1
|
de Geus TJ, Franken G, Flinders B, Cuypers E, Joosten EAJ. The Effect of Spinal Cord Stimulation on Spinal Dorsal Horn Lipid Expression in Experimental Painful Diabetic Polyneuropathy: A Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry Imaging Study. Neuromodulation 2024; 27:1360-1371. [PMID: 39425735 DOI: 10.1016/j.neurom.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/07/2024] [Accepted: 09/09/2024] [Indexed: 10/21/2024]
Abstract
OBJECTIVES Diabetes-induced peripheral nerve fiber damage can cause painful diabetic polyneuropathy (PDPN), induced by central sensitization through proinflammatory processes in the spinal dorsal horn. Disturbances in spinal dorsal horn lipid metabolism play a major role in proinflammatory regulation. Conventional (Con)-spinal cord stimulation (SCS) is an alternative treatment for pain relief in PDPN, whereas differential target multiplexed (DTM)-SCS could be more effective than Con-SCS, specifically targeting the spinal inflammatory response. We hypothesize that Con- and DTM-SCS differentially affect lipid metabolism in the spinal cord of PDPN animals. To study pain relief mechanisms, we analyzed lipid expression in the spinal dorsal horn using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry imaging (MSI). MATERIAL AND METHODS Diabetes was induced through streptozotocin (STZ) injection in 28 rats, of which 12 developed PDPN. These and four nondiabetic animals (sham STZ) were implanted with a quadripolar lead and stimulated with Con-, DTM-, or Sham-SCS for 48 hours. Mechanical sensitivity was assessed using Von Frey filaments after 24 and 48 hours. After 48 hours of SCS, the spinal cord was collected, and lipids were analyzed using MALDI-TOF MSI. RESULTS STZ-induced hypersensitivity in the hind paws was reduced by Con- and DTM-SCS. PDPN induction decreased the expression of a glycosphingolipid in laminae 3 of the spinal dorsal horn. After 48 hours of Con- and DTM-SCS, expression levels of several lipids in the spinal dorsal horn decreased, including (HexCer 36:1;O, 40:1;O3), diacylglycerophosphocholines (PC 36:1, 38:6, 40:5), and diacylglycerophosphoserines (PS 36:4). CONCLUSIONS Both Con- and DTM-SCS provide pain relief and decrease spinal dorsal horn lipid expression of PDPN animals, highlighting the complex effects of SCS on the spinal cord physiology. STZ-induced PDPN has a limited effect on lipid expression in the spinal dorsal horn.
Collapse
Affiliation(s)
- Thomas J de Geus
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre, Maastricht, The Netherlands; Research Institute of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.
| | - Glenn Franken
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre, Maastricht, The Netherlands; Research Institute of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Bryn Flinders
- Maastricht MultiModal Molecular Imaging Institute, Division of Mass Spectrometry Imaging, Maastricht University, Maastricht, The Netherlands
| | - Eva Cuypers
- Maastricht MultiModal Molecular Imaging Institute, Division of Mass Spectrometry Imaging, Maastricht University, Maastricht, The Netherlands
| | - Elbert A J Joosten
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre, Maastricht, The Netherlands; Research Institute of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
2
|
Lai CY, Hsieh MC, Yeh CM, Lin TB, Chou D, Wang HH, Lin KH, Cheng JK, Yang PS, Peng HY. CtBP1 is essential for epigenetic silencing of μ-opioid receptor genes in the dorsal root ganglion in spinal nerve ligation-induced neuropathic pain. Neurotherapeutics 2024:e00493. [PMID: 39580324 DOI: 10.1016/j.neurot.2024.e00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/22/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024] Open
Abstract
Neuropathic pain poses a significant public health challenge, greatly impacting patients' quality of life. Emerging evidence underscores the involvement of epigenetics in dorsal root ganglion (DRG) neurons relevant to pain modulation. C-terminal binding protein 1 (CtBP1) has emerged as a crucial epigenetic transcriptional coregulator. However, the underlying molecular mechanisms of CtBP1-mediated epigenetic regulation in DRG neurons in neuropathic pain remain poorly elucidated. Here, we employed a Sprague‒Dawley rat model of spinal nerve ligation (SNL) to establish a neuropathic pain model. CtBP1 expression in the ipsilateral DRG gradually increased over a three-week period post-SNL. Immunohistochemistry revealed a significant elevation in CtBP1 levels specifically in NeuN-positive neuronal cells in the ipsilateral DRG following SNL. Further characterization demonstrated CtBP1 expression across various subtypes of DRG neurons in SNL rats. Silencing CtBP1 expression with siRNA reversed tactile allodynia in SNL rats and restored both CtBP1 and μ-opioid receptor expression in the DRG in SNL rats. Moreover, Foxp1 was identified to recruit CtBP1 for mediating μ-opioid receptor gene silencing in the DRG in SNL rats. Subsequent investigation unveiled that Foxp1 recruits CtBP1 and associates with HDAC2 to regulate H3K9Ac binding to μ-opioid receptor chromatin regions in the DRG in SNL rats, implicating epigenetic mechanisms in neuropathic pain. Targeting the Foxp1/CtBP1/HDAC2/μ-opioid receptor signaling pathway in the DRG holds promise as a potential therapeutic strategy for managing neuropathic pain.
Collapse
Affiliation(s)
- Cheng-Yuan Lai
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan
| | - Ming-Chun Hsieh
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Chou-Ming Yeh
- Division of Thoracic Surgery, Department of Health, Taichung Hospital, Executive Yuan, Taichung, Taiwan; Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Tzer-Bin Lin
- Institute of Translational Medicine and New Drug Development, College of Medicine, China Medical University, Taichung, Taiwan; Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taiwan
| | - Dylan Chou
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Hsueh-Hsiao Wang
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Kuan-Hung Lin
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan
| | - Jen-Kun Cheng
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan; Department of Anesthesiology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Po-Sheng Yang
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan; Department of Surgery, Mackay Memorial Hospital, Taipei, Taiwan
| | - Hsien-Yu Peng
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan.
| |
Collapse
|
3
|
Alothman L, Alhadlaq E, Alhussain A, Alabdulkarim A, Sari Y, AlSharari SD. New Pharmacological Insight into Etanercept and Pregabalin in Allodynia and Nociception: Behavioral Studies in a Murine Neuropathic Pain Model. Brain Sci 2024; 14:1145. [PMID: 39595909 PMCID: PMC11591859 DOI: 10.3390/brainsci14111145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: Neuropathic pain is challenging to treat, often resistant to current therapies, and associated with significant side effects. Pregabalin, an anticonvulsant that modulates calcium channels, is effective but can impair mental and motor functions, especially in older patients. To improve patient outcomes, reducing the doses of pregabalin and combining it with other drugs targeting different neuropathic pain mechanisms may be beneficial. TNF-α blockers such as etanercept have shown potential in addressing neuropathic pain by affecting sodium channels, synaptic transmission, and neuroinflammation. This study evaluates the efficacy and safety of combining low doses of etanercept and pregabalin in allodynia and nociceptive tests. Materials and Methods: Male C57/BL6 mice underwent chronic constriction injury (CCI) of the sciatic nerve to induce neuropathic pain. They were divided into seven groups: sham control, CCI control, low and high doses of pregabalin, low and high doses of etanercept, and a combination of low doses of both drugs. Behavioral tests, including von Frey, hot-plate, and rotarod tests, were used to assess pain responses and motor activity. Results: The results indicated that a high dose of pregabalin significantly reduced mechanical allodynia and thermal hyperalgesia but impaired motor function. Conversely, low doses of etanercept alone had no significant effect. However, the combination of low doses of etanercept (20 mg/kg) and pregabalin (5 mg/kg) effectively alleviated pain without compromising locomotor activity. Conclusions: These results suggest a novel therapeutic strategy for neuropathic pain, enhancing analgesic efficacy while minimizing adverse effects.
Collapse
Affiliation(s)
- Loulwah Alothman
- Department of Oral Medicine and Diagnostic Sciences, College of Dentistry, King Saud University, Riyadh 11451, Saudi Arabia; (E.A.); (A.A.)
| | - Emad Alhadlaq
- Department of Oral Medicine and Diagnostic Sciences, College of Dentistry, King Saud University, Riyadh 11451, Saudi Arabia; (E.A.); (A.A.)
| | - Asma Alhussain
- Department of Oral Medicine and Diagnostic Sciences, College of Dentistry, King Saud University, Riyadh 11451, Saudi Arabia; (E.A.); (A.A.)
| | - Alwaleed Alabdulkarim
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (S.D.A.)
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH 43606, USA
| | - Shakir D. AlSharari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (S.D.A.)
| |
Collapse
|
4
|
Chidambaran V, Duan Q, Pilipenko V, Glynn SM, Sproles A, Martin LJ, Lacagnina MJ, King CD, Ding L. The role of cytokines in acute and chronic postsurgical pain after major musculoskeletal surgeries in a quaternary pediatric center. Brain Behav Immun 2024; 122:596-603. [PMID: 39222726 PMCID: PMC11437349 DOI: 10.1016/j.bbi.2024.08.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/17/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024] Open
Abstract
STUDY OBJECTIVE To determine if baseline cytokines/chemokines and their changes over postoperative days 0-2 (POD0-2) predict acute and chronic postsurgical pain (CPSP) after major surgery. DESIGN Prospective, observational, longitudinal nested study. SETTING University-affiliated quaternary children's hospital. PATIENTS Subjects (≥8 years old) with idiopathic scoliosis undergoing spine fusion or pectus excavatum undergoing Nuss procedure. MEASUREMENTS Demographics, surgical, psychosocial measures, pain scores, and opioid use over POD0-2 were collected. Cytokine concentrations were analyzed in serial blood samples collected before and up to two weeks after surgery, using Luminex bead arrays. After data preparation, relationships between pre- and post-surgical cytokine concentrations with acute (% time in moderate-severe pain over POD0-2) and chronic (pain score > 3/10 beyond 3 months post-surgery) post-surgical pain were analyzed using univariable and multivariable regression analyses with adjustment for covariates and mixed effects models were used to associate longitudinal cytokine concentrations with pain outcomes. MAIN RESULTS Analyses included 3,164 repeated measures of 16 cytokines/chemokines from 112 subjects (median age 15.3, IQR 13.5-17.0, 54.5 % female, 59.8 % pectus). Acute postsurgical pain was associated with higher baseline concentrations of GM-CSF (β = 0.95, SE 0.31; p = 0.003), IL-1β (β = 0.84, SE 0.36; p = 0.02), IL-2 (β = 0.78, SE 0.34; p = 0.03), and IL-12 p70 (β = 0.88, SE 0.40; p = 0.03) and longitudinal postoperative elevations in GM-CSF (β = 1.38, SE 0.57; p = 0.03), IFNγ (β = 1.36, SE 0.6; p = 0.03), IL-1β (β = 1.25, SE 0.59; p = 0.03), IL-7 (β = 1.65, SE 0.7; p = 0.02), and IL-12 p70 (β = 1.17, SE 0.58; p = 0.04). In contrast, CPSP was associated with lower baseline concentration of IL-8 (β = -0.39, SE 0.17; p = 0.02), and the risk of developing CPSP was elevated in patients with lower longitudinal postoperative concentrations of IL-6 (β = -0.57, SE 0.26; p = 0.03), IL-8 (β = -0.68, SE 0.24; p = 0.006), and IL-13 (β = -0.48, SE 0.22; p = 0.03). Covariates female (vs. male) sex and surgery type (pectus surgery vs. spine) were associated with higher odds for CPSP in baseline adjusted cytokine-CPSP association models for IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, TNFα, and IL-8, IL-10, respectively. CONCLUSION We identified pro-inflammatory cytokine profiles associated with higher risk of acute postoperative pain. Interestingly, pleiotropic cytokine IL-6, chemokine IL-8 (which promotes neutrophil infiltration and monocyte differentiation), and monocyte-released anti-inflammatory cytokine IL-13, were associated with lower CPSP risk. Our results suggest heterogenous outcomes of cytokine/chemokine signaling that can both promote and protect against post-surgical pain. These may serve as predictive and prognostic biomarkers of pain outcomes following surgery.
Collapse
Affiliation(s)
- Vidya Chidambaran
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
| | - Qing Duan
- Division of Biostatistics and Epidemiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Valentina Pilipenko
- Division of Biostatistics and Epidemiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Susan M Glynn
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
| | - Alyssa Sproles
- Division of Rheumatology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Lisa J Martin
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Michael J Lacagnina
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
| | - Christopher D King
- Division of Behavioral Medicine and Clinical Psychology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Lili Ding
- Division of Biostatistics and Epidemiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
5
|
Salib AMN, Crane MJ, Jamieson AM, Lipscombe D. Peripheral Ca V2.2 Channels in the Skin Regulate Prolonged Heat Hypersensitivity during Neuroinflammation. eNeuro 2024; 11:ENEURO.0311-24.2024. [PMID: 39433408 PMCID: PMC11599794 DOI: 10.1523/eneuro.0311-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/13/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024] Open
Abstract
Neuroinflammation can lead to chronic maladaptive pain affecting millions of people worldwide. Neurotransmitters, cytokines, and ion channels are implicated in neuroimmune cell signaling, but their roles in specific behavioral responses are not fully elucidated. Voltage-gated CaV2.2 channel activity in skin controls rapid and transient heat hypersensitivity induced by intradermal (i.d.) capsaicin via IL-1ɑ cytokine signaling. CaV2.2 channels are not, however, involved in mechanical hypersensitivity that developed in the i.d. capsaicin animal model. Here, we show that CaV2.2 channels are also critical for heat hypersensitivity induced by i.d. complete Freund adjuvant (CFA). i.d. CFA, a model of chronic neuroinflammation, involves ongoing cytokine signaling for days leading to pronounced edema and hypersensitivity to sensory stimuli. Peripheral CaV2.2 channel activity in the skin was required for the full development and week-long time course of heat hypersensitivity induced by i.d. CFA, but paw edema and mechanical hypersensitivity were independent of CaV2.2 channel activity. CFA induced increases in several cytokines in hindpaw fluid including IL-6 which was also dependent on CaV2.2 channel activity. Using IL-6-specific neutralizing antibodies in vivo, we show that IL-6 contributes to heat hypersensitivity and that neutralizing both IL-1ɑ and IL-6 was even more effective at reducing the magnitude and duration of CFA-induced heat hypersensitivity. Our findings demonstrate a functional link between CaV2.2 channel activity and the release of IL-6 in the skin and show that CaV2.2 channels have a privileged role in the induction and maintenance of heat hypersensitivity during chronic forms of neuroinflammation in the skin.
Collapse
Affiliation(s)
- Anne-Mary N Salib
- Departments of Neuroscience, Brown University, Providence, Rhode Island 02912
- Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912
| | - Meredith J Crane
- Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island 02912
| | - Amanda M Jamieson
- Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island 02912
| | - Diane Lipscombe
- Departments of Neuroscience, Brown University, Providence, Rhode Island 02912
- Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
6
|
Han X, Jang KC, Kim WM, Lee HG. Low level laser therapy alleviates mechanical allodynia in a postoperative and neuropathic pain model and alters the levels of inflammatory factors in rats. Korean J Pain 2024; 37:310-319. [PMID: 39344359 PMCID: PMC11450298 DOI: 10.3344/kjp.24144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 10/01/2024] Open
Abstract
Background This study aimed to investigate the analgesic and preventive effect of low-level laser therapy (LLLT) on the incisional pain model and spinal nerve ligation (SNL) model in rats and identify the possible mechanisms of action. Methods Male Sprague-Dawley rats were used, divided into different treatment groups. The single application group received LLLT before or after skin incision or SNL. The consecutive application group received LLLT for six consecutive days post-incision, three days pre-incision, or three consecutive days pre-SNL. The control group underwent skin incision or SNL without LLLT. The von Frey test was used to quantify the pain associated with mechanical allodynia. Pro-inflammatory cytokine level and alterations in nerve growth factor (NGF) expression were measured by using ELISA and immunohistochemistry, respectively in the skin, muscle of the paw, and spinal cord dorsal horn (SCDH). Results In the incisional pain model, LLLT showed significant analgesic and preventive effect. LLLT ameliorated SNL-induced mechanical allodynia but LLLT had no preventive effect. LLLT decreased interleukin-1β (IL-1β) expression levels in the skin, muscle, and SCDH and reduced the optical density of skin and spinal cord NGF in the incisional pain model. Conclusions LLLT alleviated incisional pain and neuropathic pain caused by SNL in rats, and reduced the levels of IL-1β and NGF in the peripheral tissue and SCDH in the incisional pain model. LLLT might be effective in patients with post-operative pain and peripheral neuropathic pain.
Collapse
Affiliation(s)
- Xuehao Han
- Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School, Gwangju, Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Hwasun, Korea
| | - Kyeong-cheol Jang
- Department of Anesthesiology and Pain Medicine, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Woong Mo Kim
- Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Hyung Gon Lee
- Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School, Gwangju, Korea
- Department of Anesthesiology and Pain Medicine, Chonnam National University Hwasun Hospital, Hwasun, Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Hwasun, Korea
| |
Collapse
|
7
|
Costa CMM, Santos DS, Opretzka LCF, de Assis Silva GS, Santos GC, Evangelista AF, Soares MBP, Villarreal CF. Different mechanisms guide the antinociceptive effect of bone marrow-mononuclear cells and bone marrow-mesenchymal stem/stromal cells in trigeminal neuralgia. Life Sci 2024; 354:122944. [PMID: 39111567 DOI: 10.1016/j.lfs.2024.122944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/21/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
AIMS Trigeminal neuralgia (TN) is a type of chronic orofacial pain evoked by trivial stimuli that manifests as episodes of excruciating and sudden, recurrent paroxysmal pain. Most patients are refractory to pharmacological therapy used for the treatment of TN. Mononuclear cells (MNC) and mesenchymal stem/stromal cells (MSC) have shown therapeutic potential in painful neuropathies, but their mechanism of action is not fully understood. The present work aimed to investigate the antinociceptive effect and mechanism of action of MNC and MSC in experimental TN. MATERIALS AND METHODS Mice submitted to the chronic constriction injury of the infraorbital nerve (CCI-ION) mouse model of TN received a single intravenous injection of saline, MNC, or MSC (1 × 106 cells/mouse). The effect of the treatments on the behavioral signs of painful neuropathy, morphological aspects of the infraorbital nerve, and inflammatory and oxidative stress markers in the infraorbital nerve were assessed. KEY FINDINGS MNC and MSC improved behavioral painful neuropathy, activated key cell signaling antioxidant pathways by increasing Nrf2 expression, and reduced the proinflammatory cytokines IL-1β and TNF-α. However, treatment with MSC, but not MNC, was associated with a sustained increase of IL-10 and with the re-establishment of the morphometric pattern of the infraorbital nerve, indicating a difference in the mechanism of action between MNC and MSC. In line with this result, in IL-10 knockout mice, MSC transplantation did not induce an antinociceptive effect. SIGNIFICANCE Importantly, these data suggest an IL-10-induced disease-modifying profile related to MSC treatment and reinforce cell therapy's potential in treating trigeminal neuralgia.
Collapse
Affiliation(s)
| | | | | | | | - Girlaine Café Santos
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, BA, Brazil.
| | | | - Milena Botelho Pereira Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, BA, Brazil; Institute of Advanced Systems in Health, SENAI CIMATEC, Salvador 41650-010, BA, Brazil.
| | - Cristiane Flora Villarreal
- Faculty of Pharmacy, Federal University of Bahia, Salvador 40170-115, BA, Brazil; Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, BA, Brazil.
| |
Collapse
|
8
|
Couch B, Hayward D, Baum G, Sakthiyendran NA, Harder J, Hernandez EJ, MacKay B. A systematic review of steroid use in peripheral nerve pathologies and treatment. Front Neurol 2024; 15:1434429. [PMID: 39286807 PMCID: PMC11402678 DOI: 10.3389/fneur.2024.1434429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Background The use of corticosteroids has become a part of the standard of care in various pathologies but their use in peripheral nerve injury treatment is limited. Given corticosteroids' anti-inflammatory properties and their regulatory role in neuronal protein production and myelination, corticosteroids could serve as an adjunct therapy for peripheral nerve injuries. This review aims to systematically investigate the current use of corticosteroid treatment in peripheral nerve pathologies. Methods The systematic search was performed on PubMed, MEDLINE, EMBASE, Scopus, Cochrane, and Web of Science using keywords such as "corticosteroid treatment," "peripheral nerve damage," "peripheral neuropathy," and "complications." The PRISMA guidelines were used to conduct the systematic review and all articles were reviewed by the corresponding author. After the initial search, individual study titles and abstracts were further screened and categorized using an inclusion and exclusion criteria followed by a final full-text review. Results Out of the total 27,922 identified records, 203 studies were included based on the selection criteria. These studies focused on the use and efficacy of steroids across a spectrum of compression and non-compression peripheral neuropathies such as cubital tunnel syndrome and chronic inflammatory demyelinating polyradiculoneuropathy. Various studies noted the promising role of steroids in offering pain relief, nerve block, and nerve regeneration effects. Additionally, safety considerations and potential complications regarding steroid use in peripheral nerve injuries were analyzed. Conclusion While there is currently limited clinical utilization of corticosteroids in peripheral nerve pathologies, the anti-inflammatory and regenerative effects that steroids provide may be a beneficial tool in managing various peripheral neuropathies and their associated pain. Additional clinical trials and investigation into the mechanism of action could improve the reputation of steroid use as peripheral nerve injury treatment.
Collapse
Affiliation(s)
- Brandon Couch
- Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Dan Hayward
- Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Gracie Baum
- Department of Orthopaedic Hand Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | | | - Justin Harder
- Department of Orthopaedic Hand Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Evan J Hernandez
- Department of Orthopaedic Hand Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Brendan MacKay
- Department of Orthopaedic Hand Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
9
|
Åström Reitan JLM, Karshikoff B, Holmström L, Lekander M, Kemani MK, Wicksell RK. Associations between sickness behavior, but not inflammatory cytokines, and psychiatric comorbidity in chronic pain. Psychoneuroendocrinology 2024; 167:107094. [PMID: 38896989 DOI: 10.1016/j.psyneuen.2024.107094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/02/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024]
Abstract
OBJECTIVES Approximately one in five adults experiences chronic pain, often in co-occurrence with depression, insomnia, anxiety, and lower self-rated health. Elevated levels of cytokines, e.g. tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), interleukin 8 (IL-8), and interleukin 10 (IL-10), have been identified in patients with chronic pain. Depression, insufficient sleep, poor self-rated health, and pain intensity have also been associated with inflammatory biomarkers. This study aimed to investigate the interrelationships between inflammatory biomarkers and depression, insomnia, anxiety, self-rated health, sickness behavior, and pain intensity in patients with chronic pain. METHODS Self-report questionnaires and blood samples analyzed for plasma levels of inflammatory biomarkers were collected from 80 adult patients with chronic pain. Associations between inflammatory biomarkers (TNF-α, IL-6, IL-8, IL-10, C-reactive protein (CRP), erythrocyte sedimentation rate (ESR)) and depression, insomnia, anxiety, self-rated health, sickness behavior, and pain intensity, were analyzed using bivariate Spearman rank correlation coefficients and regression analyses. RESULTS Participants were mainly women (72.5 %), with a mean age of 50.8 years, and a reported mean pain duration of 16.7 years. There were significant correlations between insomnia and CRP (rs =.26, p <.05); sex and ESR (rs =.29, p <.05); age and IL-6 (rs =.29, p <.05) and IL-8 (rs =.30, p <.05); BMI and IL-6 (rs =.50, p <.001), CRP (rs =.63, p <.001) and ESR (rs =.42, p <.001). Ratings of depression were positively and significantly related to ratings of sickness behavior and anxiety (β =.32 and β =.40, respectively), explaining 49 % of the total variance in depression ratings. Insomnia was positively and significantly related to sickness behavior (β =.37) explaining 31 % of the total variance in insomnia ratings. Inflammatory biomarkers, however, did not contribute significantly to the models. CONCLUSIONS Participants reported high levels of symptoms, yet the associations between these ratings and the inflammatory biomarkers were either absent or weak. Also, despite high levels of self-reported sickness behavior, overall the inflammatory status remained within the normal range. Ratings of sickness behavior contributed more than inflammatory markers in explaining ratings of depression and insomnia. The present results point to the complexity of chronic pain, and the challenges of identifying biomarkers that explain symptomatology.
Collapse
Affiliation(s)
- Jenny L M Åström Reitan
- Behavioral Medicine, Theme Women's Health and Allied Health Professionals, Karolinska University Hospital, Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Bianka Karshikoff
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Social Studies, University of Stavanger, Stavanger, Norway
| | - Linda Holmström
- Behavioral Medicine, Theme Women's Health and Allied Health Professionals, Karolinska University Hospital, Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Mats Lekander
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Stress Research Institute, Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Mike K Kemani
- Behavioral Medicine, Theme Women's Health and Allied Health Professionals, Karolinska University Hospital, Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Stress Research Institute, Department of Psychology, Stockholm University, Stockholm, Sweden; Department of Health Promoting Science, Sophiahemmet University, Stockholm, Sweden
| | - Rikard K Wicksell
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Pain Clinic, Capio S:t Görans Hospital, Stockholm, Sweden
| |
Collapse
|
10
|
Montagnoli TL, Santos AD, Sudo SZ, Gubert F, Vasques JF, Mendez-Otero R, de Sá MPL, Zapata-Sudo G. Perspectives on Stem Cell Therapy in Diabetic Neuropathic Pain. Neurol Int 2024; 16:933-944. [PMID: 39311343 PMCID: PMC11417725 DOI: 10.3390/neurolint16050070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/26/2024] Open
Abstract
Diabetes mellitus-related morbidity and mortality are primarily caused by long-term complications such as retinopathy, nephropathy, cardiomyopathy, and neuropathy. Diabetic neuropathy (DN) involves the progressive degeneration of axons and nerve fibers due to chronic exposure to hyperglycemia. This metabolic disturbance leads to excessive activation of the glycolytic pathway, inducing oxidative stress and mitochondrial dysfunction, ultimately resulting in nerve damage. There is no specific treatment for painful DN, and new approaches should aim not only to relieve pain but also to prevent oxidative stress and reduce inflammation. Given that existing therapies for painful DN are not effective for diabetic patients, mesenchymal stromal cells (MSCs)-based therapy shows promise for providing immunomodulatory and paracrine regulatory functions. MSCs from various sources can improve neuronal dysfunction associated with DN. Transplantation of MSCs has led to a reduction in hyperalgesia and allodynia, along with the recovery of nerve function in diabetic rats. While the pathogenesis of diabetic neuropathic pain is complex, clinical trials have demonstrated the importance of MSCs in modulating the immune response in diabetic patients. MSCs reduce the levels of inflammatory factors and increase anti-inflammatory cytokines, thereby interfering with the progression of DM. Further investigation is necessary to ensure the safety and efficacy of MSCs in preventing or treating neuropathic pain in diabetic patients.
Collapse
Affiliation(s)
- Tadeu Lima Montagnoli
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (T.L.M.); (A.D.S.)
| | - Aimeé Diogenes Santos
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (T.L.M.); (A.D.S.)
| | - Susumu Zapata Sudo
- Programa de Pós-Graduação em Medicina (Cirurgia), Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (S.Z.S.); (M.P.L.d.S.)
| | - Fernanda Gubert
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Juliana Ferreira Vasques
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.F.V.); (R.M.-O.)
| | - Rosalia Mendez-Otero
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.F.V.); (R.M.-O.)
| | - Mauro Paes Leme de Sá
- Programa de Pós-Graduação em Medicina (Cirurgia), Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (S.Z.S.); (M.P.L.d.S.)
- Instituto do Coração Edson Saad, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Gisele Zapata-Sudo
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (T.L.M.); (A.D.S.)
- Programa de Pós-Graduação em Medicina (Cirurgia), Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (S.Z.S.); (M.P.L.d.S.)
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
- Instituto do Coração Edson Saad, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
11
|
Petrikonis K, Bernatoniene J, Kopustinskiene DM, Casale R, Davinelli S, Saso L. The Antinociceptive Role of Nrf2 in Neuropathic Pain: From Mechanisms to Clinical Perspectives. Pharmaceutics 2024; 16:1068. [PMID: 39204413 PMCID: PMC11358986 DOI: 10.3390/pharmaceutics16081068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Neuropathic pain, a chronic condition resulting from nerve injury or dysfunction, presents significant therapeutic challenges and is closely associated with oxidative stress and inflammation, both of which can lead to mitochondrial dysfunction. The nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, a critical cellular defense mechanism against oxidative stress, has emerged as a promising target for neuropathic pain management. Nrf2 modulators enhance the expression of antioxidant and cytoprotective genes, thereby reducing oxidative damage, inflammation, and mitochondrial impairment. This review explores the antinociceptive effects of Nrf2, highlighting how pharmacological agents and natural compounds may be used as potential therapeutic strategies against neuropathic pain. Although preclinical studies demonstrate significant pain reduction and improved nerve function through Nrf2 activation, several clinical challenges need to be addressed. However, emerging clinical evidence suggests potential benefits of Nrf2 modulators in several conditions, such as diabetic neuropathy and multiple sclerosis. Future research should focus on further elucidating the molecular role of Nrf2 in neuropathic pain to optimize its modulation efficacy and maximize clinical utility.
Collapse
Affiliation(s)
- Kestutis Petrikonis
- Department of Neurology, Lithuanian University of Health Sciences, Eivenių Str. 2, LT-50009 Kaunas, Lithuania;
| | - Jurga Bernatoniene
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
| | - Dalia M. Kopustinskiene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
| | - Roberto Casale
- Opusmedica Persons, Care & Research-NPO, 29121 Piacenza, Italy;
| | - Sergio Davinelli
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, La Sapienza University, 00185 Rome, Italy;
| |
Collapse
|
12
|
Du L, Zhu J, Liu S, Yang W, Hu X, Zhang W, Cui W, Yang Y, Wang C, Yang Y, Gao T, Zhang C, Zhang R, Lou M, Zhou H, Rao J, Maoying Q, Chu Y, Wang Y, Mi W. Transient receptor potential melastatin 8 contributes to the interleukin-33-mediated cold allodynia in a mouse model of neuropathic pain. Pain 2024:00006396-990000000-00679. [PMID: 39132923 DOI: 10.1097/j.pain.0000000000003346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 06/17/2024] [Indexed: 08/13/2024]
Abstract
ABSTRACT Cold allodynia is a common complaint of patients suffering from neuropathic pain initiated by peripheral nerve injury. However, the mechanisms that drive neuropathic cold pain remain elusive. In this study, we show that the interleukin (IL)-33/ST2 signaling in the dorsal root ganglion (DRG) is a critical contributor to neuropathic cold pain by interacting with the cold sensor transient receptor potential melastatin 8 (TRPM8). By using the St2-/- mice, we demonstrate that ST2 is required for the generation of nociceptor hyperexcitability and cold allodynia in a mouse model of spared nerve injury (SNI). Moreover, the selective elimination of ST2 function from the Nav1.8-expressing nociceptor markedly suppresses SNI-induced cold allodynia. Consistent with the loss-of-function studies, intraplantar injection of recombinant IL-33 (rIL-33) is sufficient to induce cold allodynia. Mechanistically, ST2 is co-expressed with TRPM8 in both mouse and human DRG neurons and rIL-33-induced Ca2+ influx in mouse DRG neurons through TRPM8. Co-immunoprecipitation assays further reveal that ST2 interacts with TRPM8 in DRG neurons. Importantly, rIL-33-induced cold allodynia is abolished by pharmacological inhibition of TRPM8 and genetic ablation of the TRPM8-expressing neurons. Thus, our findings suggest that the IL-33/ST2 signaling mediates neuropathic cold pain through downstream cold-sensitive TRPM8 channels, thereby identifying a potential analgesic target for the treatment of neuropathic cold pain.
Collapse
Affiliation(s)
- Lixia Du
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Biochemistry, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianyu Zhu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shenbin Liu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Yang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xueming Hu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenwen Zhang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenqiang Cui
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yayue Yang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chenghao Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yachen Yang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tianchi Gao
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chen Zhang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ruofan Zhang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mengping Lou
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hong Zhou
- Department of Immunology, Anhui Medical University, Hefei, Anhui, China
| | - Jia Rao
- Department of Immunology, Anhui Medical University, Hefei, Anhui, China
| | - Qiliang Maoying
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
| | - Yuxia Chu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
| | - Yanqing Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
| | - Wenli Mi
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Salib AMN, Crane MJ, Jamieson AM, Lipscombe D. Peripheral Ca V2.2 channels in skin regulate prolonged heat hypersensitivity during neuroinflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.13.603149. [PMID: 39071304 PMCID: PMC11275762 DOI: 10.1101/2024.07.13.603149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Neuroinflammation can lead to chronic maladaptive pain affecting millions of people worldwide. Neurotransmitters, cytokines, and ion channels are implicated in neuro-immune cell signaling but their roles in specific behavioral responses are not fully elucidated. Voltage-gated CaV2.2 channel activity in skin controls rapid and transient heat hypersensitivity induced by intradermal capsaicin via IL-1α cytokine signaling. CaV2.2 channels are not, however, involved in mechanical hypersensitivity that developed in the same animal model. Here, we show that CaV2.2 channels are also critical for heat hypersensitivity induced by the intradermal (id) Complete Freund's Adjuvant (CFA) model of chronic neuroinflammation that involves ongoing cytokine signaling for days. Ongoing CFA-induced cytokine signaling cascades in skin lead to pronounced edema, and hypersensitivity to sensory stimuli. Peripheral CaV2.2 channel activity in skin is required for the full development and week-long time course of heat hypersensitivity induced by id CFA. CaV2.2 channels, by contrast, are not involved in paw edema and mechanical hypersensitivity. CFA induced increases in cytokines in hind paws including IL-6 which was dependent on CaV2.2 channel activity. Using IL-6 specific neutralizing antibodies, we show that IL-6 contributes to heat hypersensitivity and, neutralizing both IL-1α and IL-6 was even more effective at reducing the magnitude and duration of CFA-induced heat hypersensitivity. Our findings demonstrate a functional link between CaV2.2 channel activity and the release of IL-6 in skin and show that CaV2.2 channels have a privileged role in the induction and maintenance of heat hypersensitivity during chronic forms of neuroinflammation in skin.
Collapse
Affiliation(s)
- Anne-Mary N Salib
- Department of Neuroscience & the Carney Institute for Brain Science Brown University, Providence, RI 02912, USA
| | - Meredith J Crane
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Amanda M Jamieson
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Diane Lipscombe
- Department of Neuroscience & the Carney Institute for Brain Science Brown University, Providence, RI 02912, USA
| |
Collapse
|
14
|
Fabregat-Cid G, Cedeno DL, De Andrés J, Harutyunyan A, Monsalve-Dolz V, Mínguez-Martí A, Escrivá-Matoses N, Asensio-Samper JM, Carnaval T, Villoria J, Rodríguez-López R, Vallejo R. Insights into the pathophysiology and response of persistent spinal pain syndrome type 2 to spinal cord stimulation: a human genome-wide association study. Reg Anesth Pain Med 2024:rapm-2024-105517. [PMID: 38960591 DOI: 10.1136/rapm-2024-105517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/15/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Spinal cord stimulation (SCS) provides pain relief for some patients with persistent spinal pain syndrome type 2 (PSPS 2), but the precise mechanisms of action and prognostic factors for a favorable pain response remain obscure. This in vivo human genome-wide association study provides some pathophysiological clues. METHODS We performed a high-density oligonucleotide microarray analysis of serum obtained from both PSPS 2 cases and pain-free controls who had undergone lower back spinal surgery at the study site. Using multivariate discriminant analysis, we tried to identify different expressions between mRNA transcripts from PSPS 2 patients relative to controls, SCS responders to non-responders, or SCS responders to themselves before starting SCS. Gene ontology enrichment analysis was used to identify the biological processes that best discriminate between the groups of clinical interest. RESULTS Thirty PSPS 2 patients, of whom 23 responded to SCS, were evaluated together with 15 pain-free controls. We identified 11 significantly downregulated genes in serum of PSPS 2 patients compared with pain-free controls and two significantly downregulated genes once the SCS response became apparent. All were suggestive of enhanced inflammation, tissue repair mechanisms and proliferative responses among the former. We could not identify any gene differentiating patients who responded to SCS from those who did not respond. CONCLUSIONS This study points out various biological processes that may underlie PSPS 2 pain and SCS therapeutic effects, including the modulation of neuroimmune response, inflammation and restorative processes.
Collapse
Affiliation(s)
- Gustavo Fabregat-Cid
- Multidisciplinary Pain Management Department, General University Hospital Consortium of Valencia, Valencia, Spain
- Surgery Department, University of Valencia, Valencia, Spain
| | | | - José De Andrés
- Multidisciplinary Pain Management Department, General University Hospital Consortium of Valencia, Valencia, Spain
- Surgery Department, University of Valencia, Valencia, Spain
| | - Anushik Harutyunyan
- Multidisciplinary Pain Management Department, General University Hospital Consortium of Valencia, Valencia, Spain
| | - Vicente Monsalve-Dolz
- Multidisciplinary Pain Management Department, General University Hospital Consortium of Valencia, Valencia, Spain
| | - Ana Mínguez-Martí
- Multidisciplinary Pain Management Department, General University Hospital Consortium of Valencia, Valencia, Spain
| | | | - Juan Marcos Asensio-Samper
- Multidisciplinary Pain Management Department, General University Hospital Consortium of Valencia, Valencia, Spain
- Surgery Department, University of Valencia, Valencia, Spain
| | - Thiago Carnaval
- Neuropharmacology & Pain Group, Neuroscience Program, Bellvitge Institute for Biomedical Research, Barcelona, Spain
- Design and Biometrics Department, Medicxact, Madrid, Spain
| | - Jesús Villoria
- Neuropharmacology & Pain Group, Neuroscience Program, Bellvitge Institute for Biomedical Research, Barcelona, Spain
- Design and Biometrics Department, Medicxact, Madrid, Spain
| | - Raquel Rodríguez-López
- Genetics Laboratory; Clinical Analysis Service, General University Hospital Consortium of Valencia, Valencia, Spain
| | | |
Collapse
|
15
|
Wu Y, Lin Y, Zhang M, He K, Tian G. Causal association between circulating inflammatory markers and sciatica development: a Mendelian randomization study. Front Neurol 2024; 15:1380719. [PMID: 39015317 PMCID: PMC11250389 DOI: 10.3389/fneur.2024.1380719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/03/2024] [Indexed: 07/18/2024] Open
Abstract
Background This research explores the causal association between circulating inflammatory markers and the development of sciatica, a common and debilitating condition. While previous studies have indicated that inflammation may be a factor in sciatica, but a thorough genetic investigation to determine a cause-and-effect relationship has not yet been carried out. Gaining insight into these interactions may uncover novel treatment targets. Methods We utilized data from the OpenGWAS database, incorporating a large European cohort of 484,598 individuals, including 4,549 sciatica patients. Our study focused on 91 distinct circulating inflammatory markers. Genetic variations were employed as instrumental variables (IVs) for these markers. The analysis was conducted using inverse variance weighting (IVW) as the primary method, supplemented by weighted median-based estimation. Validation of the findings was conducted by sensitivity studies, utilizing the R software for statistical computations. Results The analysis revealed that 52 out of the 91 inflammatory markers studied showed a significant causal association with the risk of developing sciatica. Key markers like CCL2, monocyte chemotactic protein-4, and protein S100-A12 demonstrated a positive correlation. In addition, there was no heterogeneity or horizontal pleiotropy in these results. Interestingly, a reverse Mendelian randomization analysis also indicated potential causative effects of sciatica on certain inflammatory markers, notably Fms-related tyrosine kinase 3 ligands. Discussion The study provides robust evidence linking specific circulating inflammatory markers with the risk of sciatica, highlighting the role of inflammation in its pathogenesis. These findings could inform future research into targeted treatments and enhance our understanding of the biological mechanisms underlying sciatica.
Collapse
Affiliation(s)
- Yang Wu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Lin
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Mengpei Zhang
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| | - Ke He
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Guihua Tian
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
16
|
Kaye AD, Perilloux DM, Hawkins AM, Wester GC, Ragaland AR, Hebert SV, Kim J, Heisler M, Kelkar RA, Chami AA, Shekoohi S, Kaye AM. Tumor Necrosis Factor and Interleukin Modulators for Pathologic Pain States: A Narrative Review. Pain Ther 2024; 13:481-493. [PMID: 38724743 PMCID: PMC11111651 DOI: 10.1007/s40122-024-00603-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/04/2024] [Indexed: 05/23/2024] Open
Abstract
Chronic pain, a complex and debilitating condition, involves intricate interactions between central and peripheral inflammatory processes. Cytokines, specifically tumor necrosis factor (TNF) and interleukins (IL), are key mediators in the initiation and maintenance of chronic pain states. Sensory neurons expressing receptors for cytokines like TNF, IL-1, and IL-6 are implicated in peripheral sensitization, contributing to increased signaling of painful sensations. The potential of targeting TNF and IL for therapeutic intervention in chronic pain states is the focus of this review, with preclinical and clinical evidence supporting the use of TNF and IL modulators for pain management. The physiological and pathological roles of TNF in neuropathic pain is complex. Experimental evidence highlights the effectiveness of TNF modulation in mitigating pain symptoms in animal models and displays promising outcomes of clinical trials with TNF inhibitors, such as infliximab and etanercept. ILs, a diverse group of cytokines, including IL-1, IL-6, and IL-17, are discussed for their contributions to chronic pain through inflammation and peripheral sensitization. Specific IL modulators, such as secukinumab and tocilizumab, have shown potential in managing chronic neuropathic pain, as demonstrated in various studies and clinical trials. The pharmacokinetics, safety profiles, and challenges associated with TNF and IL modulators highlight the need for cautious medication monitoring in clinical practice. Comparative evaluations have revealed distinct efficacy and safety profiles among different cytokine modulators, emphasizing the need for personalized approaches based on the specific underlying causes of pain. Further research is necessary to elucidate the intricate mechanisms by which cytokines contribute to chronic pain, as well as to understand why they may affect pain differently in various contexts. Additionally, long-term safety profiles of cytokine modulators require more thorough investigation. This continued exploration holds the promise of enhancing our comprehension of cytokine modulation in chronic pain and shaping more potent therapeutic strategies for the future.
Collapse
Affiliation(s)
- Alan D Kaye
- Department of Anesthesiology and Department of Pharmacology, Toxicology, and Neurosciences, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, 71103, USA.
| | - Dominique M Perilloux
- School of Medicine, Louisiana State University Health Sciences Center at Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Alison M Hawkins
- School of Medicine, Louisiana State University Health Sciences Center at Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Grace C Wester
- School of Medicine, Louisiana State University Health Sciences Center at Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Amanda R Ragaland
- School of Medicine, Louisiana State University Health Sciences Center at Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Sage V Hebert
- School of Medicine, Louisiana State University Health Sciences Center at Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Julian Kim
- Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, 71103, USA
| | - Michael Heisler
- Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, 71103, USA
| | - Rucha A Kelkar
- School of Medicine, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC, 29425, USA
| | - Azem A Chami
- Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, 71103, USA
| | - Sahar Shekoohi
- Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, 71103, USA
| | - Adam M Kaye
- Department of Pharmacy Practice, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, CA, 95211, USA
| |
Collapse
|
17
|
Yu J, Wong S, Lin Z, Shan Z, Fan C, Xia Z, Cheung M, Zhu X, Liu JA, Cheung CW. High-Frequency Spinal Stimulation Suppresses Microglial Kaiso-P2X7 Receptor Axis-Induced Inflammation to Alleviate Neuropathic Pain in Rats. Ann Neurol 2024; 95:966-983. [PMID: 38450773 DOI: 10.1002/ana.26898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 03/08/2024]
Abstract
OBJECTIVE Neuropathic pain poses a persistent challenge in clinical management. Neuromodulation has emerged as a last-resort therapy. Conventional spinal cord stimulation (Con SCS) often causes abnormal sensations and provides short analgesia, whereas high-frequency spinal cord stimulation (HF SCS) is a newer therapy that effectively alleviates pain without paresthesia. However, the modes of action of 10kHz HF SCS (HF10 SCS) in pain relief remain unclear. To bridge this knowledge gap, we employed preclinical models that mimic certain features of clinical SCS to explore the underlying mechanisms of HF10 SCS. Addressing these issues would provide the scientific basis for improving and evaluating the effectiveness, reliability, and practicality of different frequency SCS in clinical settings. METHODS We established a preclinical SCS model to examine its effects in a neuropathic pain rat model. We conducted bulk and single-cell RNA sequencing in the spinal dorsal horn (SDH) to examine cellular and molecular changes under different treatments. We employed genetic manipulations through intrathecal injection of a lentiviral system to explore the SCS-mediated signaling axis in pain. Various behavioral tests were performed to evaluate pain conditions under different treatments. RESULTS We found that HF10 SCS significantly reduces immune responses in the SDH by inactivating the Kaiso-P2X7R pathological axis in microglia, promoting long-lasting pain relief. Targeting Kaiso-P2X7R in microglia dramatically improved efficacy of Con SCS treatment, leading to reduced neuroinflammation and long-lasting pain relief. INTERPRETATION HF10 SCS could improve the immunopathologic state in the SDH, extending its benefits beyond symptom relief. Targeting the Kaiso-P2X7R axis may enhance Con SCS therapy and offer a new strategy for pain management. ANN NEUROL 2024;95:966-983.
Collapse
Affiliation(s)
- Jing Yu
- Department of Anesthesiology, University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Stanley Wong
- Department of Anesthesiology, University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Zhinan Lin
- Department of Neuroscience, City University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Zhiming Shan
- Department of Anesthesiology, University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Chaoyang Fan
- Department of Neuroscience, City University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Zhengyuan Xia
- Department of Anesthesiology, University of Hong Kong, Hong Kong, Hong Kong SAR
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Martin Cheung
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Xiaowei Zhu
- Department of Neuroscience, City University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Jessica Aijia Liu
- Department of Anesthesiology, University of Hong Kong, Hong Kong, Hong Kong SAR
- Department of Neuroscience, City University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Chi Wai Cheung
- Department of Anesthesiology, University of Hong Kong, Hong Kong, Hong Kong SAR
- Hong Kong Sanatorium Hospital, Hong Kong, Hong Kong SAR
| |
Collapse
|
18
|
Li X, Wang J, Liao C, Yang X, Zhao Z, Liu Y, Xue Q, Luo Y, Liu X, Liu Z. The binding of PKCε and MEG2 to STAT3 regulates IL-6-mediated microglial hyperalgesia during inflammatory pain. FASEB J 2024; 38:e23590. [PMID: 38656553 DOI: 10.1096/fj.202300152rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/10/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024]
Abstract
Studies have suggested that microglial IL-6 modulates inflammatory pain; however, the exact mechanism of action remains unclear. We therefore hypothesized that PKCε and MEG2 competitively bind to STAT3 and contribute to IL-6-mediated microglial hyperalgesia during inflammatory pain. Freund's complete adjuvant (FCA) and lipopolysaccharide (LPS) were used to induce hyperalgesia model mice and microglial inflammation. Mechanical allodynia was evaluated using von Frey tests in vivo. The interaction among PKCε, MEG2, and STAT3 was determined using ELISA and immunoprecipitation assay in vitro. The PKCε, MEG2, t-STAT3, pSTAT3Tyr705, pSTAT3Ser727, IL-6, GLUT3, and TREM2 were assessed by Western blot. IL-6 promoter activity and IL-6 concentration were examined using dual luciferase assays and ELISA. Overexpression of PKCε and MEG2 promoted and attenuated inflammatory pain, accompanied by an increase and decrease in IL-6 expression, respectively. PKCε displayed a stronger binding ability to STAT3 when competing with MEG2. STAT3Ser727 phosphorylation increased STAT3 interaction with both PKCε and MEG2. Moreover, LPS increased PKCε, MEG2, pSTAT3Tyr705, pSTAT3Ser727, IL-6, and GLUT3 levels and decreased TREM2 during microglia inflammation. IL-6 promoter activity was enhanced or inhibited by PKCε or MEG2 in the presence of STAT3 and LPS stimulation, respectively. In microglia, overexpression of PKCε and/or MEG2 resulted in the elevation of tSTAT3, pSTAT3Tyr705, pSTAT3Ser727, IL-6, and TREM2, and the reduction of GLUT3. PKCε is more potent than MEG2 when competitively binding to STAT3, displaying dual modulatory effects of IL-6 production, thus regulating the GLUT3 and TREM2 in microglia during inflammatory pain sensation.
Collapse
Affiliation(s)
- Xiongjuan Li
- Department of Anesthesiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| | - Junliang Wang
- Department of Anesthesiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| | - Changjian Liao
- Department of Anesthesiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| | - Xinping Yang
- Department of Anesthesiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| | - Zhao Zhao
- Department of Anesthesiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| | - Yuqiang Liu
- Department of Anesthesiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| | - Qingsheng Xue
- Department of Anesthesiology, Ruijin Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Yan Luo
- Department of Anesthesiology, Ruijin Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Xuesheng Liu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhiheng Liu
- Department of Anesthesiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| |
Collapse
|
19
|
Salib AMN, Crane MJ, Lee SH, Wainger BJ, Jamieson AM, Lipscombe D. Interleukin-1α links peripheral Ca V2.2 channel activation to rapid adaptive increases in heat sensitivity in skin. Sci Rep 2024; 14:9051. [PMID: 38643253 PMCID: PMC11032389 DOI: 10.1038/s41598-024-59424-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/10/2024] [Indexed: 04/22/2024] Open
Abstract
Neurons have the unique capacity to adapt output in response to changes in their environment. Within seconds, sensory nerve endings can become hypersensitive to stimuli in response to potentially damaging events. The underlying behavioral response is well studied, but several of the key signaling molecules that mediate sensory hypersensitivity remain unknown. We previously discovered that peripheral voltage-gated CaV2.2 channels in nerve endings in skin are essential for the rapid, transient increase in sensitivity to heat, but not to mechanical stimuli, that accompanies intradermal capsaicin. Here we report that the cytokine interleukin-1α (IL-1α), an alarmin, is necessary and sufficient to trigger rapid heat and mechanical hypersensitivity in skin. Of 20 cytokines screened, only IL-1α was consistently detected in hind paw interstitial fluid in response to intradermal capsaicin and, similar to behavioral sensitivity to heat, IL-1α levels were also dependent on peripheral CaV2.2 channel activity. Neutralizing IL-1α in skin significantly reduced capsaicin-induced changes in hind paw sensitivity to radiant heat and mechanical stimulation. Intradermal IL-1α enhances behavioral responses to stimuli and, in culture, IL-1α enhances the responsiveness of Trpv1-expressing sensory neurons. Together, our data suggest that IL-1α is the key cytokine that underlies rapid and reversible neuroinflammatory responses in skin.
Collapse
Affiliation(s)
- Anne-Mary N Salib
- Department of Neuroscience, Carney Institute for Brain Science, Brown University, Providence, RI, 02912, USA
| | - Meredith J Crane
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912, USA
| | - Sang Hun Lee
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Brian J Wainger
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Amanda M Jamieson
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912, USA
| | - Diane Lipscombe
- Department of Neuroscience, Carney Institute for Brain Science, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
20
|
Salib AMN, Crane MJ, Lee SH, Wainger BJ, Jamieson AM, Lipscombe D. Interleukin-1α links peripheral Ca V2.2 channel activation to rapid adaptive increases in heat sensitivity in skin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.17.572072. [PMID: 38585803 PMCID: PMC10996502 DOI: 10.1101/2023.12.17.572072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Neurons have the unique capacity to adapt output in response to changes in their environment. Within seconds, sensory nerve endings can become hypersensitive to stimuli in response to potentially damaging events. The underlying behavioral response is well studied, but several of the key signaling molecules that mediate sensory hypersensitivity remain unknown. We previously discovered that peripheral voltage-gated CaV2.2 channels in nerve endings in skin are essential for the rapid, transient increase in sensitivity to heat, but not to mechanical stimuli, that accompanies intradermal capsaicin. Here we report that the cytokine interleukin-1α (IL-1α), an alarmin, is necessary and sufficient to trigger rapid heat and mechanical hypersensitivity in skin. Of 20 cytokines screened, only IL-1α was consistently detected in hind paw interstitial fluid in response to intradermal capsaicin and, similar to behavioral sensitivity to heat, IL-1α levels were also dependent on peripheral CaV2.2 channel activity. Neutralizing IL-1α in skin significantly reduced capsaicin-induced changes in hind paw sensitivity to radiant heat and mechanical stimulation. Intradermal IL-1α enhances behavioral responses to stimuli and, in culture, IL-1α enhances the responsiveness of Trpv1-expressing sensory neurons. Together, our data suggest that IL-1α is the key cytokine that underlies rapid and reversible neuroinflammatory responses in skin.
Collapse
Affiliation(s)
- Anne-Mary N Salib
- Department of Neuroscience, Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - Meredith J Crane
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Sang Hun Lee
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Brian J Wainger
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Amanda M Jamieson
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Diane Lipscombe
- Department of Neuroscience, Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| |
Collapse
|
21
|
Chidambaran V, Duan Q, Pilipenko V, Glynn SM, Sproles A, Martin LJ, Lacagnina MJ, King CD, Ding L. The Role of Cytokines in Acute and Chronic Postsurgical Pain in Pediatric Patients after Major Musculoskeletal Surgeries. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.27.24304974. [PMID: 38585987 PMCID: PMC10996732 DOI: 10.1101/2024.03.27.24304974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Study Objective To determine if baseline cytokines and their changes over postoperative days 0-2 (POD0-2) predict acute and chronic postsurgical pain (CPSP) after major surgery. Design Prospective, observational, longitudinal nested study. Setting University-affiliated quaternary children's hospital. Patients Subjects (≥8 years old) with idiopathic scoliosis undergoing spine fusion or pectus excavatum undergoing Nuss procedure. Measurements Demographics, surgical, psychosocial measures, pain scores, and opioid use over POD0-2 were collected. Cytokine concentrations were analyzed in serial blood samples collected before and after (up to two weeks) surgery, using Luminex bead arrays. After data preparation, relationships between pre- and post-surgical cytokine concentrations with acute (% time in moderate-severe pain over POD0-2) and chronic (pain score>3/10 beyond 3 months post-surgery) pain were analyzed. After adjusting for covariates, univariate/multivariate regression analyses were conducted to associate baseline cytokine concentrations with postoperative pain, and mixed effects models were used to associate longitudinal cytokine concentrations with pain outcomes. Main Results Analyses included 3,164 measures of 16 cytokines from 112 subjects (median age 15.3, IQR 13.5-17.0, 54.5% female, 59.8% pectus). Acute postsurgical pain was associated with higher baseline concentrations of GM-CSF (β=0.95, SE 0.31; p=.003), IL-1β (β=0.84, SE 0.36; p=.02), IL-2 (β=0.78, SE 0.34; p=.03), and IL-12 p70 (β=0.88, SE 0.40; p=.03) and longitudinal postoperative elevations in GM-CSF (β=1.38, SE 0.57; p=.03), IFNγ (β=1.36, SE 0.6; p=.03), IL-1β (β=1.25, SE 0.59; p=.03), IL-7 (β=1.65, SE 0.7, p=.02), and IL-12 p70 (β=1.17, SE 0.58; p=.04). In contrast, CPSP was associated with lower baseline concentration of IL-8 (β= -0.39, SE 0.17; p=.02), and the risk of developing CPSP was elevated in patients with lower longitudinal postoperative concentrations of IL-6 (β= -0.57, SE 0.26; p=.03), IL-8 (β= -0.68, SE 0.24; p=.006), and IL-13 (β= -0.48, SE 0.22; p=.03). Furthermore, higher odds for CPSP were found for females (vs. males) for IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, and TNFα, and for pectus (vs. spine) surgery for IL-8 and IL-10. Conclusion We identified pro-inflammatory cytokines associated with increased acute postoperative pain and anti-inflammatory cytokines associated with lower CPSP risk, with potential to serve as predictive and prognostic biomarkers.
Collapse
Affiliation(s)
- Vidya Chidambaran
- Department of Anesthesiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Qing Duan
- Division of Biostatistics and Epidemiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Valentina Pilipenko
- Division of Biostatistics and Epidemiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Susan M. Glynn
- Department of Anesthesiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Alyssa Sproles
- Division of Rheumatology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Lisa J. Martin
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Michael J. Lacagnina
- Department of Anesthesiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Christopher D. King
- Division of Behavioral Medicine and Clinical Psychology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Lili Ding
- Division of Biostatistics and Epidemiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
22
|
Alam J, Yaman E, Silva GCV, Chen R, de Paiva CS, Stepp MA, Pflugfelder SC. Single cell analysis of short-term dry eye induced changes in cornea immune cell populations. Front Med (Lausanne) 2024; 11:1362336. [PMID: 38560382 PMCID: PMC10978656 DOI: 10.3389/fmed.2024.1362336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Background Dry eye causes corneal inflammation, epitheliopathy and sensorineural changes. This study evaluates the hypothesis that dry eye alters the percentages and transcriptional profiles of immune cell populations in the cornea. Methods Desiccating stress (DS) induced dry eye was created by pharmacologic suppression of tear secretion and exposure to drafty low humidity environment. Expression profiling of corneal immune cells was performed by single-cell RNA sequencing (scRNA-seq). Cell differentiation trajectories and cell fate were modeled through RNA velocity analysis. Confocal microscopy was used to immunodetect corneal immune cells. Irritation response to topical neurostimulants was assessed. Results Twelve corneal immune cell populations based on their transcriptional profiles were identified at baseline and consist of monocytes, resident (rMP) and MMP12/13 high macrophages, dendritic cells (cDC2), neutrophils, mast cells, pre T/B cells, and innate (γDT, ILC2, NK) and conventional T and B lymphocytes. T cells and resident macrophages (rMP) were the largest populations in the normal cornea comprising 18.6 and 18.2 percent, respectively. rMP increased to 55.2% of cells after 5 days of DS. Significant changes in expression of 1,365 genes (adj p < 0.0001) were noted in rMP with increases in cytokines and chemokines (Tnf, Cxcl1, Ccl12, Il1rn), inflammatory markers (Vcam, Adam17, Junb), the TAM receptor (Mertk), and decreases in complement and MHCII genes. A differentiation trajectory from monocytes to terminal state rMP was found. Phagocytosis, C-type lectin receptor signaling, NF-kappa B signaling and Toll-like receptor signaling were among the pathways with enhanced activity in these cells. The percentage of MRC1+ rMPs increased in the cornea and they were observed in the basal epithelium adjacent to epithelial nerve plexus. Concentration of the chemokine CXCL1 increased in the cornea and it heightened irritation/pain responses to topically applied hypertonic saline. Conclusion These findings indicate that DS recruits monocytes that differentiate to macrophages with increased expression of inflammation associated genes. The proximity of these macrophages to cornea nerves and their expression of neurosensitizers suggests they contribute to the corneal sensorineural changes in dry eye.
Collapse
Affiliation(s)
- Jehan Alam
- Ocular Surface Center, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| | - Ebru Yaman
- Ocular Surface Center, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| | - Gerda Cristal Villalba Silva
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Rui Chen
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Cintia S. de Paiva
- Ocular Surface Center, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| | - Mary Ann Stepp
- Departments of Anatomy, Regenerative Biology and Ophthalmology, The George Washington University Medical School and Health Sciences, Washington, DC, United States
| | - Stephen C. Pflugfelder
- Ocular Surface Center, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
23
|
Nazemi S, Helmi M, Kafami M, Amin B, Mojadadi MS. Preemptive administration of mesenchymal stem cells-derived conditioned medium can attenuate the development of neuropathic pain in rats via downregulation of proinflammatory cytokines. Behav Brain Res 2024; 461:114858. [PMID: 38211775 DOI: 10.1016/j.bbr.2024.114858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/15/2023] [Accepted: 01/06/2024] [Indexed: 01/13/2024]
Abstract
Neuropathic pain (NP) is a chronic condition characterized by persistent pain following nerve injury. It is a challenging clinical problem to manage due to limited treatment options. Mesenchymal stem cells (MSCs)-derived conditioned medium (CM) is a cell-free product that contains the secretome of MSCs and has been shown to have therapeutic potential in various inflammatory and degenerative disorders. Several animal studies have examined the antinociceptive effects of MSCs-CM on established neuropathic pain, but none have investigated the early prevention of neuropathic pain using MSCs-CM. Therefore, in this study, we tested whether preemptive administration of MSCs-CM could attenuate the development of NP in rats. To this end, NP was induced in Wistar rats using a chronic constriction injury (CCI) model (day 0), and then the animals were divided into four groups: Sham, CCI, CCI-Dulbecco's Modified Eagle Medium (DMEM), and CCI-CM. The CCI-CM group received 1 ml intraperitoneal administration of MSCs-CM on days - 1, 1, and 2, while the Sham, CCI, and CCI-DMEM groups received vehicle only (normal saline or DMEM). Mechanical withdrawal threshold and thermal withdrawal latency were assessed to evaluate pain sensitivities. In addition, the expression levels of proinflammatory cytokines (TNF-α and IL-1β) in the spinal cord tissues were measured using quantitative real-time PCR (qRT-PCR). The results demonstrated that preemptive treatment with MSCs-CM can significantly attenuate the development of NP, as evidenced by improved mechanical withdrawal threshold and thermal withdrawal latency in the CCI-CM group compared to the CCI and CCI-DMEM groups. Furthermore, the relative gene expression of proinflammatory cytokines TNF-α and IL-1β were significantly decreased in the spinal cord tissues of the CCI-CM group compared to the control groups. These findings suggest that preemptive administration of MSCs-CM can attenuate the development of NP in rats, partly due to the downregulation of proinflammatory cytokines.
Collapse
Affiliation(s)
- Samad Nazemi
- Department of Physiology and Pharmacology, School of Medical Sciences, Sabzevar University of Medical Sciences, Sabzevar, Iran; Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mahtab Helmi
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Marzieh Kafami
- Department of Physiology and Pharmacology, School of Medical Sciences, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Bahareh Amin
- Department of Physiology and Pharmacology, School of Medical Sciences, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mohammad-Shafi Mojadadi
- Department of Immunology, School of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran.
| |
Collapse
|
24
|
Chindo BA, Howes MJR, Abuhamdah S, Mallam D, Micah T, Awotula RI, Battison R, Chazot PL. Evaluation of the anti-nociceptive profile of essential oil from Melissa officinalis L. (lemon balm) in acute and chronic pain models. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117500. [PMID: 38030022 DOI: 10.1016/j.jep.2023.117500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Melissa officinalis L. (Lamiaceae) is a medicinal plant native to Mediterranean regions and found in other parts of the world. Extracts and essential oil from this widely cultivated culinary medicinal herb are used in traditional medicine to manage a variety of disorders that include epilepsy and pain. AIM OF THE STUDY To assess the anti-nociceptive potentials of Melissa officinalis essential oil (MO) and probe the involvement of adrenergic, opioidergic, serotonergic and potassium adenosine triphosphate (KATP) mechanisms in its anti-nociceptive effects. MATERIAL AND METHODS We employed formalin-, acetic acid and hot plate-induced nociception to study the acute anti-nociceptive effects of MO. The sciatic nerve injury (CCI) model of neuropathic pain was utilized to study the anti-nociceptive effects of MO on chronic pain. Effects of MO on anxiety, cognitive deficits, oxidative stress and inflammation in the CCI rats were evaluated on elevated plus maze, open field test, novel object recognition, oxidative stress parameters and pro-inflammatory cytokines, respectively. The possible mechanism(s) of MO's anti-nociceptive effects were elucidated using prazosin, yohimbine, propranolol, glibenclimide, naloxone and metergoline, which are acknowledged antagonists for α1-, α2- and β-adrenergic, potassium adenosine triphosphate (KATP), opioidergic and serotonergic systems, respectively. RESULTS MO significantly attenuated acetic acid- and formalin-induced nociception; prolonged the mean reaction time of rats on hot plate before and following sciatic nerve chronic injury (CCI). MO ameliorated anxiety, cognitive deficits and oxidative stress, reduced pro-inflammatory cytokine levels and produced a near total restoration of injured sciatic nerves in CCI rats. Naloxone, metergoline and glibenclimide significantly blocked, while prazosin, yohimbine and popranolol failed to block the anti-nociceptive effects of MO in formalin-induced nociception. CONCLUSIONS MO contains biologically active compounds with potential anti-nociceptive properties that modulate KATP, opioidergic and serotonergic pathways. These support the development of bioactive compounds from MO as anti-nociceptive agents.
Collapse
Affiliation(s)
- Ben A Chindo
- Department of Pharmacology and Toxicology, Kaduna State University, Kaduna, Nigeria.
| | | | - Sawsan Abuhamdah
- Department of Biosciences, Durham University, Durham, DH1 3LE, United Kingdom; College of Pharmacy, Al Ain University, P.O. Box 112612, Abu Dhabi, United Arab Emirates; Department of Biopharmaceutics and Clinical Pharmacy, The University of Jordan, Amman, Jordan
| | - Danjuma Mallam
- Department of Pharmacology and Toxicology, Kaduna State University, Kaduna, Nigeria
| | - Timothy Micah
- Department of Pharmacology and Toxicology, Kaduna State University, Kaduna, Nigeria
| | - Rosemary I Awotula
- Department of Pharmacology and Toxicology, Kaduna State University, Kaduna, Nigeria; Roses Veterinary Services, No. 5 Nyerere Road, Narayi High Cost, Kaduna, Nigeria
| | - Robin Battison
- Royal Botanic Gardens Kew, Richmond, Surrey, TW9 3DS, United Kingdom
| | - Paul L Chazot
- Department of Biosciences, Durham University, Durham, DH1 3LE, United Kingdom
| |
Collapse
|
25
|
Nasir A, Afridi OK, Ullah S, Khan H, Bai Q. Mitigation of sciatica injury-induced neuropathic pain through active metabolites derived from medicinal plants. Pharmacol Res 2024; 200:107076. [PMID: 38237646 DOI: 10.1016/j.phrs.2024.107076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
Sciatica characterized by irritation, inflammation, and compression of the lower back nerve, is considered one of the most common back ailments globally. Currently, the therapeutic regimens for sciatica are experiencing a paradigm shift from the conventional pharmacological approach toward exploring potent phytochemicals from medicinal plants. There is a dire need to identify novel phytochemicals with anti-neuropathic potential. This review aimed to identify the potent phytochemicals from diverse medicinal plants capable of alleviating neuropathic pain associated with sciatica. This review describes the pathophysiology of sciatic nerve pain, its cellular mechanisms, and the pharmacological potential of various plants and phytochemicals using animal-based models of sciatic nerve injury-induced pain. Extensive searches across databases such as Medline, PubMed, Web of Science, Scopus, ScienceDirect, and Google Scholar were conducted. The findings highlights 39 families including Lamiaceae, Asteraceae, Fabaceae, and Apocyanaceae and Cucurbitaceae, effectively treating sciatic nerve injury-induced pain. Flavonoids made up 53% constituents, phenols and terpenoids made up 15%, alkaloids made up 13%, and glycosides made up 6% to be used in neuorpathic pain. Phytochemicals derived from various medicinal plants can serve as potential therapeutic targets for both acute and chronic sciatic injury-induced neuropathic pain.
Collapse
Affiliation(s)
- Abdul Nasir
- Department of Anesthesiology, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Medical Research Center, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | - Sami Ullah
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Pakistan.
| | - Qian Bai
- Department of Anesthesiology, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Medical Research Center, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
26
|
Xie H, Lu F, Li X, Wang E, Mo J, Liang W. Silencing of secreted phosphoprotein 1 attenuates sciatic nerve injury-induced neuropathic pain: Regulating extracellular signal-regulated kinase and neuroinflammatory signaling pathways. Immun Inflamm Dis 2024; 12:e1132. [PMID: 38415922 PMCID: PMC10836034 DOI: 10.1002/iid3.1132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 11/23/2023] [Accepted: 12/17/2023] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Neuropathic pain (NP) is a chronic pathological pain that affects the quality of life and is a huge medical burden for affected patients. In this study, we aimed to explore the effects of secreted phosphoprotein 1 (SPP1) on NP. METHODS We established a chronic constriction injury (CCI) rat model, knocked down SPP1 via an intrathecal injection, and/or activated the extracellular signal-regulated kinase (ERK) pathway with insulin-like growth factor 1 (IGF-1) treatment. Pain behaviors, including paw withdrawal threshold (PWT), paw withdrawal latency (PWL), lifting number, and frequency, were assessed. After sacrificing rats, the L4-L5 dorsal root ganglion was collected. Then, SPP1 levels were determined using quantitative polymerase chain reaction (qPCR) and western blot analysis. The levels of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-6, IL-10, epidermal growth factor (EGF), vascular endothelial growth factor (VEGF), and transforming growth factor (TGF)-β were determined using qPCR and enzyme-linked immunosorbent assay. The levels of ERK pathway factors were determined via western blot analysis. RESULTS We found that CCI decreased PWT and PWL, increased the lifting number and frequency, and upregulated SPP1 levels. The loss of SPP1 reversed these CCI-induced effects. Additionally, CCI upregulated IL-1β, TNF-α, IL-6, EGF, and VEGF levels, downregulated TGF-β levels, and activated the ERK pathway, while silencing of SPP1 abrogated these CCI-induced effects. Moreover, IGF-1 treatment reversed the effects of SPP1 loss. CONCLUSIONS The data indicate that silencing SPP1 attenuates NP via inactivation of the ERK pathway, suggesting that SPP1 may be a promising target for NP treatment.
Collapse
Affiliation(s)
- Haiyu Xie
- Department of AnesthesiologyThe First Affiliated Hospital of Gannan Medical UniversityGanzhou CityJiangxi ProvinceChina
| | - Feng Lu
- Department of AnesthesiologyThe First Affiliated Hospital of Gannan Medical UniversityGanzhou CityJiangxi ProvinceChina
| | - Xiaoling Li
- Department of AnesthesiologyThe First Affiliated Hospital of Gannan Medical UniversityGanzhou CityJiangxi ProvinceChina
| | - Enfu Wang
- Department of AnesthesiologyThe First Affiliated Hospital of Gannan Medical UniversityGanzhou CityJiangxi ProvinceChina
| | - Jiao Mo
- Department of AnesthesiologyThe First Affiliated Hospital of Gannan Medical UniversityGanzhou CityJiangxi ProvinceChina
| | - Weidong Liang
- Department of AnesthesiologyThe First Affiliated Hospital of Gannan Medical UniversityGanzhou CityJiangxi ProvinceChina
| |
Collapse
|
27
|
Li YR, Dang ZH, Li SS, Li GY, Cai HB, Lu YW, Xie LL, Li LL, Huang LL, Qin XD, Bu F. Progress of research into microglial mediation of central post-stroke pain. Int J Immunopathol Pharmacol 2024; 38:3946320241309220. [PMID: 39699048 DOI: 10.1177/03946320241309220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
Abstract
Central post-stroke pain (CPSP) is a chronic neuropathic pain syndrome that commonly occurs after cerebral stroke, and it severely impairs the daily activities of stroke patients. A number of fundamental and clinical studies support the theory that CPSP is mainly caused by ischemic and hemorrhagic injury of the spinal-thalamic-cortical neural pathway. However, the underlying reasons of CPSP genesis and development are far from clear. In recent years, the majority of research focused on microglia, the main resident immune cells of the central nervous system, which highlighted its critical role in the regulation of CPSP. The present article concentrated on exciting discoveries of microglia in mediating CPSP from the perspectives of their bioactive factors, cellular receptors, and signaling pathways, in order to offer a convenient and easy-to-digest overview. In addition, the potential and challenges of several agents in clinical translation of CPSP treatment was discussed based on recent preclinical studies.
Collapse
Affiliation(s)
- Yue-Rong Li
- Department of Neurology & Psychology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong
| | - Zhao-Hui Dang
- Department of Neurology & Psychology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong
| | - Shan-Shan Li
- Department of Neurology & Psychology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong
| | - Guang-Ya Li
- Department of Neurology & Psychology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong
| | - Hao-Bin Cai
- Department of Neurology & Psychology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong
| | - Yun-Wei Lu
- Department of Neurology & Psychology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong
| | - Lin-Lin Xie
- Department of Neurology & Psychology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong
| | - Li-Ling Li
- Department of Neurology & Psychology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong
| | - Liu-Ling Huang
- Department of Neurology & Psychology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong
| | - Xiu-De Qin
- Department of Neurology & Psychology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong
| | - Fan Bu
- Department of Neurology & Psychology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong
| |
Collapse
|
28
|
Santos SS, de Souza MB, Lauria PSS, Juiz PJL, Villarreal CF, Viana MDM. Technological Trends Involving Probiotics in the Treatment of Diabetic Neuropathy: A Patent Review (2009-2022). Curr Diabetes Rev 2024; 20:e220523217168. [PMID: 37221688 DOI: 10.2174/1573399820666230522121707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 05/25/2023]
Abstract
BACKGROUND Diabetic neuropathy (DN) causes neuropathic pain, and current treatments are unsatisfactory. Recently studies have demonstrated an assertive correlation between gut microbiota and pain modulation. OBJECTIVE Considering the emerging search for new therapies for the control of DN and the growing commercial interest in the probiotics market, this study aimed to provide patents on the use of probiotics in the control of DN. METHODS This is a patent prospection performed in the Espacenet Patent database, using the association of keywords and IPC related to probiotics in medical preparations and foods, from 2009 to December 2022. RESULTS Results have shown that in 2020, there was a boom in patent filing in the area. Asian countries accounted for more than 50% of all 48 inventions (n = 48), with Japan as the only applicant in 2021. Products being developed in recent years point to effects that may represent an advancement in DN treatment, such as reduced concentration of pro-inflammatory mediators, metabolites and neurotransmitters release, and hypoglycemic potential. All effects were more related to the Lactobacillus and Bifidobacterium genera, associated with more than one property mentioned. CONCLUSION The mechanisms attributed to the microorganisms suggest the therapeutic potential of probiotics in the non-pharmacological treatment of pain. New applications for probiotics have resulted from great research interest by academia, but also reflect commercial interests despite the paucity of clinical trials. Thus, the present work supports the evolution of research to explore the benefits of probiotics and their clinical use in DN.
Collapse
Affiliation(s)
- Sthefane Silva Santos
- Laboratory of Pharmacology and Experimental Therapeutics, Pharmacy College, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Mariana Bastos de Souza
- Laboratory of Pharmacology and Experimental Therapeutics, Pharmacy College, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Pedro Santana Sales Lauria
- Laboratory of Pharmacology and Experimental Therapeutics, Pharmacy College, Federal University of Bahia, Salvador, Bahia, Brazil
| | | | - Cristiane Flora Villarreal
- Laboratory of Pharmacology and Experimental Therapeutics, Pharmacy College, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Max Denisson Maurício Viana
- Laboratory of Pharmacology and Experimental Therapeutics, Pharmacy College, Federal University of Bahia, Salvador, Bahia, Brazil
| |
Collapse
|
29
|
Sulaiman MI, Alabsi W, Szabo L, Hay M, Polt R, Largent-Milnes TM, Vanderah TW. PNA6, a Lactosyl Analogue of Angiotensin-(1-7), Reverses Pain Induced in Murine Models of Inflammation, Chemotherapy-Induced Peripheral Neuropathy, and Metastatic Bone Disease. Int J Mol Sci 2023; 24:15007. [PMID: 37834455 PMCID: PMC10573977 DOI: 10.3390/ijms241915007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Pain is the most significant impairment and debilitating challenge for patients with bone metastasis. Therefore, the primary objective of current therapy is to mitigate and prevent the persistence of pain. Thus, cancer-induced bone pain is described as a multifaceted form of discomfort encompassing both inflammatory and neuropathic elements. We have developed a novel non-addictive pain therapeutic, PNA6, that is a derivative of the peptide Angiotensin-(1-7) and binds the Mas receptor to decrease inflammation-related cancer pain. In the present study, we provide evidence that PNA6 attenuates inflammatory, chemotherapy-induced peripheral neuropathy (CIPN) and cancer pain confined to the long bones, exhibiting longer-lasting efficacious therapeutic effects. PNA6, Asp-Arg-Val-Tyr-Ile-His-Ser-(O-β-Lact)-amide, was successfully synthesized using solid phase peptide synthesis (SPPS). PNA6 significantly reversed inflammatory pain induced by 2% carrageenan in mice. A second murine model of platinum drug-induced painful peripheral neuropathy was established using oxaliplatin. Mice in the oxaliplatin-vehicle treatment groups demonstrated significant mechanical allodynia compared to the oxaliplatin-PNA6 treatment group mice. In a third study modeling a complex pain state, E0771 breast adenocarcinoma cells were implanted into the femur of female C57BL/6J wild-type mice to induce cancer-induced bone pain (CIBP). Both acute and chronic dosing of PNA6 significantly reduced the spontaneous pain behaviors associated with CIBP. These data suggest that PNA6 is a viable lead candidate for treating chronic inflammatory and complex neuropathic pain.
Collapse
Affiliation(s)
- Maha I. Sulaiman
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85721, USA; (M.I.S.); (T.M.L.-M.)
| | - Wafaa Alabsi
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ 85721, USA; (W.A.); (L.S.); (R.P.)
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, 1703 E. Mabel St, Tucson, AZ 85721, USA
| | - Lajos Szabo
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ 85721, USA; (W.A.); (L.S.); (R.P.)
| | - Meredith Hay
- The BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA;
- Department of Physiology, The University of Arizona, Tucson, AZ 85721, USA
- Evelyn F. McKnight Brain Institute, The University of Arizona, Tucson, AZ 85721, USA
| | - Robin Polt
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ 85721, USA; (W.A.); (L.S.); (R.P.)
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, 1703 E. Mabel St, Tucson, AZ 85721, USA
| | - Tally M. Largent-Milnes
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85721, USA; (M.I.S.); (T.M.L.-M.)
- Comprehensive Pain and Addiction Center, University of Arizona, Tucson, AZ 85721, USA
| | - Todd W. Vanderah
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85721, USA; (M.I.S.); (T.M.L.-M.)
- Comprehensive Pain and Addiction Center, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
30
|
da Silva LS, Toledo RS, Stein DJ, de Castro JM, Caumo W, Torres ILS. Transcranial Direct Current Stimulation (tDCS) antinociceptive effect is not altered by isoflurane anesthesia in neuropathic pain rats. BRAZILIAN JOURNAL OF ANESTHESIOLOGY (ELSEVIER) 2023; 73:514-518. [PMID: 36924939 PMCID: PMC10362433 DOI: 10.1016/j.bjane.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Affiliation(s)
- Lisiane Santos da Silva
- Hospital de Clínicas de Porto Alegre, Laboratório de Farmacologia e Neuromodulação da Dor: Investigações Pré-clínicas, Porto Alegre, RS, Brazil; Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Programa de Pós-Graduação em Medicina: Ciências Médicas, Porto Alegre, RS, Brazil
| | - Roberta Ströher Toledo
- Hospital de Clínicas de Porto Alegre, Laboratório de Farmacologia e Neuromodulação da Dor: Investigações Pré-clínicas, Porto Alegre, RS, Brazil
| | - Dirson João Stein
- Hospital de Clínicas de Porto Alegre, Laboratório de Farmacologia e Neuromodulação da Dor: Investigações Pré-clínicas, Porto Alegre, RS, Brazil; Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Programa de Pós-Graduação em Medicina: Ciências Médicas, Porto Alegre, RS, Brazil; Hospital de Clínicas de Porto Alegre, Núcleo Translacional: Farmacologia da Dor e Neuromodulação, Porto Alegre, RS, Brazil
| | - Josimar Macedo de Castro
- Hospital de Clínicas de Porto Alegre, Laboratório de Farmacologia e Neuromodulação da Dor: Investigações Pré-clínicas, Porto Alegre, RS, Brazil; Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Programa de Pós-Graduação em Medicina: Ciências Médicas, Porto Alegre, RS, Brazil; Hospital de Clínicas de Porto Alegre, Núcleo Translacional: Farmacologia da Dor e Neuromodulação, Porto Alegre, RS, Brazil
| | - Wolnei Caumo
- Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Programa de Pós-Graduação em Medicina: Ciências Médicas, Porto Alegre, RS, Brazil; Hospital de Clínicas de Porto Alegre, Núcleo Translacional: Farmacologia da Dor e Neuromodulação, Porto Alegre, RS, Brazil
| | - Iraci L S Torres
- Hospital de Clínicas de Porto Alegre, Laboratório de Farmacologia e Neuromodulação da Dor: Investigações Pré-clínicas, Porto Alegre, RS, Brazil; Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Programa de Pós-Graduação em Medicina: Ciências Médicas, Porto Alegre, RS, Brazil; Hospital de Clínicas de Porto Alegre, Núcleo Translacional: Farmacologia da Dor e Neuromodulação, Porto Alegre, RS, Brazil.
| |
Collapse
|
31
|
Khan AW, Farooq M, Hwang MJ, Haseeb M, Choi S. Autoimmune Neuroinflammatory Diseases: Role of Interleukins. Int J Mol Sci 2023; 24:7960. [PMID: 37175665 PMCID: PMC10178921 DOI: 10.3390/ijms24097960] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Autoimmune neuroinflammatory diseases are a group of disorders resulting from abnormal immune responses in the nervous system, causing inflammation and tissue damage. The interleukin (IL) family of cytokines, especially IL-1, IL-6, and IL-17, plays a critical role in the pathogenesis of these diseases. IL-1 is involved in the activation of immune cells, production of pro-inflammatory cytokines, and promotion of blood-brain barrier breakdown. IL-6 is essential for the differentiation of T cells into Th17 cells and has been implicated in the initiation and progression of neuroinflammation. IL-17 is a potent pro-inflammatory cytokine produced by Th17 cells that plays a crucial role in recruiting immune cells to sites of inflammation. This review summarizes the current understanding of the roles of different interleukins in autoimmune neuroinflammatory diseases, including multiple sclerosis, amyotrophic lateral sclerosis, Alzheimer's disease, neuromyelitis optica, and autoimmune encephalitis, and discusses the potential of targeting ILs as a therapeutic strategy against these diseases. We also highlight the need for further research to better understand the roles of ILs in autoimmune neuroinflammatory diseases and to identify new targets for treating these debilitating diseases.
Collapse
Affiliation(s)
- Abdul Waheed Khan
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Mariya Farooq
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon 16502, Republic of Korea
| | - Moon-Jung Hwang
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Muhammad Haseeb
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon 16502, Republic of Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon 16502, Republic of Korea
| |
Collapse
|
32
|
Bai YW, Yang QH, Chen PJ, Wang XQ. Repetitive transcranial magnetic stimulation regulates neuroinflammation in neuropathic pain. Front Immunol 2023; 14:1172293. [PMID: 37180127 PMCID: PMC10167032 DOI: 10.3389/fimmu.2023.1172293] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023] Open
Abstract
Neuropathic pain (NP) is a frequent condition caused by a lesion in, or disease of, the central or peripheral somatosensory nervous system and is associated with excessive inflammation in the central and peripheral nervous systems. Repetitive transcranial magnetic stimulation (rTMS) is a supplementary treatment for NP. In clinical research, rTMS of 5-10 Hz is widely placed in the primary motor cortex (M1) area, mostly at 80%-90% RMT, and 5-10 treatment sessions could produce an optimal analgesic effect. The degree of pain relief increases greatly when stimulation duration is greater than 10 days. Analgesia induced by rTMS appears to be related to reestablishing the neuroinflammation system. This article discussed the influences of rTMS on the nervous system inflammatory responses, including the brain, spinal cord, dorsal root ganglia (DRG), and peripheral nerve involved in the maintenance and exacerbation of NP. rTMS has shown an anti-inflammation effect by decreasing pro-inflammatory cytokines, including IL-1β, IL-6, and TNF-α, and increasing anti-inflammatory cytokines, including IL-10 and BDNF, in cortical and subcortical tissues. In addition, rTMS reduces the expression of glutamate receptors (mGluR5 and NMDAR2B) and microglia and astrocyte markers (Iba1 and GFAP). Furthermore, rTMS decreases nNOS expression in ipsilateral DRGs and peripheral nerve metabolism and regulates neuroinflammation.
Collapse
Affiliation(s)
- Yi-Wen Bai
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qi-Hao Yang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Pei-Jie Chen
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
| |
Collapse
|
33
|
Joseph AM, Karas M, Joubran E, Jara Silva CE, Cordova S, Sinha M, Salam A, Leyva MM, Quinonez J, Ruxmohan S. Recent Advancements in Epidural Etanercept for Pain Management in Radiculopathy: A Literature Review. Cureus 2023; 15:e37672. [PMID: 37206531 PMCID: PMC10191459 DOI: 10.7759/cureus.37672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/16/2023] [Indexed: 05/21/2023] Open
Abstract
The most common etiology of low back and neck pain is associated with spinal cord pathologies. Regardless of origin, low back and neck pain are some of the most common causes of disability worldwide. Mechanical compression due to spinal cord diseases, such as degenerative disc disorders, can lead to radiculopathy, which manifests as numbness or tingling and can progress to loss of muscle function. Conservative management, such as physical therapy, has not been proven effective in treating radiculopathy, and surgical treatments have more risks than benefits for most patients. Epidural disease-modifying medications, such as Etanercept, have been recently explored due to their minimal invasiveness and direct effects on inhibiting tumor necrosis factor-α (TNF-α). Therefore, this literature review aims to evaluate epidural Etanercept's effect on radiculopathy caused by degenerative disc diseases. Epidural Etanercept has been shown to improve radiculopathy in patients with lumbar disc degeneration, spinal stenosis, and sciatica. Further research is needed to compare the effectiveness of Etanercept with commonly used treatments such as steroids and analgesia.
Collapse
Affiliation(s)
- Andrew M Joseph
- Department of Osteopathic Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Davie, USA
| | - Monica Karas
- Department of Osteopathic Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Davie, USA
| | - Ernesto Joubran
- Department of Osteopathic Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| | - Cesar E Jara Silva
- Department of Osteopathic Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| | - Steven Cordova
- Department of Neurology, Larkin Community Hospital, South Miami, USA
- College of Medicine, St. Matthew's University School of Medicine, Grand Cayman, CYM
| | - Mehul Sinha
- Department of Medicine, International Society for Chronic Illnesses, Vadodara, IND
- Department of Surgery, Kasturba Medical College, Mangalore, IND
| | - Abdus Salam
- Department of General Surgery, Khyber Teaching Hospital, Peshawar, PAK
| | - Melissa M Leyva
- Department of Osteopathic Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| | - Jonathan Quinonez
- Department of Neurology/Osteopathic Neuromuscular Medicine, Larkin Community Hospital, Miami, USA
| | - Samir Ruxmohan
- Division of Neurocritical Care, UT Southwestern Medical Center, Dallas, USA
| |
Collapse
|
34
|
Pandey MK. Exploring Pro-Inflammatory Immunological Mediators: Unraveling the Mechanisms of Neuroinflammation in Lysosomal Storage Diseases. Biomedicines 2023; 11:biomedicines11041067. [PMID: 37189685 DOI: 10.3390/biomedicines11041067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
Lysosomal storage diseases are a group of rare and ultra-rare genetic disorders caused by defects in specific genes that result in the accumulation of toxic substances in the lysosome. This excess accumulation of such cellular materials stimulates the activation of immune and neurological cells, leading to neuroinflammation and neurodegeneration in the central and peripheral nervous systems. Examples of lysosomal storage diseases include Gaucher, Fabry, Tay–Sachs, Sandhoff, and Wolman diseases. These diseases are characterized by the accumulation of various substrates, such as glucosylceramide, globotriaosylceramide, ganglioside GM2, sphingomyelin, ceramide, and triglycerides, in the affected cells. The resulting pro-inflammatory environment leads to the generation of pro-inflammatory cytokines, chemokines, growth factors, and several components of complement cascades, which contribute to the progressive neurodegeneration seen in these diseases. In this study, we provide an overview of the genetic defects associated with lysosomal storage diseases and their impact on the induction of neuro-immune inflammation. By understanding the underlying mechanisms behind these diseases, we aim to provide new insights into potential biomarkers and therapeutic targets for monitoring and managing the severity of these diseases. In conclusion, lysosomal storage diseases present a complex challenge for patients and clinicians, but this study offers a comprehensive overview of the impact of these diseases on the central and peripheral nervous systems and provides a foundation for further research into potential treatments.
Collapse
Affiliation(s)
- Manoj Kumar Pandey
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, Cincinnati, OH 45229-3026, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0515, USA
| |
Collapse
|
35
|
Low RN, Low RJ, Akrami A. A review of cytokine-based pathophysiology of Long COVID symptoms. Front Med (Lausanne) 2023; 10:1011936. [PMID: 37064029 PMCID: PMC10103649 DOI: 10.3389/fmed.2023.1011936] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 02/27/2023] [Indexed: 04/03/2023] Open
Abstract
The Long COVID/Post Acute Sequelae of COVID-19 (PASC) group includes patients with initial mild-to-moderate symptoms during the acute phase of the illness, in whom recovery is prolonged, or new symptoms are developed over months. Here, we propose a description of the pathophysiology of the Long COVID presentation based on inflammatory cytokine cascades and the p38 MAP kinase signaling pathways that regulate cytokine production. In this model, the SARS-CoV-2 viral infection is hypothesized to trigger a dysregulated peripheral immune system activation with subsequent cytokine release. Chronic low-grade inflammation leads to dysregulated brain microglia with an exaggerated release of central cytokines, producing neuroinflammation. Immunothrombosis linked to chronic inflammation with microclot formation leads to decreased tissue perfusion and ischemia. Intermittent fatigue, Post Exertional Malaise (PEM), CNS symptoms with "brain fog," arthralgias, paresthesias, dysautonomia, and GI and ophthalmic problems can consequently arise as result of the elevated peripheral and central cytokines. There are abundant similarities between symptoms in Long COVID and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). DNA polymorphisms and viral-induced epigenetic changes to cytokine gene expression may lead to chronic inflammation in Long COVID patients, predisposing some to develop autoimmunity, which may be the gateway to ME/CFS.
Collapse
Affiliation(s)
| | - Ryan J. Low
- Gatsby Computational Neuroscience Unit, University College London, London, United Kingdom
- Sainsbury Wellcome Centre, University College London, London, United Kingdom
| | - Athena Akrami
- Sainsbury Wellcome Centre, University College London, London, United Kingdom
| |
Collapse
|
36
|
Sun JL, Dai WJ, Shen XY, Lü N, Zhang YQ. Interleukin-17 is involved in neuropathic pain and spinal synapse plasticity on mice. J Neuroimmunol 2023; 377:578068. [PMID: 36948094 DOI: 10.1016/j.jneuroim.2023.578068] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/08/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Neuropathic pain seriously affects people's life, but its mechanism is not clear. Interleukin-17 (IL-17) is a proinflammation cytokine and involved in pain regulation. Our previous study found that IL-17 markedly enhanced the excitatory activity of spinal dorsal neurons in mice spinal slices. The present study attempts to explore if IL-17 contributes to neuropathic pain and spinal synapse plasticity. A model of spared nerve injury (SNI) was established in C57BL/6 J mice and IL-17a mutant mice. The pain-like behaviors was tested by von Frey test and dynamic mechanical stimuli, and the expression of IL-17 and its receptor, IL-17RA, was detected by immunohistochemical staining. C-fiber evoked field potentials were recorded in vivo. In the spinal dorsal horn, IL-17 predominantly expressed in the superficial spinal astrocytes and IL-17RA expressed mostly in neurons and slightly in astrocytes. The SNI-induced static and dynamic allodynia was significantly prevented by pretreatment of neutralizing IL-17 antibody (intrathecal injection, 2 μg/10 μL) and attenuated in IL-17a mutant mice. Post-treatment of IL-17 neutralizing antibody also partially relieved the established mechanical allodynia. Moreover, spinal long-term potentiation (LTP) of C-fiber evoked field potentials, a substrate for central sensitization, was suppressed by IL-17 neutralizing antibody. Intrathecal injection of IL-17 recombinant protein (0.2 μg/10 μL) mimicked the mechanical allodynia and facilitated the spinal LTP. These data implied that IL-17 in the spinal cord played a crucial role in neuropathic pain and central sensitization.
Collapse
Affiliation(s)
- Jia-Lu Sun
- Department of Translational Neuroscience, Jing'an District Center Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Wen-Jing Dai
- Department of Translational Neuroscience, Jing'an District Center Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Xin-Yuan Shen
- Department of Translational Neuroscience, Jing'an District Center Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Ning Lü
- Department of Translational Neuroscience, Jing'an District Center Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Yu-Qiu Zhang
- Department of Translational Neuroscience, Jing'an District Center Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
37
|
Park J, Farmer M, Casson C, Kalashnikova I, Kolpek D. Therapeutic Potential of Combinative shRNA-Encoded Lentivirus-Mediated Gene Silencing to Accelerate Somatosensory Recovery After Spinal Cord Trauma. Neurotherapeutics 2023; 20:564-577. [PMID: 36401079 PMCID: PMC10121969 DOI: 10.1007/s13311-022-01331-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2022] [Indexed: 11/19/2022] Open
Abstract
Neuropathic pain following spinal cord injury (SCI) remains a difficult problem that affects more than 80% of SCI patients. Growing evidence indicates that neuroinflammatory responses play a key role in neuropathic pain after SCI. Short hairpin RNA (shRNA) interference is an efficient tool for the knockdown of disease-related specific gene expression after SCI, yet insufficient data is available to establish guidelines. In this study, we have constructed the transient receptor potential ankyrin 1 (TRPA1) shRNA encoded-lentiviral vector (LV-shTRPA1) and P38 MAPK shRNA encoded-lentiviral vector (LV-shP38) to investigate the silencing effects of shRNAs and their ability to reprogram the neuroinflammatory responses, thereby enhancing somatosensory recovery after SCI. Our in vitro data employing HEK293-FT and activated macrophages demonstrated that delivered LV-shRNAs showed high transduction efficacy with no cytotoxicity. Furthermore, a combination of LV-shP38 and LV-shTRPA1 was found to be most effective at suppressing target genes, cutting the expression of pro-inflammatory and pro-nociceptive factors in the dorsal horn of the spinal cord and dorsal root ganglia, thus contributing to the alleviation of neuronal hypersensitivities after SCI. Overall, our data demonstrated that the combination LV-shP38/shTRPA1 produced a synergistic effect for immunomodulation and reduced neuropathic pain with a favorable risk-to-benefit ratio. Collectively, our LV-mediated shRNA delivery will provide an efficient tool for gene silencing therapeutic approaches to treat various incurable disorders.
Collapse
Affiliation(s)
- Jonghyuck Park
- Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone, Lexington, KY, 40506, USA.
- Spinal Cord and Brain Injury Research Center, University of Kentucky, 741 S. Limestone, Lexington, KY, 40506, USA.
| | - Matthew Farmer
- Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone, Lexington, KY, 40506, USA
| | - Camara Casson
- Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone, Lexington, KY, 40506, USA
| | - Irina Kalashnikova
- Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone, Lexington, KY, 40506, USA
| | - Daniel Kolpek
- Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone, Lexington, KY, 40506, USA
| |
Collapse
|
38
|
Ciapała K, Pawlik K, Ciechanowska A, Mika J, Rojewska E. Effect of pharmacological modulation of the kynurenine pathway on pain-related behavior and opioid analgesia in a mouse model of neuropathic pain. Toxicol Appl Pharmacol 2023; 461:116382. [PMID: 36681127 DOI: 10.1016/j.taap.2023.116382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 10/26/2022] [Accepted: 01/14/2023] [Indexed: 01/19/2023]
Abstract
Dysfunction of the central nervous system are accompanied by changes in tryptophan metabolism, with the kynurenine pathway (KP) being the main route of its catabolism. Recently, KP metabolites, which are collectively called kynurenines, have become an area of intense research due to their ability to directly and indirectly affect a variety of classic neurotransmitter systems. However, the significance of KP in neuropathic pain is still poorly understood. Therefore, we designed several experiments to verify changes in the mRNA levels of KP enzymes in parallel with other factors related to this metabolic route after chronic constriction injury of the sciatic nerve (CCI model) in mice. The analysis revealed an increase in, Kmo, Kynu and Haoo mRNA levels in the spinal cord on the 7th day after CCI, while Kat1, Kat2, Tdo2, Ido2 and Qprt mRNA levels remain unchanged. Subsequent pharmacological studies provided evidence that modulation of KP by single intrathecal administration of 1-D-MT, UPF468 or L-kynurenine attenuates mechanical and thermal hypersensitivity and increases the effectiveness of selected opioids in mice as measured on day 7 after CCI. Moreover, our results provide the first evidence that the injection of L-kynurenine preceded by UPF468 (KMO inhibitor) is more effective at reducing hypersensitivity in animals with neuropathic pain. Importantly, L-kynurenine also exerts an analgesic effect after intravenous injections, which is enhanced by the administration of minocycline, an inhibitor of microglial activation. Additionally, L-kynurenine administered intrathecally and intravenously enhances analgesia evoked by all tested opioids (morphine, buprenorphine and oxycodone). Overall, our results indicate that the modulation of KP at different levels might be a new pharmacological tool in neuropathy management.
Collapse
Affiliation(s)
- Katarzyna Ciapała
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Krakow, Poland
| | - Katarzyna Pawlik
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Krakow, Poland
| | - Agata Ciechanowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Krakow, Poland
| | - Joanna Mika
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Krakow, Poland
| | - Ewelina Rojewska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Krakow, Poland.
| |
Collapse
|
39
|
Zhang T, Liang W, Zhang M, Cui S, Huang X, Ou W, Huang R, Gao J, Jia Z, Zhang S. Daphnetin Improves Neuropathic Pain by Inhibiting the Expression of Chemokines and Inflammatory Factors in the Spinal Cord and Interfering with Glial Cell Polarization. Pharmaceuticals (Basel) 2023; 16:243. [PMID: 37259390 PMCID: PMC9964401 DOI: 10.3390/ph16020243] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/18/2023] [Accepted: 01/25/2023] [Indexed: 08/13/2023] Open
Abstract
Neuropathic pain (NP) is a common pain disease that seriously affects the quality of life and physical and mental health of patients. Daphnetin is extracted from the Daphne giraldii Nitsche and has the structure of 7,8-dihydroxy coumarin. As a natural product, daphnetin displays a wide range of pharmacological activities, such as analgesia and anti-inflammatory activities, but whether it is able to improve NP through anti-inflammatory effects is unknown. Therefore, this paper intends to investigate the mechanism of daphnetin in improving NP rats affected by the intrathecal injection of tumor necrosis factor-α (TNF-α) from the perspective of anti-inflammation. Our results showed that daphnetin significantly improved hyperalgesia in NP rats. Daphnetin inhibited the activation and polarization of glial cells and neurons in the spinal cord of NP rats and reduced the expression of mRNA and protein of inflammatory factors and chemokine pairs in the spinal cord. Daphnetin inhibited the polarization of human microglia cell 3 (HMC3) cells and human glioma cells (U251) cells toward M1 microglia and A1 astrocytes, respectively, and induced the conversion of M1 microglia and A1 astrocytes to M2 microglia and A2 astrocytes, respectively. In conclusion, daphnetin ameliorates NP by inhibiting the expression of inflammatory factors and chemokines and the polarization of glial cells in the spinal cord of NP rats. This study provides a theoretical basis for the treatment of NP with daphnetin to expand the clinical application of daphnetin.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Shuofeng Zhang
- Department of Pharmacology of Traditional Chinese Medicine, College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
40
|
Sung CS, Cheng HJ, Chen NF, Tang SH, Kuo HM, Sung PJ, Chen WF, Wen ZH. Antinociceptive Effects of Aaptamine, a Sponge Component, on Peripheral Neuropathy in Rats. Mar Drugs 2023; 21:md21020113. [PMID: 36827154 PMCID: PMC9963100 DOI: 10.3390/md21020113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Aaptamine, a natural marine compound isolated from the sea sponge, has various biological activities, including delta-opioid agonist properties. However, the effects of aaptamine in neuropathic pain remain unclear. In the present study, we used a chronic constriction injury (CCI)-induced peripheral neuropathic rat model to explore the analgesic effects of intrathecal aaptamine administration. We also investigated cellular angiogenesis and lactate dehydrogenase A (LDHA) expression in the ipsilateral lumbar spinal cord after aaptamine administration in CCI rats by immunohistofluorescence. The results showed that aaptamine alleviates CCI-induced nociceptive sensitization, allodynia, and hyperalgesia. Moreover, aaptamine significantly downregulated CCI-induced vascular endothelial growth factor (VEGF), cluster of differentiation 31 (CD31), and LDHA expression in the spinal cord. Double immunofluorescent staining showed that the spinal VEGF and LDHA majorly expressed on astrocytes and neurons, respectively, in CCI rats and inhibited by aaptamine. Collectively, our results indicate aaptamine's potential as an analgesic agent for neuropathic pain. Furthermore, inhibition of astrocyte-derived angiogenesis and neuronal LDHA expression might be beneficial in neuropathy.
Collapse
Affiliation(s)
- Chun-Sung Sung
- Department of Anesthesiology, Division of Pain Management, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Hao-Jung Cheng
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan
| | - Nan-Fu Chen
- Department of Surgery, Division of Neurosurgery, Kaohsiung Armed Forces General Hospital, Kaohsiung 802301, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan
| | - Shih-Hsuan Tang
- Department of Anesthesiology, Division of Pain Management, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Hsiao-Mei Kuo
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan
| | - Ping-Jyun Sung
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan
- National Museum of Marine Biology and Aquarium, Pingtung 944401, Taiwan
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Wu-Fu Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan
- Correspondence: (W.-F.C.); (Z.-H.W.)
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan
- Correspondence: (W.-F.C.); (Z.-H.W.)
| |
Collapse
|
41
|
Zhang FM, Wang B, Hu H, Li QY, Chen HH, Luo LT, Jiang ZJ, Zeng MX, Liu XJ. Transcriptional Profiling of TGF-β Superfamily Members in Lumbar DRGs of Rats Following Sciatic Nerve Axotomy and Activin C Inhibits Neuropathic Pain. Endocr Metab Immune Disord Drug Targets 2023; 23:375-388. [PMID: 36201267 DOI: 10.2174/1871530322666221006114557] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 08/04/2022] [Accepted: 09/29/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Neuroinflammation and cytokines play critical roles in neuropathic pain and axon degeneration/regeneration. Cytokines of transforming growth factor-β superfamily have implications in pain and injured nerve repair processing. However, the transcriptional profiles of the transforming growth factor-β superfamily members in dorsal root ganglia under neuropathic pain and axon degeneration/regeneration conditions remain elusive. OBJECTIVE We aimed to plot the transcriptional profiles of transforming growth factor-β superfamily components in lumbar dorsal root ganglia of sciatic nerve-axotomized rats and to further verify the profiles by testing the analgesic effect of activin C, a representative cytokine, on neuropathic pain. METHODS Adult male rats were axotomized in sciatic nerves, and lumbar dorsal root ganglia were isolated for total RNA extraction or section. A custom microarray was developed and employed to plot the gene expression profiles of transforming growth factor-β superfamily components. Realtime RT-PCR was used to confirm changes in the expression of activin/inhibin family genes, and then in situ hybridization was performed to determine the cellular locations of inhibin α, activin βC, BMP-5 and GDF-9 mRNAs. The rat spared nerve injury model was performed, and a pain test was employed to determine the effect of activin C on neuropathic pain. RESULTS The expression of transforming growth factor-β superfamily cytokines and their signaling, including some receptors and signaling adaptors, were robustly upregulated. Activin βC subunit mRNAs were expressed in the small-diameter dorsal root ganglion neurons and upregulated after axotomy. Single intrathecal injection of activin C inhibited neuropathic pain in spared nerve injury model. CONCLUSION This is the first report to investigate the transcriptional profiles of members of transforming growth factor-β superfamily in axotomized dorsal root ganglia. The distinct cytokine profiles observed here might provide clues toward further study of the role of transforming growth factor-β superfamily in the pathogenesis of neuropathic pain and axon degeneration/regeneration after peripheral nerve injury.
Collapse
Affiliation(s)
- Feng-Ming Zhang
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province, 226001, China
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, 210029, China
| | - Bing Wang
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Han Hu
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou Xiangshan, Beijing, 100093, China
| | - Qing-Yi Li
- Pain and Related Disease Research Lab, Shantou University Medical College, Shantou, Guangdong Province, 515041, China
| | - Hao-Hao Chen
- Pain and Related Disease Research Lab, Shantou University Medical College, Shantou, Guangdong Province, 515041, China
| | - Li-Ting Luo
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Zuo-Jie Jiang
- Pain and Related Disease Research Lab, Shantou University Medical College, Shantou, Guangdong Province, 515041, China
| | - Mei-Xing Zeng
- Pain and Related Disease Research Lab, Shantou University Medical College, Shantou, Guangdong Province, 515041, China
| | - Xing-Jun Liu
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province, 226001, China
- Pain and Related Disease Research Lab, Shantou University Medical College, Shantou, Guangdong Province, 515041, China
| |
Collapse
|
42
|
de Geus TJ, Franken G, Joosten EA. Conventional, high frequency and differential targeted multiplexed spinal cord stimulation in experimental painful diabetic peripheral neuropathy: Pain behavior and role of the central inflammatory balance. Mol Pain 2023; 19:17448069231193368. [PMID: 37488684 PMCID: PMC10504849 DOI: 10.1177/17448069231193368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023] Open
Abstract
Spinal cord stimulation (SCS) is a last resort treatment for pain relief in painful diabetic peripheral neuropathy (PDPN) patients. However, the effectivity of SCS in PDPN is limited. New SCS paradigms such as high frequency (HF) and differential target multiplexed (DTM) might improve responder rates and efficacy of SCS-induced analgesia in PDPN patients, and are suggested to modulate the inflammatory balance and glial response in the spinal dorsal horn. The aim of this study was to research the effects of Con-, HF- and DTM-SCS on pain behavior and the spinal inflammatory balance in an animal model of PDPN. Streptozotocin-induced PDPN animals were stimulated for 48 hours with either Con-SCS (50Hz), HF-SCS (1200Hz) or DTM-SCS (combination of Con- and HF-SCS). Mechanical hypersensitivity was assessed using Von Frey (VF) test and the motivational aspects of pain were assessed using the mechanical conflict avoidance system (MCAS). The inflammatory balance and glial response were analyzed in the dorsal spinal cord based on RNA expression of pro- and anti-inflammatory cytokines (Tnf-α, Il-1ß, Il-4, Il-10), a microglia marker (Itgam), an astrocyte marker (Gfap), a T-cell marker (Cd3d), microglia proliferation markers (Irf8, Adgre1) and P2X4, p13-MAPK, BDNF signaling markers (P2x4, Mapk14, Bdnf). The results show that Con-, HF-, and DTM-SCS significantly decreased hypersensitivity after 48 hours of stimulation compared to Sham-SCS in PDPN animals, but at the same time did not affect escape latency in the MCAS. At the molecular level, Con-SCS resulted in a significant increase in spinal pro-inflammatory cytokine Tnf-α after 48 hours compared to DTM-SCS and Sham-SCS. In summary, Con-SCS showed a shift of the inflammatory balance towards a pro-inflammatory state whilst HF- and DTM-SCS shifted the balance towards an anti-inflammatory state. These findings suggest that the underlying mechanism of Con-SCS induced pain relief in PDPN differs from that induced by HF- and DTM-SCS.
Collapse
Affiliation(s)
- Thomas J. de Geus
- Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
- Department of Anesthesiology and Pain Medicine, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Glenn Franken
- Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
- Department of Anesthesiology and Pain Medicine, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Elbert A Joosten
- Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
- Department of Anesthesiology and Pain Medicine, Maastricht University Medical Centre, Maastricht, Netherlands
| |
Collapse
|
43
|
de Geus TJ, Franken G, Joosten EAJ. Spinal Cord Stimulation Paradigms and Pain Relief: A Preclinical Systematic Review on Modulation of the Central Inflammatory Response in Neuropathic Pain. Neuromodulation 2023; 26:25-34. [PMID: 35931643 DOI: 10.1016/j.neurom.2022.04.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/11/2022] [Accepted: 04/07/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVES Spinal cord stimulation (SCS) is a last-resort treatment for patients with chronic neuropathic pain. The mechanism underlying SCS and pain relief is not yet fully understood. Because the inflammatory balance between pro- and anti-inflammatory molecules in the spinal nociceptive network is pivotal in the development and maintenance of neuropathic pain, the working mechanism of SCS is suggested to be related to the modulation of this balance. The aim of this systematic review is to summarize and understand the effects of different SCS paradigms on the central inflammatory balance in the spinal cord. MATERIALS AND METHODS A systematic literature search was conducted using MEDLINE, Embase, and PubMed. All articles studying the effects of SCS on inflammatory or glial markers in neuropathic pain models were included. A quality assessment was performed on predetermined entities of bias. RESULTS A total of 11 articles were eligible for this systematic review. In general, induction of neuropathic pain in rats results in a proinflammatory state and at the same time an increased activity/expression of microglial and astroglial cells in the spinal cord dorsal horn. Conventional SCS seems to further enhance this proinflammatory state and increase the messenger RNA expression of microglial markers, but it also results in a decrease in microglial protein marker levels. High-frequency and especially differential targeted multiplexed SCS can not only restore the balance between pro- and anti-inflammatory molecules but also minimize the overexpression/activation of glial cells. Quality assessment and risk of bias analysis of the studies included make it clear that the results of these preclinical studies must be interpreted with caution. CONCLUSIONS In summary, the preclinical findings tend to indicate that there is a distinct SCS paradigm-related effect in the modulation of the central inflammatory balance of the spinal dorsal horn.
Collapse
Affiliation(s)
- Thomas J de Geus
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre, Maastricht, The Netherlands; Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| | - Glenn Franken
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre, Maastricht, The Netherlands; Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Elbert A J Joosten
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre, Maastricht, The Netherlands; Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
44
|
Huang CC, Chiu HY, Lee PH, Fang SY, Lin MW, Chen HF, Lee JS. Mitochondrial transplantation attenuates traumatic neuropathic pain, neuroinflammation, and apoptosis in rats with nerve root ligation. Mol Pain 2023; 19:17448069231210423. [PMID: 37845039 PMCID: PMC10605811 DOI: 10.1177/17448069231210423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 10/02/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023] Open
Abstract
Traumatic neuropathic pain (TNP) is caused by traumatic damage to the somatosensory system and induces the presentation of allodynia and hyperalgesia. Mitochondrial dysfunction, neuroinflammation, and apoptosis are hallmarks in the pathogenesis of TNP. Recently, mitochondria-based therapy has emerged as a potential therapeutic intervention for diseases related to mitochondrial dysfunction. However, the therapeutic effectiveness of mitochondrial transplantation (MT) on TNP has rarely been investigated. Here, we validated the efficacy of MT in treating TNP. Both in vivo and in vitro TNP models by conducting an L5 spinal nerve ligation in rats and exposing the primary dorsal root ganglion (DRG) neurons to capsaicin, respectively, were applied in this study. The MT was operated by administrating 100 µg of soleus-derived allogeneic mitochondria into the ipsilateral L5 DRG in vivo and the culture medium in vitro. Results showed that the viable transplanted mitochondria migrated into the rats' spinal cord and sciatic nerve. MT alleviated the nerve ligation-induced mechanical and thermal pain hypersensitivity. The nerve ligation-induced glial activation and the expression of pro-inflammatory cytokines and apoptotic markers in the spinal cord were also repressed by MT. Consistently, exogenous mitochondria reversed the capsaicin-induced reduction of mitochondrial membrane potential and expression of pro-inflammatory cytokines and apoptotic markers in the primary DRG neurons in vitro. Our findings suggest that MT mitigates the spinal nerve ligation-induced apoptosis and neuroinflammation, potentially playing a role in providing neuroprotection against TNP.
Collapse
Affiliation(s)
- Chi-Chen Huang
- Division of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsin-Yi Chiu
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Hsuan Lee
- Division of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Yuan Fang
- Department of Anesthesiology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Wei Lin
- Department of Medical Research, E-Da Hospital and E-Da Cancer Hospital Kaohsiung, Kaohsiung, Taiwan
- Department of Medical Research, I-Shou University College of Medicine, Kaohsiung, Taiwan
| | - Hui-Fang Chen
- Division of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jung-Shun Lee
- Division of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
45
|
McDonough KE, Hammond R, Wang J, Tierney J, Hankerd K, Chung JM, La JH. Spinal GABAergic disinhibition allows microglial activation mediating the development of nociplastic pain in male mice. Brain Behav Immun 2023; 107:215-224. [PMID: 36273650 PMCID: PMC9855286 DOI: 10.1016/j.bbi.2022.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022] Open
Abstract
Previously we developed a murine model in which postinjury stimulation of an injured area triggers a transition to a nociplastic pain state manifesting as persistent mechanical hypersensitivity outside of the previously injured area. This hypersensitivity was maintained by sex-specific mechanisms; specifically, activated spinal microglia maintained the hypersensitivity only in males. Here we investigated whether spinal microglia drive the transition from acute injury-induced pain to nociplastic pain in males, and if so, how they are activated by normally innocuous stimulation after peripheral injury. Using intraplantar capsaicin injection as an acute peripheral injury and vibration of the injured paw as postinjury stimulation, we found that inhibition of spinal microglia prevents the vibration-induced transition to a nociplastic pain state. The transition was mediated by the ATP-P2X4 pathway, but not BDNF-TrkB signaling. Intrathecally injected GABA receptor agonists after intraplantar capsaicin injection prevented the vibration-induced transition to a nociplastic pain state. Conversely, in the absence of intraplantar capsaicin injection, intrathecally injected GABA receptor antagonists allowed the vibration stimulation of a normal paw to trigger the transition to a spinal microglia-mediated nociplastic pain state only in males. At the spinal level, TNF-α, IL-1β, and IL-6, but not prostaglandins, contributed to the maintenance of the nociplastic pain state in males. These results demonstrate that in males, the transition from acute injury-induced pain to nociplastic pain is driven by spinal microglia causing neuroinflammation and that peripheral injury-induced spinal GABAergic disinhibition is pivotal for normally innocuous stimulation to activate spinal microglia.
Collapse
Affiliation(s)
- Kathleen E McDonough
- Department of Neurobiology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Regan Hammond
- Department of Neurobiology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Jigong Wang
- Department of Neurobiology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Jessica Tierney
- Department of Neurobiology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Kali Hankerd
- Department of Neurobiology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Jin Mo Chung
- Department of Neurobiology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Jun-Ho La
- Department of Neurobiology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States.
| |
Collapse
|
46
|
Lu JS, Yang L, Chen J, Xiong FF, Cai P, Wang XY, Xiong BJ, Chen ZH, Chen L, Yang J, Yu CX. Basolateral amygdala astrocytes modulate diabetic neuropathic pain and may be a potential therapeutic target for koumine. Br J Pharmacol 2022; 180:1408-1428. [PMID: 36519959 DOI: 10.1111/bph.16011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 10/20/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND PURPOSE New remedies are required for the treatment of diabetic neuropathic pain (DNP) due to insufficient efficacy of available therapies. Here, we used chemogenetic approaches combined with in vivo pharmacology to elucidate the role of basolateral amygdala (BLA) astrocytes in DNP pathogenesis and provide new insights into therapeutic strategies for DNP. EXPERIMENTAL APPROACH A streptozotocin-induced DNP model was established. Designer receptors exclusively activated by designer drugs (DREADDs) were used to regulate astrocyte activity. Mechanical hyperalgesia was assessed using the electronic von Frey test. Anxiety-like behaviours were detected using open field and elevated plus maze tests. Astrocytic activity was detected by immunofluorescence, and cytokine content was determined by ELISA. KEY RESULTS BLA astrocytes were regulated by DREADDs, and inhibition of BLA astrocytes attenuated mechanical allodynia and pain-related negative emotions in DNP rats. In contrast, temporary activation of BLA astrocytes induced allodynia without anxious behaviours in naive rats. In addition, koumine (KM) alleviated mechanical allodynia and anxiety-like behaviours in DNP rats, inhibited the activation of BLA astrocytes and suppressed the inflammatory response. Furthermore, persistent activation of BLA astrocytes through chemogenetics mimicked chronic pain, and KM alleviated the pain hypersensitivity and anxiety-like behaviours. CONCLUSION AND IMPLICATIONS DREADDs bidirectionally regulate the activity of BLA astrocytes, which proves for the first time the role of BLA astrocyte activation in the pathogenesis of DNP and represents a novel therapeutic strategy for DNP. KM ameliorates DNP, perhaps by inhibiting the activation of BLA astrocytes and reveal KM as a potential candidate for treating DNP.
Collapse
Affiliation(s)
- Jing-Shan Lu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China.,Fujian Center for Safety Evaluation of New Drug, Fujian Medical University, Fuzhou, China
| | - Lan Yang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Jian Chen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Fang-Fang Xiong
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Ping Cai
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Xin-Yao Wang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Bo-Jun Xiong
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Ze-Hong Chen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Li Chen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Jian Yang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Chang-Xi Yu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| |
Collapse
|
47
|
Bogacka J, Pawlik K, Ciapała K, Ciechanowska A, Mika J. CC Chemokine Receptor 4 (CCR4) as a Possible New Target for Therapy. Int J Mol Sci 2022; 23:ijms232415638. [PMID: 36555280 PMCID: PMC9779674 DOI: 10.3390/ijms232415638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Chemokines and their receptors participate in many biological processes, including the modulation of neuroimmune interactions. Approximately fifty chemokines are distinguished in humans, which are classified into four subfamilies based on the N-terminal conserved cysteine motifs: CXC, CC, C, and CX3C. Chemokines activate specific receptors localized on the surface of various immune and nervous cells. Approximately twenty chemokine receptors have been identified, and each of these receptors is a seven-transmembrane G-protein coupled receptor. Recent studies provide new evidence that CC chemokine receptor 4 (CCR4) is important in the pathogenesis of many diseases, such as diabetes, multiple sclerosis, asthma, dermatitis, and cancer. This review briefly characterizes CCR4 and its ligands (CCL17, CCL22, and CCL2), and their contributions to immunological and neoplastic diseases. The review notes a significant role of CCR4 in nociceptive transmission, especially in painful neuropathy, which accompanies many diseases. The pharmacological blockade of CCR4 seems beneficial because of its pain-relieving effects and its influence on opioid efficacy. The possibilities of using the CCL2/CCL17/CCL22/CCR4 axis as a target in new therapies for many diseases are also discussed.
Collapse
Affiliation(s)
| | | | | | | | - Joanna Mika
- Correspondence: or ; Tel.: +48-12-6623-298; Fax: +48-12-6374-500
| |
Collapse
|
48
|
Proinflammatory cytokines and their receptors as druggable targets to alleviate pathological pain. Pain 2022; 163:S79-S98. [DOI: 10.1097/j.pain.0000000000002737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/14/2022] [Indexed: 02/07/2023]
|
49
|
Stephens M. The emerging potential of Aptamers as therapeutic agents in infection and inflammation. Pharmacol Ther 2022; 238:108173. [DOI: 10.1016/j.pharmthera.2022.108173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 10/18/2022]
|
50
|
Gao C, Zhu Q, Gao Z, Zhao J, Jia M, Li T. Can noninvasive Brain Stimulation Improve Pain and Depressive Symptoms in Patients With Neuropathic Pain? A Systematic Review and Meta-Analysis. J Pain Symptom Manage 2022; 64:e203-e215. [PMID: 35550165 DOI: 10.1016/j.jpainsymman.2022.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 11/23/2022]
Abstract
CONTEXT Noninvasive brain stimulations (NIBS) have been increasingly applied to the patients with neuropathic pain (NP), while the effectiveness of NIBS in the management of NP is still conflicting. OBJECTIVES To examine the effectiveness of NIBS on pain and depression symptoms of patients with NP. METHODS A comprehensive literature retrieval was performed on MEDLINE, Embase, PsycINFO, PEDro, and CENTRAL from the establishment of the databases to June 2021. Randomized controlled trials comparing NIBS with sham stimulation were included. RESULTS A total of thirteen trials comprising 498 participants met the inclusion criteria. The pooled analysis found a significant effect on the improvement of pain scores at post-treatment, favoring NIBS over sham stimulation (SMD = -0.60; 95% CI: -1.00 to -0.20; P = 0.004). Subgroup analysis showed that only transcranial direct current stimulation (tDCS) (SMD = -0.38; 95% CI: -0.71 to -0.04; P = 0.030) and high-frequency repetitive transcranial magnetic stimulation (H-rTMS) (SMD = -0.95; 95% CI: -1.85 to -0.04; P = 0.040) had positive effects on pain reduction among all types of NIBS. The favorable effects of NIBS remained significant at follow-up visit (SMD = -0.51; 95% CI: -0.79 to -0.23; P = 0.000), while only H-rTMS was found in subgroup analyses to significantly improve pain scales of the patients (SMD = -0.54; 95% CI: -0.85 to -0.24; P = 0.000). Additionally, overall NIBS showed no beneficial effect over sham stimulation in reducing depression symptoms of NP patients either at post-treatment (SMD = -0.19; 95% CI: -0.39 to 0.01; P = 0.061) or at follow-up visit (SMD = -0.18; 95% CI: -0.45 to 0.10; P = 0.202). CONCLUSION This meta-analysis revealed the analgesic effect of NIBS on patients with NP, while no beneficial effect was observed on reducing concomitant depression symptoms. The findings recommended the clinical application of NIBS in patients with NP.
Collapse
Affiliation(s)
- Chengfei Gao
- Department of Rehabilitation Medicine (C.G., Q.Z., Z.G., T.L.), The Affiliated Hospital of Qingdao University, Qingdao, Shandong Provience, China
| | - Qixiu Zhu
- Department of Rehabilitation Medicine (C.G., Q.Z., Z.G., T.L.), The Affiliated Hospital of Qingdao University, Qingdao, Shandong Provience, China
| | - Zhengyu Gao
- Department of Rehabilitation Medicine (C.G., Q.Z., Z.G., T.L.), The Affiliated Hospital of Qingdao University, Qingdao, Shandong Provience, China
| | - Jinpeng Zhao
- Department of Cardiothoracic Surgery (J.Z.), Yantai Municipal Laiyang Central Hospital, Yantai, Shandong Provience, China
| | - Min Jia
- Department of Rehabilitation Medicine (M.J.), Jinan Municipal Hospital of Traditional Chinese Medicine, Jinan, Shandong Provience, China
| | - Tieshan Li
- Department of Rehabilitation Medicine (C.G., Q.Z., Z.G., T.L.), The Affiliated Hospital of Qingdao University, Qingdao, Shandong Provience, China.
| |
Collapse
|