1
|
Dolatimehr A, Mahyar A, Barough SPH, Mahmoodi M. Insights into the efficiencies of different biological treatment systems for pharmaceuticals removal: A review. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11153. [PMID: 39539062 DOI: 10.1002/wer.11153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/29/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
This review presents a comprehensive analysis of current research on biological treatment processes for removing pharmaceutical compounds (PhCs) from wastewater. Unlike previous studies on this topic, our study specifically delves into the effectiveness and drawbacks of various treatment approaches such as traditional wastewater treatment facilities (WWTP), membrane bioreactors (MBRs), constructed wetlands (CW), and moving bed biofilm reactors (MBBR). Through the examination and synthesis of information gathered from more than 200 research studies, we have created a comprehensive database that delves into the effectiveness of eliminating 19 particular PhCs, including commonly studied compounds such as acetaminophen, ibuprofen, diclofenac, naproxen, ketoprofen, indomethacin, salicylic acid, codeine, and fenoprofen, amoxicillin, azithromycin, ciprofloxacin, ofloxacin, tetracycline, atenolol, propranolol, and metoprolol. This resource provides a depth and scope of information that was previously lacking in this area of study. Notably, among these pharmaceuticals, azithromycin demonstrated the highest removal rates across all examined treatment systems, with the exception of WWTPs, while carbamazepine consistently exhibited the lowest removal efficiencies across various systems. The analysis showcases the diverse results in removal efficiency impacted by factors such as system configuration, operation specifics, and environmental circumstances. The findings emphasize the critical need for continued innovation and research, specifically recommending the integration of advanced oxidation processes (AOPs) with existing biological treatment methods to improve the breakdown of recalcitrant compounds like carbamazepine. PRACTITIONER POINTS: Persistent pharmaceuticals harm aquatic ecosystems and human health. Biological systems show varying pharmaceutical removal efficiencies. Enhancing HRT and SRT improves removal but adds complexity and costs. Tailored treatment approaches needed based on contaminants and conditions.
Collapse
Affiliation(s)
- Armin Dolatimehr
- Master of Water and Hydraulics, Independent Researcher, Islamic Azad University, Berlin, Germany
| | - Ali Mahyar
- Brandenburg University of Technology (Cottbus-Senftenberg) Volmerstr, Berlin, Germany
| | | | - Mohammadreza Mahmoodi
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
2
|
He K, Yuan J, Lu H, Asada Y, Echigo S, Wu Q, Wang H. Evaluating the behavior and environmental risks of carbamazepine and its metabolites in soil aquifer treatment: Insights from deconjugation dynamics and toxicity assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135788. [PMID: 39298951 DOI: 10.1016/j.jhazmat.2024.135788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/23/2024] [Accepted: 09/07/2024] [Indexed: 09/22/2024]
Abstract
The presence of pharmaceuticals in the environment has been a growing concern. Recent studies highlight the ecological risks of pharmaceuticals, but most risk assessments focus on the parent drug, neglecting metabolites. This study examines the behavior and environmental risks of carbamazepine (CBZ) and its metabolites in soil aquifer treatment (SAT) for wastewater reclamation. Findings indicate that CBZ metabolites' total concentration exceeds that of CBZ. Notably, carbamazepine-N-glucuronide (CBZ-N-Glu) concentration decreased from 48.12 ng/L to undetectable levels during SAT, while CBZ concentration increased from 64.87 to 95 ng/L, suggesting possible deconjugation of CBZ-N-Glu. Batch and column experiments confirmed the hypothesis, showing a gradual disappearance of CBZ-Glu and a corresponding rise in CBZ concentration when CBZ-N-Glu was spiked into a recirculated SAT system. Quantitative structure-activity relationships (QSAR) analysis revealed that CBZ exhibits higher acute and chronic toxicity, with metabolites showing varying levels of developmental toxicity. The study also evaluates the persistence, mobility, and toxicity (PMT) characteristics of CBZ and its metabolites, highlighting CBZ-N-Glu's particularly adverse PMT characteristics compared to CBZ. In summary, the residual pharmaceuticals in the reclaimed water process should be evaluated systematically, considering both the parent compounds and their metabolites.
Collapse
Affiliation(s)
- Kai He
- School of Civil Engineering, Sun Yat-Sen University, Zhuhai 519082, China; Guangdong Provincial Key Laboratory for Marine Civil Engineering, Zhuhai 519082, China; Research Center for Environmental Quality Management, Kyoto University, Nishikyo, Kyoto 615-8540, Japan.
| | - Jinlong Yuan
- School of Civil Engineering, Sun Yat-Sen University, Zhuhai 519082, China; Guangdong Provincial Key Laboratory for Marine Civil Engineering, Zhuhai 519082, China
| | - Haoxian Lu
- Marine Biological Resources Bank, Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
| | - Yasuhiro Asada
- Research Center for Environmental Quality Management, Kyoto University, Nishikyo, Kyoto 615-8540, Japan
| | - Shinya Echigo
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Qianyuan Wu
- International Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Hongyang Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
3
|
Li X, Li L, Tang L, Mei J, Fu J. Unveiling combined ecotoxicity: Interactions and impacts of engineered nanoparticles and PPCPs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:170746. [PMID: 38342466 DOI: 10.1016/j.scitotenv.2024.170746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/27/2024] [Accepted: 02/04/2024] [Indexed: 02/13/2024]
Abstract
Emerging contaminants such as engineered nanoparticles (ENPs), pharmaceuticals and personal care products (PPCPs) are of great concern because of their wide distribution and incomplete removal in conventional wastewater and soil treatment processes. The production and usage of ENPs and PPCPs inevitably result in their coexistence in different environmental media, thus posing various risks to organisms in aquatic and terrestrial ecosystems. However, the existing literature on the physicochemical interactions between ENPs and PPCPs and their effects on organisms is rather limited. Therefore, this paper summarized the ecotoxicity of combined ENPs and PPCPs by discussing: (1) the interactions between ENPs and PPCPs, including processes such as aggregation, adsorption, transformation, and desorption, considering the influence of environmental factors like pH, ionic strength, dissolved organic matter, and temperature; (2) the effects of these interactions on bioaccumulation, bioavailability and biotoxicity in organisms at different trophic levels; (3) the impacted of ENPs and PPCPs on cellular-level biological process. This review elucidated the potential ecological hazards associated with the interaction of ENPs and PPCPs, and serves as a foundation for future investigations into the ecotoxicity and mode of action of ENPs, PPCPs, and their co-occurring metabolites.
Collapse
Affiliation(s)
- Xiang Li
- Key Laboratory of Organic Compound Pollution Control Engineering, School of Environmental and Chemical Engineering, Shanghai University, China
| | - Liyan Li
- Department of Civil and Environmental Engineering, College of Design and Engineering, National University of Singapore, Singapore
| | - Liang Tang
- Key Laboratory of Organic Compound Pollution Control Engineering, School of Environmental and Chemical Engineering, Shanghai University, China.
| | - Jingting Mei
- Key Laboratory of Organic Compound Pollution Control Engineering, School of Environmental and Chemical Engineering, Shanghai University, China
| | - Jing Fu
- Key Laboratory of Organic Compound Pollution Control Engineering, School of Environmental and Chemical Engineering, Shanghai University, China.
| |
Collapse
|
4
|
Sieranen M, Hilander H, Haimi H, Larsson T, Kuokkanen A, Mikola A. Seasonality of nitrous oxide emissions at six full-scale wastewater treatment plants. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:603-612. [PMID: 38358492 PMCID: wst_2023_420 DOI: 10.2166/wst.2023.420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Nitrous oxide (N2O) is an ozone-depleting greenhouse gas that contributes significantly to the carbon footprint of a wastewater treatment plant (WWTP). Plant-specific measurement campaigns are required to reliably quantify the emission level that has been found to significantly vary between WWTPs. In this study, the N2O emissions were quantified from five full-scale WWTPs during 4-19-day measurement campaigns conducted under both cold period conditions (water temperature below 12 °C) and warm period conditions (water temperature from 12 to 20 °C). The measurement data were studied alongside long-term monitoring data from a sixth WWTP. The calculated emission factors (EFs) varied from near 0 to 1.8% relative to the influent total nitrogen load. The results confirmed a significant seasonality of N2O emissions as well as a notable variation between WWTPs in the emission level, which a single fixed EF cannot represent. Wastewater temperature was one explanatory factor for the emission seasonality. Both low and high emissions were measured from denitrifying-nitrifying activated sludge (AS) processes, while the emissions from only nitrifying AS processes were consistently high. Nitrite (NO2-) at the end of the aerobic zones of the AS process was linked to the variability in N2O emissions during the cold period.
Collapse
Affiliation(s)
- Milla Sieranen
- Department of Built Environment, Aalto University, P.O. Box 15200, FI-00076 AALTO, Espoo, Finland E-mail:
| | | | - Henri Haimi
- Department of Built Environment, Aalto University, P.O. Box 15200, FI-00076 AALTO, Espoo, Finland; FCG Finnish Consulting Group, P.O. Box 950, FI-00601, Helsinki, Finland
| | - Timo Larsson
- Department of Built Environment, Aalto University, P.O. Box 15200, FI-00076 AALTO, Espoo, Finland
| | - Anna Kuokkanen
- Helsinki Region Environmental Services Authority, P.O. Box 100, FI-00066 HSY, Helsinki, Finland
| | - Anna Mikola
- Department of Built Environment, Aalto University, P.O. Box 15200, FI-00076 AALTO, Espoo, Finland
| |
Collapse
|
5
|
Stricker BK, Tamim DA, Rechtenbach D, Behrendt J, Otterpohl R. Removal of emerging micropollutants from nanofiltration retentate of municipal wastewater within biological fixed-bed reactors under nitrifying and denitrifying conditions. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2023; 95:e10953. [PMID: 38111191 DOI: 10.1002/wer.10953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 12/20/2023]
Abstract
Municipal water resource recovery facilities are not designed to eliminate micropollutants, leading to many pollutants entering the aquatic environment. Within this study, as part of the project MicroStop, the biological treatment of nanofiltration effluent (retentate) under pure aerobic (without nitrification) as well as nitrifying and denitrifying conditions has been investigated for micropollutant elimination. A potential of further biotransformation under increased hydraulic retention time (HRT) of 14 days was shown. Under both HRT of 7 and 14 days, eliminations below LOQ were achieved in the aerated bioreactor for gabapentin, iomeprol, and metoprolol, reaching > 95%, > 69 to > 92%, and > 72%, respectively. The reduction of diclofenac was positively influenced by longer HRT leading to an elimination of up to 67%. Sulfamethoxazole was reduced under denitrification, but accumulated under aeration, resulting in fluctuating results and an overall elimination of 78% under 14 days HRT. PRACTITIONER POINTS: The micropollutant elimination in fixed-bed bioreactors of highly concentrated nanofiltration retentate was studied. Pure aerobic (without nitrification), nitrifying, and denitrifying conditions were investigated under hydraulic retention times (HRT) of 7 and 14 days. Higher initial pollutant concentrations enhanced the biological degradability in attached growth for substances being moderately degradable in activated sludge systems. 4A potential of further biological micropollutant elimination was shown for gabapentin, iomeprol, metoprolol, and diclofenac.
Collapse
Affiliation(s)
- Birthe K Stricker
- Institute of Wastewater Management and Water Protection, Hamburg University of Technology, Hamburg, Germany
| | - Dana A Tamim
- Institute of Wastewater Management and Water Protection, Hamburg University of Technology, Hamburg, Germany
| | - Dorothea Rechtenbach
- Institute of Wastewater Management and Water Protection, Hamburg University of Technology, Hamburg, Germany
| | - Joachim Behrendt
- Institute of Wastewater Management and Water Protection, Hamburg University of Technology, Hamburg, Germany
| | - Ralf Otterpohl
- Institute of Wastewater Management and Water Protection, Hamburg University of Technology, Hamburg, Germany
| |
Collapse
|
6
|
Wagner TV, Rempe F, Hoek M, Schuman E, Langenhoff A. Key constructed wetland design features for maximized micropollutant removal from treated municipal wastewater: A literature study based on 16 indicator micropollutants. WATER RESEARCH 2023; 244:120534. [PMID: 37659177 DOI: 10.1016/j.watres.2023.120534] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/20/2023] [Accepted: 08/26/2023] [Indexed: 09/04/2023]
Abstract
The removal of micropollutants from wastewater by constructed wetlands (CWs) has been extensively studied and reviewed over the past years. However, most studies do not specifically focus on the removal of micropollutants from the effluent of conventional wastewater treatment plants (WWTP) that still contains micropollutants, but on the removal of micropollutants from raw wastewater. Raw wastewater has a significantly different composition compared to WWTP effluent, which positively or negatively affects micropollutant removal mechanisms. To determine the optimal CW design for post-treatment of WWTP effluent to achieve additional micropollutant removal, this review analyzes the removal of 16 Dutch indicator micropollutants for post-treatment technology evaluation from WWTP effluent by different types of CWs. It was concluded that CW systems with organic enhanced adsorption substrates reach the highest micropollutant removal efficiency as a result of adsorption, but that the longevity of the enhanced adsorption effect is not known in the systems studied until now. Aerobic biodegradation and photodegradation are other relevant removal mechanisms for the studied micropollutants. However, a current knowledge gap is whether active aeration to stimulate the aerobic micropollutant biodegradation results in an increased micropollutant removal from WWTP effluent. Further knowledge gaps that impede the wider application of CW systems for micropollutant removal from WWTP effluent and allow a fair comparison with other post-treatment technologies for enhanced micropollutant removal, such as ozonation and activated carbon adsorption, relate to i) saturation of enhanced adsorption substrate; ii) the analysis of transformation products and biological effects; iii) insights in the relationship between microbial community composition and micropollutant biodegradation; iv) plant uptake and in-plant degradation of micropollutants; v) establishing design rules for appropriate hydraulic loading rates and/or hydraulic retention times for CWs dedicated to micropollutant removal from WWTP effluent; and vi) the energy- and carbon footprint of different CW systems. This review finishes with detailed suggestions for future research directions that provide answers to these knowledge gaps.
Collapse
Affiliation(s)
- Thomas V Wagner
- Department of Environmental Technology, Wageningen University & Research, P. O. Box 17, 6700 EV, Wageningen, the Netherlands.
| | - Fleur Rempe
- TAUW B.V., Handelskade 37, 7400 AC Deventer, the Netherlands
| | - Mirit Hoek
- TAUW B.V., Handelskade 37, 7400 AC Deventer, the Netherlands
| | - Els Schuman
- LeAF B.V., Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Alette Langenhoff
- Department of Environmental Technology, Wageningen University & Research, P. O. Box 17, 6700 EV, Wageningen, the Netherlands
| |
Collapse
|
7
|
Liu J, Ge S, Shao P, Wang J, Liu Y, Wei W, He C, Zhang L. Occurrence and removal rate of typical pharmaceuticals and personal care products (PPCPs) in an urban wastewater treatment plant in Beijing, China. CHEMOSPHERE 2023; 339:139644. [PMID: 37495050 DOI: 10.1016/j.chemosphere.2023.139644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/26/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
The occurrence and removal rate of 52 typical pharmaceuticals and personal care products (PPCPs) were investigated in a wastewater treatment plant in Beijing, China. Thirty-three PPCPs were found in the influent, with caffeine (CF, 11387.0 ng L-1) being the most abundant, followed by N,N-diethyl-meta-toluamide (DEET, 9568.4 ng L-1), metoprolol (MTP, 930.2 ng L-1), and diclofenac (DF, 710.3 ng L-1). After treatment processes, the cumulative concentration of PPCPs decreased from 2.54 × 104 ng L-1 to 1.44 × 103 ng L-1, with the overall removal efficiency (RE) of 94.3%. Different treatment processes showed varying contributions in removing PPCPs. PPCPs were efficiently removed in sedimentation, anoxic, and ultraviolet units. For individual compounds, a great variation in RE (52.1-100%) was observed. Twenty-two PPCPs were removed by more than 90%. The highly detected PPCPs in the influent were almost completely removed. Aerated grit chamber removed nearly 50% of fluoroquinolone (FQs) and more than 60% of sulfonamides. Most PPCPs showed low or negative removals during anaerobic treatment, except for CF which was eliminated by 64.9%. Anoxic treatment demonstrated positive removals for most PPCPs, with the exceptions of DF, MTP, bisoprolol, carbamazepine (CBZ), and sibutramine. DEET and bezafibrate were efficiently removed during the secondary sedimentation. Denitrification biological filter and membrane filtration also showed positive effect on most PPCPs removals. The remaining compounds were oxidized by 16-100% in ozonation. DF, sulpiride, ofloxacin (OFL), trimethoprim, and phenolphthalein were not amenable to ultraviolet. After the treatment, the residue OFL, CBZ, and CF in receiving water were identified to pose high risk to aquatic organisms. Considering the complex mixtures emitted into the environment, therapeutic groups psychotropics, stimulant, and FQs were classified as high risk. These findings provide valuable insights into adopting appropriate measures for more efficient PPCPs removals, and emphasize the importance of continued monitoring specific PPCPs and mixtures thereof to safeguard the ecosystem.
Collapse
Affiliation(s)
- Jia Liu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing Center for Physical & Chemical Analysis, Beijing, 100089, People's Republic of China.
| | - Simin Ge
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing Center for Physical & Chemical Analysis, Beijing, 100089, People's Republic of China
| | - Peng Shao
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing Center for Physical & Chemical Analysis, Beijing, 100089, People's Republic of China.
| | - Jianfeng Wang
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing Center for Physical & Chemical Analysis, Beijing, 100089, People's Republic of China
| | - Yanju Liu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing Center for Physical & Chemical Analysis, Beijing, 100089, People's Republic of China
| | - Wei Wei
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing Center for Physical & Chemical Analysis, Beijing, 100089, People's Republic of China
| | - Can He
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100089, People's Republic of China
| | - Lilan Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, People's Republic of China
| |
Collapse
|
8
|
Kasonga TK, Kamika I, Ngole-Jeme VM. Ligninolytic enzyme activity and removal efficiency of pharmaceuticals in a water matrix by fungus Rhizopus sp. Isolated from cassava. ENVIRONMENTAL TECHNOLOGY 2023; 44:2157-2170. [PMID: 35018877 DOI: 10.1080/09593330.2021.2024885] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 12/15/2021] [Indexed: 05/30/2023]
Abstract
Residual amounts of pharmaceutical compounds (PhCs) and by-products are continually released into surface water with effluents from conventional wastewater treatment plants (WWTPs). This study evaluated the ability of fungal isolate to remove selected PhCs [carbamazepine (CBZ), diclofenac (DCF) and ibuprofen (IBP)] from wastewater. The fungus used was Rhizopus sp. which was isolated from tuberous roots of cassava (Manihot esculenta). The isolate exhibited an important removal efficiency up to 100% and this was linked to ligninolytic enzymatic activity for lignin peroxidase (15.29 ± 2.69U/L) and manganese peroxidase (85.22 ± 4.26U/L), except laccase. This activity was optimum on day 9 of treatment. PhC metabolites were identified during the experiment revealing the existence of a biotransformation process catalysed by the isolated fungus. The disappearance of PhCs was attributed to their biosorption and biotransformation. However, it was not possible to establish a relationship between the ligninolytic enzymatic activity and the removal efficiency, which leads to the conclusion that there are other fungal metabolites which also play an important role in the biotransformation and biodegradation of the selected PhCs.
Collapse
Affiliation(s)
- Teddy Kabeya Kasonga
- Department of Environmental Sciences, School of Environmental Science, College of Agriculture and Environmental Sciences, Faculty of Sciences, University of South Africa, Roodepoort, South Africa
| | - Ilunga Kamika
- Institute for Nanotechnology and Water Sustainability; School of Science; College of Science, Engineering and Technology, University of South Africa, Roodepoort, South Africa
| | - Veronica M Ngole-Jeme
- Department of Environmental Sciences, School of Environmental Science, College of Agriculture and Environmental Sciences, Faculty of Sciences, University of South Africa, Roodepoort, South Africa
| |
Collapse
|
9
|
Rodrigues P, Guimarães L, Carvalho AP, Oliva-Teles L. Carbamazepine, venlafaxine, tramadol, and their main metabolites: Toxicological effects on zebrafish embryos and larvae. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130909. [PMID: 36860067 DOI: 10.1016/j.jhazmat.2023.130909] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/18/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Pharmaceutical compounds and their metabolites are found in natural and wastewater. However, investigation of their toxic effects on aquatic animals has been neglected, especially for metabolites. This work investigated the effects of the main metabolites of carbamazepine, venlafaxine and tramadol. Zebrafish embryos were exposed (0.1-100 µg/L) for 168hpf exposures to each metabolite (carbamazepine-10,11-epoxide, 10,11-dihydrocarbamazepine, O-desmethylvenlafaxine, N-desmethylvenlafaxine, O-desmethyltramadol, N-desmethyltramadol) or the parental compound. A concentration-response relationship was found for the effects of some embryonic malformations. Carbamazepine-10,11-epoxide, O-desmethylvenlafaxine and tramadol elicited the highest malformation rates. All compounds significantly decreased larvae responses on a sensorimotor assay compared to controls. Altered expression was found for most of the 32 tested genes. In particular, abcc1, abcc2, abcg2a, nrf2, pparg and raraa were found to be affected by all three drug groups. For each group, the modelled expression patterns showed differences in expression between parental compounds and metabolites. Potential biomarkers of exposure were identified for the venlafaxine and carbamazepine groups. These results are worrying, indicating that such contamination in aquatic systems may put natural populations at significant risk. Furthermore, metabolites represent a real risk that needs more scrutinising by the scientific community.
Collapse
Affiliation(s)
- P Rodrigues
- Interdisciplinary Centre of Marine and Environmental Research - CIIMAR, University of Porto, Terminal de Cruzeiros do Porto de Leixões Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Faculty of Sciences - Biology Department, Rua do Campo Alegre s/n, University of Porto, 4169-007 Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - L Guimarães
- Interdisciplinary Centre of Marine and Environmental Research - CIIMAR, University of Porto, Terminal de Cruzeiros do Porto de Leixões Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Faculty of Sciences - Biology Department, Rua do Campo Alegre s/n, University of Porto, 4169-007 Porto, Portugal.
| | - A P Carvalho
- Interdisciplinary Centre of Marine and Environmental Research - CIIMAR, University of Porto, Terminal de Cruzeiros do Porto de Leixões Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Faculty of Sciences - Biology Department, Rua do Campo Alegre s/n, University of Porto, 4169-007 Porto, Portugal
| | - L Oliva-Teles
- Interdisciplinary Centre of Marine and Environmental Research - CIIMAR, University of Porto, Terminal de Cruzeiros do Porto de Leixões Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Faculty of Sciences - Biology Department, Rua do Campo Alegre s/n, University of Porto, 4169-007 Porto, Portugal
| |
Collapse
|
10
|
Elshikh MS, Hussein DS, Al-Khattaf FS, Rasheed El-Naggar RA, Almaary KS. Diclofenac removal from the wastewater using activated sludge and analysis of multidrug resistant bacteria from the sludge. ENVIRONMENTAL RESEARCH 2022; 208:112723. [PMID: 35063434 DOI: 10.1016/j.envres.2022.112723] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/04/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Diclofenac is an anti-inflammatory drug and has been frequently detected from the wastewater. In the present study, factors affecting diclofenac adsorption on sewage sludge was evaluated. At 1 mg/L initial diclofenac concentration, more than 80% diclofenac removal was achieved. Adsorption increased at higher concentration (100 mg/L concentration) and more than 99% diclofenac was adsorbed from the wastewater. Significant removal of diclofenac was observed after 5 min contact time. The adsorption efficacy was more than 98% after 50 and 60 min. Pseudo-first and second order kinetics revealed reasonable regression value (0.9) indicated that the model is best fitted. Diclofenac adsorption was extremely high at acidic pHs than alkaline range. The sludge samples showed the presence of multi drug resistant bacteria. Vancomycin-resistant enterococcus stains were 27%, Methicillin-resistant Staphylococcus aureus positive strains were 16.5% and Extended-spectrum betal-lactamase-harbouring Enterobacteriacea were 65.4% in the sludge. The drug resistance Enterobacteriaceae revealed 14 Klebsiella pneumonia strains, 11 strains from E. coli and two from the genus Enterobacter. To conclude, the activated sludge could be effectively utilized for the removal of diclofenac from wastewater.
Collapse
Affiliation(s)
- Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia.
| | - Dina S Hussein
- Department of Chemistry, College of Sciences and Health, Cleveland State University, Cleveland, USA
| | - Fatimah S Al-Khattaf
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Rabab Ahmed Rasheed El-Naggar
- Department of Histology and Cell Biology, Faculty of Medicine, King Salman International University, South Sinai, Egypt
| | - Khalid S Almaary
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
11
|
Yang J, Duan A, Wang D, Yang X, Liu X, Yang G, Yang Q. Evaluating the effect of diclofenac on hydrogen production by anaerobic fermentation of waste activated sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 308:114641. [PMID: 35131705 DOI: 10.1016/j.jenvman.2022.114641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/22/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Hydrogen production from waste-activated sludge (WAS) anaerobic fermentation is considered to be an effective method of resource recovery. However, the presence of a large number of complex organic compounds in sludge will affect the biological hydrogen production process. As an extensively applied prevalent anti-inflammatory drug, diclofenac (DCF) is inevitably released into the environment. However, the effect of diclofenac on hydrogen production from WAS anaerobic fermentation has not been fully investigated. This work therefore aims to comprehensively investigate the removal efficiency of DCF in mesophilic anaerobic fermentation of WAS and its effect on hydrogen yield. Experiment results showed that 32.5%-38.3% of DCF was degraded in the fermentation process when DCF concentration was ranged from 6 to 100 mg/kg TSS (total suspended solids). DCF at environmental level inhibited hydrogen production, the maximal hydrogen yield decreased from 24.2 to 15.3 mL/g VSS (volatile suspended solids) with an increase of DCF addition from 6 to 100 mg/kg TSS. This is because the presence of DCF caused inhibitions to acetogenesis and acidogenesis, the processes responsible for hydrogen production, probably due to that the polar groups of DCF (i.e., carboxyl group) could readily bind to active sites of [FeFe]- Hydrogenase. Besides, the microbial analysis revealed that DCF increased the microbial diversity but had few influences on the microbial structure.
Collapse
Affiliation(s)
- Jingnan Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Abing Duan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Xianli Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Xuran Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Guojing Yang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, PR China
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| |
Collapse
|
12
|
Baquero ES, Rodríguez DC, Peñuela GA. Individual and synergic effect of carbamazepine and diclofenac in the removal of organic matter from an expanded granular bed anaerobic reactor. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:1620-1635. [PMID: 35290235 DOI: 10.2166/wst.2022.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Due to the negative effects caused to the natural environment by the presence of pharmaceutical-type traces and other pollutants in wastewater, it is necessary to develop and optimize efficient treatment systems. This study evaluated the effect of carbamazepine (CBZ) and diclofenac (DCF) on the behavior of seven EGSB (expanded granular sludge bed) anaerobic reactors at laboratory scale, using chromatographic and physicochemical analyses of the influent, effluent, and the biomass contained in the reactors. The results showed that CBZ had a greater effect on the removal and behavior of microorganisms than DCF, with average efficiencies of 34.04 ± 18.58%, 20.76 ± 8.51% and 16.29 ± 11.08% during stage II, III and IV, respectively, for CBZ, and 92.37 ± 12.74%, 26.77 ± 5.90% and 22.28 ± 9.60% during stage II, III and IV, respectively, for DCF. Additionally, it was found that the interaction of the co-substrate used (sodium acetate) in conjunction with the pharmaceutical compounds decreased the efficiency of the system in terms of the removal of analytes.
Collapse
Affiliation(s)
- Eva Sandrith Baquero
- Pollution Diagnostics and Control Group (GDCON), School of the Environment, Faculty of Engineering, University Research Campus (SIU), University of Antioquia (UdeA), Calle 70 No. 52-21, Medellin, Colombia E-mail:
| | - Diana C Rodríguez
- Pollution Diagnostics and Control Group (GDCON), School of the Environment, Faculty of Engineering, University Research Campus (SIU), University of Antioquia (UdeA), Calle 70 No. 52-21, Medellin, Colombia E-mail:
| | - Gustavo A Peñuela
- Pollution Diagnostics and Control Group (GDCON), School of the Environment, Faculty of Engineering, University Research Campus (SIU), University of Antioquia (UdeA), Calle 70 No. 52-21, Medellin, Colombia E-mail:
| |
Collapse
|
13
|
Kolakovic S, Salgado R, Freitas EB, Bronze MR, Sekulic MT, Carvalho G, Reis MAM, Oehmen A. Diclofenac biotransformation in the enhanced biological phosphorus removal process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151232. [PMID: 34715209 DOI: 10.1016/j.scitotenv.2021.151232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/04/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Diclofenac is a pharmaceutical active compound frequently detected in wastewater and water bodies, and often reported to be persistent and difficult to biodegrade. While many previous studies have focussed on assessing diclofenac biodegradation in nitrification and denitrification processes, this study focusses on diclofenac biodegradation in the enhanced biological phosphorus removal (EBPR) process, where the efficiency of this process for diclofenac biodegradation as well as the metabolites generated are not well understood. An enrichment of Accumulibacter polyphosphate accumulating organisms (PAOs) was operated in an SBR for over 300 d, and acclimatized to 20 μg/L of diclofenac, which is in a similar range to that observed in domestic wastewater influents. The diclofenac biotransformation was monitored in four periods of stable operation and linked to the microbial community and metabolic behaviour in each period. Nitrification was observed in two of the four periods despite the addition of a nitrification inhibitor, and these periods were positively correlated with increased diclofenac biodegradation. Interestingly, in two periods with excellent phosphorus removal (>99%) and no nitrification, different levels of diclofenac biotransformation were observed. Period 2, enriched in Accumulibacter Type II achieved more significant diclofenac biotransformation (3.4 μg/gX), while period 4, enriched in Accumulibacter Type I achieved lower diclofenac biotransformation (0.4 μg/gX). In total, 23 transformation products were identified, with lower toxicity than the parent compound, enabling the elucidation of multiple metabolic pathways for diclofenac biotransformation. This study showed that PAOs can contribute to diclofenac biotransformation, yielding less toxic transformation products, and can complement the biodegradation carried out by other organisms in activated sludge, particularly nitrifiers.
Collapse
Affiliation(s)
- Srdana Kolakovic
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; University of Novi Sad, Faculty of Technical Sciences, 21000 Novi Sad, Serbia
| | - Ricardo Salgado
- LAQV, REQUIMTE, Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; ESTS-IPS-CINEA, Escola Superior de Tecnologia de Setúbal do Instituto Politécnico de Setúbal, Rua Vale de Chaves, Campus do IPS, Estefanilha, 2910-761 Setúbal, Portugal
| | - Elisabete B Freitas
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Maria R Bronze
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal; Faculdade de Farmácia da Universidade de Lisboa, Lisboa, Portugal
| | - Maja Turk Sekulic
- University of Novi Sad, Faculty of Technical Sciences, 21000 Novi Sad, Serbia
| | - Gilda Carvalho
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Maria A M Reis
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Adrian Oehmen
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; School of Chemical Engineering, The University of Queensland, St Lucia, Queensland 4072, Australia.
| |
Collapse
|
14
|
Cuprys A, Thomson P, Suresh G, Roussi T, Brar SK, Drogui P. Potential of agro-industrial produced laccase to remove ciprofloxacin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:10112-10121. [PMID: 34510355 DOI: 10.1007/s11356-021-13578-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 03/17/2021] [Indexed: 06/13/2023]
Abstract
Ciprofloxacin (CIP), a widely used antibiotic, is frequently detected in the environment due to insufficient wastewater and water treatment. Hence, novel, green and cost-effective technologies are required to enhance the removal of these pollutants. The potency of crude enzymes, especially laccases, produced by white-rot fungi was tested to assess their effectiveness to degrade CIP from water. Crude laccase alone could not oxidize CIP. The addition of syringaldehyde, a redox mediator, resulted in a decrease in antibiotic concentration up to 68.09±0.12% in 24 h, which was the highest removal efficiency achieved with 0.15 mg/mL syringaldehyde and 2 mg/mL of crude laccase (0.1 U/ml). Crude laccase oxidation of CIP was inhibited after 6 h of treatment. To compare, a pure enzyme with the same activity as the crude one removed 86% of CIP in 24 h. No inhibitory effect during the treatment was observed. The estimation of antimicrobial efficiency revealed that after 6 h of treatment, the toxicity towards Escherichia coli decreased by 30%. The wastewater treatment by the crude laccase-mediated system was estimated to significantly reduce the cost of enzymatic treatment.
Collapse
Affiliation(s)
- Agnieszka Cuprys
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, G1K 9A9, Canada
- Norwegian University of Life Sciences, Elizabeth Stephansens vei 15, 1430, Ås, Norway
| | - Paisley Thomson
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, G1K 9A9, Canada
| | - Gayatri Suresh
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, G1K 9A9, Canada
| | - Tarek Roussi
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, G1K 9A9, Canada
- Laurentian University, 935 Ramsey Lake Rd, Sudbury, ON, P3E 2C6, Canada
| | - Satinder Kaur Brar
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, G1K 9A9, Canada.
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, M3J 1P3, Canada.
| | - Patrick Drogui
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, G1K 9A9, Canada
| |
Collapse
|
15
|
A review on environmental occurrence, toxicity and microbial degradation of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113694. [PMID: 34537557 DOI: 10.1016/j.jenvman.2021.113694] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/19/2021] [Accepted: 09/04/2021] [Indexed: 02/05/2023]
Abstract
In recent years, Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) have surfaced as a novel class of pollutants due to their incomplete degradation in wastewater treatment plants and their inherent ability to promote physiological predicaments in humans even at low doses. The occurrence of the most common NSAIDs (diclofenac, ibuprofen, naproxen, and ketoprofen) in river water, groundwater, finished water samples, WWTPs, and hospital wastewater effluents along with their toxicity effects were reviewed. The typical concentrations of NSAIDs in natural waters were mostly below 1 μg/L, the rivers receiving untreated wastewater discharge have often showed higher concentrations, highlighting the importance of effective wastewater treatment. The critical analysis of potential, pathways and mechanisms of microbial degradation of NSAIDs were also done. Although studies on algal and fungal strains were limited, several bacterial strains were known to degrade NSAIDs. This microbial ability is attributed to hydroxylation by cytochrome P450 because of the decrease in drug concentrations in fungal cultures of Phanerochaete sordida YK-624 on incubation with 1-aminobenzotriazole. Moreover, processes like decarboxylation, dehydrogenation, dechlorination, subsequent oxidation, demethylation, etc. also constitute the degradation pathways. A wide array of enzymes like dehydrogenase, oxidoreductase, dioxygenase, monooxygenase, decarboxylase, and many more are upregulated during the degradation process, which indicates the possibility of their involvement in microbial degradation. Specific hindrances in upscaling the process along with analytical research needs were also identified, and novel investigative approaches for future monitoring studies are proposed.
Collapse
|
16
|
Kasonga TK, Coetzee MAA, Kamika I, Momba MNB. Assessing the Fungal Simultaneous Removal Efficiency of Carbamazepine, Diclofenac and Ibuprofen in Aquatic Environment. Front Microbiol 2021; 12:755972. [PMID: 34966363 PMCID: PMC8710540 DOI: 10.3389/fmicb.2021.755972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Unused pharmaceutical compounds (PhCs) discharged into the aquatic environment have been regarded as emerging pollutants due to potential harmful effects on humans and the environment. Microbial bioremediation is considered as a viable option for their removal from wastewater. The aim of this study was to assess the simultaneous removal of carbamazepine (CBZ), diclofenac (DCF) and ibuprofen (IBP) by previously isolated fungi (Aspergillus niger, Mucor circinelloides, Trichoderma longibrachiatum, Trametes polyzona, and Rhizopus microsporus). The tolerance to PhCs was conducted by tracking the fungal mycelium mat diameters in solid media and its dry biomass in liquid media, at the drug concentration range of 0.1 to 15 mg/L. The fungal enzymatic activities were determined for lignin peroxidase (LiP), manganese peroxidase (MnP) and laccase (Lac), respectively. The PhC removal efficiency of the fungi was assessed in aerated batch flasks and the drug concentrations and intermediate compounds formation were determined by using SPE-UPLC/MS. A tolerance over 70% was recorded for all the fungi at drug concentration of 0.1 mg/L. Manganese peroxidase was produced by all the fungi with very low amount of LiP, while all the enzymes were produced by T. polyzona. The pH of 4.3, temperature 37 ± 1.5°C and incubation time of 6 days were the optimum parameters for the fungal enzymatic activities. The best removal of CBZ (87%) was achieved by R. microsporus after 10 days. Between 78 and 100% removal of DCF was observed by all the fungi after 24 h, while 98% of IBP was removed after 2 days by M. circinelloides. Only a few intermediate compounds were identified after 3 days and disappeared after 10 days of incubation. This study demonstrated that apart from the basidiomycetes, the ascomycetes and zygomycetes are also producers of ligninolytic enzymes and have the ability to biodegrade emerging pollutants such as PhCs.
Collapse
Affiliation(s)
- Teddy K. Kasonga
- Department of Environmental, Water and Earth Sciences, Faculty of Sciences, Tshwane University of Technology, Pretoria, South Africa
| | - Martie A. A. Coetzee
- Department of Environmental, Water and Earth Sciences, Faculty of Sciences, Tshwane University of Technology, Pretoria, South Africa
| | - Ilunga Kamika
- Institute for Nanotechnology and Water Sustainability, School of Science, College of Science, Engineering and Technology, University of South Africa, Roodepoort, South Africa
| | - Maggy N. B. Momba
- Department of Environmental, Water and Earth Sciences, Faculty of Sciences, Tshwane University of Technology, Pretoria, South Africa
| |
Collapse
|
17
|
Hasan M, Alfredo K, Murthy S, Riffat R. Biodegradation of salicylic acid, acetaminophen and ibuprofen by bacteria collected from a full-scale drinking water biofilter. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 295:113071. [PMID: 34174686 DOI: 10.1016/j.jenvman.2021.113071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/24/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
This study examined the biodegradation of two pharmaceuticals-acetaminophen, and ibuprofen, and one natural organic surrogate-salicylic acid, by bacteria seeded from backwash water collected from a full-scale biofiltration plant. The degradation was studied in the presence of oxygen. Complete removal of salicylic acid was observed in 27-66 h depending on the seasonality of the collected backwash water, while 90-92% acetaminophen removal was observed in more than 225 h. Ibuprofen demonstrated poor removal efficiencies with only 50% biodegradation after 230 h. Adenosine tri phosphate (ATP) in the reactor was found to be linked with the biodegradation rate. ATP was found to be correlated with oxygen uptake rate (OUR). ATP also had a correlation with each of extracellular polymeric substances (EPS), protein and polysaccharides. These results highlight the potential for increasing the biodegradation rates to achieve enhanced contaminant removal.
Collapse
Affiliation(s)
- Mahmudul Hasan
- Department of Civil & Environmental Engineering, The George Washington University, 800 22nd Street, NW, Washington, DC, 20052, USA.
| | - Katherine Alfredo
- Department of Civil & Environmental Engineering, University of South Florida, 4202 E. Fowler Ave, Tampa, FL, 33620, USA
| | | | - Rumana Riffat
- Department of Civil & Environmental Engineering, The George Washington University, 800 22nd Street, NW, Washington, DC, 20052, USA
| |
Collapse
|
18
|
Do initial concentration and activated sludge seasonality affect pharmaceutical biotransformation rate constants? Appl Microbiol Biotechnol 2021; 105:6515-6527. [PMID: 34423412 PMCID: PMC8403117 DOI: 10.1007/s00253-021-11475-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 06/09/2021] [Accepted: 07/15/2021] [Indexed: 10/29/2022]
Abstract
Pharmaceuticals find their way to the aquatic environment via wastewater treatment plants (WWTPs). Biotransformation plays an important role in mitigating environmental risks; however, a mechanistic understanding of involved processes is limited. The aim of this study was to evaluate potential relationships between first-order biotransformation rate constants (kb) of nine pharmaceuticals and initial concentration of the selected compounds, and sampling season of the used activated sludge inocula. Four-day bottle experiments were performed with activated sludge from WWTP Groesbeek (The Netherlands) of two different seasons, summer and winter, spiked with two environmentally relevant concentrations (3 and 30 nM) of pharmaceuticals. Concentrations of the compounds were measured by LC-MS/MS, microbial community composition was assessed by 16S rRNA gene amplicon sequencing, and kb values were calculated. The biodegradable pharmaceuticals were acetaminophen, metformin, metoprolol, terbutaline, and phenazone (ranked from high to low biotransformation rates). Carbamazepine, diatrizoic acid, diclofenac, and fluoxetine were not converted. Summer and winter inocula did not show significant differences in microbial community composition, but resulted in a slightly different kb for some pharmaceuticals. Likely microbial activity was responsible instead of community composition. In the same inoculum, different kb values were measured, depending on initial concentration. In general, biodegradable compounds had a higher kb when the initial concentration was higher. This demonstrates that Michealis-Menten kinetic theory has shortcomings for some pharmaceuticals at low, environmentally relevant concentrations and that the pharmaceutical concentration should be taken into account when measuring the kb in order to reliably predict the fate of pharmaceuticals in the WWTP. KEY POINTS: • Biotransformation and sorption of pharmaceuticals were assessed in activated sludge. • Higher initial concentrations resulted in higher biotransformation rate constants for biodegradable pharmaceuticals. • Summer and winter inocula produced slightly different biotransformation rate constants although microbial community composition did not significantly change.
Collapse
|
19
|
Ávila C, García-Galán MJ, Uggetti E, Montemurro N, García-Vara M, Pérez S, García J, Postigo C. Boosting pharmaceutical removal through aeration in constructed wetlands. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125231. [PMID: 33550125 DOI: 10.1016/j.jhazmat.2021.125231] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/11/2021] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
This work evaluated the removal efficiency of 13 wastewater-borne pharmaceuticals in a pilot constructed wetland (CW) operated under different aeration strategies (no aeration, intermittent and continuous). Aeration improved the removal of conventional wastewater parameters and the targeted micropollutants, compared to the non-aerated treatment. Reduction of chemical oxygen demand (COD) and total nitrogen (TN) was slightly higher applying intermittent aeration than applying continuous aeration, the opposite was observed for the investigated pharmaceuticals. Seven targeted compounds were found in influent wastewater, and five of them (acetaminophen, diclofenac, ketoprofen, bezafibrate and gemfibrozil) were efficiently removed (> 83%) in the aerated systems. The overall risk of the investigated samples against aquatic ecosystems was moderate, decreasing in the order influent > no aeration > intermittent aeration > continuous aeration, based on the hazard quotient approach. Lorazepam, diclofenac and ketoprofen were the pharmaceuticals that could contribute the most to this potential environmental impact of the CW effluents after discharge. To the authors' knowledge this is the first sound study on the removal and fate of ketoprofen, bezafibrate, and lorazepam in aerated CWs, and provides additional evidence on the removal and fate of acetaminophen, diclofenac, gemfibrozil, and carbamazepine in this type of bioremediation systems at pilot plant scale.
Collapse
Affiliation(s)
- Cristina Ávila
- AIMEN Technology Center, c/ Relva, 27A - Torneiros, Pontevedra, 36410 Porriño, Spain; ICRA, Catalan Institute for Water Research, Scientific and Technological Park of the University of Girona, Emili Grahit, 101, E-17003 Girona, Spain; Universitat de Girona, E-17003 Girona, Spain
| | - María Jesús García-Galán
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain
| | - Enrica Uggetti
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain.
| | - Nicola Montemurro
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, Barcelona 08034, Spain
| | - Manuel García-Vara
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, Barcelona 08034, Spain
| | - Sandra Pérez
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, Barcelona 08034, Spain
| | - Joan García
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain
| | - Cristina Postigo
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, Barcelona 08034, Spain
| |
Collapse
|
20
|
Gil-Izquierdo A, Pedreño MA, Montoro-García S, Tárraga-Martínez M, Iglesias P, Ferreres F, Barceló D, Núñez-Delicado E, Gabaldón JA. A sustainable approach by using microalgae to minimize the eutrophication process of Mar Menor lagoon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143613. [PMID: 33218814 DOI: 10.1016/j.scitotenv.2020.143613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/23/2020] [Accepted: 11/07/2020] [Indexed: 06/11/2023]
Abstract
The present study evaluates the removal capacity of microalgae photobioreactors of environmental pollutants present in wastewater from the dry riverbed El Albujón, as a way to minimize the eutrophication process of the Mar Menor. Particularly, the capacity of four autochthonous microalgae consortia collected from different locations of the salty lagoon to remove emerging contaminants (simazine, atrazine, terbuthylazine, adenosine and ibuprofen), nitrates, and phosphates, was evaluated. Among the four microalgae consortia, consortium 1 was the best in terms of biomass productivity (0.11 g L-1 d-1) and specific growth rate (0.14 d-1), providing 100% removal of emerging contaminants (simazine, atrazine, terbuthylazine, adenosine and ibuprofen), and a maximal reduction and consumption of macronutrients, especially nitrates and phosphates, reaching levels below 28 mg L-1, that is, a decrease of 89.90 and 99.70% of nitrates and phosphates, respectively. Therefore, this consortium (Monoraphidium sp., Desmodesmus subspicatus, Nannochloris sp.) could be selected as a green filter for successful large-scale applications. This study is the first one that combines the successful removal of herbicides, ibuprofen and adenosine as emerging contaminants, and nitrate removal.
Collapse
Affiliation(s)
- A Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo - Edif. 25, E-30100 Espinardo, Spain
| | - M A Pedreño
- Departamento de Biología Vegetal, Facultad de Biología, Universidad de Murcia, Campus de Espinardo, E-30100 Murcia, Spain
| | - S Montoro-García
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences Department, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos 135, Guadalupe E-30107, Spain
| | - M Tárraga-Martínez
- Buggypower S.L, Miguel Hernández, 16, San Pedro del Pinatar, E-307040 Murcia, Spain
| | - P Iglesias
- Buggypower S.L, Miguel Hernández, 16, San Pedro del Pinatar, E-307040 Murcia, Spain
| | - F Ferreres
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences Department, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos 135, Guadalupe E-30107, Spain
| | - D Barceló
- Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, C/Jordi Girona 18-26, 08034 Barcelona, Spain
| | - E Núñez-Delicado
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences Department, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos 135, Guadalupe E-30107, Spain
| | - J A Gabaldón
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences Department, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos 135, Guadalupe E-30107, Spain.
| |
Collapse
|
21
|
Martínez-Alcalá I, Guillén-Navarro JM, Lahora A. Occurrence and fate of pharmaceuticals in a wastewater treatment plant from southeast of Spain and risk assessment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 279:111565. [PMID: 33160743 DOI: 10.1016/j.jenvman.2020.111565] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/15/2020] [Accepted: 10/21/2020] [Indexed: 05/08/2023]
Abstract
Pharmaceutical and personal care products (PPCPs) can be incorporated into ecosystems and pose potential environmental and health hazards. These pollutants are becoming omnipresent in the environment because they are introduced by several sources, being particularly important the contribution of human-derived pharmaceuticals. The presence of PPCPs in waters has received increasing attention in recent years, resulting in great concern regarding their occurrence, transformation, fate and environmental risk. For that reason, the pharmaceuticals carbamazepine (CBZ), diclofenac (DIC), ibuprofen (IBU), ketoprofen (KET) and naproxen (NPX) were measured in the waters and sludge of several parts of a double step activated sludge wastewater treatment plant (WWTP) from Murcia (Spain). With these results, the biological degradation constant, the sorption coefficient and the pharmaceutical removal were calculated. Possible risks to humans and ecosystems were also evaluated. These showed good degradation of IBU and NPX (74.4 and 84.9%, respectively), while CBZ didn't display any degradation. DIC was the compound most likely to be sorbed into the sludge (3.09 L kg-1). The PPCPs removal in this double stage WWTP was compared to a previous data obtained in a WWTP of the same region with an activated sludge (single biological batch reactor). The results showed a decrease in the removal of the double stage plant, probably due to the lower hydraulic retention time employed. The study of the human and ecological risk quotients indicates a low risk of the selected pharmaceuticals (RQ < 0.1).
Collapse
Affiliation(s)
- Isabel Martínez-Alcalá
- Department of Civil Engineering, Catholic University of Murcia (UCAM), Av. de los Jerónimos, 135, 30107, Guadalupe, Murcia, Spain.
| | - José Manuel Guillén-Navarro
- Department of Civil Engineering, Catholic University of Murcia (UCAM), Av. de los Jerónimos, 135, 30107, Guadalupe, Murcia, Spain
| | - Agustin Lahora
- Regional Entity for Sanitation and Wastewater Treatment in the Region of Murcia (ESAMUR), C. Santiago Navarro, 4, 30100, Espinardo, Murcia, Spain
| |
Collapse
|
22
|
Kasonga TK, Coetzee MAA, Kamika I, Ngole-Jeme VM, Benteke Momba MN. Endocrine-disruptive chemicals as contaminants of emerging concern in wastewater and surface water: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 277:111485. [PMID: 33049614 DOI: 10.1016/j.jenvman.2020.111485] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/07/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
Population growth followed by rapid development of industrialisation has caused serious environmental pollution with contaminants of emerging concern found in wastewater and surface water. As one of the most important resources for human survival, water is daily polluted by endocrine-disruptive chemicals (EDCs) including pharmaceuticals and personal care products, organic pollutants and heavy metals. Even at low concentrations in water bodies, chronic exposure to EDCs can cause adverse effects on human and environment health. The main concern with EDCs is the diseases they can generate in humans or wildlife by affecting the function of hormones in the body. Problems in the reproductive system, thyroid problems, Alzheimer's, cancer and obesity are some of the major effects of EDCs in humans. In wildlife, the reproductive system may be affected, including its levels of hatchability and vitellogenin. The efforts of the present review are on emphasising on the environmental concern on the occurrence and risk assessment of EDCs, their harmful effects in the ecosystem, human life, and wildlife, as a result of their incomplete removal from wastewater treatment plants. The review focuses on studies conducted in South Africa highlights the use of fungal bioreactors as a low-cost and eco-effective environmentally friendly wastewater treatment processes.
Collapse
Affiliation(s)
- Teddy Kabeya Kasonga
- Department of Environmental Sciences, School of Environmental Science, College of Agriculture and Environmental Sciences, Faculty of Sciences, Florida Campus, University of South Africa, Florida, Roodepoort, 1710, South Africa.
| | - Martie A A Coetzee
- Department of Environmental, Water and Earth Sciences, Faculty of Sciences, Tshwane University of Technology, P/B X 680, Pretoria, 0001, South Africa
| | - Ilunga Kamika
- Nanotechnology and Water Sustainability Research Unit; School of Science; College of Science, Engineering and Technology, Florida Campus, University of South Africa, P.O Box 392, Florida, Roodepoort, 1710, South Africa
| | - Veronica M Ngole-Jeme
- Department of Environmental Sciences, School of Environmental Science, College of Agriculture and Environmental Sciences, Faculty of Sciences, Florida Campus, University of South Africa, Florida, Roodepoort, 1710, South Africa
| | - Maggy Ndombo Benteke Momba
- Department of Environmental, Water and Earth Sciences, Faculty of Sciences, Tshwane University of Technology, P/B X 680, Pretoria, 0001, South Africa
| |
Collapse
|
23
|
Kodešová R, Chroňáková A, Grabicová K, Kočárek M, Schmidtová Z, Frková Z, Vojs Staňová A, Nikodem A, Klement A, Fér M, Grabic R. How microbial community composition, sorption and simultaneous application of six pharmaceuticals affect their dissipation in soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:141134. [PMID: 32768780 DOI: 10.1016/j.scitotenv.2020.141134] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 05/12/2023]
Abstract
Pharmaceuticals may enter soils due to the application of treated wastewater or biosolids. Their leakage from soils towards the groundwater, and their uptake by plants is largely controlled by sorption and degradation of those compounds in soils. Standard laboratory batch degradation and sorption experiments were performed using soil samples obtained from the top horizons of seven different soil types and 6 pharmaceuticals (carbamazepine, irbesartan, fexofenadine, clindamycin and sulfamethoxazole), which were applied either as single-solute solutions or as mixtures (not for sorption). The highest dissipation half-lives were observed for citalopram (average DT50,S for a single compound of 152 ± 53.5 days) followed by carbamazepine (106.0 ± 17.5 days), irbesartan (24.4 ± 3.5 days), fexofenadine (23.5 ± 20.9 days), clindamycin (10.8 ± 4.2 days) and sulfamethoxazole (9.6 ± 2.0 days). The simultaneous application of all compounds increased the half-lives (DT50,M) of all compounds (particularly carbamazepine, citalopram, fexofenadine and irbesartan), which is likely explained by the negative impact of antibiotics (sulfamethoxazole and clindamycin) on soil microbial community. However, this trend was not consistent in all soils. In several cases, the DT50,S values were even higher than the DT50,M values. Principal component analyses showed that while knowledge of basic soil properties determines grouping of soils according sorption behavior, knowledge of the microbial community structure could be used to group soils according to the dissipation behavior of tested compounds in these soils. The derived multiple linear regression models for estimating dissipation half-lives (DT50,S) for citalopram, clindamycin, fexofenadine, irbesartan and sulfamethoxazole always included at least one microbial factor (either amount of phosphorus in microbial biomass or microbial biomarkers derived from phospholipid fatty acids) that deceased half-lives (i.e., enhanced dissipations). Equations for citalopram, clindamycin, fexofenadine and sulfamethoxazole included the Freundlich sorption coefficient, which likely increased half-lives (i.e., prolonged dissipations).
Collapse
Affiliation(s)
- Radka Kodešová
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Dept. of Soil Science and Soil Protection, Kamýcká 129, CZ-16500 Prague 6, Czech Republic.
| | - Alica Chroňáková
- Institute of Soil Biology, Biology Centre CAS, Na Sádkách 7, CZ-37005 České Budějovice, Czech Republic
| | - Kateřina Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-38925 Vodňany, Czech Republic
| | - Martin Kočárek
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Dept. of Soil Science and Soil Protection, Kamýcká 129, CZ-16500 Prague 6, Czech Republic
| | - Zuzana Schmidtová
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Dept. of Soil Science and Soil Protection, Kamýcká 129, CZ-16500 Prague 6, Czech Republic
| | - Zuzana Frková
- Institute of Soil Biology, Biology Centre CAS, Na Sádkách 7, CZ-37005 České Budějovice, Czech Republic; University of Luxembourg, Faculty of Science, Technology and Communication, 6, rue Richard Coudenhove-Kalergi, L-1359, Luxembourg
| | - Andrea Vojs Staňová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-38925 Vodňany, Czech Republic; Comenius University in Bratislava, Faculty of Natural Sciences, Department of Analytical Chemistry, Ilkovičova 6, SK-84215 Bratislava, Slovak Republic
| | - Antonín Nikodem
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Dept. of Soil Science and Soil Protection, Kamýcká 129, CZ-16500 Prague 6, Czech Republic
| | - Aleš Klement
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Dept. of Soil Science and Soil Protection, Kamýcká 129, CZ-16500 Prague 6, Czech Republic
| | - Miroslav Fér
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Dept. of Soil Science and Soil Protection, Kamýcká 129, CZ-16500 Prague 6, Czech Republic
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-38925 Vodňany, Czech Republic
| |
Collapse
|
24
|
Silva M, Feijão E, da Cruz de Carvalho R, Duarte IA, Matos AR, Cabrita MT, Barreiro A, Lemos MFL, Novais SC, Marques JC, Caçador I, Reis-Santos P, Fonseca VF, Duarte B. Comfortably numb: Ecotoxicity of the non-steroidal anti-inflammatory drug ibuprofen on Phaeodactylum tricornutum. MARINE ENVIRONMENTAL RESEARCH 2020; 161:105109. [PMID: 32871462 DOI: 10.1016/j.marenvres.2020.105109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/28/2020] [Accepted: 08/05/2020] [Indexed: 06/11/2023]
Abstract
Emerging pollutants such as pharmaceuticals are continuously released to aquatic environments posing a rising threat to marine ecosystems. Yet, monitoring routines and ecotoxicity data on biota worldwide for these substances are lacking. Non-steroidal anti-inflammatory drugs are among the most prescribed and found pharmaceuticals in aquatic environments. The toxicity effects of environmentally relevant concentrations of ibuprofen on primary productivity, oxidative stress and lipid metabolism of the diatom Phaeodactylum tricornutum were assessed. Diatom cultures were exposed to 0, 0.8, 3, 40, 100 and 300 μg L-1 ibuprofen concentrations, usually found in the vicinity of wastewater treatment plants and coastal environments. Higher concentrations (100 and 300 μg L-1) had a negative impact in P. triconutum growth, inhibiting the chloroplastic energy transduction in the electron transport chain resulting in lower energy reaching the PS I (r2 = -0.55, p < 0.05). In contrast, the mitochondrial electron transport and available energy increased (r2 = 0.68 and r2 = 0.85, p < 0.05 respectively), mostly due to enhancements in lipid and protein contents as opposed to reduction of carbohydrates. A general up-regulation of the antioxidant enzymes could contributed to alleviate oxidative stress resulting in the decrease of lipid peroxidation products (r2 = 0.77, p < 0.05). Canonical analysis of principal components was performed and successfully discriminated exposure groups, with optical data excelling in classifying samples to different ibuprofen concentrations, being potentially used as environmental indicators. Finally, the identified mild to severe effects of ibuprofen on diatoms are likely to be exacerbated by the sustained use of this drug worldwide, underpinning the urgency of evaluating the impacts of this pharmaceutical on coastal and marine trophic webs.
Collapse
Affiliation(s)
- Marisa Silva
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal.
| | - Eduardo Feijão
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| | - Ricardo da Cruz de Carvalho
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| | - Irina A Duarte
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| | - Ana Rita Matos
- BioISI - Biosystems and Integrative Sciences Institute, Plant Functional Genomics Group, Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Maria Teresa Cabrita
- Centro de Estudos Geográficos (CEG), Instituto de Geografia e Ordenamento do Território (IGOT), Universidade de Lisboa, Rua Branca Edmée Marques, 1600-276, Lisboa, Portugal
| | - Aldo Barreiro
- Interdisciplinary Center of Marine and Environmental Research-CIMAR/CIIMAR, University of Porto, Novo Edificio do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, 4450-208, S/N Matosinhos, Portugal
| | - Marco F L Lemos
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic of Leiria, Avenida do Porto de Pesca, 2520-630, Peniche, Portugal
| | - Sara C Novais
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic of Leiria, Avenida do Porto de Pesca, 2520-630, Peniche, Portugal
| | - João Carlos Marques
- MARE - Marine and Environmental Sciences Centre, c/o Department of Zoology, Faculty of Sciences and Technology, University of Coimbra, 3000, Coimbra, Portugal
| | - Isabel Caçador
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal; Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Patrick Reis-Santos
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal; Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, SA, 5005, Australia
| | - Vanessa F Fonseca
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal; Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Bernardo Duarte
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal; Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| |
Collapse
|
25
|
Farhadi N, Tabatabaie T, Ramavandi B, Amiri F. Optimization and characterization of zeolite-titanate for ibuprofen elimination by sonication/hydrogen peroxide/ultraviolet activity. ULTRASONICS SONOCHEMISTRY 2020; 67:105122. [PMID: 32276173 DOI: 10.1016/j.ultsonch.2020.105122] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
In this study, a photo-catalyst of titanium oxide was coated on zeolite by the sol-gel method. The generation of the zeolite-titanate photo-catalyst was optimized at conditions of calcination temperature (300, 350, 400 and 500 °C), calcination time (1, 2, 3, and 4 h), and titanate content (0, 2, 4, 6, and 8 mL). The catalyst was used for 'Sonication/UV/H2O2″ activity and finally, eliminating ibuprofen. Physicochemical properties of the as-built photo-catalysts for all optimized conditions were determined using FESEM-EDX-mapping, BET, FTIR, and XRD. The highest percentage of ibuprofen removal (98.9%) was obtained at conditions of zeolite to titanium ratio of 1 g: 2 mL, time in the furnace of 1 h, and temperature of the furnace of 350 °C. The optimum photo-catalytic (namely, Cat-350-1-2) had a surface area value of 39 m2/g and a crystalline size of 4.9 nm. The surface area for all photo-catalysts increased after being used for ibuprofen removal, possibly due to ultrasonic waves. The presence of Ti-O, benzene ring, O-Al-O, O-Si-O, C-H, and O-H in the photo-catalysts structure were confirmed. Growing the calcination time resulted in an increase in the crystallinity of titanium dioxide in the photo-catalysts and, ultimately a reduction in the ibuprofen removal. The consumed energy by the developed system was calculated for the presence (0.094 kJ/g) and absence (17.5 kJ/g) of the ultrasonic wave. The degradation pathway and reaction kinetic are also explored and proposed. The results showed that the ultrasonic-UV-activated H2O2-based technique can be applied as an alternative method for ibuprofen removal from aqueous media.
Collapse
Affiliation(s)
- Narges Farhadi
- Department of Environment, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| | - Taybeh Tabatabaie
- Department of Environment, Bushehr Branch, Islamic Azad University, Bushehr, Iran.
| | - Bahman Ramavandi
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Fazel Amiri
- Department of Environment, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| |
Collapse
|
26
|
Delli Compagni R, Polesel F, von Borries KJF, Zhang Z, Turolla A, Antonelli M, Vezzaro L. Modelling the fate of micropollutants in integrated urban wastewater systems: Extending the applicability to pharmaceuticals. WATER RESEARCH 2020; 184:116097. [PMID: 32911442 DOI: 10.1016/j.watres.2020.116097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
Pharmaceutical active compounds (PhACs) are a category of micropollutants frequently detected across integrated urban wastewater systems. Existing modelling tools supporting the evaluation of micropollutant fate in such complex systems, such as the IUWS_MP model library (which acronym IUWS stands for Integrated Urban Wastewater System), do not consider fate processes and fractions that are typical for PhACs. This limitation was overcome by extending the existing IUWS_MP model library with new fractions (conjugated metabolites, sequestrated fraction) and processes (consumption-excretion, deconjugation). The performance of the extended library was evaluated for five PhACs (carbamazepine, ibuprofen, diclofenac, paracetamol, furosemide) in two different integrated urban wastewater systems where measurements were available. Despite data uncertainty and the simplicity of the modelling approach, chosen to minimize data requirements, model prediction uncertainty overlapped with the measurements ranges across both systems, stressing the robustness of the proposed modelling approach. Possible applications of the extended IUWS_MP model library are presented, illustrating how this tool can support urban water managers in reducing environmental impacts from PhACs discharges.
Collapse
Affiliation(s)
- Riccardo Delli Compagni
- Department of Civil and Environment Engineering (DICA), Politecnico di Milano, Piazza Leonardo da Vinci 32, 20129, Milan, Italy.
| | - Fabio Polesel
- DTU Environment, Technical University of Denmark, Bygningstorvet, Building 115, 2800, Kongens Lyngby, Denmark; DHI A/S, Agern Allé 5, 2970, Hørsholm, Denmark
| | - Kerstin J F von Borries
- DTU Environment, Technical University of Denmark, Bygningstorvet, Building 115, 2800, Kongens Lyngby, Denmark
| | - Zhen Zhang
- DTU Environment, Technical University of Denmark, Bygningstorvet, Building 115, 2800, Kongens Lyngby, Denmark
| | - Andrea Turolla
- Department of Civil and Environment Engineering (DICA), Politecnico di Milano, Piazza Leonardo da Vinci 32, 20129, Milan, Italy
| | - Manuela Antonelli
- Department of Civil and Environment Engineering (DICA), Politecnico di Milano, Piazza Leonardo da Vinci 32, 20129, Milan, Italy.
| | - Luca Vezzaro
- DTU Environment, Technical University of Denmark, Bygningstorvet, Building 115, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
27
|
Low-Temperature Adapted Nitrifying Microbial Communities of Finnish Wastewater Treatment Systems. WATER 2020. [DOI: 10.3390/w12092450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, the microbial community of nitrifying activated sludge adapted to Finnish climate conditions was studied to clarify the microbial populations involved in low-temperature nitrification. Microbial community analysis of five full-scale wastewater treatment plants (WWTPs) showed several differences compared to WWTPs from other countries with a similar climate. In particular, very low abundance of ammonium oxidizing bacteria (AOBs) (altogether ˂ 0.25% of total community) as well as typical NOBs (˂0.35%) and a high abundance of orders Cytophagales and Micrococcales was observed in all Finnish WWTPs. To shed light on the importance of autotrophic and heterotrophic nitrifying processes, laboratory studies of activated sludge were carried out with a presence of and a lack of organic carbon in wastewater at 10 ± 1 °C. Two different sludge retention times (SRTs) were compared to determine the effect of this operational parameter on low-temperature nitrogen removal. The important role of previously reported Candidatus Nitrotogaarctica for nitrite oxidizing in cold climate conditions was confirmed in both full-scale and laboratory scale results. Additionally, potential participation of Dokdonella sp. and Flexibacter sp. in nitrogen removal at low-temperatures is proposed. Operation at SRT of 100 days demonstrated more stable and efficient nitrogen removal after a sharp temperature decrease compared to 14 days SRT.
Collapse
|
28
|
Abstract
: Diclofenac (DCF) is among the compounds that are highly resistant to biological degradation processes and have low removal efficiency in wastewater treatment plants. In the current study, DCF removal was examined by using the O3/UV/S2O8 process. All experiments were carried out in a 2-liter lab-scale semi-continuous reactor. DCF concentration was measured by HPLC analytical method. The study began with the optimization of pH, and the effects of other operating parameters, including pH, ozone concentrations, drug, persulfate, and natural organic matter (Humic acid) on the degradation were investigated. The mineralization of diclofenac was also investigated. The results showed the removal efficiency of 89% and a persulfate concentration of 200 mg/L, pH = 6, DCF = 8 mg/L, and reaction periods 30 min in the O3/UV/S2O8 process. Humic acid was selected as a scavenging compound, which decreased the removal DCF rate from 89% to 76%. So, sulfate radical-based technologies show promising results for the removal of these particular pharmaceuticals from the wastewater treatment plant.
Collapse
|
29
|
Jia Y, Yin L, Khanal SK, Zhang H, Oberoi AS, Lu H. Biotransformation of ibuprofen in biological sludge systems: Investigation of performance and mechanisms. WATER RESEARCH 2020; 170:115303. [PMID: 31751892 DOI: 10.1016/j.watres.2019.115303] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/09/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
Ibuprofen (IBU), a common non-steroidal anti-inflammatory drug (NSAID), is widely used by humans for controlling fever and pain, and is frequently detected in the influent of wastewater treatment plants and different aquatic environments. In this study, the biotransformation of IBU in activated sludge (AS), anaerobic methanogenic sludge (AnMS) and sulfate-reducing bacteria (SRB)-enriched sludge systems was investigated at three different concentrations of 100, 500 and 1000 μg/L via a series of batch and continuous studies. IBU at concentration of 100 μg/L was effectively biodegraded by AS whereas AnMS and SRB-enriched sludge were less effective in IBU biodegradation at all concentrations tested. However, at higher IBU concentrations of 500 and 1000 μg/L, AS showed poor IBU biodegradation and chemical oxygen demand (COD) removal due to inhibition of aerobic heterotrophic bacteria (i.e., Candidatus Competibacter) by IBU and/or IBU biotransformation products. The microbial analyses showed that IBU addition shifted the microbial community structure in AS, AnMS and SRB-enriched sludge systems, however, the removals of COD, nitrogen and sulfur in both anaerobic sludge systems were not affected significantly (p > 0.05). The findings of this study provided a new insight into biotransformation of IBU in three important biological sludge systems.
Collapse
Affiliation(s)
- Yanyan Jia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Shenzhen Research Institute of Sun Yat-sen University, Shenzhen, PR China
| | - Linwan Yin
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Shenzhen Research Institute of Sun Yat-sen University, Shenzhen, PR China
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, USA
| | - Huiqun Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Shenzhen Research Institute of Sun Yat-sen University, Shenzhen, PR China
| | - Akashdeep Singh Oberoi
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Shenzhen Research Institute of Sun Yat-sen University, Shenzhen, PR China
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Shenzhen Research Institute of Sun Yat-sen University, Shenzhen, PR China.
| |
Collapse
|
30
|
Bagnis S, Boxall A, Gachanja A, Fitzsimons M, Murigi M, Snape J, Tappin A, Wilkinson J, Comber S. Characterization of the Nairobi River catchment impact zone and occurrence of pharmaceuticals: Implications for an impact zone inclusive environmental risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:134925. [PMID: 31726303 DOI: 10.1016/j.scitotenv.2019.134925] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/09/2019] [Accepted: 10/09/2019] [Indexed: 05/25/2023]
Abstract
The largely uncontrolled release of active pharmaceuticals ingredients (APIs) within untreated wastewater discharged to waterbodies, associated with many rapidly urbanising centres is of growing concern owing to potential antimicrobial resistance, endocrine disruption and potential toxicity. A sampling campaign has been undertaken to assess the source, occurrence, magnitude and risk associated with APIs and other chemicals within the Nairobi/Athi river basin, in Kenya, East Africa. The catchment showed an extensive downstream impact zone estimated to extend 75 km, mostly, but not exclusively, derived from the direct discharge of untreated wastewater from the urban centre of Nairobi city. The exact extent of the downstream boundary of the Nairobi city impact zone was unclear owing to the inputs of untreated wastewater sources from the continuous urbanized areas along the river, which counteracted the natural attenuation caused by dilution and degradation. The most frequently detected APIs and chemicals were caffeine, carbamazepine, trimethoprim, nicotine, and sulfamethoxazole. Paracetamol, caffeine, sulfamethoxazole, and trimethoprim alone contributed 86% of the total amount of APIs determined along the Nairobi/Athi catchment. In addition to direct discharge of untreated domestic wastewater attributed to the informal settlements within the conurbation, other sources were linked to the industrial area in Nairobi City where drug formulation is known to occur, the Dandora landfill and veterinary medicines from upstream agriculture. It was shown that there was a possible environmental risk of API ecotoxicological effects beyond the end of the traditional impact zone defined by elevated biochemical oxygen demand concentrations; with metronidazole and sulfamethoxazole exhibiting the highest risk.
Collapse
Affiliation(s)
- Simone Bagnis
- School of Geography, Earth and Environmental Sciences, Plymouth University, Plymouth PL4 8AA, UK
| | - Alistair Boxall
- Department of Environment and Geography, University of York, Heslington, York YO10 5NG, UK
| | - Antony Gachanja
- Department of Chemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Mark Fitzsimons
- School of Geography, Earth and Environmental Sciences, Plymouth University, Plymouth PL4 8AA, UK
| | - Martin Murigi
- Department of Chemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Jason Snape
- AstraZeneca UK, Global Safety, Health and Environment, Macclesfield, UK; School of Life Sciences, Gibbet Hill Campus, The University of Warwick, Coventry CV4 7AL, UK
| | - Alan Tappin
- School of Geography, Earth and Environmental Sciences, Plymouth University, Plymouth PL4 8AA, UK
| | - John Wilkinson
- Department of Environment and Geography, University of York, Heslington, York YO10 5NG, UK
| | - Sean Comber
- School of Geography, Earth and Environmental Sciences, Plymouth University, Plymouth PL4 8AA, UK.
| |
Collapse
|
31
|
Oliveira Miranda M, Eulálio Cabral Cavalcanti W, Ivan da Silva F, Rigoti E, Rodríguez-Castellón E, Pergher SBC, Pinheiro Braga T. Photocatalytic degradation of ibuprofen using modified titanium oxide supported on CMK-3: effect of Ti content on the TiO 2 and carbon interaction. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01167c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
TiO2 nanoparticles dispersed in ordered mesoporous CMK-3 carbon with different Ti contents were successfully synthesized and their activity in the photocatalytic degradation of ibuprofen was presented.
Collapse
Affiliation(s)
- Maicon Oliveira Miranda
- Laboratório de Peneiras Moleculares
- Instituto de Química
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| | | | | | - Eduardo Rigoti
- Laboratório de Peneiras Moleculares
- Instituto de Química
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| | - Enrique Rodríguez-Castellón
- Departamento de Química Inorgánica
- Cristalografía y Mineralogía
- Facultad de Ciencias
- Universidad de Málaga
- Málaga
| | - Sibele B. C. Pergher
- Laboratório de Peneiras Moleculares
- Instituto de Química
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| | - Tiago Pinheiro Braga
- Laboratório de Peneiras Moleculares
- Instituto de Química
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| |
Collapse
|
32
|
Wang S, Hu Y, Wang J. Strategy of combining radiation with ferrate oxidation for enhancing the degradation and mineralization of carbamazepine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 687:1028-1033. [PMID: 31412440 DOI: 10.1016/j.scitotenv.2019.06.189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/21/2019] [Accepted: 06/12/2019] [Indexed: 06/10/2023]
Abstract
In this study, the strategy of combining radiation with ferrate oxidation was proposed to decrease the adsorbed dosse and enhance the mineralization of carbamazepine in aqueous solution. Compared to single radiation (800 Gy), the combined process of ferrate pretreatment and radiation required lower dose (600 Gy) for totally removing carbamazepine. During the combined process, the removal efficiency of total organic carbon (TOC) reached 22.2%. However, the removal efficiencies of carbamazepine and TOC decreased when ferrate and radiation were used simultaneously, indicating that the addition of ferrate during the radiation process had negative effect on the removal of carbamazepine. In contrast, the radiation followed by ferrate oxidation presented the best performance in decreasing the absorbed dose and enhancing the mineralization of carbamazepine. Carbamazepine could be completely removed under all conditions. TOC removal efficiency reached 18.3%, 31.3%, 52.9% and 60.6%, respectively, at the adsorbed dose of 100, 300, 600 and 800 Gy when 0.4 mM ferrate was adopted. The enhanced TOC removal could be due to the enhanced oxidation capacity of ferrate caused by the pH decrease at the end of radiation and the further oxidation of intermediate products formed during the radiation process by ferrate. Seven degradation products were identified in total, and thus the degradation pathway of carbamazepine was proposed. This study provides a possible way to decrease the adsorbed dose and enhance the mineralization of carbamazepine by radiation.
Collapse
Affiliation(s)
- Shizong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China; State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, PR China
| | - Yuming Hu
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China; State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
33
|
Kasonga TK, Coetzee MAA, Van Zijl C, Momba MNB. Removal of pharmaceutical' estrogenic activity of sequencing batch reactor effluents assessed in the T47D-KBluc reporter gene assay. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 240:209-218. [PMID: 30939401 DOI: 10.1016/j.jenvman.2019.03.113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/24/2019] [Accepted: 03/25/2019] [Indexed: 06/09/2023]
Abstract
Various water treatment processes may be ineffective to remove pharmaceutical compounds (PhCs) and their by-products, leading to endocrine-disruptive activity that might be detrimental to wildlife and human health. This study investigated the degradation of carbamazepine (CBZ), diclofenac (DCF), ibuprofen (IBP), and their intermediates, as well as estrogenic activity that is not effectively removed by conventional methods. A consortium of isolated South African indigenous fungi A. niger, M. circinelloides, T. polyzona, T. longibrachiatum and R. microsporus, was used in a sequencing batch reactor (SBR) to remove PhCs, their intermediates and strongly reduce their estrogenic activity. The fungal ligninolytic enzymatic activity was determined for laccase (Lac), manganese peroxidase (MnP) and lignin peroxidase (LiP) using a spectrophotometric method. The biodegradation of PhCs and their intermediates was monitored by SPE-UPLC/MS. The in vitro estrogenic activity was assessed in the T47D-KBluc reporter gene assay. Lac, MnP and LiP production appeared to be biomass growth dependent. During a lag phase of growth, a constant biomass of about 122.04 mg/100 mL was recorded with average enzymatic activity around 63.62 U/L for Lac, 151.91 U/L for MnP and 42.12 U/L for LiP. The exponential growth phase from day 7 to day 17, was characterised by a biomass increase of 124.46 units, and an increase in enzymatic activity of 9.91 units for Lac, 99.03 units for MnP and 44.24 units for LiP. These enzymes played an important synergistic role in PhCs degradation in the cytochrome P450 system. A decrease of 13.89%, 29.7% and 16.15% in PhC concentrations was observed for CBZ, DCF and IBP, respectively, and their intermediates were identified within 4 h of incubation. The removal efficiency achieved after 24 h in the SBR was about 89.77%, 95.8% and 91.41% for CBZ, DCF and IBP, respectively. The estradiol equivalent (EEq) values of 1.71 ± 0.30 ng/L and 2.69 ± 0.17 ng/L were recorded at the start-up time and after 4 h, respectively. The presence of intermediates was found to induce estrogenic activity. The EEq values after 24 h incubation was found to be below the LoQ and below the LoD of the assay. None of the samples exhibited any anti-estrogenic activity. The fungal consortium inoculum was found to induce toxicity at a 0.4× concentration, as observed under a microscope. This study revealed that the use of the fungal consortium can remove the estrogenic activity of pharmaceutical metabolites, which appeared to be the most significant contributors to the endocrine-disrupting activity of the wastewater treatment plant effluents.
Collapse
Affiliation(s)
- Teddy Kabeya Kasonga
- Department of Environmental, Water and Earth Sciences, Faculty of Sciences, Tshwane University of Technology, P/B X 680, Pretoria, 0001, South Africa.
| | - Martie A A Coetzee
- Department of Environmental, Water and Earth Sciences, Faculty of Sciences, Tshwane University of Technology, P/B X 680, Pretoria, 0001, South Africa.
| | - Catherina Van Zijl
- Department of Urology, University of Pretoria, Private Bag X323, Arcadia, 0007, Pretoria, South Africa
| | - Maggy Ndombo Benteke Momba
- Department of Environmental, Water and Earth Sciences, Faculty of Sciences, Tshwane University of Technology, P/B X 680, Pretoria, 0001, South Africa
| |
Collapse
|
34
|
Bagnis S, Fitzsimons MF, Snape J, Tappin A, Comber S. Impact of the wastewater-mixing zone on attenuation of pharmaceuticals in natural waters: Implications for an impact zone inclusive environmental risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 658:42-50. [PMID: 30577026 DOI: 10.1016/j.scitotenv.2018.12.191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/12/2018] [Accepted: 12/12/2018] [Indexed: 06/09/2023]
Abstract
The direct discharge of untreated wastewater has been identified as an important source of environmental contamination by active pharmaceutical ingredients and other 'down-the-drain' chemicals in developing countries. It necessitates the development of an environmental risk assessment approach for the resulting impact zone. This study was designed to investigate the impact of low level of dilution (<10) on the natural attenuation processes of distribution and degradation within the impact zone. Dilution of the untreated wastewater resulted in increased desorption and corresponding environmental concentrations. The presence/absence of the microbial population in the batches affected the degree of sorption depending on the compound charge (i.e. positive or negative), highlighting an experimental technical bias. The degradation half-lives of acebutolol and diclofenac increased with increasing dilution and resulted in higher environmental persistence. The modelling of the biochemical oxygen demand (BOD) allowed an estimate of the temporal end boundary of the impact zone to be predicted as 24h. Therefore, it was concluded that most of the investigated compounds would persist beyond the end of the impact zone as defined by the return to environmental BOD concentrations. It is proposed that, within environmental risk assessment protocols, the impact zone should be considered as a semi-natural wastewater treatment area in such a way to allow the estimate of environmental concentrations of pharmaceuticals beyond its end.
Collapse
Affiliation(s)
- Simone Bagnis
- Biogeochemistry Research Centre, School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Mark F Fitzsimons
- Biogeochemistry Research Centre, School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Jason Snape
- AstraZeneca UK, Global Safety, Health and Environment, Macclesfield, UK; School of Life Sciences, Gibbet Hill Campus, the University of Warwick, Coventry CV4 7AL, UK
| | - Alan Tappin
- Biogeochemistry Research Centre, School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Sean Comber
- Biogeochemistry Research Centre, School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth PL4 8AA, UK.
| |
Collapse
|
35
|
Peng J, Wang X, Yin F, Xu G. Characterizing the removal routes of seven pharmaceuticals in the activated sludge process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:2437-2445. [PMID: 30292999 DOI: 10.1016/j.scitotenv.2018.10.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/30/2018] [Accepted: 10/01/2018] [Indexed: 05/14/2023]
Abstract
The removal routes of pharmaceuticals especially biodegradation routes in the activated sludge process are still unclear. Some studies indicated pharmaceuticals were mainly removed via nitrification process (autotrophic biodegradation), while others suggested pharmaceuticals were mainly removed via COD degradation process (heterotrophic biodegradation). These unclear problems limited the improvements of pharmaceuticals removal. In this study, in order to elucidate three biodegradation routes (nitrification, COD degradation, or both nitrification and COD degradation), autotrophic and heterotrophic reactors were individually developed to separate nitrification and COD degradation form the activated sludge process (mix-trophic process including nitrification and COD degradation). Furthermore, the pharmaceuticals removal routes of adsorption, hydrolysis, and oxidation were also studied. Among six degradable pharmaceuticals, heterotrophic biodegradation and adsorption were the major removal routes. Two sulfonamides of five antibiotics were predominantly removed by COD degradation process, while nitrification and adsorption had no contributions. Adsorption, hydrolysis, nitrification, and COD degradation were the main elimination routes of cefalexin. COD degradation and adsorption were the dominant removal routes of norfloxacin. Tetracycline was mainly removed by the adsorption route, and hydrolysis and oxidation also played a role. For two drugs, ibuprofen was removed mainly via nitrification and COD degradation, and no adsorption occurred. Diclofenac could not be removed at all and was persistent in the aerobic conditions. Kinetic studies showed that biodegradation of the two sulfonamides, cefalexin, norfloxacin, and ibuprofen followed first-order kinetics rather than zero-order or second-order kinetics.
Collapse
Affiliation(s)
- Jingjing Peng
- Max Planck Institute for Terrestrial Microbiology, Marburg 35043, Germany
| | - Xingzu Wang
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Fengjun Yin
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Guihua Xu
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
36
|
Kruglova A, Mikola A, Gonzalez-Martinez A, Vahala R. Effect of sulfadiazine and trimethoprim on activated sludge performance and microbial community dynamics in laboratory-scale membrane bioreactors and sequencing batch reactors at 8°C. Biotechnol Prog 2018; 35:e2708. [PMID: 30294885 DOI: 10.1002/btpr.2708] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 06/28/2018] [Indexed: 11/12/2022]
Abstract
The effect of antibiotics sulfadiazine and trimethoprim on activated sludge operated at 8°C was investigated. Performance and microbial communities of sequencing batch reactors (SBRs) and Membrane Bioreactors (MBRs) were compared before and after the exposure of antibiotics to the synthetic wastewater. The results revealed irreversible negative effect of these antibiotics in environmentally relevant concentrations on nitrifying microbial community of SBR activated sludge. In opposite, MBR sludge demonstrated fast adaptation and more stable performance during the antibiotics exposure. Dynamics of microbial community was greatly affected by presence of antibiotics. Bacteria from classes Betaproteobacteria and Bacteroidetes demonstrated the potential to develop antibiotic resistance in both wastewater treatment systems while Actinobacteria disappeared from all of the reactors after 60 days of antibiotics exposure. Altogether, results showed that operational parameters such as sludge retention time (SRT) and reactor configuration had great effect on microbial community composition of activated sludge and its vulnerability to antibiotics. Operation at long SRT allowed archaea, including ammonium oxidizing species (AOA) such as Nitrososphaera viennensis to grow in MBRs. AOA could have an important role in stable nitrification performance of MBR-activated sludge as a result of tolerance of archaea to antibiotics. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2708, 2019.
Collapse
Affiliation(s)
| | - Anna Mikola
- Dept. of Built Environment, Aalto University, Espoo, Finland
| | | | - Riku Vahala
- Dept. of Built Environment, Aalto University, Espoo, Finland
| |
Collapse
|
37
|
Zhou H, Liu X, Chen X, Ying T, Ying Z. Characteristics of removal of waste-water marking pharmaceuticals with typical hydrophytes in the urban rivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 636:1291-1302. [PMID: 29913591 DOI: 10.1016/j.scitotenv.2018.04.384] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/28/2018] [Accepted: 04/28/2018] [Indexed: 06/08/2023]
Abstract
The investigations on their variation and distribution of 13 called waste-water marking pharmaceuticals (WWMPs) were conducted under 4 hydrophyte conditions (without plants, with submerged aquatic plant (Myriophyllum verticillatum L.), emergent aquatic plant cattail (Typha orientalis Presl) and floating aquatic plant (Lemna minor L.)) in a simulated urban river system. By the calculation of mass balance, the quantitative distribution of WWMPs in water phase, sediment and plant tissues was identified, and the overall removal efficiencies of target pharmaceuticals in the whole system could be determined. Without plants, high persistence of atenolol (ATL) (97.7%), carbamazepine (CBM) (102.8%), clofibric acid (CLF) (101.8%) and ibuprofen (IBU) (80.9%) was detected in water phase, while triclosan (TCS) (53.5%) displayed strong adsorption affinity in sediment. The removal under the planted conditions was considerably raised, compared with no plant condition for most WWMPs. However, TCS did not show obvious differences among the hydrophyte conditions due to its strong adsorption affinity and high hydrophobicity. The relatively higher removal was found for the hydrophilic (logKow<1) or moderately hydrophobic (1<logKow<3) pharmaceuticals with submerged and emergent aquatic plants. The highly hydrophobic pharmaceuticals (logKow>4.0) did not show significant differences among the whole tests in sediment. Mass balance calculation displayed the removal of CBM (5.6%-13.6%), CLF (4.0%-17.8%) and caffeine (8.4%-17.2%) through the plant uptake was relatively higher. For the rest WWMPs, only small parts (<6.0%) of the initial concentrations were found in plant tissues. The higher removal efficiencies of most WWMPs under the planted conditions indicated that aquatic plants indeed played an important role in the removal of WWMPs although the direct uptakes might not be a dominant pathway to the overall removal of WWMPs. Besides, the floating aquatic plant removed most WWMPs from the water phase efficiently. In contrast, submerged and emergent aquatic plants could effectively remove them in sediment.
Collapse
Affiliation(s)
- Haidong Zhou
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Xiaojing Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiaomeng Chen
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Tianqi Ying
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhenxi Ying
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
38
|
Bácsi I, Deli J, Gonda S, Mészáros I, Veréb G, Dobronoki D, Nagy SA, B-Béres V, Vasas G. Non-steroidal anti-inflammatory drugs initiate morphological changes but inhibit carotenoid accumulation in Haematococcus pluvialis. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
39
|
Kruglova A, Gonzalez-Martinez A, Kråkström M, Mikola A, Vahala R. Bacterial diversity and population shifts driven by spotlight wastewater micropollutants in low-temperature highly nitrifying activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 605-606:291-299. [PMID: 28668740 DOI: 10.1016/j.scitotenv.2017.06.191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 06/07/2023]
Abstract
In this study the influence of low-temperature (8°C), sludge retention time (SRT) and loading of spotlight wastewater micropollutants (MPs) on bacterial community of activated sludge was investigated with a special focus on nitrification. Two Sequencing batch reactors (SBR) and two membrane bioreactors (MBR) were operated with synthetic municipal-like wastewater receiving and not receiving ibuprofen, diclofenac, estrone and 17α-ethynylestradiol (EE2). Bacterial population studies were related to removal efficiencies of studied MPs. The results showed that studied bacterial communities significantly differed from all previously published nitrifying activated sludge communities. Exceptionally low concentration of autotrophic nitrifying bacteria were found (<0.5%) as well as no common heterotrophic nitrifies were presenting in activated sludge and therefore could not be related to the MPs removal. Additionally SRT had a spacious effect on the diversity of bacteria and bacterial population shifts under pressure of MPs. Growth of Firmicutes was suppressed by presence of MPs in all the reactors. Increase of MPs concentrations in wastewater improved the removal of EE2. Abundance of Delta- and Gammaproteobacteria showed positive correlation with diclofenac removal.
Collapse
Affiliation(s)
- Antonina Kruglova
- Aalto University, Department of Built Environment, P.O. Box 15200, FI-00076 AALTO Espoo, Finland.
| | | | - Matilda Kråkström
- Åbo Akademy University, Johan Gadolin Process Chemistry Centre, c/o Laboratory of Organic Chemistry, Piispankatu 8, 20500 Turku, Finland
| | - Anna Mikola
- Aalto University, Department of Built Environment, P.O. Box 15200, FI-00076 AALTO Espoo, Finland
| | - Riku Vahala
- Aalto University, Department of Built Environment, P.O. Box 15200, FI-00076 AALTO Espoo, Finland
| |
Collapse
|
40
|
Välitalo P, Massei R, Heiskanen I, Behnisch P, Brack W, Tindall AJ, Du Pasquier D, Küster E, Mikola A, Schulze T, Sillanpää M. Effect-based assessment of toxicity removal during wastewater treatment. WATER RESEARCH 2017; 126:153-163. [PMID: 28941401 DOI: 10.1016/j.watres.2017.09.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/24/2017] [Accepted: 09/04/2017] [Indexed: 06/07/2023]
Abstract
Wastewaters contain complex mixtures of chemicals, which can cause adverse toxic effects in the receiving environment. In the present study, the toxicity removal during wastewater treatment at seven municipal wastewater treatment plants (WWTPs) was investigated using an effect-based approach. A battery of eight bioassays was applied comprising of cytotoxicity, genotoxicity, endocrine disruption and fish embryo toxicity assays. Human cell-based CALUX assays, transgenic larval models and the fish embryo toxicity test were particularly sensitive to WWTP effluents. The results indicate that most effects were significantly reduced or completely removed during wastewater treatment (76-100%), while embryo toxicity, estrogenic activity and thyroid disruption were still detectable in the effluents suggesting that some harmful substances remain after treatment. The responsiveness of the bioassays was compared and the human cell-based CALUX assays showed highest responsiveness in the samples. Additionally, the fish embryo toxicity test and the transgenic larval models for endocrine disrupting effects showed high responsiveness at low sample concentrations in nearly all of the effluent samples. The results showed a similar effect pattern among all WWTPs investigated, indicating that the wastewater composition could be rather similar at different locations. There were no considerable differences in the toxicity removal efficiencies of the treatment plants and no correlation was observed with WWTP characteristics, such as process configuration or sludge age. This study demonstrated that a biotest battery comprising of multiple endpoints can serve as a powerful tool when assessing water quality or water treatment efficiency in a holistic manner. Rather than analyzing the concentrations of a few selected chemicals, bioassays can be used to complement traditional methods of monitoring in the future by assessing sum-parameter based effects, such as mixture effects, and tackling chemicals that are present at concentrations below chemical analytical detection limits.
Collapse
Affiliation(s)
- Pia Välitalo
- Finnish Environment Institute, Laboratory Centre, Hakuninmaantie 6, 00430, Helsinki, Finland; Aalto University, Department of Civil and Environmental Engineering, Tietotie 1E, 02150, Espoo, Finland.
| | - Riccardo Massei
- UFZ - Helmholtz Centre for Environmental Research GmbH, Leipzig, Germany; Institute for Environmental Research (Biology V), RWTH Aachen University, Aachen, Germany
| | - Ilse Heiskanen
- Finnish Environment Institute, Laboratory Centre, Hakuninmaantie 6, 00430, Helsinki, Finland
| | | | - Werner Brack
- UFZ - Helmholtz Centre for Environmental Research GmbH, Leipzig, Germany; Institute for Environmental Research (Biology V), RWTH Aachen University, Aachen, Germany
| | | | | | - Eberhard Küster
- UFZ - Helmholtz Centre for Environmental Research GmbH, Leipzig, Germany
| | - Anna Mikola
- Aalto University, Department of Civil and Environmental Engineering, Tietotie 1E, 02150, Espoo, Finland
| | - Tobias Schulze
- UFZ - Helmholtz Centre for Environmental Research GmbH, Leipzig, Germany
| | - Markus Sillanpää
- Finnish Environment Institute, Laboratory Centre, Hakuninmaantie 6, 00430, Helsinki, Finland
| |
Collapse
|
41
|
Marchlewicz A, Guzik U, Smułek W, Wojcieszyńska D. Exploring the Degradation of Ibuprofen by Bacillus thuringiensis B1(2015b): The New Pathway and Factors Affecting Degradation. Molecules 2017; 22:molecules22101676. [PMID: 28991215 PMCID: PMC6151734 DOI: 10.3390/molecules22101676] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/06/2017] [Indexed: 11/29/2022] Open
Abstract
Ibuprofen is one of the most often detected pollutants in the environment, particularly at landfill sites and in wastewaters. Contamination with pharmaceuticals is often accompanied by the presence of other compounds which may influence their degradation. This work describes the new degradation pathway of ibuprofen by Bacillus thuringiensis B1(2015b), focusing on enzymes engaged in this process. It is known that the key intermediate which transformation limits the velocity of the degradation process is hydroxyibuprofen. As the degradation rate also depends on various factors, the influence of selected heavy metals and aromatic compounds on ibuprofen degradation by the B1(2015b) strain was examined. Based on the values of non-observed effect concentration (NOEC) it was found that the toxicity of tested metals increases from Hg(II) < Cu(II) < Cd(II) < Co(II) < Cr(VI). Despite the toxic effect of metals, the biodegradation of ibuprofen was observed. The addition of Co2+ ions into the medium significantly extended the time necessary for the complete removal of ibuprofen. It was shown that Bacillus thuringiensis B1(2015b) was able to degrade ibuprofen in the presence of phenol, benzoate, and 2-chlorophenol. Moreover, along with the removal of ibuprofen, degradation of phenol and benzoate was observed. Introduction of 4-chlorophenol into the culture completely inhibits degradation of ibuprofen.
Collapse
Affiliation(s)
- Ariel Marchlewicz
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland.
| | - Urszula Guzik
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland.
| | - Wojciech Smułek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
| | - Danuta Wojcieszyńska
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland.
| |
Collapse
|
42
|
Schmidt N, Page D, Tiehm A. Biodegradation of pharmaceuticals and endocrine disruptors with oxygen, nitrate, manganese (IV), iron (III) and sulfate as electron acceptors. JOURNAL OF CONTAMINANT HYDROLOGY 2017; 203:62-69. [PMID: 28693900 DOI: 10.1016/j.jconhyd.2017.06.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 06/21/2017] [Accepted: 06/24/2017] [Indexed: 06/07/2023]
Abstract
Biodegradation of pharmaceuticals and endocrine disrupting compounds was examined in long term batch experiments for a period of two and a half years to obtain more insight into the effects of redox conditions. A mix including lipid lowering agents (e.g. clofibric acid, gemfibrozil), analgesics (e.g. diclofenac, naproxen), beta blockers (e.g. atenolol, propranolol), X-ray contrast media (e.g. diatrizoic acid, iomeprol) as well as the antiepileptic carbamazepine and endocrine disruptors (e.g. bisphenol A, 17α-ethinylestradiol) was analyzed in batch tests in the presence of oxygen, nitrate, manganese (IV), iron (III), and sulfate. Out of the 23 selected substances, 14 showed a degradation of >50% of their initial concentrations under aerobic conditions. The beta blockers propranolol and atenolol and the analgesics pentoxifylline and naproxen showed a removal of >50% under anaerobic conditions. In particular naproxen proved to be degradable with oxygen and under most anaerobic conditions, i.e. with manganese (IV), iron (III), or sulfate. The natural estrogens estriol, estrone and 17β-estradiol showed complete biodegradation under aerobic and nitrate-reducing conditions, with a temporary increase of estrone during transformation of estriol and 17β-estradiol. Transformation of 17β-estradiol under Fe(III)-reducing conditions resulted in an increase of estriol as well. Concentrations of clofibric acid, carbamazepine, iopamidol and diatrizoic acid, known for their recalcitrance in the environment, remained unchanged.
Collapse
Affiliation(s)
- Natalie Schmidt
- DVGW-Technologiezentrum Wasser (TZW), Karlsruher Straße 84, 76139 Karlsruhe, Germany
| | - Declan Page
- CSIRO Land and Water - Waite Campus, Waite Road - Gate 4, Glen Osmond, SA 5064, Australia
| | - Andreas Tiehm
- DVGW-Technologiezentrum Wasser (TZW), Karlsruher Straße 84, 76139 Karlsruhe, Germany.
| |
Collapse
|
43
|
Jiang C, Geng J, Hu H, Ma H, Gao X, Ren H. Impact of selected non-steroidal anti-inflammatory pharmaceuticals on microbial community assembly and activity in sequencing batch reactors. PLoS One 2017. [PMID: 28640897 PMCID: PMC5480864 DOI: 10.1371/journal.pone.0179236] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
This study covers three widely detected non-steroidal anti-inflammatory pharmaceuticals (NSAIDs), diclofenac (DCF), ibuprofen (IBP) and naproxen (NPX), as NSAIDs pollutants. The objective is to evaluate the impact of NSAIDs at their environmental concentrations on microbial community assembly and activity. The exposure experiments were conducted under three conditions (5 μg L-1 DCF, 5 μg L-1 DCF+5 μg L-1 IBP and 5 μg L-1 DCF+5 μg L-1 IBP+ 5 μg L-1 NPX) in sequencing batch reactors (SBRs) for 130 days. Removals of COD and NH4+-N were not affected but total nitrogen (TN) removal decreased. IBP and NPX had the high removal efficiencies (79.96% to 85.64%), whereas DCF was more persistent (57.24% to 64.12%). In addition, the decreased removals of TN remained the same under the three conditions (p > 0.05). The results of oxidizing enzyme activities, live cell percentages and extracellular polymeric substances (EPS) indicated that NSAIDs damaged the cell walls or microorganisms and the mixtures of the three NSAIDs increased the toxicity. The increased Shannon-Wiener diversity index suggested that bacterial diversity was increased with the addition of selected NSAIDs. Bacterial ribosomal RNA small subunit (16S) gene sequencing results indicated that Actinobacteria and Bacteroidetes were enriched, while Micropruina and Nakamurella decreased with the addition of NSAIDs. The enrichment of Actinobacteria and Bacteroidetes indicated that both of them might have the ability to degrade NSAIDs and thereby could adapt well with the presence of NSAIDs.
Collapse
Affiliation(s)
- Cong Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, PR of China
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, PR of China
- * E-mail:
| | - Haidong Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, PR of China
| | - Haijun Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, PR of China
| | - Xingsheng Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, PR of China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, PR of China
| |
Collapse
|
44
|
Yuan J, Van Dyke MI, Huck PM. Identification of critical contaminants in wastewater effluent for managed aquifer recharge. CHEMOSPHERE 2017; 172:294-301. [PMID: 28086157 DOI: 10.1016/j.chemosphere.2016.12.120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/22/2016] [Accepted: 12/23/2016] [Indexed: 06/06/2023]
Abstract
Managed aquifer recharge (MAR) using highly treated effluent from municipal wastewater treatment plants has been recognized as a promising strategy for indirect potable water reuse. Treated wastewater effluent can contain a number of residual contaminants that could have adverse effects on human health, and some jurisdictions have regulations in place to govern these. For those that do not, but where reuse may be under consideration, it is of crucial importance to develop a strategy for identifying priority contaminants, which can then be used to understand the water treatment technologies that might be required. In this study, a multi-criteria approach to identify critical contaminants in wastewater effluent for MAR was developed and applied using a case study site located in southern Ontario, Canada. An important aspect of this approach was the selection of representative compounds for each group of contaminants, based on potential for occurrence in wastewater and expected health or environmental impacts. Due to a lack of MAR regulations in Canada, the study first proposed potential recharge water quality targets. Predominant contaminants, potential additional contaminants, and potential emerging contaminants, which together comprise critical contaminants for MAR with reclaimed water, were then selected based on the case study wastewater effluent monitoring data and literature data. This paper proposes an approach for critical contaminant selection, which will be helpful to guide future implementation of MAR projects using wastewater treatment plant effluents.
Collapse
Affiliation(s)
- Jie Yuan
- NSERC Chair in Water Treatment, Department of Civil and Environmental Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.
| | - Michele I Van Dyke
- NSERC Chair in Water Treatment, Department of Civil and Environmental Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Peter M Huck
- NSERC Chair in Water Treatment, Department of Civil and Environmental Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
45
|
Grandclément C, Seyssiecq I, Piram A, Wong-Wah-Chung P, Vanot G, Tiliacos N, Roche N, Doumenq P. From the conventional biological wastewater treatment to hybrid processes, the evaluation of organic micropollutant removal: A review. WATER RESEARCH 2017; 111:297-317. [PMID: 28104517 DOI: 10.1016/j.watres.2017.01.005] [Citation(s) in RCA: 291] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 12/15/2016] [Accepted: 01/02/2017] [Indexed: 05/02/2023]
Abstract
Because of the recalcitrance of some micropollutants to conventional wastewater treatment systems, the occurrence of organic micropollutants in water has become a worldwide issue, and an increasing environmental concern. Their biodegradation during wastewater treatments could be an interesting and low cost alternative to conventional physical and chemical processes. This paper provides a review of the organic micropollutants removal efficiency from wastewaters. It analyses different biological processes, from conventional ones, to new hybrid ones. Micropollutant removals appear to be compound- and process- dependent, for all investigated processes. The influence of the main physico-chemical parameters is discussed, as well as the removal efficiency of different microorganisms such as bacteria or white rot fungi, and the role of their specific enzymes. Even though some hybrid processes show promising micropollutant removals, further studies are needed to optimize these water treatment processes, in particular in terms of technical and economical competitiveness.
Collapse
Affiliation(s)
- Camille Grandclément
- Aix-Marseille Univ, CNRS, LCE, Marseille, France; Aix-Marseille Univ, CNRS, Centrale Marseille, M2P2, Marseille, France; Société Seakalia SAS, Groupe Ovalee, Technopôle de Château-Gombert, Héliopolis, 13013, Marseille, France
| | | | - Anne Piram
- Aix-Marseille Univ, CNRS, LCE, Marseille, France
| | | | - Guillaume Vanot
- Société Seakalia SAS, Groupe Ovalee, Technopôle de Château-Gombert, Héliopolis, 13013, Marseille, France
| | - Nicolas Tiliacos
- Société Seakalia SAS, Groupe Ovalee, Technopôle de Château-Gombert, Héliopolis, 13013, Marseille, France
| | - Nicolas Roche
- Aix-Marseille Univ, CNRS, Centrale Marseille, M2P2, Marseille, France.
| | | |
Collapse
|
46
|
Wang S, Wang J. Carbamazepine degradation by gamma irradiation coupled to biological treatment. JOURNAL OF HAZARDOUS MATERIALS 2017; 321:639-646. [PMID: 27694028 DOI: 10.1016/j.jhazmat.2016.09.053] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 05/18/2023]
Abstract
Carbamazepine is an emerging contaminant and resistant to biodegradation, which cannot be effectively removed by the conventional biological wastewater treatment processes. In this study, the combined gamma irradiation and biodegradation was employed to remove carbamazepine from wastewater. The effect of dose on the removal of carbamazepine was studied at different doses (300, 600 and 800Gy). The results showed that the removal efficiency of carbamazepine increased with dose increasing during the irradiation process. The maximum removal efficiency was 99.8% at 800Gy, while the removal efficiency of total organic carbon (TOC) was only 26.5%. The removal efficiency of TOC increased to 79.3% after the sequent biological treatment. In addition, several intermediates and organic acids were detected. The possible degradation pathway of carbamazepine during the integrated irradiation and biodegradation was proposed. Based on the overall analysis, the combined gamma irradiation and biological treatment process can be an alternative for removing the recalcitrant organic pollutants such as carbamazepine from wastewater.
Collapse
Affiliation(s)
- Shizong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
47
|
Kruglova A, Kråkström M, Riska M, Mikola A, Rantanen P, Vahala R, Kronberg L. Comparative study of emerging micropollutants removal by aerobic activated sludge of large laboratory-scale membrane bioreactors and sequencing batch reactors under low-temperature conditions. BIORESOURCE TECHNOLOGY 2016; 214:81-88. [PMID: 27128192 DOI: 10.1016/j.biortech.2016.04.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/07/2016] [Accepted: 04/10/2016] [Indexed: 06/05/2023]
Abstract
Four emerging micropollutants ibuprofen, diclofenac, estrone (E1) and 17α-ethinylestradiol (EE2) were studied in large laboratory-scale wastewater treatment plants (WWTPs) with high nitrifying activity. Activated sludge (AS) with sludge retention times (SRTs) of 12days and 14days in sequencing batch reactors (SBRs) and 30days, 60days and 90days in membrane bioreactors (MBRs) were examined at 8°C and 12°C. Concentrations of pharmaceuticals and their main metabolites were analysed in liquid phase and solid phase of AS by liquid chromatography-tandem mass spectrometry (LC-MS/MS). A remarkable amount of contaminants were detected in solids of AS, meaning the accumulation of micropollutants in bacterial cells. The biodegradation rate constants (Kbiol) were affected by SRT and temperature. MBR with a 90-day SRT showed the best results of removal. Conventional SBR process was inefficient at 8°C showing Kbiol values lower than 0.5lgSS(-1)d(-1) for studied micropollutants.
Collapse
Affiliation(s)
- Antonina Kruglova
- Aalto University, Department of Built Environment, P.O. Box 15200, FI-00076 AALTO, Espoo, Finland.
| | - Matilda Kråkström
- Åbo Akademy University, Johan Gadolin Process Chemistry Centre, c/o Laboratory of Organic Chemistry, Piispankatu 8, 20500 Turku, Finland
| | - Mats Riska
- Aalto University, Department of Built Environment, P.O. Box 15200, FI-00076 AALTO, Espoo, Finland
| | - Anna Mikola
- Aalto University, Department of Built Environment, P.O. Box 15200, FI-00076 AALTO, Espoo, Finland
| | - Pirjo Rantanen
- Aalto University, Department of Built Environment, P.O. Box 15200, FI-00076 AALTO, Espoo, Finland
| | - Riku Vahala
- Aalto University, Department of Built Environment, P.O. Box 15200, FI-00076 AALTO, Espoo, Finland
| | - Leif Kronberg
- Åbo Akademy University, Johan Gadolin Process Chemistry Centre, c/o Laboratory of Organic Chemistry, Piispankatu 8, 20500 Turku, Finland
| |
Collapse
|
48
|
Schröder P, Helmreich B, Škrbić B, Carballa M, Papa M, Pastore C, Emre Z, Oehmen A, Langenhoff A, Molinos M, Dvarioniene J, Huber C, Tsagarakis KP, Martinez-Lopez E, Pagano SM, Vogelsang C, Mascolo G. Status of hormones and painkillers in wastewater effluents across several European states-considerations for the EU watch list concerning estradiols and diclofenac. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:12835-66. [PMID: 27023823 PMCID: PMC4912981 DOI: 10.1007/s11356-016-6503-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 02/28/2016] [Indexed: 05/05/2023]
Abstract
Present technologies for wastewater treatment do not sufficiently address the increasing pollution situation of receiving water bodies, especially with the growing use of personal care products and pharmaceuticals (PPCP) in the private household and health sector. The relevance of addressing this problem of organic pollutants was taken into account by the Directive 2013/39/EU that introduced (i) the quality evaluation of aquatic compartments, (ii) the polluter pays principle, (iii) the need for innovative and affordable wastewater treatment technologies, and (iv) the identification of pollution causes including a list of principal compounds to be monitored. In addition, a watch list of 10 other substances was recently defined by Decision 2015/495 on March 20, 2015. This list contains, among several recalcitrant chemicals, the painkiller diclofenac and the hormones 17β-estradiol and 17α-ethinylestradiol. Although some modern approaches for their removal exist, such as advanced oxidation processes (AOPs), retrofitting most wastewater treatment plants with AOPs will not be acceptable as consistent investment at reasonable operational cost. Additionally, by-product and transformation product formation has to be considered. The same is true for membrane-based technologies (nanofiltration, reversed osmosis) despite of the incredible progress that has been made during recent years, because these systems lead to higher operation costs (mainly due to higher energy consumption) so that the majority of communities will not easily accept them. Advanced technologies in wastewater treatment like membrane bioreactors (MBR) that integrate biological degradation of organic matter with membrane filtration have proven a more complete elimination of emerging pollutants in a rather cost- and labor-intensive technology. Still, most of the presently applied methods are incapable of removing critical compounds completely. In this opinion paper, the state of the art of European WWTPs is reflected, and capacities of single methods are described. Furthermore, the need for analytical standards, risk assessment, and economic planning is stressed. The survey results in the conclusion that combinations of different conventional and advanced technologies including biological and plant-based strategies seem to be most promising to solve the burning problem of polluting our environment with hazardous emerging xenobiotics.
Collapse
Affiliation(s)
- P Schröder
- Research Unit Microbe-Plant Interactions (EGEN), German Research Center for Health and Environment GmbH, Helmholtz Zentrum Muenchen, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.
| | - B Helmreich
- Chair of Urban Water Systems Engineering, Technische Universität München, Munich, Germany
| | - B Škrbić
- Faculty of Technology, University of Novi Sad, Novi Sad, Serbia
| | - M Carballa
- Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - M Papa
- Department of Civil Environmental Architectural Engineering & Mathematics, University of Brescia, Brescia, Italy
| | - C Pastore
- CNR-Istituto di Ricerca Sulle Acque, Bari, Italy
| | - Z Emre
- Turkish Atomic Energy Authority, Ankara, Turkey
| | - A Oehmen
- Departamento de Química, Faculdade de Ciências e Tecnologia (FCT), Universidade Nova de Lisboa (UNL), Caparica, Portugal
| | - A Langenhoff
- Sub-department of Environmental Technology, Wageningen University of Agrotechnology & Food Sciences, Wageningen, The Netherlands
| | - M Molinos
- University of Valencia, Valencia, Spain
| | | | - C Huber
- Research Unit Microbe-Plant Interactions (EGEN), German Research Center for Health and Environment GmbH, Helmholtz Zentrum Muenchen, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - K P Tsagarakis
- Business and Environmental Economics Technology Lab (BETECO), Department of Environmental Engineering, Democritus University of Thrace, Xanthi, Greece
| | | | | | - C Vogelsang
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
| | - G Mascolo
- CNR-Istituto di Ricerca Sulle Acque, Bari, Italy
| |
Collapse
|
49
|
Gonzalez-Martinez A, Rodriguez-Sanchez A, Garcia-Ruiz MJ, Osorio F, Gonzalez-Lopez J. Impact of methionine on a partial-nitritation biofilter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:6651-6660. [PMID: 26645230 DOI: 10.1007/s11356-015-5889-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 11/27/2015] [Indexed: 06/05/2023]
Abstract
It has been demonstrated that an anaerobic digestion process cannot attain an efficient removal of several amino acids, with methionine being one of the most persistent of these. Thus, the effect that methionine amino acid has over the partial-nitritation process with fixed-biofilm configuration in terms of performance and bacterial community dynamics has been investigated. With respect to the performance with no addition, 100 mg/L methionine loading decreased ammonium oxidation efficiency in 60% and 100% at concentrations of 300 and 500 mg/L methionine, respectively. Bacterial biomass sharply increased by 30, 65, and 230% with the addition of 100, 300, and 500 mg/L methionine, respectively. Bacterial community analysis showed that methionine addition supported the proliferation of a diversity of heterotrophic genera, such as Lysobacter and Micavibrio, and reduced the relative abundance of ammonium oxidizing genus Nitrosomonas. This research shows that the addition of methionine affects the performance of the partial-nitritation process. In this sense, amino acids can pose a threat for the of partial-nitritation process treating anaerobic digester supernatant at full-scale implementation.
Collapse
Affiliation(s)
- Alejandro Gonzalez-Martinez
- Department of Civil Engineering, School of Civil Engineering, Campus of Fuentenueva, University of Granada, s/n, 18071, Granada, Spain.
| | | | - Maria Jesus Garcia-Ruiz
- Department of Civil Engineering, School of Civil Engineering, Campus of Fuentenueva, University of Granada, s/n, 18071, Granada, Spain
| | - Francisco Osorio
- Department of Civil Engineering, School of Civil Engineering, Campus of Fuentenueva, University of Granada, s/n, 18071, Granada, Spain
| | - Jesus Gonzalez-Lopez
- Institute of Water Research, University of Granada, Calle Ramon y Cajal 4, 18071, Granada, Spain
| |
Collapse
|
50
|
Kodešová R, Kočárek M, Klement A, Golovko O, Koba O, Fér M, Nikodem A, Vondráčková L, Jakšík O, Grabic R. An analysis of the dissipation of pharmaceuticals under thirteen different soil conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 544:369-81. [PMID: 26657382 DOI: 10.1016/j.scitotenv.2015.11.085] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 05/12/2023]
Abstract
The presence of human and veterinary pharmaceuticals in the environment is recognized as a potential threat. Pharmaceuticals have the potential to contaminate soils and consequently surface and groundwater. Knowledge of contaminant behavior (e.g., sorption onto soil particles and degradation) is essential when assessing contaminant migration in the soil and groundwater environment. We evaluated the dissipation half-lives of 7 pharmaceuticals in 13 soils. The data were evaluated relative to the soil properties and the Freundlich sorption coefficients reported in our previous study. Of the tested pharmaceuticals, carbamazepine had the greatest persistence (which was mostly stable), followed by clarithromycin, trimethoprim, metoprolol, clindamycin, sulfamethoxazole and atenolol. Pharmaceutical persistence in soils was mostly dependent on the soil-type conditions. In general, lower average dissipation half-lives and variability (i.e., trimethoprim, sulfamethoxazole, clindamycin, metoprolol and atenolol) were found in soils of better quality (well-developed structure, high nutrition content etc.), and thus, probably better microbial conditions (i.e., Chernozems), than in lower quality soil (Cambisols). The impact of the compound sorption affinity onto soil particles on their dissipation rate was mostly negligible. Although there was a positive correlation between compound dissipation half-life and Freundlich sorption coefficient for clindamycin (R=0.604, p<0.05) and sulfamethoxazole (R=0.822, p<0.01), the half-life of sulfamethoxazole also decreased under better soil-type conditions. Based on the calculated dissipation and sorption data, carbamazepine would be expected to have the greatest potential to migrate in the soil water environment, followed by sulfamethoxazole, trimethoprim and metoprolol. The transport of clindamycin, clarithromycin and atenolol through the vadose zone seems less probable.
Collapse
Affiliation(s)
- Radka Kodešová
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Dept. of Soil Science and Soil Protection, Kamýcká 129, 16521 Prague 6, Czech Republic.
| | - Martin Kočárek
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Dept. of Soil Science and Soil Protection, Kamýcká 129, 16521 Prague 6, Czech Republic
| | - Aleš Klement
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Dept. of Soil Science and Soil Protection, Kamýcká 129, 16521 Prague 6, Czech Republic
| | - Oksana Golovko
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Olga Koba
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Miroslav Fér
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Dept. of Soil Science and Soil Protection, Kamýcká 129, 16521 Prague 6, Czech Republic
| | - Antonín Nikodem
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Dept. of Soil Science and Soil Protection, Kamýcká 129, 16521 Prague 6, Czech Republic
| | - Lenka Vondráčková
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Dept. of Soil Science and Soil Protection, Kamýcká 129, 16521 Prague 6, Czech Republic
| | - Ondřej Jakšík
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Dept. of Soil Science and Soil Protection, Kamýcká 129, 16521 Prague 6, Czech Republic
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| |
Collapse
|