1
|
Knoche M, Grosset-Grange L, Quero-García J, Alletru D, Boutaleb L. Cracking susceptibility of full-sibs of a cross of a cracking tolerant and cracking susceptible sweet cherry: Relation to cuticle characteristics, microcracking and calcium. PLoS One 2025; 20:e0316637. [PMID: 39752531 PMCID: PMC11698392 DOI: 10.1371/journal.pone.0316637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/15/2024] [Indexed: 01/06/2025] Open
Abstract
Rain cracking compromises quality and quantity of sweet cherries worldwide. Cracking susceptibility differs among genotypes. The objective was to (1) phenotype the progeny of a cross between a tolerant and a susceptible sweet cherry cultivar for cuticle mass per unit area, strain release on cuticle isolation, cuticular microcracking and calcium/dry mass ratio and (2) relate these characteristics to cracking susceptibilities evaluated in laboratory immersion assays and published multiyear field observations. Mass of the dewaxed cuticle per unit area and strain release upon cuticle isolation were significantly related to cracking susceptibility in lab or field. Cuticular microcracking in the stylar end region as indexed by infiltration with acridine orange was more severe in susceptible than in tolerant genotypes and significantly correlated with susceptibility to cracking in lab and field. The Ca/dry mass ratio was lower (-8%) for susceptible than for tolerant genotypes. Fruit that cracked early had less Ca than those that cracked later. Only the Ca/dry mass ratio of the stylar end region was significantly correlated with cracking susceptibility in the field. Based on stepwise regression analyses microcracking of the cuticle accounted for most of the cracking susceptibilities in field and lab (partial r2 = 0.331 to 0.338 for field vs. r2 = 0.326 to 0.453 for lab). The variability in cracking susceptibility accounted for increased to a r2 = 0.571 (lab) when adding mass of dewaxed cuticle, up to r2 = 0.421 (field) when adding the Ca/dry mass ratio in the stylar end region or up to r2 = 0.478 (field) when entering the strain release on isolation into the model. A protocol for phenotyping is suggested that allows larger progenies to be phenotyped for microcracking, DCM mass and strain release.
Collapse
Affiliation(s)
- Moritz Knoche
- Institute for Horticultural Production Systems, Leibniz University Hannover, Hannover, Germany
- INRAE, Biologie du Fruit et Pathologie, Université de Bordeaux, UMR 1332, Villenave d’Ornon, France
| | - Loise Grosset-Grange
- Institute for Horticultural Production Systems, Leibniz University Hannover, Hannover, Germany
- INRAE, Biologie du Fruit et Pathologie, Université de Bordeaux, UMR 1332, Villenave d’Ornon, France
| | - José Quero-García
- INRAE, Biologie du Fruit et Pathologie, Université de Bordeaux, UMR 1332, Villenave d’Ornon, France
| | - David Alletru
- INRAE, Biologie du Fruit et Pathologie, Université de Bordeaux, UMR 1332, Villenave d’Ornon, France
| | - Lina Boutaleb
- INRAE, Biologie du Fruit et Pathologie, Université de Bordeaux, UMR 1332, Villenave d’Ornon, France
| |
Collapse
|
2
|
Liu D, Zhou H, Huang H, Wang Q, Lin D, Liu S, Qin W, Xiao G. Role of the plum cuticle layer in influencing fruit texture and permeation during the salting process. Food Chem 2024; 469:142598. [PMID: 39733569 DOI: 10.1016/j.foodchem.2024.142598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 12/31/2024]
Abstract
'Tuogu' and 'Bingtang' plums display unique textural responses to salt curing, manifesting in volume reduction, surface wrinkling, and alterations in color and texture, alongside ongoing material exchange. Over a seven-day salting period, 'Tuogu' plums lost 14.9 % of their moisture, compared to 'Bingtang' plums' 24.8 %, with salt permeability rates of 5.0 % and 5.2 %, respectively. Cuticle analysis revealed that the dominant component of the cutin monomers in both fruits was fatty acids, accounting for over 90 %, while the wax composition was predominantly very long-chain alkanes and triterpenoids, also constituting over 90 %. 'Tuogu' plums, with their rich waxes and dense, thick cuticle, showed enhanced barrier properties against material exchange, whereas 'Bingtang' plums, with their abundant cutin monomers, exhibited increased elasticity and material exchange capacity.
Collapse
Affiliation(s)
- Dongjie Liu
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food of Ministry and Rural Affairs, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Haoyu Zhou
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food of Ministry and Rural Affairs, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Hua Huang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China.
| | - Qin Wang
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food of Ministry and Rural Affairs, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| | - Dehui Lin
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Shuxiang Liu
- School of Food Science, Sichuan Agricultural University, Ya'an 625000, Sichuan, China
| | - Wen Qin
- School of Food Science, Sichuan Agricultural University, Ya'an 625000, Sichuan, China
| | - Gengsheng Xiao
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food of Ministry and Rural Affairs, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| |
Collapse
|
3
|
Straube J, Hurtado G, Zeisler-Diehl V, Schreiber L, Knoche M. Cuticle deposition ceases during strawberry fruit development. BMC PLANT BIOLOGY 2024; 24:623. [PMID: 38951751 PMCID: PMC11218262 DOI: 10.1186/s12870-024-05327-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Ideally, the barrier properties of a fruit's cuticle persist throughout its development. This presents a challenge for strawberry fruit, with their rapid development and thin cuticles. The objective was to establish the developmental time course of cuticle deposition in strawberry fruit. RESULTS Fruit mass and surface area increase rapidly, with peak growth rate coinciding with the onset of ripening. On a whole-fruit basis, the masses of cutin and wax increase but on a unit surface-area basis, they decrease. The decrease is associated with marked increases in elastic strain. The expressions of cuticle-associated genes involved in transcriptional regulation (FaSHN1, FaSHN2, FaSHN3), synthesis of cutin (FaLACS2, FaGPAT3) and wax (FaCER1, FaKCS10, FaKCR1), and those involved in transport of cutin monomers and wax constituents (FaABCG11, FaABCG32) decreased until maturity. The only exceptions were FaLACS6 and FaGPAT6 that are presumably involved in cutin synthesis, and FaCER1 involved in wax synthesis. This result was consistent across five strawberry cultivars. Strawberry cutin consists mainly of C16 and C18 monomers, plus minor amounts of C19, C20, C22 and C24 monomers, ω-hydroxy acids, dihydroxy acids, epoxy acids, primary alcohols, carboxylic acids and dicarboxylic acids. The most abundant monomer is 10,16-dihydroxyhexadecanoic acid. Waxes comprise mainly long-chain fatty acids C29 to C46, with smaller amounts of C16 to C28. Wax constituents are carboxylic acids, primary alcohols, alkanes, aldehydes, sterols and esters. CONCLUSION The downregulation of cuticle deposition during development accounts for the marked cuticular strain, for the associated microcracking, and for their high susceptibility to the disorders of water soaking and cracking.
Collapse
Affiliation(s)
- Jannis Straube
- Institute of Horticultural Production Systems, Fruit Science Section, Leibniz University Hannover, Herrenhäuser Straße 2, Hannover, 30419, Germany
| | - Grecia Hurtado
- Institute of Horticultural Production Systems, Fruit Science Section, Leibniz University Hannover, Herrenhäuser Straße 2, Hannover, 30419, Germany
| | - Viktoria Zeisler-Diehl
- Department of Ecophysiology, Institute of Cellular and Molecular Botany (IZMB), University of Bonn, Kirschallee 1, Bonn, 53115, Germany
| | - Lukas Schreiber
- Department of Ecophysiology, Institute of Cellular and Molecular Botany (IZMB), University of Bonn, Kirschallee 1, Bonn, 53115, Germany
| | - Moritz Knoche
- Institute of Horticultural Production Systems, Fruit Science Section, Leibniz University Hannover, Herrenhäuser Straße 2, Hannover, 30419, Germany.
| |
Collapse
|
4
|
Tunstad SA, Bull ID, Rands SA, Whitney HM. The cuticular wax composition and crystal coverage of leaves and petals differ in a consistent manner between plant species. Open Biol 2024; 14:230430. [PMID: 38806146 PMCID: PMC11293435 DOI: 10.1098/rsob.230430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 05/30/2024] Open
Abstract
Both leaves and petals are covered in a cuticle, which itself contains and is covered by cuticular waxes. The waxes perform various roles in plants' lives, and the cuticular composition of leaves has received much attention. To date, the cuticular composition of petals has been largely ignored. Being the outermost boundary between the plant and the environment, the cuticle is the first point of contact between a flower and a pollinator, yet we know little about how plant-pollinator interactions shape its chemical composition. Here, we investigate the general structure and composition of floral cuticular waxes by analysing the cuticular composition of leaves and petals of 49 plant species, representing 19 orders and 27 families. We show that the flowers of plants from across the phylogenetic range are nearly devoid of wax crystals and that the total wax load of leaves in 90% of the species is higher than that of petals. The proportion of alkanes is higher, and the chain lengths of the aliphatic compounds are shorter in petals than in leaves. We argue these differences are a result of adaptation to the different roles leaves and petals play in plant biology.
Collapse
Affiliation(s)
| | - Ian D. Bull
- Organic Geochemistry Unit, School of Chemistry, University of Bristol, Bristol, UK
| | - Sean A. Rands
- School of Biological Sciences, University of Bristol, Bristol, UK
| | | |
Collapse
|
5
|
Balbontín C, Gutiérrez C, Schreiber L, Zeisler-Diehl VV, Marín JC, Urrutia V, Hirzel J, Figueroa CR. Alkane biosynthesis is promoted in methyl jasmonate-treated sweet cherry (Prunus avium) fruit cuticles. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:530-535. [PMID: 37515815 DOI: 10.1002/jsfa.12891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 07/31/2023]
Abstract
BACKGROUND The cuticle plays an important role in the survival of plants, and it is important to preserve the quality of fleshy fruits like sweet cherry. Plant hormones play a role in cuticle formation. In this sense, jasmonates have been shown to induce cuticle biosynthesis, but until today this has not been demonstrated in sweet cherry fruit. Therefore, the effect of exogenous methyl jasmonate (MeJA) application at the fruit set stage on the expression levels of cuticle synthesis-related genes and the wax composition of the isolated cuticle was studied in developing and ripe fruits of sweet cherry (Prunus avium 'Bing'), respectively. RESULTS MeJA treatment resulted in up-regulation of the cuticle biosynthesis-related gene expression, such as PaWINA, PaWINB, PaKCS1, PaKCS6, PaLACS1, PaLACS2, PaWS, and PaWBC11. These genes play a vital role in the elongation and transport of fatty acids, and wax biosynthesis. Analysis of cuticular components in ripe fruit showed an increase in long-chain linear aliphatic wax compounds, particularly C27, C28, C29, C30, and C31 alkanes. CONCLUSION Exogenous MeJA application at the fruit set stage of sweet cherry has a significant effect on the wax composition of the ripe fruit cuticle, particularly in terms of alkane biosynthesis. The results of this study may provide insights into the regulation of cuticle biosynthesis by jasmonates and be useful for improving fruit quality and storage life. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Cristián Balbontín
- Departamento de Producción Vegetal, Instituto de Investigaciones Agropecuarias, Chillán, Chile
| | - Camilo Gutiérrez
- Departamento de Ciencias Básicas, Universidad del Bío-Bío, Chillán, Chile
| | - Lukas Schreiber
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - Viktoria V Zeisler-Diehl
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - Juan C Marín
- Departamento de Ciencias Básicas, Universidad del Bío-Bío, Chillán, Chile
| | - Victoria Urrutia
- Departamento de Producción Vegetal, Instituto de Investigaciones Agropecuarias, Chillán, Chile
| | - Juan Hirzel
- Departamento de Producción Vegetal, Instituto de Investigaciones Agropecuarias, Chillán, Chile
| | - Carlos R Figueroa
- Laboratory of Plant Molecular Physiology, Institute of Biological Sciences, Campus Talca, Universidad de Talca, Talca, Chile
- Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile
| |
Collapse
|
6
|
Macias S, Yilmaz A, Kirma J, Moore SE, Woodside JV, Graham SF, Green BD. Non-targeted LC-MS/MS metabolomic profiling of human plasma uncovers a novel Mediterranean diet biomarker panel. Metabolomics 2023; 20:3. [PMID: 38066384 PMCID: PMC10709258 DOI: 10.1007/s11306-023-02058-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 10/18/2023] [Indexed: 12/18/2023]
Abstract
INTRODUCTION Consumption of a Mediterranean diet (MD) has established health benefits, and the identification of novel biomarkers could enable objective monitoring of dietary pattern adherence. OBJECTIVES The present investigation performed untargeted metabolomics on blood plasma from a controlled study of MD adherence, to identify novel blood-based metabolite biomarkers associated with the MD pattern, and to build a logistic regression model that could be used to characterise MD adherence. METHODS A hundred and thirty-five plasma samples from n = 58 patients collected at different time points were available. Using a 14-point scale MD Score (MDS) subjects were divided into 'high' or 'low' MDS adherence groups and liquid chromatography-mass spectrometry (LC-MS/MS) was applied for analysis. RESULTS The strongest association with MDS was pectenotoxin 2 seco acid (r = 0.53; ROC = 0.78), a non-toxic marine xenobiotic metabolite. Several lipids were useful biomarkers including eicosapentaenoic acid, the structurally related lysophospholipid (20:5(5Z,8Z,11Z,14Z,17Z)/0:0), a phosphatidylcholine (P-18:1(9Z)/16:0) and also xi-8-hydroxyhexadecanedioic acid. Two metabolites negatively correlated with MDS, these were the monoacylglycerides (0:0/16:1(9Z)/0:0) and (0:0/20:3(5Z,8Z,11Z)/0:0). By stepwise elimination we selected a panel of 3 highly discriminatory metabolites and developed a linear regression model which identified 'high MDS' individuals with high sensitivity and specificity [AUC (95% CI) 0.83 (0.76-0.97)]. CONCLUSION Our study highlights the utility of metabolomics as an approach for developing novel panels of dietary biomarkers. Quantitative profiling of these metabolites is required to validate their utility for evaluating dietary adherence.
Collapse
Affiliation(s)
- Shirin Macias
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Ali Yilmaz
- Metabolomics Department, Corewell Health Research Institute, 3811 W. 13 Mile Road, Royal Oak, MI, 48073, USA
| | - Joseph Kirma
- Michigan Medicine University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sarah E Moore
- Centre for Public Health, Queen's University Belfast, Belfast, BT12 6BA, UK
| | - Jayne V Woodside
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
- Centre for Public Health, Queen's University Belfast, Belfast, BT12 6BA, UK
| | - Stewart F Graham
- Metabolomics Department, Corewell Health Research Institute, 3811 W. 13 Mile Road, Royal Oak, MI, 48073, USA
- Department of Obstetrics and Gynaecology, Corewell Health William Beaumont University Hospital, 3601 W.13 Mile Road, Royal Oak, MI, 48073, USA
| | - Brian D Green
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
7
|
Wu S, Li X, Jiang J, Huang H, Cheng X, Li G, Shan Y, Zhu X. Reveal the relationship between the quality and the cuticle composition of Satsuma mandarin (Citrus unshiu) by postharvest heat treatment. J Food Sci 2023; 88:4879-4891. [PMID: 37876294 DOI: 10.1111/1750-3841.16803] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 09/08/2023] [Accepted: 09/29/2023] [Indexed: 10/26/2023]
Abstract
To investigate the influence of heat treatment (HT) on Satsuma mandarin fruit's postharvest quality and cuticle composition, we immersed the fruit for 3 min in hot water at 52°C and subsequently stored them at room temperature (25°C) for 28 days, and fruit quality parameters, such as good fruit rate, weight loss rate, firmness, total soluble solids, total titratable acidity, and ascorbic acid content, were monitored. Additionally, changes in the peel's cuticle composition were analyzed, and wax crystal morphologies on the fruit surface were examined using scanning electron microscopy (SEM). The findings revealed that appropriate HT effectively preserved fruit quality. The main compositions of wax and cutin on the fruit's surface remained consistent between the HT and the CK during storage. The total content of wax and cutin initially increased, peaking on the 14th day of storage, and then decreased, falling below the levels observed on day 0. Notably, the total amount of cutin in the HT group exceeded that of the control group. Specifically, ω-hydroxy fatty acids with mid-chain oxo groups and mid-oh-ω-hydroxy fatty acids constituted approximately 90% of the total cutin content. Moreover, the HT group exhibited higher (p < 0.05) total wax content in relation to the control. Fatty acids and alkanes were the predominant components, accounting for approximately 87.5% of the total wax. SEM analysis demonstrated that HT caused wax crystals to melt and redistribute, effectively filling wax gaps. It suggests that HT holds promising potential as a green, safe, and eco-friendly commercial treatment for preserving the postharvest quality of Satsuma mandarin. PRACTICAL APPLICATION: In this study, Satsuma citrus (Citrus unshiu) underwent heat treatment (HT) and was subsequently preserved at room temperature (25°C) for 28 days. The findings revealed that HT significantly improved fruit quality compared to the control group. These findings provide valuable insights into the advancement of eco-friendly and pollution-free citrus preservation methods, offering essential strategies and process parameters for their practical application.
Collapse
Affiliation(s)
- Sisi Wu
- Longping Branch, College of Biology, Hunan University, Changsha, China
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, China
| | - Xiang Li
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
- Hunan Province International Joint Laboratory on Fruits and Vegetables Processing Quality and Safety, Changsha, China
| | - Jing Jiang
- Longping Branch, College of Biology, Hunan University, Changsha, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, China
| | - Hua Huang
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, China
| | - Xiaomei Cheng
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, China
| | - Gaoyang Li
- Longping Branch, College of Biology, Hunan University, Changsha, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, China
| | - Yang Shan
- Longping Branch, College of Biology, Hunan University, Changsha, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, China
- Hunan Province International Joint Laboratory on Fruits and Vegetables Processing Quality and Safety, Changsha, China
| | - Xiangrong Zhu
- Longping Branch, College of Biology, Hunan University, Changsha, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, China
- Hunan Province International Joint Laboratory on Fruits and Vegetables Processing Quality and Safety, Changsha, China
| |
Collapse
|
8
|
Khanal BP, Bhattarai A, Aryal D, Knoche M. Neck shrivel in European plum is caused by cuticular microcracks, resulting from rapid lateral expansion of the neck late in development. PLANTA 2023; 258:62. [PMID: 37542542 PMCID: PMC10404172 DOI: 10.1007/s00425-023-04218-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/26/2023] [Indexed: 08/07/2023]
Abstract
MAIN CONCLUSION Susceptibility to neck shrivel in European plum is due to cuticular microcracking resulting from high surface area growth rates in the neck region, late in development. Susceptibility to the commercially important fruit disorder 'neck shrivel' differs among European plum cultivars. Radial cuticular microcracking occurs in the neck regions of susceptible cultivars, but not in non-susceptible ones, so would seem to be causal. However, the reason for the microcracking is unknown. The objective was to identify potential relationships between fruit growth pattern and microcracking incidence in the neck (proximal) and stylar (distal) ends of selected shrivel-susceptible and non-susceptible cultivars. Growth analysis revealed two allometric categories: The first category, the 'narrow-neck' cultivars, showed hypoallometric growth in the neck region (i.e., slower growth than in the region of maximum diameter) during early development (stages I + II). Later (during stage III) the neck region was 'filled out' by hyperallometric growth (i.e., faster than in the region of maximum diameter). The second category, the 'broad-neck' cultivars, had more symmetrical, allometric growth (all regions grew equally fast) throughout development. The narrow-neck cultivars exhibited extensive radial cuticular microcracking in the neck region, but little microcracking in the stylar region. In contrast, the broad-neck cultivars exhibited little microcracking overall, with no difference between the neck and stylar regions. Across all cultivars, a positive relationship was obtained for the level of microcracking in the neck region and the difference in allometric growth ratios between stage III and stages I + II. There were no similar relationships for the stylar region. The results demonstrate that accelerated stage III neck growth in the narrow-neck plum cultivars is associated with more microcracking and thus with more shrivel.
Collapse
Affiliation(s)
- Bishnu P Khanal
- Institute for Horticultural Production Systems, Leibniz University Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| | - Anil Bhattarai
- Institute for Horticultural Production Systems, Leibniz University Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| | - Divya Aryal
- Institute for Horticultural Production Systems, Leibniz University Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| | - Moritz Knoche
- Institute for Horticultural Production Systems, Leibniz University Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany.
| |
Collapse
|
9
|
Huang H, Wang L. Alteration of surface morphologies and chemical composition of cuticle in response to chilling injury in papaya (Carica papaya L.) after harvest. Food Chem 2023; 416:135751. [PMID: 36870151 DOI: 10.1016/j.foodchem.2023.135751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/12/2023] [Accepted: 02/17/2023] [Indexed: 03/02/2023]
Abstract
The alteration of surface microstructures and chemical composition in cuticle of papaya fruit in response to chilling stress were comparatively studied between cultivars of 'Risheng' and 'Suihuang' after harvest. Fruit surface was covered by fissured wax layers in both cultivars. The presence of granule crystalloids was cultivar dependent, with higher abundance in 'Risheng' and lower in 'Suihuang'. Various typical very-long-chain aliphatics i.e., fatty acids, aldehydes, n-alkanes, primary alcohols, and n-alkenes dominated waxes; and cutin monomers were prominently 9/10,16-dihydroxyhexadecanoic acid in papaya fruit cuticle. Chilling pitting symptom was accompanied by modification of granule crystalloids into flat appearance and decreased primary alcohols, fatty acids, and aldehydes in 'Risheng', but no evident changes in 'Suihuang'. The response of cuticle to chilling injury in papaya fruit might be not directly related to the overall amount of waxes and cutin monomers, but more likely to the alteration of appearance morphologies and chemical composition in cuticle.
Collapse
Affiliation(s)
- Hua Huang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, 510640, PR China.
| | - Ling Wang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
| |
Collapse
|
10
|
Ji D, Liu W, Jiang L, Chen T. Cuticles and postharvest life of tomato fruit: A rigid cover for aerial epidermis or a multifaceted guard of freshness? Food Chem 2023; 411:135484. [PMID: 36682164 DOI: 10.1016/j.foodchem.2023.135484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 01/20/2023]
Abstract
Fruit cuticle is a specialized cell wall hydrophobic architecture covering the aerial surfaces of fruit, which forms the interface between the fruit and its environment. As a specialized seed-bearing organ, fruit utilize cuticles as physical barriers, water permeation regulator and resistance to pathogens, thus appealing extensive research interests for its potential values in developing postharvest freshness-keeping strategies. Here, we provide an overview for the composition and functions of fruit cuticles, mainly focusing on its functions in mechanical support, water permeability barrier and protection over pathogens, further introduce key mechanisms implicated in fruit cuticle biosynthesis. Moreover, currently available state-of-art techniques for examining compositional diversity and architecture of fruit are also compared.
Collapse
Affiliation(s)
- Dongchao Ji
- School of Life Sciences and Medicine, Shandong University of Technology, Xincun West Road 266, Zhangdian District, Zibo, Shandong 255049, China; Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing 100093, China; University of Chinese Academy of Sciences, Yuquan Road 19(A), Shijingshan District, Beijing 100049, China
| | - Wei Liu
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing 100093, China; University of Chinese Academy of Sciences, Yuquan Road 19(A), Shijingshan District, Beijing 100049, China
| | - Libo Jiang
- School of Life Sciences and Medicine, Shandong University of Technology, Xincun West Road 266, Zhangdian District, Zibo, Shandong 255049, China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing 100093, China; University of Chinese Academy of Sciences, Yuquan Road 19(A), Shijingshan District, Beijing 100049, China; Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, Nanxincun 20, Xiangshan, Haidian District, Beijing 100093, China.
| |
Collapse
|
11
|
Ge S, Qin K, Ding S, Yang J, Jiang L, Qin Y, Wang R. Gas Chromatography-Mass Spectrometry Metabolite Analysis Combined with Transcriptomic and Proteomic Provide New Insights into Revealing Cuticle Formation during Pepper Development. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12383-12397. [PMID: 36148491 DOI: 10.1021/acs.jafc.2c04522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The cuticle plays an important role for the quality of pepper fruit. However, the molecular mechanism of cuticle formation in pepper fruit remains unclear. Our results showed that the wax was continuously accumulated during pepper development, while the cutin monomer first increased and then decreased. Hexadecanoic acid and 10,16-hydroxyhexadecanoic acid were the main components of wax and cutin, respectively. Combined with transcriptome and proteome, the formation patterns of wax and cutin polyester network for pepper cuticle was proposed. The 18 pairs of consistent expression genes and proteins involved in cuticle formation were revealed. Meanwhile, 12 key genes were screened from fatty acid biosynthesis, biosynthesis of unsaturated fatty acids, fatty acid elongation, cutin, suberine, and wax biosynthesis, glycerolipid metabolism, and transport pathway. This study would provide important candidate genes and theoretical basis for the molecular mechanism of cuticle formation, which is essential for the breeding of peppers.
Collapse
Affiliation(s)
- Shuai Ge
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| | - Keying Qin
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Shenghua Ding
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Jianfeng Yang
- Liuyang Hongxiu Agricultural Technology Co., Ltd., Liuyang 410300, China
| | - Liwen Jiang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yeyou Qin
- Hunan Tantanxiang Food Biotechnology Co., Ltd., Changsha 410128, China
| | - Rongrong Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
12
|
Huang H, Wang L, Qiu D, Lu Y. Chemical Composition of Cuticle and Barrier Properties to Transpiration in the Fruit of Clausena lansium (Lour.) Skeels. FRONTIERS IN PLANT SCIENCE 2022; 13:840061. [PMID: 35651771 PMCID: PMC9150773 DOI: 10.3389/fpls.2022.840061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/22/2022] [Indexed: 06/15/2023]
Abstract
The plant cuticle, as a lipid membrane covering aerial plant surfaces, functions primarily against uncontrolled water loss. Herein, the cuticle chemical composition and the transpiration of wampee fruit (Clausena lansium (Lour.) Skeels) at the green, turning, and yellow stages in cultivars of "Jixin" and "Tianhuangpi" were comprehensively studied. The coverage of wax and cutin monomers per unit of fruit surface area at the green stage was lower in "Jixin" than in "Tianhuangpi" and increased gradually during development. Cutin monomers accumulated ranging from 22.5 μg cm-2 (green) to 52.5 μg cm-2 (turning) in "Jixin" and from 36.5 μg cm-2 (green) to 81.7 μg cm-2 (yellow) in "Tianhuangpi." The total composition of waxes ranged between 6.0 μg cm-2 (green) and 11.1 μg cm-2 (turning) in "Jixin," while they increased from 7.4 μg cm-2 (green) to 16.7 μg cm-2 (yellow) in "Tianhuangpi." Cutin monomers were dominated by ω-, mid-dihydroxy fatty acids (over 40%), followed by multiple monomers of α,ω-dicarboxylic acids with or without added groups, α-monocarboxylic acids with or without ω- or mid-chain hydroxy or mid-epoxy groups, primary alcohols, and phenolics. The very-long-chain (VLC) aliphatic pattern of cuticular waxes was prominently composed of n-alkanes (ranging from 21.4% to 39.3% of total wax content), fatty acids, primary alcohols, and aldehydes. The cyclic waxes were dominated by triterpenoids (between 23.9 and 51.2%), sterols, and phenolics. Water loss in wampee fruit exhibited linear changes over time, indicating an overall monofunctional barrier to transpiration. Permeance for water in wampee fruit was higher at the green stage than at the yellow stage in both "Jixin" and "Tianhuangpi," which showed a negative correlation with the changes of VLC n-alkanes. The results showed the cuticular chemicals, including cutin monomers and waxes, in wampee fruit and further indicated the potential contributions of the cuticular chemical composition to the physiological functions in fruits.
Collapse
Affiliation(s)
- Hua Huang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Ling Wang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Diyang Qiu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Yusheng Lu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| |
Collapse
|
13
|
García-Coronado H, Tafolla-Arellano JC, Hernández-Oñate MÁ, Burgara-Estrella AJ, Robles-Parra JM, Tiznado-Hernández ME. Molecular Biology, Composition and Physiological Functions of Cuticle Lipids in Fleshy Fruits. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11091133. [PMID: 35567134 PMCID: PMC9099731 DOI: 10.3390/plants11091133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 05/27/2023]
Abstract
Fleshy fruits represent a valuable resource of economic and nutritional relevance for humanity. The plant cuticle is the external lipid layer covering the nonwoody aerial organs of land plants, and it is the first contact between fruits and the environment. It has been hypothesized that the cuticle plays a role in the development, ripening, quality, resistance to pathogen attack and postharvest shelf life of fleshy fruits. The cuticle's structure and composition change in response to the fruit's developmental stage, fruit physiology and different postharvest treatments. This review summarizes current information on the physiology and molecular mechanism of cuticle biosynthesis and composition changes during the development, ripening and postharvest stages of fleshy fruits. A discussion and analysis of studies regarding the relationship between cuticle composition, water loss reduction and maintaining fleshy fruits' postharvest quality are presented. An overview of the molecular mechanism of cuticle biosynthesis and efforts to elucidate it in fleshy fruits is included. Enhancing our knowledge about cuticle biosynthesis mechanisms and identifying specific transcripts, proteins and lipids related to quality traits in fleshy fruits could contribute to the design of biotechnological strategies to improve the quality and postharvest shelf life of these important fruit crops.
Collapse
Affiliation(s)
- Heriberto García-Coronado
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo A.C., Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico;
| | - Julio César Tafolla-Arellano
- Laboratorio de Biotecnología y Biología Molecular, Departamento de Ciencias Básicas, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro 1923, Buenavista, Saltillo 25315, Coahuila, Mexico;
| | - Miguel Ángel Hernández-Oñate
- CONACYT-Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo A.C., Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico;
| | - Alexel Jesús Burgara-Estrella
- Departamento de Investigación en Física, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Hermosillo 83000, Sonora, Mexico;
| | - Jesús Martín Robles-Parra
- Coordinación de Desarrollo Regional, Centro de Investigación en Alimentación y Desarrollo A.C., Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico;
| | - Martín Ernesto Tiznado-Hernández
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo A.C., Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico;
| |
Collapse
|
14
|
Zhang M, Zhang P, Lu S, Ou-Yang Q, Zhu-Ge Y, Tian R, Jia H, Fang J. Comparative Analysis of Cuticular Wax in Various Grape Cultivars During Berry Development and After Storage. Front Nutr 2022; 8:817796. [PMID: 35028308 PMCID: PMC8748257 DOI: 10.3389/fnut.2021.817796] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/20/2021] [Indexed: 11/24/2022] Open
Abstract
Cuticular wax covering the surface of fleshy fruit is closely related to fruit glossiness, development, and post-harvest storage quality. However, the information about formation characteristics and molecular mechanisms of cuticular wax in grape berry is limited. In this study, crystal morphology, chemical composition, and gene expression of cuticular wax in grape berry were comprehensively investigated. Morphological analysis revealed high density of irregular lamellar crystal structures, which were correlated with the glaucous appearances of grape berry. Compositional analysis showed that the dominant wax compounds were triterpenoids, while the most diverse were alkanes. The amounts of triterpenoids declined sharply after véraison, while those of other compounds maintained nearly constant throughout the berry development. The amounts of each wax compounds varied among different cultivars and showed no correlation with berry skin colors. Moreover, the expression profiles of related genes were in accordance with the accumulation of wax compounds. Further investigation revealed the contribution of cuticular wax to the water preservation capacity during storage. These findings not only facilitate a better understanding of the characteristics of cuticular wax, but also shed light on the molecular basis of wax biosynthesis in grape.
Collapse
Affiliation(s)
- Mengwei Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Peian Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Suwen Lu
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Qixia Ou-Yang
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, China
| | - Yaxian Zhu-Ge
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ruiping Tian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Haifeng Jia
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
15
|
Antoniou C, Kyratzis AC, Soteriou GA, Rouphael Y, Kyriacou MC. Configuration of the Volatile Aromatic Profile of Carob Powder Milled From Pods of Genetic Variants Harvested at Progressive Stages of Ripening From High and Low Altitudes. Front Nutr 2022; 8:789169. [PMID: 34977128 PMCID: PMC8714772 DOI: 10.3389/fnut.2021.789169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/12/2021] [Indexed: 11/24/2022] Open
Abstract
Carob powder is increasingly valued as a substitute for cocoa and as a flavor-enhancing component of processed foods. However, little is known about the impact of preharvest factors such as fruit maturity, genotype and altitude on its volatile organic compounds (VOCs) composition. The current study examined the VOCs composition of powder milled from pods of two genotypes cultivated at 15 and 510 m altitude and harvested at six progressive stages of maturity, ranging from fully developed immature green (RS1) to late ripe (RS6). Fifty-six VOCs categorized into acids, esters, aldehydes, ketones, alcohols, furans, and alkanes were identified through HS-SPME GC-MS analysis. Maturity was the most influential factor, followed by altitude and least by genotype. Aldehydes and alcohols correlated positively (r = 0.789; p < 0.001), both accumulated in immature carobs and decreased with progressive ripening, resulting in the attenuation of green grassy aroma. Conversely, acids increased with ripening and dominated the carob volatilome at full maturity, correlating negatively with aldehydes and alcohols (r = −0.835 and r = −0.950, respectively; p < 0.001). The most abundant VOC throughout ripening (17.3-57.7%) was isobutyric acid, responsible for the characteristic cheesy-acidic-buttery aroma of carob powder. The pleasurable aroma detected at the immature stages (RS2 and RS3) was traced to isobutyrate and methyl isobutyrate esters, rendering unripe green carob powder a potential admixture component for improving the aroma of novel food products. Lower altitude favored the accumulation of acids linked to less pleasant aroma, whereas isobutyric acid was more abundant at higher altitude. This constitutes a significant indication that higher altitude enhances the characteristic carob-like aroma and sensory quality of carob powder.
Collapse
Affiliation(s)
- Chrystalla Antoniou
- Department of Vegetable Crops, Agricultural Research Institute, Nicosia, Cyprus
| | - Angelos C Kyratzis
- Department of Vegetable Crops, Agricultural Research Institute, Nicosia, Cyprus
| | - Georgios A Soteriou
- Department of Vegetable Crops, Agricultural Research Institute, Nicosia, Cyprus
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Marios C Kyriacou
- Department of Vegetable Crops, Agricultural Research Institute, Nicosia, Cyprus
| |
Collapse
|
16
|
Gao Y, Hu Y, Shen J, Meng X, Suo J, Zhang Z, Song L, Wu J. Acceleration of Aril Cracking by Ethylene in Torreya grandis During Nut Maturation. FRONTIERS IN PLANT SCIENCE 2021; 12:761139. [PMID: 34745193 PMCID: PMC8565854 DOI: 10.3389/fpls.2021.761139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Torreya grandis 'Merrillii' is a famous nut with great nutritional value and high medicinal value. Aril cracking is an important process for seed dispersal, which is also an indicator of seed maturation. However, the cracking mechanism of T. grandis aril during the maturation stage remains largely unknown. Here, we provided a comprehensive view of the physiological and molecular levels of aril cracking in T. grandis by systematically analyzing its anatomical structure, physiological parameters, and transcriptomic response during the cracking process. These results showed that the length of both epidermal and parenchymatous cell layers significantly increased from 133 to 144 days after seed protrusion (DASP), followed by a clear separation between parenchymatous cell layers and kernel, which was accompanied by a breakage between epidermal and parenchymatous cell layers. Moreover, analyses of cell wall composition showed that a significant degradation of cellular wall polysaccharides occurred during aril cracking. To examine the global gene expression changes in arils during the cracking process, the transcriptomes (96 and 141 DASP) were analyzed. KEGG pathway analysis of DEGs revealed that 4 of the top 10 enriched pathways were involved in cell wall modification and 2 pathways were related to ethylene biosynthesis and ethylene signal transduction. Furthermore, combining the analysis results of co-expression networks between different transcription factors, cell wall modification genes, and exogenous ethylene treatments suggested that the ethylene signal transcription factors (ERF11 and ERF1A) were involved in aril cracking of T. grandis by regulation of EXP and PME. Our findings provided new insights into the aril cracking trait in T. grandis.
Collapse
Affiliation(s)
- Yadi Gao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an City, China
- Sino-Australia Plant Cell Wall Research Centre, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an City, China
| | - Yuanyuan Hu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an City, China
- Sino-Australia Plant Cell Wall Research Centre, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an City, China
| | - Jiayi Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an City, China
- Sino-Australia Plant Cell Wall Research Centre, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an City, China
| | - Xuecheng Meng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an City, China
- Sino-Australia Plant Cell Wall Research Centre, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an City, China
| | - Jinwei Suo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an City, China
- Sino-Australia Plant Cell Wall Research Centre, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an City, China
| | - Zuying Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an City, China
- Sino-Australia Plant Cell Wall Research Centre, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an City, China
| | - Lili Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an City, China
- Sino-Australia Plant Cell Wall Research Centre, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an City, China
| | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an City, China
- Sino-Australia Plant Cell Wall Research Centre, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an City, China
| |
Collapse
|
17
|
Romero P, Lafuente MT. The Combination of Abscisic Acid (ABA) and Water Stress Regulates the Epicuticular Wax Metabolism and Cuticle Properties of Detached Citrus Fruit. Int J Mol Sci 2021; 22:ijms221910242. [PMID: 34638581 PMCID: PMC8549707 DOI: 10.3390/ijms221910242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
The phytohormone abscisic acid (ABA) is a major regulator of fruit response to water stress, and may influence cuticle properties and wax layer composition during fruit ripening. This study investigates the effects of ABA on epicuticular wax metabolism regulation in a citrus fruit cultivar with low ABA levels, called Pinalate (Citrus sinensis L. Osbeck), and how this relationship is influenced by water stress after detachment. Harvested ABA-treated fruit were exposed to water stress by storing them at low (30-35%) relative humidity. The total epicuticular wax load rose after fruit detachment, which ABA application decreased earlier and more markedly during fruit-dehydrating storage. ABA treatment changed the abundance of the separated wax fractions and the contents of most individual components, which reveals dependence on the exposure to postharvest water stress and different trends depending on storage duration. A correlation analysis supported these responses, which mostly fitted the expression patterns of the key genes involved in wax biosynthesis and transport. A cluster analysis indicated that storage duration is an important factor for the exogenous ABA influence and the postharvest environment on epicuticular wax composition, cuticle properties and fruit physiology. Dynamic ABA-mediated reconfiguration of wax metabolism is influenced by fruit exposure to water stress conditions.
Collapse
|
18
|
Trivedi P, Nguyen N, Klavins L, Kviesis J, Heinonen E, Remes J, Jokipii-Lukkari S, Klavins M, Karppinen K, Jaakola L, Häggman H. Analysis of composition, morphology, and biosynthesis of cuticular wax in wild type bilberry (Vaccinium myrtillus L.) and its glossy mutant. Food Chem 2021; 354:129517. [PMID: 33756336 DOI: 10.1101/2020.04.01.019893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 02/12/2021] [Accepted: 02/27/2021] [Indexed: 05/18/2023]
Abstract
In this study, cuticular wax load, its chemical composition, and biosynthesis, was studied during development of wild type (WT) bilberry fruit and its natural glossy type (GT) mutant. GT fruit cuticular wax load was comparable with WT fruits. In both, the proportion of triterpenoids decreased during fruit development concomitant with increasing proportions of total aliphatic compounds. In GT fruit, a higher proportion of triterpenoids in cuticular wax was accompanied by a lower proportion of fatty acids and ketones compared to WT fruit as well as lower density of crystalloid structures on berry surfaces. Our results suggest that the glossy phenotype could be caused by the absence of rod-like structures in GT fruit associated with reduction in proportions of ketones and fatty acids in the cuticular wax. Especially CER26-like, FAR2, CER3-like, LTP, MIXTA, and BAS genes showed fruit skin preferential expression patterns indicating their role in cuticular wax biosynthesis and secretion.
Collapse
Affiliation(s)
- Priyanka Trivedi
- Department of Ecology and Genetics, University of Oulu, FI-90014 Oulu, Finland.
| | - Nga Nguyen
- Department of Ecology and Genetics, University of Oulu, FI-90014 Oulu, Finland.
| | - Linards Klavins
- Department of Environmental Science, University of Latvia, LV-1004 Riga, Latvia.
| | - Jorens Kviesis
- Department of Environmental Science, University of Latvia, LV-1004 Riga, Latvia.
| | - Esa Heinonen
- Centre for Material Analysis, University of Oulu, FI-90014 Oulu, Finland.
| | - Janne Remes
- Centre for Material Analysis, University of Oulu, FI-90014 Oulu, Finland.
| | | | - Maris Klavins
- Department of Environmental Science, University of Latvia, LV-1004 Riga, Latvia.
| | - Katja Karppinen
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway.
| | - Laura Jaakola
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway; NIBIO, Norwegian Institute of Bioeconomy Research, NO-1431 Ås, Norway.
| | - Hely Häggman
- Department of Ecology and Genetics, University of Oulu, FI-90014 Oulu, Finland.
| |
Collapse
|
19
|
Kohli D, Champawat PS, Mudgal VD, Jain SK, Tiwari BK. Advances in peeling techniques for fresh produce. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Deepika Kohli
- Department of Processing and Food Engineering CTAE, MPUAT Udaipur Rajasthan India
| | | | | | - Sanjay Kumar Jain
- Department of Processing and Food Engineering CTAE, MPUAT Udaipur Rajasthan India
| | - Brijesh K. Tiwari
- Department of Food Chemistry and Technology Teagasc Food Research Centre Ashtown Dublin Ireland
| |
Collapse
|
20
|
Trivedi P, Nguyen N, Klavins L, Kviesis J, Heinonen E, Remes J, Jokipii-Lukkari S, Klavins M, Karppinen K, Jaakola L, Häggman H. Analysis of composition, morphology, and biosynthesis of cuticular wax in wild type bilberry (Vaccinium myrtillus L.) and its glossy mutant. Food Chem 2021; 354:129517. [PMID: 33756336 DOI: 10.1016/j.foodchem.2021.129517] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 02/12/2021] [Accepted: 02/27/2021] [Indexed: 10/22/2022]
Abstract
In this study, cuticular wax load, its chemical composition, and biosynthesis, was studied during development of wild type (WT) bilberry fruit and its natural glossy type (GT) mutant. GT fruit cuticular wax load was comparable with WT fruits. In both, the proportion of triterpenoids decreased during fruit development concomitant with increasing proportions of total aliphatic compounds. In GT fruit, a higher proportion of triterpenoids in cuticular wax was accompanied by a lower proportion of fatty acids and ketones compared to WT fruit as well as lower density of crystalloid structures on berry surfaces. Our results suggest that the glossy phenotype could be caused by the absence of rod-like structures in GT fruit associated with reduction in proportions of ketones and fatty acids in the cuticular wax. Especially CER26-like, FAR2, CER3-like, LTP, MIXTA, and BAS genes showed fruit skin preferential expression patterns indicating their role in cuticular wax biosynthesis and secretion.
Collapse
Affiliation(s)
- Priyanka Trivedi
- Department of Ecology and Genetics, University of Oulu, FI-90014 Oulu, Finland.
| | - Nga Nguyen
- Department of Ecology and Genetics, University of Oulu, FI-90014 Oulu, Finland.
| | - Linards Klavins
- Department of Environmental Science, University of Latvia, LV-1004 Riga, Latvia.
| | - Jorens Kviesis
- Department of Environmental Science, University of Latvia, LV-1004 Riga, Latvia.
| | - Esa Heinonen
- Centre for Material Analysis, University of Oulu, FI-90014 Oulu, Finland.
| | - Janne Remes
- Centre for Material Analysis, University of Oulu, FI-90014 Oulu, Finland.
| | | | - Maris Klavins
- Department of Environmental Science, University of Latvia, LV-1004 Riga, Latvia.
| | - Katja Karppinen
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway.
| | - Laura Jaakola
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway; NIBIO, Norwegian Institute of Bioeconomy Research, NO-1431 Ås, Norway.
| | - Hely Häggman
- Department of Ecology and Genetics, University of Oulu, FI-90014 Oulu, Finland.
| |
Collapse
|
21
|
Xin A, Fei Y, Molnar A, Fry SC. Cutin:cutin-acid endo-transacylase (CCT), a cuticle-remodelling enzyme activity in the plant epidermis. Biochem J 2021; 478:777-798. [PMID: 33511979 PMCID: PMC7925011 DOI: 10.1042/bcj20200835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/17/2021] [Accepted: 01/28/2021] [Indexed: 01/08/2023]
Abstract
Cutin is a polyester matrix mainly composed of hydroxy-fatty acids that occurs in the cuticles of shoots and root-caps. The cuticle, of which cutin is a major component, protects the plant from biotic and abiotic stresses, and cutin has been postulated to constrain organ expansion. We propose that, to allow cutin restructuring, ester bonds in this net-like polymer can be transiently cleaved and then re-formed (transacylation). Here, using pea epicotyl epidermis as the main model, we first detected a cutin:cutin-fatty acid endo-transacylase (CCT) activity. In-situ assays used endogenous cutin as the donor substrate for endogenous enzymes; the exogenous acceptor substrate was a radiolabelled monomeric cutin-acid, 16-hydroxy-[3H]hexadecanoic acid (HHA). High-molecular-weight cutin became ester-bonded to intact [3H]HHA molecules, which thereby became unextractable except by ester-hydrolysing alkalis. In-situ CCT activity correlated with growth rate in Hylotelephium leaves and tomato fruits, suggesting a role in loosening the outer epidermal wall during organ growth. The only well-defined cutin transacylase in the apoplast, CUS1 (a tomato cutin synthase), when produced in transgenic tobacco, lacked CCT activity. This finding provides a reference for future CCT protein identification, which can adopt our sensitive enzyme assay to screen other CUS1-related enzymes.
Collapse
Affiliation(s)
- Anzhou Xin
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh EH9 3BF, U.K
| | - Yue Fei
- Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh EH9 3BF, U.K
| | - Attila Molnar
- Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh EH9 3BF, U.K
| | - Stephen C. Fry
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh EH9 3BF, U.K
| |
Collapse
|
22
|
Arand K, Bieler E, Dürrenberger M, Kassemeyer HH. Developmental pattern of grapevine (Vitis vinifera L.) berry cuticular wax: Differentiation between epicuticular crystals and underlying wax. PLoS One 2021; 16:e0246693. [PMID: 33606728 PMCID: PMC7894928 DOI: 10.1371/journal.pone.0246693] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/23/2021] [Indexed: 11/18/2022] Open
Abstract
The grapevine berry surface is covered by a cuticle consisting of cutin and various lipophilic wax compounds. The latter build the main barrier for transpirational water loss and protect the fruit against environmental factors e.g. pests, mechanical impacts or radiation. The integrety of the fruit surface is one important key factor for post-harvest quality and storage of fruits. Nonetheless, the developmental pattern of cuticular wax was so far only investigated for a very limited number of fruits. Therefore, we performed comparative investigations on the compositional and morphological nature of epicuticular wax crystals and underlying wax during fruit development in Vitis vinifera. The main compound oleanolic acid belongs to the pentacyclic triterpenoids, which occur very early in the development in high amounts inside the cuticle. The amount increases until veraison and decreases further during ripening. In general, very-long chain aliphatic (VLCA) compounds are present in much smaller amounts and alcohols and aldehydes follow the same trend during development. In contrast, the amount of fatty acids constantly increases from fruit set to ripening while wax esters only occur in significant amount at veraison and increase further. Wax crystals at the fruit surface are solely composed of VLCAs and the morphology changes during development according to the compositional changes of the VLCA wax compounds. The remarkable compositional differences between epicuticular wax crystals and the underlying wax are important to understand in terms of studying grape-pest interactions or the influence of environmental factors, since only wax crystals directly face the environment.
Collapse
Affiliation(s)
- Katja Arand
- University of Würzburg, Julius von Sachs Institute for Biosciences, Würzburg, Germany
| | - Evi Bieler
- University of Basel, Swiss Nanoscience Institute—Nano Imaging Lab, Basel, Switzerland
| | - Markus Dürrenberger
- University of Basel, Swiss Nanoscience Institute—Nano Imaging Lab, Basel, Switzerland
| | - Hanns-Heinz Kassemeyer
- State Institute for Viticulture, Freiburg, Germany
- University of Freiburg, Institute of Biology II, Plant Biomechanics Group, Freiburg, Germany
- * E-mail:
| |
Collapse
|
23
|
Cosovanu D, Llovera M, Villorbina G, Canela-Garayoa R, Eras J. A simple and fast method for metabolomic analysis by gas liquid chromatography-mass spectrometry. Metabolomics 2021; 17:22. [PMID: 33547979 DOI: 10.1007/s11306-021-01771-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 01/20/2021] [Indexed: 10/22/2022]
Abstract
INTRODUCTION The metabolomic profile is an essential tool for understanding the physiological processes of biological samples and their changes. In addition, it makes it possible to find new substances with industrial applications or use as drugs. As GC-MS is a very common tool for obtaining the metabolomic profile, a simple and fast method for sample preparation is required. OBJECTIVES The aim of this research was to develop a direct derivatization method for GC-MS to simplify the sample preparation process and apply it to a wide range of samples for non-targeted metabolomic analysis purposes. METHODS One pot combined esterification of carboxylic acids with methanol and silylation of the hydroxyl groups was achieved using a molar excess of chlorotrimethylsilane with respect to methanol in the presence of pyridine. RESULTS The metabolome profile obtained from different samples, such as bilberry and cherry cuticles, olive leaves, P. aeruginosa and E. coli bacteria, A. niger fungi and human sebum from the ceruminous gland, shows that the procedure allows the identification of a wide variety of metabolites. Aliphatic fatty acids, hydroxyfatty acids, phenolic and other aromatic compounds, fatty alcohols, fatty aldehydes dimethylacetals, hydrocarbons, terpenoids, sterols and carbohydrates were identified at different MSI levels using their mass spectra. CONCLUSION The metabolomic profile of different biological samples can be easily obtained by GC-MS using an efficient simultaneous esterification-silylation reaction. The derivatization method can be carried out in a short time in the same injection vial with a small amount of reagents.
Collapse
Affiliation(s)
- Diana Cosovanu
- Department of Chemistry, DBA Center, ETSEA, University of Lleida, 25003, Lleida, Spain
| | - Montserrat Llovera
- Scientific Technical Service TCEM, University of Lleida, 25003, Lleida, Spain
| | - Gemma Villorbina
- Department of Chemistry, DBA Center, ETSEA, University of Lleida, 25003, Lleida, Spain
| | - Ramon Canela-Garayoa
- Department of Chemistry, DBA Center, ETSEA, University of Lleida, 25003, Lleida, Spain
| | - Jordi Eras
- Department of Chemistry, DBA Center, ETSEA, University of Lleida, 25003, Lleida, Spain.
| |
Collapse
|
24
|
Diarte C, Xavier de Souza A, Staiger S, Deininger AC, Bueno A, Burghardt M, Graell J, Riederer M, Lara I, Leide J. Compositional, structural and functional cuticle analysis of Prunus laurocerasus L. sheds light on cuticular barrier plasticity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:434-445. [PMID: 33257229 DOI: 10.1016/j.plaphy.2020.11.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Barrier properties of the hydrophobic plant cuticle depend on its physicochemical composition. The cuticular compounds vary considerably among plant species but also among organs and tissues of the same plant and throughout developmental stages. As yet, these intraspecific modifications at the cuticular wax and cutin level are only rarely examined. Attempting to further elucidate cuticle profiles, we analysed the adaxial and abaxial surfaces of the sclerophyllous leaf and three developmental stages of the drupe fruit of Prunus laurocerasus, an evergreen model plant native to temperate regions. According to gas chromatographic analyses, the cuticular waxes contained primarily pentacyclic triterpenoids dominated by ursolic acid, whereas the cutin biopolyester mainly consisted of 9/10,ω-dihydroxy hexadecanoic acid. Distinct organ- and side-specific patterns were found for cuticular lipid loads, compositions and carbon chain length distributions. Compositional variations led to different structural and functional barrier properties of the plant cuticle, which were investigated further microscopically, infrared spectroscopically and gravimetrically. The minimum water conductance was highlighted at 1 × 10-5 m s-1 for the perennial, hypostomatous P. laurocerasus leaf and at 8 × 10-5 m s-1 for the few-month-living, stomatous fruit suggesting organ-specific cuticular barrier demands.
Collapse
Affiliation(s)
- Clara Diarte
- Universitat de Lleida, Postharvest Unit, AGROTÈCNIO, E-25198, Lleida, Spain
| | - Aline Xavier de Souza
- University of Würzburg, Julius-von-Sachs-Institute for Biosciences, D-97082, Würzburg, Germany
| | - Simona Staiger
- University of Würzburg, Julius-von-Sachs-Institute for Biosciences, D-97082, Würzburg, Germany
| | - Ann-Christin Deininger
- University of Würzburg, Julius-von-Sachs-Institute for Biosciences, D-97082, Würzburg, Germany
| | - Amauri Bueno
- University of Würzburg, Julius-von-Sachs-Institute for Biosciences, D-97082, Würzburg, Germany
| | - Markus Burghardt
- University of Würzburg, Julius-von-Sachs-Institute for Biosciences, D-97082, Würzburg, Germany
| | - Jordi Graell
- Universitat de Lleida, Postharvest Unit, AGROTÈCNIO, E-25198, Lleida, Spain
| | - Markus Riederer
- University of Würzburg, Julius-von-Sachs-Institute for Biosciences, D-97082, Würzburg, Germany
| | - Isabel Lara
- Universitat de Lleida, Postharvest Unit, AGROTÈCNIO, E-25198, Lleida, Spain
| | - Jana Leide
- University of Würzburg, Julius-von-Sachs-Institute for Biosciences, D-97082, Würzburg, Germany.
| |
Collapse
|
25
|
Straube J, Chen YH, Khanal BP, Shumbusho A, Zeisler-Diehl V, Suresh K, Schreiber L, Knoche M, Debener T. Russeting in Apple is Initiated after Exposure to Moisture Ends: Molecular and Biochemical Evidence. PLANTS (BASEL, SWITZERLAND) 2020; 10:plants10010065. [PMID: 33396789 PMCID: PMC7824318 DOI: 10.3390/plants10010065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 06/01/2023]
Abstract
Exposure of the fruit surface to moisture during early development is causal in russeting of apple (Malus × domestica Borkh.). Moisture exposure results in formation of microcracks and decreased cuticle thickness. Periderm differentiation begins in the hypodermis, but only after discontinuation of moisture exposure. Expressions of selected genes involved in cutin, wax and suberin synthesis were quantified, as were the wax, cutin and suberin compositions. Experiments were conducted in two phases. In Phase I (31 days after full bloom) the fruit surface was exposed to moisture for 6 or 12 d. Phase II was after moisture exposure had been discontinued. Unexposed areas on the same fruit served as unexposed controls. During Phase I, cutin and wax synthesis genes were down-regulated only in the moisture-exposed patches. During Phase II, suberin synthesis genes were up-regulated only in the moisture-exposed patches. The expressions of cutin and wax genes in the moisture-exposed patches increased slightly during Phase II, but the levels of expression were much lower than in the control patches. Amounts and compositions of cutin, wax and suberin were consistent with the gene expressions. Thus, moisture-induced russet is a two-step process: moisture exposure reduces cutin and wax synthesis, moisture removal triggers suberin synthesis.
Collapse
Affiliation(s)
- Jannis Straube
- Institute of Plant Genetics, Molecular Plant Breeding Section, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany;
| | - Yun-Hao Chen
- Institute of Horticultural Production Systems, Fruit Science Section, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany; (Y.-H.C.); (B.P.K.); (A.S.); (M.K.)
| | - Bishnu P. Khanal
- Institute of Horticultural Production Systems, Fruit Science Section, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany; (Y.-H.C.); (B.P.K.); (A.S.); (M.K.)
| | - Alain Shumbusho
- Institute of Horticultural Production Systems, Fruit Science Section, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany; (Y.-H.C.); (B.P.K.); (A.S.); (M.K.)
| | - Viktoria Zeisler-Diehl
- Institute of Cellular and Molecular Botany (IZMB), Department of Ecophysiology, University of Bonn, Kirschallee 1, 53115 Bonn, Germany; (V.Z.-D.); (K.S.); (L.S.)
| | - Kiran Suresh
- Institute of Cellular and Molecular Botany (IZMB), Department of Ecophysiology, University of Bonn, Kirschallee 1, 53115 Bonn, Germany; (V.Z.-D.); (K.S.); (L.S.)
| | - Lukas Schreiber
- Institute of Cellular and Molecular Botany (IZMB), Department of Ecophysiology, University of Bonn, Kirschallee 1, 53115 Bonn, Germany; (V.Z.-D.); (K.S.); (L.S.)
| | - Moritz Knoche
- Institute of Horticultural Production Systems, Fruit Science Section, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany; (Y.-H.C.); (B.P.K.); (A.S.); (M.K.)
| | - Thomas Debener
- Institute of Plant Genetics, Molecular Plant Breeding Section, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany;
| |
Collapse
|
26
|
Variations in Triterpenoid Deposition in Cuticular Waxes during Development and Maturation of Selected Fruits of Rosaceae Family. Int J Mol Sci 2020; 21:ijms21249762. [PMID: 33371323 PMCID: PMC7767361 DOI: 10.3390/ijms21249762] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/12/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022] Open
Abstract
The process of fruit ripening involves many chemical changes occurring not only in the mesocarp but also in the epicarp, including changes in the triterpenoid content of fruit cuticular waxes that can modify the susceptibility to pathogens and mechanical properties of the fruit surface. The aim of the study was the determination of the ripening-related changes in the triterpenoid content of fruit cuticular waxes of three plant species from the Rosaceae family, including rugosa rose (Rosa rugosa), black chokeberry (Aronia melanocarpa var. “Galicjanka”) and apple (Malus domestica var. “Antonovka”). The triterpenoid and steroid content in chloroform-soluble cuticular waxes was determined by a GC-MS/FID method at four different phenological stages. The profile of identified compounds was rather similar in selected fruit samples with triterpenoids with ursane-, oleanane- and lupane-type carbon skeletons, prevalence of ursolic acid and the composition of steroids. Increasing accumulation of triterpenoids and steroids, as well as the progressive enrichment of the composition of these compounds in cuticular wax during fruit development, was observed. The changes in triterpenoid content resulted from modifications of metabolic pathways, particularly hydroxylation and esterification, that can alter interactions with complementary functional groups of aliphatic constituents and lead to important changes in fruit surface quality.
Collapse
|
27
|
Li N, Fu L, Song Y, Li J, Xue X, Li S, Li L. Wax composition and concentration in jujube (Ziziphus jujuba Mill.) cultivars with differential resistance to fruit cracking. JOURNAL OF PLANT PHYSIOLOGY 2020; 255:153294. [PMID: 33070052 DOI: 10.1016/j.jplph.2020.153294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
Fruit cracking is a key problem restricting the development of the jujube (Ziziphus jujuba) industry, and is closely related to the distribution of the wax layer on the surface of the fruit. Three jujube cultivars with different levels of cracking resistance, namely 'Popozao', 'Banzao', and 'Hupingzao', were selected for comparison. Cracks on the cuticular membrane (CM) of 'Hupingzao' widened and deepened during the coloring period. The wax level of highly cracking-resistant 'Popozao' was significantly higher than that of 'Hupingzao' during the fruit coloring period. The fruit wax composition of the three jujube cultivars were quite similar, consisting mainly of alkanes, triterpenoids, aldehydes, amines, phenols, esters, ketones, fatty acids, primary alcohols, and other, unclassified compounds. Fatty acids, primary alcohols, and alkanes were the predominant fruit wax compounds of the three cultivars. We further analyzed the carbon chain length of aliphatic compounds and found that the concentration of fatty acids in 'Popozao' was significantly lower than that in 'Banzao' and 'Hupingzao' during the coloring period. Moreover, C28-30 were the most abundant primary alcohols during fruit development. Highly cracking-resistant cultivar 'Popozao' contains more very-long-chain alkanes and aldehydes (carbon atom >20) than 'Banzao' and 'Hupingzao' during the coloring period. In addition, we assessed the expression levels of 11 genes involved in fatty acid biosynthesis, elongation, and degradation, and in wax biosynthesis. Gene expression analysis indicated that KCS1, CER1, CYP86B1, and CYP86A play crucial roles in wax formation on jujube fruit. In conclusion, fruit cracking was correlated with whether wax synthesis is coordinated with fruit enlargement and'Popozao' has a stronger ability to synthesize very-long-chain alkanes and aldehydes. Understanding the diff ;erences in the cuticular wax and the activities of the corresponding genes in jujube cultivars with different sensitivities to cracking will provide a specific way to prevent fruit cracking.
Collapse
Affiliation(s)
- Na Li
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China
| | - Lijiao Fu
- College of Horticulture, Shanxi Forestry Vocational Technical College, Taiyuan, 030009, China
| | - Yuqin Song
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China
| | - Jie Li
- College of Forestry, Shanxi Agricultural University, Taigu, 030801, China
| | - Xiaofang Xue
- Pomology Institute, Shanxi Shanxi Agricultural University, Taigu, 030801, China
| | - Shuran Li
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China
| | - Liulin Li
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China.
| |
Collapse
|
28
|
Zhang CL, Hu X, Zhang YL, Liu Y, Wang GL, You CX, Li YY, Hao YJ. An apple long-chain acyl-CoA synthetase 2 gene enhances plant resistance to abiotic stress by regulating the accumulation of cuticular wax. TREE PHYSIOLOGY 2020; 40:1450-1465. [PMID: 32578855 DOI: 10.1093/treephys/tpaa079] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/01/2020] [Accepted: 06/16/2020] [Indexed: 05/08/2023]
Abstract
Apple cuticular wax can protect plants from environmental stress, determine fruit luster and improve postharvest fruit storage quality. In recent years, dry weather, soil salinization and adverse environmental conditions have led to declines in apple fruit quality. However, few studies have reported the molecular mechanisms of apple cuticular wax biosynthesis. In this study, we identified a long-chain acyl-CoA synthetase MdLACS2 gene from apple. The MdLACS2 protein contained an AMP-binding domain and demonstrated long-chain acyl-CoA synthetase activity. MdLACS2 transgenic Arabidopsis exhibited reductions in epidermal permeability and water loss; change in the expression of genes related to cuticular wax biosynthesis, transport and transcriptional regulation; and differences in the composition and ultrastructure of cuticular wax. Moreover, the accumulation of cuticular wax enhanced the resistance of MdLACS2 transgenic plants to drought and salt stress. The main protein functional interaction networks of LACS2 were predicted, revealing a preliminary molecular regulation pathway for MdLACS2-mediated wax biosynthesis in apple. Our study provides candidate genes for breeding apple varieties and rootstocks with better fruit quality and higher stress resistance.
Collapse
Affiliation(s)
- Chun-Ling Zhang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Xing Hu
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Ya-Li Zhang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Yang Liu
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Gui-Luan Wang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Yuan-Yuan Li
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| |
Collapse
|
29
|
Huang H, Lian Q, Wang L, Shan Y, Li F, Chang SK, Jiang Y. Chemical composition of the cuticular membrane in guava fruit (Psidium guajava L.) affects barrier property to transpiration. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:589-595. [PMID: 32846394 DOI: 10.1016/j.plaphy.2020.08.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/16/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
The cuticular membrane covering almost all aerial plant organs has a primary function in limiting uncontrolled water loss. The guava fruits were collected and this work was done to study the potential contribution of cuticular chemical composition to fruit transpiration after harvest. The detailed cuticular chemical composition, based on gas chromatography together with mass spectrometry, and the transpiration rate determined gravimetrically in guava fruit were characterized in the present study. The predominant wax mixtures were fatty acids and primary alcohols with homologous series of C16-C33, as well as various pentacyclic triterpenoids with abundant amounts of ursolic acid, maslinic acid and uvaol. The most prominent cutin compounds were C16 and C18‒type monomers dominated by 9(10),16-diOH-hexadecanoic acid and 9,10-epoxy-ω-OH-octadecanoic acid, respectively. Relatively high water permeability with a value of 5.1 × 10-4 m s-1 was detected for guava fruit. The lower efficiency of the cuticle as barrier to transpiration in guava fruit, as compared to that of other reported fruits, leaves, and petals, was seemingly related to the relatively short average chain-length of acyclic compounds in wax mixtures. These findings provide useful insights linking the chemical composition of the cuticular membrane that covers plant organs to putative physiological roles.
Collapse
Affiliation(s)
- Hua Huang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, PR China
| | - Qiaoqiao Lian
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Ling Wang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, PR China
| | - Youxia Shan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Fengjun Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Sui Kiat Chang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, PR China
| | - Yueming Jiang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, PR China.
| |
Collapse
|
30
|
Oliveira Lino L, Quilot-Turion B, Dufour C, Corre MN, Lessire R, Génard M, Poëssel JL. Cuticular waxes of nectarines during fruit development in relation to surface conductance and susceptibility to Monilinia laxa. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5521-5537. [PMID: 32556164 PMCID: PMC7501825 DOI: 10.1093/jxb/eraa284] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 06/11/2020] [Indexed: 05/23/2023]
Abstract
The cuticle is composed of cutin and cuticular waxes, and it is the first protective barrier to abiotic and biotic stresses in fruit. In this study, we analysed the composition of and changes in cuticular waxes during fruit development in nectarine (Prunus persica L. Batsch) cultivars, in parallel with their conductance and their susceptibility to Monilinia laxa. The nectarine waxes were composed of triterpenoids, mostly ursolic and oleanolic acids, phytosterols, and very-long-chain aliphatics. In addition, we detected phenolic compounds that were esterified with sugars or with triterpenoids, which are newly described in cuticular waxes. We quantified 42 compounds and found that they changed markedly during fruit development, with an intense accumulation of triterpenoids during initial fruit growth followed by their decrease at the end of endocarp lignification and a final increase in very-long-chain alkanes and hydroxylated triterpenoids until maturity. The surface conductance and susceptibility to Monilinia decreased sharply at the beginning of endocarp lignification, suggesting that triterpenoid deposition could play a major role in regulating fruit permeability and susceptibility to brown rot. Our results provide new insights into the composition of cuticular waxes of nectarines and their changes during fruit development, opening new avenues of research to explore brown rot resistance factors in stone fruit.
Collapse
|
31
|
Correia S, Santos M, Glińska S, Gapińska M, Matos M, Carnide V, Schouten R, Silva AP, Gonçalves B. Effects of exogenous compound sprays on cherry cracking: skin properties and gene expression. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:2911-2921. [PMID: 32034777 DOI: 10.1002/jsfa.10318] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/31/2020] [Accepted: 02/07/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND Cherry fruit cracking is a costly problem for cherry growers. The effect of repeated sprayings (gibberellic acid - GA3 ; abscisic acid - ABA; salicylic acid - SA; glycine betaine - GB, and Ascophyllum nodosum - AN) combined with CaCl2 , on 'Sweetheart' cherry fruit-cracking characteristics was investigated. Cracking was quantified in terms of cracking incidence, crack morphology, confocal scanning laser microscopy, cuticular wax content, cell-wall modification, and cuticular wax gene expression. RESULTS All spray treatments reduced cracking compared with an untreated control (H2 O), with fewer cheek cracks. The least cracking incidence was observed for ABA + CaCl2 - and GB + CaCl2 -treated fruits, indicating an added benefit compared to spraying with CaCl2 alone. In addition, GB + CaCl2 -treated fruits showed higher fruit diameter. ABA + CaCl2 and GB + CaCl2 sprays showed higher wax content and higher cuticle and epidermal thickness compared with the control, including increased expression of wax synthase (ABA + CaCl2 ) and expansin 1 (GB + CaCl2 ). CONCLUSION In general, factors that improve the cuticle thickness appear to be important at the fruit-coloring stage. At the fruit-ripening stage, larger cell sizes of the epidermis, hypodermis, and parenchyma cells lower cracking incidence, indicating the importance of flexibility and elasticity of the epidermis. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sofia Correia
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Marlene Santos
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Sława Glińska
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Magdalena Gapińska
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Manuela Matos
- Department of Genetics and Biotechnology, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Sciences Faculty, University of Lisbon, Lisbon, Portugal
| | - Valdemar Carnide
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Rob Schouten
- Horticulture and Product Physiology, Wageningen University, Wageningen, The Netherlands
| | - Ana Paula Silva
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Berta Gonçalves
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| |
Collapse
|
32
|
Chai Y, Li A, Chit Wai S, Song C, Zhao Y, Duan Y, Zhang B, Lin Q. Cuticular wax composition changes of 10 apple cultivars during postharvest storage. Food Chem 2020; 324:126903. [PMID: 32361095 DOI: 10.1016/j.foodchem.2020.126903] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/14/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023]
Abstract
Cuticular wax chemicals differ among fruit cultivars and contribute to storage ability. However, wax analysis in apple cultivars, particularly during storage, has not been described. In this work, the chemicals and crystal structures of cuticular wax in 10 apple cultivars were analyzed to observe wax functions in apple during storage. Results showed that alkanes and primary alcohols decreased while fatty acids increased in stored fruits of all cultivars compared with the fruits before storage. Terpenoids, aldehydes, and phenols were observed in stored fruits but not in the fruits before storage in all cultivars except 'Red Star' fruit. The weight loss rate was significantly correlated with six components including C13 alcohol, C14 alkanes, total alkanes, total wax, C13 alkanes and C54 alkanes in 10 cultivar apple fruits during storage. Our findings indicate that the total wax, particularly alkanes, in the peel of apple fruits is essential for storage and quality control.
Collapse
Affiliation(s)
- Yifeng Chai
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/ Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China; Shenyang Agricultural University, Liaoning 100193, People's Republic of China
| | - Ang Li
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/ Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Su Chit Wai
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/ Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Congcong Song
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/ Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Yaoyao Zhao
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/ Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Yuquan Duan
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/ Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China.
| | - Baiqing Zhang
- Shenyang Agricultural University, Liaoning 100193, People's Republic of China
| | - Qiong Lin
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/ Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China.
| |
Collapse
|
33
|
|
34
|
Diarte C, Lai PH, Huang H, Romero A, Casero T, Gatius F, Graell J, Medina V, East A, Riederer M, Lara I. Insights Into Olive Fruit Surface Functions: A Comparison of Cuticular Composition, Water Permeability, and Surface Topography in Nine Cultivars During Maturation. FRONTIERS IN PLANT SCIENCE 2019; 10:1484. [PMID: 31798618 PMCID: PMC6878217 DOI: 10.3389/fpls.2019.01484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/25/2019] [Indexed: 05/02/2023]
Abstract
Olive (Olea europaea L.) growing has outstanding economic relevance in Spain, the main olive oil producer and exporter in the world. Fruit skin properties are very relevant for fruit and oil quality, water loss, and susceptibility to mechanical damage, rots, and infestations, but limited research focus has been placed on the cuticle of intact olive fruit. In this work, fruit samples from nine olive cultivars ("Arbequina," "Argudell," "Empeltre," "Farga," "Manzanilla," "Marfil," "Morrut," "Picual," and "Sevillenca") were harvested from an experimental orchard at three different ripening stages (green, turning, and ripe), and cuticular membranes were enzymatically isolated from fruit skin. The total contents of cuticular wax and cutin significantly differed among cultivars both in absolute and in relative terms. The wax to cutin ratio generally decreased along fruit maturation, with the exception of "Marfil" and "Picual." In contrast, increased water permeance values in ripe fruit were observed uniquely for "Argudell," "Morrut," and "Marfil" fruit. The toluidine blue test revealed surface discontinuities on green samples of "Argudell," "Empeltre," "Manzanilla," "Marfil," and "Sevillenca" fruit, but not on "Arbequina," "Farga," "Morrut," or "Picual." No apparent relationship was found between water permeability and total wax coverage or the results of the toluidine blue test. The composition of cuticular waxes and cutin monomers was analyzed in detail, and sections of fruit pericarp were stained in Sudan IV for microscopy observations. Skin surface topography was also studied by means of fringe projection, showing large differences in surface roughness among the cultivars, "Farga" and "Morrut" fruits displaying the most irregular surfaces. Cultivar-related differences in cuticle and surface features of fruit are presented and discussed.
Collapse
Affiliation(s)
- Clara Diarte
- Universitat de Lleida, Lleida, Spain
- Postharvest Unit-XaRTA, AGROTÈCNIO, Lleida, Spain
| | - Po-Han Lai
- Massey Agrifood Technology Partnership, Massey University, Palmerston North, New Zealand
| | - Hua Huang
- Julius-von-Sachs Institut für Biowissenschaften, Universität Würzburg, Würzburg, Germany
| | - Agustí Romero
- Oliviculture, Oil Science and Nuts, IRTA-Mas de Bover, Constantí, Spain
| | | | | | - Jordi Graell
- Universitat de Lleida, Lleida, Spain
- Postharvest Unit-XaRTA, AGROTÈCNIO, Lleida, Spain
| | - Vicente Medina
- Universitat de Lleida, Lleida, Spain
- Applied Plant Biotechnology, AGROTÈCNIO, Lleida, Spain
| | - Andrew East
- Massey Agrifood Technology Partnership, Massey University, Palmerston North, New Zealand
| | - Markus Riederer
- Julius-von-Sachs Institut für Biowissenschaften, Universität Würzburg, Würzburg, Germany
| | - Isabel Lara
- Universitat de Lleida, Lleida, Spain
- Postharvest Unit-XaRTA, AGROTÈCNIO, Lleida, Spain
| |
Collapse
|
35
|
Various Patterns of Composition and Accumulation of Steroids and Triterpenoids in Cuticular Waxes from Screened Ericaceae and Caprifoliaceae Berries during Fruit Development. Molecules 2019; 24:molecules24213826. [PMID: 31652872 PMCID: PMC6864842 DOI: 10.3390/molecules24213826] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/20/2019] [Accepted: 10/21/2019] [Indexed: 11/30/2022] Open
Abstract
Cuticular waxes are primarily composed of two classes of lipids: compounds derived from very-long-chain fatty acids and isoprenoids, particularly triterpenoids and steroids. Isoprenoids can occur in cuticular waxes in high amounts, dominating the mixture of aliphatic long-chain hydrocarbons, while in other plants they are found in trace concentrations. Triterpenoids occurring in fruit cuticular waxes are of interest due to their potential role in the protection against biotic stresses, including pathogen infections, and their impact on the mechanical toughness of the fruit surface, maintaining fruit integrity, and post-harvest quality. The aim of the present study was the determination of the changes in the triterpenoid profile of the fruit cuticular waxes of four plant species bearing edible berries: Vaccinium myrtillus, V. vitis-idaea, and Arbutus unedo of the Ericaceae and the edible honeysuckle Lonicera caerulea of the Caprifoliaceae. Triterpenoids were identified and quantified by GC-MS/FID (gas chromatography-mass spectrometry/flame ionization detection) at three different phenological stages: young berries, berries at the onset of ripening, and mature berries. During fruit development and maturation, the triterpenoid content in cuticular waxes displayed species-specific patterns of changes. The steroid content seemed to be directly correlated with the developmental stage, with a very typical point of transition between growth and ripening being observed in all the fruit analyzed in this study.
Collapse
|
36
|
Wu X, Shi X, Bai M, Chen Y, Li X, Qi K, Cao P, Li M, Yin H, Zhang S. Transcriptomic and Gas Chromatography-Mass Spectrometry Metabolomic Profiling Analysis of the Epidermis Provides Insights into Cuticular Wax Regulation in Developing 'Yuluxiang' Pear Fruit. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8319-8331. [PMID: 31287308 DOI: 10.1021/acs.jafc.9b01899] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The layer of cuticular wax covering fruits plays important roles in protecting against disease, preventing non-stomatal water loss, and extending shelf life. However, the molecular basis of cuticular wax biosynthesis in pear (Pyrus) fruits remains elusive. Our study thoroughly investigates cuticular wax biosynthesis during pear fruit development from morphologic, transcriptomic, and gas chromatography-mass spectrometry metabolomic perspectives. Our results showed that cuticular wax concentrations increased during the early stage [20-80 days after full bloom (DAFB)] from 0.64 mg/cm2 (50 DAFB) to 1.75 mg/cm2 (80 DAFB) and then slightly decreased to 1.22 mg/cm2 during the fruit ripening period (80-140 DAFB). Scanning electron microscopy imaging indicated that wax plate crystals increased and wax structures varied during the pear fruit development. The combined transcriptomic and metabolomic profiling analysis revealed 27 genes, including 12 genes encoding transcription factors and a new structural gene (Pbr028523) encoding β-amyrin synthase, participating in the biosynthesis, transport, and regulation of cuticular wax according to their expression patterns in pear fruit. The quantitative real-time polymerase chain reaction experiments of 18 differentially expressed genes were performed and confirmed the accuracy of the RNA-Seq-derived transcript expression. A model of VLCFAs and cuticular wax synthesis and transport in pear fruit is proposed, providing a mechanistic framework for understanding cuticular wax biosynthesis in pear fruit. These results and data sets provide a foundation for the molecular events related to cuticular wax in 'Yuluxiang' pear fruit and may also help guide the functional analyses of candidate genes important for improving the cuticular wax of pear fruit in the future.
Collapse
Affiliation(s)
- Xiao Wu
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Xinjie Shi
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Mudan Bai
- Pomology Research Institute , Shanxi Academy of Agricultural Sciences , Jinzhong , Shanxi 030815 , People's Republic of China
| | - Yangyang Chen
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Xiaolong Li
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Kaijie Qi
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Peng Cao
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Mingzhi Li
- Genepioneer Biotechnologies Company, Limited , Nanjing , Jiangsu 210014 , People's Republic of China
| | - Hao Yin
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Shaoling Zhang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| |
Collapse
|
37
|
Ludeña-Huaman MA, Ramos-Inquiltupa DA. Determination of the content of ursolic and oleanolic acid in the cuticular wax of fruits of different species of Rosaceae. REVISTA COLOMBIANA DE QUÍMICA 2019. [DOI: 10.15446/rev.colomb.quim.v48n2.77046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Ursolic acid (UA) and oleanolic acid (OA) are two widely distributed triterpenes in fruits, especially those belonging to Rosaceae family. These triterpene isomers are of great pharmacological interest due to their multiple bioactive properties. For this reason, the objective of this study was to determine the content of UA and OA extracted from the cuticular wax of five highly edible fruits (quince, loquat, pear, peach and apple) all belonging to the Rosaceae family. The acids were analyzed by high performance liquid chromatography. Both UA and OA are present in all these fruits, however, UA is in greater quantities.
Collapse
|
38
|
Berni R, Hoque MZ, Legay S, Cai G, Siddiqui KS, Hausman JF, Andre CM, Guerriero G. Tuscan Varieties of Sweet Cherry Are Rich Sources of Ursolic and Oleanolic Acid: Protein Modeling Coupled to Targeted Gene Expression and Metabolite Analyses. Molecules 2019; 24:E1590. [PMID: 31013661 PMCID: PMC6515059 DOI: 10.3390/molecules24081590] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/20/2019] [Accepted: 04/20/2019] [Indexed: 11/16/2022] Open
Abstract
The potential of six ancient Tuscan sweet cherry (Prunus avium L.) varieties as a source of health-promoting pentacyclic triterpenes is here evaluated by means of a targeted gene expression and metabolite analysis. By using a sequence homology criterion, we identify five oxidosqualene cyclase genes (OSCs) and three cytochrome P450s (CYP85s) that are putatively involved in the triterpene production pathway in sweet cherries. We performed 3D structure prediction and induced-fit docking using cation intermediates and reaction products for some OSCs to predict their function. We show that the Tuscan varieties have different amounts of ursolic and oleanolic acids and that these variations are related to different gene expression profiles. This study stresses the interest of valorizing ancient fruits as alternative sources of functional molecules with nutraceutical value. It also provides information on sweet cherry triterpene biosynthetic genes, which could be the object of follow-up functional studies.
Collapse
Affiliation(s)
- Roberto Berni
- Department of Life Sciences, University of Siena, via P.A. Mattioli 4, 53100 Siena, Italy.
- Trees and Timber Institute, National Research Council of Italy (CNR-IVALSA), via Aurelia 49, 58022 Follonica (GR), Italy.
| | - Mubasher Zahir Hoque
- Bio-Bio-1 Research Foundation, Sangskriti Bikash Kendra Bhaban, 1/E/1 Poribagh, Dhaka 1000, Bangladesh.
- Life Sciences Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia.
| | - Sylvain Legay
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5 avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg.
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, via P.A. Mattioli 4, 53100 Siena, Italy.
| | - Khawar Sohail Siddiqui
- Life Sciences Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia.
| | - Jean-Francois Hausman
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5 avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg.
| | - Christelle M Andre
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5 avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg.
| | - Gea Guerriero
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5 avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg.
| |
Collapse
|
39
|
Trivedi P, Nguyen N, Hykkerud AL, Häggman H, Martinussen I, Jaakola L, Karppinen K. Developmental and Environmental Regulation of Cuticular Wax Biosynthesis in Fleshy Fruits. FRONTIERS IN PLANT SCIENCE 2019; 10:431. [PMID: 31110509 PMCID: PMC6499192 DOI: 10.3389/fpls.2019.00431] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/21/2019] [Indexed: 05/18/2023]
Abstract
The aerial parts of land plants are covered by a hydrophobic layer called cuticle that limits non-stomatal water loss and provides protection against external biotic and abiotic stresses. The cuticle is composed of polymer cutin and wax comprising a mixture of very-long-chain fatty acids and their derivatives, while also bioactive secondary metabolites such as triterpenoids are present. Fleshy fruits are also covered by the cuticle, which has an important protective role during the fruit development and ripening. Research related to the biosynthesis and composition of cuticles on vegetative plant parts has largely promoted the research on cuticular waxes in fruits. The chemical composition of the cuticular wax varies greatly between fruit species and is modified by developmental and environmental cues affecting the protective properties of the wax. This review focuses on the current knowledge of the cuticular wax biosynthesis during fleshy fruits development, and on the effect of environmental factors in regulation of the biosynthesis. Bioactive properties of fruit cuticular waxes are also briefly discussed, as well as the potential for recycling of industrial fruit residues as a valuable raw material for natural wax to be used in food, cosmetics and medicine.
Collapse
Affiliation(s)
- Priyanka Trivedi
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Nga Nguyen
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | | | - Hely Häggman
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | | | - Laura Jaakola
- Norwegian Institute of Bioeconomy Research, Ås, Norway
- Climate Laboratory Holt, Department of Arctic and Marine Biology, UiT the Arctic University of Norway, Tromsø, Norway
| | - Katja Karppinen
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
- Climate Laboratory Holt, Department of Arctic and Marine Biology, UiT the Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
40
|
Valorization of Wild Apple ( Malus spp.) By-Products as a Source of Essential Fatty Acids, Tocopherols and Phytosterols with Antimicrobial Activity. PLANTS 2018; 7:plants7040090. [PMID: 30352980 PMCID: PMC6313870 DOI: 10.3390/plants7040090] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 10/20/2018] [Accepted: 10/22/2018] [Indexed: 01/28/2023]
Abstract
The amplified production of fruit as well as burgeoning demand for plant-made food products have resulted in a sharp increase of waste. Currently, millions of tons of by-products are either being discarded or utilized rather ineffectively. However, these by-products may be processed and further incorporated as functional ingredients in making high-value food products with many physiological and biochemical effects. The chemical analysis of pomace oils using gas chromatography-mass spectrometry (GC/MS) and reversed-phase-liquid chromatography coupled with fluorescence detector (RP-HPLC/FLD) systems led to the identification and quantification of 56 individual lipophilic compounds including unsaturated, polyunsaturated and saturated fatty acids, as well as phytosterols and four homologs of tocopherol. The oils recovered from by-products of Malus spp. (particularly cv. “Ola”) are rich in fatty acids such as linolenic (57.8%), α-linolenic (54.3%), and oleic (25.5%). The concentration of total tocopherols varied among the Malus species and dessert apples investigated, representing the range of 16.8–30.9 mg mL−1. The highest content of total tocopherols was found in M. Bernu prieks, followed by M. cv. “Ola”, and M. × Soulardii pomace oils. A significantly higher amount of δ-tocopherol was established in the oil of M. Bernu prieks, indicating that this species could be utilized as a natural and cheap source of bioactive molecules. β-Sitosterol was the prevalent compound determined in all tested pomace oils with a percentage distribution of 10.3–94.5%. The main triterpene identified in the oils was lupeol, which varied in the range of 0.1–66.3%. A targeted utilization of apple pomace would facilitate management of tons of by-products and benefit the environment and industry.
Collapse
|
41
|
Wu X, Yin H, Shi Z, Chen Y, Qi K, Qiao X, Wang G, Cao P, Zhang S. Chemical Composition and Crystal Morphology of Epicuticular Wax in Mature Fruits of 35 Pear ( Pyrus spp.) Cultivars. FRONTIERS IN PLANT SCIENCE 2018; 9:679. [PMID: 29875784 PMCID: PMC5974152 DOI: 10.3389/fpls.2018.00679] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/03/2018] [Indexed: 05/18/2023]
Abstract
An evaluation of fruit wax components will provide us with valuable information for pear breeding and enhancing fruit quality. Here, we dissected the epicuticular wax concentration, composition and structure of mature fruits from 35 pear cultivars belonging to five different species and hybrid interspecies. A total of 146 epicuticular wax compounds were detected, and the wax composition and concentration varied dramatically among species, with the highest level of 1.53 mg/cm2 in Pyrus communis and the lowest level of 0.62 mg/cm2 in Pyrus pyrifolia. Field emission scanning electron microscopy (FESEM) analysis showed amorphous structures of the epicuticular wax crystals of different pear cultivars. Cluster analysis revealed that the Pyrus bretschneideri cultivars were grouped much closer to Pyrus pyrifolia and Pyrus ussuriensis, and the Pyrus sinkiangensis cultivars were clustered into a distant group. Based on the principal component analysis (PCA), the cultivars could be divided into three groups and five groups according to seven main classes of epicuticular wax compounds and 146 wax compounds, respectively.
Collapse
Affiliation(s)
- Xiao Wu
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Hao Yin
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Zebin Shi
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yangyang Chen
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Kaijie Qi
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Xin Qiao
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Guoming Wang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Peng Cao
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Shaoling Zhang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
42
|
Chu W, Gao H, Chen H, Wu W, Fang X. Changes in Cuticular Wax Composition of Two Blueberry Cultivars during Fruit Ripening and Postharvest Cold Storage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2870-2876. [PMID: 29489345 DOI: 10.1021/acs.jafc.7b05020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Cuticular wax plays an important role for the quality of blueberry fruits. In this study, the cuticular wax composition of two blueberry cultivars, 'Legacy' ( Vaccinium corymbosum) and 'Brightwell' ( Vaccinium ashei), was examined during fruit ripening and postharvest cold storage. The results showed that wax was gradually deposited on the epidermis of blueberry fruits and the content of major wax compounds, except that for diketones, increased significantly during fruit ripening. The total wax content was 2-fold greater in 'Brightwell' blueberries than that in 'Legacy' blueberries during fruit ripening. The total wax content of both cultivars decreased during 30 days of storage at 4 °C, and the variation of cuticular wax composition was cultivar-dependent. The content of diketones decreased significantly in 'Legacy' blueberries, while the content of triterpenoids and aliphatic compounds showed different fold changes in 'Brightwell' blueberries after 30 days of storage at 4 °C. Overall, our study provided a quantitative and qualitative overview of cuticular wax compounds of blueberry fruits during ripening and postharvest cold storage.
Collapse
Affiliation(s)
- Wenjing Chu
- Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute , Zhejiang Academy of Agricultural Science , 298 Middle Desheng Road , Hangzhou , Zhejiang 310021 , People's Republic of China
| | - Haiyan Gao
- Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute , Zhejiang Academy of Agricultural Science , 298 Middle Desheng Road , Hangzhou , Zhejiang 310021 , People's Republic of China
| | - Hangjun Chen
- Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute , Zhejiang Academy of Agricultural Science , 298 Middle Desheng Road , Hangzhou , Zhejiang 310021 , People's Republic of China
| | - Weijie Wu
- Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute , Zhejiang Academy of Agricultural Science , 298 Middle Desheng Road , Hangzhou , Zhejiang 310021 , People's Republic of China
| | - Xiangjun Fang
- Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute , Zhejiang Academy of Agricultural Science , 298 Middle Desheng Road , Hangzhou , Zhejiang 310021 , People's Republic of China
| |
Collapse
|
43
|
Wang Y, Sun Y, You Q, Luo W, Wang C, Zhao S, Chai G, Li T, Shi X, Li C, Jetter R, Wang Z. Three Fatty Acyl-Coenzyme A Reductases, BdFAR1, BdFAR2 and BdFAR3, are Involved in Cuticular Wax Primary Alcohol Biosynthesis in Brachypodium distachyon. PLANT & CELL PHYSIOLOGY 2018; 59:527-543. [PMID: 29329458 DOI: 10.1093/pcp/pcx211] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 12/27/2017] [Indexed: 05/20/2023]
Abstract
Plant cuticular wax is a heterogeneous mixture of very long chain fatty acids (VLCFAs) and their derivatives. Primary alcohols are the dominant wax components throughout leaf development of Brachypodium distachyon (Brachypodium). However, the genes involved in primary alcohol biosynthesis have not been investigated and their exact biological function remains unclear in Brachypodium to date. Here, we monitored the leaf wax profile and crystal morphology during Brachypodium leaf morphogenesis, and isolated three Brachypodium fatty acyl-CoA reductase (FAR) genes, named BdFAR1, BdFAR2 and BdFAR3, then analyzed their biochemical activities, substrate specificities, expression patterns, subcellular localization and stress induction. Transgenic expression of BdFAR genes in yeast (Saccharomyces cerevisiae), tomato (Solanum lycopersicum), Arabidopsis (Arabidopsis thaliana) and Brachypodium increased the production of primary alcohols. The three BdFAR genes were preferentially expressed in Brachypodium aerial tissues, consistent with known sites of wax primary alcohol deposition, and localized in the endoplasmic reticulum (ER) in Arabidopsis protoplasts. Finally, expression of the BdFAR genes was induced by drought, cold and ABA treatments, and drought stress significantly increased cuticular wax accumulation in Brachypodium. Taken together, these results indicate that the three BdFAR genes encode active FARs involved in the biosynthesis of Brachypodium wax primary alcohols and respond to abiotic stresses.
Collapse
Affiliation(s)
- Yong Wang
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yulin Sun
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
| | - Qiuye You
- Shanghai Center for Plant Stress Biology, University of Chinese Academy of Sciences, Shanghai 201602, China
| | - Wenqiao Luo
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Cong Wang
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shuai Zhao
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Guaiqiang Chai
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tingting Li
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xue Shi
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chunlian Li
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Reinhard Jetter
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
| | - Zhonghua Wang
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
44
|
Fernández V, Bahamonde HA, Javier Peguero-Pina J, Gil-Pelegrín E, Sancho-Knapik D, Gil L, Goldbach HE, Eichert T. Physico-chemical properties of plant cuticles and their functional and ecological significance. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5293-5306. [PMID: 28992247 DOI: 10.1093/jxb/erx302] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/03/2017] [Indexed: 05/19/2023]
Abstract
Most aerial plant surfaces are covered with a lipid-rich cuticle, which is a barrier for the bidirectional transport of substances between the plant and the surrounding environment. This review article provides an overview of the significance of the leaf cuticle as a barrier for the deposition and absorption of water and electrolytes. After providing insights into the physico-chemical properties of plant surfaces, the mechanisms of foliar absorption are revised with special emphasis on solutes. Due to the limited information and relative importance of the leaf cuticle of herbaceous and deciduous cultivated plants, an overview of the studies developed with Alpine conifers and treeline species is provided. The significance of foliar water uptake as a phenomenon of ecophysiological relevance in many areas of the world is also highlighted. Given the observed variability in structure and composition among, for example, plant species and organs, it is concluded that it is currently not possible to establish general permeability and wettability models that are valid for predicting liquid-surface interactions and the subsequent transport of water and electrolytes across plant surfaces.
Collapse
Affiliation(s)
- Victoria Fernández
- Forest Genetics and Ecophysiology Research Group, School of Forest Engineering, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Hector A Bahamonde
- Instituto Nacional de Tecnología Agropecuaria (INTA), cc 332, 9400 Río Gallegos, Santa Cruz, Argentina
| | - José Javier Peguero-Pina
- Unidad de Recursos Forestales, Centro de Investigación y Tecnología Agroalimentaria, Gobierno de Aragón, 50059 Zaragoza, Spain
| | - Eustaquio Gil-Pelegrín
- Unidad de Recursos Forestales, Centro de Investigación y Tecnología Agroalimentaria, Gobierno de Aragón, 50059 Zaragoza, Spain
| | - Domingo Sancho-Knapik
- Unidad de Recursos Forestales, Centro de Investigación y Tecnología Agroalimentaria, Gobierno de Aragón, 50059 Zaragoza, Spain
| | - Luis Gil
- Forest Genetics and Ecophysiology Research Group, School of Forest Engineering, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Heiner E Goldbach
- Institute of Crop Science and Resource Conservation, Department of Plant Nutrition, University of Bonn, 53115 Bonn, Germany
| | - Thomas Eichert
- Institute of Crop Science and Resource Conservation, Department of Plant Nutrition, University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
45
|
Khanal BP, Knoche M. Mechanical properties of cuticles and their primary determinants. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5351-5367. [PMID: 28992090 DOI: 10.1093/jxb/erx265] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/04/2017] [Indexed: 05/18/2023]
Abstract
Cuticles envelope primary surfaces of the above-ground portion of plants. They function as barriers to water movement and to gas exchange, and in pathogen defense. To serve as a barrier on growing organs, cuticles must remain intact but at the same time must accommodate ongoing growth. Minimizing cuticle failure has stimulated significant research on the cuticle's mechanical properties. The objective here is to review the literature on the mechanical properties of isolated fruit and leaf cuticles. Cuticles are viscoelastic polymers. Viscoelasticity results mainly from the cutin matrix. Impregnation by waxes, flavonoids, and cutan increases stiffness and strength but decreases extensibility. On the inner side, the cutin matrix is impregnated by cell wall polysaccharides, which are responsible for its elastic behavior. Across species, the maximum forces sustainable by hydrated cuticles in uniaxial tensile tests averaged 0.82 N (range 0.15-1.63 N), the maximum stresses averaged 13.2 MPa (range 2.0-29.0 MPa), the maximum strains averaged 8.8% (range 1.6-28.0%), and the moduli of elasticity averaged 224 MPa (range 60-730 MPa). Among the environmental factors, high temperature and hydration both decreased stiffness. Therefore, the mechanical properties of cuticles in vivo depend largely on the relative proportions of their constituents. These proportions change during development and are also affected by environmental factors such as temperature.
Collapse
Affiliation(s)
- Bishnu P Khanal
- Institute for Horticultural Production Systems, Leibniz-University Hannover, Herrenhäuser Straße 2, D-30419 Hannover, Germany
| | - Moritz Knoche
- Institute for Horticultural Production Systems, Leibniz-University Hannover, Herrenhäuser Straße 2, D-30419 Hannover, Germany
| |
Collapse
|
46
|
Brennan M, Shepherd T, Mitchell S, Topp CFE, Hoad SP. Husk to caryopsis adhesion in barley is influenced by pre- and post-anthesis temperatures through changes in a cuticular cementing layer on the caryopsis. BMC PLANT BIOLOGY 2017; 17:169. [PMID: 29058624 PMCID: PMC5651604 DOI: 10.1186/s12870-017-1113-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 10/09/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND At ripeness, the outer husk of "covered" barley grains firmly adheres to the underlying caryopsis. A cuticular cementing layer on the caryopsis is required for husk adhesion, however the quality of adhesion varies significantly among cultivars which produce the cementing layer, resulting in the economically important malting defect, grain skinning. The composition of the cementing layer, and grain organ development have been hypothesised to influence the quality of husk adhesion. Plants of Hordeum vulgare 'Concerto' were grown at different temperatures pre- and post-anthesis to effect changes in the development of the husk, caryopsis and cuticular cementing layer, to determine how these variables influence the quality of husk-to-caryopsis adhesion. RESULTS Warm conditions pre-anthesis decreased the quality of husk adhesion, and consequently increased the incidence of grain skinning. Cool post-anthesis conditions further decreased the quality of husk adhesion. The composition of the cementing layer, rather than its structure, differed with respect to husk adhesion quality. This cementing layer was produced at the late milk stage, occurring between nine and 29 days post-anthesis, conditional on the temperature-dependent growth rate. The compounds octadecanol, tritriacontane, campesterol and β-sitosterol were most abundant in caryopses with high-quality husk adhesion. The differences in adhesion quality were not due to incompatible husk and caryopsis dimensions affecting organ contact. CONCLUSIONS This study shows that husk-to-caryopsis adhesion is dependent on cementing layer composition, and implies that this composition is regulated by temperature before, and during grain development. Understanding this regulation will be key to improving husk-to-caryopsis adhesion.
Collapse
Affiliation(s)
- M. Brennan
- Scotland’s Rural College, King’s Buildings, West Mains Road, EH9 3JG Edinburgh, Scotland
| | - T. Shepherd
- James Hutton Institute, Invergowrie, DD2 5DA Dundee, Scotland
| | - S. Mitchell
- University of Edinburgh, King’s Buildings, Mayfield Road, EH9 3JH Edinburgh, Scotland
| | - C. F. E. Topp
- Scotland’s Rural College, King’s Buildings, West Mains Road, EH9 3JG Edinburgh, Scotland
| | - S. P. Hoad
- Scotland’s Rural College, King’s Buildings, West Mains Road, EH9 3JG Edinburgh, Scotland
| |
Collapse
|
47
|
Huang H, Burghardt M, Schuster AC, Leide J, Lara I, Riederer M. Chemical Composition and Water Permeability of Fruit and Leaf Cuticles of Olea europaea L. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:8790-8797. [PMID: 28880084 DOI: 10.1021/acs.jafc.7b03049] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The plant cuticle, protecting against uncontrolled water loss, covers olive (Olea europaea) fruits and leaves. The present study describes the organ-specific chemical composition of the cuticular waxes and the cutin and compares three developmental stages of fruits (green, turning, and black) with the leaf surface. Numerous organ-specific differences, such as the total coverage of cutin monomeric components (1034.4 μg cm-2 and 630.5 μg cm-2) and the cuticular waxes (201.6 μg cm-2 and 320.4 μg cm-2) among all three fruit stages and leaves, respectively, were detected. Water permeability as the main cuticular function was 5-fold lower in adaxial leaf cuticles (2.1 × 10-5 m s-1) in comparison to all three fruit stages (9.5 × 10-5 m s-1). The three fruit developmental stages have the same cuticular water permeability. It is hypothesized that a higher weighted average chain length of the acyclic cuticular components leads to a considerably lower permeability of the leaf as compared to the fruit cuticle.
Collapse
Affiliation(s)
- Hua Huang
- Julius von Sachs Institute of Biosciences, University of Würzburg , Würzburg D-97082, Germany
| | - Markus Burghardt
- Julius von Sachs Institute of Biosciences, University of Würzburg , Würzburg D-97082, Germany
| | - Ann-Christin Schuster
- Julius von Sachs Institute of Biosciences, University of Würzburg , Würzburg D-97082, Germany
| | - Jana Leide
- Julius von Sachs Institute of Biosciences, University of Würzburg , Würzburg D-97082, Germany
| | - Isabel Lara
- Department of Chemistry, Unitat de Postcollita-XaRTA, AGROTÈCNIO, Universitat de Lleida , E-25003 Lleida, Spain
| | - Markus Riederer
- Julius von Sachs Institute of Biosciences, University of Würzburg , Würzburg D-97082, Germany
| |
Collapse
|
48
|
Chu W, Gao H, Cao S, Fang X, Chen H, Xiao S. Composition and morphology of cuticular wax in blueberry (Vaccinium spp.) fruits. Food Chem 2017; 219:436-442. [DOI: 10.1016/j.foodchem.2016.09.186] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/28/2016] [Accepted: 09/28/2016] [Indexed: 02/07/2023]
|
49
|
Busta L, Hegebarth D, Kroc E, Jetter R. Changes in cuticular wax coverage and composition on developing Arabidopsis leaves are influenced by wax biosynthesis gene expression levels and trichome density. PLANTA 2017; 245:297-311. [PMID: 27730411 DOI: 10.1007/s00425-016-2603-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/29/2016] [Indexed: 05/20/2023]
Abstract
Wax coverage on developing Arabidopsis leaf epidermis cells is constant and thus synchronized with cell expansion. Wax composition shifts from fatty acid to alkane dominance, mediated by CER6 expression. Epidermal cells bear a wax-sealed cuticle to hinder transpirational water loss. The amount and composition of the cuticular wax mixture may change as organs develop, to optimize the cuticle for specific functions during growth. Here, morphometrics, wax chemical profiling, and gene expression measurements were integrated to study developing Arabidopsis thaliana leaves and, thus, further our understanding of cuticular wax ontogeny. Before 5 days of age, cells at the leaf tip ceased dividing and began to expand, while cells at the leaf base switched from cycling to expansion at day 13, generating a cell age gradient along the leaf. We used this spatial age distribution together with leaves of different ages to determine that, as leaves developed, their wax compositions shifted from C24/C26 to C30/C32 and from fatty acid to alkane constituents. These compositional changes paralleled an increase in the expression of the elongase enzyme CER6 but not of alkane pathway enzymes, suggesting that CER6 transcriptional regulation is responsible for both chemical shifts. Leaves bore constant numbers of trichomes between 5 and 21 days of age and, thus, trichome density was higher on young leaves. During this time span, leaves of the trichome-less gl1 mutant had constant wax coverage, while wild-type leaf coverage was initially high and then decreased, suggesting that high trichome density leads to greater apparent coverage on young leaves. Conversely, wax coverage on pavement cells remained constant over time, indicating that wax accumulation is synchronized with cell expansion throughout leaf development.
Collapse
Affiliation(s)
- Lucas Busta
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Daniela Hegebarth
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada
| | - Edward Kroc
- Department of Statistics, University of British Columbia, 3182 Earth Sciences Building, 2207 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Educational and Counselling Psychology, and Special Education, University of British Columbia, 2125 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Reinhard Jetter
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
50
|
Correia S, Schouten R, Silva AP, Gonçalves B. Factors Affecting Quality and Health Promoting Compounds during Growth and Postharvest Life of Sweet Cherry ( Prunus avium L.). FRONTIERS IN PLANT SCIENCE 2017; 8:2166. [PMID: 29312407 PMCID: PMC5742238 DOI: 10.3389/fpls.2017.02166] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/08/2017] [Indexed: 05/13/2023]
Abstract
Sweet cherries are attractive fruits due to their taste, color, nutritional value, and beneficial health effects. Sweet cherry is a highly perishable fruit and all quality attributes and the level of health promoting compounds are affected by growth conditions, picking, packing, transport, and storage. During production, the correct combination of scion × rootstock will produce fruits with higher firmness, weight, sugars, vitamins, and phenolic compounds that boost the fruit antioxidant activity. Orchard management, such as applying drip irrigation and summer pruning, will increase fruit sugar levels and total phenolic content, while application of growth regulators can result in improved storability, increased red coloring, increased fruit size, and reduced cracking. Salicylic acid, oxalic acid, acetylsalicylic acid, and methyl salicylate are promising growth regulators as they also increase total phenolics, anthocyanins, and induce higher activity of antioxidant enzymes. These growth regulators are now also applied as fruit coatings that improve shelf-life with higher antioxidant enzyme activities and total phenolics. Optimizing storage and transport conditions, such as hydro cooling with added CaCl2, chain temperature and relative humidity control, are crucial for slowing down decay of quality attributes and increasing the antioxidant capacity. Application of controlled atmosphere during storage is successful in delaying quality attributes, but lowers ascorbic acid levels. The combination of low temperature storage in combination with modified atmosphere packaging (MAP) is successful in reducing the incidence of fruit decay, while preserving taste attributes and stem color with a higher antioxidant capacity. A new trend in MAP is the use of biodegradable films such as micro-perforated polylactic acid film that combine significant retention of quality attributes, high consumer acceptability, and a reduced environmental footprint. Another trend is to replace MAP with fruit edible coatings. Edible coatings, such as various lipid composite coatings, have advantages in retaining quality attributes and increasing the antioxidant activity (chitosan) and are regarded as approved food additives, although studies regarding consumer acceptance are needed. The recent publication of the sweet cherry genome will likely increase the identification of more candidate genes involved in growing and maintaining health related compounds and quality attributes.
Collapse
Affiliation(s)
- Sofia Correia
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
- *Correspondence: Sofia Correia
| | - Rob Schouten
- Horticulture and Product Physiology, Wageningen University, Wageningen, Netherlands
| | - Ana P. Silva
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Berta Gonçalves
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| |
Collapse
|