trans-activate the promoter of PpyCYP86B1, and the activation was abolished by motif mutagenesis of AC element on the PpyCYP86B1 promoter. Further, Agrobacterium-mediated transient expression of PpyCYP86B1 and PpyMYB144 in pear fruits induced the deposition of aliphatic suberin. Thus, PpyMYB144 is a novel direct activator of PpyCYP86B1 and contributes to pear fruit skin russeting.
Collapse
Affiliation(s)
- Jing Zhang
- College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, People's Republic of China
| | - Zi-Yu Liu
- College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, People's Republic of China
| | - Yi-Fan Zhang
- College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, People's Republic of China
| | - Chen Zhang
- College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, People's Republic of China
| | - Xi Li
- College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, People's Republic of China
| | - Xiao Liu
- College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, People's Republic of China
| | - Chun-Lei Wang
- College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
13
|
Grünhofer P, Schreiber L. Cutinized and suberized barriers in leaves and roots: Similarities and differences. JOURNAL OF PLANT PHYSIOLOGY 2023; 282:153921. [PMID: 36780757 DOI: 10.1016/j.jplph.2023.153921] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/18/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Anatomical, histochemical, chemical, and biosynthetic similarities and differences of cutinized and suberized plant cell walls are presented and reviewed in brief. Based on this, the functional properties of cutinized and suberized plant cell walls acting as transport barriers are compared and discussed in more detail. This is of general importance because fundamental misconceptions about relationships in plant-environment water relations are commonly encountered in the scientific literature. It will be shown here, that cuticles represent highly efficient apoplastic transport barriers significantly reducing the diffusion of water and dissolved compounds. The transport barrier of cuticles is mainly established by the deposition of cuticular waxes. Upon wax extraction, with the cutin polymer remaining, cuticular permeability for water and dissolved non-ionized and lipophilic solutes are increasing by 2-3 orders of magnitude, whereas polar and charged substances (e.g., nutrient ions) are only weakly affected (2- to 3-fold increases in permeability). Suberized apoplastic barriers without the deposition of wax are at least as permeable as the cutin polymer matrix without waxes and hardly offer any resistance to the free movement of water. Only upon the deposition of significant amounts of wax, as it is the case with suberized periderms exposed to the atmosphere, an efficient transport barrier for water can be established by suberized cell walls. Comparing the driving forces (gradients between water potentials inside leaves and roots and the surrounding environment) for water loss acting on leaves and roots, it is shown that leaves must have a genetically pre-defined highly efficient transpiration barrier fairly independent from rapidly changing environmental influences. Roots, in most conditions facing a soil environment with relative humidities very close to 100%, are orders of magnitude more permeable to water than leaf cuticles. Upon desiccation, the permanent wilting point of plants is defined as -1.5 MPa, which still corresponds to nearly 99% relative humidity in soil. Thus, the main reason for plant water stress leading to dehydration is the inability of root tissues to decrease their internal water potential to values more negative than -1.5 MPa and not the lack of a transport barrier for water in roots and leaves. Taken together, the commonly mentioned concepts that a drought-induced increase of cuticular wax or root suberin considerably strengthens the apoplastic leaf or root transport barriers and thus aids in water conservation appears highly questionable.
Collapse
Affiliation(s)
- Paul Grünhofer
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany.
| | - Lukas Schreiber
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany.
| |
Collapse
|
14
|
Batsale M, Alonso M, Pascal S, Thoraval D, Haslam RP, Beaudoin F, Domergue F, Joubès J. Tackling functional redundancy of Arabidopsis fatty acid elongase complexes. FRONTIERS IN PLANT SCIENCE 2023; 14:1107333. [PMID: 36798704 PMCID: PMC9928185 DOI: 10.3389/fpls.2023.1107333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Very-long-chain fatty acids (VLCFA) are precursors for various lipids playing important physiological and structural roles in plants. Throughout plant tissues, VLCFA are present in multiple lipid classes essential for membrane homeostasis, and also stored in triacylglycerols. VLCFA and their derivatives are also highly abundant in lipid barriers, such as cuticular waxes in aerial epidermal cells and suberin monomers in roots. VLCFA are produced by the fatty acid elongase (FAE), which is an integral endoplasmic reticulum membrane multi-enzymatic complex consisting of four core enzymes. The 3-ketoacyl-CoA synthase (KCS) catalyzes the first reaction of the elongation and determines the chain-length substrate specificity of each elongation cycle, whereas the other three enzymes have broad substrate specificities and are shared by all FAE complexes. Consistent with the co-existence of multiple FAE complexes, performing sequential and/or parallel reactions to produce the broad chain-length-range of VLCFA found in plants, twenty-one KCS genes have been identified in the genome of Arabidopsis thaliana. Using CRISPR-Cas9 technology, we established an expression platform to reconstitute the different Arabidopsis FAE complexes in yeast. The VLCFA produced in these yeast strains were analyzed in detail to characterize the substrate specificity of all KCS candidates. Additionally, Arabidopsis candidate proteins were transiently expressed in Nicotiana benthamiana leaves to explore their activity and localization in planta. This work sheds light on the genetic and biochemical redundancy of fatty acid elongation in plants.
Collapse
Affiliation(s)
| | - Marie Alonso
- Univesity of Bordeaux, CNRS, LBM, UMR 5200, Villenave d’Ornon, France
- University of Bordeaux, INRAE, BFP, UMR 1332, Villenave d’Ornon, France
| | - Stéphanie Pascal
- Univesity of Bordeaux, CNRS, LBM, UMR 5200, Villenave d’Ornon, France
| | - Didier Thoraval
- Univesity of Bordeaux, CNRS, LBM, UMR 5200, Villenave d’Ornon, France
| | | | | | - Frédéric Domergue
- Univesity of Bordeaux, CNRS, LBM, UMR 5200, Villenave d’Ornon, France
| | - Jérôme Joubès
- Univesity of Bordeaux, CNRS, LBM, UMR 5200, Villenave d’Ornon, France
| |
Collapse
|
15
|
Wang L, Yao W, Zhang X, Tang Y, Van Nocker S, Wang Y, Zhang C. The putative ABCG transporter VviABCG20 from grapevine ( Vitis vinifera) is strongly expressed in the seed coat of developing seeds and may participate in suberin biosynthesis. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:23-34. [PMID: 36733832 PMCID: PMC9886760 DOI: 10.1007/s12298-022-01276-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 06/18/2023]
Abstract
Half-size ATP binding cassette G (ABCG) transporters participate in many biological processes by transporting specific substrates. Our previous study showed that VviABCG20 was strongly expressed in the seeds of seeded grape and the silencing of VviABCG20 homolog gene in tomato led to a reduction in seed number. To reveal the molecular mechanism of VviABCG20 gene involved in grape seed development/abortion, the gene expression and functional analysis of VviABCG20 were further carried out in the grapevine. It was shown that the gene expression of VviABCG20 was higher in seeds of seeded grapes compared with seedless. Further the expression of VviABCG20 in the seed coat was significantly higher than in ovules (young seeds) and endosperm. VviABCG20 was also induced by exogenous hormones (especially MeJA) in grape leaves. Subcellular localization analysis showed that VviABCG20 is a membrane protein. In overexpressed VviABCG20 transgenic callus of Thompson seedless, expression of genes GPAT5, FAR1 and FAR5 was increased significantly. After treatment with suberin precursors, the transgenic callus reduced the sensitivity to three cinnamic acid derivatives (cis-ferulic acid, caffeic acid, coumaric acid), succinic acid, and glycerol. In suspension cells, expression of VviABCG20 was increased significantly after treatment with suberin precursors. Our research suggested that VviABCG20 may function in seed development in grapevine, at least in part by participating in suberin biosynthesis in the seed coat.
Collapse
Affiliation(s)
- Ling Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, 712100 Shaanxi China
| | - Wang Yao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, 712100 Shaanxi China
| | - Xue Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, 712100 Shaanxi China
| | - Yujin Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, 712100 Shaanxi China
| | - Steve Van Nocker
- Department of Horticulture, Michigan State University, East Lansing, 48824 USA
| | - Yuejin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, 712100 Shaanxi China
| | - Chaohong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, 712100 Shaanxi China
| |
Collapse
|
16
|
The Plant Fatty Acyl Reductases. Int J Mol Sci 2022; 23:ijms232416156. [PMID: 36555796 PMCID: PMC9783961 DOI: 10.3390/ijms232416156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/30/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Fatty acyl reductase (FAR) is a crucial enzyme that catalyzes the NADPH-dependent reduction of fatty acyl-CoA or acyl-ACP substrates to primary fatty alcohols, which in turn acts as intermediate metabolites or metabolic end products to participate in the formation of plant extracellular lipid protective barriers (e.g., cuticular wax, sporopollenin, suberin, and taproot wax). FARs are widely present across plant evolution processes and play conserved roles during lipid synthesis. In this review, we provide a comprehensive view of FAR family enzymes, including phylogenetic analysis, conserved structural domains, substrate specificity, subcellular localization, tissue-specific expression patterns, their varied functions in lipid biosynthesis, and the regulation mechanism of FAR activity. Finally, we pose several questions to be addressed, such as the roles of FARs in tryphine, the interactions between transcription factors (TFs) and FARs in various environments, and the identification of post-transcriptional, translational, and post-translational regulators.
Collapse
|
17
|
Plants Utilize Suberin Biopolymers as a Vector for Transmitting Visible Light through Their Roots. Polymers (Basel) 2022; 14:polym14245387. [PMID: 36559753 PMCID: PMC9782166 DOI: 10.3390/polym14245387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Plants conduct light from their aboveground tissues belowground to their root system. This phenomenon may influence root growth and perhaps serve to stimulate natural biological functions of the microorganisms associating with them. Here we show that light transmission in maize roots largely occurs within the endodermis, a region rich in suberin polyester biopolymers. Using cork as a natural resource rich in suberin polymers, we extracted, depolymerized, and examined light transmission in the visible and infrared regions. Suberin co-monomers dissolved in toluene showed no evidence of enhanced light transmission over that of the pure solvent in the visible light region and reduced light transmission in the infrared region. However, when these co-monomers were catalytically repolymerized using Bi(OTf)3, light transmission through suspended polymers significantly increased 1.3-fold in the visible light region over that in pure toluene, but was reduced in the infrared region.
Collapse
|
18
|
Chen A, Liu T, Wang Z, Chen X. Plant root suberin: A layer of defence against biotic and abiotic stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:1056008. [PMID: 36507443 PMCID: PMC9732430 DOI: 10.3389/fpls.2022.1056008] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/11/2022] [Indexed: 05/27/2023]
Abstract
Plant roots have important functions, such as acquiring nutrients and water from the surrounding soil and transporting them upwards to the shoots. Simultaneously, they must be able to exclude potentially harmful substances and prevent the entry of pathogens into the roots. The endodermis surrounds the vascular tissues and forms hydrophobic diffusion barriers including Casparian strips and suberin lamella. Suberin in cell walls can be induced by a range of environmental factors and contribute to against biotic and abiotic threats. Tremendous progress has been made in biosynthesis of suberin and its function, little is known about the effect of its plasticity and distribution on stress tolerance. In field conditions, biotic and abiotic stress can exist at the same time, and little is known about the change of suberization under that condition. This paper update the progress of research related to suberin biosynthesis and its function, and also discuss the change of suberization in plant roots and its role on biotic and abiotic stresses tolerance.
Collapse
Affiliation(s)
- Anle Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, and College of Resources and Environment, Southwest University, Chongqing, China
| | - Tong Liu
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, and College of Resources and Environment, Southwest University, Chongqing, China
| | - Zhou Wang
- College of Plant Protection, Southwest University, Chongqing, China
| | - Xinping Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, and College of Resources and Environment, Southwest University, Chongqing, China
| |
Collapse
|
19
|
Lu HP, Gao Q, Han JP, Guo XH, Wang Q, Altosaar I, Barberon M, Liu JX, Gatehouse AMR, Shu QY. An ABA-serotonin module regulates root suberization and salinity tolerance. THE NEW PHYTOLOGIST 2022; 236:958-973. [PMID: 35872572 DOI: 10.1111/nph.18397] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Suberin in roots acts as a physical barrier preventing water/mineral losses. In Arabidopsis, root suberization is regulated by abscisic acid (ABA) and ethylene in response to nutrient stresses. ABA also mediates coordination between microbiota and root endodermis in mineral nutrient homeostasis. However, it is not known whether this regulatory system is common to plants in general, and whether there are other key molecule(s) involved. We show that serotonin acts downstream of ABA in regulating suberization in rice and Arabidopsis and negatively regulates suberization in rice roots in response to salinity. We show that ABA represses transcription of the key gene (OsT5H) in serotonin biosynthesis, thus promoting root suberization in rice. Conversely, overexpression of OsT5H or supplementation with exogenous serotonin represses suberization and reduces tolerance to salt stress. These results identify an ABA-serotonin regulatory module controlling root suberization in rice and Arabidopsis, which is likely to represent a general mechanism as ABA and serotonin are ubiquitous in plants. These findings are of significant importance to breeding novel crop varieties that are resilient to abiotic stresses and developing strategies for production of suberin-rich roots to sequestrate more CO2 , helping to mitigate the effects of climate change.
Collapse
Affiliation(s)
- Hai-Ping Lu
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, The Advanced Seed Institute, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qing Gao
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jian-Pu Han
- Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Xiao-Hao Guo
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, The Advanced Seed Institute, Zhejiang University, Hangzhou, 310058, China
| | - Qing Wang
- Wuxi Hupper Bioseed Technology Institute Ltd, Wuxi, 214000, Jiangsu, China
| | - Illimar Altosaar
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
- Proteins Easy Corp., Kemptville, ON, K0G 1J0, Canada
| | - Marie Barberon
- Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Jian-Xiang Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Angharad M R Gatehouse
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Qing-Yao Shu
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, The Advanced Seed Institute, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
20
|
Xu X, Guerriero G, Berni R, Sergeant K, Guignard C, Lenouvel A, Hausman JF, Legay S. MdMYB52 regulates lignin biosynthesis upon the suberization process in apple. FRONTIERS IN PLANT SCIENCE 2022; 13:1039014. [PMID: 36275517 PMCID: PMC9583409 DOI: 10.3389/fpls.2022.1039014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Our previous studies, comparing russeted vs. waxy apple skin, highlighted a MYeloBlastosys (Myb) transcription factor (MdMYB52), which displayed a correlation with genes associated to the suberization process. The present article aims to assess its role and function in the suberization process. Phylogenetic analyses and research against Arabidopsis thaliana MYBs database were first performed and the tissue specific expression of MdMYB52 was investigated using RT-qPCR. The function of MdMYB52 was further investigated using Agrobacterium-mediated transient overexpression in Nicotiana benthamiana leaves. An RNA-Seq analysis was performed to highlight differentially regulated genes in response MdMYB52. Transcriptomic data were supported by analytical chemistry and microscopy. A massive decreased expression of photosynthetic and primary metabolism pathways was observed with a concomitant increased expression of genes associated with phenylpropanoid and lignin biosynthesis, cell wall modification and senescence. Interestingly key genes involved in the synthesis of suberin phenolic components were observed. The analytical chemistry displayed a strong increase in the lignin content in the cell walls during MdMYB52 expression. More specifically, an enrichment in G-Unit lignin residues was observed, supporting transcriptomic data as well as previous work describing the suberin phenolic domain as a G-unit enriched lignin-like polymer. The time-course qPCR analysis revealed that the observed stress response, might be explain by this lignin biosynthesis and by a possible programmed senescence triggered by MdMYB52. The present work supports a crucial regulatory role for MdMYB52 in the biosynthesis of the suberin phenolic domain and possibly in the fate of suberized cells in russeted apple skins.
Collapse
|
21
|
Feng T, Wu P, Gao H, Kosma DK, Jenks MA, Lü S. Natural variation in root suberization is associated with local environment in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2022; 236:385-398. [PMID: 35751382 DOI: 10.1111/nph.18341] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Genetic signature of climate adaptation has been widely recognized across the genome of many organisms; however, the eco-physiological basis for linking genomic polymorphisms with local adaptations remains largely unexplored. Using a panel of 218 world-wide Arabidopsis accessions, we characterized the natural variation in root suberization by quantifying 16 suberin monomers. We explored the associations between suberization traits and 126 climate variables. We conducted genome-wide association analysis and integrated previous genotype-environment association (GEA) to identify the genetic bases underlying suberization variation and their involvements in climate adaptation. Root suberin content displays extensive variation across Arabidopsis populations and significantly correlates with local moisture gradients and soil characteristics. Specifically, enhanced suberization is associated with drier environments, higher soil cation-exchange capacity, and lower soil pH; higher proportional levels of very-long-chain suberin is negatively correlated with moisture availability, lower soil gravel content, and higher soil silt fraction. We identified 94 putative causal loci and experimentally proved that GPAT6 is involved in C16 suberin biosynthesis. Highly significant associations between the putative genes and environmental variables were observed. Roots appear highly responsive to environmental heterogeneity via regulation of suberization, especially the suberin composition. The patterns of suberization-environment correlation and the suberin-related GEA fit the expectations of local adaptation for the polygenic suberization trait.
Collapse
Affiliation(s)
- Tao Feng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Pan Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Huani Gao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Dylan K Kosma
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV, 89557, USA
| | - Matthew A Jenks
- School of Plant Sciences, College of Agriculture and Life Sciences, The University of Arizona, Tucson, AZ, 85721, USA
| | - Shiyou Lü
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
22
|
Chen YH, Straube J, Khanal BP, Zeisler-Diehl V, Suresh K, Schreiber L, Debener T, Knoche M. Apple fruit periderms (russeting) induced by wounding or by moisture have the same histologies, chemistries and gene expressions. PLoS One 2022; 17:e0274733. [PMID: 36174078 PMCID: PMC9522254 DOI: 10.1371/journal.pone.0274733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/04/2022] [Indexed: 11/19/2022] Open
Abstract
Russeting is a cosmetic defect of some fruit skins. Russeting (botanically: induction of periderm formation) can result from various environmental factors including wounding and surface moisture. The objective was to compare periderms resulting from wounding with those from exposure to moisture in developing apple fruit. Wounding or moisture exposure both resulted in cuticular microcracking. Cross-sections revealed suberized hypodermal cell walls by 4 d, and the start of periderm formation by 8 d after wounding or moisture treatment. The expression of selected target genes was similar in wound and moisture induced periderms. Transcription factors involved in the regulation of suberin (MYB93) and lignin (MYB42) synthesis, genes involved in the synthesis (CYP86B1) and the transport (ABCG20) of suberin monomers and two uncharacterized transcription factors (NAC038 and NAC058) were all upregulated in induced periderm samples. Genes involved in cutin (GPAT6, SHN3) and wax synthesis (KCS10, WSD1, CER6) and transport of cutin monomers and wax components (ABCG11) were all downregulated. Levels of typical suberin monomers (ω-hydroxy-C20, -C22 and -C24 acids) and total suberin were high in the periderms, but low in the cuticle. Periderms were induced only when wounding occurred during early fruit development (32 and 66 days after full bloom (DAFB)) but not later (93 DAFB). Wound and moisture induced periderms are very similar morphologically, histologically, compositionally and molecularly.
Collapse
Affiliation(s)
- Yun-Hao Chen
- Institute of Horticultural Production Systems, Fruit Science Section, Leibniz University Hannover, Hannover, Germany
| | - Jannis Straube
- Institute of Plant Genetics, Molecular Plant Breeding Section, Leibniz University Hannover, Hannover, Germany
| | - Bishnu P. Khanal
- Institute of Horticultural Production Systems, Fruit Science Section, Leibniz University Hannover, Hannover, Germany
- * E-mail:
| | - Viktoria Zeisler-Diehl
- Institute of Cellular and Molecular Botany (IZMB), Department of Ecophysiology, University of Bonn, Bonn, Germany
| | - Kiran Suresh
- Institute of Cellular and Molecular Botany (IZMB), Department of Ecophysiology, University of Bonn, Bonn, Germany
| | - Lukas Schreiber
- Institute of Cellular and Molecular Botany (IZMB), Department of Ecophysiology, University of Bonn, Bonn, Germany
| | - Thomas Debener
- Institute of Plant Genetics, Molecular Plant Breeding Section, Leibniz University Hannover, Hannover, Germany
| | - Moritz Knoche
- Institute of Horticultural Production Systems, Fruit Science Section, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
23
|
Gao X, Zou R, Sun H, Liu J, Duan W, Hu Y, Yan Y. Genome-wide identification of wheat ABC1K gene family and functional dissection of TaABC1K3 and TaABC1K6 involved in drought tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:991171. [PMID: 36105699 PMCID: PMC9465391 DOI: 10.3389/fpls.2022.991171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Activity of BC1 complex kinase (ABC1K) serves as an atypical kinase family involved in plant stress resistance. This study identified 44 ABC1K genes in the wheat genome, which contained three clades (I-III). TaABC1K genes generally had similar structural features, but differences were present in motif and exon compositions from different clade members. More type II functional divergence sites were detected between clade I and clade III and no positive selection site were found in TaABC1K family. The three-dimensional structure prediction by Alphafold2 showed that TaABC1K proteins had more α-helixes with a relatively even distribution, and different clade members had differences in the content of secondary structures. The cis-acting element analysis showed that TaABC1K genes contained abundant cis-acting elements related to plant hormones and environmental stress response in the promoter region, and generally displayed a significantly upregulated expression under drought stress. In particular, both TaABC1K3 and TaABC1K6 genes from clade I was highly induced by drought stress, and their overexpression in yeast and Arabidopsis enhanced drought tolerance by suppressing active oxygen burst and reducing photosynthesis impairment. Meanwhile, TaABC1K3 and TaABC1K6 could, respectively, complement the function of Arabidopsis abc1k3 and abc1k6 mutants and reduce photosynthesis damage caused by drought stress.
Collapse
|
24
|
Wang Q, Liu Y, Wu X, Wang L, Li J, Wan M, Jia B, Ye Z, Liu L, Tang X, Tao S, Zhu L, Heng W. MYB1R1 and MYC2 Regulate ω-3 Fatty Acid Desaturase Involved in ABA-Mediated Suberization in the Russet Skin of a Mutant of 'Dangshansuli' ( Pyrus bretschneideri Rehd.). FRONTIERS IN PLANT SCIENCE 2022; 13:910938. [PMID: 35755695 PMCID: PMC9225576 DOI: 10.3389/fpls.2022.910938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/09/2022] [Indexed: 05/26/2023]
Abstract
Russeting, a disorder of pear fruit skin, is mainly caused by suberin accumulation on the inner part of the outer epidermal cell layers. ABA was identified as a crucial phytohormone in suberification. Here, we demonstrated that the ABA content in russet pear skin was higher than in green skin. Then, ABA was applied to explore the changes in phenotype and suberin composition coupled with RNA-Seq and metabolomics to investigate the probably regulatory pathway of ABA-mediated suberification. The results showed that ABA treatment increased the expression of ω-3 fatty acid desaturase (FAD) and the content of α-linolenic acid. We identified 17 PbFADs in white pear, and the expression of PbFAD3a was induced by ABA. In addition, the role of PbFAD3a in promoting suberification has been demonstrated by overexpression in Arabidopsis and VIGS assays in the fruitlets. GUS staining indicated that the promoter of PbFAD3a was activated by ABA. Furthermore, MYC2 and MYB1R1 have been shown to bind to the PbFAD3a promoter directly and this was induced by ABA via yeast one-hybrid (Y1H) screening and qRT-PCR. In summary, our study found that ABA induces the expression of MYC2 and MYB1R1 and activates the PbFAD3a promoter, contributing to the formation of russet pear skin. Functional identification of key transcription factors will be the goal of future research. These findings reveal the molecular mechanism of ABA-mediated suberization in the russet skin and provide a good foundation for future studies on the formation of russet skin.
Collapse
Affiliation(s)
- Qi Wang
- College of Horticulture, Anhui Agricultural University, Hefei, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yaping Liu
- College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Xinyi Wu
- College of Horticulture, Anhui Agricultural University, Hefei, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Lindu Wang
- College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Jinchao Li
- College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Minchen Wan
- College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Bin Jia
- College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Zhenfeng Ye
- College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Lun Liu
- College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Xiaomei Tang
- College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Shutian Tao
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Liwu Zhu
- College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Wei Heng
- College of Horticulture, Anhui Agricultural University, Hefei, China
| |
Collapse
|
25
|
Kim G, Ryu H, Sung J. Hormonal Crosstalk and Root Suberization for Drought Stress Tolerance in Plants. Biomolecules 2022; 12:811. [PMID: 35740936 PMCID: PMC9220869 DOI: 10.3390/biom12060811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 12/10/2022] Open
Abstract
Higher plants in terrestrial environments face to numerous unpredictable environmental challenges, which lead to a significant impact on plant growth and development. In particular, the climate change caused by global warming is causing drought stress and rapid desertification in agricultural fields. Many scientific advances have been achieved to solve these problems for agricultural and plant ecosystems. In this review, we handled recent advances in our understanding of the physiological changes and strategies for plants undergoing drought stress. The activation of ABA synthesis and signaling pathways by drought stress regulates root development via the formation of complicated signaling networks with auxin, cytokinin, and ethylene signaling. An abundance of intrinsic soluble sugar, especially trehalose-6-phosphate, promotes the SnRK-mediated stress-resistance mechanism. Suberin deposition in the root endodermis is a physical barrier that regulates the influx/efflux of water and nutrients through complex hormonal and metabolic networks, and suberization is essential for drought-stressed plants to survive. It is highly anticipated that this work will contribute to the reproduction and productivity improvements of drought-resistant crops in the future.
Collapse
Affiliation(s)
- Gaeun Kim
- Department of Crop Science, Chungbuk National University, Cheong-ju 28644, Korea;
| | - Hojin Ryu
- Department of Biology, Chungbuk National University, Cheong-ju 28644, Korea
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheong-ju 28644, Korea
| | - Jwakyung Sung
- Department of Crop Science, Chungbuk National University, Cheong-ju 28644, Korea;
| |
Collapse
|
26
|
Chen H, Zhang Q, Lv W, Yu X, Zhang Z. Ethylene positively regulates Cd tolerance via reactive oxygen species scavenging and apoplastic transport barrier formation in rice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 302:119063. [PMID: 35248615 DOI: 10.1016/j.envpol.2022.119063] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Ethylene regulates plant root growth and resistance to environment stress. However, the role and mechanism of ethylene signaling in response to Cd stress in rice remains unclear. Here, we revealed that ethylene signaling plays a positive role in the resistance of rice to Cd toxicity. Blocking the ethylene signal facilitated root elongation under normal conditions, but resulted in severe oxidative damage and inhibition of root growth under Cd stress. Conversely, ethylene signal enhancement by EIN2 overexpression caused root bending, similar to the response of roots to Cd stress, and displayed higher Cd tolerance than the wildtype (WT) plants. Comparative transcriptome analysis indicated EIN2-mediated upregulation of genes involved in flavonoid biosynthesis and peroxidase activity under Cd stress. The synthesis of phenolic acids and flavonoids were positively regulated by ethylene. Thus, the ein2 (ethylene insensitive 2) mutants displayed lower ROS scavenging capacity than the WT. Moreover, a significant increase in Cd accumulation and relatively increased apoplastic flow were observed in the root apex of the ein2 mutant compared with the WT plants. Overall, EIN2-mediated Cd resistance in rice is mediated by the upregulation of flavonoid biosynthesis and peroxidase activity to induce ROS scavenging, and apoplastic transport barrier formation reduces Cd uptake.
Collapse
Affiliation(s)
- Haifei Chen
- College of Resources and Environmental Sciences, Hunan Agricultural University, 410128, Changsha, China
| | - Quan Zhang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, 410128, Changsha, China
| | - Wei Lv
- College of Resources and Environmental Sciences, Hunan Agricultural University, 410128, Changsha, China
| | - Xiaoyi Yu
- College of Resources and Environmental Sciences, Hunan Agricultural University, 410128, Changsha, China
| | - Zhenhua Zhang
- College of Resources and Environmental Sciences, Hunan Agricultural University, 410128, Changsha, China.
| |
Collapse
|
27
|
De Bellis D, Kalmbach L, Marhavy P, Daraspe J, Geldner N, Barberon M. Extracellular vesiculo-tubular structures associated with suberin deposition in plant cell walls. Nat Commun 2022; 13:1489. [PMID: 35304458 PMCID: PMC8933581 DOI: 10.1038/s41467-022-29110-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 02/25/2022] [Indexed: 12/21/2022] Open
Abstract
Suberin is a fundamental plant biopolymer, found in protective tissues, such as seed coats, exodermis and endodermis of roots. Suberin is deposited in most suberizing cells in the form of lamellae just outside of the plasma membrane, below the primary cell wall. How monomeric suberin precursors, thought to be synthesized at the endoplasmic reticulum, are transported outside of the cell, for polymerization into suberin lamellae has remained obscure. Using electron-microscopy, we observed large numbers of extracellular vesiculo-tubular structures (EVs) to accumulate specifically in suberizing cells, in both chemically and cryo-fixed samples. EV presence correlates perfectly with root suberization and we could block suberin deposition and vesicle accumulation by affecting early, as well as late steps in the secretory pathway. Whereas many previous reports have described EVs in the context of biotic interactions, our results suggest a developmental role for extracellular vesicles in the formation of a major cell wall polymer. Suberizing plant cells export suberin monomers outside of the cell to form a hydrophobic barrier. Here the authors propose a role for extracellular vesiculo-tubular structures in the deposition of suberin monomers.
Collapse
Affiliation(s)
- Damien De Bellis
- Department of Plant Molecular Biology, DBMV, UNIL-Sorge, University of Lausanne, 1015, Lausanne, Switzerland.,Electron Microscopy Facility, University of Lausanne, 1015, Lausanne, Switzerland
| | - Lothar Kalmbach
- Department of Plant Molecular Biology, DBMV, UNIL-Sorge, University of Lausanne, 1015, Lausanne, Switzerland.,Sainsbury Laboratory University Cambridge, CB2 1LR, Cambridge, United Kingdom
| | - Peter Marhavy
- Department of Plant Molecular Biology, DBMV, UNIL-Sorge, University of Lausanne, 1015, Lausanne, Switzerland.,Department of Forest Genetics and Plant Physiology, 90736, Umeå, Sweden
| | - Jean Daraspe
- Electron Microscopy Facility, University of Lausanne, 1015, Lausanne, Switzerland
| | - Niko Geldner
- Department of Plant Molecular Biology, DBMV, UNIL-Sorge, University of Lausanne, 1015, Lausanne, Switzerland.
| | - Marie Barberon
- Department of Plant Molecular Biology, DBMV, UNIL-Sorge, University of Lausanne, 1015, Lausanne, Switzerland. .,Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland.
| |
Collapse
|
28
|
Xiao Z, Ye M, Gao Z, Jiang Y, Zhang X, Nikolic N, Liang Y. Silicon Reduces Aluminum-Induced Suberization by Inhibiting the Uptake and Transport of Aluminum in Rice Roots and Consequently Promotes Root Growth. PLANT & CELL PHYSIOLOGY 2022; 63:340-352. [PMID: 34981810 DOI: 10.1093/pcp/pcac001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 12/26/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Silicon (Si) can alleviate aluminum (Al) toxicity in rice (Oryza sativa L.), but the mechanisms underlying this beneficial effect have not been elucidated, especially under long-term Al stress. Here, the effects of Al and Si on the suberization and development of rice roots were investigated. The results show that, as the Al exposure time increased, the roots accumulated more Al, and Al enhanced the deposition of suberin in roots, both of which ultimately inhibited root growth and nutrient absorption. However, Si restricted the apoplastic and symplastic pathways of Al in roots by inhibiting the uptake and transport of Al, thereby reducing the accumulation of Al in roots. Meanwhile, the Si-induced drop in Al concentration reduced the suberization of roots caused by Al through down-regulating the expression of genes related to suberin synthesis and then promoted the development of roots (such as longer and more adventitious roots and lateral roots). Moreover, Si also increased nutrient uptake by Al-stressed roots and thence promoted the growth of rice. Overall, these results indicate that Si reduced Al-induced suberization of roots by inhibiting the uptake and transport of Al in roots, thereby amending root growth and ultimately alleviating Al stress in rice. Our study further clarified the toxicity mechanism of Al in rice and the role of Si in reducing Al content and restoring root development under Al stress.
Collapse
Affiliation(s)
- Zhuoxi Xiao
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, Zhejiang 310058, China
| | - Mujun Ye
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, Zhejiang 310058, China
| | - Zixiang Gao
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, Zhejiang 310058, China
| | - Yishun Jiang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, Zhejiang 310058, China
| | - Xinyuan Zhang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, Zhejiang 310058, China
| | - Nina Nikolic
- Institute for Multidisciplinary Research, University of Belgrade, 1 Studentski trg, Belgrade 11000, Serbia
| | - Yongchao Liang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
29
|
Abstract
The skin of a fruit protects the vulnerable, nutrient-rich flesh and seed(s) within from the hostile environment. It is also responsible for the fruit’s appearance. In many fruitcrop species, russeting compromises fruit appearance and thus commercial value. Here, we review the literature on fruit russeting, focusing on the factors and mechanisms that induce it and on the management and breeding strategies that may reduce it. Compared with a primary fruit skin, which is usually distinctively colored and shiny, a secondary fruit skin is reddish-brown, dull and slightly rough to the touch (i.e., russeted). This secondary skin (periderm) comprises phellem cells with suberized cell walls, a phellogen and a phelloderm. Russeted (secondary) fruit skins have similar mechanical properties to non-russeted (primary) ones but are more plastic. However, russeted fruit skins are more permeable to water vapor, so russeted fruits suffer higher postharvest water loss, reduced shine, increased shrivel and reduced packed weight (most fruit is sold per kg). Orchard factors that induce russeting include expansion-growth-induced strain, surface wetness, mechanical damage, freezing temperatures, some pests and diseases and some agrochemicals. All these probably act via an increased incidence of cuticular microcracking as a result of local concentrations of mechanical stress. Microcracking impairs the cuticle’s barrier properties. Potential triggers of russeting (the development of a periderm), consequent on cuticular microcracking, include locally high concentrations of O2, lower concentrations of CO2 and more negative water potentials. Horticulturists sometimes spray gibberellins, cytokinins or boron to reduce russeting. Bagging fruit (to exclude surface moisture) is also reportedly effective. From a breeding perspective, genotypes having small and more uniform-sized epidermal cells are judged less likely to be susceptible to russeting.
Collapse
|
30
|
Woolfson KN, Esfandiari M, Bernards MA. Suberin Biosynthesis, Assembly, and Regulation. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040555. [PMID: 35214889 PMCID: PMC8875741 DOI: 10.3390/plants11040555] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 05/03/2023]
Abstract
Suberin is a specialized cell wall modifying polymer comprising both phenolic-derived and fatty acid-derived monomers, which is deposited in below-ground dermal tissues (epidermis, endodermis, periderm) and above-ground periderm (i.e., bark). Suberized cells are largely impermeable to water and provide a critical protective layer preventing water loss and pathogen infection. The deposition of suberin is part of the skin maturation process of important tuber crops such as potato and can affect storage longevity. Historically, the term "suberin" has been used to describe a polyester of largely aliphatic monomers (fatty acids, ω-hydroxy fatty acids, α,ω-dioic acids, 1-alkanols), hydroxycinnamic acids, and glycerol. However, exhaustive alkaline hydrolysis, which removes esterified aliphatics and phenolics from suberized tissue, reveals a core poly(phenolic) macromolecule, the depolymerization of which yields phenolics not found in the aliphatic polyester. Time course analysis of suberin deposition, at both the transcriptional and metabolite levels, supports a temporal regulation of suberin deposition, with phenolics being polymerized into a poly(phenolic) domain in advance of the bulk of the poly(aliphatics) that characterize suberized cells. In the present review, we summarize the literature describing suberin monomer biosynthesis and speculate on aspects of suberin assembly. In addition, we highlight recent advances in our understanding of how suberization may be regulated, including at the phytohormone, transcription factor, and protein scaffold levels.
Collapse
|
31
|
Nomberg G, Marinov O, Arya GC, Manasherova E, Cohen H. The Key Enzymes in the Suberin Biosynthetic Pathway in Plants: An Update. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030392. [PMID: 35161373 PMCID: PMC8839845 DOI: 10.3390/plants11030392] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 05/14/2023]
Abstract
Suberin is a natural biopolymer found in a variety of specialized tissues, including seed coat integuments, root endodermis, tree bark, potato tuber skin and the russeted and reticulated skin of fruits. The suberin polymer consists of polyaliphatic and polyphenolic domains. The former is made of very long chain fatty acids, primary alcohols and a glycerol backbone, while the latter consists of p-hydroxycinnamic acid derivatives, which originate from the core phenylpropanoid pathway. In the current review, we survey the current knowledge on genes/enzymes associated with the suberin biosynthetic pathway in plants, reflecting the outcomes of considerable research efforts in the last two decades. We discuss the function of these genes/enzymes with respect to suberin aromatic and aliphatic monomer biosynthesis, suberin monomer transport, and suberin pathway regulation. We also delineate the consequences of the altered expression/accumulation of these genes/enzymes in transgenic plants.
Collapse
Affiliation(s)
- Gal Nomberg
- Volcani Center, Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Rishon Lezion 7505101, Israel; (G.N.); (O.M.); (G.C.A.); (E.M.)
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Ofir Marinov
- Volcani Center, Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Rishon Lezion 7505101, Israel; (G.N.); (O.M.); (G.C.A.); (E.M.)
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Gulab Chand Arya
- Volcani Center, Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Rishon Lezion 7505101, Israel; (G.N.); (O.M.); (G.C.A.); (E.M.)
| | - Ekaterina Manasherova
- Volcani Center, Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Rishon Lezion 7505101, Israel; (G.N.); (O.M.); (G.C.A.); (E.M.)
| | - Hagai Cohen
- Volcani Center, Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Rishon Lezion 7505101, Israel; (G.N.); (O.M.); (G.C.A.); (E.M.)
- Correspondence:
| |
Collapse
|
32
|
Sujkowska-Rybkowska M, Rusaczonek A, Kochańska-Jeziorska A. Exploring apoplast reorganization in the nodules of Lotus corniculatus L. growing on old Zn-Pb calamine wastes. JOURNAL OF PLANT PHYSIOLOGY 2022; 268:153561. [PMID: 34801776 DOI: 10.1016/j.jplph.2021.153561] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Nodulation and symbiotic nitrogen fixation are important factors that determine legume growth. A pot experiment was carried out to determine the effects of Zn-Pb contamination on nodule apoplast (cell walls and intercellular spaces) of bird's foot trefoil (Lotus corniculatus L.) that spontaneously colonized old calamine wastes. The plants were grown in pots filled with sterile calamine substrate (M, metal treated) or expanded clay (NM, untreated) and inoculated with calamine-derived Lotus-nodulating Bradyrhizobium liaoningense. Apoplast reorganization in the nodules was examined using specific dyes for cellulose, pectin and lignin detection, and immuno-histochemical techniques based on monoclonal antibodies against xyloglucan (Lm25), pectins (Jim5 and Jim7), and structural proteins (arabinogalactan protein - Lm14 and extensin - Jim12). Microscopic analysis of metal-treated nodules revealed changes in the apoplast structure and composition of nodule cortex tissues and infected cells. Wall thickening was accompanied by intensified deposition of cellulose, xyloglucan, esterified pectin, arabinogalactan protein and extensin. The metal presence redirected also lignin and suberin deposition in the walls of the nodule cortex tissues. Our results showed reorganization of the apoplast of cortex tissues and infected cells of Lotus nodules under Zn-Pb presence. These changes in the apoplast structure and composition may have created actual barriers for the toxic ions. For this reason, they can be regarded as an element of legume defense strategy against metal stress that enables effective functioning of L. corniculatus-rhizobia symbiosis on Zn-Pb polluted calamine tailings.
Collapse
Affiliation(s)
- Marzena Sujkowska-Rybkowska
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Building 37, 02-776, Warsaw, Poland.
| | - Anna Rusaczonek
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Building 37, 02-776, Warsaw, Poland.
| | - Arletta Kochańska-Jeziorska
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Building 37, 02-776, Warsaw, Poland.
| |
Collapse
|
33
|
Shi CH, Wang XQ, Xu JF, Zhang YX, Qi B, Jun L. Dissecting the molecular mechanism of russeting in sand pear (Pyrus pyrifolia Nakai) by metabolomics, transcriptomics, and proteomics. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1644-1661. [PMID: 34623717 DOI: 10.1111/tpj.15532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 09/16/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Brown coloration and a rough appearance as russet and semi-russet (partial russet) are features unique to the popular Asian sand pear (Pyrus pyrifolia Nakai). The degree of russeting is different between different genotypes. Russeting is sensitive to water fluctuations, where excessive rainwater can trigger/stimulate its development. However, the molecular mechanism of russeting is currently unclear. Here, we employed multi-omics, i.e., metabolomics, transcriptomics, and proteomics, and analyzed the effect of different sand pear genotypes and artificial rainfall on russeting of pear fruits. This led to the identification of 79, 64, and 29 differentially produced/expressed metabolites, transcripts, and proteins that are involved in the biosynthesis of suberin, phenylpropane, cutin, and waxes. Further analysis of these differentially expressed genes and their encoded proteins revealed that four of them exhibited high expression at both transcript and protein levels. Transient expression of one such gene, PbHHT1 (accession number 103966555), which encodes ω-hydroxypalmitate-O-feruloyl transferase, in young green non-russet fruits triggered premature suberization in the russeting pear genotypes. This coincided with increased production of 16-feruloyloxypalmitic acid, a conjugated compound between phenols and esters during the polymerization for suberin formation. Collectively, our data from the combined three omics demonstrate that russeting in sand pear is a complex process involving the biosynthesis and transport of suberin and many other secondary metabolites.
Collapse
Affiliation(s)
- Chun-Hui Shi
- Forest & Fruit Tree Research Institute, Shanghai Academy of Agriculture Sciences, Shanghai, 201403, China
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Xiao-Qing Wang
- Forest & Fruit Tree Research Institute, Shanghai Academy of Agriculture Sciences, Shanghai, 201403, China
| | - Jian-Feng Xu
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Yu-Xing Zhang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Baoxiu Qi
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071001, China
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, UK
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design, Beijing University of Agriculture, 7 Beinong Rd, Changping District, Beijing, China
| | - Luo Jun
- Forest & Fruit Tree Research Institute, Shanghai Academy of Agriculture Sciences, Shanghai, 201403, China
| |
Collapse
|
34
|
Shukla V, Barberon M. Building and breaking of a barrier: Suberin plasticity and function in the endodermis. CURRENT OPINION IN PLANT BIOLOGY 2021; 64:102153. [PMID: 34861611 DOI: 10.1016/j.pbi.2021.102153] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 05/20/2023]
Abstract
Plant cells coated with hydrophobic compounds constitute a protective barrier to control movement of materials through plant tissues. In roots, the endodermis develops two barriers: the Casparian strips establish an apoplastic barrier and suberin lamellae prevent diffusion through the plasma membrane. Suberin is a complex biopolymer and its deposition is highly responsive to the environment. While the enzymatic framework involved in suberin biosynthesis is well characterized, subsequent steps in suberin formation and regulation remained elusive. Recent publications, studying suberin from a cell biological perspective, have enriched our knowledge on suberin transport and polymerization in the cell wall. These studies have also elucidated the molecular mechanisms controlling suberin biosynthesis and regulation as well as its physiological role in plant abiotic and biotic interactions.
Collapse
Affiliation(s)
- Vinay Shukla
- Department of Botany and Plant Biology, University of Geneva, 30 Quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Marie Barberon
- Department of Botany and Plant Biology, University of Geneva, 30 Quai Ernest Ansermet, 1211 Geneva, Switzerland.
| |
Collapse
|
35
|
Wang Z, Li N, Yu Q, Wang H. Genome-Wide Characterization of Salt-Responsive miRNAs, circRNAs and Associated ceRNA Networks in Tomatoes. Int J Mol Sci 2021; 22:12238. [PMID: 34830118 PMCID: PMC8625345 DOI: 10.3390/ijms222212238] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 11/28/2022] Open
Abstract
Soil salinization is a major environmental stress that causes crop yield reductions worldwide. Therefore, the cultivation of salt-tolerant crops is an effective way to sustain crop yield. Tomatoes are one of the vegetable crops that are moderately sensitive to salt stress. Global market demand for tomatoes is huge and growing. In recent years, the mechanisms of salt tolerance in tomatoes have been extensively investigated; however, the molecular mechanism through which non-coding RNAs (ncRNAs) respond to salt stress is not well understood. In this study, we utilized small RNA sequencing and whole transcriptome sequencing technology to identify salt-responsive microRNAs (miRNAs), messenger RNAs (mRNAs), and circular RNAs (circRNAs) in roots of M82 cultivated tomato and Solanum pennellii (S. pennellii) wild tomato under salt stress. Based on the theory of competitive endogenous RNA (ceRNA), we also established several salt-responsive ceRNA networks. The results showed that circRNAs could act as miRNA sponges in the regulation of target mRNAs of miRNAs, thus participating in the response to salt stress. This study provides insights into the mechanisms of salt tolerance in tomatoes and serves as an effective reference for improving the salt tolerance of salt-sensitive cultivars.
Collapse
Affiliation(s)
- Zhongyu Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Ning Li
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China;
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Urumqi 830091, China
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Qinghui Yu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China;
| | - Huan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| |
Collapse
|
36
|
Si Y, Khanal BP, Schlüter OK, Knoche M. Direct Evidence for a Radial Gradient in Age of the Apple Fruit Cuticle. FRONTIERS IN PLANT SCIENCE 2021; 12:730837. [PMID: 34745165 PMCID: PMC8567170 DOI: 10.3389/fpls.2021.730837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/21/2021] [Indexed: 05/29/2023]
Abstract
The pattern of cuticle deposition plays an important role in managing strain buildup in fruit cuticles. Cuticular strain is the primary trigger for numerous fruit-surface disorders in many fruit crop species. Recent evidence indicates a strain gradient may exist within the apple fruit cuticle. The outer layers of the cuticle are more strained and thus more susceptible to microcracking than the inner layers. A radial gradient in cuticle age is the most likely explanation. Our study aimed to establish whether (or not) deposition of new cutin in a developing apple fruit occurs on the inner surface of the cuticle, i.e., immediately abutting the outward-facing epidermal cell wall. Developing apples were fed with 13C oleic acid through the skin. Following a 14-d period for incorporation, the fruit was harvested and the cuticular membranes (CMs) isolated enzymatically. The CMs were then ablated to varying extents from the inner or the outer surfaces, using a cold atmospheric pressure plasma (CAPP). Afterwards, the ablated CMs were dewaxed and the 13C contents were determined by mass spectrometry. The incorporation of 13C in the cutin fraction was higher than in the wax fraction. The 13C content was highest in non-ablated, dewaxed CM (DCM) and decreased as ablation depth from the inner surface increased. There was no change in 13C content when ablation was carried out from the outer surface. As fruit development proceeded, more 13C label was found towards the middle of the DCM. These results offered direct evidence for deposition of cutin being on the inner surface of the cuticle, resulting in a radial gradient in cuticular age-the most recent deposition (youngest) being on the inner cuticle surface (abutting the epidermal cell wall) and the earliest deposition (oldest) being on the outer surface (abutting the atmosphere).
Collapse
Affiliation(s)
- Yiru Si
- Fruit Science Section, Institute of Horticultural Production Systems, Leibniz University Hannover, Hannover, Germany
| | - Bishnu P. Khanal
- Fruit Science Section, Institute of Horticultural Production Systems, Leibniz University Hannover, Hannover, Germany
| | - Oliver K. Schlüter
- Department of Horticultural Engineering, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
| | - Moritz Knoche
- Fruit Science Section, Institute of Horticultural Production Systems, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
37
|
Maritim TK, Korir RK, Nyabundi KW, Wachira FN, Kamunya SM, Muoki RC. Molecular regulation of anthocyanin discoloration under water stress and high solar irradiance in pluckable shoots of purple tea cultivar. PLANTA 2021; 254:85. [PMID: 34581909 DOI: 10.1007/s00425-021-03736-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
During water-deficit stress, antioxidant enzymes use anthocyanin molecules as co-substrates to scavenge for reactive oxygen species leading to reduced anthocyanin content and ultimately loss of purple leaf pigmentation in tea. Anthocyanins are an important class of flavonoids responsible for liquor color and market acceptability of processed tea from the anthocyanin-rich purple tea cultivar 'TRFK 306'. However, the color in pluckable shoots fade and turn green during the dry and hot season, before rapidly reverting back to purple when weather is favorably wet and cool/cold. Our study revealed that loss of purple leaf pigmentation correlated well with reduced precipitation, high soil water-deficit, increased intensity and duration of sunlight and temperature. Richly purple pigmented leaves harvested during the cool, wet conditions recorded significantly higher anthocyanin content compared to faded samples harvested during the dry season. Similarly, individual anthocyanins were affected by seasonal changes with malvidin being the most abundant. Comparative transcriptomics of two RNA-seq libraries, dry/discolored and wet/colored seasons, revealed depression of most metabolic processes related to anthocyanin accumulation in dry conditions. Specifically, transcripts encoding pathway regulators, MYB-bHLH-WD40 (MBW) complex, were repressed possibly contributing to the suppression of late biosynthetic genes of the pathway. Further, suppression of anthocyanin transport genes could be linked to reduced accumulation of anthocyanin in the vacuole during the dry season. However, slight increase in expression of some transporter and reactive oxygen species (ROS) antioxidant genes in the discolored leaf suggests non-enzymatic degradation of anthocyanin, ultimately leading to loss of purple color during the dry season. Based on increased expression of ROS antioxidant genes (especially catalase and superoxide dismutase) in the discolored leaf, we speculate that anthocyanins are used as co-substrates by antioxidant enzymes to scavenge for ROS (especially hydrogen peroxide) that escape from organelles, leading to reduced anthocyanins and loss of pigmentation during the dry season.
Collapse
Affiliation(s)
- Tony Kipkoech Maritim
- Tea Breeding and Genetic Improvement Division, Crop Improvement and Management Programme, Kenya Agricultural and Livestock Research Organization, Tea Research Institute, P.O. Box 820-20200, Kericho, Kenya
| | - Robert Kiplangat Korir
- Tea Breeding and Genetic Improvement Division, Crop Improvement and Management Programme, Kenya Agricultural and Livestock Research Organization, Tea Research Institute, P.O. Box 820-20200, Kericho, Kenya
| | - Karl Wilson Nyabundi
- Sustainable Ecosystems, Management and Conservation Programme, Kenya Agricultural and Livestock Research Organization, Tea Research Institute, P.O. Box 820-20200, Kericho, Kenya
| | - Francis Nyamu Wachira
- Department of Life Sciences, South Eastern Kenya University, P.O Box 170-90200, Kitui, Kenya
| | - Samson Machohi Kamunya
- Tea Breeding and Genetic Improvement Division, Crop Improvement and Management Programme, Kenya Agricultural and Livestock Research Organization, Tea Research Institute, P.O. Box 820-20200, Kericho, Kenya
| | - Richard Chalo Muoki
- Tea Breeding and Genetic Improvement Division, Crop Improvement and Management Programme, Kenya Agricultural and Livestock Research Organization, Tea Research Institute, P.O. Box 820-20200, Kericho, Kenya.
| |
Collapse
|
38
|
Machado SR, Rodrigues TM. Apoplasmic barrier in the extrafloral nectary of Citharexylum myrianthum (Verbenaceae). PLANTA 2021; 254:19. [PMID: 34215938 DOI: 10.1007/s00425-021-03663-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
The cytological changes underlying the formation of an apoplasmic barrier in the multi-layered extrafloral nectaries of Citharexylum myrianthum are compatible with the synthesis, transport and deposition of suberin. In terms of ontogenesis and function, the intermediate layers of these nectaries are homologous with the stalks of nectar-secreting trichomes. Anticlinal cell wall impregnations are common in trichomatic nectaries and their functions as endodermis-like barriers have been discussed because of possible direct effects on the nectary physiology, mainly in the nectar secretion and resorption. However, the cytological events linked to nectary wall impregnations remain little explored. This study documents the ontogenesis and the fine structure of the EFN cells, and cytological events linked to the wall impregnations of multi-layered extrafloral nectaries (EFNs) in Citharexylum myrianthum Cham. (Verbenaceae). EFNs are patelliform, and differentiated into (a) a multicellular foot, which is compound in structure and vascularised with phloem strands, (b) a bi-layered intermediate region with thickened cell walls and (c) a single-layered secretory region with palisade-like cells. EFNs are protodermal in origin, starting with a single protodermal cell and ending with the complex, multi-layered structure. The cell wall impregnations first appear in the very young EFN and increase towards maturity. Lipid patches (assumed to be suberin) are deposited on the inner faces of the primary walls, first along the anticlinal walls and then extend to the periclinal walls. On both walls, plasmodesmata remain apparently intact during the maturation of the EFNs. In the peripheral cytoplasm there are abundant polymorphic plastids, well-developed Golgi bodies often close to rough endoplasmic reticulum profiles, mitochondria and polyribosomes. Cytological events linked to the wall impregnations are consistent with suberin synthesis, transport and deposition. Our findings offer new insights into the structure-properties of specialised nectary cell walls and so should contribute to our knowledge of the physiological and protective roles of this structure in nectar glands.
Collapse
Affiliation(s)
- Silvia Rodrigues Machado
- Centre of Electron Microscopy (CME), Institute of Biosciences of Botucatu (IBB), São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
| | - Tatiane Maria Rodrigues
- Department of Biostatistics, Plant Biology, Parasitology and Zoology, Institute of Biosciences of Botucatu (IBB), São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| |
Collapse
|
39
|
Wahrenburg Z, Benesch E, Lowe C, Jimenez J, Vulavala VKR, Lü S, Hammerschmidt R, Douches D, Yim WC, Santos P, Kosma DK. Transcriptional regulation of wound suberin deposition in potato cultivars with differential wound healing capacity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:77-99. [PMID: 33860574 DOI: 10.1111/tpj.15275] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/29/2021] [Accepted: 04/07/2021] [Indexed: 05/20/2023]
Abstract
Wounding during mechanical harvesting and post-harvest handling results in tuber desiccation and provides an entry point for pathogens resulting in substantial post-harvest crop losses. Poor wound healing is a major culprit of these losses. Wound tissue in potato (Solanum tuberosum) tubers, and all higher plants, is composed of a large proportion of suberin that is deposited in a specialized tissue called the wound periderm. However, the genetic regulatory pathway controlling wound-induced suberization remains unknown. Here, we implicate two potato transcription factors, StMYB102 (PGSC0003DMG400011250) and StMYB74 (PGSC0003DMG400022399), as regulators of wound suberin biosynthesis and deposition. Using targeted metabolomics and transcript profiling from the wound healing tissues of two commercial potato cultivars, as well as heterologous expression, we provide evidence for the molecular-genetic basis of the differential wound suberization capacities of different potato cultivars. Our results suggest that (i) the export of suberin from the cytosol to the apoplast and ligno-suberin deposition may be limiting factors for wound suberization, (ii) StMYB74 and StMYB102 are important regulators of the wound suberization process in tubers, and (iii) polymorphisms in StMYB102 may influence cultivar-specific wound suberization capacity. These results represent an important step in understanding the regulated biosynthesis and deposition of wound suberin and provide a practical foundation for targeted breeding approaches aimed at improving potato tuber storage life.
Collapse
Affiliation(s)
- Zachary Wahrenburg
- Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, 89557, USA
| | - Elizabeth Benesch
- Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, 89557, USA
| | - Catherine Lowe
- Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, 89557, USA
| | - Jazmin Jimenez
- Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, 89557, USA
| | - Vijaya K R Vulavala
- Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, 89557, USA
| | - Shiyou Lü
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Ray Hammerschmidt
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - David Douches
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Won C Yim
- Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, 89557, USA
| | - Patricia Santos
- Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, 89557, USA
| | - Dylan K Kosma
- Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, 89557, USA
| |
Collapse
|
40
|
Krishnamurthy P, Vishal B, Bhal A, Kumar PP. WRKY9 transcription factor regulates cytochrome P450 genes CYP94B3 and CYP86B1, leading to increased root suberin and salt tolerance in Arabidopsis. PHYSIOLOGIA PLANTARUM 2021; 172:1673-1687. [PMID: 33619745 DOI: 10.1111/ppl.13371] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/08/2021] [Accepted: 02/12/2021] [Indexed: 05/27/2023]
Abstract
Salinity affects crop productivity worldwide and mangroves growing under high salinity exhibit adaptations such as enhanced root apoplastic barrier to survive under such conditions. We have identified two cytochrome P450 family genes, AoCYP94B3 and AoCYP86B1 from the mangrove tree Avicennia officinalis and characterized them using atcyp94b3 and atcyp86b1, which are mutants of their putative Arabidopsis orthologs and the corresponding complemented lines with A. officinalis genes. CYP94B3 and CYP86B1 transcripts were induced upon salt treatment in the roots of both A. officinalis and Arabidopsis. Both AoCYP94B3 and AoCYP86B1 were localized to the endoplasmic reticulum. Heterologous expression of 35S::AoCYP94B3 and 35S::AoCYP86B1 in their respective Arabidopsis mutants (atcyp94b3 and atcyp86b1) increased the salt tolerance of the transgenic seedlings by reducing the amount of Na+ accumulation in the shoots. Moreover, the reduced root suberin phenotype of atcyp94b3 was rescued in the 35S::AoCYP94B3;atcyp94b3 transgenic Arabidopsis seedlings. Gas-chromatography and mass spectrometry analyses showed that the amount of suberin monomers (C-16 ω-hydroxy acids, C-16 α, ω-dicarboxylic acids and C-20 eicosanol) were increased in the roots of 35S::AoCYP94B3;atcyp94b3 Arabidopsis seedlings. Using chromatin immunoprecipitation and electrophoretic mobility shift assays, we identified AtWRKY9 as the upstream regulator of AtCYP94B3 and AtCYP86B1 in Arabidopsis. In addition, atwrky9 showed suppressed expression of AtCYP94B3 and AtCYP86B1 transcripts, and reduced suberin in the roots. These results show that AtWRKY9 controls suberin deposition by regulating AtCYP94B3 and AtCYP86B1, leading to salt tolerance. Our data can be used for generating salt-tolerant crop plants in the future.
Collapse
Affiliation(s)
- Pannaga Krishnamurthy
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- NUS Environmental Research Institute (NERI), National University of Singapore, Singapore, Singapore
| | - Bhushan Vishal
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Amrit Bhal
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Prakash P Kumar
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- NUS Environmental Research Institute (NERI), National University of Singapore, Singapore, Singapore
| |
Collapse
|
41
|
Schink C, Spielvogel S, Imhof W. Synthesis of 13 C-labelled ω-hydroxy carboxylic acids of the general formula HO 2 13 C-(CH 2 ) n -CH 2 OH or HO 2 C-(CH 2 ) n - 13 CH 2 OH (n = 12, 16, 20, 28). J Labelled Comp Radiopharm 2021; 64:385-402. [PMID: 34157793 DOI: 10.1002/jlcr.3931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 11/09/2022]
Abstract
13 C-labelled ω-hydroxy-carboxylic acids HO2 13 C-(CH2 )n -CH2 OH or HO2 C-(CH2 )n -13 CH2 OH (n = 12, 16, 20, 28) with 13 C labels selectively introduced either at the carboxy group or at the primary alcohol function at the end of the hydrocarbon chain have been synthesized. Different synthetic strategies had to be applied depending on the position of the label, the chain length of the respective synthetic target and due to economic considerations. 13 C labels in general were introduced by nucleophilic substitution of a suitable leaving group with labelled potassium cyanide and subsequent hydrolysis of the nitriles to produce the corresponding labelled carboxy functions, which may also be reduced to give the labelled primary alcohol group. All new compounds are characterized by GC/MS, IR and NMR methods as well as by elemental analysis.
Collapse
Affiliation(s)
- Carina Schink
- Institute of Integrated Natural Sciences, University Koblenz - Landau, Koblenz, Germany
| | - Sandra Spielvogel
- Institute of Plant Nutrition and Soil Science, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Wolfgang Imhof
- Institute of Integrated Natural Sciences, University Koblenz - Landau, Koblenz, Germany
| |
Collapse
|
42
|
Wang Y, Xu J, He Z, Hu N, Luo W, Liu X, Shi X, Liu T, Jiang Q, An P, Liu L, Sun Y, Jetter R, Li C, Wang Z. BdFAR4, a root-specific fatty acyl-coenzyme A reductase, is involved in fatty alcohol synthesis of root suberin polyester in Brachypodium distachyon. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1468-1483. [PMID: 33768632 DOI: 10.1111/tpj.15249] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/06/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Suberin is a complex hydrophobic polymer of aliphatic and phenolic compounds which controls the movement of gases, water, and solutes and protects plants from environmental stresses and pathogenic infection. The synthesis and regulatory pathways of suberin remain unknown in Brachypodium distachyon. Here we describe the identification of a B. distachyon gene, BdFAR4, encoding a fatty acyl-coenzyme A reductase (FAR) by a reverse genetic approach, and investigate the molecular relevance of BdFAR4 in the root suberin synthesis of B. distachyon. BdFAR4 is specifically expressed throughout root development. Heterologous expression of BdFAR4 in yeast (Saccharomyces cerevisiae) afforded the production of C20:0 and C22:0 fatty alcohols. The loss-of-function knockout of BdFAR4 by CRISPR/Cas9-mediated gene editing significantly reduced the content of C20:0 and C22:0 fatty alcohols associated with root suberin. In contrast, overexpression of BdFAR4 in B. distachyon and tomato (Solanum lycopersicum) resulted in the accumulation of root suberin-associated C20:0 and C22:0 fatty alcohols, suggesting that BdFAR4 preferentially accepts C20:0 and C22:0 fatty acyl-CoAs as substrates. The BdFAR4 protein was localized to the endoplasmic reticulum in Arabidopsis thaliana protoplasts and Nicotiana benthamiana leaf epidermal cells. BdFAR4 transcript levels can be increased by abiotic stresses and abscisic acid treatment. Furthermore, yeast one-hybrid, dual-luciferase activity, and electrophoretic mobility shift assays indicated that the R2R3-MYB transcription factor BdMYB41 directly binds to the promoter of BdFAR4. Taken together, these results imply that BdFAR4 is essential for the production of root suberin-associated fatty alcohols, especially under stress conditions, and that its activity is transcriptionally regulated by the BdMYB41 transcription factor.
Collapse
Affiliation(s)
- Yong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiajing Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhaofeng He
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ning Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wenqiao Luo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoyu Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xue Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tianxiang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qinqin Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Peipei An
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Le Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yulin Sun
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Reinhard Jetter
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Chunlian Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhonghua Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
43
|
Martínez-Arias C, Sobrino-Plata J, Medel D, Gil L, Martín JA, Rodríguez-Calcerrada J. Stem endophytes increase root development, photosynthesis, and survival of elm plantlets (Ulmus minor Mill.). JOURNAL OF PLANT PHYSIOLOGY 2021; 261:153420. [PMID: 33906025 DOI: 10.1016/j.jplph.2021.153420] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Long-lived trees benefit from fungal symbiotic interactions in the adaptation to constantly changing environments. Previous studies revealed a core fungal endobiome in Ulmus minor which has been suggested to play a critical role in plant functioning. Here, we hypothesized that these core endophytes are involved in abiotic stress tolerance. To test this hypothesis, two core endophytes (Cystobasidiales and Chaetothyriales) were inoculated into in vitro U. minor plantlets, which were further subjected to drought. Given that elm genotypes resistant to Dutch elm disease (DED) tend to show higher abiotic stress tolerance than susceptible ones, we tested the endophyte effect on two DED-resistant and two DED-susceptible genotypes. Drought stress was moderate; endophyte presence attenuated stomata closure in response to drought in one genotype but this stress did not affect plant survival. In comparison, long-term in-vitro culture proved stressful to mock-inoculated plants, especially in DED-susceptible genotypes. Interestingly, no endophyte-inoculated plant died during the experiment, as compared to high mortality in mock-inoculated plants. In surviving plants, endophyte presence stimulated root and shoot growth, photosynthetic rates, antioxidant activity and molecular changes involving auxin-signaling. These changes and the observed endophyte stability in elm tissues throughout the experiment suggest endophytes are potential tools to improve survival and stress tolerance of DED-resistant elms in elm restoration programs.
Collapse
Affiliation(s)
- Clara Martínez-Arias
- Departamento de Sistemas y Recursos Naturales, ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, Madrid, 28040, Spain.
| | - Juan Sobrino-Plata
- Departamento de Sistemas y Recursos Naturales, ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, Madrid, 28040, Spain
| | - David Medel
- Departamento de Sistemas y Recursos Naturales, ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, Madrid, 28040, Spain
| | - Luis Gil
- Departamento de Sistemas y Recursos Naturales, ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, Madrid, 28040, Spain
| | - Juan Antonio Martín
- Departamento de Sistemas y Recursos Naturales, ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, Madrid, 28040, Spain
| | - Jesús Rodríguez-Calcerrada
- Departamento de Sistemas y Recursos Naturales, ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, Madrid, 28040, Spain
| |
Collapse
|
44
|
Dhiman P, Rajora N, Bhardwaj S, Sudhakaran SS, Kumar A, Raturi G, Chakraborty K, Gupta OP, Devanna BN, Tripathi DK, Deshmukh R. Fascinating role of silicon to combat salinity stress in plants: An updated overview. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:110-123. [PMID: 33667964 DOI: 10.1016/j.plaphy.2021.02.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/07/2021] [Indexed: 05/04/2023]
Abstract
Salt stress limits plant growth and productivity by severely impacting the fundamental physiological processes. Silicon (Si) supplementation is considered one of the promising methods to improve plant resilience under salt stress. Here, the role of Si in modulating physiological and biochemical processes that get adversely affected by high salinity, is discussed. Although numerous reports show the beneficial effects of Si under stress, the precise molecular mechanism underlying this is not well understood. Questions like whether all plants are equally benefitted with Si supplementation despite having varying Si uptake capability and salinity tolerance are still elusive. This review illustrates the Si uptake and accumulation mechanism to understand the direct or indirect participation of Si in different physiological processes. Evaluation of plant responses at transcriptomics and proteomics levels are promising in understanding the role of Si. Integration of physiological understanding with omics scale information highlighted Si supplementation affecting the phytohormonal and antioxidant responses under salinity as a key factor defining improved resilience. Similarly, the crosstalk of Si with lignin and phenolic content under salt stress also seems to be an important phenomenon helping plants to reduce the stress. The present review also addressed various crucial mechanisms by which Si application alleviates salt stress, such as a decrease in oxidative damage, decreased lipid peroxidation, improved photosynthetic ability, and ion homeostasis. Besides, the application and challenges of using Si-nanoparticles have also been addressed. Comprehensive information and discussion provided here will be helpful to better understand the role of Si under salt stress.
Collapse
Affiliation(s)
- Pallavi Dhiman
- National Agri-Food Biotechnology Institute (NABI) Mohali, Punjab, India; Department of Biotechnology Panjab University, Chandigarh, India
| | - Nitika Rajora
- National Agri-Food Biotechnology Institute (NABI) Mohali, Punjab, India
| | - Shubham Bhardwaj
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Sreeja S Sudhakaran
- National Agri-Food Biotechnology Institute (NABI) Mohali, Punjab, India; Department of Biotechnology Panjab University, Chandigarh, India
| | - Amit Kumar
- National Agri-Food Biotechnology Institute (NABI) Mohali, Punjab, India
| | - Gaurav Raturi
- National Agri-Food Biotechnology Institute (NABI) Mohali, Punjab, India; Department of Biotechnology Panjab University, Chandigarh, India
| | | | - Om Prakash Gupta
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| | - B N Devanna
- ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | - Durgesh Kumar Tripathi
- Amity Institute of Organic Agriculture (AIOA), Amity University Uttar Pradesh, Noida, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI) Mohali, Punjab, India.
| |
Collapse
|
45
|
Harman-Ware AE, Sparks S, Addison B, Kalluri UC. Importance of suberin biopolymer in plant function, contributions to soil organic carbon and in the production of bio-derived energy and materials. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:75. [PMID: 33743797 PMCID: PMC7981814 DOI: 10.1186/s13068-021-01892-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/27/2021] [Indexed: 05/27/2023]
Abstract
Suberin is a hydrophobic biopolymer of significance in the production of biomass-derived materials and in biogeochemical cycling in terrestrial ecosystems. Here, we describe suberin structure and biosynthesis, and its importance in biological (i.e., plant bark and roots), ecological (soil organic carbon) and economic (biomass conversion to bioproducts) contexts. Furthermore, we highlight the genomics and analytical approaches currently available and explore opportunities for future technologies to study suberin in quantitative and/or high-throughput platforms in bioenergy crops. A greater understanding of suberin structure and production in lignocellulosic biomass can be leveraged to improve representation in life cycle analysis and techno-economic analysis models and enable performance improvements in plant biosystems as well as informed crop system management to achieve economic and environmental co-benefits.
Collapse
Affiliation(s)
- Anne E Harman-Ware
- Renewable Resources and Enabling Sciences Center, Center for Bioenergy Innovation, National Renewable Energy Laboratory, Golden, CO, 80401, USA.
| | - Samuel Sparks
- Biosciences Division and Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Bennett Addison
- Renewable Resources and Enabling Sciences Center, Center for Bioenergy Innovation, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Udaya C Kalluri
- Biosciences Division and Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA.
| |
Collapse
|
46
|
Schink C, Spielvogel S, Imhof W. Synthesis of 13 C-labelled cutin and suberin monomeric dicarboxylic acids of the general formula HO 213 C-(CH 2 ) n - 13 CO 2 H (n = 10, 12, 14, 16, 18, 20, 22, 24, 26, 28). J Labelled Comp Radiopharm 2021; 64:14-29. [PMID: 33063895 DOI: 10.1002/jlcr.3885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022]
Abstract
13 C-labeled dicarboxylic acids HO213 C-(CH2 )n -13 CO2 H (n = 10, 12, 14, 16, 18, 20, 22, 24, 26, 28) have been synthesized as internal standards for LC-MS and GC-MS analysis of cutin and suberin monomer degradation by soil-based microorganisms. Different synthetic strategies had to be applied depending on the chain length of the respective synthetic target and because of economic considerations. 13 C-labels were introduced by nucleophilic substitution of a suitable leaving group with labelled potassium cyanide and subsequent hydrolysis of the nitriles to produce the corresponding dicarboxylic acids. All new compounds are characterized by GC/MS, IR, and NMR methods as well as by elemental analysis.
Collapse
Affiliation(s)
- Carina Schink
- Institute of Integrated Natural Sciences, University Koblenz-Landau, Koblenz, Germany
| | - Sandra Spielvogel
- Institute of Plant Nutrition and Soil Science, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Wolfgang Imhof
- Institute of Integrated Natural Sciences, University Koblenz-Landau, Koblenz, Germany
| |
Collapse
|
47
|
Yang Z, Yang X, Dong S, Ge Y, Zhang X, Zhao X, Han N. Overexpression of β-Ketoacyl-CoA Synthase From Vitis vinifera L. Improves Salt Tolerance in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:564385. [PMID: 33281839 PMCID: PMC7688582 DOI: 10.3389/fpls.2020.564385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/09/2020] [Indexed: 05/05/2023]
Abstract
Grape (Vitis vinifera L.) is a fruit tree with high salt tolerance and high nutritional value, medicinal value, and economic value. Suberin in roots is characterized by long-chain fatty acids and is thought to be related to the salt tolerance of grape. The key enzyme in the fatty acid elongation process is β-ketoacyl-CoA synthase (KCS). The function and the regulatory mechanism of VvKCS in response to salt stress in grape are unclear. In this study, VvKCS was isolated from V. vinifera L. A real-time quantitative polymerase chain reaction analysis showed that salt stress enhanced VvKCS transcription levels in grapes. Overexpression of VvKCS increased the tolerance to salt stress in Arabidopsis during the germination and seedling stages. The improved salt tolerance was the result of the combined contributions of multiple mechanisms including the regulation of expression of ion transporters and channels, accumulation of osmotic regulating substances, and maintenance of membrane stability. The results of this study are valuable information on plant salt tolerance and provide a theoretical basis for the molecular mechanism of grape salt tolerance.
Collapse
Affiliation(s)
- Zhen Yang
- Shandong Provincial Key Laboratory of Microbial Engineering, School of Biologic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xue Yang
- Shandong Provincial Key Laboratory of Microbial Engineering, School of Biologic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai’an, China
| | - Shujia Dong
- School of Biology and Food Engineering, Bozhou University, Bozhou, China
| | - Yao Ge
- Shandong Provincial Key Laboratory of Microbial Engineering, School of Biologic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xuenan Zhang
- Shandong Provincial Key Laboratory of Microbial Engineering, School of Biologic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xinjie Zhao
- Shandong Provincial Key Laboratory of Microbial Engineering, School of Biologic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Ning Han
- Shandong Provincial Key Laboratory of Microbial Engineering, School of Biologic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
48
|
Zhang L, Merlin I, Pascal S, Bert P, Domergue F, Gambetta GA. Drought activates MYB41 orthologs and induces suberization of grapevine fine roots. PLANT DIRECT 2020; 4:e00278. [PMID: 33251473 PMCID: PMC7680640 DOI: 10.1002/pld3.278] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 05/07/2023]
Abstract
The permeability of roots to water and nutrients is controlled through a variety of mechanisms and one of the most conspicuous is the presence of the Casparian strips and suberin lamellae. Roots actively regulate the creation of these structures developmentally, along the length of the root, and in response to the environment, including drought. In the current study, we characterized the suberin composition along the length of grapevine fine roots during development and in response to water deficit, and in the same root systems we quantified changes in expression of suberin biosynthesis- and deposition-related gene families (via RNAseq) allowing the identification of drought-responsive suberin-related genes. Grapevine suberin composition did not differ between primary and lateral roots, and was similar to that of other species. Under water deficit there was a global upregulation of suberin biosynthesis which resulted in an increase of suberin specific monomers, but without changes in their relative abundances, and this upregulation took place across all the developmental stages of fine roots. These changes corresponded to the upregulation of numerous suberin biosynthesis- and export-related genes which included orthologs of the previously characterized AtMYB41 transcriptional factor. Functional validation of two grapevine MYB41 orthologs, VriMYB41 and VriMYB41-like, confirmed their ability to globally upregulate suberin biosynthesis, export, and deposition. This study provides a detailed characterization of the developmental and water deficit induced suberization of grapevine fine roots and identifies important orthologs responsible for suberin biosynthesis, export, and its regulation in grape.
Collapse
Affiliation(s)
- Li Zhang
- EGFVBordeaux‐Sciences AgroINRAUniv. BordeauxISVVVillenave d'OrnonFrance
| | - Isabelle Merlin
- EGFVBordeaux‐Sciences AgroINRAUniv. BordeauxISVVVillenave d'OrnonFrance
| | - Stéphanie Pascal
- Laboratoire de Biogenèse MembranaireCNRS – Univ. Bordeaux ‐ UMR 5200Bâtiment A3 ‐ INRA Bordeaux AquitaineVillenave d'OrnonFrance
| | | | - Frédéric Domergue
- Laboratoire de Biogenèse MembranaireCNRS – Univ. Bordeaux ‐ UMR 5200Bâtiment A3 ‐ INRA Bordeaux AquitaineVillenave d'OrnonFrance
| | | |
Collapse
|
49
|
To A, Joubès J, Thueux J, Kazaz S, Lepiniec L, Baud S. AtMYB92 enhances fatty acid synthesis and suberin deposition in leaves of Nicotiana benthamiana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:660-676. [PMID: 32246506 DOI: 10.1111/tpj.14759] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/02/2020] [Accepted: 03/18/2020] [Indexed: 05/11/2023]
Abstract
Acyl lipids are important constituents of the plant cell. Depending on the cell type, requirements in acyl lipids vary greatly, implying a tight regulation of fatty acid and lipid metabolism. The discovery of the WRINKLED1 (WRI1) transcription factors, members of the AP2-EREBP (APETALA2-ethylene-responsive element binding protein) family, has emphasized the importance of transcriptional regulation for adapting the rate of acyl chain production to cell requirements. Here, we describe the identification of another activator of the fatty acid biosynthetic pathway, the Arabidopsis MYB92 transcription factor. This MYB and all the members of the subgroups S10 and S24 of MYB transcription factors can directly activate the promoter of BCCP2 that encodes a component of the fatty acid biosynthetic pathway. Two adjacent MYB cis-regulatory elements are essential for the binding and activation of the BCCP2 promoter by MYB92. Overexpression of MYB92 or WRI1 in Nicotiana benthamiana induces the expression of fatty acid biosynthetic genes but results in the accumulation of different types of acyl lipids. In the presence of WRI1, triacylglycerol biosynthetic enzymes coded by constitutively expressed genes efficiently channel the excess fatty acids toward reserve lipid accumulation. By contrast, MYB92 activates both fatty acid and suberin biosynthetic genes; hence, the remarkable increase in suberin monomers measured in leaves expressing MYB92. These results provide additional insight into the molecular mechanisms that control the biosynthesis of an important cell wall-associated acylglycerol polymer playing critical roles in plants.
Collapse
Affiliation(s)
- Alexandra To
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Jérôme Joubès
- Laboratoire de Biogenèse Membranaire, UMR 5200, Université de Bordeaux, 33882, Villenave d'Ornon, France
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS, 33882, Villenave d'Ornon, France
| | - Jean Thueux
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Sami Kazaz
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
- Université Paris-Sud, Université Paris-Saclay, 91400, Orsay, France
| | - Loïc Lepiniec
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Sébastien Baud
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| |
Collapse
|
50
|
Philippe G, Sørensen I, Jiao C, Sun X, Fei Z, Domozych DS, Rose JK. Cutin and suberin: assembly and origins of specialized lipidic cell wall scaffolds. CURRENT OPINION IN PLANT BIOLOGY 2020; 55:11-20. [PMID: 32203682 DOI: 10.1016/j.pbi.2020.01.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 05/19/2023]
Abstract
Cutin and suberin are hydrophobic lipid biopolyester components of the cell walls of specialized plant tissue and cell-types, where they facilitate adaptation to terrestrial habitats. Many steps in their biosynthetic pathways have been characterized, but the basis of their spatial deposition and precursor trafficking is not well understood. Members of the GDSL lipase/esterase family catalyze cutin polymerization, and candidate proteins have been proposed to mediate interactions between cutin or suberin and other wall components. Comparative genomic studies of charophyte algae and early diverging land plants, combined with knowledge of the biosynthesis, trafficking and assembly mechanisms, suggests an origin for the capacity to secrete waxes, as well as aliphatic and phenolic compounds before the first colonization of true terrestrial habitats.
Collapse
Affiliation(s)
- Glenn Philippe
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Iben Sørensen
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Chen Jiao
- Boyce Thompson Institute, Ithaca, NY, USA
| | | | - Zhangjun Fei
- Boyce Thompson Institute, Ithaca, NY, USA; U.S. Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, USA
| | - David S Domozych
- Department of Biology, Skidmore College, Saratoga Springs, NY, USA
| | - Jocelyn Kc Rose
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|