1
|
Zhou X, Ganz AB, Rayner A, Cheng TY, Oba H, Rolnik B, Lancaster S, Lu X, Li Y, Johnson JS, Hoyd R, Spakowicz DJ, Slavich GM, Snyder MP. Dynamic human gut microbiome and immune shifts during an immersive psychosocial intervention program. Brain Behav Immun 2024:S0889-1591(24)00756-6. [PMID: 39701328 DOI: 10.1016/j.bbi.2024.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/24/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Although depression is a leading cause of disability worldwide, the pathophysiological mechanisms underlying this disorder-particularly those involving the gut microbiome-are poorly understood. METHOD To investigate, we conducted a community-based observational study to explore complex associations between changes in the gut microbiome, cytokine levels, and depression symptoms in 52 participants (Mage = 49.56, SD = 13.31) receiving an immersive psychosocial intervention. A total of 142 multi-omics samples were collected from participants before, during, and three months after the nine-day inquiry-based stress reduction program. RESULTS Results revealed that depression was associated with both an increased presence of putatively pathogenic bacteria and reduced microbial beta-diversity. Following the intervention, we observed reductions in neuroinflammatory cytokines and improvements in several mental health indicators. Interestingly, participants with a Prevotella-dominant microbiome showed milder symptoms when depressed, along with a more resilient microbiome and more favorable inflammatory cytokine profile, including reduced levels of CXCL-1. CONCLUSIONS These findings reveal a potentially protective link between the Prevotella-dominant microbiome and depression, as evidenced by a reduced pro-inflammatory environment and fewer depressive symptoms. These insights, coupled with observed improvements in neuroinflammatory markers and mental health from the intervention, may highlight potential avenues for microbiome-targeted therapies for managing depression.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Genetics, Stanford University School of Medicine, CA, USA; Stanford Center for Genomics and Personalized Medicine, Stanford University School of Medicine, CA, USA
| | - Ariel B Ganz
- Department of Genetics, Stanford University School of Medicine, CA, USA; Stanford Healthcare Innovation Lab, Stanford University, CA, USA
| | - Andre Rayner
- Department of Genetics, Stanford University School of Medicine, CA, USA
| | - Tess Yan Cheng
- Department of Genetics, Stanford University School of Medicine, CA, USA; Department of Microbiology, College of Arts and Sciences, University of Washington, WA, USA
| | - Haley Oba
- Department of Genetics, Stanford University School of Medicine, CA, USA
| | - Benjamin Rolnik
- Department of Genetics, Stanford University School of Medicine, CA, USA; Stanford Healthcare Innovation Lab, Stanford University, CA, USA
| | - Samuel Lancaster
- Department of Genetics, Stanford University School of Medicine, CA, USA
| | - Xinrui Lu
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Sichuan, China
| | - Yizhou Li
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Sichuan, China
| | - Jethro S Johnson
- Oxford Centre for Microbiome Studies, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Rebecca Hoyd
- The Ohio State University Comprehensive Cancer Center, OH, USA
| | | | - George M Slavich
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA.
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, CA, USA; Stanford Center for Genomics and Personalized Medicine, Stanford University School of Medicine, CA, USA; Stanford Healthcare Innovation Lab, Stanford University, CA, USA.
| |
Collapse
|
2
|
Kato M, Shiosakai M, Kuwahara K, Iba K, Shimada Y, Saito M, Sekine D, Aoki K, Shiomi Y, Higuchi T. A Multicenter, Open-Label Study to Evaluate the Long-term Safety and Efficacy of Adjunctive Brexpiprazole 2 mg Daily in Japanese Patients with Major Depressive Disorder. CNS Drugs 2024; 38:1003-1016. [PMID: 39424742 PMCID: PMC11543726 DOI: 10.1007/s40263-024-01124-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND AND OBJECTIVE Inadequate response to antidepressant monotherapy is common among patients with major depressive disorder (MDD). The efficacy and safety of adjunctive brexpiprazole 2 mg/day has recently been confirmed during the 6-week, randomized, placebo-controlled phase 2/3 (BLESS) study, which evaluated brexpiprazole at 1 mg/day and 2 mg/day versus placebo as adjunctive therapy to antidepressant therapies in 740 Japanese patients with MDD and an inadequate response to antidepressant monotherapy. This study evaluated the long-term safety and efficacy of adjunctive fixed-dose brexpiprazole 2 mg/day in Japanese patients with MDD. METHODS An open-label, 52-week study enrolled rollover patients who completed the 6-week, double-blind, randomized, placebo-controlled phase 2/3 BLESS study (NCT03697603), and de novo patients aged ≥ 65 years. Patients were titrated to fixed-dose brexpiprazole 2 mg/day from Week 1. Safety assessments included treatment-emergent adverse events (TEAEs; primary outcome) and clinical and laboratory variables. Efficacy was assessed using the Montgomery-Åsberg Depression Rating Scale (MADRS), Clinical Global Impression-Improvement (CGI-I) scale, Hamilton Depression Rating Scale (HAM-D) 17-item total score, and Sheehan Disability Scale (SDS) score. RESULTS In total, 247 patients [rollover, n = 216; de novo (previously unexposed), n = 31] were included in the safety/efficacy populations, and 138 (rollover, n = 132; de novo, n = 6; 55.9%) completed the study. Common TEAEs (incidence ≥ 10%) were weight gain [33.2% (n = 82)], akathisia [23.5% (n = 58)], nasopharyngitis [21.1% (n = 52)], and somnolence [10.5% (n = 26)]. TEAEs leading to treatment discontinuation occurred in 26.7% of patients receiving brexpiprazole and 58.1% of de novo patients. The mean (SD) increase in body weight from baseline to Week 52 [observed cases (OC)] was 4.2 (6.5) kg (n = 138); 44.5% (n = 110) had weight gain ≥ 7% at any postbaseline visit. There were no cases of tardive dyskinesia and no AEs related to suicide/suicide attempts. One death occurred (unknown cause), which was unrelated to study treatment. Improvements in the MADRS total score were observed from baseline over the course of the 52-week study [mean (SD) change at Week 52 (OC): - 7.3 (8.7)] for all patients receiving brexpiprazole. The overall MADRS response rate and remission rate in patients receiving brexpiprazole was 41.3% (n = 57) and 34.8% (n = 48), respectively, at Week 52 (OC). Improvements in CGI-S, HAM-D 17 item total score, and SDS mean scores were also observed from baseline over the 52-week study, with a mean (SD) change from baseline at Week 52 (OC) of - 0.8 (1.0), - 5.9 (6.3), and - 1.0 (2.2), respectively, indicating a sustained improvement in symptoms with long-term brexpiprazole treatment. CONCLUSIONS This is the first study to evaluate the safety profile of brexpiprazole 2 mg/day in Japanese patients with MDD, including older adults, which is similar to previous reports, with no new safety risks, and continued efficacy over 52 weeks. STUDY REGISTRATION ClinicalTrials.gov (NCT03737474; registered on 29 July 2018).
Collapse
Affiliation(s)
- Masaki Kato
- Department of Neuropsychiatry, Kansai Medical University, Osaka, Japan
| | - Masako Shiosakai
- Clinical Development, Headquarters of Clinical Development, Otsuka Pharmaceutical Co., Ltd., Tokyo, Japan
| | - Kazuo Kuwahara
- Clinical Development, Headquarters of Clinical Development, Otsuka Pharmaceutical Co., Ltd., Tokyo, Japan
| | - Katsuhiro Iba
- Clinical Development, Headquarters of Clinical Development, Otsuka Pharmaceutical Co., Ltd., Osaka, Japan
| | - Yuki Shimada
- Clinical Development, Headquarters of Clinical Development, Otsuka Pharmaceutical Co., Ltd., Tokyo, Japan
| | - Mizuki Saito
- Clinical Development, Headquarters of Clinical Development, Otsuka Pharmaceutical Co., Ltd., Tokyo, Japan
| | - Daisuke Sekine
- Medical Affairs, Otsuka Pharmaceutical Co., Ltd., Shinagawa Grand Central Tower 2-16-4, Konan, Minato-ku, Tokyo, 108-8242, Japan
| | - Kazuo Aoki
- Medical Affairs, Otsuka Pharmaceutical Co., Ltd., Shinagawa Grand Central Tower 2-16-4, Konan, Minato-ku, Tokyo, 108-8242, Japan.
| | - Yuki Shiomi
- Medical Affairs, Otsuka Pharmaceutical Co., Ltd., Shinagawa Grand Central Tower 2-16-4, Konan, Minato-ku, Tokyo, 108-8242, Japan
| | - Teruhiko Higuchi
- Japan Depression Center, Tokyo, Japan
- National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
3
|
Eskikurt G, Özerman Edis B, Dalanay AU, Özen I, Nurten A, Kara I, Karamürsel S. Long-term administration of paroxetine increases cortical EEG beta and gamma band activities in healthy awake rats. Pharmacol Biochem Behav 2024; 245:173896. [PMID: 39433160 DOI: 10.1016/j.pbb.2024.173896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024]
Abstract
Understanding the electrophysiological properties of antidepressant medications is important to resolve the response heterogeneity of these drugs in clinical practice. Administration of paroxetine, a selective serotonin reuptake inhibitor, has been shown to increase serotonin levels that affect cortical activities in healthy subjects. However, the extent to which cortical oscillations can be altered by ongoing administration of paroxetine is not known. Here, we develop EEG biomarkers showing long-term effects of paroxetine. EEG changes were analyzed using Neuroscan in healthy wakeful rats administered paroxetine (4 mg/kg/day) for six weeks. Subsequent EEG recordings taken at 3 and 6 weeks after treatment showed differences in cortical oscillations obtained from both hemispheres and frontal-central-parietal regions. Chronic paroxetine administration resulted in an increase in gamma band activity. Comparison of EEG frequency bands of paroxetine and saline groups showed an enhancement in higher frequency activities at third weeks after the treatment. Higher activity of alpha oscillations in the temporal cortex was persistent at sixth week of the administration. Overall, our results suggest that chronic paroxetine administration affects cortical oscillations across an expansive network.
Collapse
Affiliation(s)
- Gökçer Eskikurt
- Department of Psychology, Faculty of Humanities and Social Sciences, Istinye University, Istanbul, Turkey; Innovative Center of Applied Neurosciences, Istinye University, Istanbul, Turkey.
| | - Bilge Özerman Edis
- Department of Biophysics, Istanbul Faculty of Medicine, Istanbul University, 34093 Çapa, Istanbul, Turkey.
| | - Ali Umut Dalanay
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Ilknur Özen
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.
| | - Asiye Nurten
- Department of Physiology, Faculty of Medicine, Istanbul Yeni Yuzyil University, Istanbul, Turkey.
| | - Ihsan Kara
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Sacit Karamürsel
- Department of Physiology, Koç Üniversitesi School of Medicine, Istanbul, Turkey.
| |
Collapse
|
4
|
Hosseini K, Cediel-Ulloa A, AL-Sabri MH, Forsby A, Fredriksson R. Assessing the Neurodevelopmental Impact of Fluoxetine, Citalopram, and Paroxetine on Neural Stem Cell-Derived Neurons. Pharmaceuticals (Basel) 2024; 17:1392. [PMID: 39459031 PMCID: PMC11510426 DOI: 10.3390/ph17101392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Many pregnant women globally suffer from depression and are routinely prescribed selective serotonin reuptake inhibitors (SSRIs). These drugs function by blocking the re-uptake of serotonin by the serotonin transporter (SERT) into neurons, resulting in its accumulation in the presynaptic cleft. Despite a large amount of research suggesting a potential link to neurodevelopmental disorders in children whose mothers took these drugs during pregnancy, their possible adverse effects are still debated, and results are contradictory. On the other hand, there is an immediate need for improved cell-based models for developmental neurotoxicity studies (DNT) to minimize the use of animals in research. METHODS In this study, we aimed to assess the effects of clinically relevant concentrations of paroxetine (PAR), fluoxetine (FLX), and citalopram (CIT)-on maturing neurons derived from human neural stem cells using multiple endpoints. RESULTS Although none of the tested concentrations of FLX, CIT, or PAR significantly affected cell viability, FLX (10 µM) exhibited the highest reduction in viability compared to the other drugs. Regarding neurite outgrowth, CIT did not have a significant effect. However, FLX (10 µM) significantly reduced both mean neurite outgrowth and mean processes, PAR significantly reduced mean processes, and showed a trend of dysregulation of multiple genes associated with neuronal development at therapeutic-relevant serum concentrations. CONCLUSIONS Transcriptomic data and uptake experiments found no SERT activity in the system, suggesting that the adverse effects of FLX and PAR are independent of SERT.
Collapse
Affiliation(s)
- Kimia Hosseini
- Department of Pharmaceutical Bioscience, Uppsala University, 751 24 Uppsala, Sweden (R.F.)
| | - Andrea Cediel-Ulloa
- Department of Organismal Biology, Uppsala University, 752 36 Uppsala, Sweden
| | - Mohamed H. AL-Sabri
- Department of Pharmaceutical Bioscience, Uppsala University, 751 24 Uppsala, Sweden (R.F.)
- Department of Surgical Science, Functional Pharmacology and Neuroscience, Uppsala University, 751 24 Uppsala, Sweden
| | - Anna Forsby
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| | - Robert Fredriksson
- Department of Pharmaceutical Bioscience, Uppsala University, 751 24 Uppsala, Sweden (R.F.)
| |
Collapse
|
5
|
Jing JQ, Jia SJ, Yang CJ. Physical activity promotes brain development through serotonin during early childhood. Neuroscience 2024; 554:34-42. [PMID: 39004411 DOI: 10.1016/j.neuroscience.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/22/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
Early childhood serves as a critical period for neural development and skill acquisition when children are extremely susceptible to the external environment and experience. As a crucial experiential stimulus, physical activity is believed to produce a series of positive effects on brain development, such as cognitive function, social-emotional abilities, and psychological well-being. The World Health Organization recommends that children engage in sufficient daily physical activity, which has already been strongly advocated in the practice of preschool education. However, the mechanisms by which physical activity promotes brain development are still unclear. The role of neurotransmitters, especially serotonin, in promoting brain development through physical activity has received increasing attention. Physical activity has been shown to stimulate the secretion of serotonin by increasing the bioavailability of free tryptophan and enriching the diversity of gut microbiota. Due to its important role in modulating neuronal proliferation, differentiation, synaptic morphogenesis, and synaptic transmission, serotonin can regulate children's explicit cognitive and social interaction behavior in the early stages of life. Therefore, we hypothesized that serotonin emerges as a pivotal transmitter that mediates the relationship between physical activity and brain development during early childhood. Further systematic reviews and meta-analyses are needed to specifically explore whether the type, intensity, dosage, duration, and degree of voluntariness of PA may affect the role of serotonin in the relationship between physical activity and brain function. This review not only helps us understand the impact of exercise on development but also provides a solid theoretical basis for increasing physical activity during early childhood.
Collapse
Affiliation(s)
- Jia-Qi Jing
- Faculty of Education, East China Normal University, Shanghai, China
| | - Si-Jia Jia
- Faculty of Education, East China Normal University, Shanghai, China
| | - Chang-Jiang Yang
- Faculty of Education, East China Normal University, Shanghai, China.
| |
Collapse
|
6
|
Mograbi DC, Rodrigues R, Bienemann B, Huntley J. Brain Networks, Neurotransmitters and Psychedelics: Towards a Neurochemistry of Self-Awareness. Curr Neurol Neurosci Rep 2024; 24:323-340. [PMID: 38980658 PMCID: PMC11258181 DOI: 10.1007/s11910-024-01353-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 07/10/2024]
Abstract
PURPOSE OF REVIEW Self-awareness can be defined as the capacity of becoming the object of one's own awareness and, increasingly, it has been the target of scientific inquiry. Self-awareness has important clinical implications, and a better understanding of the neurochemical basis of self-awareness may help clarifying causes and developing interventions for different psychopathological conditions. The current article explores the relationship between neurochemistry and self-awareness, with special attention to the effects of psychedelics. RECENT FINDINGS The functioning of self-related networks, such as the default-mode network and the salience network, and how these are influenced by different neurotransmitters is discussed. The impact of psychedelics on self-awareness is reviewed in relation to specific processes, such as interoception, body ownership, agency, metacognition, emotional regulation and autobiographical memory, within a framework based on predictive coding. Improved outcomes in emotional regulation and autobiographical memory have been observed in association with the use of psychedelics, suggesting higher-order self-awareness changes, which can be modulated by relaxation of priors and improved coping mechanisms linked to cognitive flexibility. Alterations in bodily self-awareness are less consistent, being potentially impacted by doses employed, differences in acute/long-term effects and the presence of clinical conditions. Future studies investigating the effects of different molecules in rebalancing connectivity between resting-state networks may lead to novel therapeutic approaches and the refinement of existing treatments.
Collapse
Affiliation(s)
- Daniel C Mograbi
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil.
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Rafael Rodrigues
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bheatrix Bienemann
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jonathan Huntley
- Division of Psychiatry, University College London, London, UK
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| |
Collapse
|
7
|
Zhou X, Ganz AB, Rayner A, Cheng TY, Oba H, Rolnik B, Lancaster S, Lu X, Li Y, Johnson JS, Hoyd R, Spakowicz DJ, Slavich GM, Snyder MP. Dynamic Human Gut Microbiome and Immune Shifts During an Immersive Psychosocial Therapeutic Program. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600881. [PMID: 38979211 PMCID: PMC11230355 DOI: 10.1101/2024.06.26.600881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Background Depression is a leading cause of disability worldwide yet its underlying factors, particularly microbial associations, are poorly understood. Methods We examined the longitudinal interplay between the microbiome and immune system in the context of depression during an immersive psychosocial intervention. 142 multi-omics samples were collected from 52 well-characterized participants before, during, and three months after a nine-day inquiry-based stress reduction program. Results We found that depression was associated with both an increased presence of putatively pathogenic bacteria and reduced microbial beta-diversity. Following the intervention, we observed reductions in neuroinflammatory cytokines and improvements in several mental health indicators. Interestingly, participants with a Prevotella-dominant microbiome showed milder symptoms when depressed, along with a more resilient microbiome and more favorable inflammatory cytokine profile, including reduced levels of CXCL-1. Conclusions Our findings reveal a protective link between the Prevotella-dominant microbiome and depression, associated with a less inflammatory environment and moderated symptoms. These insights, coupled with observed improvements in neuroinflammatory markers and mental health from the intervention, highlight potential avenues for microbiome-targeted therapies in depression management.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Genetics, Stanford University School of Medicine, CA, USA
- Stanford Center for Genomics and Personalized Medicine, Stanford university School of Medicine, CA, USA
- These authors contributed equally to the work
| | - Ariel B. Ganz
- Department of Genetics, Stanford University School of Medicine, CA, USA
- Stanford Healthcare Innovation Lab, Stanford University, CA, USA
- These authors contributed equally to the work
| | - Andre Rayner
- Department of Genetics, Stanford University School of Medicine, CA, USA
| | - Tess Yan Cheng
- Department of Genetics, Stanford University School of Medicine, CA, USA
- Department of Microbiology, College of Arts and Sciences, University of Washington, WA, USA
| | - Haley Oba
- Department of Genetics, Stanford University School of Medicine, CA, USA
| | - Benjamin Rolnik
- Department of Genetics, Stanford University School of Medicine, CA, USA
- Stanford Healthcare Innovation Lab, Stanford University, CA, USA
| | - Samuel Lancaster
- Department of Genetics, Stanford University School of Medicine, CA, USA
| | - Xinrui Lu
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Sichuan, China
| | - Yizhou Li
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Sichuan, China
| | - Jethro S. Johnson
- Oxford Centre for Microbiome Studies, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Rebecca Hoyd
- The Ohio State University Comprehensive Cancer Center, OH, USA
| | | | - George M. Slavich
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Michael P. Snyder
- Department of Genetics, Stanford University School of Medicine, CA, USA
- Stanford Center for Genomics and Personalized Medicine, Stanford university School of Medicine, CA, USA
- Stanford Healthcare Innovation Lab, Stanford University, CA, USA
| |
Collapse
|
8
|
Zhou J, Wu JW, Song BL, Jiang Y, Niu QH, Li LF, Liu YJ. 5-HT1A receptors within the intermediate lateral septum modulate stress vulnerability in male mice. Prog Neuropsychopharmacol Biol Psychiatry 2024; 132:110966. [PMID: 38354893 DOI: 10.1016/j.pnpbp.2024.110966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/04/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
Chronic stress is a major risk factor for psychiatric disorders. However, certain individuals may be at higher risk due to greater stress susceptibility. Elucidating the neurobiology of stress resilience and susceptibility may facilitate the development of novel strategies to prevent and treat stress-related disorders such as depression. Mounting evidence suggests that the serotonin (5-HT) system is a major regulator of stress sensitivity. In this study, we assessed the functions of 5-HT1A and 5-HT2A receptors within the lateral septum (LS) in regulating stress vulnerability. Among a group of male mice exposed to chronic social defeat stress (CSDS), 47.2% were classified as stress-susceptible, and these mice employed more passive coping strategies during the defeat and exhibited more severe anxiety- and depression-like behaviors during the following behavioral tests. These stress-susceptible mice also exhibited elevated neuronal activity in the LS as evidenced by greater c-Fos expression, greater activity of 5-HT neurons in both the dorsal and median raphe nucleus, and downregulated expression of the 5-HT1A receptor in the intermediate LS (LSi). Finally, we found the stress-induced social withdrawal symptoms could be rapidly relieved by LSi administration of 8-OH-DPAT, a 5-HT1A receptor agonist. These results indicate that 5-HT1A receptors within the LSi play an important role in stress vulnerability in mice. Therefore, modulation of stress vulnerable via 5-HT1A receptor activation in the LSi is a potential strategy to treat stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Jie Zhou
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang 473061, China
| | - Jiao-Wen Wu
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang 473061, China
| | - Bai-Lin Song
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang 473061, China
| | - Yi Jiang
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang 473061, China
| | - Qiu-Hong Niu
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang 473061, China..
| | - Lai-Fu Li
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang 473061, China..
| | - Ying-Juan Liu
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang 473061, China..
| |
Collapse
|
9
|
Feng W, Zhang B, Duan P, Bi YH, Jin Z, Li X, Zhao X, Zuo K. Risk of major depressive increases with increasing frequency of alcohol drinking: a bidirectional two-sample Mendelian randomization analysis. Front Public Health 2024; 12:1372758. [PMID: 38898891 PMCID: PMC11186411 DOI: 10.3389/fpubh.2024.1372758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction A growing body of evidence suggests that alcohol use disorders coexist with depression. However, the causal relationship between alcohol consumption and depression remains a topic of controversy. Methods We conducted a two-sample two-way Mendelian randomization analysis using genetic variants associated with alcohol use and major depressive disorder from a genome-wide association study. Results Our research indicates that drinking alcohol can reduce the risk of major depression (odds ratio: 0.71, 95% confidence interval: 0.54~0.93, p = 0.01), while increasing the frequency of drinking can increase the risk of major depression (odds ratio: 1.09, 95% confidence interval: 1.00~1.18, p = 0.04). Furthermore, our multivariate MR analysis demonstrated that even after accounting for different types of drinking, the promoting effect of drinking frequency on the likelihood of developing major depression still persists (odds ratio: 1.13, 95% confidence interval: 1.04~1.23, p = 0.005). Additionally, mediation analysis using a two-step MR approach revealed that this effect is partially mediated by the adiposity index, with a mediated proportion of 37.5% (95% confidence interval: 0.22 to 0.38). Discussion In this study, we found that alcohol consumption can alleviate major depression, while alcohol intake frequency can aggravate it.These findings have important implications for the development of prevention and intervention strategies targeting alcohol-related depression.
Collapse
Affiliation(s)
| | - Bing Zhang
- Department of Anesthesiology, The Key Laboratory of Anesthesiology and Intensive Care Research of Heilongjiang Province, Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | | | | | | | | | | | | |
Collapse
|
10
|
Mirchandani-Duque M, Choucri M, Hernández-Mondragón JC, Crespo-Ramírez M, Pérez-Olives C, Ferraro L, Franco R, Pérez de la Mora M, Fuxe K, Borroto-Escuela DO. Membrane Heteroreceptor Complexes as Second-Order Protein Modulators: A Novel Integrative Mechanism through Allosteric Receptor-Receptor Interactions. MEMBRANES 2024; 14:96. [PMID: 38786931 PMCID: PMC11122807 DOI: 10.3390/membranes14050096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/13/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
Bioluminescence and fluorescence resonance energy transfer (BRET and FRET) together with the proximity ligation method revealed the existence of G-protein-coupled receptors, Ionotropic and Receptor tyrosine kinase heterocomplexes, e.g., A2AR-D2R, GABAA-D5R, and FGFR1-5-HT1AR heterocomplexes. Molecular integration takes place through allosteric receptor-receptor interactions in heteroreceptor complexes of synaptic and extra-synaptic regions. It involves the modulation of receptor protomer recognition, signaling and trafficking, as well as the modulation of behavioral responses. Allosteric receptor-receptor interactions in hetero-complexes give rise to concepts like meta-modulation and protein modulation. The introduction of receptor-receptor interactions was the origin of the concept of meta-modulation provided by Katz and Edwards in 1999, which stood for the fine-tuning or modulation of nerve cell transmission. In 2000-2010, Ribeiro and Sebastiao, based on a series of papers, provided strong support for their view that adenosine can meta-modulate (fine-tune) synaptic transmission through adenosine receptors. However, another term should also be considered: protein modulation, which is the key feature of allosteric receptor-receptor interactions leading to learning and consolidation by novel adapter proteins to memory. Finally, it must be underlined that allosteric receptor-receptor interactions and their involvement both in brain disease and its treatment are of high interest. Their pathophysiological relevance has been obtained, especially for major depressive disorder, cocaine use disorder, and Parkinson's disease.
Collapse
Affiliation(s)
- Marina Mirchandani-Duque
- Receptomics and Brain Disorders Lab, Department of Human Physiology Physical Education and Sport, Faculty of Medicine, University of Malaga, 29010 Málaga, Spain;
| | - Malak Choucri
- Department of Neuroscience, Karolinska Institutet, Biomedicum (B0852), Solnavägen 9, 17165 Solna, Sweden;
| | - Juan C. Hernández-Mondragón
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (J.C.H.-M.); (M.C.-R.); (M.P.d.l.M.)
| | - Minerva Crespo-Ramírez
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (J.C.H.-M.); (M.C.-R.); (M.P.d.l.M.)
| | - Catalina Pérez-Olives
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, 08007 Barcelona, Spain;
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology, Section of Medicinal and Health Products University of Ferrara, 44121 Ferrara, Italy; (L.F.); (R.F.)
| | - Rafael Franco
- Department of Life Sciences and Biotechnology, Section of Medicinal and Health Products University of Ferrara, 44121 Ferrara, Italy; (L.F.); (R.F.)
| | - Miguel Pérez de la Mora
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (J.C.H.-M.); (M.C.-R.); (M.P.d.l.M.)
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Biomedicum (B0852), Solnavägen 9, 17165 Solna, Sweden;
| | - Dasiel O. Borroto-Escuela
- Receptomics and Brain Disorders Lab, Department of Human Physiology Physical Education and Sport, Faculty of Medicine, University of Malaga, 29010 Málaga, Spain;
- Department of Neuroscience, Karolinska Institutet, Biomedicum (B0852), Solnavägen 9, 17165 Solna, Sweden;
| |
Collapse
|
11
|
Salahinejad A, Meuthen D, Attaran A, Niyogi S, Chivers DP, Ferrari MCO. Maternal exposure to bisphenol S reduces anxiety and impairs collective antipredator behavior of male zebrafish (Danio rerio) offspring through dysregulation of their serotonergic system. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 267:106800. [PMID: 38183773 DOI: 10.1016/j.aquatox.2023.106800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/12/2023] [Accepted: 12/10/2023] [Indexed: 01/08/2024]
Abstract
Bisphenol S (BPS) is a common endocrine-disrupting chemical globally used in several consumer and industrial products. Although previous studies suggested that BPS induces multiple effects in exposed organisms, very little is known about its intergenerational effect on offspring behavior and/or the potential underlying mechanisms. To this end, adult female zebrafish Danio rerio were exposed to BPS (0, 10, 30 µg/L) and 1 µg/L of 17-β-estradiol (E2) as a positive control for 60 days. Afterwards, female fish were bred with untreated males, and their offspring were raised to 6 months old in control water. Maternal exposure to BPS decreased male offspring anxiety and antipredator behaviors while boldness remained unaffected. Specifically, maternal exposure to 10 and 30 µg/L BPS and 1 µg/L E2 were found to impact male offspring anxiety levels as they decreased the total time that individuals spent in the dark zone in the light/dark box test and increased the total track length in the center of the open field test. In addition, maternal exposure to all concentrations of BPS and E2 disrupted antipredator responses of male offspring by decreasing shoal cohesion in the presence of chemical alarm cues derived from conspecifics, which communicated high risk. To elucidate the possible molecular mechanism underlying these neuro-behavioral effects of BPS, we assessed the serotonergic system via changes in mRNA expression of serotonin receptors, including the 5-HT1A, 5-HT1B, and 5-HT1D subtypes, the serotonin transporter and monoamine oxidase (MAO). The impaired anxiety and antipredator responses were associated with reduced levels of 5-HT1A subtype and MAO mRNA expression within the brain of adult male offspring. Collectively, the results of this study demonstrate that maternal exposure to environmental concentrations of BPS can interfere with the serotonergic signaling pathway in the developing brain, subsequently leading to the onset of a suite of behavioral deficits in adult offspring.
Collapse
Affiliation(s)
- Arash Salahinejad
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada.
| | - Denis Meuthen
- Evolutionary Biology, Bielefeld University, Bielefeld 33615, Germany
| | - Anoosha Attaran
- Robart Research Institute, The University of Western Ontario, London, ON N6A5K8, Canada
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Maud C O Ferrari
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada
| |
Collapse
|
12
|
Kadiyala S, Bhamidipati P, Malla RR. Neuroplasticity: Pathophysiology and Role in Major Depressive Disorder. Crit Rev Oncog 2024; 29:19-32. [PMID: 38989735 DOI: 10.1615/critrevoncog.2024051197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Neuroplasticity is characterized by the brain's ability to change its activity in response to extrinsic and intrinsic factors and is thought to be the mechanism behind all brain functions. Neuroplasticity causes structural and functional changes on a molecular level, specifically the growth of different regions in the brain and changes in synaptic and post-synaptic activities. The four types of neuroplasticity are homologous area adaption, compensatory masquerade, cross-modal reassignment, and map expansion. All of these help the brain work around injuries or new information inputs. In addition to baseline physical functions, neuroplasticity is thought to be the basis of emotional and mental regulations and the impairment of it can cause various mental illnesses. Concurrently, these mental illnesses further the damage of synaptic plasticity in the brain. Major depressive disorder (MDD) is one of the most common mental illnesses. It is affected by and accelerates the impairment of neuroplasticity. It is characterized by a chronically depressed state of mind that can impact the patient's daily life, including work life and interests. This review will focus on highlighting the physiological aspects of the disease and the role of neuroplasticity in the pathogenesis and pathology of the disorder. Moreover, the role of monoamine regulation and ketamine uptake will be discussed in terms of their antidepressant effects on the outcomes of MDD.
Collapse
Affiliation(s)
| | - Priyamvada Bhamidipati
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India
| | - Rama Rao Malla
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, School of Science, Gandhi Institute of Technology and Management (GITAM) (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India; Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| |
Collapse
|
13
|
Boucherie DE, Reneman L, Booij J, Martins D, Dipasquale O, Schrantee A. Modulation of functional networks related to the serotonin neurotransmitter system by citalopram: Evidence from a multimodal neuroimaging study. J Psychopharmacol 2023; 37:1209-1217. [PMID: 37947344 PMCID: PMC10714691 DOI: 10.1177/02698811231211154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
BACKGROUND Selective serotonin reuptake inhibitors (SSRIs) potentiate serotonergic neurotransmission by blocking the serotonin transporter (5-HTT), but the functional brain response to SSRIs involves neural circuits beyond regions with high 5-HTT expression. Currently, it is unclear whether and how changes in 5-HTT availability after SSRI administration modulate brain function of key serotoninergic circuits, including those characterized by high availability of the serotonin 1A receptor (5-HT1AR). AIM We investigated the association between 5-HTT availability and 5-HTT- and 5-HT1AR-enriched functional connectivity (FC) after an acute citalopram challenge. METHODS We analyzed multimodal data from a dose-response, placebo-controlled, double-blind study, in which 45 healthy women were randomized into three groups receiving placebo, a low (4 mg), or high (16 mg) oral dose of citalopram. Receptor-Enhanced Analysis of functional Connectivity by Targets was used to estimate 5-HTT- and 5-HT1AR-enriched FC from resting-state and task-based fMRI. 5-HTT availability was determined using [123I]FP-CIT single-photon emission computerized tomography. RESULTS 5-HTT availability was negatively correlated with resting-state 5-HTT-enriched FC, and with task-dependent 5-HT1AR-enriched FC. Our exploratory analyses revealed lower 5-HT1AR-enriched FC in the low-dose group compared to the high-dose group at rest and the placebo group during the emotional face-matching task. CONCLUSIONS Taken together, our findings provide evidence for differential links between 5-HTT availability and brain function within 5-HTT and 5-HT1AR pathways and in context- and dose-dependent manner. As such, they support a potential pivotal role of the 5-HT1AR in the effects of citalopram on the brain and add to its potential as a therapeutic avenue for mood and anxiety disturbances.
Collapse
Affiliation(s)
- Daphne E Boucherie
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location Amsterdam Medical Center, Amsterdam, The Netherlands
| | - Liesbeth Reneman
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location Amsterdam Medical Center, Amsterdam, The Netherlands
| | - Jan Booij
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location Amsterdam Medical Center, Amsterdam, The Netherlands
| | - Daniel Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland
| | - Ottavia Dipasquale
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Anouk Schrantee
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location Amsterdam Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Gottlieb N, Li TY, Young AH, Stokes PRA. The 5-HT7 receptor system as a treatment target for mood and anxiety disorders: A systematic review. J Psychopharmacol 2023; 37:1167-1181. [PMID: 37994803 PMCID: PMC10714716 DOI: 10.1177/02698811231211228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
BACKGROUND Preclinical animal and preliminary human studies indicate that 5-HT7 antagonists have the potential as a new treatment approach for mood and anxiety disorders. In this systematic review, we aimed to review the relationship between the 5-HT7 receptor system and mood and anxiety disorders, and to explore the pharmacology and therapeutic potential of medications that target the 5-HT7 receptor for their treatment. METHODS Medline, Cochrane Library, EMBASE, PsycINFO databases, the National Institute of Health website Clinicaltrials.gov, controlled-trials.com, and relevant grey literature were used to search for original research articles, and reference lists of included articles were then hand searched. RESULTS Sixty-four studies were included in the review: 52 animal studies and 12 human studies. Studies used a variety of preclinical paradigms and questionnaires to assess change in mood, and few studies examined sleep or cognition. Forty-four out of 47 (44/47) preclinical 5-HT7 modulation studies identified potential antidepressant effects and 20/23 studies identified potential anxiolytic effects. In clinical studies, 5/7 identified potential antidepressant effects in major depressive disorder, 1/2 identified potential anxiolytic effects in generalized anxiety disorder, and 3/3 identified potential antidepressant effects in bipolar disorders. CONCLUSION While there is some evidence that the 5-HT7 receptor system may be a potential target for treating mood and anxiety disorders, many agents included in the review also bind to other receptors. Further research is needed using drugs that bind specifically to 5-HT7 receptors to examine treatment proof of concept further.
Collapse
Affiliation(s)
- Natalie Gottlieb
- Natalie Gottlieb, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, Denmark Hill, London SE5 8AF, UK.
| | | | - Allan H Young
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Paul RA Stokes
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| |
Collapse
|
15
|
Jiang Y, Zhou J, Song BL, Wang Y, Zhang DL, Zhang ZT, Li LF, Liu YJ. 5-HT1A receptor in the central amygdala and 5-HT2A receptor in the basolateral amygdala are involved in social hierarchy in male mice. Eur J Pharmacol 2023; 957:176027. [PMID: 37659688 DOI: 10.1016/j.ejphar.2023.176027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/12/2023] [Accepted: 08/25/2023] [Indexed: 09/04/2023]
Abstract
Most social animals self-organize into dominance hierarchies that strongly influence their behavior and health. The serotonin (5-HT) system is believed to play an important role in the formation of social hierarchy. 5-HT receptors are abundantly expressed in the amygdala, which is considered as the central node for the perception and learning of social hierarchy. In this study, we assessed the functions of various 5-HT receptor subtypes related to social rank determination in different subregions of the amygdala using the confrontation tube test in mice. We revealed that most adult C57BL/6 J male mice exhibited a linear social rank after a few days of cohousing. The tube test ranks were slightly related to anxiety-like behavioral performance. After the tube test, the amygdala and 5-HT neurons in the dorsal raphe nucleus were activated in lower-rank individuals. Quantitative real-time polymerase chain reaction analysis revealed that despite the high expression of 5-HT1A receptor mRNA in the central amygdala (CeA), 5-HT2A receptor mRNA expression was downregulated in the basolateral amygdala (BLA) in higher-rank individuals. The dominant-subordinate relationship between mouse pairs could be switched via pharmacological modulation of these receptors in CeA and BLA, suggesting that these expression changes are essential for establishing social ranks. Our findings provide novel insights into the divergent functions of 5-HT receptors in the amygdala related to social hierarchy, which is closely related to our health and welfare.
Collapse
Affiliation(s)
- Yi Jiang
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang, 473061, China
| | - Jie Zhou
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang, 473061, China
| | - Bai-Lin Song
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang, 473061, China
| | - Yan Wang
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang, 473061, China
| | - Dong-Lin Zhang
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang, 473061, China
| | - Zheng-Tian Zhang
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang, 473061, China
| | - Lai-Fu Li
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang, 473061, China.
| | - Ying-Juan Liu
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang, 473061, China.
| |
Collapse
|
16
|
Bleibel L, Dziomba S, Waleron KF, Kowalczyk E, Karbownik MS. Deciphering psychobiotics' mechanism of action: bacterial extracellular vesicles in the spotlight. Front Microbiol 2023; 14:1211447. [PMID: 37396391 PMCID: PMC10309211 DOI: 10.3389/fmicb.2023.1211447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/29/2023] [Indexed: 07/04/2023] Open
Abstract
The intake of psychobiotic bacteria appears to be a promising adjunct to neuropsychiatric treatment, and their consumption may even be beneficial for healthy people in terms of mental functioning. The psychobiotics' mechanism of action is largely outlined by the gut-brain axis; however, it is not fully understood. Based on very recent studies, we provide compelling evidence to suggest a novel understanding of this mechanism: bacterial extracellular vesicles appear to mediate many known effects that psychobiotic bacteria exert on the brain. In this mini-review paper, we characterize the extracellular vesicles derived from psychobiotic bacteria to demonstrate that they can be absorbed from the gastrointestinal tract, penetrate to the brain, and carry the intracellular content to exert beneficial multidirectional action. Specifically, by regulating epigenetic factors, extracellular vesicles from psychobiotics appear to enhance expression of neurotrophic molecules, improve serotonergic neurotransmission, and likely supply astrocytes with glycolytic enzymes to favor neuroprotective mechanisms. As a result, some data suggest an antidepressant action of extracellular vesicles that originate even from taxonomically remote psychobiotic bacteria. As such, these extracellular vesicles may be regarded as postbiotics of potentially therapeutic application. The mini-review is enriched with illustrations to better introduce the complex nature of brain signaling mediated by bacterial extracellular vesicles and indicates knowledge gaps that require scientific exploration before further progress is made. In conclusion, bacterial extracellular vesicles appear to represent the missing piece of the puzzle in the mechanism of action of psychobiotics.
Collapse
Affiliation(s)
- Layla Bleibel
- Department of Pharmacology and Toxicology, Medical University of Lodz, Łódź, Poland
| | - Szymon Dziomba
- Department of Toxicology, Medical University of Gdansk, Gdańsk, Poland
| | | | - Edward Kowalczyk
- Department of Pharmacology and Toxicology, Medical University of Lodz, Łódź, Poland
| | | |
Collapse
|
17
|
Kels L. Depression roundtable: Is there a role for BoNT? Toxicon 2023; 229:107148. [PMID: 37150483 DOI: 10.1016/j.toxicon.2023.107148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Depression can occur in the context of major depressive disorder or bipolar disorder. There are many effective and well-tolerated treatment options for most patients experiencing major depressive episodes, but for patients with treatment-resistant major depressive disorder or bipolar depression, current pharmacologic and non-pharmacologic options can be less efficacious, well tolerated, or accessible. Botulinum neurotoxin (BoNT) offers a novel approach to treating depression that is both safe and well-tolerated. Several potential mechanisms of action in depression are theorized, and studies support the efficacy of BoNT in major depression. Early data suggests that BoNT may be efficacious in bipolar depression and further study is warranted.
Collapse
Affiliation(s)
- Lori Kels
- University of the Incarnate Word School of Osteopathic Medicine, 4301 Broadway, CPO 121, San Antonio, TX, 78209, USA.
| |
Collapse
|
18
|
Poian LR, Chiavegatto S. Serotonin Syndrome: The Role of Pharmacology in Understanding Its Occurrence. Cureus 2023; 15:e38897. [PMID: 37309350 PMCID: PMC10257984 DOI: 10.7759/cureus.38897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2023] [Indexed: 06/14/2023] Open
Abstract
Serotonin syndrome (SS) is a potentially fatal adverse drug reaction characterized by an exaggerated increase in serotonergic activity in the central and peripheral nervous systems. It presents a constellation of signs and symptoms related to behavioral changes, neuromuscular excitability, and autonomic instability. These symptoms can occur in both mild and severe forms. SS can be triggered by the therapeutic use of a drug that increases serotonin (5-HT) availability in the synaptic cleft or by the co-administration of two or more drugs that provide this increase. With the escalating use of antidepressants by the world's population, this adverse reaction may be more recurrent. However, SS is often overlooked by patients or not diagnosed by doctors. This review aims to improve awareness about SS and provide a pharmacological perspective to explain its occurrence. Evidence shows that other neurotransmitters may also be involved with the pathology of SS. Furthermore, SS and neuroleptic malignant syndrome (NMS) seem to be part of the same pathological spectrum, especially in atypical NMS cases. The emergence of the syndrome's symptoms may be closely related to pharmacokinetic and/or pharmacodynamic polymorphisms that lead to an increase in the 5-HT available to or 5-HT signaling by specific receptors, thus constituting an important area for future investigations.
Collapse
Affiliation(s)
- Leila R Poian
- Department of Pharmacology, Biomedical Sciences Institute, University of Sao Paulo (ICB-USP), Sao Paulo, BRA
| | - Silvana Chiavegatto
- Department of Pharmacology, Biomedical Sciences Institute, University of Sao Paulo (ICB-USP), Sao Paulo, BRA
- Department of Psychiatry, Institute of Psychiatry, University of Sao Paulo Medical School (FMUSP), Sao Paulo, BRA
| |
Collapse
|
19
|
Wang H, Hu J, Hu J, Chen Q, Shang N, Liu M, Li X, Xiang L, Yin D, Lan J, Xiao Q, Peng Y. Antidepressant effect of 4-Butyl-a-agarofuran via HPA axis and serotonin system. Brain Res Bull 2023; 198:3-14. [PMID: 37076049 DOI: 10.1016/j.brainresbull.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/22/2023] [Accepted: 04/16/2023] [Indexed: 04/21/2023]
Abstract
Depression is a leading cause of disability worldwide and the psychiatric diagnosis most commonly associated with suicide. 4-Butyl-a-agarofuran (AF-5), a derivative of agarwood furan, is currently in phase III clinical trials for generalized anxiety disorder. Herein, we explored the antidepressant effect and its possible neurobiological mechanisms in animal models. In present study, AF-5 administration markedly decreased the immobility time in mouse forced swim test and tail suspension test. In the sub-chronic reserpine-induced depressive rats, AF-5 treatment markedly increased the rectal temperature and decreased the immobility time of model rats. In addition, chronic AF-5 treatment markedly reversed the depressive-like behaviors in chronic unpredictable mild stress (CUMS) rats by reducing immobility time of forced swim test. Single treatment with AF-5 also potentiated the mouse head-twitch response induced by 5-hydroxytryptophan (5-HTP, a metabolic precursor to serotonin), and antagonized the ptosis and motor ability triggered by reserpine. However, AF-5 had no effect on yohimbine toxicity in mice. These results indicated that acute treatment with AF-5 produced serotonergic, but not noradrenergic activation. Furthermore, AF-5 reduced adrenocorticotropic hormone (ACTH) level in serum and normalized the neurotransmitter changes, including the decreased serotonin (5-HT) in hippocampus of CUMS rats. Moreover, AF-5 affected the expressions of CRFR1 and 5-HT2C receptor in CUMS rats. These findings confirm the antidepressant effect of AF-5 in animal models, which may be primarily related to CRFR1 and 5-HT2C receptor. AF-5 appears to be promising as a novel dual target drug for depression treatment.
Collapse
Affiliation(s)
- Hongyue Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College. No.1, Xiannongtan Street, Xicheng District, Beijing 100050, China
| | - Jinping Hu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College. No.1, Xiannongtan Street, Xicheng District, Beijing 100050, China
| | - Jiahuan Hu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College. No.1, Xiannongtan Street, Xicheng District, Beijing 100050, China
| | - Qiuyu Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College. No.1, Xiannongtan Street, Xicheng District, Beijing 100050, China
| | - Nianying Shang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College. No.1, Xiannongtan Street, Xicheng District, Beijing 100050, China
| | - Mengyao Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College. No.1, Xiannongtan Street, Xicheng District, Beijing 100050, China
| | - Xinnan Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College. No.1, Xiannongtan Street, Xicheng District, Beijing 100050, China
| | - Longgang Xiang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College. No.1, Xiannongtan Street, Xicheng District, Beijing 100050, China
| | - Dali Yin
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College. No.1, Xiannongtan Street, Xicheng District, Beijing 100050, China
| | - Jiaqi Lan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College. No.1, Xiannongtan Street, Xicheng District, Beijing 100050, China.
| | - Qiong Xiao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College. No.1, Xiannongtan Street, Xicheng District, Beijing 100050, China.
| | - Ying Peng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College. No.1, Xiannongtan Street, Xicheng District, Beijing 100050, China.
| |
Collapse
|
20
|
Salahinejad A, Meuthen D, Attaran A, Chivers DP, Ferrari MCO. Effects of common antiepileptic drugs on teleost fishes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161324. [PMID: 36608821 DOI: 10.1016/j.scitotenv.2022.161324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Antiepileptic drugs (AEDs) are globally prescribed to treat epilepsy and many other psychiatric disorders in humans. Their high consumption, low metabolic rate in the human body and low efficiency of wastewater treatment plants (WWTPs) in eliminating these chemicals results in the frequent occurrence of these pharmaceutical drugs in aquatic systems. Therefore, aquatic organisms, including ecologically and economically important teleost fishes, may be inadvertently exposed to these chemicals. Due to their physiological similarity with humans, fishes may be particularly vulnerable to AEDs. Almost all AED drugs are detectable in natural aquatic ecosystems, but diazepam (DZP) and carbamazepine (CBZ) are among the most widely detected AEDs to date. Recent studies suggest that these drugs have a substantial capacity to induce neurotoxicity and behavioral abnormality in fishes. Here we review the current state of knowledge regarding the potential mode of action of DZP and CBZ as well as that of some other AEDs on teleosts and put observable behavioral effects into a mechanistic context. We find that following their intended mode of action in humans, AEDs also disrupt the GABAergic, glutamatergic and serotonergic systems as well as parasympathetic neurotransmitters in fishes. Moreover, AEDs have non-specific modes of action in teleosts ranging from estrogenic activity to oxidative stress. These physiological changes are often accompanied by dose-dependent disruptions of anxiety, locomotor activity, social behaviors, food uptake, and learning and memory, but DZP and CBZ consistently induced anxiolytic effects. Thereby, AED exposure severely compromises individual fitness across teleost fish species, which may lead to population and ecosystem impairment. We also showcase promising avenues for future research by highlighting where we lack data when it comes to effects of certain AEDs, AED concentrations and behavioral endpoints.
Collapse
Affiliation(s)
- Arash Salahinejad
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada.
| | - Denis Meuthen
- Evolutionary Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Anoosha Attaran
- Robart Research Institute, The University of Western Ontario, London, ON N6A5K8, Canada
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Maud C O Ferrari
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada
| |
Collapse
|
21
|
Elwyn R, Mitchell J, Kohn MR, Driver C, Hay P, Lagopoulos J, Hermens DF. Novel ketamine and zinc treatment for anorexia nervosa and the potential beneficial interactions with the gut microbiome. Neurosci Biobehav Rev 2023; 148:105122. [PMID: 36907256 DOI: 10.1016/j.neubiorev.2023.105122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
Anorexia nervosa (AN) is a severe illness with diverse aetiological and maintaining contributors including neurobiological, metabolic, psychological, and social determining factors. In addition to nutritional recovery, multiple psychological and pharmacological therapies and brain-based stimulations have been explored; however, existing treatments have limited efficacy. This paper outlines a neurobiological model of glutamatergic and γ-aminobutyric acid (GABA)-ergic dysfunction, exacerbated by chronic gut microbiome dysbiosis and zinc depletion at a brain and gut level. The gut microbiome is established early in development, and early exposure to stress and adversity contribute to gut microbial disturbance in AN, early dysregulation to glutamatergic and GABAergic networks, interoceptive impairment, and inhibited caloric harvest from food (e.g., zinc malabsorption, competition for zinc ions between gut bacteria and host). Zinc is a key part of glutamatergic and GABAergic networks, and also affects leptin and gut microbial function; systems dysregulated in AN. Low doses of ketamine in conjunction with zinc, could provide an efficacious combination to act on NMDA receptors and normalise glutamatergic, GABAergic and gut function in AN.
Collapse
Affiliation(s)
- Rosiel Elwyn
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia.
| | - Jules Mitchell
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| | - Michael R Kohn
- AYA Medicine Westmead Hospital, CRASH (Centre for Research into Adolescent's Health) Western Sydney Local Health District, Sydney University, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| | - Christina Driver
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| | - Phillipa Hay
- Translational Health Research Institute (THRI) School of Medicine, Western Sydney University, Campbelltown, NSW, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| | - Jim Lagopoulos
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| | - Daniel F Hermens
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| |
Collapse
|
22
|
Kaikai NE, Ba-M Hamed S, Slimani A, Dilagui I, Hanchi AL, Soraa N, Mezrioui NE, Bennis M, Ghanima A. Chronic exposure to metam sodium-based pesticide in mice during adulthood elevated anxiety and depression-like behaviors: Involvement of serotoninergic depletion and gut microbiota dysbiosis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 98:104066. [PMID: 36640922 DOI: 10.1016/j.etap.2023.104066] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 12/18/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Metam sodium-based pesticide (MS-BP) is widely used in agriculture and public health. We have previously demonstrated that maternal exposure to MS-BP resulted in sensorimotor alterations in mice offspring with long-lasting deficits including anxiety- and depression-like behaviors. Here, we project to verify whether these two neurobehavioral effects occur during adulthood following direct exposure to MS-BP and whether it results in changes in the serotoninergic system and gut microbiota. Our findings showed that chronic exposure to MS-BP increased anxiety- and depression-like behaviors, accompanied by a depletion of serotonin-like neurons within the dorsal raphe nucleus and a reduction in serotoninergic terminals in the infralimbic cortex and the basolateral amygdala. In addition, all MS-BP-exposed animals exhibited a reduced total bacterial number and diversity of gut microbiota. Taken together, our data demonstrated that MS-BP-induced behavioral changes could be related to the impairment of the serotoninergic system and gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Nour-Eddine Kaikai
- Laboratory of Pharmacology, Neurobiology, Anthropology, and Environment, Cadi Ayyad University, Faculty of Sciences, Marrakesh, Morocco; Research Laboratory for Sustainable Development and Health. Cadi Ayyad University, Faculty of Sciences and Techniques, Marrakesh, Morocco
| | - Saadia Ba-M Hamed
- Laboratory of Pharmacology, Neurobiology, Anthropology, and Environment, Cadi Ayyad University, Faculty of Sciences, Marrakesh, Morocco
| | - Aiman Slimani
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment, Labeled Research Unit-CNRST N°4, Cadi Ayyad University, Faculty of Sciences, Marrakesh, Morocco
| | - Ilham Dilagui
- Laboratory of Microbiology, University Hospital Center Mohamed VI, Marrakesh, Morocco
| | - Asmae Lamrani Hanchi
- Laboratory of Microbiology, University Hospital Center Mohamed VI, Marrakesh, Morocco
| | - Nabila Soraa
- Laboratory of Microbiology, University Hospital Center Mohamed VI, Marrakesh, Morocco
| | - Nour-Eddine Mezrioui
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment, Labeled Research Unit-CNRST N°4, Cadi Ayyad University, Faculty of Sciences, Marrakesh, Morocco
| | - Mohamed Bennis
- Laboratory of Pharmacology, Neurobiology, Anthropology, and Environment, Cadi Ayyad University, Faculty of Sciences, Marrakesh, Morocco
| | - Abderrazzak Ghanima
- Research Laboratory for Sustainable Development and Health. Cadi Ayyad University, Faculty of Sciences and Techniques, Marrakesh, Morocco.
| |
Collapse
|
23
|
Amada N, Hirose T, Suzuki M, Kakumoto Y, Futamura T, Maeda K, Kikuchi T. Synergistic anti-depressive effect of combination treatment of Brexpiprazole and selective serotonin reuptake inhibitors on forced swimming test in mice. Neuropsychopharmacol Rep 2023; 43:132-136. [PMID: 36649966 PMCID: PMC10009414 DOI: 10.1002/npr2.12316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/02/2022] [Accepted: 12/14/2022] [Indexed: 01/19/2023] Open
Abstract
AIM Selective serotonin reuptake inhibitors (SSRIs) are used to treat major depressive disorder (MDD) and other psychiatric disorders (e.g., obsessive compulsive disorder, social anxiety disorder, and panic disorder). In MDD treatment, SSRIs do not show remission in approximately 30% of patients, indicating a need for a better treatment option. Forced swimming test (FST) is a behavioral assay to evaluate depression-like behavior and antidepressant efficacy in rodents. In the present study, we evaluated the combination effect of brexpiprazole with SSRIs on FST in mice, in order to investigate their synergistic effect. METHODS Brexpiprazole (0.003 mg/kg) was intraperitoneally injected to mice 15 min before testing. Escitalopram (10 mg/kg), fluoxetine (75 mg/kg), paroxetine (10 mg/kg), or sertraline (15 mg/kg) were orally administered to mice 60 min before testing. Then, the mice were placed in water and immobility time was measured. Data from animals treated with escitalopram, fluoxetine, paroxetine, and sertraline were pooled as SSRI-treated group data. RESULTS Combination treatment of brexpiprazole with SSRIs reduced immobility time in FST more than vehicle or each single treatment. A significant interaction effect was confirmed in the combination of brexpiprazole and SSRIs (p = 0.0411). CONCLUSION Efficacy of adjunctive brexpiprazole has already been demonstrated in clinical trials in MDD patients not adequately responding to antidepressants including escitalopram, fluoxetine, paroxetine, and sertraline. The synergistic antidepressant-like effect of brexpiprazole with SSRIs found in this study supports the already known clinical findings.
Collapse
Affiliation(s)
- Naoki Amada
- Department of CNS ResearchOtsuka Pharmaceutical Co., Ltd.TokushimaJapan
| | - Tsuyoshi Hirose
- Department of CNS ResearchOtsuka Pharmaceutical Co., Ltd.TokushimaJapan
| | - Mikio Suzuki
- Department of CNS ResearchOtsuka Pharmaceutical Co., Ltd.TokushimaJapan
| | - Yusuke Kakumoto
- Department of Lead Discovery ResearchOtsuka Pharmaceutical Co., Ltd.TokushimaJapan
| | - Takashi Futamura
- Department of CNS ResearchOtsuka Pharmaceutical Co., Ltd.TokushimaJapan
| | - Kenji Maeda
- Department of Lead Discovery ResearchOtsuka Pharmaceutical Co., Ltd.TokushimaJapan
| | - Tetsuro Kikuchi
- Pharmaceutical DivisionOtsuka Pharmaceutical Co., Ltd.TokushimaJapan
| |
Collapse
|
24
|
Surowka P, Noworyta K, Smaga I, Filip M, Rygula R. Trait sensitivity to negative feedback in rats is associated with increased expression of serotonin 5-HT 2A receptors in the ventral hippocampus. Front Mol Neurosci 2023; 16:1092864. [PMID: 36846570 PMCID: PMC9948091 DOI: 10.3389/fnmol.2023.1092864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/11/2023] [Indexed: 02/11/2023] Open
Abstract
One of the most important yet still underappreciated mechanisms of depression is distorted cognition, with aberrant sensitivity to negative feedback being one of the best-described examples. As serotonin has been identified as an important modulator of sensitivity to feedback and because the hippocampus has been implicated in the mediation of learning from positive and negative outcomes, the present study aimed to identify differences in the expression of various genes encoding 5-HT receptors in this brain region between the rats displaying trait sensitivity and insensitivity to negative feedback. The results demonstrated that trait sensitivity to negative feedback is associated with increased mRNA expression of the 5-HT2A receptors in the rat ventral hippocampus (vHipp). Further analysis revealed that this increased expression might be modulated epigenetically by miRNAs with a high target score for the Htr2a gene (miR-16-5p and miR-15b-5p). Additionally, although not confirmed at the protein level, trait sensitivity to negative feedback was associated with decreased expression of mRNA encoding the 5-HT7 receptor in the dorsal hippocampus (dHipp). We observed no statistically significant intertrait differences in the expression of the Htr1a, Htr2c, and Htr7 genes in the vHipp and no statistically significant intertrait differences in the expression of the Htr1a, Htr2a, and Htr2c genes in the dHipp of the tested animals. These results suggest that resilience to depression manifested by reduced sensitivity to negative feedback may be mediated via these receptors.
Collapse
Affiliation(s)
- Paulina Surowka
- Affective Cognitive Neuroscience Laboratory, Department of Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Karolina Noworyta
- Affective Cognitive Neuroscience Laboratory, Department of Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Irena Smaga
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Malgorzata Filip
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Rafal Rygula
- Affective Cognitive Neuroscience Laboratory, Department of Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland,*Correspondence: Rafal Rygula, ✉
| |
Collapse
|
25
|
Selective Serotonin Reuptake Inhibitor Use in Pregnancy and Protective Mechanisms in Preeclampsia. Reprod Sci 2023; 30:701-712. [PMID: 35984571 PMCID: PMC9944568 DOI: 10.1007/s43032-022-01065-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/11/2022] [Indexed: 01/25/2023]
Abstract
Depression and preeclampsia share risk factors and are bi-directionally associated with increased risk for each other. Despite epidemiological evidence linking selective serotonin reuptake inhibitors (SSRIs) in pregnancy to preeclampsia, serotonin (5-HT) and vasopressin (AVP) secretion mechanisms suggest that SSRIs may attenuate preeclampsia risk. However, there is a need to clarify the relationship between SSRIs and preeclampsia in humans to determine therapeutic potential. This retrospective cohort study included clinical data from 9558 SSRI-untreated and 9046 SSRI-treated pregnancies. In a subcohort of 233 pregnancies, early pregnancy (< 20 weeks) maternal plasma copeptin, an inert and stable AVP prosegment secreted 1:1 with AVP, was measured by enzyme-linked immunosorbent assay. Diagnoses and depression symptoms (Patient Health Questionnaire-9 [PHQ-9]) were identified via medical records review. Descriptive, univariate, and multivariate regression analyses were conducted (α = 0.05). SSRI use was associated with decreased preeclampsia after controlling for clinical confounders (depression severity, chronic hypertension, diabetes, body mass index, age) (OR = 0.9 [0.7-1.0], p = 0.05). Moderate-to-severe depression symptoms were associated with significantly higher copeptin secretion than mild-to-no depression symptoms (240 ± 29 vs. 142 ± 10 ng/mL, p < 0.001). SSRIs significantly attenuated first trimester plasma copeptin (78 ± 22 users vs. 240 ± 29 ng/ml non-users, p < 0.001). In preeclampsia, SSRI treatment was associated with significantly lower copeptin levels (657 ± 164 vs. 175 ± 134 ng/mL, p = 0.04). Interaction between SSRI treatment and preeclampsia was also significant (p = 0.04). SSRIs may modulate preeclampsia risk and mechanisms, although further studies are needed to investigate the relationships between 5-HT and AVP in depression and preeclampsia.
Collapse
|
26
|
Kouter K, Zupanc T, Videtič Paska A. Targeted sequencing approach: Comprehensive analysis of DNA methylation and gene expression across blood and brain regions in suicide victims. World J Biol Psychiatry 2023; 24:12-23. [PMID: 35200087 DOI: 10.1080/15622975.2022.2046291] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Epigenetic mechanisms are involved in regulation of many pathologies, including suicidal behaviour. However, the factors through which epigenetics affect suicidal behaviour are not fully understood. METHODS We analysed DNA methylation of eight neuropsychiatric genes (NR3C1, SLC6A4, HTR1A, TPH2, SKA2, MAOA, GABRA1, and NRIP3) in brain regions (hippocampus, insula, amygdala, Brodmann area 46) and blood of 25 male suicide victims and 28 male control subjects, using bisulphite next-generation sequencing. RESULTS Comparing mean methylation values, notable changes were observed in NR3C1 (insula p-value = 0.05), HTR1A (insula p-value < 0.001, blood p-value = 0.001), SKA2 (insula p-value = 0.03, blood p-value = 0.016), MAOA (blood p-value < 0.001), GABRA1 (insula p-value = 0.05, blood p-value = 0.024) and NRIP3 (hippocampus p-value = 0.001, insula p-value = 0.002, amygdala p-value = 0.014). Comparing methylation pattern between blood and brain, similarity was observed between blood and insula for HTR1A. Gene expression analysis in hippocampus revealed changes in expression of NR3C1 (p-value = 0.049), SLC6A4 (p-value = 0.017) and HTR1A (p-value = 0.053). CONCLUSIONS Results provide an insight into the altered state of DNA methylation in suicidal behaviour. Epigenetic differences could therefore affect suicidal behaviour in both previously known and in novel neuropsychiatric candidate genes.
Collapse
Affiliation(s)
- Katarina Kouter
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tomaž Zupanc
- Institute of Forensic Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Alja Videtič Paska
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
27
|
Puangsri P, Jinanarong V, Ninla-Aesong P. Impact of antidepressant treatment on complete blood count parameters and inflammatory ratios in adolescents with major depressive disorder. J Psychiatr Res 2023; 157:26-35. [PMID: 36436425 DOI: 10.1016/j.jpsychires.2022.11.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/23/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and monocyte-to-lymphocyte ratio (MLR) are novel biomarkers of systemic inflammation in depression. This study aims to examines the impact of selective serotonin reuptake inhibitor (SSRI) treatment on complete blood count (CBC) parameters and inflammatory ratios in major depressive disorder (MDD). CBC parameters and inflammatory ratios were examined in a total of 45 drug-naive adolescents with MDD and were compared before and after SSRI treatment for 12 weeks and between responders and nonresponders. Following SSRI treatment in MDD, the red blood cell (RBC) count, hematocrit, and red cell distribution width (RDW) significantly increased. Hemoglobin tended to increase. The MCV, MCH, and MCHC values decreased significantly. White blood cell count, neutrophil percentage, monocyte count, and monocyte and basophil percentages decreased significantly. The percentage of lymphocytes significantly increased. The MLR decreased, whereas the NLR tended to decrease. Platelet count and PLR did not change significantly. A higher platelet count at baseline has been associated with non-response to SSRI treatment in patients with MDD. SSRI treatment increased RBC count, hematocrit, RDW, and lymphocyte percentage, and reduced MLR, and neutrophil and monocyte percentages in responders MDD. We suggest higher platelet counts at baseline as a potential predictor of nonresponders.
Collapse
Affiliation(s)
- Pavarud Puangsri
- Department of Clinical Science, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand.
| | - Vinn Jinanarong
- Prachuap Khiri Khan Hospital, Prachuap Khiri Khan, Thailand.
| | - Putrada Ninla-Aesong
- Department of Preclinical Science, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand.
| |
Collapse
|
28
|
Exploring the Mechanism of Action of Trachelospermi Caulis et Folium for Depression Based on Experiments: Combining Network Pharmacology and Molecular Docking. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3945063. [PMID: 36506595 PMCID: PMC9729047 DOI: 10.1155/2022/3945063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/04/2022] [Accepted: 11/16/2022] [Indexed: 12/02/2022]
Abstract
Objective To reveal the safety, efficacy, and mechanism of action of Trachelospermi Caulis et Folium (TCEF) for treating depression. Methods The maximum dose method was employed to evaluate the safety of TCEF, and its antidepressant activity was assessed using the tail suspension and sugar water depletion tests. The main components of TCEF were determined using ultrahigh performance liquid chromatography coupled with quadrupole exactive orbitrap mass spectrometer (UHPLC-Q-EOMS). The active ingredients and their action targets were obtained using network pharmacology with SwissADME and SwissTargetPrediction screening, and the targets of depression were obtained using GeneCards, DrugBank, etc. The drug and depression-related targets were intersected and analyzed via PPI network, GO, and KEGG. Subsequently, the binding ability of the core components of TCEF to the core targets was validated via molecular docking and simulation. Results No statistically significant difference was observed between the normal and TCEF groups in terms of body weight, visceral index, and biochemical parameters (P > 0.05). Compared with the model group, all dose groups of TCEF had reduced the immobility time of tail suspension (P < 0.05) and increased the rate of sugar water consumption (P < 0.05). UHPLC-Q-EOMS was employed to identify 59 major components of TCEF, and network pharmacology analysis was used to screen 48 active components of TCEF for treating depression, corresponding to 139 relevant targets, including ALB, AKT1, TNF, ESR1, and CTNNB1. The involved pathways include neuroactive ligand-receptor interaction. The molecular docking results indicated that the core components have a good binding activity to the core targets. Conclusions TCEF is a relatively safe antidepressant medicine that exerts therapeutic effects through multiple components, targets, and pathways, providing a new idea and theoretical basis for future use of TCEF to treat depression.
Collapse
|
29
|
Caniceiro AB, Bueschbell B, Schiedel AC, Moreira IS. Class A and C GPCR Dimers in Neurodegenerative Diseases. Curr Neuropharmacol 2022; 20:2081-2141. [PMID: 35339177 PMCID: PMC9886835 DOI: 10.2174/1570159x20666220327221830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/21/2022] [Accepted: 03/23/2022] [Indexed: 11/22/2022] Open
Abstract
Neurodegenerative diseases affect over 30 million people worldwide with an ascending trend. Most individuals suffering from these irreversible brain damages belong to the elderly population, with onset between 50 and 60 years. Although the pathophysiology of such diseases is partially known, it remains unclear upon which point a disease turns degenerative. Moreover, current therapeutics can treat some of the symptoms but often have severe side effects and become less effective in long-term treatment. For many neurodegenerative diseases, the involvement of G proteincoupled receptors (GPCRs), which are key players of neuronal transmission and plasticity, has become clearer and holds great promise in elucidating their biological mechanism. With this review, we introduce and summarize class A and class C GPCRs, known to form heterodimers or oligomers to increase their signalling repertoire. Additionally, the examples discussed here were shown to display relevant alterations in brain signalling and had already been associated with the pathophysiology of certain neurodegenerative diseases. Lastly, we classified the heterodimers into two categories of crosstalk, positive or negative, for which there is known evidence.
Collapse
Affiliation(s)
- Ana B. Caniceiro
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Beatriz Bueschbell
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Anke C. Schiedel
- Department of Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany;
| | - Irina S. Moreira
- University of Coimbra, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; ,Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal,Address correspondence to this author at the Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal; E-mail:
| |
Collapse
|
30
|
Ayeni EA, Aldossary AM, Ayejoto DA, Gbadegesin LA, Alshehri AA, Alfassam HA, Afewerky HK, Almughem FA, Bello SM, Tawfik EA. Neurodegenerative Diseases: Implications of Environmental and Climatic Influences on Neurotransmitters and Neuronal Hormones Activities. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191912495. [PMID: 36231792 PMCID: PMC9564880 DOI: 10.3390/ijerph191912495] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/21/2022] [Accepted: 09/24/2022] [Indexed: 05/23/2023]
Abstract
Neurodegenerative and neuronal-related diseases are major public health concerns. Human vulnerability to neurodegenerative diseases (NDDs) increases with age. Neuronal hormones and neurotransmitters are major determinant factors regulating brain structure and functions. The implications of environmental and climatic changes emerged recently as influence factors on numerous diseases. However, the complex interaction of neurotransmitters and neuronal hormones and their depletion under environmental and climatic influences on NDDs are not well established in the literature. In this review, we aim to explore the connection between the environmental and climatic factors to NDDs and to highlight the available and potential therapeutic interventions that could use to improve the quality of life and reduce susceptibility to NDDs.
Collapse
Affiliation(s)
- Emmanuel A. Ayeni
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ahmad M. Aldossary
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 12354, Saudi Arabia
| | - Daniel A. Ayejoto
- Department of Industrial Chemistry, University of Ilorin, Ilorin 240003, Nigeria
| | - Lanre A. Gbadegesin
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| | - Abdullah A. Alshehri
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 12354, Saudi Arabia
| | - Haya A. Alfassam
- KACST-BWH Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh 12354, Saudi Arabia
| | - Henok K. Afewerky
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
- School of Allied Health Professions, Asmara College of Health Sciences, Asmara P.O. Box 1220, Eritrea
| | - Fahad A. Almughem
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 12354, Saudi Arabia
| | - Saidu M. Bello
- Institute of Pharmacognosy, University of Szeged, 6720 Szeged, Hungary
| | - Essam A. Tawfik
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 12354, Saudi Arabia
| |
Collapse
|
31
|
Monoamine Neurotransmitters Control Basic Emotions and Affect Major Depressive Disorders. Pharmaceuticals (Basel) 2022; 15:ph15101203. [PMID: 36297314 PMCID: PMC9611768 DOI: 10.3390/ph15101203] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Major depressive disorder (MDD) is a common and complex mental disorder, that adversely impacts an individual’s quality of life, but its diagnosis and treatment are not accurately executed and a symptom-based approach is utilized in most cases, due to the lack of precise knowledge regarding the pathophysiology. So far, the first-line treatments are still based on monoamine neurotransmitters. Even though there is a lot of progress in this field, the mechanisms seem to get more and more confusing, and the treatment is also getting more and more controversial. In this study, we try to review the broad advances of monoamine neurotransmitters in the field of MDD, and update its effects in many advanced neuroscience studies. We still propose the monoamine hypothesis but paid special attention to their effects on the new pathways for MDD, such as inflammation, oxidative stress, neurotrophins, and neurogenesis, especially in the glial cells, which have recently been found to play an important role in many neurodegenerative disorders, including MDD. In addition, we will extend the monoamine hypothesis to basic emotions; as suggested in our previous reports, the three monoamine neurotransmitters play different roles in emotions: dopamine—joy, norepinephrine—fear (anger), serotonins—disgust (sadness). Above all, this paper tries to give a full picture of the relationship between the MDD and the monoamine neurotransmitters such as DA, NE, and 5-HT, as well as their contributions to the Three Primary Color Model of Basic Emotions (joy, fear, and disgust). This is done by explaining the contribution of the monoamine from many sides for MDD, such the digestive tract, astrocytes, microglial, and others, and very briefly addressing the potential of monoamine neurotransmitters as a therapeutic approach for MDD patients and also the reasons for its limited clinical efficacy, side effects, and delayed onset of action. We hope this review might offer new pharmacological management of MDD.
Collapse
|
32
|
Ahn JH, Song MY, Park HJ. Discovering Influential Core-Keywords, Researcher Networks and Research Trends of Acupuncture on Depression Using Bibliometric Analysis. J Acupunct Meridian Stud 2022; 15:227-237. [PMID: 36521771 DOI: 10.51507/j.jams.2022.15.4.227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/29/2021] [Accepted: 03/23/2022] [Indexed: 01/26/2023] Open
Abstract
Depression is a common illness worldwide. Acupuncture is used as an alternative to non-pharmacological therapy. This study aimed to identify the development and global trends in the study of acupuncture therapy for depression over the past two decades using a bibliometric analysis. Articles published between 2001 and 2020 on acupuncture for depression were retrieved from the Web of Science database. Extracted information included authors, organizations, countries, keywords, and journals. The VOSviewer program was used to visualize the impacts and network hubs of the keywords, authors, and affiliations. Analyses of 871 original and review articles revealed that the number of publications has continually increased over the past 20 years. China has published the maximum number of articles, followed by the United States and South Korea. As for research areas, integrative complementary medicine was most well represented in terms of the number of articles. Co-occurrence analysis of keywords indicated that each five sub-group cluster (including "pain related to depressive symptoms," "CAM therapies of depression," "comorbid disease or symptoms of depression," "clinical trials of depression," and "mechanism of acupuncture on depression") has its own impact keyword. The most recent keywords were "protocol" and "systematic review," whereas early keywords were "acupuncture analgesia" and "St john's wort." Co-authorship analysis of authors and organizations revealed 4 influential authors and 2 organizations in the field of acupuncture for depression. The present study provided influential keywords that show comorbid symptoms, treatments, and mechanism. Additionally, it revealed the influential persons or groups related to acupuncture therapy for depression.
Collapse
Affiliation(s)
- Jae-Ha Ahn
- Department of Meridian Medical Science, School of Medicine, Kyung Hee University, Seoul, Korea.,Acupuncture and Meridian Science Research Center (AMSRC), College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Mi-Yeon Song
- Department of Korean Rehabilitation Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Hi-Joon Park
- Department of Meridian Medical Science, School of Medicine, Kyung Hee University, Seoul, Korea.,Acupuncture and Meridian Science Research Center (AMSRC), College of Korean Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|
33
|
Sved AF, Weeks JJ, Grace AA, Smith TT, Donny EC. Monoamine oxidase inhibition in cigarette smokers: From preclinical studies to tobacco product regulation. Front Neurosci 2022; 16:886496. [PMID: 36051642 PMCID: PMC9424897 DOI: 10.3389/fnins.2022.886496] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Monoamine oxidase (MAO) activity is reduced in cigarette smokers and this may promote the reinforcing actions of nicotine, thereby enhancing the addictive properties of cigarettes. At present, it is unclear how cigarette smoking leads to MAO inhibition, but preclinical studies in rodents show that MAO inhibition increases nicotine self-administration, especially at low doses of nicotine. This effect of MAO inhibition develops slowly, likely due to plasticity of brain monoamine systems; studies relying on acute MAO inhibition are unlikely to replicate what happens with smoking. Given that MAO inhibition may reduce the threshold level at which nicotine becomes reinforcing, it is important to consider this in the context of very low nicotine content (VLNC) cigarettes and potential tobacco product regulation. It is also important to consider how this interaction between MAO inhibition and the reinforcing actions of nicotine may be modified in populations that are particularly vulnerable to nicotine dependence. In the context of these issues, we show that the MAO-inhibiting action of cigarette smoke extract (CSE) is similar in VLNC cigarettes and cigarettes with a standard nicotine content. In addition, we present evidence that in a rodent model of schizophrenia the effect of MAO inhibition to enhance nicotine self-administration is absent, and speculate how this may relate to brain serotonin systems. These issues are relevant to the MAO-inhibiting effect of cigarette smoking and its implications to tobacco product regulation.
Collapse
Affiliation(s)
- Alan F. Sved
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, United States
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jillian J. Weeks
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Anthony A. Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, United States
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Tracy T. Smith
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Eric C. Donny
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, United States
| |
Collapse
|
34
|
Kozyra P, Pitucha M. Terminal Phenoxy Group as a Privileged Moiety of the Drug Scaffold-A Short Review of Most Recent Studies 2013-2022. Int J Mol Sci 2022; 23:8874. [PMID: 36012142 PMCID: PMC9408176 DOI: 10.3390/ijms23168874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/03/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
The terminal phenoxy group is a moiety of many drugs in use today. Numerous literature reports indicated its crucial importance for biological activity; thus, it is a privileged scaffold in medicinal chemistry. This review focuses on the latest achievements in the field of novel potential agents bearing a terminal phenoxy group in 2013-2022. The article provided information on neurological, anticancer, potential lymphoma agent, anti-HIV, antimicrobial, antiparasitic, analgesic, anti-diabetic as well as larvicidal, cholesterol esterase inhibitors, and antithrombotic or agonistic activities towards the adrenergic receptor. Additionally, for selected agents, the Structure-Activity-Relationship (SAR) is also discussed. Thus, this study may help the readers to better understand the nature of the phenoxy group, which will translate into rational drug design and the development of a more efficient drug. To the best of our knowledge, this is the first review devoted to an in-depth analysis of the various activities of compounds bearing terminal phenoxy moiety.
Collapse
Affiliation(s)
- Paweł Kozyra
- Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland
| | - Monika Pitucha
- Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
35
|
Popova NK, Tsybko AS, Naumenko VS. The Implication of 5-HT Receptor Family Members in Aggression, Depression and Suicide: Similarity and Difference. Int J Mol Sci 2022; 23:ijms23158814. [PMID: 35955946 PMCID: PMC9369404 DOI: 10.3390/ijms23158814] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/21/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Being different multifactorial forms of psychopathology, aggression, depression and suicidal behavior, which is considered to be violent aggression directed against the self, have principal neurobiological links: preclinical and clinical evidence associates depression, aggression and suicidal behavior with dysregulation in central serotonergic (5-HT) neurotransmission. The implication of different types of 5-HT receptors in the genetic and epigenetic mechanisms of aggression, depression and suicidality has been well recognized. In this review, we consider and compare the orchestra of 5-HT receptors involved in these severe psychopathologies. Specifically, it concentrates on the role of 5-HT1A, 5-HT1B, 5-HT2A, 5-HT2B, 5-HT2C, 5-HT3 and 5-HT7 receptors in the mechanisms underlying the predisposition to aggression, depression and suicidal behavior. The review provides converging lines of evidence that: (1) depression-related 5-HT receptors include those receptors with pro-depressive properties (5-HT2A, 5-HT3 and 5-HT7) as well as those providing an antidepressant effect (5-HT1A, 5-HT1B, 5-HT2C subtypes). (2) Aggression-related 5-HT receptors are identical to depression-related 5-HT receptors with the exception of 5-HT7 receptors. Activation of 5-HT1A, 5-HT1B, 5-HT2A, 5-HT2C receptors attenuate aggressiveness, whereas agonists of 5-HT3 intensify aggressive behavior.
Collapse
|
36
|
Bidirectional two-sample Mendelian randomization analysis identifies causal associations between relative carbohydrate intake and depression. Nat Hum Behav 2022; 6:1569-1576. [DOI: 10.1038/s41562-022-01412-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/15/2022] [Indexed: 02/06/2023]
|
37
|
Collins HM, Pinacho R, Ozdemir D, Bannerman DM, Sharp T. Effect of selective serotonin reuptake inhibitor discontinuation on anxiety-like behaviours in mice. J Psychopharmacol 2022; 36:794-805. [PMID: 35607713 PMCID: PMC9247435 DOI: 10.1177/02698811221093032] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Abrupt cessation of therapy with a selective serotonin reuptake inhibitor (SSRI) is associated with a discontinuation syndrome, typified by numerous disabling symptoms, including anxiety. Surprisingly, little is known of the behavioural effect of SSRI discontinuation in animals. AIM Here, the effect of SSRI discontinuation on anxiety-like behaviour was systematically investigated in mice. METHODS Experiments were based on a three-arm experimental design comprising saline, continued SSRI and discontinued SSRI. Mice were assessed 2 days after SSRI discontinuation over a 5-day period using the elevated plus maze (EPM) and other anxiety tests. RESULTS An exploratory experiment found cessation of paroxetine (12 days) was associated with decreased open-arm exploration and reduced total distance travelled, in male but not female mice. Follow-up studies confirmed a discontinuation effect on the EPM in male mice after paroxetine (12 days) and also citalopram (12 days). Mice receiving continued paroxetine (but not citalopram) also showed decreased open-arm exploration but this was dissociable from the effects of discontinuation. The discontinuation response to paroxetine did not strengthen after 28 days of treatment but was absent after 7 days of treatment. A discontinuation response was not discernible in other anxiety and fear-learning tests applied 3-5 days after treatment cessation. Finally, discontinuation effects on the EPM were typically associated with decreased locomotion on the test. However, separate locomotor testing implicated anxiety-provoked behavioural inhibition rather than a general reduction in motor activity. CONCLUSION Overall, this study provides evidence for a short-lasting behavioural discontinuation response to cessation of SSRI treatment in mice.
Collapse
Affiliation(s)
- Helen M Collins
- Department of Pharmacology,
University of Oxford, Oxford, UK,Department of Experimental
Psychology, University of Oxford, Oxford, UK
| | - Raquel Pinacho
- Department of Pharmacology,
University of Oxford, Oxford, UK,Department of Experimental
Psychology, University of Oxford, Oxford, UK
| | - Dersu Ozdemir
- Department of Pharmacology,
University of Oxford, Oxford, UK
| | - David M Bannerman
- Department of Experimental
Psychology, University of Oxford, Oxford, UK
| | - Trevor Sharp
- Department of Pharmacology,
University of Oxford, Oxford, UK,Trevor Sharp, Department of
Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT,
UK.
| |
Collapse
|
38
|
Zhang S, Wu L, Zhang M, He K, Wang X, Lin Y, Li S, Chen J. Occlusal Disharmony-A Potential Factor Promoting Depression in a Rat Model. Brain Sci 2022; 12:brainsci12060747. [PMID: 35741632 PMCID: PMC9221239 DOI: 10.3390/brainsci12060747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/13/2022] [Accepted: 06/03/2022] [Indexed: 02/04/2023] Open
Abstract
Objectives: Patients with occlusal disharmony (OD) may be susceptible to depression. The hypothalamus−pituitary−adrenal axis, 5-HT and 5HT2AR in the prefrontal cortex (PFC), amygdala, and hippocampus are involved in the modulation of emotion and depression. This study investigated whether OD affects the HPA axis and 5-HT system and, subsequently, produces depression-like behaviors in rats. Materials and methods: OD was produced by removing 0.5 and 0.25 mm of hard tissue from the cusps of the maxillary molars in randomly selected sides of Sprague−Dawley rats. CUS involved exposure to 2 different stressors per day for 35 days. OD-, CUS-, and OD + CUS-treated groups and an untreated control group were compared in terms of behavior, endocrine status and brain histology. Results: There were significant differences among the four groups in the behavior tests (p < 0.05), especially in the sucrose preference test, where there was a significant decrease in the OD group compared to the control group. ACTH and CORT concentrations were significantly higher in the OD + CUS group than the control group (p < 0.05). Expression of GR and 5-HT2AR in the PFC, amygdala and hippocampal CA1 was significantly higher in the OD, CUS and OD + CUS groups than the control group (p < 0.05). Conclusion: OD promotes depression-like behaviors through peripheral and central pathways via the HPA axis, GR and 5-HT system.
Collapse
Affiliation(s)
- Sihui Zhang
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350004, China; (S.Z.); (L.W.); (M.Z.); (K.H.); (Y.L.)
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350004, China; (X.W.); (S.L.)
| | - Ling Wu
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350004, China; (S.Z.); (L.W.); (M.Z.); (K.H.); (Y.L.)
| | - Mi Zhang
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350004, China; (S.Z.); (L.W.); (M.Z.); (K.H.); (Y.L.)
| | - Kaixun He
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350004, China; (S.Z.); (L.W.); (M.Z.); (K.H.); (Y.L.)
| | - Xudong Wang
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350004, China; (X.W.); (S.L.)
| | - Yuxuan Lin
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350004, China; (S.Z.); (L.W.); (M.Z.); (K.H.); (Y.L.)
| | - Shuxian Li
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350004, China; (X.W.); (S.L.)
| | - Jiang Chen
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350004, China; (S.Z.); (L.W.); (M.Z.); (K.H.); (Y.L.)
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350004, China; (X.W.); (S.L.)
- Correspondence:
| |
Collapse
|
39
|
Dysfunctional Heteroreceptor Complexes as Novel Targets for the Treatment of Major Depressive and Anxiety Disorders. Cells 2022; 11:cells11111826. [PMID: 35681521 PMCID: PMC9180493 DOI: 10.3390/cells11111826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/10/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023] Open
Abstract
Among mental diseases, major depressive disorder (MDD) and anxiety deserve a special place due to their high prevalence and their negative impact both on society and patients suffering from these disorders. Consequently, the development of novel strategies designed to treat them quickly and efficiently, without or at least having limited side effects, is considered a highly important goal. Growing evidence indicates that emerging properties are developed on recognition, trafficking, and signaling of G-protein coupled receptors (GPCRs) upon their heteromerization with other types of GPCRs, receptor tyrosine kinases, and ionotropic receptors such as N-methyl-D-aspartate (NMDA) receptors. Therefore, to develop new treatments for MDD and anxiety, it will be important to identify the most vulnerable heteroreceptor complexes involved in MDD and anxiety. This review focuses on how GPCRs, especially serotonin, dopamine, galanin, and opioid heteroreceptor complexes, modulate synaptic and volume transmission in the limbic networks of the brain. We attempt to provide information showing how these emerging concepts can contribute to finding new ways to treat both MDD and anxiety disorders.
Collapse
|
40
|
Santana IGC, Almeida LDS, Moreira LKDS, de Carvalho FS, Menegatti R, da Rocha ALB, Mazurok TA, Vaz BG, Lião LM, Brito AF, Fajemiroye JO, Costa EA, Carvalho PG. Structure-activity relationship of three new piperazine derivates with anxiolytic-like and antidepressant-like effects. Can J Physiol Pharmacol 2022; 100:521-533. [PMID: 35395172 DOI: 10.1139/cjpp-2021-0729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Anxiety and depression are common mental disorders affecting millions of people worldwide. Unsatisfactory clinical outcomes with the use of the available pharmacological interventions among some patients demand newer drugs with proven efficacy, safety, and tolerability profile. In this study, the LQFM211, LQFM213, and LQFM214 were designed from the piperazine scaffold and administered orally in mice. These mice were later evaluated in the open field, elevated plus maze, and forced swimming tests to assess the exploratory, anxiolytic, and antidepressant-like activities, respectively. The mechanism of action of these new derivatives was evaluated using Flumazenil (benzodiazepine antagonist) and WAY100635 (5-HT1A receptor antagonist). Unlike LQFM214, the LQFM211 and LQFM213 elicited anxiolytic and antidepressant-like effects. The blockade of the effect of LQFM213 by WAY100635 suggests the involvement of the serotonergic pathway. Keywords: anxiety, behavioral pharmacology, depression, medicinal chemistry.
Collapse
Affiliation(s)
| | | | | | | | - Ricardo Menegatti
- Universidade Federal de Goias, 67824, Faculty of Pharmacy, Goiania, GO, Brazil;
| | | | | | - Boniek Gontijo Vaz
- Universidade Federal de Goias, 67824, Chemistry Institute, Goiania, GO, Brazil;
| | - Luciano Morais Lião
- Universidade Federal de Goias, 67824, Chemistry Institute, Goiania, GO, Brazil;
| | - Adriane Ferreira Brito
- Goiânia Flamboyant Campus, Goiânia, Goiás, Brazil.,Universidade Federal de Goias, 67824, Department of Pharmacology, Goiania, GO, Brazil;
| | - James O Fajemiroye
- Universidade Federal de Goias, 67824, Department of Pharmacology, Goiania, GO, Brazil;
| | - E A Costa
- Universidade Federal de Goias, 67824, Goiania, GO, Brazil;
| | | |
Collapse
|
41
|
Moreira LKDS, Silva RR, da Silva DM, Mendes MAS, de Brito AF, de Carvalho FS, Sanz G, Rodrigues MF, da Silva ACG, Thomaz DV, de Oliveira V, Vaz BG, Lião LM, Valadares MC, Gil EDS, Costa EA, Noël F, Menegatti R. Anxiolytic- and antidepressant-like effects of new phenylpiperazine derivative LQFM005 and its hydroxylated metabolite in mice. Behav Brain Res 2022; 417:113582. [PMID: 34536431 DOI: 10.1016/j.bbr.2021.113582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/26/2021] [Accepted: 09/10/2021] [Indexed: 11/19/2022]
Abstract
The current treatments available for anxiety and depression are only palliative. Full remission has remained elusive, characterizing unmet medical needs. In the scope of an academic drug discovery program, we describe here the design, synthesis, in vitro metabolism prediction and pharmacological characterization of a new piperazine compound, 1-(4-methoxyphenyl)-4-((1-phenyl-1H-pyrazol-4-yl)methyl)piperazine (LQFM005), and of its main putative metabolite, 4-(4-((4-(4-methoxyphenyl)piperazin-1-yl)methyl)- 1H-pyrazol-1-yl)phenol (LQFM235). The production of the metabolite was initially performed by in vitro biotransformation of LQFM005 using Aspergillus candidus and then by chemical synthesis. Oral administration of either 12 or 24 µmol/kg LQFM005 to mice did not affect spontaneous locomotor activity but increased the time spent in the center of the open field. Both LQFM005 and LQFM235 (24 µmol/kg) increased the time spent by the mice in the open arms of the elevated plus maze (EPM), a good indication of anxiolytic-like effect, and decreased the immobility time in the forced swimming test (FST), suggesting an antidepressant-like effect. The previous administration of WAY-100635 (a 5-HT1A antagonist) abolished the effects of LQFM005 in both EPM and FST. Binding experiments showed that LQFM005 and its metabolite bind to the 5-HT1A receptor with a moderate affinity (Ki around 5-9 µM). The two compounds are relatively safe, as indicated by cytotoxic assessment using the 3T3 fibroblast cell line and estimated LD50 around 600 mg/kg. In conclusion, oral administration of the newly synthesized phenylpiperazines produced anxiolytic- and antidepressant-like effects in behavioral tests, putatively in part through the activation of 5-HT1A receptors.
Collapse
Affiliation(s)
- Lorrane Kelle da Silva Moreira
- Laboratório de Farmacologia de Produtos Naturais e Sintéticos, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Campus Samambaia, Goiânia, GO, Brazil.
| | - Rafaela Ribeiro Silva
- Laboratório de Farmacologia Bioquímica e Molecular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Dayane Moreira da Silva
- Laboratório de Farmacologia de Produtos Naturais e Sintéticos, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Campus Samambaia, Goiânia, GO, Brazil
| | - Mirella Andrade Silva Mendes
- Laboratório de Química Farmacêutica Medicinal (LQFM), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Adriane Ferreira de Brito
- Laboratório de Farmacologia de Produtos Naturais e Sintéticos, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Campus Samambaia, Goiânia, GO, Brazil
| | - Flávio Souza de Carvalho
- Laboratório de Química Farmacêutica Medicinal (LQFM), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Germán Sanz
- Laboratório de Cromatografia e Espectrometria de Massas - LaCEM, Instituto de Química, Universidade Federal de Goiás, Campus Samambaia, Goiânia, GO, Brazil
| | - Marcella Ferreira Rodrigues
- Laboratório de Cromatografia e Espectrometria de Massas - LaCEM, Instituto de Química, Universidade Federal de Goiás, Campus Samambaia, Goiânia, GO, Brazil
| | - Artur Christian Garcia da Silva
- Laboratório de Ensino e Pesquisa em Toxicologia In vitro (ToxIn), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Douglas Vieira Thomaz
- Laboratório de Química Farmacêutica Medicinal (LQFM), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Valéria de Oliveira
- Laboratório de Química Farmacêutica Medicinal (LQFM), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Boniek Gontijo Vaz
- Laboratório de Cromatografia e Espectrometria de Massas - LaCEM, Instituto de Química, Universidade Federal de Goiás, Campus Samambaia, Goiânia, GO, Brazil
| | - Luciano Morais Lião
- Laboratório de Ressonância Magnética Nuclear, Instituto de Química, Universidade Federal de Goiás, Campus Samambaia, Goiânia, GO, Brazil
| | - Marize Campos Valadares
- Laboratório de Ensino e Pesquisa em Toxicologia In vitro (ToxIn), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Eric de Souza Gil
- Laboratório de Química Farmacêutica Medicinal (LQFM), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Elson Alves Costa
- Laboratório de Farmacologia de Produtos Naturais e Sintéticos, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Campus Samambaia, Goiânia, GO, Brazil
| | - François Noël
- Laboratório de Farmacologia Bioquímica e Molecular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ricardo Menegatti
- Laboratório de Química Farmacêutica Medicinal (LQFM), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| |
Collapse
|
42
|
Flores-Burgess A, Millón C, Gago B, García-Durán L, Cantero-García N, Puigcerver A, Narváez JA, Fuxe K, Santín L, Díaz-Cabiale Z. Galanin (1-15) Enhances the Behavioral Effects of Fluoxetine in the Olfactory Bulbectomy Rat, Suggesting a New Augmentation Strategy in Depression. Int J Neuropsychopharmacol 2021; 25:307-318. [PMID: 34891163 PMCID: PMC9017770 DOI: 10.1093/ijnp/pyab089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 10/28/2021] [Accepted: 12/07/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Selective serotonergic reuptake inhibitors, including fluoxetine (FLX), are the most commonly used for the treatment of major depression. However, they are effective for remission in only 30% of patients. Recently, we observed that Galanin (1-15) [GAL(1-15)] enhanced the antidepressant effects of FLX in naïve animals, suggesting a new augmentation strategy in depression. METHODS We have analyzed in an animal model of depression, the olfactory bulbectomy (OBX) rats, the effect of GAL(1-15) on FLX-mediated responses in the forced swimming test and the sucrose preference test and the involvement of GAL receptor 2 with its antagonist, M871. We have also studied the corticosterone levels in OBX after the coadministration of GAL(1-15) with FLX. Moreover, we studied whether the effects of GAL(1-15) on FLX actions were mediated via auto- and heteroreceptor 5-HT1A (5-HT1AR), analyzing the binding characteristics, mRNA levels, and functionality of 5-HT1AR in the dorsal hippocampus. RESULTS GAL(1-15) enhances the antidepressant-like effects induced by FLX in OBX animals in the forced swimming test and the sucrose preference test. The involvement of the GALR2 was demonstrated with M871. Importantly, the mechanism underlying the GAL(1-15)/FLX interactions in the OBX animals involves the 5-HT1AR in the hippocampus at the plasma membrane (increase of affinity and density of 5HT1AR in the DG) and transcriptional (increase of 5HT1AR mRNA levels in DG and CA1) levels. Besides, the coadministration of GAL(1-15) and FLX also reduced OBX-increased corticosterone levels. CONCLUSIONS The results open the possibility to use GAL(1-15) in combination with FLX as a novel strategy for the treatment of depression.
Collapse
Affiliation(s)
- Antonio Flores-Burgess
- Faculty of Medicine, University of Málaga, Institute of Biomedical Research of Málaga, Málaga, Spain
| | - Carmelo Millón
- Faculty of Medicine, University of Málaga, Institute of Biomedical Research of Málaga, Málaga, Spain
| | - Belen Gago
- Faculty of Medicine, University of Málaga, Institute of Biomedical Research of Málaga, Málaga, Spain
| | - Laura García-Durán
- Faculty of Medicine, University of Málaga, Institute of Biomedical Research of Málaga, Málaga, Spain
| | - Noelia Cantero-García
- Faculty of Medicine, University of Málaga, Institute of Biomedical Research of Málaga, Málaga, Spain
| | - Araceli Puigcerver
- Faculty of Psychology ,University of Málaga, Institute of Biomedical Research of Málaga, Málaga, Spain
| | - José Angel Narváez
- Faculty of Medicine, University of Málaga, Institute of Biomedical Research of Málaga, Málaga, Spain
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Luis Santín
- Faculty of Medicine, University of Málaga, Institute of Biomedical Research of Málaga, Málaga, Spain
| | - Zaida Díaz-Cabiale
- Faculty of Medicine, University of Málaga, Institute of Biomedical Research of Málaga, Málaga, Spain,Correspondence: Z. Díaz-Cabiale, PhD, Department of Physiology, Faculty of Medicine, University of Málaga, Campus de Teatinos s/n. 29080 Málaga, Spain ()
| |
Collapse
|
43
|
Keeler JL, Treasure J, Juruena MF, Kan C, Himmerich H. Ketamine as a Treatment for Anorexia Nervosa: A Narrative Review. Nutrients 2021; 13:4158. [PMID: 34836413 PMCID: PMC8625822 DOI: 10.3390/nu13114158] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 02/05/2023] Open
Abstract
Anorexia nervosa (AN) is a highly complex disorder to treat, especially in severe and enduring cases. Whilst the precise aetiology of the disorder is uncertain, malnutrition and weight loss can contribute to reductions in grey and white matter of the brain, impairments in neuroplasticity and neurogenesis and difficulties with cognitive flexibility, memory and learning. Depression is highly comorbid in AN and may be a barrier to recovery. However, traditional antidepressants are often ineffective in alleviating depressive symptoms in underweight patients with AN. There is an urgent need for new treatment approaches for AN. This review gives a conceptual overview for the treatment of AN with ketamine. Ketamine has rapid antidepressant effects, which are hypothesised to occur via increases in glutamate, with sequelae including increased neuroplasticity, neurogenesis and synaptogenesis. This article provides an overview of the use of ketamine for common psychiatric comorbidities of AN and discusses particular safety concerns and side effects. Potential avenues for future research and specific methodological considerations are explored. Overall, there appears to be ample theoretical background, via several potential mechanisms, that warrant the exploration of ketamine as a treatment for adults with AN.
Collapse
Affiliation(s)
- Johanna Louise Keeler
- Section of Eating Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE5 8AF, UK; (J.T.); (H.H.)
| | - Janet Treasure
- Section of Eating Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE5 8AF, UK; (J.T.); (H.H.)
- South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Monks Orchard Road, Beckenham BR3 3BX, UK;
| | - Mario F. Juruena
- South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Monks Orchard Road, Beckenham BR3 3BX, UK;
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE5 8AF, UK
| | - Carol Kan
- Eating Disorder Service, Central and North West London NHS Foundation Trust, 1 Nightingale Place, Kensington & Chelsea, London SW10 9NG, UK;
| | - Hubertus Himmerich
- Section of Eating Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE5 8AF, UK; (J.T.); (H.H.)
- South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Monks Orchard Road, Beckenham BR3 3BX, UK;
| |
Collapse
|
44
|
Lee JS, Lee SB, Kim DW, Shin N, Jeong SJ, Yang CH, Son CG. Social isolation-related depression accelerates ethanol intake via microglia-derived neuroinflammation. SCIENCE ADVANCES 2021; 7:eabj3400. [PMID: 34739315 PMCID: PMC8570606 DOI: 10.1126/sciadv.abj3400] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Social isolation is common in modern society and is a contributor to depressive disorders. People with depression are highly vulnerable to alcohol use, and abusive alcohol consumption is a well-known obstacle to treating depressive disorders. Using a mouse model involving isolation stress (IS) and/or ethanol intake, we investigated the mutual influence between IS-derived depressive and ethanol-seeking behaviors along with the underlying mechanisms. IS increased ethanol craving, which robustly exacerbated depressive-like behaviors. Ethanol intake activated the mesolimbic dopaminergic system, as evidenced by dopamine/tyrosine hydroxylase double-positive signals in the ventral tegmental area and c-Fos activity in the nucleus accumbens. IS-induced ethanol intake also reduced serotonergic activity, via microglial hyperactivation in raphe nuclei, that was notably attenuated by a microglial inhibitor (minocycline). Our study demonstrated that microglial activation is a key mediator in the vicious cycle between depression and alcohol consumption. We also propose that dopaminergic reward might be involved in this pathogenicity.
Collapse
Affiliation(s)
- Jin-Seok Lee
- Institute of Bioscience & Integrative Medicine, Dunsan Hospital of Daejeon University, Daejeon, Republic of Korea
| | - Sung-Bae Lee
- Institute of Bioscience & Integrative Medicine, Dunsan Hospital of Daejeon University, Daejeon, Republic of Korea
| | - Dong-Woon Kim
- Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Nara Shin
- Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Seon-Ju Jeong
- Department of Physiology, College of Korean Medicine, Daegu Haany University, Daegu, Republic of Korea
| | - Chae-Ha Yang
- Department of Physiology, College of Korean Medicine, Daegu Haany University, Daegu, Republic of Korea
| | - Chang-Gue Son
- Institute of Bioscience & Integrative Medicine, Dunsan Hospital of Daejeon University, Daejeon, Republic of Korea
| |
Collapse
|
45
|
Galenko-Yaroshevsky PA, Nechepurenko AA, Pokrovskaya TG, Shimonovsky NL, Dukhanin AS, Suzdalev KF, Maslova PD, Makhnova NM, Shneivais VV, Abushkevich VG, Zelenskaya AV, Seletskaya VV, Ahedzhak-Naguse SK, Korotkov KG. Role of indole derivative SS-68 in increasing the frequency range of cardiac rhythm control (reflex stimulation of the sinoatrial node). RESEARCH RESULTS IN PHARMACOLOGY 2021. [DOI: 10.3897/rrpharmacology.7.75337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: Cardiac pacing is indicated for sick sinus syndrome. It is performed with a pacemaker via electrodes implanted in the heart. This technique has several disadvantages. The search for alternative methods of cardiac pacing is underway. One of them is control of heart rhythm through stimulation of the tragus.
Objective: To perform the reflex stimulation of the sinoatrial node and to study the influence of the SS-68 substance on it.
Materials and methods: Two electrodes were fixed in the reflexogenic zone of rabbits’ auricles, volleys of electrical impulses from an electrical stimulator were applied to the electrodes, and the synchronization range of volley frequency and cardiac contractions was recorded. This range was re-recorded again after injecting the SS-68 substance (2-phenyl-1-(3-pyrrolidine-1-cyclopropyl)-1H-indole hydrochloride) intravenously at a dose of 50 µg/kg. In other experiments on frogs in a high-frequency electromagnetic field, the process of excitation of the area of the medulla oblongata associated with the heart rhythm was visualized. After the application of SS-68 (50 μM) to the surface of this zone, the process of its excitation was recorded.
Results and discussion: Stimulation of the auricular reflexogenic zone of rabbits produced a synchronization of volley frequency and heart rate in the range from 173.5 ± 2.0 to 214.0 ± 1.8 per minute. SS-68 extended this range from 168.2 ± 1.9 to 219.4 ± 1.5 per minute. In the frog’s medulla oblongata, an area synchronous to the heart rhythm glowed in the high-frequency electromagnetic field. SS-68 increased the area of glow by 131.0%.
Conclusion: The substance SS-68 increases the frequency range of heart rhythm control by activating reflex stimulation of the sinoatrial node. The main point of application of SS-68 is the medulla oblongata. Glow in the high-frequency electromagnetic field reflects the process of neuron excitation. The increase in the glow zone under the influence of SS-68 indicates synchronously excited neurons, which leads to the assimilation of the central heart rhythm generation by the sinoatrial node.
Collapse
|
46
|
5-HT Receptors and the Development of New Antidepressants. Int J Mol Sci 2021; 22:ijms22169015. [PMID: 34445721 PMCID: PMC8396477 DOI: 10.3390/ijms22169015] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 02/06/2023] Open
Abstract
Serotonin modulates several physiological and cognitive pathways throughout the human body that affect emotions, memory, sleep, and thermal regulation. The complex nature of the serotonergic system and interactions with other neurochemical systems indicate that the development of depression may be mediated by various pathomechanisms, the common denominator of which is undoubtedly the disturbed transmission in central 5-HT synapses. Therefore, the deliberate pharmacological modulation of serotonergic transmission in the brain seems to be one of the most appropriate strategies for the search for new antidepressants. As discussed in this review, the serotonergic system offers great potential for the development of new antidepressant therapies based on the combination of SERT inhibition with different pharmacological activity towards the 5-HT system. The aim of this article is to summarize the search for new antidepressants in recent years, focusing primarily on the possibility of benefiting from interactions with various 5-HT receptors in the pharmacotherapy of depression.
Collapse
|
47
|
Serotonin Heteroreceptor Complexes and Their Integration of Signals in Neurons and Astroglia-Relevance for Mental Diseases. Cells 2021; 10:cells10081902. [PMID: 34440670 PMCID: PMC8392445 DOI: 10.3390/cells10081902] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/16/2021] [Accepted: 07/23/2021] [Indexed: 12/28/2022] Open
Abstract
The heteroreceptor complexes present a novel biological principle for signal integration. These complexes and their allosteric receptor-receptor interactions are bidirectional and novel targets for treatment of CNS diseases including mental diseases. The existence of D2R-5-HT2AR heterocomplexes can help explain the anti-schizophrenic effects of atypical antipsychotic drugs not only based on blockade of 5-HT2AR and of D2R in higher doses but also based on blocking the allosteric enhancement of D2R protomer signaling by 5-HT2AR protomer activation. This research opens a new understanding of the integration of DA and 5-HT signals released from DA and 5-HT nerve terminal networks. The biological principle of forming 5-HT and other heteroreceptor complexes in the brain also help understand the mechanism of action for especially the 5-HT hallucinogens, including putative positive effects of e.g., psilocybin and the indicated prosocial and anti-stress actions of MDMA (ecstasy). The GalR1-GalR2 heterodimer and the putative GalR1-GalR2-5-HT1 heteroreceptor complexes are targets for Galanin N-terminal fragment Gal (1-15), a major modulator of emotional networks in models of mental disease. GPCR-receptor tyrosine kinase (RTK) heteroreceptor complexes can operate through transactivation of FGFR1 via allosteric mechanisms and indirect interactions over GPCR intracellular pathways involving protein kinase Src which produces tyrosine phosphorylation of the RTK. The exciting discovery was made that several antidepressant drugs such as TCAs and SSRIs as well as the fast-acting antidepressant drug ketamine can directly bind to the TrkB receptor and provide a novel mechanism for their antidepressant actions. Understanding the role of astrocytes and their allosteric receptor-receptor interactions in modulating forebrain glutamate synapses with impact on dorsal raphe-forebrain serotonin neurons is also of high relevance for research on major depressive disorder.
Collapse
|
48
|
Nakatsuka N, Heard KJ, Faillétaz A, Momotenko D, Vörös J, Gage FH, Vadodaria KC. Sensing serotonin secreted from human serotonergic neurons using aptamer-modified nanopipettes. Mol Psychiatry 2021; 26:2753-2763. [PMID: 33767349 PMCID: PMC9997689 DOI: 10.1038/s41380-021-01066-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/17/2021] [Accepted: 03/11/2021] [Indexed: 02/01/2023]
Abstract
The serotonergic system in the human brain modulates several physiological processes, and altered serotonergic neurotransmission has been implicated in the neuropathology of several psychiatric disorders. The study of serotonergic neurotransmission in psychiatry has long been restricted to animal models, but advances in cell reprogramming technology have enabled the generation of serotonergic neurons from patient-induced pluripotent stem cells (iPSCs). While iPSC-derived human serotonergic neurons offer the possibility to study serotonin (5-HT) release and uptake, particularly by 5-HT-modulating drugs such as selective serotonin reuptake inhibitors (SSRIs), a major limitation is the inability to reliably quantify 5-HT secreted from neurons in vitro. Herein, we address this technical gap via a novel sensing technology that couples 5-HT-specific DNA aptamers into nanopores (glass nanopipettes) with orifices of ~10 nm to detect 5-HT in complex neuronal culture medium with higher selectivity, sensitivity, and stability than existing methods. The 5-HT aptamers undergo conformational rearrangement upon target capture and serve as gatekeepers of ionic flux through the nanopipette opening. We generated human serotonergic neurons in vitro and detected secreted 5-HT using aptamer-coated nanopipettes in a low nanomolar range, with the possibility of detecting significantly lower (picomolar) concentrations. Furthermore, as a proof of concept, we treated human serotonergic neurons in vitro with the SSRI citalopram and detected a significant increase in extracellular 5-HT using the aptamer-modified nanopipettes. We demonstrate the utility of such methods for 5-HT detection, raising the possibility of fast quantification of neurotransmitters secreted from patient-derived live neuronal cells.
Collapse
Affiliation(s)
- Nako Nakatsuka
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Zurich, Switzerland
| | - Kelly J Heard
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Alix Faillétaz
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Zurich, Switzerland
| | - Dmitry Momotenko
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Zurich, Switzerland
| | - János Vörös
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Zurich, Switzerland
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Krishna C Vadodaria
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
49
|
Li L, Zhang LZ, He ZX, Ma H, Zhang YT, Xun YF, Yuan W, Hou WJ, Li YT, Lv ZJ, Jia R, Tai FD. Dorsal raphe nucleus to anterior cingulate cortex 5-HTergic neural circuit modulates consolation and sociability. eLife 2021; 10:67638. [PMID: 34080539 PMCID: PMC8213405 DOI: 10.7554/elife.67638] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Consolation is a common response to the distress of others in humans and some social animals, but the neural mechanisms underlying this behavior are not well characterized. By using socially monogamous mandarin voles, we found that optogenetic or chemogenetic inhibition of 5-HTergic neurons in the dorsal raphe nucleus (DR) or optogenetic inhibition of serotonin (5-HT) terminals in the anterior cingulate cortex (ACC) significantly decreased allogrooming time in the consolation test and reduced sociability in the three-chamber test. The release of 5-HT within the ACC and the activity of DR neurons were significantly increased during allogrooming, sniffing, and social approaching. Finally, we found that the activation of 5-HT1A receptors in the ACC was sufficient to reverse consolation and sociability deficits induced by the chemogenetic inhibition of 5-HTergic neurons in the DR. Our study provided the first direct evidence that DR-ACC 5-HTergic neural circuit is implicated in consolation-like behaviors and sociability.
Collapse
Affiliation(s)
- Laifu Li
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China.,College of Life Sciences, Nanyang Normal University, Nanyang, China
| | - Li-Zi Zhang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Zhi-Xiong He
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Huan Ma
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yu-Ting Zhang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yu-Feng Xun
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Wei Yuan
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China.,Provincial Key Laboratory of Acupuncture and Medications, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Wen-Juan Hou
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yi-Tong Li
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Zi-Jian Lv
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Rui Jia
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Fa-Dao Tai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
50
|
Amigo J, Garro-Martinez E, Vidal Casado R, Compan V, Pilar-Cuéllar F, Pazos A, Díaz A, Castro E. 5-HT 4 Receptors Are Not Involved in the Effects of Fluoxetine in the Corticosterone Model of Depression. ACS Chem Neurosci 2021; 12:2036-2044. [PMID: 33974408 PMCID: PMC8459452 DOI: 10.1021/acschemneuro.1c00158] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
![]()
Clinical
and preclinical studies report the implication of 5-hydroxytryptamine
4 receptors (5-HT4Rs) in depression and anxiety. Here,
we tested whether the absence of 5-HT4Rs influences the response to
the antidepressant fluoxetine in mice subjected to chronic corticosterone
administration, an animal model of depression and anxiety. Therefore,
the effects of chronic administration of fluoxetine in corticosterone-treated
wild-type (WT) and 5-HT4R knockout (KO) mice were evaluated
in the open-field and novelty suppressed feeding tests. As 5-HT1A receptor (5-HT1AR) and brain-derived neurotrophic
factor (BDNF) are critically involved in depression and anxiety, we
further evaluated 5-HT1A receptor functionality by [35S]GTPγS autoradiography and BDNF mRNA expression by in situ hybridization techniques. We found that 5-HT4R KO and WT mice displayed anxiety- and depressive-like behavior
following chronic administration of corticosterone, as evidenced in
the open-field and novelty suppressed feeding tests. In the open-field,
a decreased central activity was observed in naïve and
corticosterone-treated mice of both genotypes following chronic fluoxetine
administration. In the novelty suppressed feeding test, a predictive
paradigm of antidepressant activity, chronic treatment with fluoxetine
reverted the latency to eat in both genotypes. The antidepressant
also potentiated the corticosterone-induced desensitization of the
5-HT1AR in the dorsal raphe nucleus. Further, chronic fluoxetine
increased BDNF mRNA expression in the dentate gyrus of the hippocampus
in corticosterone-treated mice of both genotypes. Therefore, our findings
indicate that the behavioral effects of fluoxetine in the corticosterone
model of depression and anxiety appear not to be dependent on 5-HT4Rs.
Collapse
Affiliation(s)
- Josep Amigo
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (Universidad de Cantabria, CSIC, SODERCAN), Departamento de Fisiología y Farmacología, Universidad de Cantabria, 39011 Santander, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Emilio Garro-Martinez
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (Universidad de Cantabria, CSIC, SODERCAN), Departamento de Fisiología y Farmacología, Universidad de Cantabria, 39011 Santander, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Rebeca Vidal Casado
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Red de Trastornos Adictivos del Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | - Fuencisla Pilar-Cuéllar
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (Universidad de Cantabria, CSIC, SODERCAN), Departamento de Fisiología y Farmacología, Universidad de Cantabria, 39011 Santander, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Angel Pazos
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (Universidad de Cantabria, CSIC, SODERCAN), Departamento de Fisiología y Farmacología, Universidad de Cantabria, 39011 Santander, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Alvaro Díaz
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (Universidad de Cantabria, CSIC, SODERCAN), Departamento de Fisiología y Farmacología, Universidad de Cantabria, 39011 Santander, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Elena Castro
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (Universidad de Cantabria, CSIC, SODERCAN), Departamento de Fisiología y Farmacología, Universidad de Cantabria, 39011 Santander, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|