1
|
Kientega M, Clarkson CS, Traoré N, Hui TYJ, O'Loughlin S, Millogo AA, Epopa PS, Yao FA, Belem AMG, Brenas J, Miles A, Burt A, Diabaté A. Whole-genome sequencing of major malaria vectors reveals the evolution of new insecticide resistance variants in a longitudinal study in Burkina Faso. Malar J 2024; 23:280. [PMID: 39285410 PMCID: PMC11406867 DOI: 10.1186/s12936-024-05106-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/08/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Intensive deployment of insecticide based malaria vector control tools resulted in the rapid evolution of phenotypes resistant to these chemicals. Understanding this process at the genomic level is important for the deployment of successful vector control interventions. Therefore, longitudinal sampling followed by whole genome sequencing (WGS) is necessary to understand how these evolutionary processes evolve over time. This study investigated the change in genetic structure and the evolution of the insecticide resistance variants in natural populations of Anopheles gambiae over time and space from 2012 to 2017 in Burkina Faso. METHODS New genomic data have been generated from An. gambiae mosquitoes collected from three villages in the western part of Burkina Faso between 2012 and 2017. The samples were whole-genome sequenced and the data used in the An. gambiae 1000 genomes (Ag1000G) project as part of the Vector Observatory. Genomic data were analysed using the analysis pipeline previously designed by the Ag1000G project. RESULTS The results showed similar and consistent nucleotide diversity and negative Tajima's D between An. gambiae sensu stricto (s.s.) and Anopheles coluzzii. Principal component analysis (PCA) and the fixation index (FST) showed a clear genetic structure in the An. gambiae sensu lato (s.l.) species. Genome-wide FST and H12 scans identified genomic regions under divergent selection that may have implications in the adaptation to ecological changes. Novel voltage-gated sodium channel pyrethroid resistance target-site alleles (V402L, I1527T) were identified at increasing frequencies alongside the established alleles (Vgsc-L995F, Vgsc-L995S and N1570Y) within the An. gambiae s.l. POPULATIONS Organophosphate metabolic resistance markers were also identified, at increasing frequencies, within the An. gambiae s.s. populations from 2012 to 2017, including the SNP Ace1-G280S and its associated duplication. Variants simultaneously identified in the same vector populations raise concerns about the long-term efficacy of new generation bed nets and the recently organophosphate pirimiphos-methyl indoor residual spraying in Burkina Faso. CONCLUSION These findings highlighted the benefit of genomic surveillance of malaria vectors for the detection of new insecticide resistance variants, the monitoring of the existing resistance variants, and also to get insights into the evolutionary processes driving insecticide resistance.
Collapse
Affiliation(s)
- Mahamadi Kientega
- Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545, Bobo-Dioulasso 01, Burkina Faso.
- Université Nazi Boni, 01 BP 1091, Bobo-Dioulasso, Burkina Faso.
| | - Chris S Clarkson
- Vector Surveillance Programme, Genomic Surveillance Unit, Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Nouhoun Traoré
- Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545, Bobo-Dioulasso 01, Burkina Faso
- Université Nazi Boni, 01 BP 1091, Bobo-Dioulasso, Burkina Faso
| | - Tin-Yu J Hui
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, SL5 7PY, UK
| | - Samantha O'Loughlin
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, SL5 7PY, UK
| | - Abdoul-Azize Millogo
- Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545, Bobo-Dioulasso 01, Burkina Faso
- Institut des Sciences des Sociétés, 03 BP 7047, Ouagadougou 03, Burkina Faso
| | - Patric Stephane Epopa
- Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545, Bobo-Dioulasso 01, Burkina Faso
| | - Franck A Yao
- Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545, Bobo-Dioulasso 01, Burkina Faso
| | | | - Jon Brenas
- Vector Surveillance Programme, Genomic Surveillance Unit, Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Alistair Miles
- Vector Surveillance Programme, Genomic Surveillance Unit, Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Austin Burt
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, SL5 7PY, UK
| | - Abdoulaye Diabaté
- Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545, Bobo-Dioulasso 01, Burkina Faso.
| |
Collapse
|
2
|
Jin L, Yan K, Kong H, Li J, Fan C, Pan Y, Shang Q. The Fat Body-Specific GST Gene SlGSTe11 Enhances the Tolerance of Spodoptera litura to Cyantraniliprole and Nicotine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19680-19688. [PMID: 39225316 DOI: 10.1021/acs.jafc.4c05747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Spodoptera litura is a significant agricultural pest, and its glutathione S-transferase (GST) plays a crucial role in insecticide resistance. This study aimed to investigate the relationship between the SlGSTe11 gene of S. litura and resistance to cyantraniliprole and nicotine. Transcriptome analysis revealed that SlGSTe11 is highly expressed mainly in fat bodies, with a significant increase in SlGSTe11 gene expression under induction by cyantraniliprole and nicotine. The ectopic expression of the SlGSTe11 gene in transgenic fruit flies resulted in a 5.22-fold increase in the tolerance to cyantraniliprole. Moreover, compared to the UAS-SlGSTe11 line, the Act5C-UAS>SlGSTe11 line laid more eggs and had a lower mortality after nicotine exposure. RNAi-mediated inhibition of SlGSTe11 gene expression led to a significant increase in the mortality of S. litura under cyantraniliprole exposure. In vitro metabolism experiments demonstrated that the recombinant SlGSTe11 protein efficiently metabolizes cyantraniliprole. Molecular docking results indicated that SlGSTe11 has a strong affinity for both cyantraniliprole and nicotine. These findings suggest that SlGSTe11 is involved in the development of resistance to cyantraniliprole and nicotine in S. litura.
Collapse
Affiliation(s)
- Long Jin
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Kunpeng Yan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Haoran Kong
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Jianyi Li
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Chengcheng Fan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, PR China
| |
Collapse
|
3
|
Liu S, Li X, Zhang H, Qin S, Liang L, Liao Y, Zhu J, Tan H, Zhao F. Comprehensive study of chiral herbicide flusulfinam uptake, translocation, degradation, and subcellular distribution in rice (Oryza sativa L.). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106018. [PMID: 39277354 DOI: 10.1016/j.pestbp.2024.106018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 09/17/2024]
Abstract
The biological behavior of flusulfinam, a potential commercial chiral herbicide for rice, has not been well explored. Herein, the uptake of chiral flusulfinam by rice and its transport, degradation, and subcellular distribution in rice (Oryza sativa L.) were investigated. The enantiomeric fraction (EF) in roots was 0.54 during 0 d to 7 d in hydroponic laboratory conditions. The bioconcentration factor of flusulfinam enantiomers was 2.1, suggesting an absence of observed enantioselectivity in the absorption process. Notably, the EF in the shoots decreased to 0.35 on the 7th day. The translocation factors of R- and S-flusulfinam were 0.12 and 0.27, respectively, indicating a preferential transfer of the S-flusulfinam from the root to the shoot. Flusulfinam was identified in the root after spraying. The translocation factors of R- and S-flusulfinam were consistently similar, signifying the capacity for downward movement without enantioselectivity. Interestingly, the degradation half-lives of R- and S-flusulfinam in the total plant were 5.50 and 5.06 d (p < 0.05), respectively, supporting the preferential degradation of S-flusulfinam throughout the total plant. Flusulfinam primarily entered the roots via the apoplastic pathway and was subsequently transported within the plant through aquaporins and ion channels. The subcellular distribution experiment revealed the predominant accumulation of flusulfinam enantiomers in soluble components (84%) with no enantioselectivity in these processes. There was upregulation lipid transfer protein-2 and carboxylesterases15 genes, which could explain the preferential transport and degradation of S-flusulfinam. This study is important in assessing the environmental risk associated with flusulfinam and ensuring food safety.
Collapse
Affiliation(s)
- Shiling Liu
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Xiaoli Li
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Heng Zhang
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Siying Qin
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Liying Liang
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Ying Liao
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Junqi Zhu
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Huihua Tan
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Feng Zhao
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China.
| |
Collapse
|
4
|
Cominelli F, Chiesa O, Panini M, Massimino Cocuzza GE, Mazzoni E. Survey of target site mutations linked with insecticide resistance in Italian populations of Aphis gossypii. PEST MANAGEMENT SCIENCE 2024; 80:4361-4370. [PMID: 38661723 DOI: 10.1002/ps.8142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Aphis gossypii is a worldwide agricultural pest that causes high levels of economic losses by feeding and transmitting virus diseases. It is usually controlled by chemical insecticides, but this could lead to the selection of resistant populations. Several single nucleotide polymorphisms (SNPs) have been identified associated with insecticide resistance. Monitoring activities to detect the presence of such mutations in field populations can have an important role in insect pest management but, currently, no information on Italian strains is available. RESULTS The presence of target site mutations conferring resistance to different insecticides was analysed in Italian field collected populations of A. gossypii with an allele specific approach (QSGG, Qualitative Sybr-Green Genotyping). Primers were designed to detect mutations in genes coding acetylcholinesterase (S431F), nicotinic acetylcholine receptor (R81T) and voltage-gated sodium channel (M918L and L1014F). S431F was widespread but with high variability across populations. R81T was detected for the first time in Italy but only in two populations. The L1014F mutation (kdr) was not found, while in the samples showing the M918L two different nucleotidic substitutions were detected. Mutant allele frequencies were, respectively, 0.70 (S431), 0.31 (M918) and 0.02 (R81). Further analysis on the voltage-gated sodium channel gene showed the presence of eight haplotypes and one non-synonymous mutation in the gene coding region. CONCLUSION Multiple target-site mutations were detected within Italian populations. The combinations of genotypes observed in certain locations could affect negatively the control of this pest. Preliminary insights on the genetic structure in the Italian populations of A. gossypii were acquired. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Filippo Cominelli
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Olga Chiesa
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Michela Panini
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | | | - Emanuele Mazzoni
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
5
|
Li J, Liu J, Peng L, Liu J, Xu L, He J, Sun L, Shen G, He L. Functional analysis of SDR112C1 associated with fenpropathrin tolerance in Tetranychus cinnabarinus (Boisduval). INSECT SCIENCE 2024. [PMID: 38926942 DOI: 10.1111/1744-7917.13408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024]
Abstract
Short-chain dehydrogenases/reductases (SDRs) are ubiquitously distributed across diverse organisms and play pivotal roles in the growth, as well as endogenous and exogenous metabolism of various substances, including drugs. The expression levels of SDR genes are reportedly upregulated in the fenpropathrin (FEN)-resistant (FeR) strain of Tetranychus cinnabarinus. However, the functions of these SDR genes in acaricide tolerance remain elusive. In this study, the activity of SDRs was found to be significantly higher (2.26-fold) in the FeR strain compared to the susceptible strain (SS) of T. cinnabarinus. A specific upregulated SDR gene, named SDR112C1, exhibited significant overexpression (3.13-fold) in the FeR population compared with that in the SS population. Furthermore, the expression of SDR112C1 showed a significant increase in the response to FEN induction. Additionally, knockdown of the SDR112C1 gene resulted in decreased SDR activity and reduced mite viability against FEN. Importantly, heterologous expression and in vitro incubation assays confirmed that recombinant SDR112C1 could effectively deplete FEN. Moreover, the overexpression of the SDR112C1 gene in Drosophila melanogaster significantly decreased the toxicity of FEN to transgenic fruit flies. These findings suggest that the overexpression of SDR SDR112C1 is a crucial factor contributing to FEN tolerance in T. cinnabarinus. This discovery not only enhances our understanding of SDR-mediated acaricide tolerance but also introduces a new family of detoxification enzymes to consider in practice, beyond cytochrome P450s, carboxyl/choline esterases and glutathione S-transferases.
Collapse
Affiliation(s)
- Jinhang Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Jialu Liu
- Key Scientific Research Base of Pest and Mold Control of Heritage Collection (Chongqing China Three Gorges Museum), State Administration of Cultural Heritage, Chongqing, China
| | - Lishu Peng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Jingui Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Lin Xu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Junfeng He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Longjiang Sun
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Guangmao Shen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Lin He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| |
Collapse
|
6
|
Vasquez YM, Li Z, Xue AZ, Bennett GM. Chromosome-level genome assembly of the aster leafhopper (Macrosteles quadrilineatus) reveals the role of environment and microbial symbiosis in shaping pest insect genome evolution. Mol Ecol Resour 2024; 24:e13919. [PMID: 38146900 DOI: 10.1111/1755-0998.13919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/12/2023] [Accepted: 12/13/2023] [Indexed: 12/27/2023]
Abstract
Leafhoppers comprise over 20,000 plant-sap feeding species, many of which are important agricultural pests. Most species rely on two ancestral bacterial symbionts, Sulcia and Nasuia, for essential nutrition lacking in their phloem and xylem plant sap diets. To understand how pest leafhopper genomes evolve and are shaped by microbial symbioses, we completed a chromosomal-level assembly of the aster leafhopper's genome (ALF; Macrosteles quadrilineatus). We compared ALF's genome to three other pest leafhoppers, Nephotettix cincticeps, Homalodisca vitripennis, and Empoasca onukii, which have distinct ecologies and symbiotic relationships. Despite diverging ~155 million years ago, leafhoppers have high levels of chromosomal synteny and gene family conservation. Conserved genes include those involved in plant chemical detoxification, resistance to various insecticides, and defence against environmental stress. Positive selection acting upon these genes further points to ongoing adaptive evolution in response to agricultural environments. In relation to leafhoppers' general dependence on symbionts, species that retain the ancestral symbiont, Sulcia, displayed gene enrichment of metabolic processes in their genomes. Leafhoppers with both Sulcia and its ancient partner, Nasuia, showed genomic enrichment in genes related to microbial population regulation and immune responses. Finally, horizontally transferred genes (HTGs) associated with symbiont support of Sulcia and Nasuia are only observed in leafhoppers that maintain symbionts. In contrast, HTGs involved in non-symbiotic functions are conserved across all species. The high-quality ALF genome provides deep insights into how host ecology and symbioses shape genome evolution and a wealth of genetic resources for pest control targets.
Collapse
Affiliation(s)
- Yumary M Vasquez
- Department of Life and Environmental Sciences, University of California, Merced, Merced, California, USA
| | - Zheng Li
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Allen Z Xue
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Gordon M Bennett
- Department of Life and Environmental Sciences, University of California, Merced, Merced, California, USA
| |
Collapse
|
7
|
Poulton BC, Colman F, Anthousi A, Sattelle DB, Lycett GJ. Aedes aegypti CCEae3A carboxylase expression confers carbamate, organophosphate and limited pyrethroid resistance in a model transgenic mosquito. PLoS Negl Trop Dis 2024; 18:e0011595. [PMID: 38377131 PMCID: PMC10906864 DOI: 10.1371/journal.pntd.0011595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 03/01/2024] [Accepted: 01/26/2024] [Indexed: 02/22/2024] Open
Abstract
Insecticide resistance is a serious threat to our ability to control mosquito vectors which transmit pathogens including malaria parasites and arboviruses. Understanding the underlying mechanisms is an essential first step in tackling the challenges presented by resistance. This study aimed to functionally characterise the carboxylesterase, CCEae3A, the elevated expression of which has been implicated in temephos resistance in Aedes aegypti and Aedes albopictus larvae. Using our GAL4/UAS expression system, already established in insecticide-sensitive Anopheles gambiae mosquitoes, we produced transgenic An. gambiae mosquitoes that express an Ae. aegypti CCEae3A ubiquitously. This new transgenic line permits examination of CCEae3A expression in a background in which there is not a clear orthologue in Vectorbase and allows comparison with existing An. gambiae GAL4-UAS lines. Insecticide resistance profiling of these transgenic An. gambiae larvae indicated significant increases in resistance ratio for three organophosphate insecticides, temephos (6), chloropyriphos (6.6) and fenthion (3.2) when compared to the parental strain. Cross resistance to adulticides from three major insecticide classes: organophosphates (malathion, fenitrothion and pirimiphos methyl), carbamates (bendiocarb and propoxur) and pyrethroid (alpha-cypermethrin) was also detected. Resistance to certain organophosphates and carbamates validates conclusions drawn from previous expression and phenotypic data. However, detection of resistance to pirimiphos methyl and alphacypermethrin has not previously been formally associated with CCEae3A, despite occurring in Ae. aegypti strains where this gene was upregulated. Our findings highlight the importance of characterising individual resistance mechanisms, thereby ensuring accurate information is used to guide future vector control strategies.
Collapse
Affiliation(s)
- Beth C. Poulton
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Fraser Colman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Amalia Anthousi
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - David B. Sattelle
- Division of Medicine, University College London, London, United Kingdom
| | - Gareth J. Lycett
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
8
|
Sellamuthu G, Naseer A, Hradecký J, Chakraborty A, Synek J, Modlinger R, Roy A. Gene expression plasticity facilitates different host feeding in Ips sexdentatus (Coleoptera: Curculionidae: Scolytinae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 165:104061. [PMID: 38151136 DOI: 10.1016/j.ibmb.2023.104061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/30/2023] [Accepted: 12/15/2023] [Indexed: 12/29/2023]
Abstract
Host shift is ecologically advantageous and a crucial driver for herbivore insect speciation. Insects on the non-native host obtain enemy-free space and confront reduced competition, but they must adapt to survive. Such signatures of adaptations can often be detected at the gene expression level. It is astonishing how bark beetles cope with distinct chemical environments while feeding on various conifers. Hence, we aim to disentangle the six-toothed bark beetle (Ips sexdentatus) response against two different conifer defences upon host shift (Scots pine to Norway spruce). We conducted bioassay and metabolomic analysis followed by RNA-seq experiments to comprehend the beetle's ability to surpass two different terpene-based conifer defence systems. Beetle growth rate and fecundity were increased when reared exclusively on spruce logs (alternative host) compared to pine logs (native host). Comparative gene expression analysis identified differentially expressed genes (DEGs) related to digestion, detoxification, transporter activity, growth, signalling, and stress response in the spruce-feeding beetle gut. Transporter genes were highly abundant during spruce feeding, suggesting they could play a role in pumping a wide variety of endogenous and xenobiotic compounds or allelochemicals out. Trehalose transporter (TRET) is also up-regulated in the spruce-fed beetle gut to maintain homeostasis and stress tolerance. RT-qPCR and enzymatic assays further corroborated some of our findings. Taken together, the transcriptional plasticity of key physiological genes plays a crucial role after the host shift and provides vital clues for the adaptive potential of bark beetles on different conifer hosts.
Collapse
Affiliation(s)
- Gothandapani Sellamuthu
- Czech University of Life Sciences Prague, Forest Molecular Entomology Lab, Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic; Czech University of Life Sciences Prague, Excellent Team for Mitigation (ETM), Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic
| | - Aisha Naseer
- Czech University of Life Sciences Prague, Forest Molecular Entomology Lab, Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic; Czech University of Life Sciences Prague, Excellent Team for Mitigation (ETM), Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic
| | - Jaromír Hradecký
- Czech University of Life Sciences Prague, Excellent Team for Mitigation (ETM), Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic
| | - Amrita Chakraborty
- Czech University of Life Sciences Prague, Forest Molecular Entomology Lab, Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic; Czech University of Life Sciences Prague, Forest Microbiome Team, Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic
| | - Jiří Synek
- Czech University of Life Sciences Prague, Excellent Team for Mitigation (ETM), Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic
| | - Roman Modlinger
- Czech University of Life Sciences Prague, Excellent Team for Mitigation (ETM), Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic
| | - Amit Roy
- Czech University of Life Sciences Prague, Forest Molecular Entomology Lab, Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic; Czech University of Life Sciences Prague, Excellent Team for Mitigation (ETM), Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic; Czech University of Life Sciences Prague, Forest Microbiome Team, Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic.
| |
Collapse
|
9
|
Li W, Yang W, Shi Y, Yang X, Liu S, Liao X, Shi L. Comprehensive analysis of the overexpressed cytochrome P450-based insecticide resistance mechanism in Spodoptera litura. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132605. [PMID: 37748309 DOI: 10.1016/j.jhazmat.2023.132605] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023]
Abstract
Cytochrome P450s play critical roles in the metabolic resistance of insecticides in insects. Previous findings showed that enhanced P450 activity was an important mechanism mediating indoxacarb resistance, and multiple P450 genes were upregulated in indoxacarb resistant strains of Spodoptera litura. However, the functions of these P450 genes in insecticide resistance remain unknown. Here, the P450 inhibitor PBO effectively decreased the resistance of S. litura to indoxacarb. Ten upregulated P450 genes were characterized, all of which were overexpressed in response to indoxacarb induction. Knockdown of nine P450 genes decreased cell viability against indoxacarb, and further silencing of three genes (CYP339A1, CYP340G2, CYP321A19) in larvae enhanced the sensitivity to indoxacarb. Transgenic overexpression of these three genes increased resistance to indoxacarb in Drosophila melanogaster. Moreover, molecular modeling and docking predicted that these three P450 proteins could bind tightly to indoxacarb and N-decarbomethoxylated metabolite (DCJW). Interestingly, these three P450 genes may also mediate cross-resistance to chlorantraniliprole, λ-cyhalothrin and imidacloprid. Additionally, heterologous expression and metabolic assays confirmed that three recombinant P450s could effectively metabolize indoxacarb and DCJW. This study strongly demonstrates that multiple overexpressed mitochondrial and microsomal P450 genes were involved in insecticide resistance in S. litura.
Collapse
Affiliation(s)
- Wenlin Li
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Wen Yang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Yao Shi
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Xiyu Yang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Shuangqing Liu
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Xiaolan Liao
- College of Plant Protection, Hunan Agricultural University, Changsha, China.
| | - Li Shi
- College of Plant Protection, Hunan Agricultural University, Changsha, China.
| |
Collapse
|
10
|
Benito-Murcia M, Botías C, Martín-Hernández R, Higes M, Soler F, Pérez-López M, Míguez-Santiyán MP, Martínez-Morcillo S. Biomarker responses and lethal dietary doses of tau-fluvalinate and coumaphos in honey bees: Implications for chronic acaricide toxicity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 105:104330. [PMID: 38042261 DOI: 10.1016/j.etap.2023.104330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/28/2023] [Indexed: 12/04/2023]
Abstract
Evidence suggests that acaricide residues, such as tau-fluvalinate and coumaphos, are very prevalent in honey bee colonies worldwide. However, the endpoints and effects of chronic oral exposure to these compounds remain poorly understood. In this study, we calculated LC50 and LDD50 endpoints for coumaphos and tau-fluvalinate, and then evaluated in vivo and in vitro effects on honey bees using different biomarkers. The LDD50 values for coumaphos were 0.539, and for tau-fluvalinate, they were 12.742 in the spring trial and 8.844 in the autumn trial. Chronic exposure to tau-fluvalinate and coumaphos resulted in significant changes in key biomarkers, indicating potential neurotoxicity, xenobiotic biotransformation, and oxidative stress. The Integrated Biomarker Response was stronger for coumaphos than for tau-fluvalinate, supporting their relative lethality. This study highlights the chronic toxicity of these acaricides and presents the first LDD50 values for tau-fluvalinate and coumaphos in honey bees, providing insights into the risks faced by colonies.
Collapse
Affiliation(s)
- María Benito-Murcia
- Neobeitar, Avenida de Alemania, 6 - 1º B, 10001 Cáceres, Spain; Centro de Investigación Apícola y Agroambiental (CIAPA), Laboratorio de Patología Apícola, Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), 19180 Marchamalo, Spain
| | - Cristina Botías
- Department of Life Sciences, University of Alcalá de Henares, 28801, Alcalá de Henares, Spain
| | - Raquel Martín-Hernández
- Centro de Investigación Apícola y Agroambiental (CIAPA), Laboratorio de Patología Apícola, Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), 19180 Marchamalo, Spain; Instituto de Recursos Humanos para la Ciencia y la Tecnología (INCRECYT-FEDER), Fundación Parque Científico y Tecnológico de Castilla-La Mancha, 02008 Albacete, Spain
| | - Mariano Higes
- Centro de Investigación Apícola y Agroambiental (CIAPA), Laboratorio de Patología Apícola, Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), 19180 Marchamalo, Spain
| | - Francisco Soler
- Toxicology Unit, Veterinary School, University of Extremadura, 10003 Cáceres, Spain
| | - Marcos Pérez-López
- Toxicology Unit, Veterinary School, University of Extremadura, 10003 Cáceres, Spain
| | | | | |
Collapse
|
11
|
Lares B, Brio JD, Parra-Morales L, Fernández H, Montagna C. Chlorpyrifos toxicity and detoxifying enzymes activities in three native-aquatic species of macroinvertebrates from an agricultural area. AN ACAD BRAS CIENC 2023; 95:e20191385. [PMID: 38088699 DOI: 10.1590/0001-3765202320191385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/30/2020] [Indexed: 12/18/2023] Open
Abstract
Non-target species from agricultural areas might be exposed to sublethal pesticide concentrations favoring survival and reproduction of the resistance individuals. The objective of this study was to evaluate chlorpyrifos toxicity and detoxification enzymatic activities on three species (Hyalella curvispina, Heleobia parchappii and Girardia tigrina) from a drain channel with history of insecticide contamination (EF) and the Neuquén river (NR) in Argentina. Chlorpyrifos toxicity on amphipods (H. curvispina) and planarians (G. tigrina) from NR was about six- and two-fold higher than that of their counterparts from EF. Mean carboxylesterases (CarE) activities determined in the three species from NR were significantly different from EF, whereas mean glutathione-S-transferase (GST) activities were no significantly different. Finally, planarians from EF showed significantly higher mean 7-ethoxycoumarine O-deethylase (ECOD) activity than those from NR. Amphipods from both sites displayed similar ECOD activities. The present results suggest that chlorpyrifos resistance in amphipods from EF is not conferred by increased detoxification.
Collapse
Affiliation(s)
- Betsabé Lares
- Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue (CITAAC)-CONICET- Universidad Nacional del Comahue, Buenos Aires 1400, Neuquén 8300, Argentina
- Facultad de Ciencias del Ambiente y la Salud. Universidad Nacional del Comahue, Buenos Aires 1400, Neuquén 8300, Argentina
| | - Josefina Del Brio
- Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue (CITAAC)-CONICET- Universidad Nacional del Comahue, Buenos Aires 1400, Neuquén 8300, Argentina
- Facultad de Ciencias del Ambiente y la Salud. Universidad Nacional del Comahue, Buenos Aires 1400, Neuquén 8300, Argentina
| | - Laura Parra-Morales
- Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue (CITAAC)-CONICET- Universidad Nacional del Comahue, Buenos Aires 1400, Neuquén 8300, Argentina
- Facultad de Ciencias del Ambiente y la Salud. Universidad Nacional del Comahue, Buenos Aires 1400, Neuquén 8300, Argentina
| | - Hugo Fernández
- Facultad de Ciencias Naturales e Instituto Miguel Lillo. Universidad Nacional de Tucumán, Miguel Lillo 205, Tucumán 4000, Argentina
| | - Cristina Montagna
- Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue (CITAAC)-CONICET- Universidad Nacional del Comahue, Buenos Aires 1400, Neuquén 8300, Argentina
- Facultad de Ciencias del Ambiente y la Salud. Universidad Nacional del Comahue, Buenos Aires 1400, Neuquén 8300, Argentina
| |
Collapse
|
12
|
Yang XY, Yang W, Zhao H, Wang BJ, Shi Y, Wang MY, Liu SQ, Liao XL, Shi L. Functional analysis of UDP-glycosyltransferase genes conferring indoxacarb resistance in Spodoptera litura. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105589. [PMID: 37945240 DOI: 10.1016/j.pestbp.2023.105589] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/10/2023] [Accepted: 08/24/2023] [Indexed: 11/12/2023]
Abstract
UDP-glycosyltransferase (UGT) is the major detoxification enzymes of phase II involved in xenobiotics metabolism, which potentially mediates the formation of insect resistance. Previous transcriptome sequencing studies have found that several UGT genes were upregulated in indoxacarb resistant strains of Spodoptera litura, but whether these UGT genes were involved in indoxacarb resistance and their functions in resistance were unclear. In this study, the UGTs inhibitor, 5-nitrouracil, enhanced the toxicity of indoxacarb against S. litura, preliminarily suggesting that UGTs were participated in indoxacarb resistance. Two UGT genes, UGT33J17 and UGT41D10 were upregulated in the resistant strains and could be induced by indoxacarb. Alignment of UGT protein sequences revealed two conserved donor-binding regions with several key residues that interact with catalytic sites and sugar donors. Further molecular modeling and docking analysis indicated that two UGT proteins were able to stably bind indoxacarb and N-decarbomethoxylated metabolite (DCJW). Furthermore, knockdown of UGT33J17 and UGT41D10 decreased viability of Spli-221 cells and enhanced susceptibility of larvae to indoxacarb. Transgenic overexpression of these genes reduced the toxicity of indoxacarb in Drosophila melanogaster. This work revealed that upregulation of UGT genes significantly contributes to indoxacarb resistance in S. litura, and is of great significance for the development of integrated and sustainable management strategies for resistant pests in the field.
Collapse
Affiliation(s)
- Xi-Yu Yang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Wen Yang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Hui Zhao
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Bing-Jie Wang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Yao Shi
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Meng-Yu Wang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Shuang-Qing Liu
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Xiao-Lan Liao
- College of Plant Protection, Hunan Agricultural University, Changsha, China.
| | - Li Shi
- College of Plant Protection, Hunan Agricultural University, Changsha, China.
| |
Collapse
|
13
|
Miao Z, Xiong C, Cao X, Shan T, Jin Q, Jiang H. Genome-wide identification, classification, and expression profiling of serine esterases and other esterase-related proteins in the tobacco hornworm, Manduca sexta. INSECT SCIENCE 2023; 30:338-350. [PMID: 36043911 PMCID: PMC11445795 DOI: 10.1111/1744-7917.13108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/05/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Serine esterases (SEs) are hydrolases that catalyze the conversion of carboxylic esters into acids and alcohols. Lipases and carboxylesterases constitute two major groups of SEs. Although over a hundred of insect genomes are known, systematic identification and classification of SEs are rarely performed, likely due to large size and complex composition of the gene family in each species. Considering their key roles in lipid metabolism and other physiological processes, we have categorized 144 M. sexta SEs and SE homologs (SEHs), 114 of which contain a motif of GXSXG. Multiple sequence alignment and phylogenetic tree analysis have revealed 39 neutral lipases (NLs), 3 neutral lipase homologs (NLHs), 11 acidic lipases (ALs), 3 acidic lipase homologs (ALHs), a lipase-3, a triglyceride lipase, a monoglyceride lipase, a hormone-sensitive lipase, and a GDSL lipase. Eighty-three carboxylesterase genes encode 29 α-esterases (AEs), 12 AEHs (e.g., SEH4-1-3), 20 feruloyl esterases (FEs), 2 FEHs, 2 β-esterases (BEs), 2 integument esterases (IEs), 1 IEH, 4 juvenile hormone esterases, 2 acetylcholinesterases, gliotactin, 6 neuroligins, neurotactin, and an uncharacteristic esterase homolog. In addition to these GXSXG proteins, we have identified 26 phospholipases and 13 thioesterases. Expression profiling of these genes in specific tissues and stages has provided insights into their functions including digestion, detoxification, hormone processing, neurotransmission, reproduction, and developmental regulation. In summary, we have established a framework of information on SEs and related proteins in M. sexta to stimulate their research in the model species and comparative investigations in agricultural pests or disease vectors.
Collapse
Affiliation(s)
- Zelong Miao
- Department of Entomology and Plant Pathology, Oklahoma State University, Oklahoma, Stillwater, USA
| | - Chao Xiong
- Department of Entomology and Plant Pathology, Oklahoma State University, Oklahoma, Stillwater, USA
| | - Xiaolong Cao
- Department of Entomology and Plant Pathology, Oklahoma State University, Oklahoma, Stillwater, USA
| | - Tisheng Shan
- Department of Entomology and Plant Pathology, Oklahoma State University, Oklahoma, Stillwater, USA
| | - Qiao Jin
- Department of Entomology and Plant Pathology, Oklahoma State University, Oklahoma, Stillwater, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Oklahoma, Stillwater, USA
| |
Collapse
|
14
|
Liu Y, Li X, Lin L. Transcriptome of the pygmy grasshopper Formosatettix qinlingensis (Orthoptera: Tetrigidae). PeerJ 2023; 11:e15123. [PMID: 37016680 PMCID: PMC10066883 DOI: 10.7717/peerj.15123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 03/03/2023] [Indexed: 04/03/2023] Open
Abstract
Formosatettix qinlingensis (Zheng, 1982) is a tiny grasshopper endemic to Qinling in China. For further study of its transcriptomic features, we obtained RNA-Seq data by Illumina HiSeq X Ten sequencing platform. Firstly, transcriptomic analysis showed that transcriptome read numbers of two female and one male samples were 25,043,314, 24,429,905, and 25,034,457, respectively. We assembled 65,977 unigenes, their average length was 1,072.09 bp, and the length of N50 was 2,031 bp. The average lengths of F. qinlingensis female and male unigenes were 911.30 bp, and 941.82 bp, and the N50 lengths were 1,745 bp and 1,735 bp, respectively. Eight databases were used to annotate the functions of unigenes, and 23,268 functional unigenes were obtained. Besides, we also studied the body color, immunity and insecticide resistance of F. qinlingensis. Thirty-nine pigment-related genes were annotated. Some immunity genes and signaling pathways were found, such as JAK-STAT and Toll-LIKE receptor signaling pathways. There are also some insecticide resistance genes and signal pathways, like nAChR, GST and DDT. Further, some of these genes were differentially expressed in female and male samples, including pigment, immunity and insecticide resistance. The transcriptomic study of F. qinlingensis will provide data reference for gene prediction and molecular expression study of other Tetrigidae species in the future. Differential genetic screening of males and females provides a basis for studying sex and immune balance in insects.
Collapse
Affiliation(s)
- Yuxin Liu
- Shaanxi Normal University, Xi’an, China
| | | | | |
Collapse
|
15
|
Cruse C, Moural TW, Zhu F. Dynamic Roles of Insect Carboxyl/Cholinesterases in Chemical Adaptation. INSECTS 2023; 14:194. [PMID: 36835763 PMCID: PMC9958613 DOI: 10.3390/insects14020194] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Insects have evolved several intricate defense mechanisms to adapt to their chemical environment. Due to their versatile capabilities in hydrolytic biotransformation, insect carboxyl/cholinesterases (CCEs) play vital roles in the development of pesticide resistance, facilitating the adaptation of insects to their host plants, and manipulating insect behaviors through the olfaction system. CCEs confer insecticide resistance through the mechanisms of qualitative or quantitative changes of CCE-mediated enhanced metabolism or target-site insensitivity, and may contribute to the host plant adaptation. CCEs represent the first odorant-degrading enzymes (ODEs) discovered to degrade insect pheromones and plant odors and remain the most promising ODE candidates. Here, we summarize insect CCE classification, currently characterized insect CCE protein structure characteristics, and the dynamic roles of insect CCEs in chemical adaptation.
Collapse
Affiliation(s)
- Casey Cruse
- Department of Entomology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Timothy Walter Moural
- Department of Entomology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Fang Zhu
- Department of Entomology, Pennsylvania State University, University Park, State College, PA 16802, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, State College, PA 16802, USA
| |
Collapse
|
16
|
Quandahor P, Gou Y, Lin C, Liu C. Potato ( Solanum tuberosum L.) Leaf Extract Concentration Affects Performance and Oxidative Stress in Green Peach Aphids (Myzus persicae (Sulzer). PLANTS (BASEL, SWITZERLAND) 2022; 11:2757. [PMID: 36297780 PMCID: PMC9610024 DOI: 10.3390/plants11202757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/24/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
This study was conducted to determine the aphicidal effect of a leaf extract of the Atlantic potato cultivar on the performance of green peach aphids. Three concentrations of the leaf extract (100, 75, and 50% potato extract), synthetic pesticide (Beta cypermethrin 4.5%), and distilled water (control) treatments were applied in a greenhouse experiment. The results showed that the synthetic pesticide, which was used as a standard check, caused the maximum aphid mortality, followed by the 100% potato leaf extract. Compared with the other botanical treatments, the 100% extract produced low mean rates of survival, aphids' average daily reproduction, the number of nymphs per plant, and the number of nymphs per adult. This treatment also increased the accumulation of hydrogen Peroxide (H2O2) and malondialdehyde (MDA), glutathione-s-transferase, mixed-function oxidase, and carboxylesterase content in the green peach aphid. Moreover, the 100% extract also protected the host plants against green peach aphid attacks by demonstrating higher chlorophyll content, net photosynthesis, above-ground fresh weight, and above-ground dry weight of the host plant. This study demonstrates that the highest concentration of potato (Atlantic cultivar) leaf extract (100% extract) could be used as the appropriate dosage for the control of green peach aphids on potatoes, which could greatly reduce the use of synthetic insecticides and promote ecosystem sustainability.
Collapse
Affiliation(s)
- Peter Quandahor
- College of Plant Protection, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou 730070, China
- CSIR-Savanna Agricultural Research Institute, Tamale P.O. Box 52, Ghana
| | - Yuping Gou
- College of Plant Protection, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou 730070, China
| | - Chunyan Lin
- College of Plant Protection, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou 730070, China
| | - Changzhong Liu
- College of Plant Protection, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou 730070, China
| |
Collapse
|
17
|
Urbański A, Johnston P, Bittermann E, Keshavarz M, Paris V, Walkowiak-Nowicka K, Konopińska N, Marciniak P, Rolff J. Tachykinin-related peptides modulate immune-gene expression in the mealworm beetle Tenebrio molitor L. Sci Rep 2022; 12:17277. [PMID: 36241888 PMCID: PMC9568666 DOI: 10.1038/s41598-022-21605-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 09/29/2022] [Indexed: 01/06/2023] Open
Abstract
Tachykinins (TKs) are a group of conserved neuropeptides. In insects, tachykinin-related peptides (TRPs) are important modulators of several functions such as nociception and lipid metabolism. Recently, it has become clear that TRPs also play a role in regulating the insect immune system. Here, we report a transcriptomic analysis of changes in the expression levels of immune-related genes in the storage pest Tenebrio molitor after treatment with Tenmo-TRP-7. We tested two concentrations (10-8 and 10-6 M) at two time points, 6 and 24 h post-injection. We found significant changes in the transcript levels of a wide spectrum of immune-related genes. Some changes were observed 6 h after the injection of Tenmo-TRP-7, especially in relation to its putative anti-apoptotic action. Interestingly, 24 h after the injection of 10-8 M Tenmo-TRP-7, most changes were related to the regulation of the cellular response. Applying 10-6 M Tenmo-TRP-7 resulted in the downregulation of genes associated with humoral responses. Injecting Tenmo-TRP-7 did not affect beetle survival but led to a reduction in haemolymph lysozyme-like antibacterial activity, consistent with the transcriptomic data. The results confirmed the immunomodulatory role of TRP and shed new light on the functional homology between TRPs and TKs.
Collapse
Affiliation(s)
- Arkadiusz Urbański
- grid.5633.30000 0001 2097 3545Department of Animal Physiology and Developmental Biology, Adam Mickiewicz University, Poznań, Poland ,grid.14095.390000 0000 9116 4836Evolutionary Biology, Institute for Biology, Freie Universität Berlin, Berlin, Germany
| | - Paul Johnston
- Berlin Centre for Genomics in Biodiversity Research, Berlin, Germany ,grid.419247.d0000 0001 2108 8097Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Elisa Bittermann
- grid.14095.390000 0000 9116 4836Evolutionary Biology, Institute for Biology, Freie Universität Berlin, Berlin, Germany
| | - Maryam Keshavarz
- grid.14095.390000 0000 9116 4836Evolutionary Biology, Institute for Biology, Freie Universität Berlin, Berlin, Germany
| | - Véronique Paris
- grid.14095.390000 0000 9116 4836Evolutionary Biology, Institute for Biology, Freie Universität Berlin, Berlin, Germany ,grid.1008.90000 0001 2179 088XBio 21 Institute, University of Melbourne, Parkville, VIC 3052 Australia
| | - Karolina Walkowiak-Nowicka
- grid.5633.30000 0001 2097 3545Department of Animal Physiology and Developmental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Natalia Konopińska
- grid.5633.30000 0001 2097 3545Department of Animal Physiology and Developmental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Paweł Marciniak
- grid.5633.30000 0001 2097 3545Department of Animal Physiology and Developmental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Jens Rolff
- grid.14095.390000 0000 9116 4836Evolutionary Biology, Institute for Biology, Freie Universität Berlin, Berlin, Germany ,grid.452299.1Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|
18
|
Xue Y, Liu C, Liu D, Ding W, Li Z, Cao J, Xia X. Sensitivity Differences and Biochemical Characteristics of Laodelphax striatellus (Fallén) to Seven Insecticides in Different Areas of Shandong, China. INSECTS 2022; 13:insects13090780. [PMID: 36135481 PMCID: PMC9506532 DOI: 10.3390/insects13090780] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 05/13/2023]
Abstract
Laodelphax striatellus Fallén is one of the main pests that can severely harm rice, corn, and wheat. Insecticides acting on the nicotinic acetylcholine receptor (nAChR) are the main type of pesticides used for the control of L. striatellus in Shandong Province, a major grain-producing region in China. In this study, the rice seedling dipping method was used to determine the sensitivities of six field L. striatellus populations in Shandong to seven insecticides acting on nAChR. The results showed that all the field populations were sensitive to clothianidin, nitenpyram, and triflumezopyrim, and the Jiaxiang population exhibited the lowest resistance ratio (RR) to imidacloprid, dinotefuran, sulfoxaflor, and thiamethoxam. The Donggang population showed a medium-level resistance to imidacloprid, with the highest RR of 17.48-fold. The Yutai population showed low-level resistance to imidacloprid and thiamethoxam, with RRs of 7.23- and 7.02-fold, respectively. The contents of cytochrome P450 monooxygenase (P450s), carboxylesterase (CarE), and glutathione S-transferase (GST) were the highest in the Donggang population and the lowest in the Jiaxiang population. The P450 gene CYP314A1 and the CarE gene LsCarE12 were highly up-regulated in all populations. No mutations of V62I, R81T, and K265E in the nAChR β1 subunit were found in any of the populations. These results provide valuable information for the strategies of resistance management of L. striatellus in the field.
Collapse
Affiliation(s)
- Yannan Xue
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Chang Liu
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Dongmei Liu
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Wenjuan Ding
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Zhaoge Li
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Junli Cao
- Shanghai Yuelian Chemical Industry Co., Ltd., Shanghai 201416, China
| | - Xiaoming Xia
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
- Correspondence: ; Tel./Fax: +86-538-8242341
| |
Collapse
|
19
|
Zhao Q, Shi L, He W, Li J, You S, Chen S, Lin J, Wang Y, Zhang L, Yang G, Vasseur L, You M. Genomic Variation in the Tea Leafhopper Reveals the Basis of Adaptive Evolution. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:1092-1105. [PMID: 36041663 DOI: 10.1016/j.gpb.2022.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 04/27/2022] [Accepted: 05/12/2022] [Indexed: 11/21/2022]
Abstract
Tea green leafhopper (TGL), Empoasca onukii, is of biological and economic interest. Despite numerous studies, the mechanisms underlying its adaptation and evolution remain enigmatic. Here, we use previously untapped genome and population genetics approaches to examine how the pest adapted to different environmental variables and thus has expanded geographically. We complete a chromosome-level assembly and annotation of the E. onukii genome, showing notable expansions of gene families associated with adaptation to chemoreception and detoxification. Genomic signals indicating balancing selection highlight metabolic pathways involved in adaptation to a wide range of tea varieties grown across ecologically diverse regions. Patterns of genetic variations among 54 E. onukii samples unveil the population structure and evolutionary history across different tea-growing regions in China. Our results demonstrate that the genomic changes in key pathways, including those linked to metabolism, circadian rhythms, and immune system functions, may underlie the successful spread and adaptation of E. onukii. This work highlights the genetic and molecular bases underlying the evolutionary success of a species with broad economic impacts, and provides insights into insect adaptation to host plants, which will ultimately facilitate more sustainable pest management.
Collapse
Affiliation(s)
- Qian Zhao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Longqing Shi
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Rice, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China
| | - Weiyi He
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinyu Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350001, China
| | - Shijun You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuai Chen
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jing Lin
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yibin Wang
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liwen Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guang Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liette Vasseur
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
20
|
Álvarez-Vergara F, Sanchez-Hernandez JC, Sabat P. Biochemical and osmoregulatory responses of the African clawed frog experimentally exposed to salt and pesticide. Comp Biochem Physiol C Toxicol Pharmacol 2022; 258:109367. [PMID: 35569782 DOI: 10.1016/j.cbpc.2022.109367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/03/2022] [Accepted: 05/08/2022] [Indexed: 11/03/2022]
Abstract
Salinization and pollution are two main environmental stressors leading deterioration to water quality and degradation of aquatic ecosystems. Amphibians are a highly sensitive group of vertebrates to environmental disturbance of aquatic ecosystems. However, studies on the combined effect of salinization and pollution on the physiology of amphibians are limited. In this study, we measured the standard metabolic rate (SMR) and biochemical parameters of adult males of the invasive frog Xenopus laevis after 45 days of exposure to contrasting salinity environments (400 and 150 mOsm NaCl) with either 1.0 μg/L of the organophosphate pesticide chlorpyrifos (CPF) or pesticide-free medium. Our results revealed a decrease in SMR of animals exposed to the pesticide and in the ability to concentrate the plasma in animals exposed simultaneously to both stressors. The lack of ability to increase plasma concentration in animals exposed to both salt water and CPF, suggests that osmoregulatory response is decreased by pesticide exposure. In addition, we found an increase of liver citrate synthase activity in response to salt stress. Likewise, the liver acetylcholinesterase (AChE) activity decreased by 50% in frogs exposed to salt water and CPF and 40% in those exposed only to CPF, which suggest an additive effect of salinity on inhibition of AChE. Finally, oxidative stress increased as shown by the higher lipid peroxidation and concentration of aqueous peroxides found in the group exposed to salt water and pesticide. Thus, our results revealed that X. laevis physiology is compromised by salinization and pesticide exposure to both environmental stressors join.
Collapse
Affiliation(s)
- Felipe Álvarez-Vergara
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile; Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile.
| | - Juan C Sanchez-Hernandez
- Laboratory of Ecotoxicology, Institute of Environmental Science (ICAM), University of Castilla-La Mancha, 45071 Toledo, Spain
| | - Pablo Sabat
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile; Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| |
Collapse
|
21
|
Shi Y, Li W, Zhou Y, Liao X, Shi L. Contribution of multiple overexpressed carboxylesterase genes to indoxacarb resistance in Spodoptera litura. PEST MANAGEMENT SCIENCE 2022; 78:1903-1914. [PMID: 35066991 DOI: 10.1002/ps.6808] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/19/2022] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND As an important family of detoxification enzymes, carboxylesterases (CarEs) have important roles in the development of insecticide resistance in almost all agricultural pests. Previous studies have suggested that enhancement of CarE activity is an important mechanism mediating indoxacarb resistance in Spodoptera litura, and several CarE genes have been found to be overexpressed in indoxacarb-resistant strains. However, the functions of these CarE genes in indoxacarb resistance needs to be further investigated. RESULTS The synergist triphenyl phosphate effectively reduced the resistance of S. litura to indoxacarb, suggesting an involvement of CarEs in indoxacarb resistance. Among seven identified S. litura CarE genes (hereafter SlituCOE), six were overexpressed in two indoxacarb-resistant strains, but there were no significant differences in gene copy number. Knockdown of SlituCOE009 and SlituCOE050 enhanced indoxacarb sensitivity in both susceptible and resistant strains, whereas knockdown of SlituCOE090, SlituCOE093 and SlituCOE074 enhanced indoxacarb sensitivity in only the resistant strain. Knockdown of the sixth gene, SlituCOE073, did not have any effect. Furthermore, simultaneous knockdown of the five SlituCOE genes had a greater effect on increasing indoxacarb sensitivity than silencing them individually. By contrast, overexpression of the five SlituCOE genes individually in Drosophila melanogaster significantly decreased the toxicity of indoxacarb to transgenic fruit flies. Furthermore, modeling and docking analysis indicated that the catalytic pockets of SlituCOE009 and SlituCOE074 were ideally shaped for indoxacarb and N-decarbomethoxylated metabolite (DCJW), but the binding affinity for DCJW was stronger than for indoxacarb. CONCLUSION This study reveals that multiple overexpressed CarE genes are involved in indoxacarb resistance in S. litura.
Collapse
Affiliation(s)
- Yao Shi
- Hunan Provincial Engineering and Technology Research Center for Bio-pesticide and Formulation Processing, College of Plant Protection, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Changsha, China
| | - Wenlin Li
- Hunan Provincial Engineering and Technology Research Center for Bio-pesticide and Formulation Processing, College of Plant Protection, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Changsha, China
| | - Yuliang Zhou
- Hunan Provincial Engineering and Technology Research Center for Bio-pesticide and Formulation Processing, College of Plant Protection, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Changsha, China
| | - Xiaolan Liao
- Hunan Provincial Engineering and Technology Research Center for Bio-pesticide and Formulation Processing, College of Plant Protection, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Changsha, China
| | - Li Shi
- Hunan Provincial Engineering and Technology Research Center for Bio-pesticide and Formulation Processing, College of Plant Protection, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Changsha, China
| |
Collapse
|
22
|
Wang Y, Qin M, Wang X, Han J, Chen R, Zhang M, Gu W. Residual behaviors and metabolic pathway of ethylparaben in Drosophila melanogaster. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113124. [PMID: 34968799 DOI: 10.1016/j.ecoenv.2021.113124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE Parabens are commonly used as preservatives in foodstuffs, cosmetics, and pharmaceutical products. The widespread use of parabens has led to their leaking into the environment. Concerns about the safety of parabens have recently increased due to their potential endocrine-disrupting effects as an emerging contaminant. Thus, it is necessary to study the metabolism of parabens in vivo. METHODS In this study, Drosophila melanogaster in males and females were exposed to ethylparaben (EP) concentration group (300 mg/L, 700 mg/L, and 1000 mg/L), and control group (0 mg/L) by the capillary feeding assay (CAFE). We quantified the activity of the detoxification-related carboxylesterase (CarE). The contents of EP metabolites in D. melanogaster, including p-hydroxybenzoic acid (PHBA), methylparaben (MP), and intact EP were carried out by high-performance liquid chromatography (HPLC). The regression model between EP metabolites (PHBA and MP) and CarE was developed using the Fourier series fitting method. RESULTS The general level of EP metabolites (PHBA, MP, and intact EP) accumulation was accounted for 5.6-11.5% in D. melanogaster. As EP accumulated, the activity of CarE increased, and the activity of CarE in females was higher than males, which is inconsistent with the result of EP intake dose. Additionally, there were significant differences in the proportion of EP metabolites between female and male flies, and the results of sex comparison were different depending on the EP treated groups and EP metabolites. In general, PHBA of EP hydrolytic product and MP of EP transesterification product in D. melanogaster were 41.4-63.9% and 10.4-24.6%, respectively. In terms of the rest of the EP existed in intact form and ranged from 22.4% to 34.0%. Moreover, the EP metabolites in the conjugated form were higher than those in the free form. The regression model between EP metabolites and CarE was established, showing that the CarE activity can be used to estimate the content of PHBA and MP. CONCLUSION The result indicates that the EP can accumulate in the body through food. Hydrolysis is the main metabolic pathway of EP in D. melanogaster, and transesterification is another metabolic pathway of EP. Additionally, the EP metabolites in flies mainly exist in conjugated form. Furthermore, the Fourier series fitting method model between EP metabolites and CarE, providing theoretical support to study the dose-effect relationship between metabolites of parabens and CarE. This study not only provides a mathematical basis for the safety evaluation of parabens, but also provides support for the further study of the toxicological effects of parabens.
Collapse
Affiliation(s)
- Yuan Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Mengbei Qin
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xiao Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Junling Han
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Ruidun Chen
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Min Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Wei Gu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
23
|
Yang L, Xing B, Li F, Wang LK, Yuan L, Mbuji AL, Peng Z, Malhat F, Wu S. Full-length transcriptome analysis of Spodoptera frugiperda larval brain reveals detoxification genes. PeerJ 2021; 9:e12069. [PMID: 34513339 PMCID: PMC8395580 DOI: 10.7717/peerj.12069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/05/2021] [Indexed: 11/20/2022] Open
Abstract
Background Spodoptera frugiperda (J. E. Smith), commonly known as fall armyworm (FAW), is one of the most destructive agricultural pests in the world and has posed a great threat to crops. The improper use of insecticides has led to rapid development of resistance. However, the genetic data available for uncovering the insecticide resistance mechanisms are scarce. Methods In this study, we used PacBio single-molecule real-time (SMRT) sequencing aimed at revealing the full-length transcriptome profiling of the FAW larval brain to obtain detoxification genes. Results A total of 18,642 high-quality transcripts were obtained with an average length of 2,371 bp, and 11,230 of which were successfully annotated in six public databases. Among these, 5,692 alternative splicing events were identified.
Collapse
Affiliation(s)
- Lei Yang
- Hainan University, Haikou, Hainan, China
| | | | - Fen Li
- Hainan University, Haikou, Hainan, China
| | | | | | - Amosi Leonard Mbuji
- Hainan University, Haikou, Hainan, China.,Department of Resources Utilization and Plant Protection, College of Resources and Environmental Science, China Agricultural University, Beijing, Beijing, China
| | - Zhengqiang Peng
- The Ministry of Agriculture and Rural Affairs Key Laboratory of Integrated Pest Management of Tropical Crops, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Farag Malhat
- Pesticide Residues and Environmental Pollution Department, Agricultural Research Center, Dokki, Giza, Egypt
| | | |
Collapse
|
24
|
Shao Y, Xin XD, Liu ZX, Wang J, Zhang R, Gui ZZ. Transcriptional response of detoxifying enzyme genes in Bombyx mori under chlorfenapyr exposure. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 177:104899. [PMID: 34301361 DOI: 10.1016/j.pestbp.2021.104899] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
The silkworm, Bombyx mori (B. mori) is an important economic insect which ingests mulberry leaves and products the silk in industry. Chlorfenapyr is a new halogenated pyrrole insecticide which has been promoted for the control of mulberry insect pests in China. However, the detoxification mechanism of the silkworm to chlorfenapyr has not been investigated yet. In the present study, we first estimated the LC30 dose of chlorfenapyr for 3rd instar B. mori larvae, and then, in order to characterise the chlorfenapyr detoxification mechanism, the transcriptomes of chlorfenapyr-treated and untreated 3rd instar B. mori larvae were compared using RNA-sequencing. In total, 146, 533, 126 and 148, 957, 676 clean reads were obtained from insecticide-treated and control silkworm larvae, respectively, and these reads generated 10, 954 genes. The transcriptional profile of silkworm larvae was significantly influenced by chlorfenapyr treatment. A total of 1196 differentially expressed genes (DEGs) were identified in insecticide-treated and control B. mori larvae, in which 644 genes were upregulated and 552 genes were downregulated. Results showed that multiple DEGs were enriched in detoxication-related gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Eleven detoxifying enzyme genes which differentially expressed were screened, and their expression patterns were validated by qRT-PCR. Furthermore, we successfully knocked down all differentially upregulated detoxifying enzyme genes, and a bioassay showed that the mortality of chlorfenapyr-treated silkworm larvae was significantly higher after silencing these genes than in groups injected with dsGFP. The present study reveals the molecular basis of silkworm detoxification to chlorfenapyr exposure, and provides new insights into the management of insecticide damage in the silkworm.
Collapse
Affiliation(s)
- Ying Shao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, PR China
| | - Xiang-Dong Xin
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, PR China
| | - Zhi-Xiang Liu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China
| | - Jiao Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China
| | - Ran Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, PR China
| | - Zhong-Zheng Gui
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, PR China.
| |
Collapse
|
25
|
Li R, Zhu B, Shan J, Li L, Liang P, Gao X. Functional analysis of a carboxylesterase gene involved in beta-cypermethrin and phoxim resistance in Plutella xylostella (L.). PEST MANAGEMENT SCIENCE 2021; 77:2097-2105. [PMID: 33342080 DOI: 10.1002/ps.6238] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/03/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Carboxylesterases (CarEs) are associated with detoxification of xenobiotics, including insecticides, in organism bodies. Overexpression of CarE genes is considered to have an important role in insecticide resistance in insects, however its involvement in multi-insecticide resistance has rarely been reported. This study aimed to assess the function of a CarE gene (PxαE8) in resistance to five insecticides in Plutella xylostella. RESULTS Relative expression of PxαE8 in three multi-insecticide-resistant Plutella xylostella populations, GD-2017, GD-2019 and HN, was14.8-, 19.5- and 28.0-fold higher than that in the susceptible population. Exposure to lethal concentrations associated with 25% mortality (LC25 ) of beta-cypermethrin, chlorantraniliprole, metaflumizone, phoxim and tebufenozide could induce the specific activity of CarEs and increase the relative expression of PxαE8. By contrast, knockdown of PxαE8 expression dramatically reduced the activity of CarEs and increased the resistance of P. xylostella (GD-2019) larvae to beta-cypermethrin and phoxim by 47.4% and 45.5%, respectively. Further, a transgenic line of Drosophila melanogaster overexpressing PxαE8 was constructed and the bioassay results showed that the tolerance of transgenic Drosophila to beta-cypermethrin and phoxim was 3.93- and 3.98-fold higher than that of the untransgenic line. CONCLUSION These results provide evidence that overexpression of PxαE8 is involved in resistance, at least to beta-cypermethrin and phoxim, in multi-insecticide-resistant P. xylostella populations, which could help in further understanding the molecular mechanisms of multi-insecticide resistance in this pest. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ran Li
- Department of Entomology, China Agricultural University, Beijing, People's Republic of China
| | - Bin Zhu
- Department of Entomology, China Agricultural University, Beijing, People's Republic of China
| | - Jinqiong Shan
- Department of Entomology, China Agricultural University, Beijing, People's Republic of China
| | - Linhong Li
- Department of Entomology, China Agricultural University, Beijing, People's Republic of China
| | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing, People's Republic of China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
26
|
Kubik TD, Snell TK, Saavedra-Rodriguez K, Wilusz J, Anderson JR, Lozano-Fuentes S, Black WC, Campbell CL. Aedes aegypti miRNA-33 modulates permethrin induced toxicity by regulating VGSC transcripts. Sci Rep 2021; 11:7301. [PMID: 33790374 PMCID: PMC8012613 DOI: 10.1038/s41598-021-86665-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
Aedes aegypti is a major vector of Zika, dengue, and other arboviruses. Permethrin adulticidal spraying, which targets the voltage-gated sodium channel (VGSC), is commonly done to reduce local mosquito populations and protect humans from exposure to arbovirus pathogens transmitted by this dangerous pest. Permethrin resistance, however, is a growing problem and understanding its underlying molecular basis may identify avenues to combat it. We identified a single G:C polymorphism in pre-miR-33 that was genetically associated with permethrin resistance; resulting isoforms had structural differences that may affect DICER-1/pre-miRNA processing rates. We then assessed the effects of overexpression of pre-miR-33 isoforms on permethrin toxicological phenotypes, VGSC transcript abundance and protein levels for two genetically related mosquito strains. One strain had its naturally high permethrin resistance levels maintained by periodic treatment, and the other was released from selection. VGSC protein levels were lower in the permethrin resistant strain than in the related permethrin-susceptible strain. Overexpression of the G-pre-miR-33 isoform reduced VGSC expression levels in both strains. To further elucidate changes in gene expression associated with permethrin resistance, exome-capture gDNA deep sequencing, genetic association mapping and subsequent gene set enrichment analysis revealed that transport genes, in particular, were selected in resistant versus susceptible mosquitoes. Collectively, these data indicate that miR-33 regulates VGSC expression as part of a nuanced system of neuronal regulation that contributes to a network of heritable features determining permethrin resistance.
Collapse
Affiliation(s)
- Tristan D Kubik
- Department of Microbiology, Immunology and Pathology, Colorado State University, Campus Delivery 1685, Fort Collins, CO, 80523, USA
| | - Trey K Snell
- Department of Microbiology, Immunology and Pathology, Colorado State University, Campus Delivery 1685, Fort Collins, CO, 80523, USA
| | - Karla Saavedra-Rodriguez
- Department of Microbiology, Immunology and Pathology, Colorado State University, Campus Delivery 1685, Fort Collins, CO, 80523, USA
| | - Jeffrey Wilusz
- Department of Microbiology, Immunology and Pathology, Colorado State University, Campus Delivery 1685, Fort Collins, CO, 80523, USA
| | - John R Anderson
- Department of Microbiology, Immunology and Pathology, Colorado State University, Campus Delivery 1685, Fort Collins, CO, 80523, USA
| | - Saul Lozano-Fuentes
- Department of Microbiology, Immunology and Pathology, Colorado State University, Campus Delivery 1685, Fort Collins, CO, 80523, USA
| | - William C Black
- Department of Microbiology, Immunology and Pathology, Colorado State University, Campus Delivery 1685, Fort Collins, CO, 80523, USA
| | - Corey L Campbell
- Department of Microbiology, Immunology and Pathology, Colorado State University, Campus Delivery 1685, Fort Collins, CO, 80523, USA.
| |
Collapse
|
27
|
Life as a Vector of Dengue Virus: The Antioxidant Strategy of Mosquito Cells to Survive Viral Infection. Antioxidants (Basel) 2021; 10:antiox10030395. [PMID: 33807863 PMCID: PMC8000470 DOI: 10.3390/antiox10030395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022] Open
Abstract
Dengue fever is a mosquito-borne viral disease of increasing global importance. The disease has caused heavy burdens due to frequent outbreaks in tropical and subtropical areas of the world. The dengue virus (DENV) is generally transmitted between human hosts via the bite of a mosquito vector, primarily Aedes aegypti and Ae. albopictus as a minor species. It is known that the virus needs to alternately infect mosquito and human cells. DENV-induced cell death is relevant to the pathogenesis in humans as infected cells undergo apoptosis. In contrast, mosquito cells mostly survive the infection; this allows infected mosquitoes to remain healthy enough to serve as an efficient vector in nature. Overexpression of antioxidant genes such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST), glutaredoxin (Grx), thioredoxin (Trx), and protein disulfide isomerase (PDI) have been detected in DENV2-infected mosquito cells. Additional antioxidants, including GST, eukaryotic translation initiation factor 5A (eIF5a), and p53 isoform 2 (p53-2), and perhaps some others, are also involved in creating an intracellular environment suitable for cell replication and viral infection. Antiapoptotic effects involving inhibitor of apoptosis (IAP) upregulation and subsequent elevation of caspase-9 and caspase-3 activities also play crucial roles in the ability of mosquito cells to survive DENV infection. This article focused on the effects of intracellular responses in mosquito cells to infection primarily by DENVs. It may provide more information to better understand virus/cell interactions that can possibly elucidate the evolutionary pathway that led to the mosquito becoming a vector.
Collapse
|
28
|
Brevik K, Bueno EM, McKay S, Schoville SD, Chen YH. Insecticide exposure affects intergenerational patterns of DNA methylation in the Colorado potato beetle, Leptinotarsa decemlineata. Evol Appl 2021; 14:746-757. [PMID: 33767749 PMCID: PMC7980262 DOI: 10.1111/eva.13153] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/23/2022] Open
Abstract
Insecticide use is pervasive as a selective force in modern agroecosystems. Insect herbivores exposed to these insecticides have been able to rapidly evolve resistance to them, but how they are able to do so is poorly understood. One possible but largely unexplored explanation is that exposure to sublethal doses of insecticides may alter epigenetic patterns that are heritable. For instance, epigenetic mechanisms, such as DNA methylation that modifies gene expression without changing the underlying genetic code, may facilitate the emergence of resistant phenotypes in complex ways. We assessed the effects of sublethal insecticide exposure, with the neonicotinoid imidacloprid, on DNA methylation in the Colorado potato beetle, Leptinotarsa decemlineata, examining both global changes in DNA methylation and specific changes found within genes and transposable elements. We found that exposure to insecticide led to decreases in global DNA methylation for parent and F2 generations and that many of the sites of changes in methylation are found within genes associated with insecticide resistance, such as cytochrome P450s, or within transposable elements. Exposure to sublethal doses of insecticide caused heritable changes in DNA methylation in an agricultural insect herbivore. Therefore, epigenetics may play a role in insecticide resistance, highlighting a fundamental mechanism of evolution while informing how we might better coexist with insect species in agroecosystems.
Collapse
Affiliation(s)
- Kristian Brevik
- Department of Plant and Soil ScienceUniversity of VermontBurlingtonVTUSA
| | - Erika M. Bueno
- Department of Plant and Soil ScienceUniversity of VermontBurlingtonVTUSA
| | - Stephanie McKay
- Department of Animal and Veterinary SciencesUniversity of VermontBurlingtonVTUSA
| | | | - Yolanda H. Chen
- Department of Plant and Soil ScienceUniversity of VermontBurlingtonVTUSA
| |
Collapse
|
29
|
Kariyanna B, Prabhuraj A, Asokan R, Agrawal A, Gandhi Gracy R, Jyoti P, Venkatesan T, Bheemanna M, Kalmath B, Diwan JR, Pampanna Y, Mohan M. Genome Mining and Expression Analysis of Carboxylesterase and Glutathione S-Transferase Genes Involved in Insecticide Resistance in Eggplant Shoot and Fruit Borer, Leucinodes orbonalis (Lepidoptera: Crambidae). Front Physiol 2020; 11:594845. [PMID: 33329043 PMCID: PMC7713791 DOI: 10.3389/fphys.2020.594845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/22/2020] [Indexed: 11/13/2022] Open
Abstract
The shoot and fruit borer, Leucinodes orbonalis (Lepidoptera: Crambidae) is the major cause of low productivity in eggplant and insecticides being the mainstay of management of L. orbonalis. However, field control failures are widespread due to the evolution of insecticide resistance. Taking advantage of the whole genome sequence information, the present study investigated the level of insecticide resistance and the expression pattern of individual carboxylesterase (CE) and glutathione S-transferases (GSTs) genes in various field collected populations of L. orbonalis. Dose-mortality bioassays revealed a very high level of resistance development against fenvalerate (48.2–160-fold), phosalone (94-534.6-fold), emamectin benzoate (7.2–55-fold), thiodicarb (9.64–22.7-fold), flubendiamide (187.4–303.0-fold), and chlorantraniliprole (1.6–8.6-fold) in field populations as compared to laboratory-reared susceptible iso-female colony (Lo-S). Over-production of detoxification enzymes viz., CE and GST were evident upon enzyme assays. Mining of the draft genome of L. orbonalis yielded large number of genes potentially belonging to the CE and GST gene families with known history of insecticide resistance in other insects. Subsequent RT-qPCR studies on relative contribution of individual genes revealed over-expression of numerous GSTs and few CEs in field populations, indicating their possible involvement of metabolic enzymes in insecticide resistance. The genomic information will facilitate the development of novel resistance management strategies against this pest.
Collapse
Affiliation(s)
- B Kariyanna
- Department of Agricultural Entomology, University of Agricultural Sciences, Raichur, India.,ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, India
| | - A Prabhuraj
- Department of Agricultural Entomology, University of Agricultural Sciences, Raichur, India
| | - R Asokan
- ICAR-Indian Institute of Horticultural Research, Bengaluru, India
| | - A Agrawal
- ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, India
| | - R Gandhi Gracy
- ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, India
| | - P Jyoti
- ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, India
| | - T Venkatesan
- ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, India
| | - M Bheemanna
- Department of Agricultural Entomology, University of Agricultural Sciences, Raichur, India
| | - B Kalmath
- Department of Agricultural Entomology, University of Agricultural Sciences, Raichur, India
| | - J R Diwan
- Department of Genetics and Breeding, University of Agricultural Sciences, Raichur, India
| | - Y Pampanna
- Department of Horticulture, University of Agricultural Sciences, Raichur, India
| | - M Mohan
- ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, India
| |
Collapse
|
30
|
Tang B, Cheng Y, Li Y, Li W, Ma Y, Zhou Q, Lu K. Adipokinetic hormone enhances CarE-mediated chlorpyrifos resistance in the brown planthopper, Nilaparvata lugens. INSECT MOLECULAR BIOLOGY 2020; 29:511-522. [PMID: 32686884 DOI: 10.1111/imb.12659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
Adipokinetic hormone (AKH), the principal stress-responsive neurohormone in insects, has been implicated in insect responses to insecticides. However, the functionality of AKH and its mode of signalling in insecticide resistance are unknown. Herein, we demonstrated that the enhanced activity of carboxylesterases (CarEs) is involved in the chlorpyrifos resistance in Nilaparvata lugens [brown planthopper (BPH)]. Chlorpyrifos exposure significantly induced the expression of AKH and its receptor AKHR in the susceptible BPH (Sus), and these two AKH signalling genes were over-expressed in the chlorpyrifos-resistant strain (Res) compared to Sus. RNA interference (RNAi) against AKH or AKHR decreased the CarE activity and suppressed the BPH's resistance to chlorpyrifos in Res. Conversely, AKH peptide injection elevated the CarE activity and enhanced the BPH's survival against chlorpyrifos in Sus. Furthermore, five CarE genes were identified to be positively affected by the AKH pathway using RNAi and AKH injection. Among these CarE genes, CarE and Esterase E4-1 were found to be over-expressed in Res compared to Sus, and knockdown of either gene decreased the BPH's resistance to chlorpyrifos. In conclusion, AKH plays a role in enhancing chlorpyrifos resistance in the BPH through positive influence on the expression of CarE genes and CarE enzyme activity.
Collapse
Affiliation(s)
- B Tang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Y Cheng
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Y Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - W Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Y Ma
- School of Agriculture, Sun Yat-sen University, Guangzhou, China
| | - Q Zhou
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - K Lu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
31
|
Silvério MRS, Espindola LS, Lopes NP, Vieira PC. Plant Natural Products for the Control of Aedes aegypti: The Main Vector of Important Arboviruses. Molecules 2020; 25:E3484. [PMID: 32751878 PMCID: PMC7435582 DOI: 10.3390/molecules25153484] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 01/20/2023] Open
Abstract
The mosquito species Aedes aegypti is one of the main vectors of arboviruses, including dengue, Zika and chikungunya. Considering the deficiency or absence of vaccines to prevent these diseases, vector control remains an important strategy. The use of plant natural product-based insecticides constitutes an alternative to chemical insecticides as they are degraded more easily and are less harmful to the environment, not to mention their lower toxicity to non-target insects. This review details plant species and their secondary metabolites that have demonstrated insecticidal properties (ovicidal, larvicidal, pupicidal, adulticidal, repellent and ovipositional effects) against the mosquito, together with their mechanisms of action. In particular, essential oils and some of their chemical constituents such as terpenoids and phenylpropanoids offer distinct advantages. Thiophenes, amides and alkaloids also possess high larvicidal and adulticidal activities, adding to the wealth of plant natural products with potential in vector control applications.
Collapse
Affiliation(s)
- Maíra Rosato Silveiral Silvério
- NPPNS, Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-903, São Paulo, Brazil
| | | | - Norberto Peporine Lopes
- NPPNS, Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-903, São Paulo, Brazil
| | - Paulo Cézar Vieira
- NPPNS, Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-903, São Paulo, Brazil
| |
Collapse
|
32
|
Tang B, Dai W, Qi L, Du S, Zhang C. Functional Characterization of an α-Esterase Gene Associated with Malathion Detoxification in Bradysia odoriphaga. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6076-6083. [PMID: 32401500 DOI: 10.1021/acs.jafc.0c01486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Carboxylesterases (CarEs) are a multigene superfamily of metabolic enzymes involved in metabolic detoxification of xenobiotics. In this study, an α-esterase gene (BoαE1) was identified from Bradysia odoriphaga. Phylogenetic analysis classified BoαE1 into the α-esterase clade. Developmental expression analysis indicated that BoαE1 was significantly expressed in the second to fourth larval stages. Tissue-specific expression analysis indicated that BoαE1 was highly expressed in the larval midgut. After exposure to LC30 of malathion, the CarE activity of B. odoriphaga was induced and the transcriptional level of BoαE1 was significantly up-regulated. Silencing of BoαE1 significantly increased the susceptibility of B. odoriphaga larvae to malathion. Inhibition assays in vitro indicated that malathion significantly inhibited BoαE1 activity. GC-MS assay showed that BoαE1 possesses hydrolase activity toward malathion and participates in the detoxification of malathion. These results strongly suggest that BoαE1 plays a crucial role in detoxification of malathion in B. odoriphaga.
Collapse
Affiliation(s)
- Bowen Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wu Dai
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lijun Qi
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shaokai Du
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chunni Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
33
|
Wei DD, He W, Miao ZQ, Tu YQ, Wang L, Dou W, Wang JJ. Characterization of Esterase Genes Involving Malathion Detoxification and Establishment of an RNA Interference Method in Liposcelis bostrychophila. Front Physiol 2020; 11:274. [PMID: 32292357 PMCID: PMC7118802 DOI: 10.3389/fphys.2020.00274] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/10/2020] [Indexed: 11/29/2022] Open
Abstract
Esterases (ESTs) play important roles in metabolizing various physiologically endogenous and exogenous compounds, and various environmental xenobiotics in insects. The psocid, Liposcelis bostrychophila is a major pest of stored products worldwide and rapidly develops resistance to commonly insecticides. However, the involvement of ESTs in insecticide metabolization and the application of RNAi approach in psocids have not been well elucidated. In this study, we characterized four LbEST genes and investigated the transcriptional levels of these genes at different developmental stages and under different insecticides exposures to assess their potential roles in response to insecticides. The four LbESTs contain a catalytic triad (Ser-His-Glu) linked to an oxyanion hole and acyl pocket involved in substrate stabilization during its hydrolysis. Synergism observed with the esterase-inhibitor DEF suggests the involvement of esterases in malathion detoxification. LbESTs were expressed during the whole of developmental stages, but predominant abundance in the first nymphal instar and adult stage. The mRNA level of three LbEST genes (except for LbEST4) was induced (1.29- to 5.60 fold) in response to malathion or deltamethrin exposures, indicating that these esterases are involved in the detoxification process. Silencing of LbEST1, LbEST2 or LbEST3 through dsRNA feeding led to a higher mortality of psocids upon the malathion treatment compared to controls (1.83 to 2.69-fold), demonstrating that these esterase genes play roles in malathion detoxification in L. bostrychophila. Our study provides new evidence for understanding of the function and regulation mechanism of esterases in L. bostrychophila in insecticide detoxification. The current study also suggests that the present RNAi method could be applied for gene functional studies in psocids.
Collapse
Affiliation(s)
- Dan-Dan Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Wang He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Zhe-Qing Miao
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Yan-Qing Tu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Lei Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
34
|
Tang B, Dai W, Qi L, Zhang Q, Zhang C. Identification and Functional Analysis of a Delta Class Glutathione S-Transferase Gene Associated with Insecticide Detoxification in Bradysia odoriphaga. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9979-9988. [PMID: 31411878 DOI: 10.1021/acs.jafc.9b02874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A delta class glutathione S-transferase gene (BoGSTd2) is identified from Bradysia odoriphaga for the first time. Developmental expression analysis showed that expression of BoGSTd2 is significantly higher in the fourth instar larval stage and the adult stage. Tissue-specific expression analysis found that BoGSTd2 was expressed predominantly in the midgut and Malpighian tubules in the fourth instar larvae and the abdomen of adults. Expression of BoGSTd2 was significantly upregulated following exposure to chlorpyrifos and clothianidin. In vitro inhibition and metabolic assays indicated that recombinant BoGSTd2 could not directly metabolize chlorpyrifos and clothianidin. Nevertheless, disk diffusion assays indicated that BoGSTd2 plays an important role in protection against oxidative stress. RNAi assays showed that BoGSTd2 participates in the elimination of reactive oxygen species induced by chlorpyrifos and clothianidin. These results strongly suggest that BoGSTd2 plays an important role in chlorpyrifos and clothianidin detoxification in B. odoriphaga by protecting tissues from oxidative stress induced by these insecticides.
Collapse
Affiliation(s)
- Bowen Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, College of Plant Protection , Northwest A&F University , Yangling , Shaanxi 712100 , People's Republic of China
| | - Wu Dai
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, College of Plant Protection , Northwest A&F University , Yangling , Shaanxi 712100 , People's Republic of China
| | - Lijun Qi
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, College of Plant Protection , Northwest A&F University , Yangling , Shaanxi 712100 , People's Republic of China
| | - Qi Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, College of Plant Protection , Northwest A&F University , Yangling , Shaanxi 712100 , People's Republic of China
| | - Chunni Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, College of Plant Protection , Northwest A&F University , Yangling , Shaanxi 712100 , People's Republic of China
| |
Collapse
|
35
|
Le Navenant A, Siegwart M, Maugin S, Capowiez Y, Rault M. Metabolic mechanisms and acetylcholinesterase sensitivity involved in tolerance to chlorpyrifos-ethyl in the earwig Forficula auricularia. CHEMOSPHERE 2019; 227:416-424. [PMID: 31003126 DOI: 10.1016/j.chemosphere.2019.04.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
Apple orchards are highly treated crops, in which organophosphorus (OP) are among the most heavily sprayed insecticides. These pesticides are toxic to non-target arthropods and their repeated use increases the risk of resistance. We studied mechanisms involved in tolerance and resistance to OP insecticides in the earwig Forficula auricularia, an effective generalist predator in pomefruit orchards. Adult earwigs were sampled in three apple orchards managed under contrasting strategies: conventional, Integrated Pest Management, and organic. The threshold activities of enzyme families involved in pesticides tolerance: Glutathione-S-transferases (GSTs) and Carboxylesterases (CbEs) were measured in earwig extracts. Acetylcholinesterase (AChE) was monitored as a toxicological endpoint. Variations in these activities were assessed prior to and after exposure to chlorpyrifos-ethyl at the normal application rate. We observed that the mortality of earwigs exposed to chlorpyrifos-ethyl depended on the management strategy of orchards. Significantly lower mortality was seen in individuals sampled from conventional orchard. The basal activities of CbEs and GSTs of collected organisms were higher in conventional orchard. After in vivo exposure, AChE activity appeared to be inhibited in surviving males with no difference between orchards. However an in vitro inhibition trial with chlorpyrifos-oxon showed that AChE from earwigs collected in organic and IPM orchards were more sensitive than from conventional ones. These observations support the hypothesis of a molecular target modification in AChE and highlight the possible role of CbEs in effective protection of AChE. Our findings suggest that the earwigs with a high historic level of insecticide exposure could acquire resistance to chlorpyrifos-ethyl.
Collapse
Affiliation(s)
- Adrien Le Navenant
- Avignon University, Aix Marseille Univ, CNRS, IRD, IMBE, Pôle Agrosciences, 301 rue Baruch de Spinoza, BP 21239, 84916, Avignon, France; INRA, Unité PSH, Equipe Ecologie de la Production Intégrée, Site Agroparc, 84914, Avignon Cedex 9, France.
| | - Myriam Siegwart
- INRA, Unité PSH, Equipe Ecologie de la Production Intégrée, Site Agroparc, 84914, Avignon Cedex 9, France
| | - Sandrine Maugin
- INRA, Unité PSH, Equipe Ecologie de la Production Intégrée, Site Agroparc, 84914, Avignon Cedex 9, France
| | - Yvan Capowiez
- INRA, UMR 1114 EMMAH Domaine Saint Paul 84914, Avignon Cedex 09, France
| | - Magali Rault
- Avignon University, Aix Marseille Univ, CNRS, IRD, IMBE, Pôle Agrosciences, 301 rue Baruch de Spinoza, BP 21239, 84916, Avignon, France
| |
Collapse
|
36
|
Huang F, Hao Z, Yan F. Influence of Oilseed Rape Seed Treatment with Imidacloprid on Survival, Feeding Behavior, and Detoxifying Enzymes of Mustard Aphid, Lipaphis erysimi. INSECTS 2019; 10:insects10050144. [PMID: 31137546 PMCID: PMC6572145 DOI: 10.3390/insects10050144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 11/16/2022]
Abstract
Imidacloprid application, as a seed coating agent on oilseed rape, is recommended to control mustard aphid, Lipaphis erysimi (Kaltenbach) (Hemiptera: Aphididae). In this study, responses of L. erysimi were investigated, including survival, feeding behavior, and detoxifying enzymes, on the oilseed rape seedlings grown from seeds coated with imidacloprid at rates of 6, 12, or 18 g active ingredient (a.i.)/kg seed. The results showed that the aphids’ survival rate, together with that of the progeny of the survivors, on the seed-treated seedlings significantly decreased. This indicates that the aphid population in fields can be suppressed effectively. The electrical penetration graph (EPG) technique was used to record aphid feeding behaviors on two-, four-, and six-leaf stages of oilseed rape seedlings that had been seed-coated with imidacloprid, and individual responses were revealed during the aphid feeding behavior. On the plants at the two-leaf stage, aphid feeding behaviors were influenced, showing decreased frequency of stylet penetration into the leaf (probe) or into the mesophyll cells (potential drops, pds for short), and shortened duration of stylet event in the leaf (probe) or in the phloem. On the plants at the four- and six-leaf stages, these impacts of imidacloprid were weakened; however, the saliva secretion duration in phloem was shortened to less than 5 min in all imidacloprid treatments. The activity of mixed-function oxidase in aphids maintained on the treated seedlings with imidacloprid was elevated. In conclusion, imidacloprid could be used as a seed coating agent for aphid control, but chemical resistance in aphids should not be ignored.
Collapse
Affiliation(s)
| | - Zhongping Hao
- Anhui Province Key Laboratory of Crop Quality Improvement, Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
| | - Fengming Yan
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
37
|
Balakrishnan B, Su S, Zhang C, Chen M. Identification and Functional Characterization of Two Sigma Glutathione S-Transferase Genes From Bird Cherry-Oat Aphid (Hemiptera: Aphididae). JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:416-424. [PMID: 30371799 DOI: 10.1093/jee/toy316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Indexed: 06/08/2023]
Abstract
The bird cherry-oat aphid, Rhopalosiphum padi (L.), is an insect pest that persistently attacks wheat crops worldwide. Glutathione S-transferases (GSTs) are important detoxification enzymes that play roles in insecticide resistance. In this study, we identified two GST genes (RpGSTS1 and RpGSTS2) from R. padi. Phylogenetic analysis indicated that the genes are associated with the sigma class of insect GSTs. The RpGSTS1 and RpGSTS2 contain nine α-helices and five β-sheets connected by loops, and had 60 and 50% homology with the 3D structure of the Blattella germanica GST5. We tested the toxicity of chlorpyrifos, imidacloprid, isoprocarb, sulfoxaflor, and λ-cyhalothrin to R. padi, and found that the toxicity of five insecticides to the aphid varied. The detoxification activity of GSTs and the expression patterns of RpGSTS1 and RpGSTS2 after insecticide treatments were also analyzed. Compared to the control, the GST activity was increased by 23, 18.5, 13, and 11.5% in aphids treated by LC50 concentrations of chlorpyrifos, isoprocarb, imidacloprid, and sulfoxaflor, respectively. Exposure to different chemical insecticides showed different effects on the expression of RpGSTS1 and RpGSTS2. These results indicate that RpGSTS1 and RpGSTS2 have unique biochemical characteristics and may play roles in resistance to insecticides in R. padi.
Collapse
Affiliation(s)
- Balachandar Balakrishnan
- Northwest A&F University, State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of the Ministry of Agriculture, Yangling 712100, Shaanxi Province, China
| | - Sha Su
- Northwest A&F University, State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of the Ministry of Agriculture, Yangling 712100, Shaanxi Province, China
| | - Cunhuan Zhang
- Northwest A&F University, State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of the Ministry of Agriculture, Yangling 712100, Shaanxi Province, China
| | - Maohua Chen
- Northwest A&F University, State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of the Ministry of Agriculture, Yangling 712100, Shaanxi Province, China
| |
Collapse
|
38
|
Campbell CL, Saavedra-Rodriguez K, Kubik TD, Lenhart A, Lozano-Fuentes S, Black WC. Vgsc-interacting proteins are genetically associated with pyrethroid resistance in Aedes aegypti. PLoS One 2019; 14:e0211497. [PMID: 30695054 PMCID: PMC6350986 DOI: 10.1371/journal.pone.0211497] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/15/2019] [Indexed: 11/18/2022] Open
Abstract
Association mapping of factors that condition pyrethroid resistance in Aedes aegypti has consistently identified genes in multiple functional groups. Toward better understanding of the mechanisms involved, we examined high throughput sequencing data (HTS) from two Aedes aegypti aegypti collections from Merida, Yucatan, Mexico treated with either permethrin or deltamethrin. Exome capture enrichment for coding regions and the AaegL5 annotation were used to identify genes statistically associated with resistance. The frequencies of single nucleotide polymorphisms (SNPs) were compared between resistant and susceptible mosquito pools using a contingency χ2 analysis. The -log10(χ2p value) was calculated at each SNP site, with a weighted average determined from all sites in each gene. Genes with -log10(χ2p value) ≥ 4.0 and present among all 3 treatment groups were subjected to gene set enrichment analysis (GSEA). We found that several functional groups were enriched compared to all coding genes. These categories were transport, signal transduction and metabolism, in order from highest to lowest statistical significance. Strikingly, 21 genes with demonstrated association to synaptic function were identified. In the high association group (n = 1,053 genes), several genes were identified that also genetically or physically interact with the voltage-gated sodium channel (VGSC). These genes were eg., CHARLATAN (CHL), a transcriptional regulator, several ankyrin-domain proteins, PUMILIO (PUM), a translational repressor, and NEDD4 (E3 ubiquitin-protein ligase). There were 13 genes that ranked among the top 10%: these included VGSC; CINGULIN, a predicted neuronal gap junction protein, and the aedine ortholog of NERVY (NVY), a transcriptional regulator. Silencing of CHL and NVY followed by standard permethrin bottle bioassays validated their association with permethrin resistance. Importantly, VGSC levels were also reduced about 50% in chl- or nvy-dsRNA treated mosquitoes. These results are consistent with the contribution of a variety of neuronal pathways to pyrethroid resistance in Ae. aegypti.
Collapse
Affiliation(s)
- Corey L Campbell
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Karla Saavedra-Rodriguez
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Tristan D Kubik
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Audrey Lenhart
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Saul Lozano-Fuentes
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - William C Black
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
39
|
Balakrishnan B, Su S, Wang K, Tian R, Chen M. Identification, Expression, and Regulation of an Omega Class Glutathione S-transferase in Rhopalosiphum padi (L.) (Hemiptera: Aphididae) Under Insecticide Stress. Front Physiol 2018; 9:427. [PMID: 29731722 PMCID: PMC5920109 DOI: 10.3389/fphys.2018.00427] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/05/2018] [Indexed: 01/01/2023] Open
Abstract
Glutathione S-transferases (GSTs) play an essential role in the detoxification of xenobiotic toxins in insects, including insecticides. However, few data are available for the bird cherry-oat aphid, Rhopalosiphum padi (L.). In this study, we cloned and sequenced the full-length cDNA of an omega GST gene (RpGSTO1) from R. padi, which contains 720 bp in length and encodes 239 amino acids. A phylogenetic analysis revealed that RpGSTO1 belongs to the omega class of insect GSTs. RpGSTO1 gene was highly expressed in transformed Escherichia coli and the protein was purified by affinity chromatography. The recombinant RpGSTO1 displayed reduced glutathione (GSH)-dependent conjugating activity toward the substrate 1-chloro-2, 4-dinitrobenzene (CDNB) substrate. The recombinant RpGSTO1 protein exhibited optimal activity at pH 7.0 and 30°C. In addition, a disk diffusion assay showed that E. coli overexpressing RpGSTO1 increased resistance to cumene hydroperoxide-induced oxidative stress. Real-time quantitative PCR analysis showed that the relative expression level of RpGSTO1 was different in response to different insecticides, suggesting that the enzyme could contribute to insecticide metabolism in R. padi. These findings indicate that RpGSTO1 may play a crucial role in counteracting oxidative stress and detoxifying the insecticides. The results of our study contribute to a better understanding the mechanisms of insecticide detoxification and resistance in R. padi.
Collapse
Affiliation(s)
- Balachandar Balakrishnan
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Sha Su
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Kang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Ruizheng Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Maohua Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, China
| |
Collapse
|
40
|
Using Next-Generation Sequencing to Detect Differential Expression Genes in Bradysia odoriphaga after Exposure to Insecticides. Int J Mol Sci 2017; 18:ijms18112445. [PMID: 29149030 PMCID: PMC5713412 DOI: 10.3390/ijms18112445] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 12/28/2022] Open
Abstract
Bradysia odoriphaga (Diptera: Sciaridae) is the most important pest of Chinese chive. Insecticides are used widely and frequently to control B. odoriphaga in China. However, the performance of the insecticides chlorpyrifos and clothianidin in controlling the Chinese chive maggot is quite different. Using next generation sequencing technology, different expression unigenes (DEUs) in B. odoriphaga were detected after treatment with chlorpyrifos and clothianidin for 6 and 48 h in comparison with control. The number of DEUs ranged between 703 and 1161 after insecticide treatment. In these DEUs, 370–863 unigenes can be classified into 41–46 categories of gene ontology (GO), and 354–658 DEUs can be mapped into 987–1623 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The expressions of DEUs related to insecticide-metabolism-related genes were analyzed. The cytochrome P450-like unigene group was the largest group in DEUs. Most glutathione S-transferase-like unigenes were down-regulated and most sodium channel-like unigenes were up-regulated after insecticide treatment. Finally, 14 insecticide-metabolism-related unigenes were chosen to confirm the relative expression in each treatment by quantitative Real Time Polymerase Chain Reaction (qRT-PCR). The results of qRT-PCR and RNA Sequencing (RNA-Seq) are fairly well-established. Our results demonstrate that a next-generation sequencing tool facilitates the identification of insecticide-metabolism-related genes and the illustration of the insecticide mechanisms of chlorpyrifos and clothianidin.
Collapse
|
41
|
Zhang L, Lu H, Guo K, Yao S, Cui F. Insecticide resistance status and detoxification enzymes of wheat aphids Sitobion avenae and Rhopalosiphum padi. SCIENCE CHINA-LIFE SCIENCES 2017; 60:927-930. [DOI: 10.1007/s11427-017-9105-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/06/2017] [Indexed: 11/24/2022]
|
42
|
Xie M, Ren NN, You YC, Chen WJ, Song QS, You MS. Molecular characterisation of two α-esterase genes involving chlorpyrifos detoxification in the diamondback moth, Plutella xylostella. PEST MANAGEMENT SCIENCE 2017; 73:1204-1212. [PMID: 27717121 DOI: 10.1002/ps.4445] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 09/09/2016] [Accepted: 09/18/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Carboxylesterases (CarEs) are involved in metabolic detoxification of dietary and environmental xenobiotics in insects. However, owing to the complexity of the protein family, the involvement of CarEs in insecticide metabolism in Plutella xylostella has not been fully elucidated. This study aimed to characterise two CarE genes and assess their potential roles in response to chlorpyrifos in P. xylostella. RESULTS Synergistic tests showed that triphenyl phosphate decreased the resistance of the third-instar larvae to chlorpyrifos. The treatment of the third-instar larvae with chlorpyrifos at the LC30 dose led to a significant increase in CarE activity. Two CarE cDNAs (Pxae18 and Pxae28) were subsequently sequenced and characterised. Both genes were expressed predominantly in the larval midgut. Most importantly, two CarE genes showed significantly higher expression in the chlorpyrifos-resistant strain than in the susceptible strain. RNAi knockdown of Pxae18 and Pxae28 significantly increased the mortality to chlorpyrifos from 40% in the control to 73.8 and 63.3% respectively. CONCLUSION RNAi knockdown of Pxae18 and Pxae28 significantly inhibited detoxification ability and increased the mortality in P. xylostella. The results indicate that these two CarE genes play important roles in the detoxification of chlorpyrifos in P. xylostella. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Miao Xie
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management of Fujian and Taiwan, China Ministry of Agriculture, Fuzhou, China
| | - Na-Na Ren
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management of Fujian and Taiwan, China Ministry of Agriculture, Fuzhou, China
| | - Yan-Chun You
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management of Fujian and Taiwan, China Ministry of Agriculture, Fuzhou, China
| | - Wei-Jun Chen
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management of Fujian and Taiwan, China Ministry of Agriculture, Fuzhou, China
| | - Qi-Sheng Song
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA
| | - Min-Sheng You
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management of Fujian and Taiwan, China Ministry of Agriculture, Fuzhou, China
| |
Collapse
|
43
|
Alyokhin A, Chen YH. Adaptation to toxic hosts as a factor in the evolution of insecticide resistance. CURRENT OPINION IN INSECT SCIENCE 2017; 21:33-38. [PMID: 28822486 DOI: 10.1016/j.cois.2017.04.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/28/2017] [Accepted: 04/28/2017] [Indexed: 06/07/2023]
Abstract
Insecticide resistance is a serious economic problem that jeopardizes sustainability of chemical control of herbivorous insects and related arthropods. It can be viewed as a specific case of adaptation to toxic chemicals, which has been driven in large part, but not exclusively, by the necessity for insect pests to tolerate defensive compounds produced by their host plants. Synthetic insecticides may simply change expression of specific sets of detoxification genes that have evolved due to ancestral associations with host plants. Feeding on host plants with more abundant or novel secondary metabolites has even been shown to prime insect herbivores to tolerate pesticides. Clear understanding of basic evolutionary processes is important for achieving lasting success in managing herbivorous arthropods.
Collapse
Affiliation(s)
- Andrei Alyokhin
- School of Biology and Ecology, University of Maine, 5722 Deering Hall, Orono, ME 04469, United States.
| | - Yolanda H Chen
- Department of Plant and Soil Science, 63 Carrigan Dr., University of Vermont, Burlington, VT 05405, United States
| |
Collapse
|
44
|
Zhang Y, Yang Y, Sun H, Liu Z. Metabolic imidacloprid resistance in the brown planthopper, Nilaparvata lugens, relies on multiple P450 enzymes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 79:50-56. [PMID: 27793627 DOI: 10.1016/j.ibmb.2016.10.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 10/23/2016] [Accepted: 10/24/2016] [Indexed: 05/27/2023]
Abstract
Target insensitivity contributing to imidacloprid resistance in Nilaparvata lugens has been reported to occur either through point mutations or quantitative change in nicotinic acetylcholine receptors (nAChRs). However, the metabolic resistance, especially the enhanced detoxification by P450 enzymes, is the major mechanism in fields. From one field-originated N. lugens population, an imidacloprid resistant strain G25 and a susceptible counterpart S25 were obtained to analyze putative roles of P450s in imidacloprid resistance. Compared to S25, over-expression of twelve P450 genes was observed in G25, with ratios above 5.0-fold for CYP6AY1, CYP6ER1, CYP6CS1, CYP6CW1, CYP4CE1 and CYP425B1. RNAi against these genes in vivo and recombinant tests on the corresponding proteins in vitro revealed that four P450s, CYP6AY1, CYP6ER1, CYP4CE1 and CYP6CW1, played important roles in imidacloprid resistance. The importance of the four P450s was not equal at different stages of resistance development based on their over-expression levels, among which CYP6ER1 was important at all stages, and that the others might only contribute at certain stages. The results indicated that, to completely reflect roles of P450s in insecticide resistances, their over-expression in resistant individuals, expression changes at the stages of resistance development, and catalytic activities against insecticides should be considered. In this study, multiple P450s, CYP6AY1, CYP6ER1, CYP4CE1 and CYP6CW1, have proven to be important in imidacloprid resistance.
Collapse
Affiliation(s)
- Yixi Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Yuanxue Yang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Huahua Sun
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Zewen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China.
| |
Collapse
|
45
|
Trends and Challenges in Pesticide Resistance Detection. TRENDS IN PLANT SCIENCE 2016; 21:834-853. [PMID: 27475253 DOI: 10.1016/j.tplants.2016.06.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/15/2016] [Accepted: 06/18/2016] [Indexed: 06/06/2023]
Abstract
Pesticide resistance is a crucial factor to be considered when developing strategies for the minimal use of pesticides while maintaining pesticide efficacy. This goal requires monitoring the emergence and development of resistance to pesticides in crop pests. To this end, various methods for resistance diagnosis have been developed for different groups of pests. This review provides an overview of biological, biochemical, and molecular methods that are currently used to detect and quantify pesticide resistance. The agronomic, technical, and economic advantages and drawbacks of each method are considered. Emerging technologies are also described, with their associated challenges and their potential for the detection of resistance mechanisms likely to be selected by current and future plant protection methods.
Collapse
|
46
|
Zhang J, Zhang Y, Wang Y, Yang Y, Cang X, Liu Z. Expression induction of P450 genes by imidacloprid in Nilaparvata lugens: A genome-scale analysis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2016; 132:59-64. [PMID: 27521914 DOI: 10.1016/j.pestbp.2015.10.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 09/25/2015] [Accepted: 10/19/2015] [Indexed: 06/06/2023]
Abstract
The overexpression of P450 monooxygenase genes is a main mechanism for the resistance to imidacloprid, a representative neonicotinoid insecticide, in Nilaparvata lugens (brown planthopper, BPH). However, only two P450 genes (CYP6AY1 and CYP6ER1), among fifty-four P450 genes identified from BPH genome database, have been reported to play important roles in imidacloprid resistance until now. In this study, after the confirmation of important roles of P450s in imidacloprid resistance by the synergism analysis, the expression induction by imidacloprid was determined for all P450 genes. In the susceptible (Sus) strain, eight P450 genes in Clade4, eight in Clade3 and two in Clade2 were up-regulated by imidacloprid, among which three genes (CYP6CS1, CYP6CW1 and CYP6ER1, all in Clade3) were increased to above 4.0-fold and eight genes to above 2.0-fold. In contrast, no P450 genes were induced in Mito clade. Eight genes induced to above 2.0-fold were selected to determine their expression and induced levels in Huzhou population, in which piperonyl butoxide showed the biggest effects on imidacloprid toxicity among eight field populations. The expression levels of seven P450 genes were higher in Huzhou population than that in Sus strain, with the biggest differences for CYP6CS1 (9.8-fold), CYP6ER1 (7.7-fold) and CYP6AY1 (5.1-fold). The induction levels for all tested genes were bigger in Sus strain than that in Huzhou population except CYP425B1. Screening the induction of P450 genes by imidacloprid in the genome-scale will provide an overall view on the possible metabolic factors in the resistance to neonicotinoid insecticides. The further work, such as the functional study of recombinant proteins, will be performed to validate the roles of these P450s in imidacloprid resistance.
Collapse
Affiliation(s)
- Jianhua Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Yixi Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Yunchao Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Yuanxue Yang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Xinzhu Cang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Zewen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China.
| |
Collapse
|
47
|
Ko M, Cho JH, Seo HH, Lee HH, Kang HY, Nguyen TS, Soh HC, Kim YS, Kim JI. Constitutive expression of a fungus-inducible carboxylesterase improves disease resistance in transgenic pepper plants. PLANTA 2016; 244:379-92. [PMID: 27074836 DOI: 10.1007/s00425-016-2514-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/30/2016] [Indexed: 05/10/2023]
Abstract
Resistance against anthracnose fungi was enhanced in transgenic pepper plants that accumulated high levels of a carboxylesterase, PepEST in anthracnose-susceptible fruits, with a concurrent induction of antioxidant enzymes and SA-dependent PR proteins. A pepper esterase gene (PepEST) is highly expressed during the incompatible interaction between ripe fruits of pepper (Capsicum annuum L.) and a hemibiotrophic anthracnose fungus (Colletotrichum gloeosporioides). In this study, we found that exogenous application of recombinant PepEST protein on the surface of the unripe pepper fruits led to a potentiated state for disease resistance in the fruits, including generation of hydrogen peroxide and expression of pathogenesis-related (PR) genes that encode mostly small proteins with antimicrobial activity. To elucidate the role of PepEST in plant defense, we further developed transgenic pepper plants overexpressing PepEST under the control of CaMV 35S promoter. Molecular analysis confirmed the establishment of three independent transgenic lines carrying single copy of transgenes. The level of PepEST protein was estimated to be approximately 0.002 % of total soluble protein in transgenic fruits. In response to the anthracnose fungus, the transgenic fruits displayed higher expression of PR genes, PR3, PR5, PR10, and PepThi, than non-transgenic control fruits did. Moreover, immunolocalization results showed concurrent localization of ascorbate peroxidase (APX) and PR3 proteins, along with the PepEST protein, in the infected region of transgenic fruits. Disease rate analysis revealed significantly low occurrence of anthracnose disease in the transgenic fruits, approximately 30 % of that in non-transgenic fruits. Furthermore, the transgenic plants also exhibited resistance against C. acutatum and C. coccodes. Collectively, our results suggest that overexpression of PepEST in pepper confers enhanced resistance against the anthracnose fungi by activating the defense signaling pathways.
Collapse
Affiliation(s)
- Moonkyung Ko
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju, 500-757, Republic of Korea
| | - Jung Hyun Cho
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju, 500-757, Republic of Korea
| | - Hyo-Hyoun Seo
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju, 500-757, Republic of Korea
| | - Hyun-Hwa Lee
- Department of Biology, Chosun University, Gwangju, 501-759, Republic of Korea
| | - Ha-Young Kang
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju, 500-757, Republic of Korea
| | - Thai Son Nguyen
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju, 500-757, Republic of Korea
| | - Hyun Cheol Soh
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju, 500-757, Republic of Korea
| | - Young Soon Kim
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju, 500-757, Republic of Korea.
| | - Jeong-Il Kim
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju, 500-757, Republic of Korea.
| |
Collapse
|