1
|
Wada OZ, Olawade DB. Recent occurrence of pharmaceuticals in freshwater, emerging treatment technologies, and future considerations: A review. CHEMOSPHERE 2025; 374:144153. [PMID: 39946938 DOI: 10.1016/j.chemosphere.2025.144153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 03/03/2025]
Abstract
Pharmaceuticals represent an emerging class of pollutants raising significant environmental health concerns, with their presence in freshwater systems linked to adverse aquatic ecosystem impacts and acceleration of antibiotic resistance development. This narrative review examines recent (2019-2024) pharmaceutical occurrences in freshwater globally, analyzes contamination pathways, evaluates compound-specific degradability, and assesses treatment technologies. Analysis revealed significant pharmaceutical contamination in freshwater sources across the six major continents, primarily entering through wastewater treatment plant effluents, groundwater recharge processes, and inadequate sanitation infrastructure/septic systems. Stark geographical disparities were observed, with regions lacking centralized treatment infrastructure showing multiple-fold higher concentrations, particularly in Africa and Latin America (exemplified by amoxicillin levels reaching 272,156 ng/L in Lagos, Nigeria). Pharmaceutical profiles reflected local healthcare patterns, with antimalarials and antiretrovirals prevalent in endemic regions. Globally prevalent compounds included caffeine, acetaminophen, ibuprofen, carbamazepine, sulfamethoxazole, amoxicillin, and diclofenac. While some compounds like caffeine showed relatively good removal in conventional treatment systems, their high usage rates overwhelmed treatment capacity. Others, particularly carbamazepine, demonstrated high recalcitrance to conventional treatment methods. Advanced oxidation processes and membrane technologies showed high removal efficiencies, while biochar-based systems emerged as promising, cost-effective alternatives using locally available resources. The findings underscore the need for both centralized and decentralized treatment approaches. Point-of-use technologies emerge as crucial immediate interventions for regions with inadequate infrastructure, while advanced technologies show promise for large-scale applications. The review emphasizes that municipalities should conduct systematic screening to identify locally prevalent pharmaceuticals, as treatment requirements vary significantly with local usage patterns, making a one-size-fits-all approach ineffective.
Collapse
Affiliation(s)
- Ojima Zechariah Wada
- College of Science and Engineering, Division of Sustainable Development, Hamad Bin Khalifa University, Qatar Foundation, Education City, Doha, Qatar; Global Eco-Oasis Sustainable Initiative, Ibadan, Nigeria
| | - David Bamidele Olawade
- Department of Allied and Public Health, School of Health, Sport and Bioscience, University of East London, London, United Kingdom; Department of Research and Innovation, Medway NHS Foundation Trust, Gillingham, ME7 5NY, United Kingdom; Department of Public Health, York St John University, London, United Kingdom
| |
Collapse
|
2
|
Sim W, Muambo KE, Choi J, Park S, Oh JE. Occurrence, distribution, and prioritization of unregulated emerging contaminants including battery-related chemicals in drinking water systems across South Korea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 967:178799. [PMID: 39946883 DOI: 10.1016/j.scitotenv.2025.178799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 03/05/2025]
Abstract
This study investigated the presence of 95 emerging contaminants comprising pharmaceuticals, stimulants, artificial sweeteners, nicotine metabolites, corrosion inhibitors, battery-related pollutants, and pesticides across 70 drinking water treatment plants. Battery-related contaminants (lithium, nickel, and cobalt), with total concentrations raging from 424 to 38,500 ng/L (median 2560 ng/L) in the raw water and from 596 to 34,300 ng/L (median 2510 ng/L) in the treated water, showed the highest detection frequencies (≥99 %). The median levels of nickel (1440 ng/L in raw water and 1620 ng/L in treated water) were higher than those of lithium (591 ng/L in raw water and 445 ng/L in treated water) and cobalt (233 ng/L in raw water and 95.3 ng/L in treated water). Organic contaminants (raw water: 33.6-6540 ng/L, median 827 ng/L; treated water: not detected-1900 ng/L, median 121 ng/L) mostly had lower total levels than battery-related chemicals. Telmisartan (median 36.6 ng/L in raw water and median 7.47 ng/L in treated water) and valsartan acid (median 26.3 ng/L in raw water and median 6.61 ng/L in treated water) were the predominant pharmaceuticals. For corrosion inhibitors, benzothiazole (29.0 ng/L in raw water and 7.21 ng/L in treated water) displayed the highest median concentrations. Bentazone (median 119 ng/L) was the most predominant pesticide in raw water. The distribution patterns of contaminants in raw water were related to various pollution sources in industries, agricultural zones, and daily life. Additionally, rainfall increased the inflow of lithium, nickel, cobalt, and benzothiazole into public waterways. According to the human health risk assessment using the maximum levels of contaminants, lithium, nickel, cobalt, and valsartan acid were the priority contaminants in treated water, indicating potential risks or need for further evaluation. The priority contaminants with high or moderate risks to aquatic ecosystems in raw water were three battery-related chemicals, six pharmaceuticals, and five pesticides.
Collapse
Affiliation(s)
- Wonjin Sim
- Institute for Environment and Energy, Pusan National University, Busan 46241, Republic of Korea
| | - Kimberly Etombi Muambo
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | | | - Sangmin Park
- National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Jeong-Eun Oh
- Institute for Environment and Energy, Pusan National University, Busan 46241, Republic of Korea; Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
3
|
Mordačíková E, Marton M, Hojová L, Kuchtová G, Grabicová K, Michniak P, Mackuľak T, Grabic R, Vojs M, Vojs Staňová A. A high-efficient electrochemical degradation of diclofenac in water on planar and microstructured 2D, and macroporous 3D boron-doped diamond electrodes: Identification of degradation and transformation products. CHEMOSPHERE 2025; 372:144000. [PMID: 39710281 DOI: 10.1016/j.chemosphere.2024.144000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
The highly efficient degradation of persistent organic substances by electrochemical advanced oxidation processes (EAOPs), which don't result in the formation of potentially harmful by-products, is crucial for the future of water management. In this study, boron-doped diamond electrodes (BDDE) with three morphologies (planar 2D, microstructured 2D, and macroporous 3D) were employed for the anodic oxidation of diclofenac (DCF) in two working electrolytes (NaCl and Na2SO4). In total, 11 by-products formed during the electrochemical oxidation of DCF were identified via HPLC-HRMS. The identification of degradation products revealed the formation of various active chlorinated species. The utilization of a chlorine-free Na2SO4 electrolyte resulted in the formation of greater number of chlorinated species, while their elimination required a longer period compared to the use of NaCl electrolyte. The formation of by-products was also influenced by the specific type of BDD electrode, which was associated with variations in applied current density. This led to an uneven distribution of dichloro (2D BDDE) and trichloro (3D BDDE) patterns. However, none of the products showed signs of a high level of persistence. The results revealed that the type of electrolyte is the most significant factor affecting the removal efficiency of DCF, while the different electrode morphologies do not lead to differences in the removal rates. The electrode type exerted a notable influence on the removal rates, which was associated with varying applied current densities, exclusively in the case of the Na₂SO₄ electrolyte. Over 99 % removal efficiency for DCF in NaCl, with power consumption of 1.8 kWh m-3 was achieved.
Collapse
Affiliation(s)
- Erika Mordačíková
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Analytical Chemistry, Ilkovičova 6, SK-842 15, Bratislava, Slovak Republic
| | - Marián Marton
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology in Bratislava, Ilkovičova 3, Bratislava, SK-841 04, Slovak Republic
| | - Lucia Hojová
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Analytical Chemistry, Ilkovičova 6, SK-842 15, Bratislava, Slovak Republic
| | - Gabriela Kuchtová
- Institute of Environmental and Chemical Engineering, Faculty of Chemical Technology, University of Pardubice, Studentská 95, Pardubice, 532 10, Czech Republic
| | - Kateřina Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Pavol Michniak
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology in Bratislava, Ilkovičova 3, Bratislava, SK-841 04, Slovak Republic
| | - Tomáš Mackuľak
- Faculty of Chemical and Food Technology, Institute of Chemical and Environmental Engineering, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovak Republic
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Marian Vojs
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology in Bratislava, Ilkovičova 3, Bratislava, SK-841 04, Slovak Republic
| | - Andrea Vojs Staňová
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Analytical Chemistry, Ilkovičova 6, SK-842 15, Bratislava, Slovak Republic; University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic.
| |
Collapse
|
4
|
Clayton GE, Richards LA, Fox BG, Thorn RMS, Bowes MJ, Read DS, Tipper HJ, Khamis K, Dutta TK, Kumar A, Hazra M, Howard B, Schneidewind U, Armstrong LK, Nicholls DJE, Davies H, Hannah D, Nel HA, Ghosh A, Joshi H, Gooddy DC, Polya DA, Krause S, Reynolds DM. Associations of anthropogenic activity and tributaries with the physicochemical, nutrient and microbial composition of the Ganga (Ganges) River, India. WATER RESEARCH 2025; 278:123374. [PMID: 40023934 DOI: 10.1016/j.watres.2025.123374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/21/2025] [Accepted: 02/22/2025] [Indexed: 03/04/2025]
Abstract
The Ganga River (known internationally as the Ganges) is one of the world's most prominent rivers, running from the Himalayas to the Bay of Bengal and supporting the livelihoods of > 40 % of India's 1.4 billion population. The Ganga River is regionally and globally important, supporting agriculture and industry, yet faces potentially detrimental water quality challenges arising from runoff and discharge from increasing urbanization, industry and agriculture. A ∼ 2700 km longitudinal survey of the nutrient and microbial water quality, including phytoplankton composition, of the Ganga River was undertaken in November 2019. The aim was to investigate if and how anthropogenic activities (e.g. urbanisation, industry, and agriculture) and tributary convergence (potentially reflecting both human activity and flow influences) affect and shift physicochemical, nutrient, and microbial water quality parameters along the river continuum. Segmented regression identified four zones of distinct nutrient/microbial characteristics along the Ganga River, with breakpoints located near Kanpur, Varanasi and downstream of the Farakka Barage, at distances of ∼ 1020, ∼ 1500 and ∼ 2350 km downstream from the Himalayan Ganga source. Population density, land use and urban cover were associated with selected water quality parameters in parts of the catchment, with elevated nutrient, microbial and chemical concentrations likely associated with agriculture, industry, and sewage inputs. Some urban areas (e.g. Kanpur and Varanasi), converging tributaries (e.g. Yamuna and Varuna) and barrages (e.g. Farakka) were associated with changes in nutrient availability, microbial activity/abundance and modelled discharge, likely driving apparent water quality changes in the relevant locations. Downstream shifts in nutrient and microbial water quality parameters were observed throughout the ∼ 2700 km Ganga River continuum. This information can help prioritize locations for targeted monitoring and/or remediation interventions and has illustrated an approach to quantify impacts of anthropogenic inputs on major river systems, such as the Ganga River.
Collapse
Affiliation(s)
- Gillian E Clayton
- Centre for Research in Sustainable Agri-Food & Environment, School of Applied Sciences, College of Health, Science and Society, University of the West of England, Bristol, BS16 1QY, UK
| | - Laura A Richards
- Department of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, The University of Manchester, Williamson Building, Oxford Road, Manchester, M13 9PL, UK
| | - Bethany G Fox
- Centre for Research in Sustainable Agri-Food & Environment, School of Applied Sciences, College of Health, Science and Society, University of the West of England, Bristol, BS16 1QY, UK
| | - Robin M S Thorn
- Centre for Research in Sustainable Agri-Food & Environment, School of Applied Sciences, College of Health, Science and Society, University of the West of England, Bristol, BS16 1QY, UK
| | - Michael J Bowes
- UK Centre for Ecology & Hydrology (UKCEH), MacLean Building, Wallingford, Oxfordshire, OX10 8BB, UK
| | - Daniel S Read
- UK Centre for Ecology & Hydrology (UKCEH), MacLean Building, Wallingford, Oxfordshire, OX10 8BB, UK
| | - Holly J Tipper
- UK Centre for Ecology & Hydrology (UKCEH), MacLean Building, Wallingford, Oxfordshire, OX10 8BB, UK
| | - Kieran Khamis
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Tapan K Dutta
- Bose Institute, Centenary Campus, P-1/12 C.I.T Scheme VII-M, Kolkata 700054, India
| | - Arun Kumar
- Mahavir Cancer Sansthan and Research Centre, Phulwarisharif, Patna, 801505, Bihar, India
| | - Moushumi Hazra
- Department of Hydrology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Ben Howard
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Uwe Schneidewind
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Linda K Armstrong
- UK Centre for Ecology & Hydrology (UKCEH), MacLean Building, Wallingford, Oxfordshire, OX10 8BB, UK
| | - David J E Nicholls
- UK Centre for Ecology & Hydrology (UKCEH), MacLean Building, Wallingford, Oxfordshire, OX10 8BB, UK
| | - Helen Davies
- UK Centre for Ecology & Hydrology (UKCEH), MacLean Building, Wallingford, Oxfordshire, OX10 8BB, UK
| | - David Hannah
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Holly A Nel
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Ashok Ghosh
- Mahavir Cancer Sansthan and Research Centre, Phulwarisharif, Patna, 801505, Bihar, India
| | - Himanshu Joshi
- Department of Hydrology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Daren C Gooddy
- British Geological Survey, Maclean Building, Wallingford, Oxfordshire OX10 8BB, UK
| | - David A Polya
- Department of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, The University of Manchester, Williamson Building, Oxford Road, Manchester, M13 9PL, UK
| | - Stefan Krause
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Darren M Reynolds
- Centre for Research in Sustainable Agri-Food & Environment, School of Applied Sciences, College of Health, Science and Society, University of the West of England, Bristol, BS16 1QY, UK.
| |
Collapse
|
5
|
Meena V, Swami D, Chandel A, Joshi N, Prasher SO. Selected emerging contaminants in water: Global occurrence, existing treatment technologies, regulations and associated risk. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136541. [PMID: 39608075 DOI: 10.1016/j.jhazmat.2024.136541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/05/2024] [Accepted: 11/15/2024] [Indexed: 11/30/2024]
Abstract
Emerging contaminants (ECs) in aquatic environments have recently attracted the attention of researchers due to their ubiquitous occurrence and the potential risk they may pose to life. While advance analytical methods have improved global reporting in water matrices, additional information is needed to compile data on their occurrence, existing legislation, treatment technologies and associated human health risks. Therefore, the present study provides an overview of the occurrence of selected ECs, including personal care product, antibiotics, NSAIDs, EDCs and psychiatric drugs, the existing regulatory framework and their toxicological effects on human health. The water matrices under review are the treated wastewater, surface water, groundwater and, in a few cases, drinking water. The study also highlights different treatment technologies available, and evaluates their performance based on the removal efficiency for different classes of ECs. For removal of almost all ECs considered, ozonation integrated with gamma radiation was reported highly efficient. Risk analysis was also performed for selected ECs including diclofenac, ibuprofen, naproxen, carbamazepine, estrone, 17 β-estradiol, bisphenol A, sulfamethoxazole, erythromycin and triclosan. The human health risk analysis indicated the highest number of locations with potential risk due to the EDCs, with South America, Europe and Asia having multiple risks due to estrone and Bisphenol A. The results of this study will give a better insight into the current situation of ECs in the global water matrices, the performance assessment of treatment technologies and the risk analysis will describe the need for more robust regulatory structures around the world to prevent the occurrence of such contaminants in the aquatic environment.
Collapse
Affiliation(s)
- Vinay Meena
- School of Civil and Environmental Engineering, Indian Institute of Technology Mandi, Mandi, 175005 Himachal Pradesh, India.
| | - Deepak Swami
- School of Civil and Environmental Engineering, Indian Institute of Technology Mandi, Mandi, 175005 Himachal Pradesh, India.
| | - Aman Chandel
- School of Civil and Environmental Engineering, Indian Institute of Technology Mandi, Mandi, 175005 Himachal Pradesh, India.
| | - Nitin Joshi
- Department of Civil Engineering, Indian Institute of Technology Jammu, Jammu, 181121 Jammu and Kashmir, India.
| | - Shiv O Prasher
- Department of Bioresource Engineering, McGill University, Canada.
| |
Collapse
|
6
|
Liu R, Long Q, Liu Y, Wang L. Screening of priority antibiotics in Fenhe River Basin based on the environmental exposure, ecological effects, and human health risk. CHEMOSPHERE 2025; 370:143953. [PMID: 39708951 DOI: 10.1016/j.chemosphere.2024.143953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/27/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Antibiotics in surface water have attracted increasing attention because of their potential threats to aquatic ecosystems and public health. Therefore, it is crucial to develop a priority antibiotic list and establish a regulatory framework for antibiotic control. Taking the Fenhe River Basin in North China as the study area, a method to rank priority antibiotics based on their environmental exposure, ecological effects, and human health risks was established. Twenty antibiotics were detected, with the highest average concentration (118.30 ng/L) of sulfonamides. Among them, azithromycin had the lowest BioWIN3 value, and its logKow value was >4, which means that it has poor biodegradability, is relatively easily adsorbed in the soil or sediment, and is persistent. Additionally, based on a survey of local species with different nutritional structures, the ecological risk thresholds of antibiotics were calculated. The results showed that quinolones had the lowest risk threshold of average value 287.23 ng/L, with a greater potential for a negative effect on the ecological environment. Based on the threshold, norfloxacin, ofloxacin, and erythromycin were identified as the pollutants of ecological risk, their peak concentrations were approximately 2.4 times, 2 times, and 9 times their risk thresholds, respectively, which mainly distributed in the middle reaches. Regarding human health risks, ciprofloxacin posed the highest health risk, with an average health risk entropy of 2.81. Finally, the calculated results of the priority rating of antibiotics showed that ciprofloxacin, enrofloxacin, erythromycin, and azithromycin were the highest-priority antibiotics and should be prioritized in risk management.
Collapse
Affiliation(s)
- Ruimin Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China.
| | - Qingfeng Long
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Yue Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Linfang Wang
- Shanxi Key Laboratory of Sorghum Genetic and Germplasm Innovation, Sorghum Research Institute, Shanxi Agricultural University, Jinzhong, 030600, China
| |
Collapse
|
7
|
Li D, Xing Y, Li L, Yao Y, Li Y, Zhu H, Du P, Wang F, Yu D, Yang F, Yao Z, Thomas KV. Accumulation, translocation and transformation of artificial sweeteners in plants: A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125517. [PMID: 39667574 DOI: 10.1016/j.envpol.2024.125517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Artificial sweeteners (ASs) have become an increasingly significant concern as an emerging contaminant. The widespread utilization has given rise to environmental consequences that are progressively harder to disregard. ASs infiltrate both aquatic and terrestrial ecosystems through the discharge of wastewater effluents and the application of manure and biosolids. These compounds can be absorbed and accumulated by plants from soil, water and the atmosphere, posing potential risks to ecological systems and human health. However, limited data available on plant absorption, translocation, and metabolism of ASs hinders a comprehensive understanding of their impact on ecosystem. This study aims to comprehensively summarize the global distribution of ASs, along with elucidating patterns of their uptake and accumulation within plants. Furthermore, it seeks to elucidate the pivotal factors governing ASs absorption and translocation, encompassing hydrophilicity, ionic nature, plant physiology, and environmental conditions. Notably, there remains a significant knowledge gap in understanding the biodegradation of ASs within plants, with their specific degradation pathways and mechanisms largely unexplored, thereby necessitating further investigation. Additionally, this review provides valuable insights into the ecotoxicological effects of ASs on plants. Finally, it identifies research gaps and outlines potential avenues for future research, offering a forward-looking perspective on this critical issue.
Collapse
Affiliation(s)
- Dandan Li
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China.
| | - Yeye Xing
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Li Li
- School of Public Health, University of Nevada, Reno, 1664 N. Virginia Street, Reno, NV, 89557-0274, USA
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yongcheng Li
- School of Public Health, University of Nevada, Reno, 1664 N. Virginia Street, Reno, NV, 89557-0274, USA
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Peng Du
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Fang Wang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Dayang Yu
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Fang Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Zhiliang Yao
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China.
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, Queensland, Australia
| |
Collapse
|
8
|
Folorunsho O, Bogush A, Kourtchev I. Occurrence of emerging and persistent organic pollutants in the rivers Cam, Ouse and Thames, UK. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 962:178436. [PMID: 39813836 DOI: 10.1016/j.scitotenv.2025.178436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/31/2024] [Accepted: 01/07/2025] [Indexed: 01/18/2025]
Abstract
The widespread occurrence of new and emerging and persistent organic pollutants (NEPs and POPs) in surface water poses a risk to drinking water supply and consequently human health. The aim of this work was to investigate the occurrence and potential transport of 42 target NEPs and POPs (including per-and polyfluoroalkyl substances (PFAS), pharmaceuticals, pesticides and bisphenols) along the rural and urban environments of three rivers in England. The type and concentrations of pollutants varied between the sampling days and points. Two pharmaceuticals (diclofenac and ibuprofen), two pesticides (diethyl-meta-toluamide (DEET) and prosulfocarb) and a range of PFAS were detected above the method detection limit. The observed PFAS include restricted perfluorooctanoic acid (PFOA), and perfluorooctanesulfonic acid (PFOS) and a newer generation substitute 6:2 fluorotelomer sulfonate (6:2 FTS). The levels of PFOS and diclofenac observed in all studied rivers exceeded the European environmental quality standard (EQS). PFOS and diclofenac high detection frequency in the river Ouse suggests their persistence and potential to contaminate connecting tributaries. An assessment of the ecological risk of prosulfocarb levels in the samples from river Ouse, using the risk quotient method, showed a potential risk to algae, planktonic crustaceans, and fish. Our results suggest that the presence of 12 NEPs and POPs, could potentially be influenced by anthropogenic activities across urban and rural environments of the studied rivers. The study highlights the need for continuous monitoring of restricted and new-generation chemicals in the surface waters to understand their impact on the ecosystem and public health.
Collapse
Affiliation(s)
- Omotola Folorunsho
- Centre for Agroecology Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton on Dunsmore, CV8 3LG, UK
| | - Anna Bogush
- Centre for Agroecology Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton on Dunsmore, CV8 3LG, UK
| | - Ivan Kourtchev
- Centre for Agroecology Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton on Dunsmore, CV8 3LG, UK.
| |
Collapse
|
9
|
Narain Singh D, Pandey P, Shankar Singh V, Kumar Tripathi A. Evidence for high-risk pollutants and emerging microbial contaminants at two major bathing ghats of the river Ganga using high-resolution mass spectrometry and metagenomics. Gene 2025; 933:148991. [PMID: 39389327 DOI: 10.1016/j.gene.2024.148991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
An efficient wastewater treatment plant is imperative to limit the entry of emerging pollutants (EPs) and emerging microbial contaminants (EMCs) in the river ecosystem. The detection of emerging EPs in aquatic environments is challenging due to complex sample preparation methods, and the need for sophisticated accurate analytical tools. In Varanasi (India), the river Ganga holds immense significance as a holy river but is consistently polluted with municipal (MWW) and hospital wastewater (HWW). We developed an efficient method for untargeted detection of EPs in the water samples using High-resolution mass spectrometry (HRMS), and identified 577 and 670 chemicals (or chemical components) in the water samples from two major bathing ghats, Assi Ghat (AG) and Dashashwamedh Ghat (DG), respectively. The presence of EPs of different categories viz chemicals from research labs, diagnostic labs, lifestyle and industrial chemicals, toxins, flavor and food additives indicated the unsafe disposal of MWW and HWW or inefficient wastewater treatment plants (WWTPs). Besides, shotgun metagenomic analysis depicted the presence of bacteria associated with MWW viz Cloacibacterium normanse, Sphaerotilus natans (sewage fungi), E. coli, and Prevotella. Also, the presence of human pathogens Arcobacter, Polynucleobacter, Pseudomonas, Klebsiella, Aeromonas, Acinetobacter, Vibrio, and Campylobacter suggests the discharge of HWW. EPs are linked to the development, and transmission of antimicrobial resistance (AMR). Occurrence of antibiotic resistance genes (ARGs), plasmid-borne β-lactamases, aminoglycoside transferases, and ARGs associated with integrons, transposons and plasmids viz mcr-3 gene that confer resistance to colistin, the last resort of antibiotics confirmed the presence of emerging microbial contaminants. Subsequent genome reconstruction studies showed the presence of uncultivable ARB and transmission of ARGs through horizontal gene transfer. This study can be used to monitor the health of aquatic bodies as well as the efficiency of WWTPs and raise an urgent need for efficient WWTPs to safeguard the river, Ganga.
Collapse
Affiliation(s)
- Durgesh Narain Singh
- BioNEST-BHU, INNORESTECH FOUNDATION, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Parul Pandey
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Vijay Shankar Singh
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Anil Kumar Tripathi
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
10
|
Sridhar D, Parimalarenganayaki S. Evaluation of sources, spatial and temporal distribution, ecological and health risk associated with CAF (Caffeine) and DEET (N, N-diethyl-meta-toluamide) contamination in the urban groundwater parts of Vellore city, Tamilnadu, India. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:44. [PMID: 39777560 DOI: 10.1007/s10653-024-02351-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 12/28/2024] [Indexed: 01/11/2025]
Abstract
Urban environments are heavily influenced by various activities, leading to contamination of water sources by emerging contaminants (ECs). Among these, caffeine (CAF) and N, N-diethyl-meta-toluamide (DEET) are notable ECs frequently found in domestic sewage due to human activities. Despite extensive research on emerging contaminants, limited studies have focused on the seasonal variations, human health and ecological risks of CAF and DEET in urban groundwater, particularly in Indian cities. This study aimed to analyze the occurrence, spatial distribution, ecological and health risks of CAF and DEET in groundwater in Vellore city, Tamil Nadu, India. A total of 96 groundwater samples were collected across four seasons in 2022 and analyzed using Hichrom HPLC in an 844 UV/VIS compact Ion Chromatography system. CAF and DEET were detected in 95% and 96% of samples, with mean concentrations of 34 μg/L and 30 μg/L, respectively. Contamination levels were higher during the Southwest Monsoon (SWM) and Northeast Monsoon (NEM) seasons. Health risk assessments for children, women, and men showed that CAF posed significant risks, particularly to children during the NEM season, followed by women and men. Although DEET exhibited lower health risks overall, children remained the most vulnerable group. Statistical analysis confirmed significant differences in exposure levels, with children showing the highest variations. Ecological risk assessment revealed that 96.88% of samples containing CAF posed moderate ecological risks, while 6.25% of DEET samples fell into the same category. This study highlights the widespread presence of CAF and DEET in urban groundwater and their associated health and ecological risks. The findings emphasize the need for effective strategies to monitor and mitigate EC contamination in urban water systems.
Collapse
Affiliation(s)
- Daggupati Sridhar
- School of Civil Engineering, Vellore Institute of Technology, Tamil Nadu, Vellore, 632014, India
| | | |
Collapse
|
11
|
Prasad DK, Shukla R, Ahammad SZ. Pharmaceuticals and personal care products and heavy metals in the Ganga River, India: Distribution, ecological and human health risk assessment. ENVIRONMENTAL RESEARCH 2024; 263:119993. [PMID: 39276830 DOI: 10.1016/j.envres.2024.119993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 08/17/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
In the present study, pharmaceuticals and personal care products (PPCPs), endocrine disrupting compounds (EDCs), and heavy metals (HMs), were measured in water and sediment of the Ganga River during summer and winter seasons for two consecutive years. Additionally, this study estimated the ecological and human health risks associated with PPCPs, EDCs, and HMs. HMs detected in the range of not detected (n.d.) to 23.59 μg/L and 0.01-391.44 μg/g in water and sediment samples, respectively. All studied HMs were within the permissible limits, except for As in water, and Cr and Ni in sediment. The geo-accumulation index (Igeo) indicated that Cr (0.71-5.98) and Pb (0.90-3.90) had high Igeo compared to other metals in sediment samples. Pb showed the highest ecological risk, followed by Cd, Co, Ni, Cu, Cr, As, and Zn. The maximum potential ecological risk index was observed at site G8. The hazard index (HI) value for water (0.08-0.89) and sediment (0.02-0.29) intake by adults remained within the acceptable limits, except at sites G8 (1.27) and G9 (1.34) for water intake. However, for children, the HI value was above the acceptable limit for water intake at sites G4 to G13 and for sediment at site G8. Among the studied compounds, metformin, triclosan, triclocarban, diclofenac, and methylparaben were the most abundant compounds present in the Ganga River. PPCPs and EDCs detected in the range of n.d. to 5850.04 ng/L and n.d. to 1080.41 ng/g in water and sediment samples, respectively. The environmental risk assessment identifies the maximum ecological risk in water exhibited by triclocarban followed by 17α-ethinylestradiol (EE2), diclofenac, and triclosan, while in sediment, the maximum ecological risk exhibited by triclocarban, followed by EE2, 17 β-estradiol (E2), triclosan, and diclofenac. However, none of the compounds showed human health risk, except for EE2, E2, and atenolol.
Collapse
Affiliation(s)
- Deepak Kumar Prasad
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Rishabh Shukla
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Shaikh Ziauddin Ahammad
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| |
Collapse
|
12
|
Bano A, Aziz MK, Ameen F, Singh K, Prasad B, Nandan, Dave H, Ravi R, Manjhi J, Kumari M, Prasad KS. Adsorptive removal of naproxen onto nano magnesium oxide-modified castor wood biochar: Treatment of pharmaceutical wastewater via sequential Fenton's-adsorption process. IUBMB Life 2024; 76:1106-1124. [PMID: 39283051 DOI: 10.1002/iub.2912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/25/2024] [Indexed: 11/22/2024]
Abstract
This current investigation explored the thermal conversion process of castor wood into biochar, which was subsequently harnessed for removing naproxen from pharmaceutical industrial effluent via adsorption. Surface composition analyses conducted through scanning electron microscopy-energy dispersive X-ray, laser-induced breakdown spectroscopy, and Fourier-transform infrared studies unveiled the presence of nano MgO particles within the adsorbent material. Employing optimization techniques such as response surface methodology facilitated a refined approach to batch study. The optimized conditions for batch naproxen sodium (NPX) adsorption on nano-MgO-modified biochar were identified as pH 4, 1.5 g/L adsorbent dosage, and a 120-min contact time maintaining a constant NPX concentration of 10 mg/L. The adsorption capacity was calculated to be 123.34 mg/g for a nano-magnesium oxide-modified castor wood biochar (modified biochar) and 99.874 mg/g for pristine castor wood biochar (pristine biochar). Fenton's reagents comprising 15 mM of FeSO4 (7H2O) and 25 mM of H2O2 have been scrutinized under conditions of pH 3.0, a reaction time of 30 min, a temperature of 30°C, and stirring at 120 rpm, followed by batch adsorption treatment. The COD, NH3-N, NO3 -, PO4 3-, and NPX removal percentages was found to be 90%, 87%, 79%, 80%, and 90%, respectively. Thus nano MgO-modified biochar holds promise of treatment of pharmaceutical effluent.
Collapse
Affiliation(s)
- Amreen Bano
- Centre of Environmental Studies, Institute of Inter-Disciplinary Studies, University of Allahabad, Prayagraj, India
| | - Mohd Kashif Aziz
- Department of Chemistry, Faculty of Science, University of Allahabad, Prayagraj, India
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Kavita Singh
- Centre of Environmental Studies, Institute of Inter-Disciplinary Studies, University of Allahabad, Prayagraj, India
| | - Bablu Prasad
- Department of Environmental Studies, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Nandan
- Project Scientist "C", ICAR HQ, Ministry of Agriculture, KrishiBhawan, Delhi, India
| | - Hemen Dave
- School of Pharmacy, National Forensic Sciences University, Gandhinagar, India
| | - Rajesh Ravi
- School of Biological Engineering & Life Science, Shobhit Institute of Engineering and Technology, Meerut, India
| | - Jayanand Manjhi
- School of Biological Engineering & Life Science, Shobhit Institute of Engineering and Technology, Meerut, India
| | - Madhu Kumari
- Department of Botany, B. R. A. Bihar University, Muzaffarpur, India
| | - Kumar Suranjit Prasad
- Centre of Environmental Studies, Institute of Inter-Disciplinary Studies, University of Allahabad, Prayagraj, India
| |
Collapse
|
13
|
Niu J, Yuan R, Chen H, Zhou B, Luo S. Heterogeneous catalytic ozonation for the removal of antibiotics in water: A review. ENVIRONMENTAL RESEARCH 2024; 262:119889. [PMID: 39216738 DOI: 10.1016/j.envres.2024.119889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/12/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Antibiotics with pseudo-persistence in water have been regarded as emerging pollutants, which have obvious biological toxicity even at trace levels. On account of high reactivity, heterogeneous catalytic ozonation has been widely applied to remove antibiotics. Among the heterogeneous catalysts, with well-developed pores and regulable surface defects, carbon-based materials can act as both adsorbents and catalysts. Metal cations, surface hydroxyl (-OH) groups and oxygen vacancies (OVs) serve as primary active sites in metal oxides. However, composites (perovskite, apatite, etc.) with special crystalline structure have more crystallographic planes and abundant active sites. The unsaturated bonds and aromatic rings which have dense structure of the electron cloud are more likely to be attacked by ozone (O3) directly. Sulfonamides (SAs) can be oxidized by O3 directly within a short time due to the structure of activated aromatic rings and double bonds. With the existence of catalysts, almost all antibiotics can attain fair removal effects. The presence of water matrix can greatly influence the removal rate of pollutants via changing the surface properties of catalysts, competing active sites with O3, etc. Correspondingly, the application of diverse heterogeneous catalysts was introduced in details, based on modification including metal/non-metal doping, surface modification and carrier composite. The degradation pathways of SAs, fluoroquinolones (FQNs), tetracyclines (TCs) and β-lactams were summarized founded on the functional group structures. Furthermore, the effects of water matrix (pH, coexisting ions, organics) for catalytic ozonation were also debated. It is expected to proffer advanced guidance for researchers in catalytic ozonation of antibiotics.
Collapse
Affiliation(s)
- Jiameng Niu
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Rongfang Yuan
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Huilun Chen
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Beihai Zhou
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Shuai Luo
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
14
|
Xia X, Mu H, Li Y, Hou Y, Li J, Zhao Z, Zhao Q, You S, Wei L. Which emerging micropollutants deserve more attention in wastewater in the post-COVID-19 pandemic period? Based on distribution, risk, and exposure analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175511. [PMID: 39147043 DOI: 10.1016/j.scitotenv.2024.175511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/25/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Aggravated accumulation of emerging micropollutants (EMs) in aquatic environments, especially after COVID-19, raised significant attention throughout the world for safety concerns. This article reviews the sources and occurrence of 25 anti-COVID-19 related EMs in wastewater. It should be pointed out that the concentration of anti-COVID-19 related EMs, such as antivirals, plasticizers, antimicrobials, and psychotropic drugs in wastewater increased notably after the pandemic. Furthermore, the ecotoxicity, ecological, and health risks of typical EMs before and after COVID-19 were emphatically compared and analyzed. Based on the environmental health prioritization index method, the priority control sequence of typical EMs related to anti-COVID-19 was identified. Lopinavir (LPV), venlafaxine (VLX), di(2-ethylhexyl) phthalate (DEHP), benzalkonium chloride (BAC), triclocarban (TCC), di-n-butyl phthalate (DBP), citalopram (CIT), diisobutyl phthalate (DIBP), and triclosan (TCS) were identified as the top-priority control EMs in the post-pandemic period. Besides, some insights into the toxicity and risk assessment of EMs were also provided. This review provides direction for proper understanding and controlling the EMs pollution after COVID-19, and is of significance to evaluate objectively the environmental and health impacts induced by COVID-19.
Collapse
Affiliation(s)
- Xinhui Xia
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Huizhi Mu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yaqun Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yanlong Hou
- The 404 Company Limited, CNNC, Lanzhou 732850, China
| | - Jianju Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zixuan Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shijie You
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
15
|
Castle L, Andreassen M, Aquilina G, Bastos ML, Boon P, Fallico B, FitzGerald R, Frutos Fernandez MJ, Grasl‐Kraupp B, Gundert‐Remy U, Gürtler R, Houdeau E, Kurek M, Louro H, Morales P, Passamonti S, Batke M, Bruzell E, Chipman J, Cheyns K, Crebelli R, Fortes C, Fürst P, Halldorsson T, LeBlanc J, Mirat M, Lindtner O, Mortensen A, Ntzani E, Shah R, Wallace H, Wright M, Barmaz S, Civitella C, Georgelova P, Lodi F, Mazzoli E, Rasinger J, Maria Rincon A, Tard A, Zakidou P, Younes M. Re-evaluation of saccharin and its sodium, potassium and calcium salts (E 954) as food additives. EFSA J 2024; 22:e9044. [PMID: 39553702 PMCID: PMC11565076 DOI: 10.2903/j.efsa.2024.9044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
This opinion deals with the re-evaluation of saccharin and its sodium, potassium and calcium salts (E 954) as food additives. Saccharin is the chemically manufactured compound 1,2-benzisothiazol-3(2H)-one-1,1-dioxide. Along with its sodium (Na), potassium (K) and calcium (Ca) salts, they are authorised as sweeteners (E 954). E 954 can be produced by two manufacturing methods i.e. Remsen-Fahlberg and Maumee. No analytical data on potential impurities were provided for products manufactured with the Maumee process; therefore, the Panel could only evaluate saccharins (E 954) manufactured with the Remsen-Fahlberg process. The Panel concluded that the newly available studies do not raise a concern for genotoxicity of E 954 and the saccharins impurities associated with the Remsen-Fahlberg manufacturing process. For the potential impurities associated with the Maumee process, a concern for genotoxicity was identified. The data set evaluated consisted of animals and human studies. The Panel considered appropriate to set a numerical acceptable daily intake (ADI) and considered the decrease in body weight in animal studies as the relevant endpoint for the derivation of a reference point. An ADI of 9 mg/kg body weight (bw) per day, expressed as free imide, was derived for saccharins (E 954). This ADI replaces the ADI of 5 mg /kg bw per day (expressed as sodium saccharin, corresponding to 3.8 mg /kg bw per day saccharin as free imide) established by the Scientific Committee on Food. The Panel considered the refined brand-loyal exposure assessment scenario the most appropriate exposure scenario for the risk assessment. The Panel noted that the P95 exposure estimates for chronic exposure to saccharins (E 954) were below the ADI. The Panel recommended the European Commission to consider the revision of the EU specifications of saccharin and its sodium, potassium and calcium salts (E 954).
Collapse
|
16
|
Zhu S, Xiao Y, Xia L, Li J, Lei S, Liu J, Liu L. Occurrence, spatiotemporal distribution, and health risk of antibiotics in the Wuhan section of the Yangtze River, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:64152-64170. [PMID: 39531106 DOI: 10.1007/s11356-024-35513-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
The occurrence, spatiotemporal changes, and health hazard of antibiotics in source water and finished water in the Wuhan section of the Yangtze River are not well understood. In this study, 43 source water and finished water samples were collected from 11 water plants in Wuhan in August 2021 and May 2022. Fifty-one antibiotics from eight categories were measured. A total of 41 antibiotics were detected in the source water samples, and 24 in the finished water samples. The total antibiotic concentration in source water ranged from 1.68 to 437.18 ng/L, which is significantly higher than that in finished water (2.04-87.25 ng/L). Sulfonamides and lincosamides were predominant, accounting for nearly 80% of the total antibiotic concentration. Lincomycin constituted nearly 30% of the total antibiotic concentration in the source water. In August 2021, the average total antibiotic concentration in source water was 107.12 ng/L, higher than in May 2022 (63.13 ng/L). Spatially, the total antibiotic concentrations in samples collected from the Han River, a tributary of the Yangtze River, were higher than those in the main stream of the Yangtze River. Ecological risk assessment indicated that the hazard posed by most antibiotics were negligible. Lincomycin potentially posed a high health hazard, and clarithromycin and roxithromycin posed a moderate hazard to infants.
Collapse
Affiliation(s)
- Sijia Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Yonghua Xiao
- Wuhan Centers for Disease Prevention and Control, Wuhan, Hubei, 430024, People's Republic of China
| | - Lu Xia
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Jia Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Shengxi Lei
- Wuhan Britain-China School, Wuhan, Hubei, 430030, People's Republic of China
| | - Junling Liu
- Wuhan Centers for Disease Prevention and Control, Wuhan, Hubei, 430024, People's Republic of China
| | - Li Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China.
| |
Collapse
|
17
|
Zhang J, Khu ST, Zhang Y. Which organic contaminants should be paid more attention: Based on an improved health risk assessment framework. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122323. [PMID: 39244922 DOI: 10.1016/j.jenvman.2024.122323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/14/2024] [Accepted: 08/28/2024] [Indexed: 09/10/2024]
Abstract
The increasing chemical pollution of the drinking water is widely concerned. Large number of organic contaminants cannot be removed by conventional water treatment technology due to their low concentration, and long-term exposure may pose significant risks to human health. Which organic contaminants in drinking water should be given more attention has been a topic of great concern in recent years. To identify the organic contaminants that need attention, this research proposes an improved health risk screening method to quantitatively analyze the risks of accumulation, persistence, toxicity, and antibiotic resistance. Compared with conventional method, 26 compounds were added to the improved screening list, including 9 DBPs (e.g., NDMA), 3 antibiotics (e.g., oxytetracycline), PFNA and other compounds. Overall, antibiotics and plasticizers rose in the risk rankings. From the perspective of the proportion of total risk value, a single risk plays a decisive role (more than 99%) in the ranking. This change suggests that antibiotic resistance and the accumulation of organic matter are as important as their toxic risks to humans. 58 compounds were recommended for the priority control organic contaminants list in drinking water. This list provides the necessary information for authoritative regulations to monitor, control, assess, and manage the risks of environmentally relevant compounds in drinking water in China.
Collapse
Affiliation(s)
- Jianing Zhang
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300350, China
| | - Soon-Thiam Khu
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300350, China
| | - Ying Zhang
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
18
|
Huang D, Liu C, Zhou H, Wang X, Zhang Q, Liu X, Deng Z, Wang D, Li Y, Yao C, Song W, Rao Q. Simultaneous and High-Throughput Analytical Strategy of 30 Fluorinated Emerging Pollutants Using UHPLC-MS/MS in the Shrimp Aquaculture System. Foods 2024; 13:3286. [PMID: 39456348 PMCID: PMC11507328 DOI: 10.3390/foods13203286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
This study established novel and high-throughput strategies for the simultaneous analysis of 30 fluorinated emerging pollutants in different matrices from the shrimp aquaculture system in eastern China using UHPLC-MS/MS. The parameters of SPE for analysis of water samples and of QuEChERS methods for sediment and shrimp samples were optimized to allow the simultaneous detection and quantitation of 17 per- and polyfluoroalkyl substances (PFASs) and 13 fluoroquinolones (FQs). Under the optimal conditions, the limits of detection of 30 pollutants for water, sediment, and shrimp samples were 0.01-0.30 ng/L, 0.01-0.22 μg/kg, and 0.01-0.23 μg/kg, respectively, while the limits of quantification were 0.04-1.00 ng/L, 0.03-0.73 μg/kg, and 0.03-0.76 μg/kg, with satisfactory recoveries and intra-day precision. The developed methods were successfully applied to the analysis of multiple samples collected from aquaculture ponds in eastern China. PFASs were detected in all samples with concentration ranges of 0.18-0.77 μg/L in water, 0.13-1.41 μg/kg (dry weight) in sediment, and 0.09-0.96 μg/kg (wet weight) in shrimp, respectively. Only two FQs, ciprofloxacin and enrofloxacin, were found in the sediment and shrimp. In general, this study provides valuable insights into the prevalence of fluorinated emerging contaminants, assisting in the monitoring and control of emerging contaminants in aquatic foods.
Collapse
Affiliation(s)
- Di Huang
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.H.); (C.L.); (H.Z.); (X.W.); (Q.Z.); (X.L.); (Z.D.); (D.W.); (Y.L.); (C.Y.); (Q.R.)
- Key Laboratory of Food Quality Safety and Nutrition (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
| | - Chengbin Liu
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.H.); (C.L.); (H.Z.); (X.W.); (Q.Z.); (X.L.); (Z.D.); (D.W.); (Y.L.); (C.Y.); (Q.R.)
- Key Laboratory of Food Quality Safety and Nutrition (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
- Shanghai Co-Elite Agri-Food Testing Technical Service Co., Ltd., Shanghai 201403, China
| | - Huatian Zhou
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.H.); (C.L.); (H.Z.); (X.W.); (Q.Z.); (X.L.); (Z.D.); (D.W.); (Y.L.); (C.Y.); (Q.R.)
- School of Health Science and Engineering, University of Shanghai for Science & Technology, Shanghai 100049, China
| | - Xianli Wang
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.H.); (C.L.); (H.Z.); (X.W.); (Q.Z.); (X.L.); (Z.D.); (D.W.); (Y.L.); (C.Y.); (Q.R.)
- Key Laboratory of Food Quality Safety and Nutrition (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
| | - Qicai Zhang
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.H.); (C.L.); (H.Z.); (X.W.); (Q.Z.); (X.L.); (Z.D.); (D.W.); (Y.L.); (C.Y.); (Q.R.)
- Key Laboratory of Food Quality Safety and Nutrition (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
| | - Xiaoyu Liu
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.H.); (C.L.); (H.Z.); (X.W.); (Q.Z.); (X.L.); (Z.D.); (D.W.); (Y.L.); (C.Y.); (Q.R.)
| | - Zhongsheng Deng
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.H.); (C.L.); (H.Z.); (X.W.); (Q.Z.); (X.L.); (Z.D.); (D.W.); (Y.L.); (C.Y.); (Q.R.)
| | - Danhe Wang
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.H.); (C.L.); (H.Z.); (X.W.); (Q.Z.); (X.L.); (Z.D.); (D.W.); (Y.L.); (C.Y.); (Q.R.)
- Key Laboratory of Food Quality Safety and Nutrition (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
| | - Yameng Li
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.H.); (C.L.); (H.Z.); (X.W.); (Q.Z.); (X.L.); (Z.D.); (D.W.); (Y.L.); (C.Y.); (Q.R.)
- Key Laboratory of Food Quality Safety and Nutrition (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
| | - Chunxia Yao
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.H.); (C.L.); (H.Z.); (X.W.); (Q.Z.); (X.L.); (Z.D.); (D.W.); (Y.L.); (C.Y.); (Q.R.)
- Key Laboratory of Food Quality Safety and Nutrition (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
| | - Weiguo Song
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.H.); (C.L.); (H.Z.); (X.W.); (Q.Z.); (X.L.); (Z.D.); (D.W.); (Y.L.); (C.Y.); (Q.R.)
- Key Laboratory of Food Quality Safety and Nutrition (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
- Shanghai Co-Elite Agri-Food Testing Technical Service Co., Ltd., Shanghai 201403, China
- School of Health Science and Engineering, University of Shanghai for Science & Technology, Shanghai 100049, China
| | - Qinxiong Rao
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.H.); (C.L.); (H.Z.); (X.W.); (Q.Z.); (X.L.); (Z.D.); (D.W.); (Y.L.); (C.Y.); (Q.R.)
- Key Laboratory of Food Quality Safety and Nutrition (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
| |
Collapse
|
19
|
Oliveira TMA, Mansano AS, Holanda CA, Pinto TS, Reis JB, Azevedo EB, Verbinnen RT, Viana JL, Franco TCRS, Vieira EM. Occurrence and Environmental Risk Assessment of Contaminants of Emerging Concern in Brazilian Surface Waters. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2199-2210. [PMID: 39073366 DOI: 10.1002/etc.5953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/13/2024] [Accepted: 06/18/2024] [Indexed: 07/30/2024]
Abstract
We investigated the occurrence and the environmental risk of eight contaminants of emerging concern (CECs; acetaminophen, naproxen, diclofenac, methylparaben, 17β-estradiol, sulfathiazole, sulfadimethoxine, and sulfamethazine) in three Brazilian water bodies, namely, the Monjolinho River Basin (São Paulo State), the Mogi Guaçu River (São Paulo State), and the Itapecuru River (Maranhão State) in three sampling campaigns. The CECs were only quantified in surface water samples collected at the Monjolinho River Basin. Acetaminophen, naproxen, and methylparaben were detected in the range of <200 to 575.9 ng L-1, <200 to 224.7 ng L-1, and <200 to 303.6 ng L-1, respectively. The detection frequencies of the three measured compounds were between 33% and 67%. The highest concentrations of CECs were associated with intense urbanization and untreated sewage discharge. Furthermore, CEC concentrations were significantly correlated with total organic carbon, electrical conductivity, and dissolved oxygen levels, suggesting that domestic pollution from urban areas is an important source in the distribution of CECs in the Monjolinho River Basin. The environmental risk assessment indicated a high risk for acetaminophen (risk quotient [RQ] values between 2.1 and 5.8), a medium risk for naproxen (RQs between 0.6 and 0.7), and a low risk for methylparaben (RQs < 0.1) to the freshwater biota of the Monjolinho River Basin. Our findings show potential threats of CECs in Brazilian water bodies, especially in vulnerable areas, and reinforce the need for improvements in environmental regulations to include monitoring and control of these compounds in aquatic systems. Environ Toxicol Chem 2024;43:2199-2210. © 2024 SETAC.
Collapse
Affiliation(s)
- Thiessa M A Oliveira
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo, Brazil
- Santa Luzia Faculty, Santa Inês, Maranhão, Brazil
| | - Adrislaine S Mansano
- Department of Hydrobiology, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Carlos A Holanda
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo, Brazil
- Licentiate Coordination of Natural Sciences, Federal University of Maranhão, Imperatriz, Maranhão, Brazil
| | - Tiago S Pinto
- Water Resources and Applied Ecology Center, São Carlos School of Engineering, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Jonas B Reis
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Eduardo B Azevedo
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Raphael T Verbinnen
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo, Brazil
- Analytical Chemistry and Ecotoxicology Laboratory, Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - José Lucas Viana
- Analytical Chemistry and Ecotoxicology Laboratory, Federal University of Maranhão, São Luís, Maranhão, Brazil
- Environmental Studies Centre, São Paulo State University, Rio Claro, Brazil
| | - Teresa C R S Franco
- Analytical Chemistry and Ecotoxicology Laboratory, Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - Eny M Vieira
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo, Brazil
| |
Collapse
|
20
|
Karayi M, Yazhini C, Mukhopadhyay M, Neppolian B, Kanmani S, Chakraborty P. Pharmaceuticals and personal care products contamination in the rivers of Chennai city during the COVID-19 pandemic. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:462. [PMID: 39352591 DOI: 10.1007/s10653-024-02241-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/16/2024] [Indexed: 11/20/2024]
Abstract
Pharmaceuticals and personal care products (PPCPs) monitoring in surface water is crucial to address the escalating threat of antimicrobial resistance and safeguard public health. This study aimed to investigate the occurrence of 21 different PPCPs, including wastewater chemical markers, antibiotics, and parabens in the surface water of Chennai city using Ultra Performance Liquid Chromatography-Triple Quadrupole Mass Spectrometry (UPLC-MS/MS) analysis. It is noteworthy that chemical markers viz., carbamazepine (CBZ) and caffeine (CAF) were detected in all the sites and contributed to more than 95% of the total PPCPs load indicating a significant intrusion of wastewater. Among the antibiotics, fluoroquinolones were dominant in this study. Interestingly, a significant and strong correlation was seen between fluoroquinolones, CBZ and CAF (R2 = 0.880-0.928, p < 0.05), suggesting similarities in their sources. More than 50% of the sites exhibited a risk for antimicrobial resistance (RQAMR) with RQAMR > 1 for ciprofloxacin, indicating a significant public health concern. The ecotoxicological risk assessment of PPCPs showed no risk to any organisms, except for triclosan, which posed a risk to fish and daphnids at one site near an open drain in Buckingham canal.
Collapse
Affiliation(s)
- Mithun Karayi
- Department of Chemistry, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India
| | - Crescentia Yazhini
- Department of Chemistry, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India
| | - Moitraiyee Mukhopadhyay
- Environmental Science and Technology Lab, Centre for Research in Environment, Sustainability Advocacy and Climate Change, Directorate of Research, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India
- Neuvo Chakra (OPC) Pvt. Ltd, Vasai, India
| | - Bernaurdshaw Neppolian
- Department of Chemistry, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India
| | - S Kanmani
- Centre for Environmental Studies, College of Engineering Guindy, Anna University, Chennai, Tamil Nadu, 600 025, India
| | - Paromita Chakraborty
- Environmental Science and Technology Lab, Centre for Research in Environment, Sustainability Advocacy and Climate Change, Directorate of Research, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India.
- UNESCO Chair on Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| |
Collapse
|
21
|
Astani S, Lorestani B, Cheraghi M, Kiani Sadr M. Assessing the health risks of chemicals in a company supplying chemicals to drilling rigs in Southern Iran using COSHH, SHEM-SAM, and SQRA methods. Front Public Health 2024; 12:1395695. [PMID: 39391152 PMCID: PMC11464427 DOI: 10.3389/fpubh.2024.1395695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/20/2024] [Indexed: 10/12/2024] Open
Abstract
Chemical industries are among the process industries and cause many risks. The present research aimed to analyze the health risks of a chemical warehouse of drilling rigs chemical Supply Company based on COSHH (Control of Substances Hazardous to Health), CHEM-SAM (Chemical Risk Management Self-Assessment Model), and SQRA (Subjective Quantified Risk Assessment) methods in 2021. The information was collected based on document review, MSDS of chemicals, processes, employees, and chemical exposure. Flammability, toxicity, allergy-causing, corrosivity, reactivity, LD50, and permissible thresholds of chemicals were also collected. The present research results showed that out of 59 main chemicals in the operational processes of the chemical warehouse of drilling rigs, 14 chemicals are flammable, 22 cause allergy responses, and three can cause death if inhaled. According to the results of the CHEM-SAM method, the employees and people outside the organization are at medium and low chemical risk based on the current management of the chemical warehouse, respectively. The results of the COSHH health assessment showed that chemicals had low, medium, high, and very high risk in 31, 13, 12, and 3 cases, respectively. The high-risk cases consisted of Ammonium Nitrate، Caustic Soda, and Poly.Aluminum.Chloride. Health risk assessment was also performed using the SQRA method, and results showed that chemicals have a very low, low, medium, high, and very high risk in 27, 12, 8, 9, and 3 cases, respectively. The results showed that the adverse health effects of chemical exposure in the drilling industry are alarming. Employees of different sectors of oil and gas industries are exposed to chemicals.
Collapse
|
22
|
Liyanage S, Lay M, Glasgow G, Tanner C, Craggs R, Northcott G. Nature based solutions for removal of steroid estrogens in wastewater. Front Microbiol 2024; 15:1437795. [PMID: 39376707 PMCID: PMC11457588 DOI: 10.3389/fmicb.2024.1437795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/02/2024] [Indexed: 10/09/2024] Open
Abstract
Estrogens are a growing problem in wastewater discharges because they are continuously entering the environment and are biologically active at extremely low concentrations. Their effects on wildlife were first identified several decades before, but the environmental limits and the remedial measures are still not completely elucidated. Most conventional treatment processes were not designed with sufficiently long retention times to effectively remove estrogens. Nature-based wastewater treatment technologies such as treatment wetlands (TW) and high-rate algal ponds (HRAP) are economically feasible alternatives for decentralized wastewater treatment and have promise for removing steroid hormones including estrogens. For small communities with populations below 50,000, the overall cost of TWs and HRAPs is considerably lower than that of advanced decentralized treatment technologies such as activated sludge systems (AS) and sequencing batch reactors (SBR). This results from the simplicity of design, use of less materials in construction, lower energy use, operation and maintenance costs, and operation by non-skilled personnel. The nature-based technologies show high removal (>80%) for both natural and synthetic estrogens. Estrogen removal in TWs can be enhanced using alternative media such as palm mulch, biochar, and construction wastes such as bricks, instead of traditional substrates such as sand and gravel. While TWs are effective in estrogen removal, they have the disadvantage of requiring a relatively large footprint, but this can be reduced by using intensified multilayer wetland filters (IMWF). Using filamentous algae in HRAP (high-rate filamentous algal pond; HRFAP) is an emerging technology for wastewater treatment. The algae supply oxygen via photosynthesis and assimilate nutrients into readily harvestable filamentous algal biomass. Diurnal fluctuations in oxygen supply and pH in these systems provide conditions conducive to the breakdown of estrogens and a wide range of other emerging contaminants. The performance of these nature-based systems varies with seasonal changes in environmental conditions (particularly temperature and solar irradiation), however a greater understanding of operating conditions such as loading rate, hydraulic retention time (HRT), pond/bed depth, dissolved oxygen (DO) concentration and pH, which influence the removal mechanisms (biodegradation, sorption and photodegradation) enable TWs and HRAPs to be successfully used for removing estrogens.
Collapse
Affiliation(s)
- Sureka Liyanage
- Division of Health, Engineering, Computing and Science, School of Engineering, University of Waikato, Hamilton, New Zealand
| | - Mark Lay
- Division of Health, Engineering, Computing and Science, School of Engineering, University of Waikato, Hamilton, New Zealand
| | - Graeme Glasgow
- Division of Health, Engineering, Computing and Science, School of Engineering, University of Waikato, Hamilton, New Zealand
| | - Chris Tanner
- National Institute of Water and Atmospheric Research Ltd, Hamilton, New Zealand
| | - Rupert Craggs
- National Institute of Water and Atmospheric Research Ltd, Hamilton, New Zealand
| | | |
Collapse
|
23
|
Li T, Li CY, Wang YF, Zhang JN, Li H, Wu HF, Yang XL, Song HL. Insights to the cooperation of double-working potential electroactive biofilm for performance of sulfamethoxazole removal: ARG fate and microorganism communities. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135357. [PMID: 39079293 DOI: 10.1016/j.jhazmat.2024.135357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/06/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024]
Abstract
Bioelectrochemical systems (BESs) have shown great potential in enhancing sulfamethoxazole (SMX) removal. However, electroactive biofilms (EBs) constructed with single potentials struggle due to limited biocatalytic activity, hindering deep SMX degradation. Here, we constructed a double-working potential BES (BES-D) to investigate its ability to eliminate SMX and reduce the levels of corresponding antibiotic resistance genes (ARGs). The preferable electrochemical activity of EB in BES-D was confirmed by electrochemical characterization, EPS analysis, physical structure, viability of the biofilm, and cytochrome content. BES-D exhibited a notably greater SMX removal efficiency (94.2 %) than did the single-working potential BES (BES-S) and the open-circuit group (OC). Degradation pathway analysis revealed that the cooperative EB could accelerate the in-depth removal of SMX. Moreover, EB interaction in BES-D decreased the relative abundance of ARGs in biofilms compared to that in BES-S, although the absolute number of ARG copies increased in BES-D effluents. Compared to those in BES-S and OC, more complex cross-niche microbial associations in the EB of BES-D were observed by network analysis of the bacterial community and ARG hosts, enhancing the degradation efficiency of SMX. In conclusion, BES-D has significant potential for SMX removal and the enhancement of EB activity. Nonetheless, the risk of ARG dissemination in effluent remains a concern.
Collapse
Affiliation(s)
- Tao Li
- College of Urban Construction, Nanjing Tech University, Nanjing 211816, China.
| | - Chen-Ying Li
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, China.
| | - Yan-Fei Wang
- College of Urban Construction, Nanjing Tech University, Nanjing 211816, China.
| | - Jing-Nan Zhang
- School of Civil Engineering, Southeast University, Nanjing 211189, China.
| | - Hua Li
- College of Urban Construction, Nanjing Tech University, Nanjing 211816, China; Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Hui-Fang Wu
- College of Urban Construction, Nanjing Tech University, Nanjing 211816, China.
| | - Xiao-Li Yang
- School of Civil Engineering, Southeast University, Nanjing 211189, China.
| | - Hai-Liang Song
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing 210023, China.
| |
Collapse
|
24
|
Singh PK, Kumar U, Kumar I, Dwivedi A, Singh P, Mishra S, Seth CS, Sharma RK. Critical review on toxic contaminants in surface water ecosystem: sources, monitoring, and its impact on human health. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:56428-56462. [PMID: 39269525 DOI: 10.1007/s11356-024-34932-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
Surface water pollution is a critical and urgent global issue that demands immediate attention. Surface water plays a crucial role in supporting and sustaining life on the earth, but unfortunately, till now, we have less understanding of its spatial and temporal dynamics of discharge and storage variations at a global level. The contamination of surface water arises from various sources, classified into point and non-point sources. Point sources are specific, identifiable origins of pollution that release pollutants directly into water bodies through pipes or channels, allowing for easier identification and management, e.g., industrial discharges, sewage treatment plants, and landfills. However, non-point sources originate from widespread activities across expansive areas and present challenges due to its diffuse nature and multiple pathways of contamination, e.g., agricultural runoff, urban storm water runoff, and atmospheric deposition. Excessive accumulation of heavy metals, persistent organic pollutants, pesticides, chlorination by-products, pharmaceutical products in surface water through different pathways threatens food quality and safety. As a result, there is an urgent need for developing and designing new tools for identifying and quantifying various environmental contaminants. In this context, chemical and biological sensors emerge as fascinating devices well-suited for various environmental applications. Numerous chemical and biological sensors, encompassing electrochemical, magnetic, microfluidic, and biosensors, have recently been invented by hydrological scientists for the detection of water pollutants. Furthermore, surface water contaminants are monitored through different sensors, proving their harmful effects on human health.
Collapse
Affiliation(s)
- Prince Kumar Singh
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Umesh Kumar
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Indrajeet Kumar
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Akanksha Dwivedi
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Priyanka Singh
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Saumya Mishra
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | | | - Rajesh Kumar Sharma
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
25
|
Mu L, Liu Y, Luo H, Liu Q, Zhang L, Xu Y, Li G, Tong Q. Determination of the stability of sodium cyclamate during deep-frying using HPLC. PLoS One 2024; 19:e0308220. [PMID: 39116065 PMCID: PMC11309463 DOI: 10.1371/journal.pone.0308220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/18/2024] [Indexed: 08/10/2024] Open
Abstract
The oil used to fry food is often used multiple times to reduce costs. However, when foods containing sweeteners are processed in this way, the sweeteners may produce substances harmful to the body as a result of repeated frying at high temperatures. This article investigated the stability of sodium cyclamate during deep-frying by HPLC using a pre-column derivatization method. The results showed that cyclohexylamine was a decomposition product of a standard sample of sodium cyclamate when deep-fried at 200°C for 25 min. A pre-column derivatization/HPLC method was established to determine cyclohexylamine, a decomposition product of sodium cyclamate, under these conditions. Dansyl chloride was used as the derivatization reagent, the derivatization temperature was 60°C, the derivatization time was 20 min, the pH of sodium bicarbonate buffer solution was 11, and the concentration of dansyl chloride was 2.0 mg/mL. Detection was carried out by using an Agilent 1260 high-performance liquid chromatograph coupled with an ultraviolet detector. The ultraviolet detection wavelength was 254 nm, and the mobile phase was acetonitrile-1.0 g/L potassium dihydrogen phosphate solution at a flow rate of 1.0 mL/min. Gradient elution was adopted, the peak of the cyclohexylamine derivative appeared at a retention time of 17.75 min, and the peak area response value was the largest. The methodological validation analysis showed that the detection limit of cyclohexylamine was 0.5 mg/kg, the quantification limit was 2.0 mg/kg, and the spiked recoveries were in the range of 99.37-110.16%. The relative standard deviations (RSDs) were in the range of 0.17-1.26%. Four samples were tested and analyzed by the established method, and cyclohexylamine was not detected.
Collapse
Affiliation(s)
- Li Mu
- College of Food Science and Engineering of ChangChun University, Changchun, Jilin, China
| | - Yuhang Liu
- College of Food Science and Engineering of ChangChun University, Changchun, Jilin, China
| | - Huihong Luo
- College of Food Science and Engineering of ChangChun University, Changchun, Jilin, China
| | - Qianqian Liu
- College of Food Science and Engineering of ChangChun University, Changchun, Jilin, China
| | - Li Zhang
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun, Jilin, China
| | - Ying Xu
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun, Jilin, China
| | - Gang Li
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun, Jilin, China
| | - Qi Tong
- Pony Testing International Group (Tianjin), Tianjin, China
| |
Collapse
|
26
|
Zhu J, Wang X, Jiang Q, Duan J, Wang H. Green electrospun Janus membrane of polyether block amide (PEBA) doped with hierarchical magnesium hydrogen phosphate for the removal of pharmaceuticals and personal care products. J Colloid Interface Sci 2024; 667:32-43. [PMID: 38615621 DOI: 10.1016/j.jcis.2024.03.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/17/2024] [Accepted: 03/28/2024] [Indexed: 04/16/2024]
Abstract
It has been a challenge to prepared polyether block amide (PEBA) fibrous membrane via solution electrospinning. The only few reported methods though involved hazardous solvents and surfactants which were against the principle of green chemistry. In this work, uniform fibrous membrane of PEBA was successfully fabricated by solution electrospinning with a bio-based solvent dihydrolevoglucosenone (Cyrene). To further improve the mechanical strength and adsorption performance of the PEBA membrane, a hierarchical magnesium hydrogen phosphate (MgHPO4·1.2H2O, MHP) was synthesized to blend evenly into the PEBA matrix. A Janus MHP/PEBA membrane with one side of hydrophobic surface and the other side of hydrophilic surface was subsequently prepared, which exhibited fast adsorption, high capacity, good selectivity and reusability towards ibuprofen, acetaminophen, carbamazepine and triclosan. In addition, the Janus membrane showed high removal efficiency of the above contaminants in secondary wastewater effluent with good long term stability. It demonstrated that this Janus MHP/PEBA membrane had a good potential in practical wastewater treatment.
Collapse
Affiliation(s)
- Jiaxin Zhu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiao Wang
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Quantong Jiang
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jizhou Duan
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Haizeng Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
27
|
Zhang Y, Huang G, Zhang Q, Bi X, Chu H, Liu Z, Luo J, Bai S, Mo S, Wang H, Fu M. Occurrence, distribution, and ecological risk assessment of pharmaceuticals and personal care products in the surface water of Lipu River, China. ENVIRONMENTAL RESEARCH 2024; 252:118908. [PMID: 38614197 DOI: 10.1016/j.envres.2024.118908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
Pharmaceuticals and Personal Care Products (PPCPs) are inadvertently released into the aquatic environment, causing detrimental effects on aquatic ecosystem. There is an urgent need of an in-deep investigation on contamination information of PPCPs in aquatic environment as well as the ecological risks to the aquatic ecosystem. This study was carried out in Lipu River basin, China, to investigate the distribution pattern and ecological risks of PPCPs. Results showed that PPCPs pollution is ubiquitous, 29 out of 30 targeted PPCPs were detected in Lipu River. Fourteen PPCPs were detected with a frequency of 100% in all water samples, and ten PPCPs were detected with a frequency of more than 80%. The cumulated PPCPs concentrations ranged from 33.30 ng/L to 99.60 ng/L, with a median value of 47.20 ng/L in Lipu River. Caffeine, flumequine, nifedipine, and lomefloxacin were the predominant PPCPs in study area. Caffeine showed high ecological risk, five and seven individual PPCP showed medium and low ecological risk to algae.
Collapse
Affiliation(s)
- Yanan Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China
| | - Guibin Huang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Qin Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Xiaoqian Bi
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Hang Chu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Zixuan Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Jun Luo
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Shaoyuan Bai
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Shengpeng Mo
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Hui Wang
- Hengsheng Water Environment Treatment Co., Ltd., Guilin, 541100, China
| | - Mingming Fu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China.
| |
Collapse
|
28
|
Behera D, Chetan D, Anoop A. Organic matter sources and distribution along land-use gradient in a Himalayan foothills River: Insights from molecular markers. ENVIRONMENTAL RESEARCH 2024; 252:118909. [PMID: 38615790 DOI: 10.1016/j.envres.2024.118909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/20/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
The analysis of hydrocarbon biomarkers in surface sediments along the Markanda River in the foothills of the Indian Himalayas was conducted to gain insights into the distribution and composition of organic matter (OM) within the sediments. This investigation is essential for comprehending how anthropogenic changes are influencing the OM dynamics in river systems. The study involved identification and quantification of various compound groups such as n-alkanes, hopanes, steranes, polycyclic aromatic hydrocarbons (PAHs), linear alkyl benzenes (LABs) and phthalate esters along with their respective parametric ratios. The variation in distribution of n-alkanes and associated indices (odd-even carbon number predominance (OEP), average chain length (ACL), terrigenous to aquatic ratio (TAR), carbon preference index (CPI), and natural n-alkanes ratio (NAR)) were used to distinguish the natural source of organic content from those influenced by anthropogenic contamination. The detection of petroleum contamination was indicated by the presence of prominent unresolved complex mixtures (UCM) as well as specific petroleum biomarkers such as hopanes, diasteranes, and steranes. The study revealed varying concentrations of the analyzed organic pollutants, with the average of PAHs at 24.6 ng/g dw, LABs at 18.1 ng/g dw, and phthalates at 8.3 μg/g dw. The variability in concentration of the investigated compound groups across different locations indicated spatial heterogeneity, and the land use patterns appears to modulate the sources of OM in surface sediments. The source contribution of PAHs and phthalates determined by positive matrix factorization (PMF) shows the predominant sources of the anthropogenic hydrocarbons were linked primarily to petroleum/petroleum-derived products emissions, industrial discharges, cultural practices and common household waste/sewage disposal. This analysis provides insights for developing mitigation strategies and informing relevant policy changes globally, thereby contributing to the broader understanding of anthropogenic impacts on water ecosystems.
Collapse
Affiliation(s)
- Diptimayee Behera
- Indian Institute of Science Education and Research Mohali, Sector 82, Mohali, Punjab-140306, India
| | - Dharia Chetan
- Indian Institute of Science Education and Research Mohali, Sector 82, Mohali, Punjab-140306, India
| | - Ambili Anoop
- Indian Institute of Science Education and Research Mohali, Sector 82, Mohali, Punjab-140306, India.
| |
Collapse
|
29
|
Adjei JK, Acquah H, Essumang DK. Occurrence, efficiency of treatment processes, source apportionment and human health risk assessment of pharmaceuticals and xenoestrogen compounds in tap water from some Ghanaian communities. Heliyon 2024; 10:e31815. [PMID: 38845891 PMCID: PMC11153180 DOI: 10.1016/j.heliyon.2024.e31815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/15/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
The occurrence of pharmaceuticals and xenoestrogen compounds (PXCs) in drinking water presents a dire human health risk challenge. The problem stems from the high anthropogenic pollution load on source water and the inefficiencies of the conventional water treatment plants in treating PXCs. This study assessed the PXCs levels and the consequential health risks of exposure to tap water from selected Ghanaian communities as well as that of raw water samples from the respective treatment plants. Thus the PXCs treatment efficiency of two drinking water treatment plants in the metropolises studied was also assessed. The study also conducted source apportionment of the PXCs in the tap water. Twenty six (26) tap and raw water samples from communities in the Cape Coast and Sekondi-Takoradi metropolises were extracted using SPE cartridges and analysed for PXCs using Ultra-fast-HPLC-UV instrument. Elevated levels of PXCs up to 24.79 and 22.02 μg/L were respectively recorded in raw and tap water samples from the metropolises. Consequently, elevated non-cancer health risk (HI > 1) to residential adults were found for tap water samples from Cape Coast metropolis and also for some samples from Sekondi-Takoradi metropolis. Again, elevated cumulative oral cancer risks >10-5 and dermal cancer risk up to 4 × 10-5 were recorded. The source apportionment revealed three significant sources of PXCs in tap water samples studied. The results revealed the inefficiency of the treatment plants in removing PXCs from the raw water during treatments. The situation thus requires urgent attention to ameliorate it, safeguarding public health. It is recommended that the conventional water treatment process employed be augmented with advanced treatment technologies to improve their efficacy in PXCs treatment.
Collapse
Affiliation(s)
- Joseph K. Adjei
- Environmental Research Group, Department of Chemistry, University of Cape Coast, Ghana
| | - Henrietta Acquah
- Environmental Research Group, Department of Chemistry, University of Cape Coast, Ghana
| | - David K. Essumang
- Environmental Research Group, Department of Chemistry, University of Cape Coast, Ghana
| |
Collapse
|
30
|
Zhao J, Qi B, Zhang P, Jia Y, Guo X, Dong W, Yuan Y. Research progress on the generation of NDMA by typical PPCPs in disinfection treatment of water environment in China: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172498. [PMID: 38657805 DOI: 10.1016/j.scitotenv.2024.172498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/28/2024] [Accepted: 04/13/2024] [Indexed: 04/26/2024]
Abstract
The drugs and personal care products in water sources are potential threats to the ecological environment and drinking water quality. In recent years, the presence of PPCPs has been detected in multiple drinking water sources in China. PPCPs are usually stable and resistant to degradation in aquatic environments. During chlorination, chloramination, and ozonation disinfection processes, PPCPs can act as precursor substances to generate N-nitrosodimethylamine (NDMA) which is the most widely detected nitrosamine byproduct in drinking water. This review provides a comprehensive overview of the impact of PPCPs in China's water environment on the generation of NDMA during disinfection processes to better understand the correlation between PPCPs and NDMA generation. Chloramine is the most likely to form NDMA with different disinfection methods, so chloramine disinfection may be the main pathway for NDMA generation. Activated carbon adsorption and UV photolysis are widely used in the removal of NDMA and its precursor PPCPs, and biological treatment is found to be a low-cost and high removal rate method for controlling the generation of NDMA. However, there are still certain regional limitations in the investigation and research on PPCPs, and other nitrosamine by-products such as NMEA, NDEA and NDBA should also be studied to investigate the formation mechanism and removal methods.
Collapse
Affiliation(s)
- Jingrao Zhao
- College of Quality & Safety Engineering, China Jiliang University, 310018 Hangzhou Province, China
| | - Beimeng Qi
- College of Quality & Safety Engineering, China Jiliang University, 310018 Hangzhou Province, China.
| | - Peng Zhang
- College of Quality & Safety Engineering, China Jiliang University, 310018 Hangzhou Province, China
| | - Yuqian Jia
- College of Quality & Safety Engineering, China Jiliang University, 310018 Hangzhou Province, China
| | - Xiaoyuan Guo
- College of Quality & Safety Engineering, China Jiliang University, 310018 Hangzhou Province, China
| | - Wenjie Dong
- Zhejiang Scientific Research Institute of Transport, 310000 Hangzhou Province, China
| | - Yixing Yuan
- School of Environment, Harbin Institute of Technology, 150001 Harbin, China
| |
Collapse
|
31
|
Singh PK, Ranjan N. Ecological impact of pharmaceutical pollutants and options of river health improvements - A risk analysis-based approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172358. [PMID: 38614331 DOI: 10.1016/j.scitotenv.2024.172358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/31/2023] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
Pharmaceuticals are one of the emerging pollutants (EPs) in river waters across the world. Due to their toxic effects on aquatic organisms, they have drawn the global attention of the scientific community concerned with river ecosystems. This paper reviews the existing occurrence data for various pharmaceutical pollutants (PPs) reported in river waters in some part of the world and their ecological impacts. Using algae, macroinvertebrates (MI), and fish as biotic indicator groups in water to reflect river health conditions, an attempt has been made to assess the ecological risk due to the presence of PPs in the water environment. After ascertaining the predicted no-effect concentration (PNEC) of PPs for selected groups of aquatic organisms, the risk quotient (RQ) is estimated based on their measured environmental concentration (MEC). When MEC > PNEC and RQ > 1 for any of the biotic indicator, ecologically it is 'high risk' condition. The determination of PNEC uses a minimum assessment factor (AF) of 10 due to uncertainty in data over the no observed effect level (NOEL) or lowest observed effect level (LOEL). Accordingly, MEC 10 times higher than PNEC, (RQ = 10) represents a threshold risk concentration (RCT) beyond which adverse effects may start showing observable manifestations. In the present study, a new classification system of 'high risk' conditions for RQ = 1-10 has been proposed, starting from 'moderately high' to 'severely high'. For RQ > 10, the ecological condition of the river is considered 'impaired'. For river health assessment, in the present study, the whole range of physico-chemical characteristics of river water quality has been divided into three groups based on their ease of measurement and frequency of monitoring. Dissolved oxygen related parameters (DORPs), nutrients (NTs), and EPs. PPs represent EPs in this study. A framework for calculating separate indicator group score (IGS) and the overall river health index (RHI) has been developed to predict indicator group condition (IGC) and river health condition (RHC), respectively. Color-coded hexagonal pictorial forms representing IGC and RHC provide a direct visible perception of the existing aquatic environment and a scientific basis for prioritization of corrective measures in terms of treatment technology selection for river health improvements. The analyses indicate that many rivers across the world are under 'high risk' conditions due to PPs having MEC > PNEC and RQ > 1. Up to RCT, (where RQ = 10), the 'high risk' condition varies from 'moderately high' to 'severely high'. In many instances, RQ is found much more higher than 10, indicating that the ecological condition of river may be considered as 'impaired'. Algae is the most frequently affected group of biotic indicators, followed by MI and fish. A review of treatment methods for selection of appropriate technology to reduce the pollution load, especially PPs from the wastewater streams has been summarized. It appears that constructed wetlands (CWs) are at present the most suitable nature-based solutions, particularly for the developing economies of the world, to reduce the concentrations of PPs within limits to minimize the ecological impacts of pharmaceutical compounds on biotic indicators and restore the river health condition. Some suggestive design guidelines for the CWs have also been presented to initiate the process.
Collapse
Affiliation(s)
| | - Nitin Ranjan
- Department of Civil Engineering, IIT(BHU), Varanasi 221005, India.
| |
Collapse
|
32
|
Pauletto M, De Liguoro M. A Review on Fluoroquinolones' Toxicity to Freshwater Organisms and a Risk Assessment. J Xenobiot 2024; 14:717-752. [PMID: 38921651 PMCID: PMC11205205 DOI: 10.3390/jox14020042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Fluoroquinolones (FQs) have achieved significant success in both human and veterinary medicine. However, regulatory authorities have recommended limiting their use, firstly because they can have disabling side effects; secondly, because of the need to limit the spread of antibiotic resistance. This review addresses another concerning consequence of the excessive use of FQs: the freshwater environments contamination and the impact on non-target organisms. Here, an overview of the highest concentrations found in Europe, Asia, and the USA is provided, the sensitivity of various taxa is presented through a comparison of the lowest EC50s from about a hundred acute toxicity tests, and primary mechanisms of FQ toxicity are described. A risk assessment is conducted based on the estimation of the Predicted No Effect Concentration (PNEC). This is calculated traditionally and, in a more contemporary manner, by constructing a normalized Species Sensitivity Distribution curve. The lowest individual HC5 (6.52 µg L-1) was obtained for levofloxacin, followed by ciprofloxacin (7.51 µg L-1), sarafloxacin and clinafloxacin (12.23 µg L-1), and ofloxacin (17.12 µg L-1). By comparing the calculated PNEC with detected concentrations, it is evident that the risk cannot be denied: the potential impact of FQs on freshwater ecosystems is a further reason to minimize their use.
Collapse
Affiliation(s)
| | - Marco De Liguoro
- Department of Comparative Biomedicine & Food Science (BCA), University of Padova, Viale dell’Università 16, I-35020 Legnaro, Padova, Italy;
| |
Collapse
|
33
|
Shi Q, Cao M, Xiong Y, Kaur P, Fu Q, Smith A, Yates R, Gan J. Alternating water sources to minimize contaminant accumulation in food plants from treated wastewater irrigation. WATER RESEARCH 2024; 255:121504. [PMID: 38555786 DOI: 10.1016/j.watres.2024.121504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/16/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
The use of treated wastewater (TWW) for agricultural irrigation is a critical measure in advancing sustainable water management and agricultural production. However, TWW irrigation in agriculture serves as a conduit to introduce many contaminants of emerging concern (CECs) into the soil-plant-food continuum, posing potential environmental and human health risks. Currently, there are few practical options to mitigate the potential risk while promoting the safe reuse of TWW. In this greenhouse study, the accumulation of 11 commonly occurring CECs was evaluated in three vegetables (radish, lettuce, and tomato) subjected to two different irrigation schemes: whole-season irrigation with CEC-spiked water (FULL), and half-season irrigation with CEC-spiked water, followed by irrigation with clean water for the remaining season (HALF). Significant decreases (57.0-99.8 %, p < 0.05) in the accumulation of meprobamate, carbamazepine, PFBS, PFBA, and PFHxA in edible tissues were found for the HALF treatment with the alternating irrigation scheme. The CEC accumulation reduction was attributed to reduced chemical input, soil degradation, plant metabolism, and plant growth dilution. The structural equation modeling showed that this mitigation strategy was particularly effective for CECs with a high bioaccumulation potential and short half-life in soil, while less effective for those that are more persistent. The study findings demonstrate the effectiveness of this simple and on-farm applicable management strategy that can be used to minimize the potential contamination of food crops from the use of TWW and other marginal water sources in agriculture, while promoting safe reuse and contributing to environmental sustainability.
Collapse
Affiliation(s)
- Qingyang Shi
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States
| | - Meixian Cao
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States; CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaxin Xiong
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States
| | - Parminder Kaur
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States
| | - Qiuguo Fu
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, 04318 Leipzig, Germany
| | - Aspen Smith
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States
| | - Rebecca Yates
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States
| | - Jay Gan
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States.
| |
Collapse
|
34
|
Tong Y, Xie M, Xv H, Sun R, Wang Q, Li J. Microplastics and Endocrine Disruptors in Typical Wastewater Treatment Plants in Megacity Shanghai. TOXICS 2024; 12:345. [PMID: 38787124 PMCID: PMC11126012 DOI: 10.3390/toxics12050345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
The fast development of China's urbanization has led to a notable release of emerging pollutants, including microplastics (MPs) and endocrine disruptors (EDCs). Generally, these pollutants enter the coastal environment through the discharge of wastewater treatment plants (WWTPs) and finally threaten the organisms in the receiving waterbody. The study investigated the environmental behavior of MPs and EDCs in two typical WWTPs in one of the megacities in China, Shanghai. The abundance of MPs in the influent ranged from 321 to 976 items/L. Four shapes (films, fragments, fibers, and microbead) were found, while fibers and films dominated. Transparent (31-63%) and white (20-47%) MPs were more frequently observed, while polyethylene terephthalate, cellulose, and cellophane were the main polymetric materials. The size of the MPs fell between 15.8 μm and 2220 μm, and the smaller one (<500 μm) dominated. The removal efficiencies of the two WWTPs for MPs ranged from 64% to 92%, and both WWTPs performed better for large pieces of MPs (>500 μm). For EDCs, total concentrations in the influent were detected, ranging from 113 to 2780 ng/L. Two groups, including phenolic estrogens (PEs) and steroid estrogens (SEs), were detected, and PEs, especially bisphenol A (BPA), were the predominant individuals among the studied EDCs. Specifically, PEs ranged from 82.8 to 2637 ng/L, while SEs ranged from 27.3 to 143 ng/L. The removal efficiencies of the WWTPs for EDCs varied (82.8-100%) as well, possibly due to the different treatment compartments and contamination load in the influent. Seasonal variations for both MPs and EDCs were observed. Specifically, concentrations of MPs and EDCs in WWTPs influent were higher in the wet season, as well as the removal efficiency. Furthermore, there was a correlation observed between the concentrations of MPs and EDCs, suggesting that MPs and EDCs may originate from the same source and that EDCs released by MPs cannot be ignored during treatment. Finally, the study evaluated the environmental risk of the effluents. MPs led to a minor risk (Level I), while EDCs might lead to an adverse impact on algae (RQs = 0.0014-0.024) and fish (RQs = 3.4-30.2). In summary, WWTPs received considerable amounts of MPs and EDCs. Although the WWTPs removed the contaminants efficiently, the environmental risk of the effluent needs to be noted.
Collapse
Affiliation(s)
- Yuxiao Tong
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; (Y.T.); (H.X.); (J.L.)
| | - Manjun Xie
- Shanghai Haibin Sewage Treatment Plant, Pudong, Shanghai 201306, China;
| | - Hanwen Xv
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; (Y.T.); (H.X.); (J.L.)
| | - Ruihua Sun
- Pudong Environmental Monitoring Station, Pudong, Shanghai 201306, China;
| | - Qian Wang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; (Y.T.); (H.X.); (J.L.)
| | - Juanying Li
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; (Y.T.); (H.X.); (J.L.)
| |
Collapse
|
35
|
Matyszczak G, Plocinski T, Dluzewski P, Fidler A, Jastrzebski C, Lawniczak-Jablonska K, Drzewiecka-Antonik A, Wolska A, Krawczyk K. Sonochemical synthesis of SnS and SnS 2 quantum dots from aqueous solutions, and their photo- and sonocatalytic activity. ULTRASONICS SONOCHEMISTRY 2024; 105:106834. [PMID: 38522262 PMCID: PMC10981103 DOI: 10.1016/j.ultsonch.2024.106834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/11/2024] [Accepted: 02/26/2024] [Indexed: 03/26/2024]
Abstract
Our study reports the ultrasound-assisted synthesis of SnS and SnS2 in the form of nanoparticles using aqueous solutions of respective tin chloride and thioacetamide varying sonication time. The presence of both compounds is confirmed by powder X-ray diffraction, energy-dispersive X-ray spectroscopy, as well as Raman and FT-IR spectroscopic techniques. The existence of nanoparticles is proven by powder X-ray diffraction investigation and by high resolution transmission electron microscopy observations. The size of nanocrystallites are in the range of 3-8 nm and 30 50 nm for SnS, and 1.5-10 nm for SnS2. X-ray photoelectron spectroscopy measurements, used to investigate the chemical state of tin and sulphur atoms on the surface of nanoparticles, reveal that they are typically covered with tin on the same oxidation degree as respective bulk compound. Values of optical bandgaps of synthesized nanoparticles, according to the Tauc method, were 2.31, 1.47 and 1.05 eV for SnS (60, 90 and 120 min long synthesis, respectively), and 2.81, 2.78 and 2.70 eV for SnS2 (60, 90 and 120 min long synthesis, respectively). Obtained nanoparticles were utilized as photo- and sonocatalysts in the process of degradation of model azo-dye molecules by UV-C light or ultrasound. Quantum dots of SnS2 obtained under sonication lasting 120 min were the best photocatalyst (66.9 % color removal), while quantum dots of SnS obtained under similar sonication time were the best sonocatalyst (85.2 % color removal).
Collapse
Affiliation(s)
- Grzegorz Matyszczak
- Department of Chemical Technology, Faculty of Chemistry, Warsaw University of Technology, Noakowski street 3, 00-664 Warsaw, Poland.
| | - Tomasz Plocinski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska street 141A, 02-507 Warsaw, Poland
| | - Piotr Dluzewski
- Institute of Physics Polish Academy of Sciences, Poland, Lotników avenue 32/46, 02-668 Warsaw, Poland
| | - Aleksandra Fidler
- Institute of Physics Polish Academy of Sciences, Poland, Lotników avenue 32/46, 02-668 Warsaw, Poland
| | - Cezariusz Jastrzebski
- Faculty of Physics, Warsaw University of Technology, Koszykowa street 75, 00-662 Warsaw, Poland
| | | | | | - Anna Wolska
- Institute of Physics Polish Academy of Sciences, Poland, Lotników avenue 32/46, 02-668 Warsaw, Poland
| | - Krzysztof Krawczyk
- Department of Chemical Technology, Faculty of Chemistry, Warsaw University of Technology, Noakowski street 3, 00-664 Warsaw, Poland
| |
Collapse
|
36
|
Klanovicz N, Pinto CA. Occurrence of pharmaceutically active compounds in groundwater and their effects to the human health. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33223-33238. [PMID: 38691293 DOI: 10.1007/s11356-024-33423-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/18/2024] [Indexed: 05/03/2024]
Abstract
Groundwater contamination by pharmaceutically active compounds (PhACs) has been considered a public health concern worldwide. Alongside the potential toxicological risk of these organic substances, many countries still rely on groundwater for drinking water supply. Thus, this study identified a priority list of seven licit PhACs, comprising acetaminophen (ACT), tramadol (TRA), carbamazepine (CBZ), erythromycin (ERY), sulfamethoxazole (SMX), metformin (MET), and oxazepam (OXZ). Consumption, concentration, and human toxicity in silico results were collected from open access databases. These three indicators were analyzed separately and grouped through a general risk index. The consumption index (data from the USA and Brazil) indicated that ACT, TRA, and MET are the most consumed. Monitoring samples from the USA and Europe (n = 816) indicated that OXZ and ERY stand out as the higher occurrence index considering both regions, but the ranking for each region showed considerable differences. When assessing toxicological risk, an index ≥ 0.5 was attributed to CBZ, MET, OXZ, SMX, and TRA. The general risk indicated the need to be attentive to MET, OXZ, and TRA as they presented ≥ 0.5 index values for at least two indicators.
Collapse
Affiliation(s)
- Natalia Klanovicz
- Department of Chemical Engineering, Escola Politecnica, University of Sao Paulo, São Paulo, 05508080, Brazil.
| | - Carolina Afonso Pinto
- Department of Chemical Engineering, Escola Politecnica, University of Sao Paulo, São Paulo, 05508080, Brazil
| |
Collapse
|
37
|
Marumure J, Simbanegavi TT, Makuvara Z, Karidzagundi R, Alufasi R, Goredema M, Gufe C, Chaukura N, Halabowski D, Gwenzi W. Emerging organic contaminants in drinking water systems: Human intake, emerging health risks, and future research directions. CHEMOSPHERE 2024; 356:141699. [PMID: 38554874 DOI: 10.1016/j.chemosphere.2024.141699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/24/2024] [Accepted: 03/11/2024] [Indexed: 04/02/2024]
Abstract
Few earlier reviews on emerging organic contaminants (EOCs) in drinking water systems (DWS) focused on their detection, behaviour, removal and fate. Reviews on multiple exposure pathways, human intake estimates, and health risks including toxicokinetics, and toxicodynamics of EOCs in DWS are scarce. This review presents recent advances in human intake and health risks of EOCs in DWS. First, an overview of the evidence showing that DWS harbours a wide range of EOCs is presented. Multiple human exposure to EOCs occurs via ingestion of drinking water and beverages, inhalation and dermal pathways are discussed. A potential novel exposure may occur via the intravenous route in dialysis fluids. Analysis of global data on pharmaceutical pollution in rivers showed that the cumulative concentrations (μg L-1) of pharmaceuticals (mean ± standard error of the mean) were statistically more than two times significantly higher (p = 0.011) in South America (11.68 ± 5.29), Asia (9.97 ± 3.33), Africa (9.48 ± 2.81) and East Europe (8.09 ± 4.35) than in high-income regions (2.58 ± 0.48). Maximum cumulative concentrations of pharmaceuticals (μg L-1) decreased in the order; Asia (70.7) had the highest value followed by South America (68.8), Africa (51.3), East Europe (32.0) and high-income regions (17.1) had the least concentration. The corresponding human intake via ingestion of untreated river water was also significantly higher in low- and middle-income regions than in their high-income counterparts. For each region, the daily intake of pharmaceuticals was highest in infants, followed by children and then adults. A critique of the human health hazards, including toxicokinetics and toxicodynamics of EOCs is presented. Emerging health hazards of EOCs in DWS include; (1) long-term latent and intergenerational effects, (2) the interactive health effects of EOC mixtures, (3) the challenges of multifinality and equifinality, and (4) the Developmental Origins of Health and Disease hypothesis. Finally, research needs on human health hazards of EOCs in DWS are presented.
Collapse
Affiliation(s)
- Jerikias Marumure
- Department of Physics, Geography and Environmental Science, School of Natural Sciences, Great Zimbabwe University, Masvingo, Zimbabwe; Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, South Africa
| | - Tinoziva T Simbanegavi
- Department of Soil Science and Environment, Faculty of Agriculture, Environment, and Food Systems, University of Zimbabwe, P. O. Box MP 167, Mount Pleasant, Harare, Zimbabwe
| | - Zakio Makuvara
- Department of Physics, Geography and Environmental Science, School of Natural Sciences, Great Zimbabwe University, Masvingo, Zimbabwe; Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, South Africa
| | - Rangarirayi Karidzagundi
- Materials Development Unit, Zimbabwe Open University, P.O. Box MP1119 Mount Pleasant, Harare, Zimbabwe
| | - Richwell Alufasi
- Biological Sciences Department, Bindura University of Science Education, 741 Chimurenga Road, Off Trojan Road, P. Bag 1020, Bindura, Zimbabwe
| | - Marvelous Goredema
- Biological Sciences Department, Bindura University of Science Education, 741 Chimurenga Road, Off Trojan Road, P. Bag 1020, Bindura, Zimbabwe
| | - Claudious Gufe
- Department of Veterinary Technical Services, Central Veterinary Laboratories, Box CY55, 18A Borrowdale Road, Harare, Zimbabwe
| | - Nhamo Chaukura
- Department of Physical and Earth Sciences, Sol Plaatje University, Kimberley, 8301, South Africa
| | - Dariusz Halabowski
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Ecology and Vertebrate Zoology, Lodz, Poland
| | - Willis Gwenzi
- Currently: Biosystems and Environmental Engineering Research Group, 380, New Adylin, Westgate, Harare, Zimbabwe; Formerly: Alexander von Humboldt Fellow & Guest/Visiting Professor, Grassland Science and Renewable Plant Resources, Faculty of Organic Agricultural Sciences, Universität Kassel, Steinstraße 19, D-37213, Witzenhausen, Germany; Formerly: Alexander von Humboldt Fellow and Guest Professor, Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB), Max-Eyth-Allee 100, D-14469 Potsdam, Germany.
| |
Collapse
|
38
|
Birke V, Singh R, Prang O. Degradation of pharmaceuticals and other emerging pollutants employing bi-metal catalysts/magnesium and/or (green) hydrogen in aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:35992-36012. [PMID: 38744765 PMCID: PMC11136818 DOI: 10.1007/s11356-024-32777-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/01/2024] [Indexed: 05/16/2024]
Abstract
Contaminations by pharmaceuticals, personal care products, and other emerging pollutants in water resources have become a seriously burgeoning issue of global concern in the first third of the twenty-first century. As societal reliance on pharmaceuticals continues to escalate, the inadvertent introduction of these substances into water reservoirs poses a consequential environmental threat. Therefore, the aim of this study was to investigate reductive degradation, particularly, catalytic hydrogenation regarding model pollutants such as diclofenac (DCF), ibuprofen (IBP), 17α-ethinylestradiol (EE2), or bisphenol-A (BPA), respectively, in aqueous solutions at lab scale. Iron bimetals (zero valent iron, ZVI, and copper, Cu, or nickel, Ni) as well as zero valent magnesium (Mg, ZVM) in combination with rhodium, Rh, or palladium, Pd, as hydrogenation catalysts (HK), were investigated. Studies were executed through various short-term batch experiments, with multiple sample collections, over a total range of 120 min. The results indicated that DCF was attenuated at over 90 % when exposed to Fe-Cu or a Fe-Ni bimetal (applied as a single model pollutant). However, when DCF was part of a mixture alongside with IBP, EE2, and BPA, the attenuation efficacy decreased to 79 % with Fe-Cu and 23 % with Fe-Ni. Conversely, both IBP and BPA exhibit notably low attenuation levels with both bimetals, less than 50 %, both deployed as single substances or in mixtures. No reaction (degradation) products could be identified employing LC-MS, but sometimes a release of the parent pollutant when applying an acetic acid buffer could be noted to a certain extent, suggesting adsorption processes on corrosion products such as iron hydroxide and/or oxides. Surprisingly, Mg in combination with Rh (Rh-HK) or Pd (Pd-HK) showed a significantly rapid decrease in the concentrations of DCF, EE2, and BPA, in part up to approximately 100 %, that is, within a few minutes only in part due to hydrogenation degradation reactions (related reaction products could actually be identified by LC-MS; adsorption processes were not observed here). Moreover, kinetic modeling of the DCF degradation with Mg-Rh-HK was conducted at different temperatures (15 °C, 20 °C, 25 °C, 35 °C) and varied initial concentrations (2.5 mg/L, 5.0 mg/L, 7.5 mg/L, 10.0 mg/L). The outcomes prove that the degradation of DCF at the Rh-HK's surface followed a modified first-order kinetics, most probably by catalytic hydrodehalogenation and subsequent hydrogenation of the aromatic moieties (molecular hydrogen was provided by the corrosion of Mg). From the determined reaction rate constants at four different temperatures, the activation energy was estimated to be 59.6 kJ/mol by means of the Arrhenius equation what is in good agreement with similar results reported in the literature. This coupled hydrodehalogenation and hydrogenation approach may be upscaled into a new promising technical process for comprehensively removing such pharmaceuticals and similar pollutants in sewage plants in a single step, furthermore, even in combination with adsorption by activated carbon and/or ozonation which have already been established at some sewage plants in Switzerland and Germany recently.
Collapse
Affiliation(s)
- Volker Birke
- Hochschule Wismar - University of Applied Sciences, Technology, Business and Design, Faculty of Engineering Science, Department of Mechanical, Process and Environmental Engineering, Philipp-Müller-Str. 14, 23966, Wismar, Germany
| | - Rahul Singh
- Hochschule Wismar - University of Applied Sciences, Technology, Business and Design, Faculty of Engineering Science, Department of Mechanical, Process and Environmental Engineering, Philipp-Müller-Str. 14, 23966, Wismar, Germany.
| | - Oliver Prang
- Hochschule Wismar - University of Applied Sciences, Technology, Business and Design, Faculty of Engineering Science, Department of Mechanical, Process and Environmental Engineering, Philipp-Müller-Str. 14, 23966, Wismar, Germany
| |
Collapse
|
39
|
Dixit A, Pandey H, Rana R, Kumar A, Herojeet R, Lata R, Mukhopadhyay R, Mukherjee S, Sarkar B. Ecological and human health risk assessment of pharmaceutical compounds in the Sirsa River of Indian Himalayas. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123668. [PMID: 38442820 DOI: 10.1016/j.envpol.2024.123668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/07/2024]
Abstract
The Baddi-Barotiwala-Nalagarh (BBN) region of Indian Himalayas is one of the most important pharmaceutical industrial clusters in Asia. This study investigated the distribution, and ecological and human health risks of four most frequently used pharmaceuticals [ciprofloxacin (CIP), norfloxacin (NOR), cetirizine (CTZ) and citalopram oxalate (ECP)] when co-occurring with metal ions in the Sirsa river water of the BBN region. The concentration range of the selected pharmaceuticals was between 'not detected' to 50 μgL-1 with some exception for CIP (50-100 μgL-1) and CTZ (100-150 μgL-1) in locations directly receiving wastewater discharges. A significant correlation was found between the occurrences of NOR and Al (r2 = 0.65; p = 0.01), and CTZ and K (r2 = 0.50; p = 0.01) and Mg (r2 = 0.50; p = 0.01). A high-level ecological risk [risk quotient (RQ) > 1] was observed for algae from all the pharmaceuticals. A medium-level risk (RQ = 0.01-0.1) was observed for Daphnia from CIP, NOR and ECP, and a high-level risk from CTZ. A low-level risk was observed for fishes from CIP and NOR, whereas CTZ and ECP posed a high-level risk to fishes. The overall risk to ecological receptors was in the order: CTZ > CIP > ECP > NOR. Samples from the river locations receiving water from municipal drains or situated near landfill and pharmaceutical factories exhibited RQ > 1 for all pharmaceuticals. The average hazard quotient (HQ) values for the compounds followed the order: CTZ (0.18) > ECP (0.15) > NOR (0.001) > CIP (0.0003) for children (0-6 years); ECP (0.49) > CTZ (0.29) > NOR (0.005) > CIP (0.001) for children (7-17 years), and ECP (0.34) > CTZ (0.21) > NOR (0.007) > CIP (0.001) for adults (>17 years). The calculated risk values did not readily confirm the status of water as safe or unsafe because the values of predicted no-effect concentration (PNEC) would depend on various other environmental factors such as quality of the toxicity data, and species sensitivity and distribution, which warrants further research.
Collapse
Affiliation(s)
- Arohi Dixit
- School of Agriculture Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India; Galgotias College of Engineering and Technology, Greater Noida, Uttar Pradesh, 201310, India
| | - Himanshu Pandey
- School of Agriculture Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India
| | - Rajiv Rana
- School of Agriculture Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India
| | - Anil Kumar
- School of Agriculture Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India; School of Health Sciences, Amity University Punjab, Mohali, 140306, India
| | - Rajkumar Herojeet
- Department of Environmental Studies, Post Graduate Government College, Sector 11, Chandigarh, India
| | - Renu Lata
- G.B. Pant National Institute of Himalayan Environment, Mohal-Kullu, 175126, Himachal Pradesh, India
| | - Raj Mukhopadhyay
- Department of Chemistry, Mellon College of Science, Carnegie Mellon University, Pittsburgh, 15213, United States; Division of Irrigation and Drainage Engineering, ICAR-Central Soil Salinity Research Institute, Karnal, Haryana, 132001, India
| | - Santanu Mukherjee
- School of Agriculture Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India.
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster, LA14YQ, United Kingdom; Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia.
| |
Collapse
|
40
|
Saravanan A, Thamarai P, Deivayanai VC, Karishma S, Shaji A, Yaashikaa PR. Current strategies on bioremediation of personal care products and detergents: Sustainability and life cycle assessment. CHEMOSPHERE 2024; 354:141698. [PMID: 38490608 DOI: 10.1016/j.chemosphere.2024.141698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/12/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
The increased use of personal care products and detergents in modern society has raised concerns about their potential adverse effects on the environment. These products contain various chemical compounds that can persist in water bodies, leading to water pollution and ecological disturbances. Bioremediation has emerged as a promising approach to address these challenges, utilizing the natural capabilities of microorganisms to degrade or remove these contaminants. This review examines the current strategies employed in the bioremediation of personal care products and detergents, with a specific focus on their sustainability and environmental impact. This bioremediation is essential for environmental rejuvenation, as it uses living organisms to detergents and other daily used products. Its distinctiveness stems from sustainable, nature-centric ways that provide eco-friendly solutions for pollution eradication and nurturing a healthy planet, all while avoiding copying. Explores the use of microbial consortia, enzyme-based treatments, and novel biotechnological approaches in the context of environmental remediation. Additionally, the ecological implications and long-term sustainability of these strategies are assessed. Understanding the strengths and limitations of these bioremediation techniques is essential for developing effective and environmentally friendly solutions to mitigate the impact of personal care products and detergents on ecosystems.
Collapse
Affiliation(s)
- A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - P Thamarai
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - V C Deivayanai
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - S Karishma
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Alan Shaji
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| |
Collapse
|
41
|
Bolujoko NB, Olorunnisola D, Poudel S, Omorogie MO, Ogunlaja OO, Olorunnisola CG, Adesina M, Deguenon E, Dougnon V, Alfred MO, Ogunlaja A, Olukanni OD, Msagati TAM, Unuabonah EI. Occurrence profiling, risk assessment, and correlations of antimicrobials in surface water and groundwater systems in Southwest Nigeria. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:595-610. [PMID: 38323594 DOI: 10.1039/d3em00516j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
The presence of antimicrobials in water has grown into a major global health concern. This study thus focused on the presence, ecological implications, and potential health risks associated with nine antimicrobials: five antibiotics (ampicillin, chloramphenicol, ciprofloxacin, metronidazole, and tetracycline) and four parabens (methylparaben, ethylparaben, propylparaben, and butylparaben) in surface water and groundwater samples collected from three Southwestern States in Nigeria (Osun, Oyo, and Lagos States). These antimicrobials were widely detected across the three States with ciprofloxacin being the most dominant having maximum average concentrations of 189 μg L-1 and 319 μg L-1 in surface water and groundwater respectively. The range of average concentrations of antibiotics in surface water are 47.3-235 μg L-1 (Osun), 27.9-166 μg L-1 (Oyo) and 52.1-159 μg L-1 (Lagos). For groundwater, it is 35.3-180 μg L-1 (Osun), 26.5-181 μg L-1 (Oyo) and 32.3-319 μg L-1 (Lagos). The average concentrations of all parabens were 32.4-153 μg L-1, 53.4-80.1 μg L-1, and 83.2-132 μg L-1 for surface water and 46.7-55.7 μg L-1, 53-117 μg L-1, and 62.4-118 μg L-1 for groundwater in Osun, Oyo, and Lagos States respectively. Methylparaben was most frequently detected paraben with average concentrations of 153 μg L-1 and 117 μg L-1 in surface water and groundwater respectively. The measured environmental concentrations of these antimicrobials pose a significant ecological risk while those of ciprofloxacin and ampicillin pose a high health risk to all population groups studied. The average concentrations of antibiotics investigated in this study exceeded their threshold values for Predicted No-Effect Concentrations (PNEC) associated with resistance selection, except for tetracycline.
Collapse
Affiliation(s)
- Nathaniel B Bolujoko
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, 232101, Osun State, Nigeria.
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, PMB 230, Ede, Osun State, Nigeria
| | - Damilare Olorunnisola
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, 232101, Osun State, Nigeria.
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, PMB 230, Ede, Osun State, Nigeria
- University of Potsdam, Institute of Nutritional Science, 14558 Nuthetal, Arthur-Scheunert-Allee 114-116, Potsdam, Germany
- Institute of Chemistry, University of Potsdam, D-14476 Potsdam, Germany
| | - Sonika Poudel
- Department of Natural Resources and Ecology Management, Oklahoma State University, Stillwater, USA
| | - Martins O Omorogie
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, 232101, Osun State, Nigeria.
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, PMB 230, Ede, Osun State, Nigeria
| | - Olumuyiwa O Ogunlaja
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, 232101, Osun State, Nigeria.
- Department of Chemical Sciences, Faculty of Natural and Applied Sciences, Lead City University, Ibadan, Nigeria
| | - Chidinma G Olorunnisola
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, 232101, Osun State, Nigeria.
- Institute of Chemistry, University of Potsdam, D-14476 Potsdam, Germany
| | - Morenike Adesina
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, 232101, Osun State, Nigeria.
- Institute of Chemistry, University of Potsdam, D-14476 Potsdam, Germany
| | - Esther Deguenon
- Research Unit in Applied Microbiology and Pharmacology of Natural Substances, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, Benin
| | - Victorien Dougnon
- Research Unit in Applied Microbiology and Pharmacology of Natural Substances, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, Benin
| | - Moses O Alfred
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, 232101, Osun State, Nigeria.
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, PMB 230, Ede, Osun State, Nigeria
| | - Aemere Ogunlaja
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, 232101, Osun State, Nigeria.
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, PMB 230, Ede, Osun State, Nigeria
| | - Olumide D Olukanni
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, 232101, Osun State, Nigeria.
- Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, Ede, Nigeria
| | - Titus A M Msagati
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, South Africa, The Science Campus, Roodepoort, 1709, Johannesburg, South Africa
| | - Emmanuel I Unuabonah
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, 232101, Osun State, Nigeria.
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, PMB 230, Ede, Osun State, Nigeria
| |
Collapse
|
42
|
Zhang L, Bai J, Zhai Y, Zhang K, Wang Y, Tang R, Xiao R, Jorquera MA. Multimedia distribution, partitioning, sources, comprehensive toxicity risk and co-occurrence network characteristics of trace elements in a typical Chinese shallow lake with high antibiotic risk. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133436. [PMID: 38190795 DOI: 10.1016/j.jhazmat.2024.133436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024]
Abstract
Although the combined pollution of trace elements and antibiotics has received extensive attention, the fate and toxicity risk of trace elements with high antibiotic risk are still unclear. The multimedia distributions, partitioning, sources, toxicity risks and co-occurrence network characteristics of trace elements in surface water (SW), overlying water (OW), pore water (PW) and sediment (Sedi) samples of 61 sites from Baiyangdian (BYD) Lake were investigated. The trace elements in the SW and OW are derived mainly from traffic and agricultural sources, and those in PW and Sedi samples are primarily from lithogenic and industrial sources. The total toxicity risk index (TRI) of nine trace elements (ΣTRI) in Sedi samples showed a very high toxicity risk (18.35 ± 8.84), and a high combined pollution toxicity risk (ΣΣTRI) was observed in PW (149.17 ± 97.52) and Sedi samples (46.37 ± 24.00). The co-occurrence network from SW to PW became more vulnerable. Generally, total antibiotics and TP may be keystones of trace elements in water and sediment. The high antibiotic risk significantly influenced ΣΣTRI in water samples but not in Sedi samples. The findings provide new implications for the monitoring and control of combined antibiotic-trace element pollution in shallow lakes.
Collapse
Affiliation(s)
- Ling Zhang
- School of Environment, Beijing Normal University, Beijing 100875, China; School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810008, China
| | - Junhong Bai
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yujia Zhai
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Kegang Zhang
- Department of Environmental Engineering and Science, North China Electric Power University, Baoding, China
| | - Yaqi Wang
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Ruoxuan Tang
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Rong Xiao
- College of Environment & Safety Engineering, FuZhou University, Fuzhou, China
| | - Milko A Jorquera
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
43
|
Liu K, Gan C, Peng Y, Gan Y, He J, Du Y, Tong L, Shi J, Wang Y. Occurrence and source identification of antibiotics and antibiotic resistance genes in groundwater surrounding urban hospitals. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133368. [PMID: 38163408 DOI: 10.1016/j.jhazmat.2023.133368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/06/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Urban groundwater, serving as a critical reservoir for potable water, faces susceptibility to contamination from discrete sources such as hospital wastewater. This study investigates the distribution and plausible origins of antibiotics and antibiotic resistance genes (ARGs) in urban groundwater, drawing comparisons between areas proximal to hospitals and non-hospital areas. Ofloxacin and oxytetracycline emerged as the prevalent antibiotics across all samples, with a discernibly richer array of antibiotic types observed in groundwater sourced from hospital-adjacent regions. Employing a suite of multi-indicator tracers encompassing indicator drugs, Enterococci, ammonia, and Cl/Br mass ratio, discernible pollution from hospital or domestic sewage leakage was identified in specific wells, correlating with an escalating trajectory in antibiotic contamination. Redundancy analysis underscored temperature and dissolved organic carbon as principal environmental factors influencing antibiotics distribution in groundwater. Network analysis elucidated the facilitating role of mobile genetic elements, such as int1 and tnpA-02 in propagating ARGs. Furthermore, ARGs abundance exhibited positive correlations with temperature, pH and metallic constituents (e.g., Cu, Pb, Mn and Fe) (p < 0.05). Notably, no conspicuous correlation manifested between antibiotics and ARGs. These findings accentuate the imperative of recognizing the peril posed by antibiotic contamination in groundwater proximal to hospitals and advocate for the formulation of robust prevention and control strategies to mitigate the dissemination of antibiotics and ARGs.
Collapse
Affiliation(s)
- Ke Liu
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan, China; School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Cui Gan
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan, China; School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Yue'e Peng
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China
| | - Yiqun Gan
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan, China; School of Environmental Studies, China University of Geosciences, Wuhan, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China University of Geosciences, Wuhan, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan, China
| | - Jun He
- Wuhan Geological Survey Center, China Geological Survey, Wuhan, China
| | - Yao Du
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan, China; School of Environmental Studies, China University of Geosciences, Wuhan, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China University of Geosciences, Wuhan, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan, China
| | - Lei Tong
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan, China; School of Environmental Studies, China University of Geosciences, Wuhan, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China University of Geosciences, Wuhan, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan, China.
| | - Jianbo Shi
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan, China; School of Environmental Studies, China University of Geosciences, Wuhan, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China University of Geosciences, Wuhan, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan, China
| | - Yanxin Wang
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan, China; School of Environmental Studies, China University of Geosciences, Wuhan, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China University of Geosciences, Wuhan, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan, China
| |
Collapse
|
44
|
Chebii F, K'oreje K, Okoth M, Lutta S, Masime P, Demeestere K. Occurrence and environmental risks of contaminants of emerging concern across the River Athi Basin, Kenya, in dry and wet seasons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169696. [PMID: 38160815 DOI: 10.1016/j.scitotenv.2023.169696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/23/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Globally, the environmental occurrence of Contaminants of Emerging Concern (CECs) including pharmaceuticals (PhACs), personal care products (PCPs) and modern polar pesticides has raised ecological and human health awareness. However, as the developed world races against time to establish regulatory measures to mitigate their effects, developing nations including Kenya are lagging behind, partly due to unavailability of adequate data. In this work, a multi-residue analysis of 86 CECs was carried out on 198 surface water and 18 effluent samples collected at 24 sites across the River Athi basin area, Kenya, in both dry and rainy seasons. Overall, 57 CECs comprising 31 PhACs (0.4 ng L-1-142 μg L-1), 6 PCPs (0.7-570 ng L-1) and 20 pesticides (0.3 ng L-1-8.3 μg L-1) were detected. The maximum loads varied from 217 g day-1 (PCPs) to 46 kg day-1 (PhACs). Individually, carbamazepine, nevirapine, sulfamethoxazole and DEET were the most ubiquitous CECs, with detection frequencies (DF) higher than 80 %. The highest concentrations were observed at river sites that are heavily impacted by informal settlements, highlighting the critical role of slums in urban rivers pollution. At least 8 CECs including acetamiprid, alachlor, atrazine, diuron, nevirapine and paracetamol show potential risk to algae, Daphnia magna and fish, as exemplified by Risk Quotients (RQ) up to 174. Similarly, potential risk of antibiotic resistant bacteria development is evident (RQ up to 64), being driven by metronidazole, sulfamethoxazole and trimethoprim. Ultimately, further studies on the occurrence and distribution of antibiotic resistant bacteria within the basin and among the communities consuming untreated river water for drinking is merited.
Collapse
Affiliation(s)
- Faith Chebii
- Department of Chemistry & Biochemistry, School of Science, University of Eldoret, P.O. Box 1125, Eldoret, Kenya
| | - Kenneth K'oreje
- Water Resources Management Authority, P.O. Box 45250, Nairobi, Kenya
| | - Maurice Okoth
- Department of Chemistry & Biochemistry, School of Science, University of Eldoret, P.O. Box 1125, Eldoret, Kenya
| | - Samuel Lutta
- Department of Chemistry & Biochemistry, School of Science, University of Eldoret, P.O. Box 1125, Eldoret, Kenya
| | - Philip Masime
- Department of Chemistry & Biochemistry, School of Science, University of Eldoret, P.O. Box 1125, Eldoret, Kenya
| | - Kristof Demeestere
- Research Group Environmental Organic Chemistry and Technology (EnVOC), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| |
Collapse
|
45
|
Rangappa HS, Herath I, Lin C, Ch S. Industrial waste-based adsorbents as a new trend for removal of water-borne emerging contaminants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123140. [PMID: 38103712 DOI: 10.1016/j.envpol.2023.123140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 12/02/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
Emerging contaminants in wastewater are one of the growing concerns because of their adverse effects on human health and ecosystems. Adsorption technology offers superior performance due to its cost-effectiveness, stability, recyclability, and reliability in maintaining environmental and health standards for toxic pollutants. Despite extensive research on the use of traditional adsorbents to remove emerging contaminants, their expensiveness, lack of selectivity, and complexity of regeneration remain some of the challenges. Industrial wastes viz. blast furnace slag, red mud, and copper slag can be used to develop efficacious adsorbents for the treatment of emerging contaminants in water. Advantages of the use of such industrial wastes include resource utilization, availability, cost-effectiveness, and waste management. Nevertheless, little is known so far about their application, removal efficacy, adsorption mechanisms, and limitations in the treatment of emerging contaminants. A holistic understanding of the application of such unique industrial waste-derived adsorbents in removing emerging contaminants from water is need of the hour to transform this technology from bench-scale to pilot and large-scale applications. This review investigates different water treatment techniques associated with industrial waste-based adsorbents derived from blast furnace slag, red mud, and copper slag. Besides, this review provides important insights into the growing trends of utilizing such novel types of adsorbents to remove emerging contaminants from water with an emphasis on removal efficacy, controlling measures, adsorption mechanisms, advantages, and limitations. The present timely review brings the current state of knowledge into a single reference which could be a strong platform for future research in understanding the latest advancements, decision making, and financial management related to the treatment of wastewater using industrial waste-based adsorbents.
Collapse
Affiliation(s)
- Harsha S Rangappa
- Center for Interdisciplinary Programs, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502285, Telangana, India; Centre for Regional and Rural Futures, Faculty of Science, Engineering and Built Environment, Deakin University, Burwood, VIC, 3125 Australia
| | - Indika Herath
- Centre for Regional and Rural Futures, Faculty of Science, Engineering and Built Environment, Deakin University, Waurn Ponds, VIC, 3216 Australia
| | - Chuxia Lin
- Centre for Regional and Rural Futures, Faculty of Science, Engineering and Built Environment, Deakin University, Burwood, VIC, 3125 Australia
| | - Subrahmanyam Ch
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India.
| |
Collapse
|
46
|
Rathinavelu S, Uluseker C, Sonkar V, Thatikonda S, Nambi IM, Kreft JU. Mapping the scarcity of data on antibiotics in natural and engineered water environments across India. FRONTIERS IN ANTIBIOTICS 2024; 3:1337261. [PMID: 39816266 PMCID: PMC11732091 DOI: 10.3389/frabi.2024.1337261] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/12/2024] [Indexed: 01/18/2025]
Abstract
Antimicrobial resistance is a growing public health concern, increasingly recognized as a silent pandemic across the globe. Therefore, it is important to monitor all factors that could contribute to the emergence, maintenance and spread of antimicrobial resistance. Environmental antibiotic pollution is thought to be one of the contributing factors. India is one of the world's largest consumers and producers of antibiotics. Hence, antibiotics have been detected in different environments across India, sometimes at very high concentrations due to their extensive use in humans and agriculture or due to manufacturing. We summarize the current state of knowledge on the occurrence and transport pathways of antibiotics in Indian water environments, including sewage or wastewater and treatment plants, surface waters such as rivers, lakes, and reservoirs as well as groundwater and drinking water. The factors influencing the distribution of antibiotics in the water environment, such as rainfall, population density and variations in sewage treatment are discussed, followed by existing regulations and policies aimed at the mitigation of environmental antimicrobial resistance in India, which will have global benefits. Then, we recommend directions for future research, development of standardized methods for monitoring antibiotics in water, ecological risk assessment, and exploration of strategies to prevent antibiotics from entering the environment. Finally, we provide an evaluation of how scarce the data is, and how a systematic understanding of the occurrence and concentrations of antibiotics in the water environment in India could be achieved. Overall, we highlight the urgent need for sustainable solutions to monitor and mitigate the impact of antibiotics on environmental, animal, and public health.
Collapse
Affiliation(s)
- Sasikaladevi Rathinavelu
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, India
- School of Biosciences & Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
- Applied and Industrial Microbiology Lab, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
| | - Cansu Uluseker
- School of Biosciences & Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Vikas Sonkar
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| | - Shashidhar Thatikonda
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| | - Indumathi M. Nambi
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, India
| | - Jan-Ulrich Kreft
- School of Biosciences & Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
47
|
Yao W, Qi Y, Han Y, Ge J, Dong Y, Wang J, Yi Y, Volmer DA, Li SL, Fu P. Seasonal variation and dissolved organic matter influence on the distribution, transformation, and environmental risk of pharmaceuticals and personal care products in coastal zone: A case study of Tianjin, China. WATER RESEARCH 2024; 249:120881. [PMID: 38016225 DOI: 10.1016/j.watres.2023.120881] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/26/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) are emerging contaminants that have raised urgent environmental issues. The dissolved organic matter (DOM) plays a pivotal role on PPCPs' migration and transformation. To obtain a comprehensive understanding of the occurrence and distribution of PPCPs, a seasonal sampling focused on the riverine system in coastal zone, Tianjin, Bohai Rim was conducted. The distribution and transformation of thirty-three PPCPs and their interaction with DOM were investigated, and their sources and ecological risks were further evaluated. The total concentration of PPCPs ranges from 0.01 to 197.20 μg/L, and such value is affected by regional temperature, DOM and land use types. PPCPs migration at soil-water interface is controlled by temperature, sunlight, water flow and DOM. PPCPs have a high affinity to the protein-like DOM, while the humus-like DOM plays a negative influence and facilitates PPCPs' degradation. It is also found that protein-like DOM can represent point source pollution, while humus-like substances indicate non-point source (NPS) emission. Specific PPCPs can be used as markers to trace the source of domestic discharge. Additionally, daily use PPCPs such as ketoprofen, caffeine and iopromide are estimated to be the main risk substances, and their ecological risk varies on space, season and river hydraulic condition.
Collapse
Affiliation(s)
- Wenrui Yao
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
| | - Yulin Qi
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China; Tianjin Bohai Rim Coastal Earth Critical Zone National Observation and Research Station, Tianjin University, Tianjin, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China.
| | - Yufu Han
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
| | - Jinfeng Ge
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
| | - Yuanyuan Dong
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
| | - Jianwen Wang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
| | - Yuanbi Yi
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China; Department of Ocean Science and Center for Ocean Research in Hong Kong and Macau, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong SAR, China
| | - Dietrich A Volmer
- Department of Chemistry, Humboldt-Universität zu Berlin, Berlin 12489, Germany
| | - Si-Liang Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China; Tianjin Bohai Rim Coastal Earth Critical Zone National Observation and Research Station, Tianjin University, Tianjin, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China
| | - Pingqing Fu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China; Tianjin Bohai Rim Coastal Earth Critical Zone National Observation and Research Station, Tianjin University, Tianjin, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China
| |
Collapse
|
48
|
Mofijur M, Hasan MM, Ahmed SF, Djavanroodi F, Fattah IMR, Silitonga AS, Kalam MA, Zhou JL, Khan TMY. Advances in identifying and managing emerging contaminants in aquatic ecosystems: Analytical approaches, toxicity assessment, transformation pathways, environmental fate, and remediation strategies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122889. [PMID: 37972679 DOI: 10.1016/j.envpol.2023.122889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
Emerging contaminants (ECs) are increasingly recognized as threats to human health and ecosystems. This review evaluates advanced analytical methods, particularly mass spectrometry, for detecting ECs and understanding their toxicity, transformation pathways, and environmental distribution. Our findings underscore the reliability of current techniques and the potential of upcoming methods. The adverse effects of ECs on aquatic life necessitate both in vitro and in vivo toxicity assessments. Evaluating the distribution and degradation of ECs reveals that they undergo physical, chemical, and biological transformations. Remediation strategies such as advanced oxidation, adsorption, and membrane bioreactors effectively treat EC-contaminated waters, with combinations of these techniques showing the highest efficacy. To minimize the impact of ECs, a proactive approach involving monitoring, regulations, and public education is vital. Future research should prioritize the refining of detection methods and formulation of robust policies for EC management.
Collapse
Affiliation(s)
- M Mofijur
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - M M Hasan
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia; School of Engineering and Technology, Central Queensland University, QLD, 4701, Australia
| | - Shams Forruque Ahmed
- Science and Math Program, Asian University for Women, Chattogram, 4000, Bangladesh
| | - F Djavanroodi
- Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| | - I M R Fattah
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - A S Silitonga
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - M A Kalam
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - John L Zhou
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - T M Yunus Khan
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
49
|
Mahmoud MA, Alsehli BR, Alotaibi MT, Hosni M, Shahat A. A comprehensive review on the application of semiconducting materials in the degradation of effluents and water splitting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3466-3494. [PMID: 38141122 PMCID: PMC10794432 DOI: 10.1007/s11356-023-31353-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
In this comprehensive review article, we delve into the critical intersection of environmental science and materials science. The introduction sets the stage by emphasizing the global water shortage crisis and the dire consequences of untreated effluents on ecosystems and human health. As we progress into the second section, we embark on an intricate exploration of piezoelectric and photocatalytic principles, illuminating their significance in wastewater treatment and sustainable energy production. The heart of our review is dedicated to a detailed analysis of the detrimental impacts of effluents on human health, underscoring the urgency of effective treatment methods. We dissected three key materials in the realm of piezo-photocatalysis: ZnO-based materials, BaTiO3-based materials, and bismuth-doped materials. Each material is scrutinized for its unique properties and applications in the removal of pollutants from wastewater, offering a comprehensive understanding of their potential to address this critical issue. Furthermore, our exploration extends to the realm of hydrogen production, where we discuss various types of hydrogen and the role of piezo-photocatalysis in generating clean and sustainable hydrogen. By illuminating the synergistic potential of these advanced materials and technologies, we pave the way for innovative solutions to the pressing challenges of water pollution and renewable energy production. This review article not only serves as a valuable resource for researchers and scholars in the fields of material science and environmental engineering but also underscores the pivotal role of interdisciplinary approaches in addressing complex global issues.
Collapse
Affiliation(s)
- Muhammed A Mahmoud
- Department of Physics, Faculty of Science, Suez University, Suez, 43518, Egypt
| | - Bandar R Alsehli
- Department of Chemistry, Faculty of Science, Taibah University, 30002, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Mohammed T Alotaibi
- Department of Chemistry, Turabah University College, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Mohamed Hosni
- Center for Applied Research On the Environment and Sustainability, The American University in Cairo, Cairo, 11835, Egypt
| | - Ahmed Shahat
- Chemistry Department, Faculty of Science, Suez University, Suez, 43518, Egypt.
| |
Collapse
|
50
|
Gautam R, Prambil AM, Patel AK, Arora T. Emerging pollutants in etiology and pathophysiology of polycystic ovary syndrome. Reprod Toxicol 2024; 123:108515. [PMID: 38000646 DOI: 10.1016/j.reprotox.2023.108515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/24/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a multifactorial endocrine disorder affecting reproductive-aged women worldwide. Although genetic and lifestyle factors have been implicated in its etiology, emerging evidence suggests that exposure to environmental pollutants may also contribute significantly to the development and pathophysiology of PCOS. This review article aims to provide a comprehensive overview of the potential role of emerging pollutants, including pharmaceuticals and personal care products (PPCPs), microplastics, endocrine disruptors, and nanoparticles, in PCOS development. The article summarizes the current understanding of PCOS pathogenesis and its clinical manifestations. Subsequently, it delves into the mechanisms of action of the emerging pollutants, exploring how they may disrupt the endocrine system, interfere with hormonal regulation, and contribute to the manifestation of PCOS symptoms. Moreover, the potential for cumulative effects and synergistic interactions between these pollutants demands a cautious approach when considering their role in PCOS etiology.
Collapse
Affiliation(s)
- Rohit Gautam
- Division of Reproductive, Child Health & Nutrition, Indian Council of Medical Research, New Delhi 110029, India
| | - Ajith Manayil Prambil
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Arbind Kumar Patel
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Taruna Arora
- Division of Reproductive, Child Health & Nutrition, Indian Council of Medical Research, New Delhi 110029, India.
| |
Collapse
|