1
|
Alami-Milani M, Aghaei-Gharachorlou P, Davar R, Rashidpour A, Torabian S, Farhangi-Abriz S. Biochar solutions: Slow and fast pyrolysis effects on chromium stress in rapeseed roots. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109197. [PMID: 39423719 DOI: 10.1016/j.plaphy.2024.109197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 08/22/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
Chromium (Cr) contamination in agricultural soils, largely due to industrial activities, poses a significant threat to plant growth and productivity. This study examines the effects of Cr stress at concentrations of 100 and 200 mg of K2Cr2O7 per kg soil on rapeseed (Brassica napus) roots and evaluates the mitigating potential of biochar. Biochar, produced through both slow and fast pyrolysis and applied at 30 g per kg soil, was investigated for its ability to neutralize Cr toxicity. Our findings indicate that Cr stress significantly decreased the growth and physiological functions of rapeseed roots. However, biochar application improved soil pH, cation exchange capacity, and the uptake of essential nutrients such as nitrogen, phosphorus, potassium, calcium, and magnesium. Additionally, biochar enhanced the production of osmotic regulators like glycine betaine and soluble proteins, as well as indole acetic acid, promoting better root growth and water uptake under Cr stress. Notably, biochar reduced Cr availability and absorption in rapeseed roots, leading to lower levels of stress-related hormones such as abscisic acid, salicylic acid, and jasmonic acid. Among the biochars tested, slow pyrolysis biochar was more effective than fast pyrolysis biochar in mitigating Cr toxicity. These results highlight the potential of slow pyrolysis biochar as a sustainable strategy to alleviate Cr pollution and enhance plant resilience in contaminated soils.
Collapse
Affiliation(s)
- Morteza Alami-Milani
- Department of Plant Eco-physiology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | | | - Rozita Davar
- Department of Soil Science, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | - Ania Rashidpour
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028, Barcelona, Spain.
| | - Shahram Torabian
- Agricultural Research Station, Virginia State University, Petersburg, VA, 23806, USA.
| | - Salar Farhangi-Abriz
- Cotton Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Gorgan, Iran.
| |
Collapse
|
2
|
Zeng Y, Liu Z, Chen W, Qv K, Huang Y, Ade L, Hou F. Methane pulse spray and irrigation promote seed germination and seedling growth of common vetch. BMC PLANT BIOLOGY 2024; 24:971. [PMID: 39415102 PMCID: PMC11481452 DOI: 10.1186/s12870-024-05682-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
BACKGROUND Grazing livestock emits methane through rumen intestinal activity, however, its impact on plant growth in grassland while grazing still has not been explored in detail. Therefore, the study examined the effects of methane pulse spray (MPS), according to grazing intensity, at four grazing intensities (0, 3.6, 5.0, and 6.5 sheep·hm- 2 yr- 1) on seed germination and seedling growth of common vetch (Vicia sativa), while two irrigation rates (35 and 53 ml d- 1) were employed to simulate the precipitation. RESULTS The study revealed significant interactions between MPS and irrigation rate on seed germination and seedling growth parameters. Under moderate MPS intensities (0.74 and 1.04 mol m- 2), seed germination rate, potential, index, and vigor index improved, especially at higher irrigation rates (53 ml d- 1). Conversely, excessive MPS (1.33 mol m- 2) inhibited particularly at the germination rate and growth,. The seedling growth dynamics fitted a logistic model, with MPS advancing the rapid growth phase and increasing maximum growth rates. CONCLUSIONS This study demonstrates that low to moderate levels of MPS from ruminants can promote seed germination and seedling growth of common vetch, while excessive MPS inhibits these processes. Irrigation enhances plant sensitivity to MPS, with wetter conditions (620 mm yr- 1) facilitating a more pronounced response. The findings introduce a new model elucidating plant responses to external perturbations, which can inform grazing management strategies in diverse ecosystems. In wetter regions, moderate grazing intensities may leverage MPS benefits, while arid regions require careful grazing regulation to maintain grassland-livestock balance.
Collapse
Affiliation(s)
- Yifeng Zeng
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, National Forestry and Grassland Administration, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Zhiqiang Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, National Forestry and Grassland Administration, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Weijun Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, National Forestry and Grassland Administration, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Ketan Qv
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, National Forestry and Grassland Administration, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Yanxiang Huang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, National Forestry and Grassland Administration, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Luji Ade
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, National Forestry and Grassland Administration, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Fujiang Hou
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, National Forestry and Grassland Administration, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.
| |
Collapse
|
3
|
Ramzan M, Javed T, Hassan A, Ahmed MZ, Ashraf H, Shah AA, Iftikhar M, El-Sheikh MA, Raja V. Protective effects of the exogenous application of salicylic acid and chitosan on chromium-induced photosynthetic capacity and osmotic adjustment in Aconitum napellus. BMC PLANT BIOLOGY 2024; 24:933. [PMID: 39379805 PMCID: PMC11460047 DOI: 10.1186/s12870-024-05634-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024]
Abstract
Chitosan (CTS) is recognized for enhancing a plant's resilience to various environmental stresses, such as salinity and drought. Moreover, salicylic acid (SA) is acknowledged as a growth regulator involved in addressing metal toxicity. However, the effectiveness of both compounds in mitigating Cr-induced stress has remained relatively unexplored, especially in the case of Aconitum napellus, a medicinally and floricultural important plant. Therefore, the primary objective of this study was to investigate the potential of CTS and SA in alleviating chromium (Cr)-induced stress in A. napellus. To address these research questions, we conducted a controlled experiment using potted plants to evaluate the individual and combined impacts of CTS and SA on plants exposed to Cr stress. Foliar application of CTS (0.4 g/L) or SA (0.25 mmol/L) led to significant improvements in the growth, chlorophyll content, fluorescence, and photosynthetic traits of A. napellus plants under Cr stress. The most notable effects were observed with the combined application of CTS and SA, resulting in increases in various morphological parameters, such as shoot length (2.89% and 7.02%) and root length (27.75% and 3.36%) under the Cr 1 and Cr 2 treatments, respectively. Additionally, several physiological parameters, such as chlorophyll a (762.5% and 145.56%), chlorophyll b (762.5% and 145.56%), carotenoid (17.03% and 28.57%), and anthocyanin (112.01% and 47.96%) contents, were notably improved under the Cr 1 and Cr 2 treatments, respectively. Moreover, the combined treatment of CTS and SA improved the fluorescence parameters while decreasing the levels of enzymatic antioxidants such as catalase (27.59% and 43.79%, respectively). The application also notably increased osmoprotectant parameters, such as the total protein content (54.11% and 20.07%) and the total soluble sugar content (78.17% and 49.82%) in the leaves of A. napellus in the Cr 1 and 2 treatments, respectively. In summary, these results strongly suggest that the simultaneous use of exogenous CTS and SA is an effective strategy for alleviating the detrimental effects of Cr stress on A. napellus. This integrated approach opens promising avenues for further exploration and potential implementation within agricultural production systems.
Collapse
Affiliation(s)
- Musarrat Ramzan
- Department of Botany, Faculty of Chemical and Biological Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Tayyaba Javed
- Department of Botany, Faculty of Chemical and Biological Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Ariba Hassan
- Department of Botany, Faculty of Chemical and Biological Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Zaheer Ahmed
- Dr. M. Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, 75270, Pakistan
| | - Hina Ashraf
- Department of Botany, The Government Sadiq College Women University Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Anis Ali Shah
- Department of Botany, Division of Science and Technology, University of Education Lahore, Lahore, 54700, Pakistan.
| | - Muhammad Iftikhar
- Department of Botany, Division of Science and Technology, University of Education Lahore, Lahore, 54700, Pakistan
| | - Mohamed A El-Sheikh
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Vaseem Raja
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| |
Collapse
|
4
|
Mohanty C, Kumar V, Bisoi S, M ASJ, Das PK, Farzana, Ahmad M, Selvaraj CI, Ratha BN, Nanda S, Gangwar SP. Ecological implications of chromium-contaminated effluents from Indian tanneries and their phytoremediation: a sustainable approach. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:995. [PMID: 39352585 DOI: 10.1007/s10661-024-13122-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/13/2024] [Indexed: 10/20/2024]
Abstract
Industrial activities are paramount to sustaining the economy in a rapidly developing nation and global powerhouse like India. Leather industries are important in the country's economic map due to the high revenue and employment generation opportunities. Several of these industries contribute largely to environmental pollution. The pollution of the environment is mainly caused by improper disposal of the tannery effluents that are highly rich in hexavalent chromium, a potent human carcinogen. Hexavalent chromium imparts toxic effects on the biotic components, which include plants, animals, and humans. The review portrays the current status of the Indian leather tanning sector and its impact on the Indian economy. The process of chromium tanning and its adverse effects on the environmental biotic components have been briefly discussed. Phytoremediation of these effluents using suitable hyperaccumulating plants has been suggested as an eco-friendly and cost-effective approach for the sustainable restoration of the polluted environment. The mechanism behind the remediation approach and the factors influencing it have been detailed. The manuscript briefly discusses some important advancements in the field of phytoremediation and emerging technologies and concludes by emphasizing further research for sustainable management of tannery wastes.
Collapse
Affiliation(s)
- Chirasmita Mohanty
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Vinay Kumar
- M.S. Swaminathan School of Agriculture, Centurion University of Technology and Management, Paralakhemundi, Odisha, 761211, India
| | - Sabita Bisoi
- Department of Phytopharmaceuticals, School of Agricultural and Bio-Engineering (SoABE), Centurion University of Technology and Management, Paralakhemundi, Odisha, 761211, India
| | - Anto Simon Joseph M
- Department of Biotechnology, Sri Krishna Arts and Science College, Bharathiar University, Tamil Nadu, Coimbatore, 641008, India
| | - Pratyush Kumar Das
- Department of Phytopharmaceuticals, School of Agricultural and Bio-Engineering (SoABE), Centurion University of Technology and Management, Paralakhemundi, Odisha, 761211, India.
| | - Farzana
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Mushtaq Ahmad
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
| | - Chinnadurai Immanuel Selvaraj
- Department of Genetics and Plant Breeding, VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Tamil Nadu, Vellore, 632014, India.
| | - Bhisma Narayan Ratha
- Department of Phytopharmaceuticals, School of Agricultural and Bio-Engineering (SoABE), Centurion University of Technology and Management, Paralakhemundi, Odisha, 761211, India
| | - Satyabrata Nanda
- School of Biotechnology, Centurion University of Technology and Management, Bhubaneswar, Odisha, 752050, India.
| | - Surender Pal Gangwar
- Department of Zoology, Thakur Roshan Singh Constituent Government College, Uttar Pradesh, Katra, Shahjahanpur, India
| |
Collapse
|
5
|
Batool I, Ayyaz A, Zhang K, Hannan F, Sun Y, Qin T, Athar HUR, Naeem MS, Zhou W, Farooq MA. Chromium uptake and its impact on antioxidant level, photosynthetic machinery, and related gene expression in Brassica napus cultivars. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59363-59381. [PMID: 39349895 DOI: 10.1007/s11356-024-35175-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 09/24/2024] [Indexed: 10/29/2024]
Abstract
The development of heavy metals, particularly chromium (Cr)-tolerant crop cultivars, is hampered due to lack of understanding of the mechanisms behind Cr stress tolerance. In this study, two Brassica napus cultivars, ZS758 and ZD622, were compared for Cr stress resistance by using the chlorophyll a fluorescence technique and biochemical characteristics. In both cultivars, Cr stress dramatically decreased PSII and PSI efficiency, biomass accumulation, and antioxidant enzyme levels. Although, cultivar ZS758 showed reduction in oxidative stress by decreasing the production of reactive oxygen species (ROS) in terms of reduced H2O2 and MDA content and increased enzymatic activities of key antioxidants enzymes including SOD, APX, CAT, and POD activities that play a crucial role in the regulation of numerous transcriptional pathways involved in oxidative stress responses. Higher non-photochemical quenching (NPQ) and QY were found in tolerant ZS758 cultivar under Cr stress, indicating that tolerant cultivar had a greater capacity to preserve PSII activity under Cr stress by enhancing heat dissipation as a photo-protective component of NPQ. Lower PSI activity and electron transfer from PSII were confirmed by lower PSI efficiency and higher donor end limitation of PSI in both rapeseed cultivars. The Cr concentration was greater in the ZD622 as compared to ZS758, which affected the mineral nutrients profile and damaged the cellular ultrastructure and related gene expression levels. However, current study suggest that cultivar ZS758 is more resistant to Cr stress than ZD622 due to improved metabolism and structural integrity and Cr stress tolerance that is linked with the increased PSII activity, NPQ, and antioxidant potential; these physiological characteristics can be exploited to select cultivars for Cr stress tolerance.
Collapse
Affiliation(s)
- Iram Batool
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Ahsan Ayyaz
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Kangni Zhang
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Fakhir Hannan
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Yongqi Sun
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Tongjun Qin
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | | | | | - Weijun Zhou
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Ahsan Farooq
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Zhong-Xin Street, Wenzhou, 325035, China.
| |
Collapse
|
6
|
Alghanem SMS, Alsudays IM, Farid M, Sarfraz W, Ishaq HK, Farid S, Zubair M, Khalid N, Aslam MA, Abbas M, Abeed AHA. Evaluation of heavy metal accumulation and tolerance in oxalic acid-treated Phragmites australis wetlands for textile effluent remediation. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:2048-2063. [PMID: 38963119 DOI: 10.1080/15226514.2024.2372849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Water contamination with metals poses significant environmental challenges. The occurrence of heavy metals (HMs) prompts modifications in plant structures, emphasizing the necessity of employing focused safeguarding measures. Cadmium (Cd), lead (Pb), and chromium (Cr) emerge as particularly menacing toxins due to their high accumulation potential. Increasing the availability of organic acids is crucial for optimizing toxic metal removal via phytoremediation. This constructed wetland system (CWs) was used to determine how oxalic acid (OA) treatments of textile wastewater (WW) effluents affected morpho-physiological characteristics, antioxidant enzyme activity, oxidative stress, and HM concentrations in Phragmites australis. Multiple treatments, comprising the application of OA at a concentration of 10 mM and WW at different dilutions (25%, 50%, 75%, and 100%), were employed, with three replications of each treatment. WW stress decreased chlorophyll and carotenoid content, and concurrently enhanced HMs adsorption and antioxidant enzyme activities. Furthermore, the application of WW was found to elevate oxidative stress levels, whereas the presence of OA concurrently mitigated this oxidative stress. Similarly, WW negatively affected soil-plant analysis development (SPAD) and the total soluble proteins (SP) in both roots and shoots. Conversely, these parameters showed improvement with OA treatments. P. australis showed the potential to enhance HM accumulation under 100% WW stress. Specifically, there is an increase in root SP ranging from 9% to 39%, an increase in shoot SP from 6% to 91%, and an elevation in SPAD values from 4% to 64% compared to their respective treatments lacking OA inclusion. The OA addition resulted in decreased EL contents in the root and shoot by 10%-19% and 13%-15%, MDA by 9%-14% and 9%-20%, and H2O2 by 14%-21% and 9%-17%, in comparison to the respective treatments without OA. Interestingly, the findings further revealed that the augmentation of OA also contributed to an increased accumulation of Cr, Cd, and Pb. Specifically, at 100% WW with OA (10 mM), the concentrations of Cr, Pb, and Cd in leaves rose by 164%, 447%, and 350%, in stems by 213%, 247%, and 219%, and in roots by 155%, 238%, and 195%, respectively. The chelating agent oxalic acid effectively alleviated plant toxicity induced by toxins. Overall, our findings demonstrate the remarkable tolerance of P. australis to elevated concentrations of WW stress, positioning it as an eco-friendly candidate for industrial effluent remediation. This plant exhibits efficacy in restoring contaminants present in textile effluents, and notably, oxalic acid emerges as a promising agent for the phytoextraction of HMs.
Collapse
Affiliation(s)
| | | | - Mujahid Farid
- Department of Environmental Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Wajiha Sarfraz
- Department of Botany, Government College Women University, Sialkot, Pakistan
- Australia Rivers Institute and School of Environment and Science, Griffith University, Nathan, Australia
| | - Hafiz Khuzama Ishaq
- Department of Engineering, Unversità degli studi della compania LuigiVanvitelli, Caserta, Italy
| | - Sheharyaar Farid
- Earth and Life Sciences, School of Natural Sciences and Ryan Institute, University of Galway, Galway, Ireland
| | - Muhammad Zubair
- Department of Chemistry, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Noreen Khalid
- Department of Botany, Government College Women University, Sialkot, Pakistan
| | - Muhammad Arslan Aslam
- Department of Biological and Environment Sciences, University of Basque Country, Bilbao, Spain
| | - Mohsin Abbas
- Department of Environmental Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Amany H A Abeed
- Department of Botany and Microbiology, Assiut University, Assiut, Egypt
| |
Collapse
|
7
|
Mandal RR, Bashir Z, Mandal JR, Raj D. Potential strategies for phytoremediation of heavy metals from wastewater with circular bioeconomy approach. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:502. [PMID: 38700594 DOI: 10.1007/s10661-024-12680-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/27/2024] [Indexed: 06/01/2024]
Abstract
Water pollution is an inextricable problem that stems from natural and human-related factors. Unfortunately, with rapid industrialization, the problem has escalated to alarming levels. The pollutants that contribute to water pollution include heavy metals (HMs), chemicals, pesticides, pharmaceuticals, and other industrial byproducts. Numerous methods are used for treating HMs in wastewater, like ion exchange, membrane filtration, chemical precipitation, adsorption, and electrochemical treatment. But the remediation through the plant, i.e., phytoremediation is the most sustainable approach to remove the contaminants from wastewater. Aquatic plants illustrate the capacity to absorb excess pollutants including organic and inorganic compounds, HMs, and pharmaceutical residues present in agricultural, residential, and industrial discharges. The extensive exploitation of these hyperaccumulator plants can be attributed to their abundance, invasive mechanisms, potential for bioaccumulation, and biomass production. Post-phytoremediation, plant biomass can be toxic to both water bodies and soil. Therefore, the circular bioeconomy approach can be applied to reuse and repurpose the toxic plant biomass into different circular bioeconomy byproducts such as biochar, biogas, bioethanol, and biodiesel is essential. In this regard, the current review highlights the potential strategies for the phytoremediation of HMs in wastewater and various strategies to efficiently reuse metal-enriched biomass material and produce commercially valuable products. The implementation of circular bioeconomy practices can help overcome significant obstacles and build a new platform for an eco-friendlier lifestyle.
Collapse
Affiliation(s)
- Rashmi Ranjan Mandal
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, 522503, Andhra Pradesh, India
| | - Zahid Bashir
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, 522503, Andhra Pradesh, India
| | - Jyoti Ranjan Mandal
- Electro-Membrane Processes Laboratory, Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India
| | - Deep Raj
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, 522503, Andhra Pradesh, India.
| |
Collapse
|
8
|
Ozfidan-Konakci C, Yildiztugay E, Arikan-Abdulveli B, Alp-Turgut FN, Baslak C, Yıldırım M. The characterization of plant derived-carbon dots and its responses on chlorophyll a fluorescence kinetics, radical accumulation in guard cells, cellular redox state and antioxidant system in chromium stressed-Lactuca sativa. CHEMOSPHERE 2024; 356:141937. [PMID: 38599327 DOI: 10.1016/j.chemosphere.2024.141937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/08/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
Based on their chemical structure and catalytic features, carbon dots (CDs) demonstrate great advantages for agricultural systems. The improvements in growth, photosynthesis, nutrient assimilation and resistance are provided by CDs treatments under control or adverse conditions. However, there is no data on how CDs can enhance the tolerance against chromium toxicity on gas exchange, photosynthetic machinery and ROS-based membrane functionality. The present study was conducted to evaluate the impacts of the different concentrations of orange peel derived-carbon dots (50-100-200-500 mg L-1 CD) on growth, chlorophyll fluorescence, phenomenological fluxes between photosystems, photosynthetic performance, ROS accumulation and antioxidant system under chromium stress (Cr, 100 μM chromium (VI) oxide) in Lactuca sativa. CDs removed the Cr-reduced changes in growth (RGR), water content (RWC) and proline (Pro) content. Compared to stress, CD exposures caused an alleviation in carbon assimilation rate, stomatal conductance, transpiration rate, carboxylation efficiency, chlorophyll fluorescence (Fv/Fm) and potential photochemical efficiency (Fv/Fo). Cr toxicity disrupted the energy fluxes (ABS/RC, TRo/RC, ETo/RC and DIo/RC), quantum yields and, efficiency (ΨEo and φRo), dissipation of energy (DIo/RC) and performance index (PIABS and PItotal). An amelioration in these parameters was provided by CD addition to Cr-applied plants. Stressed plants had high activities of superoxide dismutase (SOD), peroxidase (POX) and ascorbate peroxidase (APX), which could not prevent the increase of H2O2 and lipid peroxidation (TBARS content). While all CDs induced SOD and catalase (CAT) in response to stress, POX and enzyme/non-enzymes related to ascorbate-glutathione (AsA-GSH) cycle (APX, monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase (DHAR), the contents of AsA and, GSH) were activated by 50-100-200 mg L-1 CD. CDs were able to protect the AsA regeneration, GSH/GSSG and GSH redox status. The decreases in H2O2 content might be attributed to the increased activity of glutathione peroxidase (GPX). Therefore, all CD applications minimized the Cr stress-based disturbances (TBARS content) by controlling ROS accumulation, antioxidant system and photosynthetic machinery. In conclusion, CDs have the potential to be used as a biocompatible inducer in removing the adverse effects of Cr stress in lettuce plants.
Collapse
Affiliation(s)
- Ceyda Ozfidan-Konakci
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, 42090, Konya, Turkey.
| | - Evren Yildiztugay
- Department of Biotechnology, Faculty of Science, Selcuk University, 42130, Konya, Turkey.
| | - Busra Arikan-Abdulveli
- Department of Biotechnology, Faculty of Science, Selcuk University, 42130, Konya, Turkey.
| | - Fatma Nur Alp-Turgut
- Department of Biotechnology, Faculty of Science, Selcuk University, 42130, Konya, Turkey.
| | - Canan Baslak
- Department of Chemistry, Faculty of Science, Selcuk University, 42130, Konya, Turkey.
| | - Murat Yıldırım
- Department of Biotechnology, Faculty of Science, Selcuk University, 42130, Konya, Turkey.
| |
Collapse
|
9
|
Hussain M, Hafeez A, Rizwan M, Rasheed R, Seleiman MF, Ashraf MA, Ali S, Farooq U, Nafees M. Pervasive influence of heavy metals on metabolic pathways is potentially relieved by hesperidin to enhance the phytoremediation efficiency of Bassia scoparia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:34526-34549. [PMID: 38709411 DOI: 10.1007/s11356-024-33530-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/27/2024] [Indexed: 05/07/2024]
Abstract
Hesperidin (HSP), a flavonoid, is a potent antioxidant, metal chelator, mediator of signaling pathways, and regulator of metal uptake in plants. The study examined the ameliorative effects of HSP (100 μM) on Bassia scoparia grown under excessive levels of heavy metals (zinc (500 mg kg-1), copper (400 mg kg-1), cadmium (100 mg kg-1), and chromium (100 mg kg-1)). The study clarifies the underlying mechanisms by which HSP lessens metabolic mayhem to enhance metal stress tolerance and phytoremediation efficiency of Bassia scoparia. Plants manifested diminished growth because of a drop in chlorophyll content and nutrient acquisition, along with exacerbated deterioration of cellular membranes reflected in elevated reactive oxygen species (ROS) production, lipid peroxidation, and relative membrane permeability. Besides the colossal production of cytotoxic methylglyoxal, the activity of lipoxygenase was also higher in plants under metal toxicity. Conversely, hesperidin suppressed the production of cytotoxic ROS and methylglyoxal. Hesperidin improved oxidative defense that protected membrane integrity. Hesperidin caused a more significant accumulation of osmolytes, non-protein thiols, and phytochelatins, thereby rendering metal ions non-toxic. Hydrogen sulfide and nitric oxide endogenous levels were intricately maintained higher in plants treated with HSP. Hesperidin increased metal accumulation in Bassia scoparia and thereby had the potential to promote the reclamation of metal-contaminated soils.
Collapse
Affiliation(s)
- Mazhar Hussain
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Arslan Hafeez
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Rizwan Rasheed
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Mahmoud F Seleiman
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Muhammad Arslan Ashraf
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan
| | - Umer Farooq
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Nafees
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 21023, Jiangsu, China
| |
Collapse
|
10
|
Liu S, Wu J, Ma X, Wang L, Han J, Wang Y. A novel photo-enzyme platform based on non-metallic modified carbon nitride for removal of bisphenol A in water. Int J Biol Macromol 2024; 264:130402. [PMID: 38408583 DOI: 10.1016/j.ijbiomac.2024.130402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
A nonmetallic composite photocatalyst with 2D/2D structure was prepared by hydrothermal in-situ polymerization and used for the immobilization of cytochrome C (Cyt c). The photo-enzyme coupling system has a very high enzyme load, which can reach 528.29 mg g-1 after optimization. Compared with free Cyt c, Cytc/PEDOT/CN showed better enzymatic activity, stability and catalytic efficiency. Even after being stored at 100 °C for 60 min, the enzyme activity remained at 49.42 % and remained at 57.89 % after 8 cycles. Moreover, Cytc0.5/PEDOT3/CN showed excellent photocatalytic degradation performance in the degradation experiment of bisphenol A (BPA), reaching 68.22 % degradation rate within 60 min, which was 3.9 times higher than that of pure g-C3N4 and 1.61 times higher than that of pure PEDOT3/CN. This study shows that the introduction of conductive polymers is of great significance to the photo-enzyme coupling system and provides a new strategy for the treatment of phenol-containing wastewater.
Collapse
Affiliation(s)
- Shiyuan Liu
- College of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiacong Wu
- College of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xinnan Ma
- College of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lei Wang
- College of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Juan Han
- College of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Yun Wang
- College of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
11
|
Chen F, Jiang F, Okla MK, Abbas ZK, Al-Qahtani SM, Al-Harbi NA, Abdel-Maksoud MA, Gómez-Oliván LM. Nanoparticles synergy: Enhancing wheat (Triticum aestivum L.) cadmium tolerance with iron oxide and selenium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169869. [PMID: 38218476 DOI: 10.1016/j.scitotenv.2024.169869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/31/2023] [Accepted: 01/01/2024] [Indexed: 01/15/2024]
Abstract
Nanotechnology is capturing great interest worldwide due to their stirring applications in various fields and also individual application of iron oxide nanoparticle (FeO - NPs) and selenium nanoparticles (Se - NPs) have been studied in many literatures. However, the combined application of FeO and Se - NPs is a novel approach and studied in only few studies. For this purpose, a pot experiment was conducted to examine various growth and biochemical parameters in wheat (Triticum aestivum L.) under the toxic concentration of cadmium (Cd) i.e., 50 mg kg-1 which were primed with combined application of two levels of FeO and Se - NPs i.e., 15 and 30 mg L-1 respectively. The results showed that the Cd toxicity in the soil showed a significantly (P < 0.05) declined in the growth, gas exchange attributes, sugars, AsA-GSH cycle, cellular fractionation, proline metabolism in T. aestivum. However, Cd toxicity significantly (P < 0.05) increased oxidative stress biomarkers, enzymatic and non-enzymatic antioxidants including their gene expression in T. aestivum. Although, the application of FeO and Se - NPs showed a significant (P < 0.05) increase in the plant growth and biomass, gas exchange characteristics, enzymatic and non-enzymatic compounds and their gene expression and also decreased the oxidative stress, and Cd uptake. In addition, individual or combined application of FeO and Se - NPs enhanced the cellular fractionation and decreases the proline metabolism and AsA - GSH cycle in T. aestivum. These results open new insights for sustainable agriculture practices and hold immense promise in addressing the pressing challenges of heavy metal contamination in agricultural soils.
Collapse
Affiliation(s)
- Fu Chen
- School of Public Administration, Hohai University, Nanjing 211100, China
| | - Feifei Jiang
- School of Public Administration, Hohai University, Nanjing 211100, China
| | - Mohammad K Okla
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Zahid Khorshid Abbas
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Salem Mesfir Al-Qahtani
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nadi Awad Al-Harbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mostafa A Abdel-Maksoud
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Leobardo Manuel Gómez-Oliván
- Universidad Autónoma del Estado de México, Paseo Colón, intersección Paseo Tollocan Col. Universidad, CP 50120 Toluca, Estado de México, Mexico.
| |
Collapse
|
12
|
Ma J, Hua Z, Zhu Y, Saleem MH, Zulfiqar F, Chen F, Abbas T, El-Sheikh MA, Yong JWH, Adil MF. Interaction of titanium dioxide nanoparticles with PVC-microplastics and chromium counteracts oxidative injuries in Trachyspermum ammi L. by modulating antioxidants and gene expression. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116181. [PMID: 38460406 DOI: 10.1016/j.ecoenv.2024.116181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
The emergence of polyvinyl chloride (PVC) microplastics (MPs) as pollutants in agricultural soils is increasingly alarming, presenting significant toxic threats to soil ecosystems. Ajwain (Trachyspermum ammi L.), a plant of significant medicinal and culinary value, is increasingly subjected to environmental stressors that threaten its growth and productivity. This situation is particularly acute given the well-documented toxicity of chromium (Cr), which has been shown to adversely affect plant biomass and escalate risks to the productivity of such economically and therapeutically important species. The present study was conducted to investigate the individual effects of different levels of PVC-MPs (0, 2, and 4 mg L-1) and Cr (0, 150, and 300 mg kg-1) on various aspects of plant growth. Specifically, we examined growth and biomass, photosynthetic pigments, gas exchange attributes, oxidative stress responses, antioxidant compound activity (both enzymatic and nonenzymatic), gene expression, sugar content, nutritional status, organic acid exudation, and Cr accumulation in different parts of Ajwain (Trachyspermum ammi L.) seedlings, which were also exposed to varying levels of titanium dioxide (TiO2) nanoparticles (NPs) (0, 25, and 50 µg mL-1). Results from the present study showed that the increasing levels of Cr and PVC-MPs in soils significantly decreased plant growth and biomass, photosynthetic pigments, gas exchange attributes, sugars, and nutritional contents from the roots and shoots of the plants. Conversely, increasing levels of Cr and PVC-MPs in the soil increased oxidative stress indicators in term of malondialdehyde, hydrogen peroxide, and electrolyte leakage, and also increased organic acid exudation pattern in the roots of T. ammi seedlings. Interestingly, the application of TiO2-NPs counteracted the toxicity of Cr and PVC-MPs in T. ammi seedlings, leading to greater growth and biomass. This protective effect is facilitated by the NPs' ability to sequester reactive oxygen species, thereby reducing oxidative stress and lowering Cr concentrations in both the roots and shoots of the plants. Our research findings indicated that the application of TiO2-NPs has been shown to enhance the resilience of T. ammi seedlings to Cr and PVC-MPs toxicity, leading to not only improved biomass but also a healthier physiological state of the plants. This was demonstrated by a more balanced exudation of organic acids, which is a critical response mechanism to metal stress.
Collapse
Affiliation(s)
- Jing Ma
- School of Public Administration, Hohai University, Nanjing 211100, China
| | - Ziyi Hua
- School of Public Administration, Hohai University, Nanjing 211100, China
| | - Yanfeng Zhu
- Engineering Research Center of Ministry of Education for Mine Ecological Restoration, China University of Mining and Technology, Xuzhou 221000, China
| | - Muhammad Hamzah Saleem
- Office of Academic Research, Office of VP for Research & Graduate Studies, Qatar University, Doha 2713, Qatar
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Fu Chen
- School of Public Administration, Hohai University, Nanjing 211100, China.
| | - Touqeer Abbas
- Department of Soil, Water and Climate, College of Food, Agriculture and Natural Resource Sciences, University of Minnesota, St. Paul, MN 55108, USA; Department of Agronomy and Horticulture, University of Nebraska, 358 Keim Hall Lincoln, NE 68583-0915, USA
| | - Mohamed A El-Sheikh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp 23456, Sweden.
| | - Muhammad Faheem Adil
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
13
|
Chen F, Zhang W, Hua Z, Zhu Y, Jiang F, Ma J, Gómez-Oliván LM. Unlocking the phytoremediation potential of organic acids: A study on alleviating lead toxicity in canola (Brassica napus L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169980. [PMID: 38215837 DOI: 10.1016/j.scitotenv.2024.169980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
Soil contamination with toxic heavy metals [such as lead (Pb)] is becoming a serious global problem due to the rapid development of the social economy. Organic chelating agents such as maleic acid (MA) and tartaric acid (TA) are more efficient, environmentally friendly, and biodegradable compared to inorganic chelating agents and they enhance the solubility, absorption, and stability of metals. To investigate this, we conducted a hydroponic experiment to assess the impact of MA (0.25 mM) and TA (1 mM) on enhancing the phytoremediation of Pb under its toxic concentration of 100 μM, using the oil seed crop canola (Brassica napus L.). Results from the present study showed that the Pb toxicity significantly (P < 0.05) decreased plant growth and biomass, photosynthetic pigments, gas exchange attributes and nutritional contents from the roots and shoots of the plants. In contrast, toxic concentration of Pb significantly (P < 0.05) increased oxidative stress indicators in term of malondialdehyde, hydrogen peroxide, and electrolyte leakage, increased enzymatic and non-enzymatic antixoidants and their specific gene expression and also increased organic acid exudation patter in the roots of B. napus. In addition, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that Pb toxicity significantly affected double membranous organelles while Fourier-transform infrared (FTIR) spectroscopy showed an nveiled distinct peak variations in Pb-treated plants, when compared to control. Additionally, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that Pb toxicity significantly affected double-membrane organelles, while Fourier-transform infrared (FTIR) spectroscopy unveiled distinct peak variations in Pb-treated plants compared to the control. The negative impact of Pb toxicity can overcome the application of MA and TA, which ultimately increased plant growth and biomass by capturing the reactive oxygen species, and decreased oxidative stress in B. napus. With the application of MA and TA, the values of the bioaccumulation factor (BAF) and translocation factor (TF) exceeded 1, indicating that the use of MA and TA enhances the phytoremediation potential of B. napus under Pb stress conditions. This finding could be beneficial for field environment studies, especially when explored through in-depth genetic and molecular analysis.
Collapse
Affiliation(s)
- Fu Chen
- School of Public Administration, Hohai University, Nanjing 211100, China; Engineering Research Center of Ministry of Education for Mine Ecological Restoration, China University of Mining and Technology, Xuzhou 221000, China.
| | - Wanyue Zhang
- School of Public Administration, Hohai University, Nanjing 211100, China
| | - Ziyi Hua
- School of Public Administration, Hohai University, Nanjing 211100, China
| | - Yanfeng Zhu
- Engineering Research Center of Ministry of Education for Mine Ecological Restoration, China University of Mining and Technology, Xuzhou 221000, China
| | - Feifei Jiang
- School of Public Administration, Hohai University, Nanjing 211100, China
| | - Jing Ma
- School of Public Administration, Hohai University, Nanjing 211100, China
| | - Leobardo Manuel Gómez-Oliván
- Universidad Autónoma del Estado de México, Paseo Colón, intersección Paseo Tollocan Col. Universidad, CP 50120 Toluca, Estado de México, México.
| |
Collapse
|
14
|
Singh PK, Yadav JS, Kumar I, Kumar U, Sharma RK. Screening of mustard cultivars for phytoremediation of heavy metals contamination in wastewater irrigated soil systems. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:321. [PMID: 38418671 DOI: 10.1007/s10661-024-12506-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/24/2024] [Indexed: 03/02/2024]
Abstract
The mustard (Brassica juncea L.) plant is a well-known and widely accepted hyper-accumulator of heavy metals. The genetic makeup of mustard's cultivars may significantly impact their phytoremediation capabilities. The present study aimed to investigate the growth performance, yield attributes, and heavy metal accumulation potential of B. juncea cv. Varuna, NRCHB 101, RH 749, Giriraj, and Kranti, cultivated in soil irrigated with wastewater (EPS) and bore-well water (MPS). EPS contributed more Cr, Cd, Cu, Zn, and Ni to tested mustard cultivars than the MPS. EPS reduced morphological, biochemical, physiological, and yield attributes of tested mustard cultivars significantly (p < 0.05) than the MPS. Among the tested cultivars of mustard plants, Varuna had the highest heavy metal load with the lowest harvest index (35.8 and 0.21, respectively). Whereas NRCHB 101 showed the lowest heavy metal load with the highest harvest index (26.9 and 0.43, respectively). The present study suggests that B. juncea cv. Varuna and NRCHB 101 could be used for the phytoextraction of heavy metals and reducing their contamination in food chain, respectively in wastewater irrigated areas of peri-urban India. The outcomes of the present study can also be utilized to develop a management strategy for sustainable agriculture in heavy metal polluted areas resulting from long-term wastewater irrigation.
Collapse
Affiliation(s)
- Prince Kumar Singh
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, -221005, Varanasi, India
| | - Jay Shankar Yadav
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, -221005, Varanasi, India
| | - Indrajeet Kumar
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, -221005, Varanasi, India
| | - Umesh Kumar
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, -221005, Varanasi, India
| | - Rajesh Kumar Sharma
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, -221005, Varanasi, India.
| |
Collapse
|
15
|
Saleem MH, Mfarrej MFB, Khan KA, Alharthy SA. Emerging trends in wastewater treatment: Addressing microorganic pollutants and environmental impacts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169755. [PMID: 38176566 DOI: 10.1016/j.scitotenv.2023.169755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
This review focuses on the challenges and advances associated with the treatment and management of microorganic pollutants, encompassing pesticides, industrial chemicals, and persistent organic pollutants (POPs) in the environment. The translocation of these contaminants across multiple media, particularly through atmospheric transport, emphasizes their pervasive nature and the subsequent ecological risks. The urgency to develop cost-effective remediation strategies for emerging organic contaminants is paramount. As such, wastewater-based epidemiology and the increasing concern over estrogenicity are explored. By incorporating conventional and innovative wastewater treatment techniques, this article highlights the integration of environmental management strategies, analytical methodologies, and the importance of renewable energy in waste treatment. The primary objective is to provide a comprehensive perspective on the current scenario, imminent threats, and future directions in mitigating the effects of these pollutants on the environment. Furthermore, the review underscores the need for international collaboration in developing standardized guidelines and policies for monitoring and controlling these microorganic pollutants. It advocates for increased investment in research and development of advanced materials and technologies that can efficiently remove or neutralize these contaminants, thereby safeguarding environmental health and promoting sustainable practice.
Collapse
Affiliation(s)
- Muhammad Hamzah Saleem
- Office of Academic Research, Office of VP for Research & Graduate Studies, Qatar University, Doha 2713, Qatar.
| | - Manar Fawzi Bani Mfarrej
- Department of Life and Environmental Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates.
| | - Khalid Ali Khan
- Applied College, Center of Bee Research and its Products, Unit of Bee Research and Honey Production, and Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia.
| | - Saif A Alharthy
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia; Toxicology and Forensic Sciences Unit, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
16
|
Hussain M, Hafeez A, Al-Huqail AA, Alsudays IM, Alghanem SMS, Ashraf MA, Rasheed R, Rizwan M, Abeed AHA. Effect of hesperidin on growth, photosynthesis, antioxidant systems and uptake of cadmium, copper, chromium and zinc by Celosia argentea plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108433. [PMID: 38364631 DOI: 10.1016/j.plaphy.2024.108433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/30/2024] [Accepted: 02/10/2024] [Indexed: 02/18/2024]
Abstract
Rapid industrialization and extensive agricultural practices are the major causes of soil heavy metal contamination, which needs urgent attention to safeguard the soils from contamination. However, the phytotoxic effects of excessive metals in plants are the primary obstacle to efficient phytoextraction. The present study evaluated the effects of hesperidin (HSP) on metals (Cu, Cd, Cr, Zn) phytoextraction by hyperaccumulator (Celosia argentea L.) plants. For this purpose, HSP, a flavonoid compound with strong antioxidant potential to assist metal phytoextraction was used under metal stress in plants. Celosia argentea plants suffered significant (P ≤ 0.001) oxidative damage due to the colossal accumulation of metals (Cu, Cd, Cr, Zn). However, HSP supplementation notably (P ≤ 0.001) abated ROS generation (O2•‒, •OH, H2O2), lipoxygenase activity, methylglyoxal production, and relative membrane permeability that clearly indicated HSP-mediated decline in oxidative injury in plants. Exogenous HSP improved (P ≤ 0.001) the production of non-protein thiol, phytochelatins, osmolytes, and antioxidant compounds. Further, HSP enhanced (P ≤ 0.001) H2S and NO endogenous production, which might have improved the GSH: GSSG ratio. Consequently, HSP-treated C. argentea plants had higher biomass alongside elevated metal accumulation mirrored as profound modifications in translocation factor (TF), bioaccumulation coefficient (BAC), and bioconcentration factor (BCF). In this context, HSP significantly enhanced TF of Cr (P ≤ 0.001), Cd (P ≤ 0.001), and Zn (P ≤ 0.01), while BAC of Cr (P ≤ 0.001), Cd (P ≤ 0.001), and Zn (P ≤ 0.001). Further, BCF was significant (P ≤ 0.05) only in plants grown under Cr-spiked soil. Overall, HSP has the potential for phytoremediation of metals by C. argentea, which might be a suitable strategy for metal-polluted soils.
Collapse
Affiliation(s)
- Mazhar Hussain
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Arslan Hafeez
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Arwa Abdulkreem Al-Huqail
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | | | | | - Muhammad Arslan Ashraf
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Rizwan Rasheed
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Amany H A Abeed
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| |
Collapse
|
17
|
Okla MK, Saleem MH, Saleh IA, Zomot N, Perveen S, Parveen A, Abasi F, Ali H, Ali B, Alwasel YA, Abdel-Maksoud MA, Oral MA, Javed S, Ercisli S, Sarfraz MH, Hamed MH. Foliar application of iron-lysine to boost growth attributes, photosynthetic pigments and biochemical defense system in canola (Brassica napus L.) under cadmium stress. BMC PLANT BIOLOGY 2023; 23:648. [PMID: 38102555 PMCID: PMC10724993 DOI: 10.1186/s12870-023-04672-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
In the current industrial scenario, cadmium (Cd) as a metal is of great importance but poses a major threat to the ecosystem. However, the role of micronutrient - amino chelates such as iron - lysine (Fe - lys) in reducing Cr toxicity in crop plants was recently introduced. In the current experiment, the exogenous applications of Fe - lys i.e., 0 and10 mg L - 1, were examined, using an in vivo approach that involved plant growth and biomass, photosynthetic pigments, oxidative stress indicators and antioxidant response, sugar and osmolytes under the soil contaminated with varying levels of Cd i.e., 0, 50 and 100 µM using two different varieties of canola i.e., Sarbaz and Pea - 09. Results revealed that the increasing levels of Cd in the soil decreased plant growth and growth-related attributes and photosynthetic apparatus and also the soluble protein and soluble sugar. In contrast, the addition of different levels of Cd in the soil significantly increased the contents of malondialdehyde (MDA) and hydrogen peroxide (H2O2), which induced oxidative damage in both varieties of canola i.e., Sarbaz and Pea - 09. However, canola plants increased the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and non-enzymatic compounds such as phenolic, flavonoid, proline, and anthocyanin, which scavenge the over-production of reactive oxygen species (ROS). Cd toxicity can be overcome by the supplementation of Fe - lys, which significantly increased plant growth and biomass, improved photosynthetic machinery and sugar contents, and increased the activities of different antioxidative enzymes, even in the plants grown under different levels of Cd in the soil. Research findings, therefore, suggested that the Fe - lys application can ameliorate Cd toxicity in canola and result in improved plant growth and composition under metal stress.
Collapse
Affiliation(s)
- Mohammad K Okla
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Muhammad Hamzah Saleem
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | | | - Naser Zomot
- Faculty of Science, Zarqa University, Zarqa, 13110, Jordan
| | - Shagufta Perveen
- Department of Botany, Government College University, Faisalabad, 38000, Pakistan
| | - Abida Parveen
- Department of Botany, Government College University, Faisalabad, 38000, Pakistan.
| | - Fozia Abasi
- Department of Botany, PMAS-Arid Agriculture University, Rawalpindi, 46300, Pakistan
| | - Habib Ali
- Department of Agronomy, PMAS-Arid Agriculture University, Rawalpindi, 46300, Pakistan
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Yasmeen A Alwasel
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mostafa A Abdel-Maksoud
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mükerrem Atalay Oral
- Elmalı Vocational School of Higher Education, Akdeniz University, Antalya, 07058, Türkiye
| | - Sadia Javed
- Department of Botany, Government College University, Faisalabad, 38000, Pakistan.
| | - Sezai Ercisli
- Department of Horticulture, Agricultural Faculty, Ataturk University, Erzurum, 25240, Türkiye
- HGF Agro, Ata Teknokent, Erzurum, TR-25240, Türkiye
| | - Muhammad Hassan Sarfraz
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Institute of Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK.
| | - Mahdy H Hamed
- Department of Soils and Water, Faculty of Agriculture, New Valley University, Kharga, 72511, Egypt
| |
Collapse
|
18
|
Han L, Gu H, Lu W, Li H, Peng WX, Ling Ma N, Lam SS, Sonne C. Progress in phytoremediation of chromium from the environment. CHEMOSPHERE 2023; 344:140307. [PMID: 37769918 DOI: 10.1016/j.chemosphere.2023.140307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
As chromium (Cr) in ecosystems affects human health through food chain exposure, phytoremediation is an environmentally friendly and efficient way to reduce chromium pollution in the environment. Here, we review the mechanism of absorption, translocation, storage, detoxification, and regulation of Cr in plants. The Cr(VI) form is more soluble, mobile, and toxic than Cr(III), reflecting how various valence states of Cr affect environmental risk characteristics, physicochemical properties, toxicity, and plant uptake. Plant root's response to Cr exposure leads to reactive oxygen species (ROS) generation and apoptosis. Cell wall immobilization, vacuole compartmentation, interaction of defense proteins and organic ligand with Cr, and removal of reactive oxygen species by antioxidants continue plant life. In addition, the combined application of microorganisms, genetic engineering, and the addition of organic acids, nanoparticles, fertilization, soil amendments, and other metals could accelerate the phytoremediation process. This review provides efficient methods to investigate and understand the complex changes of Cr metabolism in plants. Preferably, fast-growing, abundantly available biomass species should be modified to mitigate Cr pollution in the environment as these green and efficient remediation technologies are necessary for the protection of soil and water ecology.
Collapse
Affiliation(s)
- Lingzhuo Han
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Haiping Gu
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wenjie Lu
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hanyin Li
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Wan-Xi Peng
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Nyuk Ling Ma
- BIOSES Research Interest Group, Faculty of Science & Marine Environment, 21030, Universiti Malaysia Terengganu, Malaysia; Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Christian Sonne
- Department of Ecoscience, Aarhus University, Frederiksborgvej 399, Roskilde, DK-4000, Denmark; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India.
| |
Collapse
|
19
|
Moeen-Ud-Din M, Yang S, Wang J. Auxin homeostasis in plant responses to heavy metal stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 205:108210. [PMID: 38006792 DOI: 10.1016/j.plaphy.2023.108210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/21/2023] [Accepted: 11/18/2023] [Indexed: 11/27/2023]
Abstract
Expeditious industrialization and anthropogenic activities have resulted in large amounts of heavy metals (HMs) being released into the environment. These HMs affect crop yields and directly threaten global food security. Therefore, significant efforts have been made to control the toxic effects of HMs on crops. When HMs are taken up by plants, various mechanisms are stimulated to alleviate HM stress, including the biosynthesis and transport of auxin in the plant. Interestingly, researchers have noted the significant potential of auxin in mediating resistance to HM stress, primarily by reducing uptake of metals, promoting chelation and sequestration in plant tissues, and mitigating oxidative damage. Both exogenous administration of auxin and manipulation of intrinsic auxin status are effective strategies to protect plants from the negative consequences of HMs stress. Regulation of genes and transcription factors related to auxin homeostasis has been shown to be related to varying degrees to the type and concentration of HMs. Therefore, to derive the maximum benefit from auxin-mediated mechanisms to attenuate HM toxicities, it is essential to gain a comprehensive understanding of signaling pathways involved in regulatory actions. This review primarily emphases on the auxin-mediated mechanisms participating in the injurious effects of HMs in plants. Thus, it will pave the way to understanding the mechanism of auxin homeostasis in regulating HM tolerance in plants and become a tool for developing sustainable strategies for agricultural growth in the future.
Collapse
Affiliation(s)
- Muhammad Moeen-Ud-Din
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Shaohui Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jiehua Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
20
|
Zhao W, Chen Z, Yang X, Sheng L, Mao H, Zhu S. Metagenomics reveal arbuscular mycorrhizal fungi altering functional gene expression of rhizosphere microbial community to enhance Iris tectorum's resistance to Cr stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:164970. [PMID: 37343864 DOI: 10.1016/j.scitotenv.2023.164970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023]
Abstract
Chromium (Cr) can disrupt a plant's normal physiological and metabolic functions and severely impact the microenvironment. However, limited studies have investigated the impact of arbuscular mycorrhizal fungi (AMF) inoculation on the rhizosphere microorganisms of Iris tectorum under Cr stress, and the mechanisms of how rhizosphere microorganisms interact with hosts and contaminants. In this study, we investigated the effects of AMF inoculation on the growth, absorption of nutrients and heavy metals, and functional genes of the rhizosphere microbial community of I. tectorum under Cr stress in a greenhouse pot experiment. The results showed that AMF significantly increased the biomass and nutrient levels of I. tectorum, while decreasing the content of Cr in soil. Furthermore, metagenome analysis demonstrated significant changes in the structure and composition of the rhizosphere microbial community after AMF formed a mycorrhizal symbiosis system with the I. tectorum. Specifically, the abundance of functional genes related to nutrient cycling (N, P) and heavy metal resistance (chrA and arsB), as well as the abundance of heavy metal transporter family (P-atPase, MIT, CDF, and ABC) in the rhizosphere microbial community were up-regulated and their expression. Additionally, the synergies between rhizosphere microbial communities were regulated, and the complexity and stability of the rhizosphere microbial ecological network were enhanced. This study provides evidence that AMF can regulate rhizosphere microbial communities to improve plant growth and heavy metal stress tolerance, and helps us to understand the potential mechanism of wetland plant remediation of Cr-contaminated soil under AMF symbiosis.
Collapse
Affiliation(s)
- Wei Zhao
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, Praha-, Suchdol 16500, Czech Republic
| | - Xiuqin Yang
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Luying Sheng
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Huan Mao
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Sixi Zhu
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China.
| |
Collapse
|
21
|
Zhu Y, Wang L, Ma J, Li Y, Chen F, Peijnenburg W. Comparative physiological and metabolomics analyses using Ag⎯NPs and HAS31 (PGPR) to alleviate Cr stress in barley (Hordeum vulgare L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122010. [PMID: 37302784 DOI: 10.1016/j.envpol.2023.122010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/24/2023] [Accepted: 06/09/2023] [Indexed: 06/13/2023]
Abstract
In the current industrial scenario, chromium (Cr) as a metal is of great importance but poses a major threat to the ecosystem because of its toxicity, but fewer studies have been conducted on its effects and alleviation strategies by using nanoparticles (NPs) and plant growth promoting rhizobacteria (PGPR). Taking into consideration the positive effects of silver⎯nanoparticles (Ag⎯NPs) and (HAS31) rhizobacteria in reducing Cr toxicity in plants, the present study was conducted. A pot experiment was conducted to determine the effects of single and/or combined application of different levels [0 (no Ag⎯NPS), 15 and 30 mM] of Ag⎯NPs and HAS31 [0 (no HAS31), 50 g and 100 g] on Cr accumulation, morpho-physiological and antioxidative defense attributes of barley (Hordeum vulgare L.) exposed to severe Cr stress [0 (without Cr stress), 50 and 100 μM)]. Results from the present study showed that the increasing levels of Cr in the soil significantly (P < 0.05) decreased plant growth and biomass, photosynthetic pigments, gas exchange attributes, sugars, and nutritional contents from the roots and shoots of the plants. In contrast, increasing levels of Cr in the soil significantly (P < 0.05) increased oxidative stress indicators in term of malondialdehyde, hydrogen peroxide, and electrolyte leakage, and also increased organic acid exudation patter in the roots of H. vulgare. Although, the activities of enzymatic antioxidants and the response of their gene expressions in the roots and shoots of the plants and non-enzymatic such as phenolic, flavonoid, ascorbic acid, and anthocyanin contents were increased by increasing the Cr concentration in the soil. The negative impacts of Cr injury were reduced by the application of PGPR (HAS31) and Ag⎯NPs, which increased plant growth and biomass, improved photosynthetic apparatus, antioxidant enzymes, and mineral uptake, as well as diminished the exudation of organic acids and oxidative stress indicators in roots of H. vulgare by decreasing Cr toxicity. Research findings, therefore, suggest that the application of PGPR (HAS31) and Ag⎯NPs can ameliorate Cr toxicity in H. vulgare, resulting in improved plant growth and composition under metal stress, as depicted by balanced exudation of organic acids.
Collapse
Affiliation(s)
- Yanfeng Zhu
- Engineering Research Center of Ministry of Education for Mine Ecological Restoration, China University of Mining and Technology, Xuzhou, 221000, China.
| | - Liping Wang
- Engineering Research Center of Ministry of Education for Mine Ecological Restoration, China University of Mining and Technology, Xuzhou, 221000, China.
| | - Jing Ma
- School of Public Administration, Hohai University, Nanjing, 211100, China.
| | - Yuhang Li
- School of Public Administration, Hohai University, Nanjing, 211100, China.
| | - Fu Chen
- School of Public Administration, Hohai University, Nanjing, 211100, China.
| | - Willie Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, Leiden, 2300 RA, the Netherlands; Centre for Safety of Substances and Products, National Institute of Public Health and the Environment (RIVM), Bilthoven, 3720 BA, the Netherlands.
| |
Collapse
|
22
|
Alam R, Rasheed R, Ashraf MA, Hussain I, Ali S. Allantoin alleviates chromium phytotoxic effects on wheat by regulating osmolyte accumulation, secondary metabolism, ROS homeostasis and nutrient acquisition. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131920. [PMID: 37413799 DOI: 10.1016/j.jhazmat.2023.131920] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/27/2023] [Accepted: 06/21/2023] [Indexed: 07/08/2023]
Abstract
Allantoin is a nitrogen metabolite with significant potential to mediate plant defense responses under salinity. However, the impact of allantoin on ions homeostasis and ROS metabolism has yet to be established in plants under Cr toxicity. In the current study, chromium (Cr) notably diminished growth, photosynthetic pigments, and nutrient acquisition in two wheat cultivars (Galaxy-2013 and Anaj-2017). Plants subjected to Cr toxicity displayed excessive Cr accumulation. Chromium produced substantial oxidative stress reflected as higher levels of O2•, H2O2, MDA, methylglyoxal (MG) and lipoxygenase activity. Plants manifested marginally raised antioxidant enzyme activities due to Cr stress. Further, reduced glutathione (GSH) levels diminished with a concurrent rise in oxidized glutathione levels (GSSG). Plants exhibited a considerable abridge in GSH:GSSG due to Cr toxicity. Allantoin (200 and 300 mg L1) subsided metal phytotoxic effects by strengthening the activities of antioxidant enzymes and levels of antioxidant compounds. Plants administered allantoin displayed a considerable rise in endogenous H2S and nitric oxide (NO) levels that, in turn, lessened oxidative injury in Cr-stressed plants. Allantoin diminished membrane damage and improved nutrient acquisition under Cr stress. Allantoin markedly regulated the uptake and distribution of Cr in wheat plants, abridging the degree of metal phytotoxic effect.
Collapse
Affiliation(s)
- Rizwan Alam
- Department of Botany, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Rizwan Rasheed
- Department of Botany, Government College University Faisalabad, Faisalabad 38000, Pakistan.
| | - Muhammad Arslan Ashraf
- Department of Botany, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Iqbal Hussain
- Department of Botany, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
23
|
Boros-Lajszner E, Wyszkowska J, Kucharski J. Evaluation and Assessment of Trivalent and Hexavalent Chromium on Avena sativa and Soil Enzymes. Molecules 2023; 28:4693. [PMID: 37375248 PMCID: PMC10303346 DOI: 10.3390/molecules28124693] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Chromium (Cr) can exist in several oxidation states, but the two most stable forms-Cr(III) and Cr(VI)-have completely different biochemical characteristics. The aim of the present study was to evaluate how soil contamination with Cr(III) and Cr(VI) in the presence of Na2EDTA affects Avena sativa L. biomass; assess the remediation capacity of Avena sativa L. based on its tolerance index, translocation factor, and chromium accumulation; and investigate how these chromium species affect the soil enzyme activity and physicochemical properties of soil. This study consisted of a pot experiment divided into two groups: non-amended and amended with Na2EDTA. The Cr(III)- and Cr(VI)-contaminated soil samples were prepared in doses of 0, 5, 10, 20, and 40 mg Cr kg-1 d.m. soil. The negative effect of chromium manifested as a decreased biomass of Avena sativa L. (aboveground parts and roots). Cr(VI) proved to be more toxic than Cr(III). The tolerance indices (TI) showed that Avena sativa L. tolerates Cr(III) contamination better than Cr(VI) contamination. The translocation values for Cr(III) were much lower than for Cr(VI). Avena sativa L. proved to be of little use for the phytoextraction of chromium from soil. Dehydrogenases were the enzymes which were the most sensitive to soil contamination with Cr(III) and Cr(VI). Conversely, the catalase level was observed to be the least sensitive. Na2EDTA exacerbated the negative effects of Cr(III) and Cr(VI) on the growth and development of Avena sativa L. and soil enzyme activity.
Collapse
Affiliation(s)
| | - Jadwiga Wyszkowska
- Department of Soil Science and Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland; (E.B.-L.); (J.K.)
| | | |
Collapse
|
24
|
Soni SK, Kumar G, Bajpai A, Singh R, Bajapi Y, Tiwari S. Hexavalent chromium-reducing plant growth-promoting rhizobacteria are utilized to bio-fortify trivalent chromium in fenugreek by promoting plant development and decreasing the toxicity of hexavalent chromium in the soil. J Trace Elem Med Biol 2023; 76:127116. [PMID: 36481602 DOI: 10.1016/j.jtemb.2022.127116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Fenugreek is known to have good anti-diabetes properties. Moreover, several studies accounted that the trivalent form of chromium [Cr(III)] also have anti-diabetic properties. However, its hexavalent form i.e., Cr(VI) is known to be highly toxic and carcinogenic to living beings and retarded plant growth even if it is present in low concentration in soil. Many plant growth-promoting rhizobacteria (PGPR) are reported to have the potential to reduce the Cr(VI) into Cr(III) in soil. In view of the above, the present objective was designed to effectively utilize Cr(VI) reducing PGPRs for the growth and development of fenugreek plant in Cr(VI) amended soil, apart from reducing Cr(VI) in soil and fortification of Cr(III) in the aerial part of plants. METHODS The experiment was carried out to evaluate the effect of Cr(VI)-reducing PGPRs viz. Bacillus cereus (SUCR44); Microbacterium sp. (SUCR140); Bacillus thuringiensis (SUCR186) and B. subtilis (SUCR188) on growth, uptake and translocation of Cr as well as other physiological parameters in fenugreek grown under artificially Cr(VI) amended soil (100 mg kg-1 of Cr(VI) in soil). RESULTS The aforementioned concentration of Cr(VI) in soil cause severe reduction in root length (41 %), plant height (43 %), dry root (38 %) and herb biomass (48 %), when compared with control negative (CN; uninoculated plant not grown in Cr(VI) contaminated soil). However, the presence of Microbacterium sp.-SURC140 (MB) mitigates the Cr toxicity resulting in improved root length (92 %), plant height (86 %), dry root (74 %) and herb biomass (99 %) as compared with control positive (CP; uninoculated plants grown in Cr(VI) contaminated soil). The maximum reduction in bioavailability (82 %) of Cr(VI) in soil and its uptake (50 %) by the plant were also observed in MB-treated plants. However, All Cr(VI)-reducing PGPRs failed to decrease the translocation of Cr to the aerial parts. Moreover, the plant treated with MB observed diminution in relative water content (13 %), electrolyte leakage (16%) and lipid peroxidation (38 %) as well as higher chlorophyll (37 %) carotenoids (17 %) contents and antioxidants (18%) potential. CONCLUSION This study demonstrates that MB can lower the Cr(VI) toxicity to the plant by reducing the bioavailable Cr(VI), consequently reducing the Cr(VI) toxicity level in soil and helping in improving the growth and yield of fenugreek. Additionally, Cr(III) uptakes and translocation may improve the effectiveness of fenugreek in treating diabetes.
Collapse
Affiliation(s)
- Sumit K Soni
- Department of Microbial Technology Division, CSIR, Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India; Crop Improvement and Biotechnology Division, ICAR, Central Institute for Subtropical Horticulture, Rehmankhera, P.O. Kakori, Lucknow 226101, India.
| | - Govind Kumar
- Crop Production Division, ICAR, Central Institute for Subtropical Horticulture, Rehmankhera, P.O. Kakori, Lucknow 226101, India
| | - Anju Bajpai
- Crop Improvement and Biotechnology Division, ICAR, Central Institute for Subtropical Horticulture, Rehmankhera, P.O. Kakori, Lucknow 226101, India
| | - Rakshapal Singh
- Department of Microbial Technology Division, CSIR, Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India; Biological Central Facility, CSIR, Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India
| | - Yashi Bajapi
- Crop Improvement and Biotechnology Division, ICAR, Central Institute for Subtropical Horticulture, Rehmankhera, P.O. Kakori, Lucknow 226101, India
| | - Sudeep Tiwari
- Department of Geography and Environmental Development, Ben Gurion University of the Negev, P.O.B. 653 Beer-Sheva, Israel.
| |
Collapse
|
25
|
Peng J, Liu Y, Ye L, Jiang J, Zhou F, Liu F, Huang J. Fast detection of minerals in rice leaves under chromium stress based on laser-induced breakdown spectroscopy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160545. [PMID: 36455735 DOI: 10.1016/j.scitotenv.2022.160545] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/07/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Minerals in rice leaves is a crucial indicator of plant health, and their concentrations can be used to guide plant management. It is important to predict mineral content in contaminated rice rapidly. In this study, laser-induced breakdown spectroscopy (LIBS) was applied to quantify minerals (Ca, Cu, Fe, K, Mg, Mn, and Na) in rice leaves under chromium (Cr) stress. Two feature extraction methods, including principal component analysis (PCA) and extreme gradient boosting (XGBoost), were compared to identify important variables that related to mineral concentrations. Results showed that partial least square regression (PLSR) achieved good performance in Ca, Fe Mg, K, Mn, and Na, with correlation coefficient of 0.9782, 0.8712, 0.8933, 0.9206, 0.9856, and 0.9865, root mean square error of 219.25, 14.78, 1192.47, 385.12, 9.56, and 124.32 mg/kg, respectively. In addition, the correlation between different spectral lines were further analyzed. Cr exhibited a positive correlation with Ca, Mg, and Na, and a negative correlation with Mn, Cu, and K. The proposed method provides a high-accuracy and fast approach for minerals prediction in rice leaves under Cr stress, which is important for environmental protection and food safety.
Collapse
Affiliation(s)
- Jiyu Peng
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China; Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou 310023, China
| | - Yifan Liu
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China; Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou 310023, China
| | - Longfei Ye
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China; Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou 310023, China
| | - Jiandong Jiang
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China; Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou 310023, China.
| | - Fei Zhou
- College of Standardization, China Jiliang University, Hangzhou 310018, China
| | - Fei Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jing Huang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
26
|
Effects of Cr Stress on Bacterial Community Structure and Composition in Rhizosphere Soil of Iris tectorum under Different Cultivation Modes. MICROBIOLOGY RESEARCH 2023. [DOI: 10.3390/microbiolres14010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
With the rapid development of industry, Cr has become one of the major heavy metal pollutants in soil, severely impacting soil microecology, among which rhizosphere microorganisms can improve the soil microenvironment to promote plant growth. However, how rhizosphere bacterial communities respond to Cr stress under different cultivation modes remains to be further studied. Therefore, in this study, a greenhouse pot experiment combined with 16S rRNA high-throughput sequencing technology was used to study the effects of Cr stress at 200 mg kg−1 on the bacterial community structure and diversity in the rhizosphere soil of Iris tectorum under different cultivation modes. The results showed that the rhizosphere bacterial community diversity index (Shannon and Simpson) and abundance index (Ace and Chao) increased significantly with wetland plant diversity under Cr stress. Moreover, the bacterial community changed by 20.1% due to the addition of Cr, further leading to a 15.9% decrease in the common species of the bacterial community, among which Proteobacteria, Actinobacteria, Chloroflexi, and Acidobacteriota accounted for more than 74.8% of the total sequence. However, with the increase in plant diversity, the abundance of rhizosphere-dominant bacteria and plant growth-promoting bacteria communities increased significantly. Meanwhile, the symbiotic network analysis found that under the two cultivation modes, the synergistic effect between the dominant bacteria was significantly enhanced, and the soil microenvironment was improved. In addition, through redundancy analysis, it was found that C, N, and P nutrients in uncontaminated soil were the main driving factors of bacterial community succession in the rhizosphere of I. tectorum, and Cr content in contaminated soil was the main driving factor of bacterial community succession in I. tectorum rhizosphere. In summary, the results of this study will provide a basis for the response of the rhizosphere bacterial community to Cr and the interaction between wetland plants and rhizosphere bacteria in the heavy metal restoration of wetland plants under different cultivation modes.
Collapse
|
27
|
Nazir A, Sarfraz W, Allah D, Khalid N, Farid M, Shafiq M, Bareen FE, Rizvi ZF, Naeem N. Synergistic impact of two autochthonous saprobic fungi ( A. niger and T. pseudokoningii) on the growth, ionic contents, and metals uptake in Brassica juncea L. and Vigna radiata L. under tannery solid waste contaminated soil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 25:1488-1500. [PMID: 36633455 DOI: 10.1080/15226514.2023.2166457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Unrestricted disposal of tannery solid waste (TSW) into agricultural soils has resulted in the contamination of heavy metals (HMs) such as chromium (Cr) cadmium (Cd), Copper (Cu), and Zinc (Zn) along with the severe potential to degrade the environmental quality around the world. In the present study, a combined phyto- and myco-remediation strategy was evaluated to enhance the growth, ionic contents, and phytoextraction potential of Brassica juncea and Vigna radiata for HMs from TSW-contaminated soil. A pot experiment was conducted in the greenhouse using single or combined inoculation of Trichoderma pseudokoningii (Tp) and Aspergillus niger (An) in B. juncea and V. radiata under TSW-contaminated soil at different doses (0, 50, and 100%). The results showed that the growth parameters of both B. juncea and V. radiata were severely affected under 50 and 100% TSW treatment. The combined inoculation of both the fungal species ameliorated the positive impacts of 50 and 100% TSW application on growth and ionic contents accumulation in B. juncea and V. radiata. The combined application of An + Tp at 100% TSW enhanced the shoot length (87.8, 157.2%), root length (123.9, 120.6%), number of leaves (184.2, 175.0%), number of roots (104.7, 438.9%), and dry weight (179.4, 144.8%) of B. juncea and V. radiata, respectively as compared to control with any fungal treatment at 100% TSW. A single application of An at different doses of TSW enhanced the metal concentration in B. juncea, whereas Tp increased the concentration of the metals in V. radiata. The concentration of Cr in roots (196.2, 263.8%), shoots (342.4, 182.2%), Cu in roots (187.6, 137.0%), shoots (26.6, 76.0%), Cd in roots (245.2, 184.6%), shoots (142.1, 73.4%), Zn in roots (73.4, 57.5%), shoots (62.9, 57.6%), in B. juncea were increased by the application of An at 50 and 100% treatment levels of TSW, respectively compared to control (C). Moreover, the HMs (Cr, Cu, Cd, and Zn) uptake was also improved under 50 and 100% TSW with the combined inoculation of Tp + An in both B. juncea and V. radiata. In conclusion, the combined inoculation of Tp + An was more effective in metal removal from TSW-treated soil.NOVELTY STATEMENTLimited studies have been conducted on filamentous fungi systematically under metal-contaminated sites for their diversity, metal tolerance, and their potential in enhancing the phytoremediation potential of different crop plants.In the present study, single and/or combined inoculation of fungal strains was found effective in alleviating different metals stress in tannery solid waste contaminated soil by improving defense mechanisms and plant growth due to the association between fungal strains and plants.The combined application of both fungal strains had an additive effect in enhancing the bioaccumulation capacity of B. juncea and V. radiata compared to their single inoculation.
Collapse
Affiliation(s)
- Aisha Nazir
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Wajiha Sarfraz
- Department of Botany, Govt. College Women University, Sialkot, Pakistan
| | - Ditta Allah
- Department of Environmental Sciences, Shaheed Benazir Bhutto University, Sheringal, Pakistan
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - Noreen Khalid
- Department of Botany, Govt. College Women University, Sialkot, Pakistan
| | - Mujahid Farid
- Department of Environmental Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Muhammad Shafiq
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | | | | | - Nayab Naeem
- Department of Botany, Govt. College Women University, Sialkot, Pakistan
| |
Collapse
|
28
|
Sun Y, Ma L, Ma J, Li B, Zhu Y, Chen F. Combined application of plant growth-promoting bacteria and iron oxide nanoparticles ameliorates the toxic effects of arsenic in Ajwain ( Trachyspermum ammi L.). FRONTIERS IN PLANT SCIENCE 2022; 13:1098755. [PMID: 36643291 PMCID: PMC9832315 DOI: 10.3389/fpls.2022.1098755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/02/2022] [Indexed: 06/01/2023]
Abstract
Soil contamination with toxic heavy metals [such as arsenic (As)] is becoming a serious global problem because of the rapid development of the social economy. Although plant growth-promoting bacteria (PGPB) and nanoparticles (NPs) are the major protectants to alleviate metal toxicity, the study of these chemicals in combination to ameliorate the toxic effects of As is limited. Therefore, the present study was conducted to investigate the combined effects of different levels of Providencia vermicola (5 ppm and 10 ppm) and iron oxide nanoparticles (FeO-NPs) (50 mg/l-1 and 100 mg/l-1) on plant growth and biomass, photosynthetic pigments, gas exchange attributes, oxidative stress and response of antioxidant compounds (enzymatic and non-enzymatic), and their specific gene expression, sugars, nutritional status of the plant, organic acid exudation pattern As accumulation from the different parts of the plants, and electron microscopy under the soil, which was spiked with different levels of As [0 μM (i.e., no As), 50 μM, and 100 μM] in Ajwain (Trachyspermum ammi L.) seedlings. Results from the present study showed that the increasing levels of As in the soil significantly (p< 0.05) decreased plant growth and biomass, photosynthetic pigments, gas exchange attributes, sugars, and nutritional contents from the roots and shoots of the plants, and destroyed the ultra-structure of membrane-bound organelles. In contrast, increasing levels of As in the soil significantly (p< 0.05) increased oxidative stress indicators in term of malondialdehyde, hydrogen peroxide, and electrolyte leakage, and also increased organic acid exudation patter in the roots of T. ammi seedlings. The negative impact of As toxicity can overcome the application of PGPB (P. vermicola) and FeO-NPs, which ultimately increased plant growth and biomass by capturing the reactive oxygen species, and decreased oxidative stress in T. ammi seedlings by decreasing the As contents in the roots and shoots of the plants. Our results also showed that the FeO-NPs were more sever and showed better results when we compared with PGPB (P. vermicola) under the same treatment of As in the soil. Research findings, therefore, suggest that the combined application of P. vermicola and FeO-NPs can ameliorate As toxicity in T. ammi seedlings, resulting in improved plant growth and composition under metal stress, as depicted by balanced exudation of organic acids.
Collapse
Affiliation(s)
- Yan Sun
- School of Public Administration, Hohai University, Nanjing, China
| | - Li Ma
- School of Public Administration, Hohai University, Nanjing, China
| | - Jing Ma
- School of Public Administration, Hohai University, Nanjing, China
- School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, China
| | - Bingkun Li
- School of Public Administration, Hohai University, Nanjing, China
| | - Yanfeng Zhu
- School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, China
| | - Fu Chen
- School of Public Administration, Hohai University, Nanjing, China
| |
Collapse
|
29
|
Wani KI, Naeem M, Aftab T. Chromium in plant-soil nexus: Speciation, uptake, transport and sustainable remediation techniques. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120350. [PMID: 36209933 DOI: 10.1016/j.envpol.2022.120350] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/22/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
Heavy metal (HM) pollution has become a serious global problem due to the non-biodegradable nature of the HMs and their persistence in the environment. Agricultural soil is a non-renewable resource that requires careful management so that it can fulfill the increasing demand for agricultural food production. However, different anthropogenic activities have resulted in a large-scale accumulation of HMs in soil which is detrimental to soil and plant health. Due to their ubiquity, increased bioavailability, toxicity, and non-biodegradable nature, HM contamination has formed a roadblock in the way of achieving food security, safety, and sustainability in the future. Chromium (Cr), specifically Cr(VI) is a highly bioavailable HM with no proven role in the physiology of plants. Chromium has been found to be highly toxic to plants, with its toxicity also influenced by chemical speciation, which is in turn controlled by different factors, such as soil pH, redox potential, organic matter, and microbial population. In this review, the different factors that influence Cr speciation were analyzed and the relationship between biogeochemical transformations of Cr and its bioavailability which may be beneficial for devising different Cr remediation strategies has been discussed. Also, the uptake and transport mechanism of Cr in plants, with particular reference to sulfate and phosphate transporters has been presented. The biological solutions for the remediation of Cr contaminated sites which offer safe and viable alternatives to old-style physical and chemical remediation strategies have been discussed in detail. This review provides theoretical guidance in developing suitable approaches for the better management of these remediation strategies.
Collapse
Affiliation(s)
- Kaiser Iqbal Wani
- Department of Botany, Aligarh Muslim University, Aligarh, 202 002, India
| | - M Naeem
- Department of Botany, Aligarh Muslim University, Aligarh, 202 002, India
| | - Tariq Aftab
- Department of Botany, Aligarh Muslim University, Aligarh, 202 002, India.
| |
Collapse
|
30
|
Sarfraz W, Farid M, Khalid N, Rizvi ZF, Asam ZUZ, Nazir A, Naeem N, Farid S, Ali S. Ameliorative role of foliar Zn-lysine application on wheat ( Triticum aestivum L.) stressed by Tannery Wastewater. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:2099-2110. [PMID: 36573149 PMCID: PMC9789243 DOI: 10.1007/s12298-022-01265-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Tannery industries discharge a high concentration of chromium (Cr) along with other heavy metals, which are hazardous for all life forms. With increasing shortage of freshwater, tannery effluent is frequently used for crop an irrigation, causing damage to plants' health. In order to address this challenge, amino acid chelate fertilizer was used to investigate the impact on wheat crops against tannery waste water. Tannery wastewater (TW) was used at different levels such as 0%, 25%, 50%, and 100% with an amendment of foliar Zn-lysine (Zn-lys) at30 mg/L. This research highlighted the positive correlation of Zn-lysine on the morpho-physiological, biochemical, and gas exchange traits under different levels of tannery wastewater. The findings of this study showed that the application of Cr-rich tannery wastewater at different treatment levels resulted in a significant reduction in plant height (23%, 31%, and 36%), the number of tillers (21%, 30%, and 43%), spike (19%, 36%, and 55%) and dry weight (DW) of grains (10%, 25%, and 49%) roots DW (17%, 41%, 56%), and shoots DW (22%, 32%, and 47%) as compared to control. Foliar-applied Zn-lys positively enhanced photosynthetic attributes, antioxidant enzymes activities and gas exchange traits by reducing the oxidative stress alone and under Cr stress. The concentration of Cr in roots (21%, 37%, 38%) and shoots (11%, 36%, 37%) was reduced by the foliar application of Zn-lys at different treatment levels. These findings conclude that Zn-lys served as a protector for the growth and development of wheat and has an incredible potential to inhibit the phytotoxicity induced by excess Cr. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01265-6.
Collapse
Affiliation(s)
- Wajiha Sarfraz
- Department of Botany, Government College Women University, Sialkot, Pakistan
| | - Mujahid Farid
- Department of Environmental Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, 50700 Pakistan
| | - Noreen Khalid
- Department of Botany, Government College Women University, Sialkot, Pakistan
| | - Zarrin Fatima Rizvi
- Department of Botany, Government College Women University, Sialkot, Pakistan
| | - Zaki ul Zaman Asam
- Department of Environmental Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, 50700 Pakistan
| | - Aisha Nazir
- Department of Botany, University of the Punjab, Lahore, Pakistan
| | - Nayab Naeem
- Department of Botany, Government College Women University, Sialkot, Pakistan
| | - Sheharyaar Farid
- Earth and Life Sciences, School of Natural Sciences and Ryan Institute, University of Galway, Galway, Ireland
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad, Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung, Taiwan
| |
Collapse
|
31
|
Hafeez A, Rasheed R, Ashraf MA, Rizwan M, Ali S. Effects of exogenous taurine on growth, photosynthesis, oxidative stress, antioxidant enzymes and nutrient accumulation by Trifolium alexandrinum plants under manganese stress. CHEMOSPHERE 2022; 308:136523. [PMID: 36165928 DOI: 10.1016/j.chemosphere.2022.136523] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Plants essentially require manganese (Mn) for their normal metabolic functioning. However, excess Mn in the cellular environment is detrimental to plant growth, development, and physio-biochemical functions. Taurine (TAU) is an amino acid with potent antioxidant and anti-inflammatory properties in animals and humans. However, no previous study has investigated the potential of TAU in plant metal stress tolerance. The current study provides some novel insights into the effect of TAU in modulating the defense system of Trifolium alexandrinum plants under Mn toxicity. Manganese toxicity resulted in higher oxidative stress and membrane damage through increased superoxide radical, hydrogen peroxide, malondialdehyde, and methylglyoxal generation alongside enhanced lipoxygenase (LOX) activity. Mn toxicity also resulted in limited uptake of potassium (K+), phosphorus (P), calcium (Ca2+), and increased the accumulation of Mn in both leaf and roots. However, TAU circumvented the Mn-induced oxidative stress by upregulating the activities of antioxidant enzymes (ascorbate peroxidase, peroxidase, catalase, glutathione reductase, glutathione-S-transferase, and superoxide dismutase) and levels of ascorbic acid, proline, anthocyanins, phenolics, flavonoids and glutathione (GSH). Taurine conspicuously improved the growth, photosynthetic pigments, hydrogen sulphide (H2S), and nitric oxide (NO) levels of Mn stressed plants. Taurine also improved the uptake of K+, Ca2+, P and reduced the Mn content in stressed plants. Overall, exogenous taurine might be a suitable strategy to combat Mn stress in T. alexandrinum plants but applications at field levels for various crops and metal toxicities and economic suitability need to be addressed before final recommendations.
Collapse
Affiliation(s)
- Arslan Hafeez
- Department of Botany, Government College University Faisalabad, 38000, Faisalabad, Pakistan
| | - Rizwan Rasheed
- Department of Botany, Government College University Faisalabad, 38000, Faisalabad, Pakistan.
| | - Muhammad Arslan Ashraf
- Department of Botany, Government College University Faisalabad, 38000, Faisalabad, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University, Faisalabad, 38000, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad, 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
32
|
Health risk implications of iron in wastewater soil-food crops grown in the vicinity of peri urban areas of the District Sargodha. PLoS One 2022; 17:e0275497. [DOI: 10.1371/journal.pone.0275497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 09/19/2022] [Indexed: 11/11/2022] Open
Abstract
Irrigation using sewage water can be beneficial, as it can increase the productivity of crops but has negative consequences on crops, soil contamination, and human health. It contains a variety of toxins, such as chemicals and heavy metals, which damage the soil and crops. In this regard, the aim of the research was to assess the potential health hazards of iron (Fe) metal in food crops (leafy and root crops) treated with wastewater (T_1), canal water (T_2), and tube well water (T_3). Water, soil, and edible components of food crops were collected at random from three distinct locations. Fe concentration in samples was estimated using atomic absorption spectrophotometer, following wet digestion method. The Fe concentrations, ranged from 0.408 to 1.03 mg/l in water, 31.55 to 187.47 mgkg-1 in soil and 4.09 to 32.583 mgkg-1 in crop samples; which were within permissible limits of the World Health Organization (WHO). There was a positive correlation between soils and crops. The bioconcentration factor, enrichment factor (EF), daily intake of metals (DIM), health risk index (HRI), and target hazard quotient (THQ) all values were <1, except for a pollution load index >1, which indicated soil contamination, but there was no Fe toxicity in crops, no health risk, and no-carcinogenic risk for these food crops in humans. To prevent the excessive accumulation of Fe metal in the food chain, regular monitoring is needed.
Collapse
|
33
|
Combined Hybridization and Evaluation of High-Lysine Rice: Nutritional and Physicochemical Qualities and Field Performance. Int J Mol Sci 2022; 23:ijms232012166. [PMID: 36293019 PMCID: PMC9603072 DOI: 10.3390/ijms232012166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/28/2022] Open
Abstract
Rice, as a major food crop, provides necessary energy and nutrition for humans and livestock. However, its nutritional value is affected by lysine. Using point mutation, we previously obtained AK2 (aspartokinase) and DHDPS1 (dihydrodipicolinate synthase) genes insensitive to lysine feedback inhibition and constructed transgenic lines AK2-52 and DHDPS1-22, which show increased lysine synthesis, as well as Ri-12, which shows decreased lysine degradation by inhibiting rice lysine ketoglutarate reductase/saccharopine dehydrogenase (LKR/SDH) activity. In this study, further transgenic lines were hybridized and evaluated. The lysine content of mature seeds from pyramid lines PRD and PRA increased 32.5- and 29.8-fold, respectively, compared with the wild-type, while the three-gene pyramiding line PRDA had a moderate lysine content. The total lysine, total free lysine, and total protein contents of PRD and PRA also increased and had no obvious impact on the physical and chemical quality, seed appearance, and main agronomic traits. Meanwhile, comparative analysis with polygenic polymeric lines GR containing bacterial AK (lysC) and DHDPS (dapA) genes revealed differences in the way bacterial and endogenous rice AK and DHDPS regulate lysine biosynthesis. These results provide a reference for further evaluation and commercialization of high-lysine transgenic rice.
Collapse
|
34
|
Hassan A, Parveen A, Hussain S, Hussain I, Rasheed R. Investigating the role of different maize (Zea mays L.) cultivars by studying morpho-physiological attributes in chromium-stressed environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:72886-72897. [PMID: 35614358 DOI: 10.1007/s11356-022-19398-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/20/2022] [Indexed: 06/15/2023]
Abstract
Because of global land surface warming, heavy metal toxicity is expected to occur more often and more intensely, affecting the growth and development of the major cereal crops such as maize (Zea mays L.) in several ways, thus affecting the production component of food security. Hence, it is important to know the best cultivars of Z. mays in abiotic stress environment to fulfill the market demand of this staple food. For this purpose, we investigate the present study to find the best Z. mays cultivar to be grown in chromium (Cr)-contaminated sand (200 µM). In this experiment, we have studied 10 cultivars (Malka, Sadaf, Pearl, CZP, YY, YH, MMRI-yellow, Sahiwal, EV-20, and EV-77) of Z. mays grown in plastic pots for 4 weeks (in addition with seed germination) under Cr - (0 µM) and Cr + (200 µM) in sand medium. Based on the findings of the current experiment, we illustrated that Cr toxicity induced a significant (P < 0.05) reduction in shoot length, root length, shoot fresh weight, root fresh weight, shoot dry weight and root dry weight, chlorophyll a, chlorophyll b, total chlorophyll, and carotenoid content and induced oxidative damage to membrane-bounded organelles by increasing the malondialdehyde and hydrogen peroxide which were manifested by flavonoid and phenolic contents. Moreover, Cr uptake was also higher in the plants grown in the Cr-contaminated sand compared to the plants grown without the Cr-contaminated sand. We also noticed that Pearl, CZP, and Sahiwal cultivars are suggested to be Cr-tolerant cultivars as showed better growth and development in Cr-contaminated sand while Sadaf, MMRI, and EV-77 showed lower growth and composition in Cr-contaminated sand. The overall pattern of Z. mays cultivars grown in Cr-contaminated sand is as follows: Pearl > CZP > Sahiwal > YY > YH > EV-20 > Malka > EV-77 > MMRI-yellow > Sadaf. Conclusively, it can be identified that when grown in Cr-contaminated sand, Pearl, CZP, and Sahiwal have greater ability to grow in polluted soils. Overall, Z. mays cultivars showed better growth in Cr-stressed environment due to defense mechanism but further experiments needed to be conducted on molecular level.
Collapse
Affiliation(s)
- Amara Hassan
- Department of Botany, Government College University, Allama Iqbal Road, Faisalabad, 38000, Pakistan
| | - Abida Parveen
- Department of Botany, Government College University, Allama Iqbal Road, Faisalabad, 38000, Pakistan.
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Punjab, Pakistan
| | - Iqbal Hussain
- Department of Botany, Government College University, Allama Iqbal Road, Faisalabad, 38000, Pakistan
| | - Rizwan Rasheed
- Department of Botany, Government College University, Allama Iqbal Road, Faisalabad, 38000, Pakistan
| |
Collapse
|
35
|
Rahman SU, Nawaz MF, Gul S, Yasin G, Hussain B, Li Y, Cheng H. State-of-the-art OMICS strategies against toxic effects of heavy metals in plants: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113952. [PMID: 35999767 DOI: 10.1016/j.ecoenv.2022.113952] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Environmental pollution of heavy metals (HMs), mainly due to anthropogenic activities, has received growing attention in recent decades. HMs, especially the non-essential carcinogenic ones, including chromium (Cr), cadmium (Cd), mercury (Hg), aluminum (Al), lead (Pb), and arsenic (As), have appeared as the most significant air, water, and soil pollutants, which adversely affect the quantity, quality, and security of plant-based food all over the world. Plants exposed to HMs could experience significant decline in growth and yield. To avoid or tolerate the toxic effects of HMs, plants have developed complicated defense mechanisms, including absorption and accumulation of HMs in cell organelles, immobilization by forming complexes with organic chelates, extraction by using numerous transporters, ion channels, signalling cascades, and transcription elements, among others. OMICS strategies have developed significantly to understand the mechanisms of plant transcriptomics, genomics, proteomics, metabolomics, and ionomics to counter HM-mediated stress stimuli. These strategies have been considered to be reliable and feasible for investigating the roles of genomics (genomes), transcriptomic (coding), mRNA transcripts (non-coding), metabolomics (metabolites), and ionomics (metal ions) to enhance stress resistance or tolerance in plants. The recent developments in the mechanistic understandings of the HMs-plant interaction in terms of their absorption, translocation, and toxicity invasions at the molecular and cellular levels, as well as plants' response and adaptation strategies against these stressors, are summarized in the present review. Transcriptomics, genomics, metabolomics, proteomics, and ionomics for plants against HMs toxicities are reviewed, while challenges and future recommendations are also discussed.
Collapse
Affiliation(s)
- Shafeeq Ur Rahman
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, China; MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Muhammad Farrakh Nawaz
- Department of Forestry and Range Management, University of Agricultureó, Faisalabad, Pakistan
| | - Sadaf Gul
- Department of Botany, University of Karachi, Karachi, Pakistan
| | - Ghulam Yasin
- Department of Forestry and Range Management, Bahauddin Zakariya University Multan, Pakistan
| | - Babar Hussain
- Department of Plant Science Karakoram International University (KIU), Gilgit 15100, Gilgit-Baltistan, Pakistan
| | - Yanliang Li
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, China; Dongguan Key Laboratory of Water Pollution and Ecological Safety Regulation, Dongguan, Guangdong 523808, China.
| | - Hefa Cheng
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
36
|
Raza QUA, Bashir MA, Rehim A, Ejaz R, Raza HMA, Shahzad U, Ahmed F, Geng Y. Biostimulants induce positive changes in the radish morpho-physiology and yield. FRONTIERS IN PLANT SCIENCE 2022; 13:950393. [PMID: 36003805 PMCID: PMC9393613 DOI: 10.3389/fpls.2022.950393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
An ever-increasing population has issued an open challenge to the agricultural sector to provide enough food in a sustainable manner. The upsurge in chemical fertilizers to enhance food production had resulted in environmental problems. The objective of the current study is to assess the utilization of biostimulants for sustainable agricultural production as an alternative to chemical fertilization. For this purpose, two pot experiments were conducted to examine the response of radish against individual and combined applications of biostimulants. In the first experiment, the effects of chemical fertilizer (CK), glycine (G), lysine (L), aspartic acid (A), and vitamin B complex (V) were studied. The results demonstrated that V significantly improved the transpiration rate (81.79%), stomatal conductance (179.17%), fresh weight (478.31%), and moisture content (2.50%). In the second experiment, tested treatments included chemical fertilizer (CK), Isabion® (I), glycine + lysine + aspartic acid (GLA), moringa leaf extract + GLA (M1), 25% NPK + M1 (M2). The doses of biostimulants were 5g L-1 glycine, 1g L-1 lysine, 2g L-1 aspartic acid, and 10 ml L-1 moringa leaf extract. The photosynthetic rate improved significantly with GLA (327.01%), M1 (219.60%), and M2 (22.16%), while the transpiration rate was enhanced with GLA (53.14%) and M2 (17.86%) compared to the Ck. In addition, M1 increased the stomatal conductance (54.84%), internal CO2 concentration (0.83%), plant fresh weight (201.81%), and dry weight (101.46%) as compared to CK. This study concludes that biostimulants can effectively contribute to the sustainable cultivation of radish with better growth and yield.
Collapse
Affiliation(s)
- Qurat-Ul-Ain Raza
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Amjad Bashir
- College of Agriculture, Bahauddin Zakariya University Multan, Bahadur Sub-Campus Layyah, Layyah, Pakistan
| | - Abdur Rehim
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Rafia Ejaz
- College of Agriculture, Bahauddin Zakariya University Multan, Bahadur Sub-Campus Layyah, Layyah, Pakistan
| | - Hafiz Muhammad Ali Raza
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
- College of Agriculture, Bahauddin Zakariya University Multan, Bahadur Sub-Campus Layyah, Layyah, Pakistan
| | - Umbreen Shahzad
- College of Agriculture, Bahauddin Zakariya University Multan, Bahadur Sub-Campus Layyah, Layyah, Pakistan
| | - Faraz Ahmed
- Soil and Water Testing Laboratory, Sargodha, Pakistan
| | - Yucong Geng
- KOYO Star Agriculture Technology Co., LTD., Beijing, China
| |
Collapse
|
37
|
Singh D, Singh CK, Siddiqui MH, Alamri S, Sarkar SK, Rathore A, Prasad SK, Singh D, Sharma NL, Kalaji HM, Brysiewicz A. Hydrogen Sulfide and Silicon Together Alleviate Chromium (VI) Toxicity by Modulating Morpho-Physiological and Key Antioxidant Defense Systems in Chickpea ( Cicer arietinum L.) Varieties. FRONTIERS IN PLANT SCIENCE 2022; 13:963394. [PMID: 35971511 PMCID: PMC9374685 DOI: 10.3389/fpls.2022.963394] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/21/2022] [Indexed: 05/31/2023]
Abstract
Extensive use of chromium (Cr) in anthropogenic activities leads to Cr toxicity in plants causing serious threat to the environment. Cr toxicity impairs plant growth, development, and metabolism. In the present study, we explored the effect of NaHS [a hydrogen sulfide; (H2S), donor] and silicon (Si), alone or in combination, on two chickpea (Cicer arietinum) varieties (Pusa 2085 and Pusa Green 112), in pot conditions under Cr stress. Cr stress increased accumulation of Cr reduction of the plasma membrane (PM) H+-ATPase activity and decreased in photosynthetic pigments, essential minerals, relative water contents (RWC), and enzymatic and non-enzymatic antioxidants in both the varieties. Exogenous application of NaHS and Si on plants exposed to Cr stress mitigated the effect of Cr and enhanced the physiological and biochemical parameters by reducing Cr accumulation and oxidative stress in roots and leaves. The interactive effects of NaHS and Si showed a highly significant and positive correlation with PM H+-ATPase activity, photosynthetic pigments, essential minerals, RWC, proline content, and enzymatic antioxidant activities (catalase, peroxidase, ascorbate peroxidase, dehydroascorbate reductase, superoxide dismutase, and monodehydroascorbate reductase). A similar trend was observed for non-enzymatic antioxidant activities (ascorbic acid, glutathione, oxidized glutathione, and dehydroascorbic acid level) in leaves while oxidative damage in roots and leaves showed a negative correlation. Exogenous application of NaHS + Si could enhance Cr stress tolerance in chickpea and field studies are warranted for assessing crop yield under Cr-affected area.
Collapse
Affiliation(s)
- Deepti Singh
- Department of Botany, Meerut College, Meerut, India
| | - Chandan Kumar Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Manzer H. Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Susheel Kumar Sarkar
- Division of Design of Experiments (DE), ICAR-Indian Agricultural Statistics Research Institute, ICAR Library Avenue, Pusa, New Delhi, India
| | - Abhishek Rathore
- Regional Breeding Informatics Lead, Excellence in Breeding Platform (EiB)-CIMMYT Building ICRISAT Campus, Patancheru, Hyderabad, India
| | - Saroj Kumar Prasad
- Department of Agronomy, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Dharmendra Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Hazem M. Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences SGGW, Warsaw, Poland
| | - Adam Brysiewicz
- Institute of Technology and Life Sciences-National Research Institute, Falenty, Poland
| |
Collapse
|
38
|
Mukhtar A, Awan MI, Sadaf S, Mahmood A, Javed T, Shah AN, Shabbir R, Alotaibi SS, Shah AA, Adamski R, Siuta D. Sulfur Enhancement for the Improvement of Castor Bean Growth and Yield, and Sustainable Biodiesel Production. FRONTIERS IN PLANT SCIENCE 2022; 13:905738. [PMID: 35860539 PMCID: PMC9289615 DOI: 10.3389/fpls.2022.905738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Due to limited conventional energy sources, there is a need to find substitute non-conventional sources of energy to meet the societal demands on a sustainable basis. Crude oil and edible oil remain major import items in Pakistan, the deficit of which can be compensated by using biomass, preferably inedible oilseeds. Therefore, the current study evaluated the role of sulfur (S) fertilization for improving yield (seed and oil) and biodiesel value of castor bean, a potential inedible crop with minimum input requirements. For this purpose, a combined approach of field experimentation and laboratory analysis was conducted to explore the potential of two castor bean cultivars (DS-30 and NIAB Gold) against four S supply rates, namely, 0, 20, 40, and 60 kg S ha-1, in terms of growth, phenology, and yield parameters. Subsequently, the obtained seed samples were analyzed for biodiesel-related parameters in the Bio-analytical Chemistry lab, Punjab Bio-energy Institute, Faisalabad. The incremental S rates increased the seed yield for both cultivars, and the highest yield was recorded at 60 kg S ha-1 for NIAB Gold. For NIAB Gold, the oil content increased by 7% with S fertilization at 60 kg ha-1, and for DS-30, the oil content increased by 6% at 60 kg ha-1. As with incremental S fertilization, the oil yield increased on a hectare basis, and the quantity of biodiesel produced also increased. Importantly, the tested quality parameters of biodiesel, except biodiesel viscosity, were in the ASTM standard range. Overall, it has been concluded that castor bean is a promising and sustainable option for producing biodiesel as it is non-competitive to food crops and requires little input.
Collapse
Affiliation(s)
- Ahmed Mukhtar
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Masood Iqbal Awan
- Department of Agronomy, Sub-Campus Depalpur, Okara, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Sana Sadaf
- Punjab Bioenergy Institute, University of Agriculture, Faisalabad, Pakistan
| | - Athar Mahmood
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Talha Javed
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Rubab Shabbir
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Seed Science and Technology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Saqer S. Alotaibi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Anis Ali Shah
- Department of Botany, University of Education, Lahore, Pakistan
| | - Robert Adamski
- Faculty of Process and Environmental Engineering, Łódź University of Technology, Łódź, Poland
| | - Dorota Siuta
- Faculty of Process and Environmental Engineering, Łódź University of Technology, Łódź, Poland
| |
Collapse
|
39
|
Shah AA, Shah AN, Bilal Tahir M, Abbas A, Javad S, Ali S, Rizwan M, Alotaibi SS, Kalaji HM, Telesinski A, Javed T, AbdElgawad H. Harzianopyridone Supplementation Reduced Chromium Uptake and Enhanced Activity of Antioxidant Enzymes in Vigna radiata Seedlings Exposed to Chromium Toxicity. FRONTIERS IN PLANT SCIENCE 2022; 13:881561. [PMID: 35860543 PMCID: PMC9290437 DOI: 10.3389/fpls.2022.881561] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/25/2022] [Indexed: 05/24/2023]
Abstract
This study explains the scarce information on the role of harzianopyridone (HZRP) in the alleviation of chromium (Cr) stress alleviation in Vigna radiata (L.). To this end, V. radiata seedlings primed with HZRP at 1 and 2 ppm were exposed to 50 mg kg-1 Cr for 30 days. Cr stress reduced growth, chlorophyll (Chl) content, net photosynthetic rate, gas-exchange attributes along with enhanced oxidative damages, i.e., electrolyte leakage (EL), hydrogen peroxide (H2O2), and malondialdehyde (MDA). Application of HZRP enhanced intercellular carbon dioxide (CO2) concentration, stomatal conductance, and net photosynthetic rate with decreased activity of the chlorophyllase (Chlase) enzyme in V. radiata seedlings exposed to Cr stressed conditions. To maintain Cr-induced oxidative damages, HZRP treatment increased the levels of antioxidant metabolites (phenolic and flavonoids) and the activity of antioxidative enzymes [superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD)] in V. radiata seedlings grown in normal and Cr-polluted potted soil. In addition to this, glycine betaine content was also increased in plants grown in Cr-contaminated soil. It is proposed the potential role of supplementation of HZRP in mitigating Cr stress. Further research should be conducted to evaluate the potential of HZRP in the mitigation of abiotic stresses in plants.
Collapse
Affiliation(s)
- Anis Ali Shah
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Bilal Tahir
- Department of Physics, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Asad Abbas
- School of Horticulture, Anhui Agricultural University, Hefei, China
| | - Sumera Javad
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Sajid Ali
- Department of Horticulture, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Science and Engineering, Government College University, Faisalabad, Pakistan
| | - Saqer S. Alotaibi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Hazem M. Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences, Szkoła Główna Gospodarstwa Wiejskiego (SGGW), Warsaw, Poland
- Institute of Technology and Life Sciences-National Research Institute, Falenty, Poland
| | - Arkadiusz Telesinski
- Department of Bioengineering, West Pomeranian, University of Technology in Szczecin, Szczecin, Poland
| | - Talha Javed
- College of Agriculture, Fijian Agriculture and Forestry University, Fuzhou, China
| | - Hamada AbdElgawad
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| |
Collapse
|
40
|
Dawood MFA, Abu-Elsaoud AM, Sofy MR, Mohamed HI, Soliman MH. Appraisal of kinetin spraying strategy to alleviate the harmful effects of UVC stress on tomato plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:52378-52398. [PMID: 35258726 PMCID: PMC9343307 DOI: 10.1007/s11356-022-19378-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 02/19/2022] [Indexed: 05/17/2023]
Abstract
Increasing ultraviolet (UV) radiation is causing oxidative stress that accounts for growth and yield losses in the present era of climate change. Plant hormones are useful tools for minimizing UV-induced oxidative stress in plants, but their putative roles in protecting tomato development under UVC remain unknown. Therefore, we investigated the underlying mechanism of pre-and post-kinetin (Kn) treatments on tomato plants under UVC stress. The best dose of Kn was screened in the preliminary experiments, and this dose was tested in further experiments. UVC significantly decreases growth traits, photosynthetic pigments, protein content, and primary metabolites (proteins, carbohydrates, amino acids) but increases oxidative stress biomarkers (lipid peroxidation, lipoxygenase activity, superoxide anion, hydroxyl radical, and hydrogen peroxide) and proline content. Treatment of pre-and post-kinetin spraying to tomato plants decreases UVC-induced oxidative stress by restoring the primary and secondary metabolites' (phenolic compounds, flavonoids, and anthocyanins) status and upregulating the antioxidant defense systems (non-enzymatic antioxidants as ascorbate, reduced glutathione, α-tocopherol as well as enzymatic antioxidants as superoxide dismutase, catalase, ascorbate peroxidase, glutathione peroxidase, glutathione-S-transferase, and phenylalanine ammonia-lyase). Thus, the application of Kn in optimum doses and through different modes can be used to alleviate UVC-induced negative impacts in tomato plants.
Collapse
Affiliation(s)
- Mona F A Dawood
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | | | - Mahmoud R Sofy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt.
| | - Heba I Mohamed
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Roxy, P.C.11757, Heliopolis Cairo, Egypt
| | - Mona H Soliman
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
- Biology Department, Faculty of Science, Taibah University, Al-SharmYanbu El-Bahr, , Yanbu, 46429, Kingdom of Saudi Arabia
| |
Collapse
|
41
|
Microwave Irradiation and Glutamic Acid-Assisted Phytotreatment of Tannery and Surgical Industrial Wastewater by Sorghum. Molecules 2022; 27:molecules27134004. [PMID: 35807251 PMCID: PMC9268057 DOI: 10.3390/molecules27134004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 02/04/2023] Open
Abstract
We investigated how different doses of microwave irradiation (MR) affect seed germination in Sorghum, including the level of remediation against textile and surgical wastewater (WW) by modulating biochemical and morpho-physiological mechanisms under glutamic acid (GA) application. The experiment was conducted to determine the impact of foliar-applied GA on Sorghum under wastewater conditions. Plants were treated with or without microwave irradiation (30 s, 2.45 GHz), GA (5 and 10 mM), and wastewater (0, 25, 50, and 100). Growth and photosynthetic pigments were significantly decreased in plants only treated with various concentrations of WW. GA significantly improved the plant growth characteristics both in MR-treated and -untreated plants compared with respective controls. HMs stress increased electrolyte leakage (EL), hydrogen peroxide (H2O2), and malondialdehyde (MDA) content; however, the GA chelation significantly improved the antioxidant enzymes activities such as ascorbate oxidase (APX), superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) both in MR-treated and -untreated plants under WW stress compared with respective controls. The results suggested that the MR-treated plants accumulate higher levels of HMs under GA addition in comparison to the WW-only-treated and MR-untreated plants. The maximum increase in Cd accumulation was observed in the range of 14–629% in the roots, 15–2964% in the stems, and 26–4020% in the leaves; the accumulation of Cu was 18–2757% in the roots, 15–4506% in the stems, and 23–4605% in the leaves; and the accumulation of Pb was 13–4122% in the roots, 21–3588% in the stems, and 21–4990% in the leaves under 10 mM GA and MR-treated plants. These findings confirmed that MR-treated sorghum plants had a higher capacity for HMs uptake under GA and could be used as a potential candidate for wastewater treatment.
Collapse
|
42
|
Ashraf MA, Rasheed R, Hussain I, Iqbal M, Farooq MU, Saleem MH, Ali S. Taurine modulates dynamics of oxidative defense, secondary metabolism, and nutrient relation to mitigate boron and chromium toxicity in Triticum aestivum L. plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:45527-45548. [PMID: 35147884 DOI: 10.1007/s11356-022-19066-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/01/2022] [Indexed: 05/27/2023]
Abstract
The present study was undertaken to appraise the efficacy of exogenous taurine in alleviating boron (B) and chromium (Cr) toxicity. Taurine protects cell membranes from lipid peroxidation due to its function as a ROS scavenger. However, there exists no report in the literature on the role of taurine in plants under abiotic stresses. The present investigation indicated the involvement of exogenous taurine in mediating plant defense responses under B and Cr toxicity. Wheat plants manifested a significant drop in growth, chlorophyll molecules, SPAD values, relative water content, nitrate reductase activity, and uptake of essential nutrients under B, Cr, and combined B-Cr toxicity. Plants showed significant oxidative damage due to enhanced cellular levels of superoxide radicals (O2•-), hydrogen peroxide (H2O2), malondialdehyde (MDA), relative membrane permeability, and activity of lipoxygenase (LOX). Additionally, a significant negative correlation existed in B and Cr levels with the uptake of essential nutrients. Taurine substantially improved growth, photosynthetic pigments, and nutrient uptake by regulating ROS scavenging, secondary metabolism, and ions homeostasis under stress. Taurine protected plants from the detrimental effects of B and Cr by upregulating the production of nitric oxide, hydrogen sulfide, glutathione, and phenolic compounds.
Collapse
Affiliation(s)
- Muhammad Arslan Ashraf
- Department of Botany, Government College University Faisalabad, New Campus, Jhang Road, Faisalabad, 38000, Pakistan.
| | - Rizwan Rasheed
- Department of Botany, Government College University Faisalabad, New Campus, Jhang Road, Faisalabad, 38000, Pakistan
| | - Iqbal Hussain
- Department of Botany, Government College University Faisalabad, New Campus, Jhang Road, Faisalabad, 38000, Pakistan
| | - Muhammad Iqbal
- Department of Botany, Government College University Faisalabad, New Campus, Jhang Road, Faisalabad, 38000, Pakistan
| | - Muhammad Umar Farooq
- Department of Botany, Government College University Faisalabad, New Campus, Jhang Road, Faisalabad, 38000, Pakistan
| | - Muhammad Hamzah Saleem
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, 38000, Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan
| |
Collapse
|
43
|
Glycine betaine modulates chromium (VI)-induced morpho-physiological and biochemical responses to mitigate chromium toxicity in chickpea (Cicer arietinum L.) cultivars. Sci Rep 2022; 12:8005. [PMID: 35568714 PMCID: PMC9107477 DOI: 10.1038/s41598-022-11869-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/22/2022] [Indexed: 11/08/2022] Open
Abstract
Chromium (Cr) accumulation in crops reduces yield. Here, we grew two chickpea cultivars, Pusa 2085 (Cr-tolerant) and Pusa Green 112 (Cr-sensitive), in hydroponic and pot conditions under different Cr treatments: 0 and 120 µM Cr and 120 µM Cr + 100 mM glycine betaine (GB). For plants grown in the hydroponic media, we evaluated root morphological attributes and plasma membrane integrity via Evans blue uptake. We also estimated H+-ATPase activity in the roots and leaves of both cultivars. Plants in pots under conditions similar to those of the hydroponic setup were used to measure growth traits, oxidative stress, chlorophyll contents, enzymatic activities, proline levels, and nutrient elements at the seedling stage. Traits such as Cr uptake in different plant parts after 42 days and grain yield after 140 days of growth were also evaluated. In both cultivars, plant growth traits, chlorophyll contents, enzymatic activities, nutrient contents, and grain yield were significantly reduced under Cr stress, whereas oxidative stress and proline levels were increased compared to the control levels. Further, Cr uptake was remarkably decreased in the roots and leaves of Cr-tolerant than in Cr-sensitive cultivars. Application of GB led to improved root growth and morpho-physiological attributes and reduced oxidative stress along with reduced loss in plasma membrane integrity and subsequently increase in H+-ATPase activity. An increment in these parameters shows that the exogenous application of GB improves the Cr stress tolerance in chickpea plants.
Collapse
|
44
|
Spinelli V, Brasili E, Sciubba F, Ceci A, Giampaoli O, Miccheli A, Pasqua G, Persiani AM. Biostimulant Effects of Chaetomium globosum and Minimedusa polyspora Culture Filtrates on Cichorium intybus Plant: Growth Performance and Metabolomic Traits. FRONTIERS IN PLANT SCIENCE 2022; 13:879076. [PMID: 35646045 PMCID: PMC9134003 DOI: 10.3389/fpls.2022.879076] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/11/2022] [Indexed: 06/12/2023]
Abstract
In this study, we investigated the biostimulant effect of fungal culture filtrates obtained from Chaetomium globosum and Minimedusa polyspora on growth performance and metabolomic traits of chicory (Cichorium intybus) plants. For the first time, we showed that M. polyspora culture filtrate exerts a direct plant growth-promoting effect through an increase of biomass, both in shoots and roots, and of the leaf area. Conversely, no significant effect on morphological traits and biomass yield was observed in C. intybus plants treated with C. globosum culture filtrate. Based on 1H-NMR metabolomics data, differential metabolites and their related metabolic pathways were highlighted. The treatment with C. globosum and M. polyspora culture filtrates stimulated a common response in C. intybus roots involving the synthesis of 3-OH-butyrate through the decrease in the synthesis of fatty acids and sterols, as a mechanism balancing the NADPH/NADP+ ratio. The fungal culture filtrates differently triggered the phenylpropanoid pathway in C. intybus plants: C. globosum culture filtrate increased phenylalanine and chicoric acid in the roots, whereas M. polyspora culture filtrate stimulated an increase of 4-OH-benzoate. Chicoric acid, whose biosynthetic pathway in the chicory plant is putative and still not well known, is a very promising natural compound playing an important role in plant defense. On the contrary, benzoic acids serve as precursors for a wide variety of essential compounds playing crucial roles in plant fitness and defense response activation. To the best of our knowledge, this is the first study that shows the biostimulant effect of C. globosum and M. polyspora culture filtrates on C. intybus growth and metabolome, increasing the knowledge on fungal bioresources for the development of biostimulants.
Collapse
Affiliation(s)
- Veronica Spinelli
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Elisa Brasili
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy
| | - Fabio Sciubba
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy
| | - Andrea Ceci
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Ottavia Giampaoli
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy
| | - Alfredo Miccheli
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy
| | - Gabriella Pasqua
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy
| | - Anna Maria Persiani
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
45
|
Al Jabri H, Saleem MH, Rizwan M, Hussain I, Usman K, Alsafran M. Zinc Oxide Nanoparticles and Their Biosynthesis: Overview. Life (Basel) 2022; 12:life12040594. [PMID: 35455085 PMCID: PMC9026433 DOI: 10.3390/life12040594] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 01/09/2023] Open
Abstract
Zinc (Zn) is plant micronutrient, which is involved in many physiological functions, and an inadequate supply will reduce crop yields. Its deficiency is the widest spread micronutrient deficiency problem; almost all crops and calcareous, sandy soils, as well as peat soils and soils with high phosphorus and silicon content are expected to be deficient. In addition, Zn is essential for growth in animals, human beings, and plants; it is vital to crop nutrition as it is required in various enzymatic reactions, metabolic processes, and oxidation reduction reactions. Finally, there is a lot of attention on the Zn nanoparticles (NPs) due to our understanding of different forms of Zn, as well as its uptake and integration in the plants, which could be the primary step toward the larger use of NPs of Zn in agriculture. Nanotechnology application in agriculture has been increasing over recent years and constitutes a valuable tool in reaching the goal of sustainable food production worldwide. A wide array of nanomaterials has been used to develop strategies of delivery of bioactive compounds aimed at boosting the production and protection of crops. ZnO-NPs, a multifunctional material with distinct properties and their doped counterparts, were widely being studied in different fields of science. However, its application in environmental waste treatment and many other managements, such as remediation, is starting to gain attention due to its low cost and high productivity. Nano-agrochemicals are a combination of nanotechnology with agrochemicals that have resulted in nano-fertilizers, nano-herbicides, nano-fungicides, nano-pesticides, and nano-insecticides being developed. They have anti-bacterial, anti-fungal, anti-inflammatory, antioxidant, and optical capabilities. Green approaches using plants, fungi, bacteria, and algae have been implemented due to the high rate of harmful chemicals and severe situations used in the manufacturing of the NPs. This review summarizes the data on Zn interaction with plants and contributes towards the knowledge of Zn NPs and its impact on plants.
Collapse
Affiliation(s)
- Hareb Al Jabri
- Center for Sustainable Development (CSD), College of Arts and Sciences, Qatar University, Doha 2713, Qatar;
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Muhammad Hamzah Saleem
- Office of Academic Research, Office of VP for Research & Graduate Studies, Qatar University, Doha 2713, Qatar; (M.H.S.); (M.R.)
| | - Muhammad Rizwan
- Office of Academic Research, Office of VP for Research & Graduate Studies, Qatar University, Doha 2713, Qatar; (M.H.S.); (M.R.)
| | - Iqbal Hussain
- Department of Botany, Government College University, Faisalabad 38000, Pakistan;
| | - Kamal Usman
- Agricultural Research Station, Office of VP for Research & Graduate Studies, Qatar University, Doha 2713, Qatar
- Correspondence: (K.U.); (M.A.)
| | - Mohammed Alsafran
- Agricultural Research Station, Office of VP for Research & Graduate Studies, Qatar University, Doha 2713, Qatar
- Central Laboratories Unit (CLU), Office of VP for Research & Graduate Studies, Qatar University, Doha 2713, Qatar
- Correspondence: (K.U.); (M.A.)
| |
Collapse
|
46
|
Combined Role of Fe Nanoparticles (Fe NPs) and Staphylococcus aureus L. in the Alleviation of Chromium Stress in Rice Plants. Life (Basel) 2022; 12:life12030338. [PMID: 35330089 PMCID: PMC8950458 DOI: 10.3390/life12030338] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 12/21/2022] Open
Abstract
Chromium (Cr) is a toxic heavy metal whose high concentration in soil badly affects plant growth, photosynthesis, and overall yield. Metal-derived nano-particles and metal-resistant bacteria can strengthen the plant defense system against different abiotic stresses; however, little is known about the use of nanoparticles in conjunction with bacteria. This study examined the combined effect of Fe nanoparticles (Fe NPs) and a chromium-resistant bacterium Staphylococcus aureus, on rice plants grown on chromium saturated medium. Chromium stress reduced rice growth, biomass, and chlorophyll contents by causing oxidative damage leading to overproduction of electrolyte leakage, hydrogen peroxide, and malondialdehyde. Fe NPs significantly improved plant growth, biomass, yield, and photosynthetic activity by enhancing the chlorophyll contents and alleviating oxidative damage. Application of Fe NPs also reduced the uptake and accumulation of Cr in the plants by increasing the bioavailability of micronutrients to the plant. The Fe NPs decreased oxidative damage and enhanced the enzymatic and non-enzymatic activity in the plant to withstand Cr stress compared to the plants without Fe NPs treatments. The inoculation of rice plants with the chromium-resistant bacteria S. aureus further enhanced the positive impact of Fe NPs by transforming the toxic form of chromium (Cr6+) into a less toxic form of chromium (Cr3+). The bacterial inoculation reduced Cr uptake by plants through adsorption of Cr ions, resulting in decreased chromium ion bioavailability. At chromium level 100 mg/kg, the foliar application of Fe NPs from 0 to 20 mg/L increased the total chlorophyll contents from 2.8 to 3.9. The application of S. aureus further enhanced the chlorophyll contents from 4.4 to 5.4, respectively. The current study suggested that combining Fe NPs and S. aureus could be a viable strategy for reducing Cr toxicity and accumulation in rice plants and most likely other plants.
Collapse
|
47
|
Sarwar S, Akram NA, Saleem MH, Zafar S, Alghanem SM, Abualreesh MH, Alatawi A, Ali S. Spatial variations in the biochemical potential of okra [Abelmoschus esculentus L. (Moench)] leaf and fruit under field conditions. PLoS One 2022; 17:e0259520. [PMID: 35113880 PMCID: PMC8812902 DOI: 10.1371/journal.pone.0259520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/20/2021] [Indexed: 01/09/2023] Open
Abstract
Okra (Abelmoschus esculentus L. (Moench) plays a significant role in humans nutrition because its fresh leaves, stems, flowers, pods and seeds, are used for multiple purposes. The present study attempted to determine the spatial variations in biochemical attributes of osmoprotectants and the oxidative defense system of okra plants. Samples of soil and okra plants (leaves and fruits) were collected from three different locations: Faisalabad region-1 (7 JB-I), Faisalabad region-2 (7 JB-II) and Pindi Bhattian. Chlorophyll contents, glycine betaine (GB), ascorbic acid (AsA), total phenolics, hydrogen peroxide (H2O2), proline, and malondialdehyde (MDA) contents were analyzed in the leaves and fruits of okra plants. Soil analyses showed that pH, electrical conductivity (EC), phosphorus (P), potassium (K), iron (Fe), and saturation of soil were higher in Faisalabad region 2, while organic matter, sand, Zn, and Cu were higher in the Pindi Bhattian region. The results from okra leaves showed that Pindi Bhattian had higher chlorophyll a, GB and H2O2 contents, while Faisalabad region 1 had a higher ratio of chlorophyll a/b compared to the other regions. However, Faisalabad regions 2 and 1 had higher leaf phenolic contents, Faisalabad regions 1 and 2 showed higher leaf proline contents, and Faisalabad region 2 possessed higher AsA and MDA contents. Analyses of okra fruits showed that Faisalabad region 2 had higher chlorophyll a and total chlorophyll contents, while Faisalabad region 1 had higher chlorophyll b contents. Faisalabad region 2 and Pindi Bhattian had higher ratios of chlorophyll a/b, and Faisalabad region 1 showed higher phenolic, AsA, H2O2, and MDA contents of okra fruit, whereas the Faisalabad regions exhibited higher proline and GB contents than the Pindi Bhattian region. Overall, okra leaves and fruits showed better responses in the Faisalabad regions, and these results may be used to screen for okra cultivars with better tolerance under different environmental conditions.
Collapse
Affiliation(s)
- Samreen Sarwar
- Department of Botany, Government College University, Allama Iqbal Road, Faisalabad, Pakistan
| | - Nudrat Aisha Akram
- Department of Botany, Government College University, Allama Iqbal Road, Faisalabad, Pakistan
| | | | - Sadia Zafar
- Department of Botany, Division of Science and Technology, University of Education, Faisalabad, Pakistan
| | | | - Muyassar H. Abualreesh
- Department of Marine Biology, Faculty of Marine Sciences, King Abdualaziz University, Jeddah, Saudi Arabia
| | - Aishah Alatawi
- Biology Department, Faculty of Science, Tabuk University, Tabuk, Saudi Arabia
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung, Taiwan
| |
Collapse
|
48
|
Fertigation with Zn-Lysine Confers Better Photosynthetic Efficiency and Yield in Water Stressed Maize: Water Relations, Antioxidative Defense Mechanism and Nutrient Acquisition. PLANTS 2022; 11:plants11030404. [PMID: 35161385 PMCID: PMC8838349 DOI: 10.3390/plants11030404] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/31/2021] [Accepted: 01/20/2022] [Indexed: 11/17/2022]
Abstract
Different strategies including the exogenous use of micronutrient-chelated amino acids are being employed for better crop yield with limited fresh water for irrigation. The present study was conducted to assess the effects of foliar-applied Zn-lysine (Zn-Lys) on maize growth and yield under limited irrigation, in relation to physio-biochemical mechanisms such as the plant–water relations, photosynthetic efficiency, antioxidant defense mechanism, amino acid accumulation and nutrient acquisition. The experiment comprised two maize cultivars (MMRI and Pearl), two irrigation levels and three levels of Zn-Lys (0.25, 0.5 and 0.75%). Zn-Lys fertigation was found to be effective in reducing the negative impacts of limited water supply on grain yield, associated with improved photosynthetic efficiency, water relations, antioxidative defense mechanism and reduced lipid peroxidation in both maize cultivars. Zn-Lys-induced improvement in antioxidative mechanisms was associated with improved content of non-enzymatic antioxidants and activities of antioxidant enzymes. Foliar-fertigation with Zn-Lys also significantly improved the contents of various amino acids including Lys, as well as uptake of nutrients in both maize cultivars. In conclusion, the 0.5% level of Zn-Lys was found to be effective in ameliorating the negative impacts of water stress for better grain yield in both maize cultivars that can also be used as an important environment-friendly source of Zn to fulfill maize Zn deficiency.
Collapse
|
49
|
Silicon Fertigation Regimes Attenuates Cadmium Toxicity and Phytoremediation Potential in Two Maize (Zea mays L.) Cultivars by Minimizing Its Uptake and Oxidative Stress. SUSTAINABILITY 2022. [DOI: 10.3390/su14031462] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Silicon (Si) is an important plant-derived metabolite that is significantly involved in maintaining the stability of a plant’s metabiological, structural and physiological characteristics under the abiotic stressed environment. We conducted the present study using maize (Zea mays L.) cultivars (Sadaf and EV-20) grown in sand artificially contaminated with cadmium (500 µM) in Hoagland’s nutrient solution to investigate its efficiency. Results from the present study evidenced that the toxic concentration of Cd in sand significantly reduced shoot length, root length, shoot fresh weight, root fresh weight, shoot dry weight and root dry weight by 88, 94, 89, 86 99 and 99%, respectively, in Sadaf while decreasing by 98, 97, 93, 99, 84 and 91%, respectively, in EV-20. Similarly, Cd toxicity decreased total chlorophyll and carotenoid content in both varieties of Z. mays. Moreover, the activities of various antioxidants (superoxidase dismutase, peroxidase and catalase) increased under the toxic concentration of Cd in sand which was manifested by the presence of membrane permeability, malondialdehyde (MDA), and hydrogen peroxide (H2O2). Results additionally showed that the toxic effect of Cd was more severe in EV-20 compared with Sadaf under the same conditions of environmental stresses. In addition, the increased concentration of Cd in sand induced a significantly increased Cd accumulation in the roots (141 and 169 mg kg−1 in Sadaf and EV-20, respectively), and shoots (101 and 141 mg kg−1 in Sadaf and EV-20, respectively), while; EV-20 accumulated higher amounts of Cd than Sadaf, with the values for both bioaccumulation factor (BAF) and translocation factor (TF) among all treatments being less than 1. The subsequent negative results of Cd injury can be overcome by the foliar application of Si which not only increased plant growth and biomass, but also decreased oxidative damage induced by the higher concentrations of MDA and H2O2 under a Cd-stressed environment. Moreover, external application of Si decreased the concentration of Cd in the roots and shoots of plants, therefore suggesting that the application of Si can ameliorate Cd toxicity in Z. mays cultivars and results in improved plant growth and composition under Cd stress by minimizing oxidative damage to membrane-bound organelles.
Collapse
|
50
|
Zaheer IE, Ali S, Saleem MH, Yousaf HS, Malik A, Abbas Z, Rizwan M, Abualreesh MH, Alatawi A, Wang X. Combined application of zinc and iron-lysine and its effects on morpho-physiological traits, antioxidant capacity and chromium uptake in rapeseed (Brassica napus L.). PLoS One 2022; 17:e0262140. [PMID: 34995308 PMCID: PMC8740971 DOI: 10.1371/journal.pone.0262140] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 12/17/2021] [Indexed: 01/24/2023] Open
Abstract
Environmental contamination of chromium (Cr) has gained substantial consideration worldwide because of its high levels in the water and soil. A pot experiment using oil seed crop (rapeseed (Brassica napus L.)) grown under different levels of tannery wastewater (0, 33, 66 and 100%) in the soil using the foliar application of zinc (Zn) and iron (Fe)-lysine (lys) has been conducted. Results revealed that a considerable decline in the plant growth and biomass elevates with the addition of concentrations of tannery wastewater. Maximum decline in plant height, number of leaves, root length, fresh and dry biomass of root and leaves were recorded at the maximum level of tannery wastewater application (100%) compared to the plants grown without the addition of tannery wastewater (0%) in the soil. Similarly, contents of carotenoid and chlorophyll, gas exchange parameters and activities of various antioxidants (superoxidase dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX)) were also reduced significantly (P < 0.05) with the increasing concentration of tannery wastewater (33, 66 and 100%) in the soil. In addition, a combined application of Zn and Fe-lys reduced the accumulation and uptake of toxic Cr, while boosting the uptake of essential micronutrients such as Zn and Fe in different tissues of the plants. Results concluded that exogenous application of micronutrients chelated with amino acid successfully mitigate Cr stress in B. napus. Under field conditions, supplementation with these micronutrient-chelated amino acids may be an effective method for alleviating metal stress in other essential seed crops.
Collapse
Affiliation(s)
- Ihsan Elahi Zaheer
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung, Taiwan
| | | | - Hafiza Sana Yousaf
- Department of Environmental Sciences, Lahore College for Women University, Lahore, Pakistan
| | - Afifa Malik
- Sustainable Development Study of Center, Government College University, Lahore, Pakistan
| | - Zohaib Abbas
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, Pakistan
| | - Muyassar H. Abualreesh
- Department of Marine Biology, Faculty of Marine Sciences, King Abdualaziz University, Jeddah, Saudi Arabia
| | - Aishah Alatawi
- Biology Department, Faculty of Science, Tabuk University, Tabuk, Saudi Arabia
| | - Xiukang Wang
- College of Life Sciences, Yan’an University, Yan’an, China
| |
Collapse
|