1
|
Ritter P, Oliveto S, Cordiglieri C, Fasciani A, Di Buduo CA, della Volpe L, Bocconi A, Conci C, Miguel CP, Di Micco R, Balduini A, Raimondi MT, Biffo S. A millifluidic bioreactor allows the long term culture of primary lymphocytes or CD34 + hematopoietic cells while allowing the detection of tumorigenic expansion. Front Bioeng Biotechnol 2024; 12:1388312. [PMID: 39416278 PMCID: PMC11479935 DOI: 10.3389/fbioe.2024.1388312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024] Open
Abstract
Long-term culture of primary lymphocytes and hematopoietic stem and progenitor cells (HSPCs) is pivotal to their expansion and study. Furthermore, genetic engineering of the above-mentioned primary human cells has several safety needs, including the requirement of efficient in vitro assays for unwanted tumorigenic events. In this work, we tested and optimized the Miniaturized Optically Accessible Bioreactor (MOAB) platform. The MOAB consists of a millifluidic cell culture device with three optically-accessible culture chambers. Inside the MOAB, we inserted a silk-based framework that resembles some properties of the bone marrow environment and cultivated in this device either CD4+ T lymphocytes isolated from healthy donor buffy coat or cord blood-derived hematopoietic CD34+ cells. A fraction of these cells is viable for up to 3 months. Next, we tested the capability of the MOAB to detect tumorigenic events. Serial dilutions of engineered fluorescent tumor cells were mixed with either CD4+ or CD34+ primary cells, and their growth was followed. By this approach, we successfully detected as little as 100 tumorigenic cells mixed with 100,000 primary cells. We found that non-tumorigenic primary cells colonized the silk environment, whereas tumor cells, after an adaptation phase, expanded and entered the circulation. We conclude that the millifluidic platform allows the detection of rare tumorigenic events in the long-term culture of human cells.
Collapse
Affiliation(s)
- Paolo Ritter
- National Institute of Molecular Genetics, Fondazione Romeo ed Enrica Invernizzi, INGM, Milan, Italy
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Stefania Oliveto
- National Institute of Molecular Genetics, Fondazione Romeo ed Enrica Invernizzi, INGM, Milan, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| | - Chiara Cordiglieri
- National Institute of Molecular Genetics, Fondazione Romeo ed Enrica Invernizzi, INGM, Milan, Italy
| | - Alessandra Fasciani
- National Institute of Molecular Genetics, Fondazione Romeo ed Enrica Invernizzi, INGM, Milan, Italy
| | | | - Lucrezia della Volpe
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alberto Bocconi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Claudio Conci
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | | | - Raffaella Di Micco
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- University School for Advanced Studies IUSS, Pavia, Italy
| | | | - Manuela Teresa Raimondi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Stefano Biffo
- National Institute of Molecular Genetics, Fondazione Romeo ed Enrica Invernizzi, INGM, Milan, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| |
Collapse
|
2
|
Aftabi S, Barzegar Behrooz A, Cordani M, Rahiman N, Sadeghdoust M, Aligolighasemabadi F, Pistorius S, Alavizadeh SH, Taefehshokr N, Ghavami S. Therapeutic targeting of TGF-β in lung cancer. FEBS J 2024. [PMID: 39083441 DOI: 10.1111/febs.17234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/22/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024]
Abstract
Transforming growth factor-β (TGF-β) plays a complex role in lung cancer pathophysiology, initially acting as a tumor suppressor by inhibiting early-stage tumor growth. However, its role evolves in the advanced stages of the disease, where it contributes to tumor progression not by directly promoting cell proliferation but by enhancing epithelial-mesenchymal transition (EMT) and creating a conducive tumor microenvironment. While EMT is typically associated with enhanced migratory and invasive capabilities rather than proliferation per se, TGF-β's influence on this process facilitates the complex dynamics of tumor metastasis. Additionally, TGF-β impacts the tumor microenvironment by interacting with immune cells, a process influenced by genetic and epigenetic changes within tumor cells. This interaction highlights its role in immune evasion and chemoresistance, further complicating lung cancer therapy. This review provides a critical overview of recent findings on TGF-β's involvement in lung cancer, its contribution to chemoresistance, and its modulation of the immune response. Despite the considerable challenges encountered in clinical trials and the development of new treatments targeting the TGF-β pathway, this review highlights the necessity for continued, in-depth investigation into the roles of TGF-β. A deeper comprehension of these roles may lead to novel, targeted therapies for lung cancer. Despite the intricate behavior of TGF-β signaling in tumors and previous challenges, further research could yield innovative treatment strategies.
Collapse
Affiliation(s)
- Sajjad Aftabi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, Canada
- Paul Albrechtsen Research Institute, CancerCare Manitoba, University of Manitoba, Winnipeg, Canada
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, Canada
| | - Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, Canada
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Iran
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain
| | - Niloufar Rahiman
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Iran
| | - Mohammadamin Sadeghdoust
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada
| | - Farnaz Aligolighasemabadi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, Canada
| | - Stephen Pistorius
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, Canada
- Paul Albrechtsen Research Institute, CancerCare Manitoba, University of Manitoba, Winnipeg, Canada
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, Canada
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Iran
| | - Nima Taefehshokr
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, Canada
- Paul Albrechtsen Research Institute, CancerCare Manitoba, University of Manitoba, Winnipeg, Canada
- Faculty Academy of Silesia, Faculty of Medicine, Katowice, Poland
- Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
3
|
Zhang Y, Peng W, Zheng X. The prognostic value of the combined neutrophil-to-lymphocyte ratio (NLR) and neutrophil-to-platelet ratio (NPR) in sepsis. Sci Rep 2024; 14:15075. [PMID: 38956445 PMCID: PMC11219835 DOI: 10.1038/s41598-024-64469-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/10/2024] [Indexed: 07/04/2024] Open
Abstract
Sepsis is a severe disease characterized by high mortality rates. Our aim was to develop an early prognostic indicator of adverse outcomes in sepsis, utilizing easily accessible routine blood tests. A retrospective analysis of sepsis patients from the MIMIC-IV database was conducted. We performed univariate and multivariate regression analyses to identify independent risk factors associated with in-hospital mortality within 28 days. Logistic regression was utilized to combine the neutrophil-to-lymphocyte ratio (NLR) and the neutrophil-to-platelet ratio (NPR) into a composite score, denoted as NLR_NPR. We used ROC curves to compare the prognostic performance of the models and Kaplan-Meier survival curves to assess the 28 day survival rate. Subgroup analysis was performed to evaluate the applicability of NLR_NPR in different subpopulations based on specific characteristics. This study included a total of 1263 sepsis patients, of whom 179 died within 28 days of hospitalization, while 1084 survived beyond 28 days. Multivariate regression analysis identified age, respiratory rate, neutrophil-to-lymphocyte ratio (NLR), neutrophil-to-platelet ratio (NPR), hypertension, and sequential organ failure assessment (SOFA) score as independent risk factors for 28 day mortality in septic patients (P < 0.05). Additionally, in the prediction model based on blood cell-related parameters, the combined NLR_NPR score exhibited the highest predictive value for 28 day mortality (AUC = 0.6666), followed by NLR (AUC = 0.6456) and NPR (AUC = 0.6284). Importantly, the performance of the NLR_NPR score was superior to that of the commonly used SOFA score (AUC = 0.5613). Subgroup analysis showed that NLR_NPR remained an independent risk factor for 28 day in-hospital mortality in the subgroups of age, respiratory rate, and SOFA, although not in the hypertension subgroup. The combined use of NLR and NPR from routine blood tests represents a readily available and reliable predictive marker for 28 day mortality in sepsis patients. These results imply that clinicians should prioritize patients with higher NLR_NPR scores for closer monitoring to reduce mortality rates.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Pediatrics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
- The Center of Respiratory Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Wang Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
- The Center of Respiratory Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Xiangrong Zheng
- Department of Pediatrics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.
- The Center of Respiratory Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.
| |
Collapse
|
4
|
Ji S, Shi Y, Yin B. Macrophage barrier in the tumor microenvironment and potential clinical applications. Cell Commun Signal 2024; 22:74. [PMID: 38279145 PMCID: PMC10811890 DOI: 10.1186/s12964-023-01424-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/05/2023] [Indexed: 01/28/2024] Open
Abstract
The tumor microenvironment (TME) constitutes a complex microenvironment comprising a diverse array of immune cells and stromal components. Within this intricate context, tumor-associated macrophages (TAMs) exhibit notable spatial heterogeneity. This heterogeneity contributes to various facets of tumor behavior, including immune response modulation, angiogenesis, tissue remodeling, and metastatic potential. This review summarizes the spatial distribution of macrophages in both the physiological environment and the TME. Moreover, this paper explores the intricate interactions between TAMs and diverse immune cell populations (T cells, dendritic cells, neutrophils, natural killer cells, and other immune cells) within the TME. These bidirectional exchanges form a complex network of immune interactions that influence tumor immune surveillance and evasion strategies. Investigating TAM heterogeneity and its intricate interactions with different immune cell populations offers potential avenues for therapeutic interventions. Additionally, this paper discusses therapeutic strategies targeting macrophages, aiming to uncover novel approaches for immunotherapy. Video Abstract.
Collapse
Affiliation(s)
- Shuai Ji
- Department of Urinary Surgery, The Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Yuqing Shi
- Department of Respiratory Medicine, Shenyang 10th People's Hospital, Shenyang, 110096, China
| | - Bo Yin
- Department of Urinary Surgery, The Shengjing Hospital of China Medical University, Shenyang, 110022, China.
| |
Collapse
|
5
|
Mazzoni A, Annunziato F, Maggi L. T lymphocytes-related cell network in the pathogenesis of juvenile idiopathic arthritis: a key point for personalized treatment. Curr Opin Rheumatol 2024; 36:40-45. [PMID: 37905987 DOI: 10.1097/bor.0000000000000991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
PURPOSE OF REVIEW Juvenile idiopathic arthritis (JIA) is a heterogeneous group of arthritis of unknown origin occurring in children under 16 years of age and persisting for at least 6 weeks. Given that JIA is an inflammatory disorder, treatment strategies, including also biologicals, are focused on suppressing excessive inflammation. The finding that different patients display different responses to biological drugs supports the concept that different pathogenic mechanisms can exist in JIA, with specific cellular and molecular mechanisms driving inflammation in each patient. The aim of this review is to highlight the most recent advances in understanding the role of immune cells in JIA pathogenesis. RECENT FINDINGS This review encompasses the role of the different cell subsets involved in sustaining inflammation in JIA, with a particular emphasis on T cells, as they orchestrate both innate and adaptive auto-reactive immunity in affected joints. SUMMARY The characterization of the cellular and molecular pathways supporting inflammation will be crucial to design novel therapeutic approaches in the context of personalized medicine.
Collapse
Affiliation(s)
- Alessio Mazzoni
- Department of Experimental and Clinical Medicine, University of Florence
- Flow cytometry diagnostic center and immunotherapy, Careggi University Hospital, Florence, Italy
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine, University of Florence
- Flow cytometry diagnostic center and immunotherapy, Careggi University Hospital, Florence, Italy
| | - Laura Maggi
- Department of Experimental and Clinical Medicine, University of Florence
| |
Collapse
|
6
|
Paroni M, Leccese G, Ranzani V, Moschetti G, Chiara M, Perillo F, Ferri S, Clemente F, Noviello D, Conforti FS, Ferrero S, Karnani B, Bosotti R, Vasco C, Curti S, Crosti MC, Gruarin P, Rossetti G, Conte MP, Vecchi M, Pagani M, Landini P, Facciotti F, Abrignani S, Caprioli F, Geginat J. An Intestinal Th17 Subset is Associated with Inflammation in Crohn's Disease and Activated by Adherent-invasive Escherichia coli. J Crohns Colitis 2023; 17:1988-2001. [PMID: 37462681 PMCID: PMC10798865 DOI: 10.1093/ecco-jcc/jjad119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
IFNγ-producing ex-Th17 cells ['Th1/17'] were shown to play a key pathogenic role in experimental colitis and are abundant in the intestine. Here, we identified and characterised a novel, potentially colitogenic subset of Th17 cells in the intestine of patients with Crohn's disease [CD]. Human Th17 cells expressing CCR5 ['pTh17'] co-expressed T-bet and RORC/γt and produced very high levels of IL-17, together with IFN-γ. They had a gene signature of Th17 effector cells and were distinct from established Th1/17 cells. pTh17 cells, but not Th1/17 cells, were associated with intestinal inflammation in CD, and decreased upon successful anti-TNF therapy with infliximab. Conventional CCR5[-]Th17 cells differentiated to pTh17 cells with IL-23 in vitro. Moreover, anti-IL-23 therapy with risankizumab strongly reduced pTh17 cells in the intestine. Importantly, intestinal pTh17 cells were selectively activated by adherent-invasive Escherichia coli [AIEC], but not by a commensal/probiotic E. coli strain. AIEC induced high levels of IL-23 and RANTES from dendritic cells [DC]. Intestinal CCR5+Th1/17 cells responded instead to cytomegalovirus and were reduced in ulcerative colitis [UC], suggesting an unexpected protective role. In conclusion, we identified an IL-23-inducible subset of human intestinal Th17 cells. pTh17 cells produced high levels of pro-inflammatory cytokines, were selectively associated with intestinal inflammation in CD, and responded to CD-associated AIEC, suggesting a key colitogenic role.
Collapse
Affiliation(s)
- Moira Paroni
- INGM-National Institute of Molecular Genetics ‘Romeo ed Enrica Invernizzi’, Milan, Italy
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Gabriella Leccese
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Valeria Ranzani
- INGM-National Institute of Molecular Genetics ‘Romeo ed Enrica Invernizzi’, Milan, Italy
| | - Giorgia Moschetti
- INGM-National Institute of Molecular Genetics ‘Romeo ed Enrica Invernizzi’, Milan, Italy
| | - Matteo Chiara
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Federica Perillo
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Sara Ferri
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy
| | - Francesca Clemente
- INGM-National Institute of Molecular Genetics ‘Romeo ed Enrica Invernizzi’, Milan, Italy
| | - Daniele Noviello
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Francesco Simone Conforti
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefano Ferrero
- Pathology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Biomedical, Surgical, and Dental Sciences, Università degli Studi di Milano, Milan, Italy
| | - Bhavna Karnani
- INGM-National Institute of Molecular Genetics ‘Romeo ed Enrica Invernizzi’, Milan, Italy
| | - Roberto Bosotti
- INGM-National Institute of Molecular Genetics ‘Romeo ed Enrica Invernizzi’, Milan, Italy
| | - Chiara Vasco
- INGM-National Institute of Molecular Genetics ‘Romeo ed Enrica Invernizzi’, Milan, Italy
| | - Serena Curti
- INGM-National Institute of Molecular Genetics ‘Romeo ed Enrica Invernizzi’, Milan, Italy
| | - Maria Cristina Crosti
- INGM-National Institute of Molecular Genetics ‘Romeo ed Enrica Invernizzi’, Milan, Italy
| | - Paola Gruarin
- INGM-National Institute of Molecular Genetics ‘Romeo ed Enrica Invernizzi’, Milan, Italy
| | - Grazisa Rossetti
- INGM-National Institute of Molecular Genetics ‘Romeo ed Enrica Invernizzi’, Milan, Italy
- Molecular Oncology and Immunology, FIRC Institute of Molecular Oncology [IFOM], Milan, Italy
| | - Maria Pia Conte
- Department of Public Health and Infectious Diseases, ‘Sapienza’ University of Rome, Rome, Italy
| | - Maurizio Vecchi
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Massimiliano Pagani
- INGM-National Institute of Molecular Genetics ‘Romeo ed Enrica Invernizzi’, Milan, Italy
- Molecular Oncology and Immunology, FIRC Institute of Molecular Oncology [IFOM], Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Paolo Landini
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Federica Facciotti
- INGM-National Institute of Molecular Genetics ‘Romeo ed Enrica Invernizzi’, Milan, Italy
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy
| | - Sergio Abrignani
- INGM-National Institute of Molecular Genetics ‘Romeo ed Enrica Invernizzi’, Milan, Italy
- DISCCO, Department of Clinical Science and Community Health, University of Milan, Milan, Italy
| | - Flavio Caprioli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Jens Geginat
- INGM-National Institute of Molecular Genetics ‘Romeo ed Enrica Invernizzi’, Milan, Italy
- DISCCO, Department of Clinical Science and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
7
|
Liu H, Zeng L, Pan M, Huang L, Li H, Liu M, Niu X, Zhang C, Wang H. Bcl-3 regulates T cell function through energy metabolism. BMC Immunol 2023; 24:35. [PMID: 37794349 PMCID: PMC10552310 DOI: 10.1186/s12865-023-00570-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Bcl-3 is a member of the IκB protein family and an essential modulator of NF-κB activity. It is well established that Bcl-3 is critical for the normal development, survival and differentiation of adaptive immune cells, especially T cells. However, the regulation of immune cell function by Bcl-3 through metabolic pathways has rarely been studied. RESULTS In this study, we explored the role of Bcl-3 in the metabolism and function of T cells via the mTOR pathway. We verified that the proliferation of Bcl-3-deficient Jurkat T cells was inhibited, but their activation was promoted, and Bcl-3 depletion regulated cellular energy metabolism by reducing intracellular ATP and ROS production levels and mitochondrial membrane potential. Bcl-3 also regulates cellular energy metabolism in naive CD4+ T cells. In addition, the knockout of Bcl-3 altered the expression of mTOR, Akt, and Raptor, which are metabolism-related genes, in Jurkat cells. CONCLUSIONS This finding indicates that Bcl-3 may mediate the energy metabolism of T cells through the mTOR pathway, thereby affecting their function. Overall, we provide novel insights into the regulatory role of Bcl-3 in T-cell energy metabolism for the prevention and treatment of immune diseases.
Collapse
Affiliation(s)
- Hui Liu
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Lin Zeng
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Mengmeng Pan
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Liwenhui Huang
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Hanying Li
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Mengxia Liu
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Xinqing Niu
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Chenguang Zhang
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
8
|
Xu Z, Zheng T, Zheng Z, Jiang W, Huang L, Deng K, Yuan L, Qin F, Sun Y, Qin J, Li S. TAGAP expression influences CD4+ T cell differentiation, immune infiltration, and cytotoxicity in LUAD through the STAT pathway: implications for immunotherapy. Front Immunol 2023; 14:1224340. [PMID: 37744350 PMCID: PMC10511754 DOI: 10.3389/fimmu.2023.1224340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Background T-cell Activation GTPase Activating Protein (TAGAP) plays a role in immune cell regulation. This study aimed to investigate TAGAP's expression and its potential impact on CD4+ T cell function and prognosis in lung adenocarcinoma (LUAD). Methods We analyzed TAGAP expression and its correlation with immune infiltration and clinical data in LUAD patients using multiple datasets, including The Cancer Genome Atlas (TCGA-LUAD), Gene Expression Omnibus (GEO), and scRNA-seq datasets. In vitro and in vivo experiments were conducted to explore the role of TAGAP in CD4+ T cell function, chemotaxis, and cytotoxicity. Results TAGAP expression was significantly lower in LUAD tissues compared to normal tissues, and high TAGAP expression correlated with better prognosis in LUAD patients. TAGAP was positively correlated with immune/stromal/ESTIMATE scores and immune cell infiltration in LUAD. Single-cell RNA sequencing revealed that TAGAP was primarily distributed in CD4+/CD8+ T cells. In vitro experiments showed that TAGAP overexpression enhanced CD4+ T cell cytotoxicity, proliferation, and chemotaxis. Gene Set Enrichment Analysis (GSEA) indicated that TAGAP was enriched in the JAK-STAT signaling pathway. In vivo experiments in a xenograft tumor model demonstrated that TAGAP overexpression suppressed tumor growth and promoted CD4+ T cell cytotoxicity. Conclusions TAGAP influences CD4+ T cell differentiation and function in LUAD through the STAT pathway, promoting immune infiltration and cytotoxicity. This study provides a scientific basis for developing novel LUAD immunotherapy strategies and exploring new therapeutic targets.
Collapse
Affiliation(s)
- Zhanyu Xu
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Tiaozhan Zheng
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Zhiwen Zheng
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Wei Jiang
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Liuliu Huang
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Kun Deng
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Liqiang Yuan
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Fanglu Qin
- School of Information and Management, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yu Sun
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Junqi Qin
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Shikang Li
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
9
|
Lamenza FF, Ryan NM, Upadhaya P, Siddiqui A, Jordanides PP, Springer A, Roth P, Pracha H, Iwenofu OH, Oghumu S. Inducible TgfbR1 and Pten deletion in a model of tongue carcinogenesis and chemoprevention. Cancer Gene Ther 2023; 30:1167-1177. [PMID: 37231058 PMCID: PMC10754272 DOI: 10.1038/s41417-023-00629-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/21/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a significant public health problem, with a need for novel approaches to chemoprevention and treatment. Preclinical models that recapitulate molecular alterations that occur in clinical HNSCC patients are needed to better understand molecular and immune mechanisms of HNSCC carcinogenesis, chemoprevention, and efficacy of treatment. We optimized a mouse model of tongue carcinogenesis with discrete quantifiable tumors via conditional deletion of Tgfβr1 and Pten by intralingual injection of tamoxifen. We characterized the localized immune tumor microenvironment, metastasis, systemic immune responses, associated with tongue tumor development. We further determined the efficacy of tongue cancer chemoprevention using dietary administration of black raspberries (BRB). Three Intralingual injections of 500 µg tamoxifen to transgenic K14 Cre, floxed Tgfbr1, Pten (2cKO) knockout mice resulted in tongue tumors with histological and molecular profiles, and lymph node metastasis similar to clinical HNSCC tumors. Bcl2, Bcl-xl, Egfr, Ki-67, and Mmp9, were significantly upregulated in tongue tumors compared to surrounding epithelial tissue. CD4+ and CD8 + T cells in tumor-draining lymph nodes and tumors displayed increased surface CTLA-4 expression, suggestive of impaired T-cell activation and enhanced regulatory T-cell activity. BRB administration resulted in reduced tumor growth, enhanced T-cell infiltration to the tongue tumor microenvironment and robust antitumoral CD8+ cytotoxic T-cell activity characterized by greater granzyme B and perforin expression. Our results demonstrate that intralingual injection of tamoxifen in Tgfβr1/Pten 2cKO mice results in discrete quantifiable tumors suitable for chemoprevention and therapy of experimental HNSCC.
Collapse
Affiliation(s)
- Felipe F Lamenza
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - Nathan M Ryan
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Puja Upadhaya
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Arham Siddiqui
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Pete P Jordanides
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Anna Springer
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Peyton Roth
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Hasan Pracha
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - O Hans Iwenofu
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Steve Oghumu
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
10
|
Zheng Z, Wieder T, Mauerer B, Schäfer L, Kesselring R, Braumüller H. T Cells in Colorectal Cancer: Unravelling the Function of Different T Cell Subsets in the Tumor Microenvironment. Int J Mol Sci 2023; 24:11673. [PMID: 37511431 PMCID: PMC10380781 DOI: 10.3390/ijms241411673] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Therapeutic options for metastatic colorectal cancer (mCRC) are very limited, and the prognosis using combination therapy with a chemotherapeutic drug and a targeted agent, e.g., epidermal growth factor receptor or tyrosine kinase, remains poor. Therefore, mCRC is associated with a poor median overall survival (mOS) of only 25-30 months. Current immunotherapies with checkpoint inhibitor blockade (ICB) have led to a substantial change in the treatment of several cancers, such as melanoma and non-small cell lung cancer. In CRC, ICB has only limited effects, except in patients with microsatellite instability-high (MSI-H) or mismatch repair-deficient (dMMR) tumors, which comprise about 15% of sporadic CRC patients and about 4% of patients with metastatic CRC. The vast majority of sporadic CRCs are microsatellite-stable (MSS) tumors with low levels of infiltrating immune cells, in which immunotherapy has no clinical benefit so far. Immunotherapy with checkpoint inhibitors requires the presence of infiltrating T cells into the tumor microenvironment (TME). This makes T cells the most important effector cells in the TME, as evidenced by the establishment of the immunoscore-a method to estimate the prognosis of CRC patients. The microenvironment of a tumor contains several types of T cells that are anti-tumorigenic, such as CD8+ T cells or pro-tumorigenic, such as regulatory T cells (Tregs) or T helper 17 (Th17) cells. However, even CD8+ T cells show marked heterogeneity, e.g., they can become exhausted, enter a state of hyporesponsiveness or become dysfunctional and express high levels of checkpoint molecules, the targets for ICB. To kill cancer cells, CD8+ T cells need the recognition of the MHC class I, which is often downregulated on colorectal cancer cells. In this case, a population of unconventional T cells with a γδ T cell receptor can overcome the limitations of the conventional CD8+ T cells with an αβT cell receptor. γδ T cells recognize antigens in an MHC-independent manner, thus acting as a bridge between innate and adaptive immunity. Here, we discuss the effects of different T cell subsets in colorectal cancer with a special emphasis on γδ T cells and the possibility of using them in CAR-T cell therapy. We explain T cell exclusion in microsatellite-stable colorectal cancer and the possibilities to overcome this exclusion to enable immunotherapy even in these "cold" tumors.
Collapse
Affiliation(s)
- Ziwen Zheng
- Department of General and Visceral Surgery, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Thomas Wieder
- Department of Vegetative and Clinical Physiology, Institute of Physiology, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Bernhard Mauerer
- Department of General and Visceral Surgery, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, 79106 Freiburg, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Luisa Schäfer
- Department of General and Visceral Surgery, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Rebecca Kesselring
- Department of General and Visceral Surgery, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, 79106 Freiburg, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Heidi Braumüller
- Department of General and Visceral Surgery, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
11
|
van Wolfswinkel M, van Meijgaarden KE, Ottenhoff THM, Niewold P, Joosten SA. Extensive flow cytometric immunophenotyping of human PBMC incorporating detection of chemokine receptors, cytokines and tetramers. Cytometry A 2023; 103:600-610. [PMID: 36898852 DOI: 10.1002/cyto.a.24727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/19/2023] [Accepted: 02/24/2023] [Indexed: 03/12/2023]
Abstract
Characterization of immune cells is essential to advance our understanding of immunology and flow cytometry is an important tool in this context. Addressing both cellular phenotype and antigen-specific functional responses of the same cells is valuable to achieve a more integrated understanding of immune cell behavior and maximizes information obtained from precious samples. Until recently, panel size was limiting, resulting in panels generally focused on either deep immunophenotyping or functional readouts. Ongoing developments in the field of (spectral) flow cytometry have made panels of 30+ markers more accessible, opening up possibilities for advanced integrated analyses. Here, we optimized immune phenotyping by co-detection of markers covering chemokine receptors, cytokines and specific T cell/peptide tetramer interaction using a 32-color panel. Such panels enable integrated analysis of cellular phenotypes and markers assessing the quality of immune responses and will contribute to our understanding of the immune system.
Collapse
Affiliation(s)
| | | | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, The Netherlands
| | - Paula Niewold
- Department of Infectious Diseases, Leiden University Medical Center, The Netherlands
| | - Simone A Joosten
- Department of Infectious Diseases, Leiden University Medical Center, The Netherlands
| |
Collapse
|
12
|
Cheng L, Li Y, Luo Y, Zhou Y, Wen J, Wu Y, Liang X, Wu T, Tan C, Liu Y. Decreased Th1 Cells and Increased Th2 Cells in Peripheral Blood Are Associated with Idiopathic Inflammatory Myopathies Patients with Interstitial Lung Disease. Inflammation 2023; 46:468-479. [PMID: 36264424 DOI: 10.1007/s10753-022-01747-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/19/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
Abstract
Interstitial lung disease (ILD) is a highly fatal manifestation of idiopathic inflammatory myopathies (IIMs). Th cells play important roles in the initiation of ILD. Here, we investigated the clinical significance of peripheral blood Th cells in IIMs-ILD patients. Eleven healthy controls (HC) and 53 patients diagnosed with IIMs were included, including 30 with ILD (IIMs-ILD) and 23 without ILD (IIMs-non-ILD). Circulating Th1, Th2, Th17, and Treg cells were examined by flow cytometry, and their correlation with clinical and laboratory findings was analyzed by Spearman's correlation and logistic regression. The proportion of Th1 cells decreased and Th2 cells increased in IIMs-ILD compared with IIMs-non-ILD (median (quartile): 2.99 (1.59-5.39) vs. 6.91 (3.48-10.04), p < 0.001; 2.67 (1.79-4.67) vs. 1.62 (0.85-2.66), p = 0.006) and correlated with disease activity. The Th1-cell proportion decreased in anti-MDA5 antibody-positive patients, while the Th2 cell proportion increased in patients with nonspecific interstitial pneumonia compared with IIMs-non-ILD (2.66 (1.06-4.35) vs. 6.91 (3.48-10.04), p = 0.002; 3.09 (2.03-5.72) vs. 1.62 (0.85-2.66), p = 0.016). Univariate analysis showed that a lower Th1 proportion, higher Th2 proportion increased, lower CK level, positivity for ARS, or anti-Ro52 antibodies (OR = 0.7122; OR = 1.679; OR = 0.9993; OR = 9.188; and OR = 6.161, respectively) were associated with the occurrence of ILD in IIMs patients. Decreased Th1 cells and elevated Th2 cells in peripheral blood may be involved in the pathogenesis of ILD in IIMs patients and have different effects on different serological and imaging subtypes.
Collapse
Affiliation(s)
- Lu Cheng
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Department of Rheumatology and Immunology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Yanhong Li
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Department of Rheumatology and Immunology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Yubin Luo
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Department of Rheumatology and Immunology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Yu Zhou
- Department of Respiratory and Critical Care Medicine, Chengdu First People's Hospital, Chengdu, China
| | - Ji Wen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Department of Rheumatology and Immunology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Yinlan Wu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Department of Rheumatology and Immunology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Xiuping Liang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Department of Rheumatology and Immunology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Tong Wu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Department of Rheumatology and Immunology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Chunyu Tan
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China.
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China.
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Department of Rheumatology and Immunology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China.
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China.
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China.
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Department of Rheumatology and Immunology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China.
| |
Collapse
|
13
|
Fang Q, Stehr AM, Naschberger E, Knopf J, Herrmann M, Stürzl M. No NETs no TIME: Crosstalk between neutrophil extracellular traps and the tumor immune microenvironment. Front Immunol 2022; 13:1075260. [PMID: 36618417 PMCID: PMC9816414 DOI: 10.3389/fimmu.2022.1075260] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
The tumor immune microenvironment (TIME) controls tumorigenesis. Neutrophils are important components of TIME and control tumor progression and therapy resistance. Neutrophil extracellular traps (NETs) ejected by activated neutrophils are net-like structures composed of decondensed extracellular chromatin filaments decorated with a plethora of granules as well as cytoplasmic proteins. Many of these harbour post translational modifications. Cancer cells reportedly trigger NET formation, and conversely, NETs alter the TIME and promote tumor cell proliferation and migration. The specific interactions between NETs and TIME and the respective effects on tumor progression are still elusive. In certain tumors, a CD4+ T helper (Th) 2 cell-associated TIME induces NETs and exerts immunosuppressive functions via programmed death 1 (PD-1)/PD-L1, both associated with poorer prognosis. In other cases, NETs induce the proliferation of Th1 cells, associated with an improved prognosis in cancer. In addition, NETs can drive macrophage polarization and often rely on macrophages to promote cancer cell invasion and metastasis. In turn, macrophages can swiftly clear NETs in an immunologically silent manner. The aim of this review is to summarize the knowledge about the mutual interaction between NETs and TIME and its impact on tumor growth and therapy.
Collapse
Affiliation(s)
- Qi Fang
- Division of Molecular and Experimental Surgery, Translational Research Center, Department of Surgery, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Antonia Margarethe Stehr
- Division of Molecular and Experimental Surgery, Translational Research Center, Department of Surgery, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Elisabeth Naschberger
- Division of Molecular and Experimental Surgery, Translational Research Center, Department of Surgery, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (EMN), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jasmin Knopf
- Department of Internal Medicine 3, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Michael Stürzl
- Division of Molecular and Experimental Surgery, Translational Research Center, Department of Surgery, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (EMN), Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
14
|
Horzum U, Yanik H, Taskiran EZ, Esendagli G. Effector Th1 cells under PD-1 and CTLA-4 checkpoint blockade abrogate the upregulation of multiple inhibitory receptors and by-pass exhaustion. Immunology 2022; 167:640-650. [PMID: 36053975 DOI: 10.1111/imm.13560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023] Open
Abstract
Immune checkpoint inhibitor (ICI) immunotherapy relies on the restoration of T-cell functions. The ICI receptors are not only found on exhausted T cells but also upregulated upon activation and reach high levels on effector T cells. In an ex vivo model, this study explored the consequences of PD-1 and cytotoxic T-lymphocyte antigen (CTLA-4) blockade applied during specific time frames of T-cell stimulation that coincide with distinct functional phases in type 1 helper T (Th1) cells. When applied at an early stimulation stage, the checkpoint blockade interfered with the upregulation of multiple inhibitory receptors such as PD-1, LAG3, TIM-3 and CTLA-4. Moreover, extension of the blockade period restricted the hyporesponsiveness in T cells. Alternatively, a short-term ICI treatment was advantageous when applied at late time frames of Th1 cell stimulation. Here, a transition phase from effector to exhausted state, which coincided with the late time frames of Th1 stimulation, was clearly determined together with the transcriptomics data demonstrating the initiation of significant alterations in metabolic pathways, genetic information processes, effector and exhaustion specific pathways. Applied in this transition phase, PD-1 and/or CTLA-4 blockade downregulated the inhibitory receptors which were already present on the effector Th1 cells, potentially through endocytic pathways. Therefore, the efficacy of ICI therapy was modulated by the functional status of T cells and can be improved by modifying the timing and duration of PD-1 and CTLA-4 blockade. In conclusion, the ICI therapy not only supports the reactivation of T cells but can also constrain de novo exhaustion.
Collapse
Affiliation(s)
- Utku Horzum
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
- Division of Molecular Pathophysiology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Hamdullah Yanik
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Ekim Z Taskiran
- Department of Medical Genetics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Gunes Esendagli
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| |
Collapse
|
15
|
Immune Biomarkers in Blood from Sarcoma Patients: A Pilot Study. Curr Oncol 2022; 29:5585-5603. [PMID: 36005179 PMCID: PMC9406743 DOI: 10.3390/curroncol29080441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
The main role of the host immune system is to identify and eliminate cancer cells, which is a complex process, but it is not a fail-safe mechanism. Many sarcoma patients succumb to this disease despite treatments rendered. The aim of this pilot study was to compare the levels of CD4+ T-cells, T-regulatory (Treg) cells, and cytokines such as tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ), interleukin-17A (IL-17A), and transforming growth factor-beta-1 (TGF-β1) in peripheral blood leukocytes of sarcoma patients and healthy controls. For gene expression studies, total ribonucleic acid (RNA) was extracted from peripheral blood leukocytes and genes that were differentially regulated in peripheral blood leukocytes of sarcoma patients compared with healthy controls were determined using a commercial T-helper cell differentiation quantitative polymerase chain reaction (qPCR) array. Flow cytometer analysis was performed on blood samples from 26 sarcoma patients and 10 healthy controls to identify the levels of CD4+ T-cells and T-reg cells. The level of cytokines in plasma and culture supernatant were quantified using commercial enzyme-linked immunosorbent assay (ELISA) kits. A marked reduction in the percentage of CD4+ T-cells (p = 0.037) and levels of TNF-α (p = 0.004) and IFN-γ (0.010) was observed in sarcoma patients. Gene expression analysis showed five genes (homeobox A10 (HOXA10), GATA binding protein 3 (GATA3), prostaglandin D2 receptor 2 (PTGDR2), thymocyte selection associated high mobility group box (TOX), and C-C motif chemokine receptor 3 (CCR3)) were dysregulated (p < 0.05) in sarcoma patients. This study suggests that T-helper-1 immune responses are reduced in sarcoma patients.
Collapse
|
16
|
Moschetti G, Vasco C, Clemente F, Galeota E, Carbonara M, Pluderi M, Locatelli M, Stocchetti N, Abrignani S, Zanier ER, Ortolano F, Zoerle T, Geginat J. Deep Phenotyping of T-Cells Derived From the Aneurysm Wall in a Pediatric Case of Subarachnoid Hemorrhage. Front Immunol 2022; 13:866558. [PMID: 35711453 PMCID: PMC9197186 DOI: 10.3389/fimmu.2022.866558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Intracranial aneurysms (IAs) are very rare in children, and the characteristics of the T-cells in the IA wall are largely unknown. A comatose 7-years-old child was admitted to our center because of a subarachnoid hemorrhage due to a ruptured giant aneurysm of the right middle cerebral artery. Two days after the aneurysm clipping the patient was fully awake with left hemiparesis. T-cells from the IA wall and from peripheral blood of this patient were analyzed by multi-dimensional flow cytometry. Unbiased analysis, based on the use of FlowSOM clustering and dimensionality reduction technique UMAP, indicated that there was virtually no overlap between circulating and tissue-infiltrating T-cells. Thus, naïve T-cells and canonical memory T-cells were largely restricted to peripheral blood, while CD4-CD8-T-cells were strongly enriched in the IA wall. The unique CD4+, CD8+ and CD4-CD8-T-cell clusters from the IA wall expressed high levels of CCR5, Granzyme B and CD69, displaying thus characteristics of cytotoxic and tissue-resident effector cells. Low Ki67 expression indicated that they were nevertheless in a resting state. Among regulatory T-cell subsets, Eomes+Tr1-like cells were strongly enriched in the IA wall. Finally, analysis of cytokine producing capacities unveiled that the IA wall contained poly-functional T-cells, which expressed predominantly IFN-γ, TNF and IL-2. CD4+T-cells co-expressed also CD40L, and produced some IL-17, GM-CSF and IL-10. This report provides to our knowledge the first detailed characterization of the human T-cell compartment in the IA wall.
Collapse
Affiliation(s)
| | - Chiara Vasco
- National Institute for Molecular Genetics (INGM), Milan, Italy
| | | | - Eugenia Galeota
- National Institute for Molecular Genetics (INGM), Milan, Italy
| | - Marco Carbonara
- Neuroscience Intensive Care Unit, Department of Anesthesia and Critical Care, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Mauro Pluderi
- Department of Neurosurgery, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marco Locatelli
- Department of Neurosurgery, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Nino Stocchetti
- Neuroscience Intensive Care Unit, Department of Anesthesia and Critical Care, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Sergio Abrignani
- National Institute for Molecular Genetics (INGM), Milan, Italy.,Department of Clinical Sciences and Community Health University Milan, Milan, Italy
| | - Elisa R Zanier
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Mario Negri Institute for Pharmacological Research IRCCS, Milan, Italy
| | - Fabrizio Ortolano
- Neuroscience Intensive Care Unit, Department of Anesthesia and Critical Care, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Tommaso Zoerle
- Neuroscience Intensive Care Unit, Department of Anesthesia and Critical Care, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Jens Geginat
- National Institute for Molecular Genetics (INGM), Milan, Italy.,Department of Clinical Sciences and Community Health University Milan, Milan, Italy
| |
Collapse
|
17
|
Cenerenti M, Saillard M, Romero P, Jandus C. The Era of Cytotoxic CD4 T Cells. Front Immunol 2022; 13:867189. [PMID: 35572552 PMCID: PMC9094409 DOI: 10.3389/fimmu.2022.867189] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/30/2022] [Indexed: 12/03/2022] Open
Abstract
In 1986, Mosmann and Coffman identified 2 functionally distinct subsets of activated CD4 T cells, Th1 and Th2 cells, being key in distinct T cell mediated responses. Over the past three decades, our understanding of CD4 T cell differentiation has expanded and the initial paradigm of a dichotomic CD4 T cell family has been revisited to accommodate a constantly growing number of functionally distinct CD4 T helper and regulatory subpopulations. Of note, CD4 T cells with cytotoxic functions have also been described, initially in viral infections, autoimmune disorders and more recently also in cancer settings. Here, we provide an historical overview on the discovery and characterization of cytotoxic CD4 T cells, followed by a description of their mechanisms of cytotoxicity. We emphasize the relevance of these cells in disease conditions, particularly in cancer, and we provide insights on how to exploit these cells in immunotherapy.
Collapse
Affiliation(s)
- Mara Cenerenti
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - Margaux Saillard
- Ludwig Institute for Cancer Research, Lausanne, Switzerland.,Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Pedro Romero
- Ludwig Institute for Cancer Research, Lausanne, Switzerland.,Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Camilla Jandus
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Ludwig Institute for Cancer Research, Lausanne, Switzerland
| |
Collapse
|
18
|
Wang D, Jiang Y, Song Y, Zeng Y, Li C, Wang X, Liu Y, Xiao J, Kong Y, Zhao H. Altered T-Cell Subsets are Associated with Dysregulated Cytokine Secretion of CD4 + T Cells During HIV Infection. J Inflamm Res 2021; 14:5149-5163. [PMID: 34675594 PMCID: PMC8504938 DOI: 10.2147/jir.s333902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/27/2021] [Indexed: 11/23/2022] Open
Abstract
Background CD4+ T cells play a critical role in the regulation of immunopathogenesis in HIV infection. Previous studies have shown contradictory results of the CD4+ T-cell responses in people living with HIV (PLHIV). Methods A cross-sectional study was performed on 40 healthy controls, 134 ART-naïve PLHIV, and 34 individuals who experienced 3-year ART with low baseline CD4 count from 4 August 2016 to 23 January 2019. We determined the frequencies of CD4+ T-cell subsets and described the cytokine secretion pattern of total and subsets of CD4+ T cells in these individuals. Results We found that CD4+ T cells in PLHIV displayed enhanced secretion of pro-inflammation cytokines and polyfunctionality due to HIV disease progression (r = -0.282, P = 0.0035 for IFN-γ; r = -0.412, P = 0.0002 for TNF-α; r = -0.243, P < 0.0001 for GM-CSF; r = -0.252, P = 0.0093 for IFN-γ+ TNF-α+ cells). However, the altered T-cell subsets, as presented by the loss of naïve cells and expansion of memory/effector population in PLHIV, were associated with discordant results in total and subsets of CD4+ T cells. As major cytokine-producing T subsets, effector/memory CD4 subsets showed impaired cytokine production (P < 0.05). We further demonstrated that 3-year ART treatment could improve CD4 counts by increasing the pool of naïve T cells but could not restore cytokine secretion in CD4+ T-cell subsets (P < 0.05). Conclusion These data identified the impaired capacity of cytokine secretion in CD4+ T-cell subsets due to HIV disease progression, and the altered T-cell subsets were associated with pseudo-elevation of cytokine production in total CD4+ T cells. This study collectively suggested the importance of therapies that can preserve and/or enhance the function of CD4+ T cells in strategies of HIV remission.
Collapse
Affiliation(s)
- Di Wang
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People's Republic of China.,Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yu Jiang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yangzi Song
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People's Republic of China.,Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yongqin Zeng
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Cuilin Li
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xinyue Wang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Ying Liu
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People's Republic of China.,Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jiang Xiao
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yaxian Kong
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Hongxin Zhao
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
19
|
Éliás S, Schmidt A, Gomez-Cabrero D, Tegnér J. Gene Regulatory Network of Human GM-CSF-Secreting T Helper Cells. J Immunol Res 2021; 2021:8880585. [PMID: 34285924 PMCID: PMC8275380 DOI: 10.1155/2021/8880585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 03/14/2021] [Accepted: 03/20/2021] [Indexed: 12/13/2022] Open
Abstract
GM-CSF produced by autoreactive CD4-positive T helper cells is involved in the pathogenesis of autoimmune diseases, such as multiple sclerosis. However, the molecular regulators that establish and maintain the features of GM-CSF-positive CD4 T cells are unknown. In order to identify these regulators, we isolated human GM-CSF-producing CD4 T cells from human peripheral blood by using a cytokine capture assay. We compared these cells to the corresponding GM-CSF-negative fraction, and furthermore, we studied naïve CD4 T cells, memory CD4 T cells, and bulk CD4 T cells from the same individuals as additional control cell populations. As a result, we provide a rich resource of integrated chromatin accessibility (ATAC-seq) and transcriptome (RNA-seq) data from these primary human CD4 T cell subsets and we show that the identified signatures are associated with human autoimmune diseases, especially multiple sclerosis. By combining information about mRNA expression, DNA accessibility, and predicted transcription factor binding, we reconstructed directed gene regulatory networks connecting transcription factors to their targets, which comprise putative key regulators of human GM-CSF-positive CD4 T cells as well as memory CD4 T cells. Our results suggest potential therapeutic targets to be investigated in the future in human autoimmune disease.
Collapse
Affiliation(s)
- Szabolcs Éliás
- Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, ki.se Karolinska University Hospital & Science for Life Laboratory, 17176 Solna, Stockholm, Sweden
| | - Angelika Schmidt
- Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, ki.se Karolinska University Hospital & Science for Life Laboratory, 17176 Solna, Stockholm, Sweden
| | - David Gomez-Cabrero
- Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, ki.se Karolinska University Hospital & Science for Life Laboratory, 17176 Solna, Stockholm, Sweden
- Mucosal & Salivary Biology Division, King's College London Dental Institute, London SE1 9RT, UK
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, 31008 Pamplona, Spain
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955–6900, Saudi Arabia
| | - Jesper Tegnér
- Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, ki.se Karolinska University Hospital & Science for Life Laboratory, 17176 Solna, Stockholm, Sweden
- Biological and Environmental Sciences and Engineering Division, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955–6900, Saudi Arabia
| |
Collapse
|
20
|
Yan K, Lu Y, Yan Z, Wang Y. 9-Gene Signature Correlated With CD8 + T Cell Infiltration Activated by IFN-γ: A Biomarker of Immune Checkpoint Therapy Response in Melanoma. Front Immunol 2021; 12:622563. [PMID: 34220795 PMCID: PMC8248551 DOI: 10.3389/fimmu.2021.622563] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 05/24/2021] [Indexed: 12/21/2022] Open
Abstract
Purpose To identify CD8+ T cell-related factors and the co-expression network in melanoma and illustrate the interactions among CD8+ T cell-related genes in the melanoma tumor microenvironment. Method We obtained melanoma and paracancerous tissue mRNA matrices from TCGA-SKCM and GSE65904. The CIBERSORT algorithm was used to assess CD8+ T cell proportions, and the “estimate” package was used to assess melanoma tumor microenvironment purity. Weighted gene co-expression network analysis was used to identify the most related co-expression modules in TCGA-SKCM and GSE65904. Subsequently, a co-expression network was built based on the joint results in the two cohorts. Subsequently, we identified the core genes of the two most relevant modules of CD8+T lymphocytes according to the module correlation, and constructed the signature using ssGSEA. Later, we compared the signature with the existing classical pathways and gene sets, and confirmed the important prognostic significance of the signature in this paper. Results Nine co-expressed genes were identified as CD8+ T cell-related genes enriched in the cellular response to interferon−gamma process and antigen processing and presentation of peptide antigen. In the low expression level group, inflammation and immune responses were weaker. Single-cell sequencing and immunohistochemistry indicated that these nine genes were highly expressed in CD8+ T cells group. Conclusion We identified nine-gene signature, and the signature is considered as the biomarker for T lymphocyte response and clinical response to immune checkpoint inhibitors for melanoma
Collapse
Affiliation(s)
- Kexin Yan
- Department of Dermatology, China Medical University, The First Hospital of China Medical University, Shenyang, China
| | - Yuxiu Lu
- Department of Pharmacy, Fuzhou No. 1 Hospital Affiliated With Fujian Medical University, Fuzhou, China
| | - Zhangyong Yan
- Department of Stomatology, Fuzhou No. 1 Hospital Affiliated with Fujian Medical University, Fuzhou, China
| | - Yutao Wang
- Department of Urology, China Medical University, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
21
|
Wang L, Das JK, Kumar A, Peng HY, Ren Y, Xiong X, Yang JM, Song J. Autophagy in T-cell differentiation, survival and memory. Immunol Cell Biol 2021; 99:351-360. [PMID: 33141986 DOI: 10.1111/imcb.12422] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/23/2020] [Accepted: 10/30/2020] [Indexed: 01/22/2023]
Abstract
Over the past decade, autophagy has emerged as a critical regulatory mechanism of the immune system through critically controlling various aspects of T cell biology and determining the fate of different T cell subsets. Autophagy maintains T cell development and survival by regulating the degradation of organelles and apoptotic proteins. The autophagic process also impacts the formation of memory T cells. Alteration of autophagy in T cells may lead to a variety of pathological conditions such as inflammation, autoimmune diseases and cancer. In this review, we discuss how autophagy impacts T cell differentiation, survival and memory, and its implication in immunotherapy for various diseases.
Collapse
Affiliation(s)
- Liqing Wang
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Jugal Kishore Das
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Anil Kumar
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Hao-Yun Peng
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Yijie Ren
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Xiaofang Xiong
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Jin-Ming Yang
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Jianxun Song
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, USA
| |
Collapse
|
22
|
Lee J, Lozano-Ruiz B, Yang FM, Fan DD, Shen L, González-Navajas JM. The Multifaceted Role of Th1, Th9, and Th17 Cells in Immune Checkpoint Inhibition Therapy. Front Immunol 2021; 12:625667. [PMID: 33777008 PMCID: PMC7994325 DOI: 10.3389/fimmu.2021.625667] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/07/2021] [Indexed: 12/18/2022] Open
Abstract
During the last decade, immune checkpoint inhibition (ICI) has become a pillar of cancer therapy. Antibodies targeting CTLA-4 or PD-1/PD-L1 have been approved in several malignancies, with thousands of clinical trials currently underway. While the majority of cancer immunotherapies have traditionally focused on enhancing cytotoxic responses by CD8+ or NK cells, there are clear evidences that CD4+ T cell responses can modulate the immune response against tumors and influence the efficacy of ICI therapy. CD4+ T cells can differentiate into several subsets of helper T cells (Th) or regulatory T cells (Treg), with a wide range of effector and/or regulatory functions. Importantly, different Th subsets may have different and sometimes contrasting roles in the clinical response to ICI therapy, which in addition may vary depending on the organ and tumor niche. In this review, we discuss recent evidence that highlights how ICI therapy impacts Th1, Th9, and Th17 cells and vice versa. These data might be important designing better interventions that unleash the full potential of immune response against cancer.
Collapse
Affiliation(s)
- Jongdae Lee
- School of Basic Medical Sciences and the State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Beatriz Lozano-Ruiz
- Alicante Institute for Health and Biomedical Research (ISABIAL), Hospital General Universitario de Alicante, Alicante, Spain.,Networked Biomedical Research Center for Hepatic and Digestive Diseases (CIBERehd), Institute of Health Carlos III, Madrid, Spain
| | - Fengyuan Mandy Yang
- School of Basic Medical Sciences and the State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Dengxia Denise Fan
- School of Basic Medical Sciences and the State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Liya Shen
- School of Basic Medical Sciences and the State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Jose M González-Navajas
- Alicante Institute for Health and Biomedical Research (ISABIAL), Hospital General Universitario de Alicante, Alicante, Spain.,Networked Biomedical Research Center for Hepatic and Digestive Diseases (CIBERehd), Institute of Health Carlos III, Madrid, Spain.,Department of Pharmacology, Pediatrics and Organic Chemistry, University Miguel Hernández, Elche, Spain.,Institute of Research, Development and Innovation in Healthcare Biotechnology in Elche (IDiBE), University Miguel Hernández, Elche, Spain
| |
Collapse
|
23
|
Richardson JR, Schöllhorn A, Gouttefangeas C, Schuhmacher J. CD4+ T Cells: Multitasking Cells in the Duty of Cancer Immunotherapy. Cancers (Basel) 2021; 13:596. [PMID: 33546283 PMCID: PMC7913359 DOI: 10.3390/cancers13040596] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/24/2021] [Accepted: 01/29/2021] [Indexed: 12/22/2022] Open
Abstract
Cancer immunotherapy activates the immune system to specifically target malignant cells. Research has often focused on CD8+ cytotoxic T cells, as those have the capacity to eliminate tumor cells after specific recognition upon TCR-MHC class I interaction. However, CD4+ T cells have gained attention in the field, as they are not only essential to promote help to CD8+ T cells, but are also able to kill tumor cells directly (via MHC-class II dependent recognition) or indirectly (e.g., via the activation of other immune cells like macrophages). Therefore, immunotherapy approaches have shifted from only stimulating CD8+ T cells to targeting and assessing both, CD4+ and CD8+ T cell subsets. Here, we discuss the various subsets of CD4+ T cells, their plasticity and functionality, their relevance in the antitumor immune response in patients affected by cancer, and their ever-growing role in therapeutic approaches for human cancer.
Collapse
Affiliation(s)
- Jennifer R. Richardson
- Department of Immunology, Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany; (J.R.R.); (A.S.); (J.S.)
| | - Anna Schöllhorn
- Department of Immunology, Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany; (J.R.R.); (A.S.); (J.S.)
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tübingen, Germany
| | - Cécile Gouttefangeas
- Department of Immunology, Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany; (J.R.R.); (A.S.); (J.S.)
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) Partner Site Tübingen, 72076 Tübingen, Germany
| | - Juliane Schuhmacher
- Department of Immunology, Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany; (J.R.R.); (A.S.); (J.S.)
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
24
|
A proteolytic method for evaluating O-GlcNAcylation on proteins of similar molecular weight to antibody heavy chain after immunoprecipitation. Anal Biochem 2020; 611:114001. [PMID: 33129762 DOI: 10.1016/j.ab.2020.114001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 10/12/2020] [Accepted: 10/21/2020] [Indexed: 11/21/2022]
Abstract
Investigating a protein of interest that runs at the same molecular weight as antibody heavy chain is a frequent deterrent to its evaluation by immunoprecipitation. Methods of minimizing the detection of the immunoprecipitating antibody are available. However, these still present a barrier to evaluating if intracellular proteins are modified by the O-GlcNAc post-translation protein modification due to interfering glycosylation on antibodies. IdeZ protease specifically cleaves antibody at the hinge region, allowing collapse of the antibody fragments to 25 kDa after denaturation. Thus, this proteolytic method uniquely allows evaluation of O-GlcNAcylation of proteins of interest formerly obscured by antibody heavy chain.
Collapse
|
25
|
Park LM, Lannigan J, Jaimes MC. OMIP-069: Forty-Color Full Spectrum Flow Cytometry Panel for Deep Immunophenotyping of Major Cell Subsets in Human Peripheral Blood. Cytometry A 2020; 97:1044-1051. [PMID: 32830910 PMCID: PMC8132182 DOI: 10.1002/cyto.a.24213] [Citation(s) in RCA: 209] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/27/2020] [Accepted: 08/17/2020] [Indexed: 12/16/2022]
Abstract
This 40-color flow cytometry-based panel was developed for in-depth immunophenotyping of the major cell subsets present in human peripheral blood. Sample availability can often be limited, especially in cases of clinical trial material, when multiple types of testing are required from a single sample or timepoint. Maximizing the amount of information that can be obtained from a single sample not only provides more in-depth characterization of the immune system but also serves to address the issue of limited sample availability. The panel presented here identifies CD4 T cells, CD8 T cells, regulatory T cells, γδ T cells, NKT-like cells, B cells, NK cells, monocytes and dendritic cells. For each specific cell type, the panel includes markers for further characterization by including a selection of activation and differentiation markers, as well as chemokine receptors. Moreover, the combination of multiple markers in one tube might lead to the discovery of new immune phenotypes and their relevance in certain diseases. Of note, this panel was designed to include only surface markers to avoid the need for fixation and permeabilization steps. The panel can be used for studies aimed at characterizing the immune response in the context of infectious or autoimmune diseases, monitoring cancer patients on immuno- or chemotherapy, and discovery of unique and targetable biomarkers. Different from all previously published OMIPs, this panel was developed using a full spectrum flow cytometer, a technology that has allowed the effective use of 40 fluorescent markers in a single panel. The panel was developed using cryopreserved human peripheral blood mononuclear cells (PBMC) from healthy adults (Table 1). Although we have not tested the panel on fresh PBMCs or whole blood, it is anticipated that the panel could be used in those sample preparations without further optimization. @ 2020 Cytek Biosciences, Inc. Cytometry Part A published by Wiley Periodicals LLC on behalf of International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Lily M. Park
- Research and DevelopmentCytek Biosciences, Inc.FremontCalifornia94538‐6407USA
| | - Joanne Lannigan
- Flow Cytometry Support Services, LLCAlexandriaVirginia22314USA
| | - Maria C. Jaimes
- Research and DevelopmentCytek Biosciences, Inc.FremontCalifornia94538‐6407USA
| |
Collapse
|
26
|
Poon MM, Farber DL. The Whole Body as the System in Systems Immunology. iScience 2020; 23:101509. [PMID: 32920485 PMCID: PMC7491152 DOI: 10.1016/j.isci.2020.101509] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 02/08/2023] Open
Abstract
The human immune system is comprised of a diverse and interactive network of specialized cells localized in diverse tissues throughout the body, where they mediate protection against pathogens and environmental insults while maintaining tissue homeostasis. Although much of our understanding of human immunology has derived from studies of peripheral blood, recent work utilizing human tissue resources and innovative computational methods have employed a whole-body, systems-based approach, revealing tremendous complexity and heterogeneity of the immune system within individuals and across the population. In this review, we discuss how tissue localization, developmental and age-associated changes, and conditions of health and disease shape the immune response, as well as how improved understanding of interindividual and tissue-specific immunity can be leveraged for developing targeted therapeutics.
Collapse
Affiliation(s)
- Maya M.L. Poon
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Donna L. Farber
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
- Department of Surgery, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
27
|
Coletta M, Paroni M, Alvisi MF, De Luca M, Rulli E, Mazza S, Facciotti F, Lattanzi G, Strati F, Abrignani S, Fantini MC, Vecchi M, Geginat J, Caprioli F. Immunological Variables Associated With Clinical and Endoscopic Response to Vedolizumab in Patients With Inflammatory Bowel Diseases. J Crohns Colitis 2020; 14:1190-1201. [PMID: 32100016 DOI: 10.1093/ecco-jcc/jjaa035] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND AND AIMS Vedolizumab [VDZ] is a monoclonal antibody directed against the α4β7 integrin heterodimer, approved for patients with inflammatory bowel diseases [IBD]. This study aimed at identifying immunological variables associated with response to vedolizumab in patients with ulcerative colitis [UC] and Crohn's disease [CD]. METHODS This is a phase IV explorative prospective interventional trial. IBD patients received open-label VDZ at Weeks 0, 2, 6, and 14. Patients with a clinical response at Week 14 were maintained with VDZ up to Week 54. At Weeks 0 and 14, their peripheral blood was obtained and endoscopy with biopsies was performed. The Week 14 clinical response and remission, Week 54 clinical remission, and Week 14 endoscopic response were evaluated as endpoints of the study. The expression of surface markers, chemokine receptors, and α4β7 heterodimer in peripheral blood and lamina propria lymphocytes was assessed by flow cytometry. A panel of soluble mediators was assessed in sera at baseline and at Week 14 by 45-plex. RESULTS A total of 38 IBD patients [20 UC, 18 CD] were included in the study. At Week 14, the clinical response and remission rates were 87% and 66%, respectively. Higher baseline levels of circulating memory Th1 cells were strongly associated with clinical response at Week 14 [p = 0.0001], whereas reduced baseline levels of lamina propria memory Th17 and Th1/17 cells were associated with endoscopic response. Immunological clusters were found to be independently associated with vedolizumab outcomes at multivariable analysis. A panel of soluble markers, including IL17A, TNF, CXCL1, CCL19 for CD and G-CSF and IL7 for UC, associated with vedolizumab-induced Week 54 clinical remission. CONCLUSIONS The results of this exploratory study uncovered a panel of circulating and mucosal immunological variables associated with response to treatment with vedolizumab.
Collapse
Affiliation(s)
- Marina Coletta
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Moira Paroni
- Istituto Nazionale di Genetica Molecolare 'Enrica ed Romeo Invernizzi' [INGM], Milan, Italy.,Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Maria Francesca Alvisi
- Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Matilde De Luca
- Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Eliana Rulli
- Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Stefano Mazza
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Federica Facciotti
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Georgia Lattanzi
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Francesco Strati
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Sergio Abrignani
- Istituto Nazionale di Genetica Molecolare 'Enrica ed Romeo Invernizzi' [INGM], Milan, Italy.,Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | | | - Maurizio Vecchi
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Jens Geginat
- Istituto Nazionale di Genetica Molecolare 'Enrica ed Romeo Invernizzi' [INGM], Milan, Italy
| | - Flavio Caprioli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
28
|
Tortola L, Jacobs A, Pohlmeier L, Obermair FJ, Ampenberger F, Bodenmiller B, Kopf M. High-Dimensional T Helper Cell Profiling Reveals a Broad Diversity of Stably Committed Effector States and Uncovers Interlineage Relationships. Immunity 2020; 53:597-613.e6. [PMID: 32735846 DOI: 10.1016/j.immuni.2020.07.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 12/27/2022]
Abstract
CD4+ T helper (Th) cells are fundamental players in immunity. Based on the expression of signature cytokines and transcription factors, several Th subsets have been defined. Th cells are thought to be far more heterogeneous and multifunctional than originally believed, but characterization of the full diversity has been hindered by technical limitations. Here, we employ mass cytometry to analyze the diversity of Th cell responses generated in vitro and in animal disease models, revealing a vast heterogeneity of effector states with distinct cytokine footprints. The diversities of cytokine responses established during primary antigen encounters in Th1- and Th2-cell-polarizing conditions are largely maintained after secondary challenge, regardless of the new inflammatory environment, highlighting many of the identified states as stable Th cell sublineages. We also find that Th17 cells tend to upregulate Th2-cell-associated cytokines upon challenge, indicating a closer developmental connection between Th17 and Th2 cells than previously anticipated.
Collapse
Affiliation(s)
- Luigi Tortola
- Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland.
| | - Andrea Jacobs
- Department of Quantitative Biomedicine, University of Zurich, 8057 Zurich, Switzerland
| | - Lea Pohlmeier
- Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | | | | | - Bernd Bodenmiller
- Department of Quantitative Biomedicine, University of Zurich, 8057 Zurich, Switzerland
| | - Manfred Kopf
- Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
29
|
Botafogo V, Pérez-Andres M, Jara-Acevedo M, Bárcena P, Grigore G, Hernández-Delgado A, Damasceno D, Comans S, Blanco E, Romero A, Arriba-Méndez S, Gastaca-Abasolo I, Pedreira CE, van Gaans-van den Brink JAM, Corbiere V, Mascart F, van Els CACM, Barkoff AM, Mayado A, van Dongen JJM, Almeida J, Orfao A. Age Distribution of Multiple Functionally Relevant Subsets of CD4+ T Cells in Human Blood Using a Standardized and Validated 14-Color EuroFlow Immune Monitoring Tube. Front Immunol 2020; 11:166. [PMID: 32174910 PMCID: PMC7056740 DOI: 10.3389/fimmu.2020.00166] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
CD4+ T cells comprise multiple functionally distinct cell populations that play a key role in immunity. Despite blood monitoring of CD4+ T-cell subsets is of potential clinical utility, no standardized and validated approaches have been proposed so far. The aim of this study was to design and validate a single 14-color antibody combination for sensitive and reproducible flow cytometry monitoring of CD4+ T-cell populations in human blood to establish normal age-related reference values and evaluate the presence of potentially altered profiles in three distinct disease models-monoclonal B-cell lymphocytosis (MBL), systemic mastocytosis (SM), and common variable immunodeficiency (CVID). Overall, 145 blood samples from healthy donors were used to design and validate a 14-color antibody combination based on extensive reagent testing in multiple cycles of design-testing-evaluation-redesign, combined with in vitro functional studies, gene expression profiling, and multicentric evaluation of manual vs. automated gating. Fifteen cord blood and 98 blood samples from healthy donors (aged 0-89 years) were used to establish reference values, and another 25 blood samples were evaluated for detecting potentially altered CD4 T-cell subset profiles in MBL (n = 8), SM (n = 7), and CVID (n = 10). The 14-color tube can identify ≥89 different CD4+ T-cell populations in blood, as validated with high multicenter reproducibility, particularly when software-guided automated (vs. manual expert-based) gating was used. Furthermore, age-related reference values were established, which reflect different kinetics for distinct subsets: progressive increase of naïve T cells, T-helper (Th)1, Th17, follicular helper T (TFH) cells, and regulatory T cells (Tregs) from birth until 2 years, followed by a decrease of naïve T cells, Th2, and Tregs in older children and a subsequent increase in multiple Th-cell subsets toward late adulthood. Altered and unique CD4+ T-cell subset profiles were detected in two of the three disease models evaluated (SM and CVID). In summary, the EuroFlow immune monitoring TCD4 tube allows fast, automated, and reproducible identification of ≥89 subsets of CD4+ blood T cells, with different kinetics throughout life. These results set the basis for in-depth T-cell monitoring in different disease and therapeutic conditions.
Collapse
Affiliation(s)
- Vitor Botafogo
- Translational and Clinical Research Program, Centro de Investigación del Cáncer (CIC) and Instituto de Biología Molecular y Celular del Cancer (IBMCC), CSIC-University of Salamanca (USAL), Salamanca, Spain
- Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC) (CB16/12/00400), Instituto de Salud Carlos III, Madrid, Spain
- Clinical Medicine Postgraduate Program, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Martín Pérez-Andres
- Translational and Clinical Research Program, Centro de Investigación del Cáncer (CIC) and Instituto de Biología Molecular y Celular del Cancer (IBMCC), CSIC-University of Salamanca (USAL), Salamanca, Spain
- Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC) (CB16/12/00400), Instituto de Salud Carlos III, Madrid, Spain
| | - María Jara-Acevedo
- Translational and Clinical Research Program, Centro de Investigación del Cáncer (CIC) and Instituto de Biología Molecular y Celular del Cancer (IBMCC), CSIC-University of Salamanca (USAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC) (CB16/12/00400), Instituto de Salud Carlos III, Madrid, Spain
- Sequencing Service, NUCLEUS, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Paloma Bárcena
- Translational and Clinical Research Program, Centro de Investigación del Cáncer (CIC) and Instituto de Biología Molecular y Celular del Cancer (IBMCC), CSIC-University of Salamanca (USAL), Salamanca, Spain
- Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC) (CB16/12/00400), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Alejandro Hernández-Delgado
- Translational and Clinical Research Program, Centro de Investigación del Cáncer (CIC) and Instituto de Biología Molecular y Celular del Cancer (IBMCC), CSIC-University of Salamanca (USAL), Salamanca, Spain
- Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC) (CB16/12/00400), Instituto de Salud Carlos III, Madrid, Spain
- Cytognos SL, Salamanca, Spain
| | - Daniela Damasceno
- Translational and Clinical Research Program, Centro de Investigación del Cáncer (CIC) and Instituto de Biología Molecular y Celular del Cancer (IBMCC), CSIC-University of Salamanca (USAL), Salamanca, Spain
- Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC) (CB16/12/00400), Instituto de Salud Carlos III, Madrid, Spain
| | - Suzanne Comans
- Department of Immunohematology and Blood Transfusion (IHB), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Elena Blanco
- Translational and Clinical Research Program, Centro de Investigación del Cáncer (CIC) and Instituto de Biología Molecular y Celular del Cancer (IBMCC), CSIC-University of Salamanca (USAL), Salamanca, Spain
- Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC) (CB16/12/00400), Instituto de Salud Carlos III, Madrid, Spain
| | - Alfonso Romero
- Miguel Armijo Primary Health Care Centre, Sanidad de Castilla y León (SACYL), Salamanca, Spain
| | | | - Irene Gastaca-Abasolo
- Gynecology and Obstetrics Service, University Hospital of Salamanca, Salamanca, Spain
| | - Carlos Eduardo Pedreira
- Systems and Computing Department (PESC), COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Véronique Corbiere
- Laboratory of Vaccinology and Mucosal Immunity, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Françoise Mascart
- Laboratory of Vaccinology and Mucosal Immunity, Université libre de Bruxelles (ULB), Brussels, Belgium
- Immunobiology Clinic, Hôpital Erasme, Brussels, Belgium
| | - Cécile A. C. M. van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Alex-Mikael Barkoff
- Institute of Biomedicine, Department of Microbiology, Virology and Immunology, University of Turku (UTU), Turku, Finland
| | - Andrea Mayado
- Translational and Clinical Research Program, Centro de Investigación del Cáncer (CIC) and Instituto de Biología Molecular y Celular del Cancer (IBMCC), CSIC-University of Salamanca (USAL), Salamanca, Spain
- Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC) (CB16/12/00400), Instituto de Salud Carlos III, Madrid, Spain
| | - Jacques J. M. van Dongen
- Department of Immunohematology and Blood Transfusion (IHB), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Julia Almeida
- Translational and Clinical Research Program, Centro de Investigación del Cáncer (CIC) and Instituto de Biología Molecular y Celular del Cancer (IBMCC), CSIC-University of Salamanca (USAL), Salamanca, Spain
- Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC) (CB16/12/00400), Instituto de Salud Carlos III, Madrid, Spain
| | - Alberto Orfao
- Translational and Clinical Research Program, Centro de Investigación del Cáncer (CIC) and Instituto de Biología Molecular y Celular del Cancer (IBMCC), CSIC-University of Salamanca (USAL), Salamanca, Spain
- Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC) (CB16/12/00400), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
30
|
Orfao A, Matarraz S, Pérez-Andrés M, Almeida J, Teodosio C, Berkowska MA, van Dongen JJ. Immunophenotypic dissection of normal hematopoiesis. J Immunol Methods 2019; 475:112684. [DOI: 10.1016/j.jim.2019.112684] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 10/25/2022]
|
31
|
Geginat J, Vasco M, Gerosa M, Tas SW, Pagani M, Grassi F, Flavell RA, Meroni P, Abrignani S. IL-10 producing regulatory and helper T-cells in systemic lupus erythematosus. Semin Immunol 2019; 44:101330. [PMID: 31735515 DOI: 10.1016/j.smim.2019.101330] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Systemic lupus erythematosus (SLE) is a highly heterogeneous autoimmune disease characterised by the production of pathogenic autoantibodies against nuclear self-antigens. The anti-inflammatory and tolerogenic cytokine Interleukin-10 appears to play a paradoxical pathogenic role in SLE and is therefore currently therapeutically targeted in clinical trials. It is generally assumed that the pathogenic effect of IL-10 in SLE is due to its growth and differentiation factor activity on autoreactive B-cells, but effects on other cells might also play a role. To date, a unique cellular source of pathogenic IL-10 in SLE has not been identified. In this review, we focus on the contribution of different CD4+T-cell subsets to IL-10 and autoantibody production in SLE. In particular, we discuss that IL-10 produced by different subsets of adaptive regulatory T-cells, follicular helper T-cells and extra-follicular B-helper T-cells is likely to have different effects on autoreactive B-cell responses. A better understanding of the role of IL-10 in B-cell responses and lupus would allow to identify the most promising therapies for individual SLE patients in the future.
Collapse
Affiliation(s)
- J Geginat
- INGM-National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", Milan, Italy.
| | - M Vasco
- INGM-National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", Milan, Italy
| | - M Gerosa
- DISCCO, Department of Clinical Science and Community Health, University of Milan, Italy; ASST Istituto G. Pini, Milan, Italy
| | - S W Tas
- Amsterdam UMC, University of Amsterdam, Department of Rheumatology & Clinical Immunology and Department of Experimental Immunology, Amsterdam Infection & Immunity Institute and Amsterdam Rheumatology & immunology Center (ARC), Academic Medical Center, Amsterdam, the Netherlands
| | - M Pagani
- INGM-National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", Milan, Italy; Amsterdam UMC, University of Amsterdam, Department of Rheumatology & Clinical Immunology and Department of Experimental Immunology, Amsterdam Infection & Immunity Institute and Amsterdam Rheumatology & immunology Center (ARC), Academic Medical Center, Amsterdam, the Netherlands; Department of Medical Biotechnology and Translational Medicine, University of Milan, Italy
| | - F Grassi
- INGM-National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", Milan, Italy; Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - R A Flavell
- Department of Immunobiology, and Howard Hughes Medical Institute, School of Medicine, Yale University, New Haven, USA
| | - Pl Meroni
- Istituto Auxologico Italiano, Milano, Italy
| | - S Abrignani
- INGM-National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", Milan, Italy; DISCCO, Department of Clinical Science and Community Health, University of Milan, Italy
| |
Collapse
|
32
|
Alterations in peripheral T cell and B cell subsets in patients with osteoarthritis. Clin Rheumatol 2019; 39:523-532. [DOI: 10.1007/s10067-019-04768-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/07/2019] [Accepted: 08/28/2019] [Indexed: 12/31/2022]
|
33
|
Bacher P, Scheffold A. The effect of regulatory T cells on tolerance to airborne allergens and allergen immunotherapy. J Allergy Clin Immunol 2019; 142:1697-1709. [PMID: 30527063 DOI: 10.1016/j.jaci.2018.10.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/16/2018] [Accepted: 10/19/2018] [Indexed: 12/16/2022]
Abstract
Forkhead box P3-positive regulatory T (Treg) cells are essential mediators of tolerance against self-antigens and harmless exogenous antigens. Treg cell deficiencies result in multiple autoimmune and allergic syndromes in neonates. How Treg cells affect conventional allergies against aeroantigens, which are restricted to a few specific proteins released from inhaled particles, remains controversial. The hallmarks of antigen-specific loss of tolerance are allergen-specific TH2 cells and IgE. However, difficulties in identifying the rare allergen-specific Treg cells have obscured the cellular basis of tolerance to aeroallergens, which is also a major obstacle for the rational design of novel and more efficient allergen-specific immunotherapies. Recent technological progress allowing characterization of allergen-specific effectors and Treg cells with minimal in vitro manipulation revealed their detailed contribution to tolerance. The data identified inhaled particles as immunodominant Treg cell targets in healthy and allergic subjects. Conversely, the supposed immunodominant major allergens being rapidly released from inhaled particles apparently do not actively induce tolerance but are ignored by the immune system. Here, the partially contradictory data on various allergen-specific T-cell types in healthy subjects, allergic patients, and patients undergoing allergen-specific immunotherapy are discussed and integrated into one model, postulating Treg cell-dependent and Treg cell-independent checkpoints of tolerance and allergy development.
Collapse
Affiliation(s)
- Petra Bacher
- Institute for Immunology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany; Institute of Clinical Molecular Biology Christian-Albrechts Universität zu Kiel & Universitätsklinik Schleswig-Holstein, Kiel, Germany
| | - Alexander Scheffold
- Institute for Immunology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.
| |
Collapse
|
34
|
Amirghofran Z, Shekofteh N, Ghafourian M, Khosravi N, Kalantar K, Malek-Hosseini S. Tumor Cell Death via Apoptosis and Improvement of Activated Lymphocyte Cytokine Secretion by Extracts from Euphorbia Hebecarpa and Euphorbia Petiolata. Asian Pac J Cancer Prev 2019; 20:1979-1988. [PMID: 31350954 PMCID: PMC6745218 DOI: 10.31557/apjcp.2019.20.7.1979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 07/22/2019] [Indexed: 11/25/2022] Open
Abstract
Background: Immunomodulatory materials from natural herbs and the characterization of their immune enhancement effects may have tremendous potential as cancer treatment. The aim of the present study was to investigate the apoptosis-inducing activities of Euphorbia hebecarpa Boiss and Euphorbia petiolata Banks & Sol. plant extracts and their effects on cytokine secretion by lymphocytes. Materials and Methods: We assessed the apoptosis-inducing effect of the plants’ hexane extracts on previously determined sensitive cell lines (HeLa for E. hebecarpa and K562 for E. petiolata) by flow cytometry and measurement of caspase 3 activation. The apoptosis-related gene expressions were examined by real-time PCR. The effects of the extracts on lymphocyte proliferation and cytokine secretion were examined. Results: Flow cytometry analysis showed that the inhibitory effect of the extracts on tumor cell growth was due to cell apoptosis. The plant extracts at the 100 μg/ml dose induced apoptosis in HeLa (98.5 ± 0.1%) and K562 (57.7 ± 1.9%) cells. The extracts increased caspase 3 activation (≈2-fold>control). Real-time PCR showed Fas and Bax gene upregulation and Bcl-2 downregulation, which resulted in an increased Bax/Bcl-2 expression ratio. The extracts increased lymphocyte proliferation and increased levels of IFN-γ production in the presence and absence of mitogen (p < 0.05). They significantly increased IL-4 and decreased IL-10 secretion by mitogen-stimulated lymphocytes. E. hebecarpa also increased IL-17 release. Conclusion: These results have shown that both extracts possess antitumor activity by inducing apoptosis, possibly through both intrinsic and extrinsic pathways. In addition, they induced secretion of different T helper subset related cytokines that are effective in the immune response against cancer.
Collapse
Affiliation(s)
- Zahra Amirghofran
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
- Autoimmune Diseases Research Center, and Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narjes Shekofteh
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehri Ghafourian
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Neda Khosravi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Kurosh Kalantar
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
35
|
Machacek M, Saunders H, Zhang Z, Tan EP, Li J, Li T, Villar MT, Artigues A, Lydic T, Cork G, Slawson C, Fields PE. Elevated O-GlcNAcylation enhances pro-inflammatory Th17 function by altering the intracellular lipid microenvironment. J Biol Chem 2019; 294:8973-8990. [PMID: 31010828 PMCID: PMC6552434 DOI: 10.1074/jbc.ra119.008373] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/11/2019] [Indexed: 01/09/2023] Open
Abstract
Chronic, low-grade inflammation increases the risk for atherosclerosis, cancer, and autoimmunity in diseases such as obesity and diabetes. Levels of CD4+ T helper 17 (Th17) cells, which secrete interleukin 17A (IL-17A), are increased in obesity and contribute to the inflammatory milieu; however, the relationship between signaling events triggered by excess nutrient levels and IL-17A-mediated inflammation is unclear. Here, using cytokine, quantitative real-time PCR, immunoprecipitation, and ChIP assays, along with lipidomics and MS-based approaches, we show that increased levels of the nutrient-responsive, post-translational protein modification, O-GlcNAc, are present in naive CD4+ T cells from a diet-induced obesity murine model and that elevated O-GlcNAc levels increase IL-17A production. We also found that increased binding of the Th17 master transcription factor RAR-related orphan receptor γ t variant (RORγt) at the IL-17 gene promoter and enhancer, as well as significant alterations in the intracellular lipid microenvironment, elevates the production of ligands capable of increasing RORγt transcriptional activity. Importantly, the rate-limiting enzyme of fatty acid biosynthesis, acetyl-CoA carboxylase 1 (ACC1), is O-GlcNAcylated and necessary for production of these RORγt-activating ligands. Our results suggest that increased O-GlcNAcylation of cellular proteins may be a potential link between excess nutrient levels and pathological inflammation.
Collapse
Affiliation(s)
- Miranda Machacek
- From the Departments of Pathology and Laboratory Medicine.,Biochemistry and Molecular Biology, and
| | - Harmony Saunders
- From the Departments of Pathology and Laboratory Medicine.,Biochemistry and Molecular Biology, and
| | | | | | - Jibiao Li
- Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160 and
| | - Tiangang Li
- Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160 and
| | | | | | - Todd Lydic
- the Department of Physiology, Collaborative Mass Spectrometry Core, Michigan State University, East Lansing, Michigan 48824
| | - Gentry Cork
- From the Departments of Pathology and Laboratory Medicine.,Biochemistry and Molecular Biology, and
| | | | | |
Collapse
|
36
|
Gruarin P, Maglie S, Simone M, Häringer B, Vasco C, Ranzani V, Bosotti R, Noddings JS, Larghi P, Facciotti F, Sarnicola ML, Martinovic M, Crosti M, Moro M, Rossi RL, Bernardo ME, Caprioli F, Locatelli F, Rossetti G, Abrignani S, Pagani M, Geginat J. Eomesodermin controls a unique differentiation program in human IL‐10 and IFN‐γ coproducing regulatory T cells. Eur J Immunol 2018; 49:96-111. [DOI: 10.1002/eji.201847722] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/28/2018] [Accepted: 11/09/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Paola Gruarin
- INGM‐National Institute of Molecular Genetics “Romeo ed Enrica Invernizzi” Milan Italy
| | - Stefano Maglie
- INGM‐National Institute of Molecular Genetics “Romeo ed Enrica Invernizzi” Milan Italy
| | - Marco Simone
- INGM‐National Institute of Molecular Genetics “Romeo ed Enrica Invernizzi” Milan Italy
| | - Barbara Häringer
- German Rheumatology Research Center DRFZ Berlin Germany
- Charitè Research Center for Immunosciences RCIS Berlin Germany
| | - Chiara Vasco
- INGM‐National Institute of Molecular Genetics “Romeo ed Enrica Invernizzi” Milan Italy
| | - Valeria Ranzani
- INGM‐National Institute of Molecular Genetics “Romeo ed Enrica Invernizzi” Milan Italy
| | - Roberto Bosotti
- INGM‐National Institute of Molecular Genetics “Romeo ed Enrica Invernizzi” Milan Italy
| | - Johanna S. Noddings
- INGM‐National Institute of Molecular Genetics “Romeo ed Enrica Invernizzi” Milan Italy
| | - Paola Larghi
- INGM‐National Institute of Molecular Genetics “Romeo ed Enrica Invernizzi” Milan Italy
| | - Federica Facciotti
- INGM‐National Institute of Molecular Genetics “Romeo ed Enrica Invernizzi” Milan Italy
| | - Maria L. Sarnicola
- INGM‐National Institute of Molecular Genetics “Romeo ed Enrica Invernizzi” Milan Italy
| | - Martina Martinovic
- INGM‐National Institute of Molecular Genetics “Romeo ed Enrica Invernizzi” Milan Italy
| | - Mariacristina Crosti
- INGM‐National Institute of Molecular Genetics “Romeo ed Enrica Invernizzi” Milan Italy
| | - Monica Moro
- INGM‐National Institute of Molecular Genetics “Romeo ed Enrica Invernizzi” Milan Italy
| | - Riccardo L. Rossi
- INGM‐National Institute of Molecular Genetics “Romeo ed Enrica Invernizzi” Milan Italy
| | - Maria E. Bernardo
- Ospedale Pediatrico Bambino Gesù Dipartimento Onco–Ematologia e Medicina Trasfusionale Rome Italy
| | - Flavio Caprioli
- Unità Operativa di Gastroenterologia ed Endoscopia Fondazione Ca’ Granda Ospedale Maggiore Policlinico Milan Italy
| | - Franco Locatelli
- Ospedale Pediatrico Bambino Gesù Dipartimento Onco–Ematologia e Medicina Trasfusionale Rome Italy
| | - Grazisa Rossetti
- INGM‐National Institute of Molecular Genetics “Romeo ed Enrica Invernizzi” Milan Italy
| | - Sergio Abrignani
- INGM‐National Institute of Molecular Genetics “Romeo ed Enrica Invernizzi” Milan Italy
- Department of Clinical Science and Community Health (DISCCO) University of Milan Milan Italy
| | - Massimiliano Pagani
- INGM‐National Institute of Molecular Genetics “Romeo ed Enrica Invernizzi” Milan Italy
- Department of Medical Biotechnology and Translational Medicine University of Milan Milan Italy
| | - Jens Geginat
- INGM‐National Institute of Molecular Genetics “Romeo ed Enrica Invernizzi” Milan Italy
| |
Collapse
|
37
|
Antigen-specific regulatory T-cell responses against aeroantigens and their role in allergy. Mucosal Immunol 2018; 11:1537-1550. [PMID: 29858582 DOI: 10.1038/s41385-018-0038-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/11/2018] [Accepted: 04/14/2018] [Indexed: 02/04/2023]
Abstract
The mucosal immune system of the respiratory tract is specialized to continuously monitor the external environment and to protect against invading pathogens, while maintaining tolerance to innocuous inhaled particles. Allergies result from a loss of tolerance against harmless antigens characterized by formation of allergen-specific Th2 cells and IgE. Tolerance is often described as a balance between harmful Th2 cells and various types of protective "regulatory" T cells. However, the identity of the protective T cells in healthy vs. allergic individuals or following successful allergen-specific therapy is controversially discussed. Recent technological progress enabling the identification of antigen-specific effector and regulatory T cells has significantly contributed to our understanding of tolerance. Here we discuss the experimental evidence for the various tolerance mechanisms described. We try to integrate the partially contradictory data into a new model proposing different mechanism of tolerance depending on the quality and quantity of the antigens as well as the way of antigen exposure. Understanding the basis of tolerance is essential for the rational design of novel and more efficient immunotherapies.
Collapse
|
38
|
Jelcic I, Al Nimer F, Wang J, Lentsch V, Planas R, Jelcic I, Madjovski A, Ruhrmann S, Faigle W, Frauenknecht K, Pinilla C, Santos R, Hammer C, Ortiz Y, Opitz L, Grönlund H, Rogler G, Boyman O, Reynolds R, Lutterotti A, Khademi M, Olsson T, Piehl F, Sospedra M, Martin R. Memory B Cells Activate Brain-Homing, Autoreactive CD4 + T Cells in Multiple Sclerosis. Cell 2018; 175:85-100.e23. [PMID: 30173916 PMCID: PMC6191934 DOI: 10.1016/j.cell.2018.08.011] [Citation(s) in RCA: 320] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 07/04/2018] [Accepted: 08/03/2018] [Indexed: 12/16/2022]
Abstract
Multiple sclerosis is an autoimmune disease that is caused by the interplay of genetic, particularly the HLA-DR15 haplotype, and environmental risk factors. How these etiologic factors contribute to generating an autoreactive CD4+ T cell repertoire is not clear. Here, we demonstrate that self-reactivity, defined as “autoproliferation” of peripheral Th1 cells, is elevated in patients carrying the HLA-DR15 haplotype. Autoproliferation is mediated by memory B cells in a HLA-DR-dependent manner. Depletion of B cells in vitro and therapeutically in vivo by anti-CD20 effectively reduces T cell autoproliferation. T cell receptor deep sequencing showed that in vitro autoproliferating T cells are enriched for brain-homing T cells. Using an unbiased epitope discovery approach, we identified RASGRP2 as target autoantigen that is expressed in the brain and B cells. These findings will be instrumental to address important questions regarding pathogenic B-T cell interactions in multiple sclerosis and possibly also to develop novel therapies. Autoproliferation of CD4+ T cells and B cells is involved in multiple sclerosis The main genetic factor of MS, HLA-DR15, plays a central role in autoproliferation Memory B cells drive autoproliferation of Th1 brain-homing CD4+ T cells Autoproliferating T cells recognize antigens expressed in B cells and brain lesions
Collapse
Affiliation(s)
- Ivan Jelcic
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Faiez Al Nimer
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland; Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Jian Wang
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Verena Lentsch
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Raquel Planas
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Ilijas Jelcic
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Aleksandar Madjovski
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Sabrina Ruhrmann
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Wolfgang Faigle
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Katrin Frauenknecht
- Institute of Neuropathology, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Clemencia Pinilla
- Torrey Pines Institute for Molecular Studies (TPIMS), San Diego, CA, USA
| | - Radleigh Santos
- Torrey Pines Institute for Molecular Studies (TPIMS), Port St. Lucie, FL, USA
| | - Christian Hammer
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Yaneth Ortiz
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Lennart Opitz
- Functional Genomics Center Zurich, Swiss Federal Institute of Technology and University of Zurich, 8057 Zurich, Switzerland
| | - Hans Grönlund
- Therapeutic Immune Design Unit, Department of Clinical Neuroscience, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Onur Boyman
- Department of Immunology, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Richard Reynolds
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Andreas Lutterotti
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Mohsen Khademi
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Tomas Olsson
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Fredrik Piehl
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Mireia Sospedra
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Roland Martin
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland.
| |
Collapse
|
39
|
Nizzoli G, Burrello C, Cribiù FM, Lovati G, Ercoli G, Botti F, Trombetta E, Porretti L, Todoerti K, Neri A, Giuffrè MR, Geginat J, Vecchi M, Rescigno M, Paroni M, Caprioli F, Facciotti F. Pathogenicity of In Vivo Generated Intestinal Th17 Lymphocytes is IFNγ Dependent. J Crohns Colitis 2018; 12:981-992. [PMID: 29697763 DOI: 10.1093/ecco-jcc/jjy051] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/19/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIMS T helper 17 [Th17] cells are crucially involved in the immunopathogenesis of inflammatory bowel diseases in humans. Nevertheless, pharmacological blockade of interleukin 17A [IL17A], the Th17 signature cytokine, yielded negative results in patients with Crohn's disease [CD], and attempts to elucidate the determinants of Th17 cells' pathogenicity in the gut have so far proved unsuccessful. Here, we aimed to identify and functionally validate the pathogenic determinants of intestinal IL-17-producing T cells. METHODS In vivo-generated murine intestinal IL-17-producing T cells were adoptively transferred into immunodeficient Rag1-/- recipients to test their pathogenicity. Human IL-17, IFNγ/IL-17, and IFNγ actively secreting T cell clones were generated from lamina propria lymphocytes of CD patients. The pathogenic activity of intestinal IL-17-producing T cells against the intestinal epithelium was evaluated. RESULTS IL-17-producing cells with variable colitogenic activity can be generated in vivo using different experimental colitis models. The pathogenicity of IL-17-secreting cells was directly dependent on their IFNγ secretion capacity, as demonstrated by the reduced colitogenic activity of IL-17-secreting cells isolated from IFNγ-/- mice. Moreover, IFNγ production is a distinguished attribute of CD-derived lamina propria Th17 cells. IFNγ secretion by CD-derived IL-17-producing intestinal clones is directly implicated in the epithelial barrier disruption through the modulation of tight junction proteins. CONCLUSIONS Intestinal Th17 cell pathogenicity is associated with IFNγ production, which directly affects intestinal permeability through the disruption of epithelial tight junctions.
Collapse
Affiliation(s)
- Giulia Nizzoli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Claudia Burrello
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.,Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Fulvia Milena Cribiù
- Pathology Unit, Fondazione IRCCS Ca' Granda Ospedale Policlinico di Milano, Milan, Italy
| | - Giulia Lovati
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Giulia Ercoli
- Pathology Unit, Fondazione IRCCS Ca' Granda Ospedale Policlinico di Milano, Milan, Italy
| | - Fiorenzo Botti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.,General and Emergency Surgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elena Trombetta
- Flow Cytometry Service, Clinical Chemistry and Microbiology Laboratory Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Porretti
- Flow Cytometry Service, Clinical Chemistry and Microbiology Laboratory Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Katia Todoerti
- Laboratory of Pre-clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Antonino Neri
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.,Hematology Unit, Fondazione IRCCS Ca ' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Maria Rita Giuffrè
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Jens Geginat
- INGM ? National Institute of Molecular Genetics "Romeo ed Enrico Invernizzi" Milan, Italy
| | - Maurizio Vecchi
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Maria Rescigno
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Moira Paroni
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Flavio Caprioli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Federica Facciotti
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| |
Collapse
|
40
|
Kimber I, Poole A, Basketter DA. Skin and respiratory chemical allergy: confluence and divergence in a hybrid adverse outcome pathway. Toxicol Res (Camb) 2018; 7:586-605. [PMID: 30090609 PMCID: PMC6060610 DOI: 10.1039/c7tx00272f] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/18/2018] [Indexed: 12/14/2022] Open
Abstract
Sensitisation of the respiratory tract to chemicals resulting in respiratory allergy and allergic asthma is an important occupational health problem, and presents toxicologists with no shortage of challenges. A major issue is that there are no validated or, even widely recognised, methods available for the identification and characterisation of chemical respiratory allergens, or for distinguishing respiratory allergens from contact allergens. The first objective here has been review what is known (and what is not known) of the mechanisms through which chemicals induce sensitisation of the respiratory tract, and to use this information to construct a hybrid Adverse Outcome Pathway (AOP) that combines consideration of both skin and respiratory sensitisation. The intention then has been to use the construction of this hybrid AOP to identify areas of commonality/confluence, and areas of departure/divergence, between skin sensitisation and sensitisation of the respiratory tract. The hybrid AOP not only provides a mechanistic understanding of how the processes of skin and respiratory sensitisation differ, buy also a means of identifying areas of uncertainty about chemical respiratory allergy that benefit from a further investment in research.
Collapse
Affiliation(s)
- Ian Kimber
- Faculty of Biology , Medicine and Health , University of Manchester , Oxford Road , Manchester M13 9PT , UK . ; Tel: +44 (0) 161 275 1587
| | - Alan Poole
- European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) , 2 Av E Van Nieuwenhuyse , 1160 Brussels , Belgium
| | | |
Collapse
|
41
|
Ali ME, El-Badawy O, Afifi NA, Eldin AS, Hassan EA, Halby HM, El-Mokhtar MA. Role of T-Helper 9 Cells in Chronic Hepatitis C-Infected Patients. Viruses 2018; 10:E341. [PMID: 29937515 PMCID: PMC6071239 DOI: 10.3390/v10070341] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/18/2018] [Accepted: 06/18/2018] [Indexed: 12/18/2022] Open
Abstract
Hepatitis C virus is a hepatotropic virus that is transmitted parenterally. Viral infections are usually associated with modulations of the immune cells, leading to enhanced viral survival and spreading, and accordingly, life-threatening complications. Recently, it has been proposed that a new subset of T-helper, named T-helper 9, is involved in the pathogenesis of different immunopathological conditions, such as allergies, tumors, and viral infections. Some studies reported a protective role, and others described a pathogenic potential for the T-helper 9 cells. Here, we present evidence that T-helper 9 cells are dynamically increased with increasing the pathogenic strategy for hepatitis C virus (HCV). Furthermore, viral clearance is associated with a decrease in T-helper 9. The increase in T-helper 9 was paralleled with an increase in its receptor expression. Taken together, our data suggest that T-helper 9 cells play an important role in the pathogenesis of HCV, and is directly associated with HCV-related complications.
Collapse
Affiliation(s)
- Mohamed E Ali
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt.
| | - Omnia El-Badawy
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt.
| | - Noha A Afifi
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt.
| | - Abeer Sharaf Eldin
- Department of Gastroenterology and Tropical Medicine, Faculty of Medicine, Assiut University, Assiut 71515, Egypt.
| | - Elham Ahmed Hassan
- Department of Gastroenterology and Tropical Medicine, Faculty of Medicine, Assiut University, Assiut 71515, Egypt.
| | - Hamada M Halby
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt.
| | - Mohamed Ahmed El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt.
| |
Collapse
|
42
|
Wiest M, Upchurch K, Yin W, Ellis J, Xue Y, Lanier B, Millard M, Joo H, Oh S. Clinical implications of CD4 + T cell subsets in adult atopic asthma patients. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2018; 14:7. [PMID: 29507584 PMCID: PMC5833086 DOI: 10.1186/s13223-018-0231-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/22/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND T cells play a central role in chronic inflammation in asthma. However, the roles of individual subsets of T cells in the pathology of asthma in patients remain to be better understood. METHODS We investigated the potential signatures of T cell subset phenotypes in asthma using fresh whole blood from adult atopic asthma patients (n = 43) and non-asthmatic control subjects (n = 22). We further assessed their potential clinical implications by correlating asthma severity. RESULTS We report four major features of CD4+ T cells in the blood of atopic asthma patients. First, patients had a profound increase of CCR7+ memory CD4+ T cells, but not CCR7- memory CD4+ T cells. Second, an increase in CCR4+ CD4+ T cells in patients was mainly attributed to the increase of CCR7+ memory CD4+ T cells. Accordingly, the frequency of CCR4+CCR7+ memory CD4+ T cells correlated with asthma severity. Current common asthma therapeutics (including corticosteroids) were not able to affect the frequency of CCR4+CCR7+ memory CD4+ T cell subsets. Third, patients had an increase of Tregs, as assessed by measuring CD25, Foxp3, IL-10 and CTLA-4 expression. However, asthma severity was inversely correlated only with the frequency of CTLA-4+ CD4+ T cells. Lastly, patients and control subjects have similar frequencies of CD4+ T cells that express CCR5, CCR6, CXCR3, CXCR5, CD11a, or α4 integrin. However, the frequency of α4+ CD4+ T cells in patients correlated with asthma severity. CONCLUSIONS CCR4+CCR7+ memory, but not CCR4+CCR7- memory, α4+, and CTLA4+ CD4+ T cells in patients show significant clinical implications in atopic asthma. Current common therapeutics cannot alter the frequency of such CD4+ T cell subsets in adult atopic asthma patients.
Collapse
Affiliation(s)
- Matthew Wiest
- Baylor Institute for Immunology Research, 3434 Live Oak St., Dallas, TX 75204 USA
- Institute for Biomedical Studies, Baylor University, Waco, TX USA
| | - Katherine Upchurch
- Baylor Institute for Immunology Research, 3434 Live Oak St., Dallas, TX 75204 USA
- Institute for Biomedical Studies, Baylor University, Waco, TX USA
| | - Wenjie Yin
- Baylor Institute for Immunology Research, 3434 Live Oak St., Dallas, TX 75204 USA
- Institute for Biomedical Studies, Baylor University, Waco, TX USA
| | - Jerome Ellis
- Baylor Institute for Immunology Research, 3434 Live Oak St., Dallas, TX 75204 USA
| | - Yaming Xue
- Baylor Institute for Immunology Research, 3434 Live Oak St., Dallas, TX 75204 USA
| | | | - Mark Millard
- Martha Foster Lung Care Center, Baylor University Medical Center, Dallas, TX USA
| | - HyeMee Joo
- Baylor Institute for Immunology Research, 3434 Live Oak St., Dallas, TX 75204 USA
- Institute for Biomedical Studies, Baylor University, Waco, TX USA
| | - SangKon Oh
- Baylor Institute for Immunology Research, 3434 Live Oak St., Dallas, TX 75204 USA
- Institute for Biomedical Studies, Baylor University, Waco, TX USA
| |
Collapse
|
43
|
Machacek M, Slawson C, Fields PE. O-GlcNAc: a novel regulator of immunometabolism. J Bioenerg Biomembr 2018; 50:223-229. [PMID: 29404877 DOI: 10.1007/s10863-018-9744-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/18/2018] [Indexed: 12/26/2022]
Abstract
The rapidly expanding field of immunometabolism focuses on how metabolism controls the function of immune cells. CD4+ T cells are essential for the adaptive immune response leading to the eradication of specific pathogens. However, when T cells are inappropriately over-active, they can drive autoimmunity, allergic disease, and chronic inflammation. The mechanisms by which metabolic changes influence function in CD4+ T cells are not fully understood. The post-translational protein modification, O-GlcNAc (O-linked β-N-acetylglucosamine), dynamically cycles on and off of intracellular proteins as cells respond to their environment and flux through metabolic pathways changes. As the rate of O-GlcNAc cycling fluctuates, protein function, stability, and/or localization can be affected. Thus, O-GlcNAc is critically poised at the nexus of cellular metabolism and function. This review highlights the intra- and extracellular metabolic factors that influence CD4+ T cell activation and differentiation and how O-GlcNAc regulates these processes. We also propose areas of future research that may illuminate O-GlcNAc's role in the plasticity and pathogenicity of CD4+ T cells and uncover new potential therapeutic targets.
Collapse
Affiliation(s)
- Miranda Machacek
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| | - Chad Slawson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| | - Patrick E Fields
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA.
| |
Collapse
|
44
|
Fonseka CY, Rao DA, Raychaudhuri S. Leveraging blood and tissue CD4+ T cell heterogeneity at the single cell level to identify mechanisms of disease in rheumatoid arthritis. Curr Opin Immunol 2017; 49:27-36. [PMID: 28888129 PMCID: PMC5705469 DOI: 10.1016/j.coi.2017.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 08/12/2017] [Indexed: 12/17/2022]
Abstract
CD4+ T cells have been long known to play an important role in the pathogenesis of rheumatoid arthritis (RA), but the specific cell populations and states that drive the disease have been challenging to identify with low dimensional single cell data and bulk assays. The advent of high dimensional single cell technologies-like single cell RNA-seq or mass cytometry-has offered promise to defining key populations, but brings new methodological and statistical challenges. Recent single cell profiling studies have revealed a broad diversity of cell types among CD4+ T cells, identifying novel populations that are expanded or altered in RA. Here, we will review recent findings on CD4+ T cell heterogeneity and RA that have come from single cell profiling studies and discuss the best practices for conducting these studies.
Collapse
Affiliation(s)
- Chamith Y Fonseka
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute of Massachusetts Technical Institute and Harvard University, Cambridge, MA 02138, USA; Center for Data Sciences, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Deepak A Rao
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Soumya Raychaudhuri
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute of Massachusetts Technical Institute and Harvard University, Cambridge, MA 02138, USA; Center for Data Sciences, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA; Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
45
|
Kunicki MA, Amaya Hernandez LC, Davis KL, Bacchetta R, Roncarolo MG. Identity and Diversity of Human Peripheral Th and T Regulatory Cells Defined by Single-Cell Mass Cytometry. THE JOURNAL OF IMMUNOLOGY 2017; 200:336-346. [PMID: 29180490 DOI: 10.4049/jimmunol.1701025] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/26/2017] [Indexed: 12/26/2022]
Abstract
Human CD3+CD4+ Th cells, FOXP3+ T regulatory (Treg) cells, and T regulatory type 1 (Tr1) cells are essential for ensuring peripheral immune response and tolerance, but the diversity of Th, Treg, and Tr1 cell subsets has not been fully characterized. Independent functional characterization of human Th1, Th2, Th17, T follicular helper (Tfh), Treg, and Tr1 cells has helped to define unique surface molecules, transcription factors, and signaling profiles for each subset. However, the adequacy of these markers to recapitulate the whole CD3+CD4+ T cell compartment remains questionable. In this study, we examined CD3+CD4+ T cell populations by single-cell mass cytometry. We characterize the CD3+CD4+ Th, Treg, and Tr1 cell populations simultaneously across 23 memory T cell-associated surface and intracellular molecules. High-dimensional analysis identified several new subsets, in addition to the already defined CD3+CD4+ Th, Treg, and Tr1 cell populations, for a total of 11 Th cell, 4 Treg, and 1 Tr1 cell subsets. Some of these subsets share markers previously thought to be selective for Treg, Th1, Th2, Th17, and Tfh cells, including CD194 (CCR4)+FOXP3+ Treg and CD183 (CXCR3)+T-bet+ Th17 cell subsets. Unsupervised clustering displayed a phenotypic organization of CD3+CD4+ T cells that confirmed their diversity but showed interrelation between the different subsets, including similarity between Th1-Th2-Tfh cell populations and Th17 cells, as well as similarity of Th2 cells with Treg cells. In conclusion, the use of single-cell mass cytometry provides a systems-level characterization of CD3+CD4+ T cells in healthy human blood, which represents an important baseline reference to investigate abnormalities of different subsets in immune-mediated pathologies.
Collapse
Affiliation(s)
- Matthew A Kunicki
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA 94305
| | - Laura C Amaya Hernandez
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA 94305.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305; and
| | - Kara L Davis
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University, Stanford, CA 94305
| | - Rosa Bacchetta
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA 94305
| | - Maria-Grazia Roncarolo
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA 94305; .,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305; and
| |
Collapse
|
46
|
Recognition of viral and self-antigens by T H 1 and T H 1/T H 17 central memory cells in patients with multiple sclerosis reveals distinct roles in immune surveillance and relapses. J Allergy Clin Immunol 2017; 140:797-808. [DOI: 10.1016/j.jaci.2016.11.045] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/18/2016] [Accepted: 11/10/2016] [Indexed: 11/18/2022]
|
47
|
Ebersole JL, Dawson D, Emecen-Huja P, Nagarajan R, Howard K, Grady ME, Thompson K, Peyyala R, Al-Attar A, Lethbridge K, Kirakodu S, Gonzalez OA. The periodontal war: microbes and immunity. Periodontol 2000 2017; 75:52-115. [DOI: 10.1111/prd.12222] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
48
|
Geginat J, Paroni M, Kastirr I, Larghi P, Pagani M, Abrignani S. Reverse plasticity: TGF-β and IL-6 induce Th1-to-Th17-cell transdifferentiation in the gut. Eur J Immunol 2017; 46:2306-2310. [PMID: 27726139 DOI: 10.1002/eji.201646618] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 07/29/2016] [Accepted: 08/25/2016] [Indexed: 01/08/2023]
Abstract
Th17 cells are a heterogeneous population of pro-inflammatory T cells that have been shown to mediate immune responses against intestinal bacteria. Th17 cells are highly plastic and can transdifferentiate to Th1/17 cells or unconventional Th1 cells, which are highly pathogenic in animal models of immune-mediated diseases such as inflammatory bowel diseases. A recent European Journal of Immunology article by Liu et al. (Eur. J. Immunol. 2015. 45:1010-1018) showed, surprisingly, that Th1 cells have a similar plasticity, and could transdifferentiate to Th17 cells. Thus, IFN-γ-producing Th1 effector cells specific for an intestinal microbial antigen were shown to acquire IL-17-producing capacities in the gut in a mouse model of colitis, and in response to TGF-β and IL-6 in vitro. TGF-β induced Runx1, and together with IL-6 was shown to render the ROR-γt and IL-17 promoters in Th1 cells accessible for Runx1 binding. In this commentary, we discuss how this unexpected plasticity of Th1 cells challenges our view on the generation of Th1/17 cells with the capacity to co-produce IL-17 and IFN-γ, and consider possible implications of this Th1-to-Th17-cell conversion for therapies of inflammatory bowel diseases and protective immune responses against intracellular pathogens.
Collapse
Affiliation(s)
- Jens Geginat
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy.
| | - Moira Paroni
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy
| | - Ilko Kastirr
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy
| | - Paola Larghi
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Massimiliano Pagani
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Sergio Abrignani
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy.,DISCCO, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
49
|
The Enigmatic Role of Viruses in Multiple Sclerosis: Molecular Mimicry or Disturbed Immune Surveillance? Trends Immunol 2017; 38:498-512. [PMID: 28549714 PMCID: PMC7185415 DOI: 10.1016/j.it.2017.04.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 01/24/2023]
Abstract
Multiple sclerosis (MS) is a T cell driven autoimmune disease of the central nervous system (CNS). Despite its association with Epstein-Barr Virus (EBV), how viral infections promote MS remains unclear. However, there is increasing evidence that the CNS is continuously surveyed by virus-specific T cells, which protect against reactivating neurotropic viruses. Here, we discuss how viral infections could lead to the breakdown of self-tolerance in genetically predisposed individuals, and how the reactivations of viruses in the CNS could induce the recruitment of both autoaggressive and virus-specific T cell subsets, causing relapses and progressive disability. A disturbed immune surveillance in MS would explain several experimental findings, and has important implications for prognosis and therapy. A huge body of evidence suggests that viral infections promote MS; however, no single causal virus has been identified. Multiple viruses could promote MS via bystander effects. Molecular mimicry is an established pathogenic mechanism in selected autoimmune diseases. It is also well documented in MS, but its contribution to MS pathogenesis is still unclear. Bystander activation upon viral infection could be involved in the generation of the autoreactive and potentially encephalitogenic T helper (Th)-1/17 central memory (Th1/17CM) cells found in the circulation of patients with MS. Autoreactive Th1/17CM cells could expand at the cost of antiviral Th1CM cells in patients with MS, in particular in those undergoing natalizumab therapy, because these cells are expected to compete for the same homeostatic niche. Autoreactive Th1/17 cells and antiviral Th1 cells are recruited to the CSF of patients with MS following attacks, suggesting that viral reactivations in the CNS induce the recruitment of pathogenic Th1/17 cells. Autoreactive Th1/17 cells in the CNS might also induce de novo viral reactivations in a circuit of self-induced inflammation.
Collapse
|
50
|
Penatti A, Facciotti F, De Matteis R, Larghi P, Paroni M, Murgo A, De Lucia O, Pagani M, Pierannunzii L, Truzzi M, Ioan-Facsinay A, Abrignani S, Geginat J, Meroni PL. Differences in serum and synovial CD4+ T cells and cytokine profiles to stratify patients with inflammatory osteoarthritis and rheumatoid arthritis. Arthritis Res Ther 2017; 19:103. [PMID: 28526072 PMCID: PMC5437517 DOI: 10.1186/s13075-017-1305-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 05/02/2017] [Indexed: 01/15/2023] Open
Abstract
Background The aim was to investigate CD4+T-cell subsets, immune cells and their cytokine profiles in blood and synovial compartments in rheumatoid arthritis (RA) and inflammatory osteoarthritis (OA) to define specific immune signatures. Methods Peripheral blood, synovial fluid (SF) and synovial membranes (SM) of RA and OA patients were analyzed. CD4+T-cell subset frequencies were determined by flow cytometry, and cytokine concentrations in serum and SF were measured by ELISA. Results In peripheral blood, OA patients had altered frequencies of regulatory T-cell subsets, and higher frequencies of Th17 and of Th1/17 cells than RA patients. In the synovial compartment of OA patients, conventional Th17 cells were largely excluded, while Th1/17 cells were enriched and more frequent than in RA patients. Conversely, in the synovial compartment of RA patients, regulatory T cells and Tfh cells were enriched and more frequent then in OA patients. IL-17 and Blys were increased both in serum and SF of RA patients, and correlated with autoantibodies and disease activity. Notably, Blys levels were already significantly elevated in RA patients with low disease activity score in 28 joints (DAS28) and without autoantibody positivity. Conclusions Although patients with inflammatory OA have immune activation in the synovial compartment, they display different T-cell subset frequencies and cytokine profiles. Soluble mediators such as Blys might help to discriminate mild clinical forms of RA from inflammatory OA particularly at the onset of the disease. Electronic supplementary material The online version of this article (doi:10.1186/s13075-017-1305-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alessandra Penatti
- DISCCO-Department of Clinical Science and Community Health Università degli Studi di Milano, 20122, Milan, Italy. .,ASST-Gaetano Pini/CTO Orthopedic and Traumatology Specialist Center, Rheumatology and Orthopedic Department, 20122, Milan, Italy.
| | - Federica Facciotti
- INGM-National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", 20122, Milan, Italy.
| | - Roberta De Matteis
- Laboratory of immuno-rheumatological researches, IRCCS Istituto Auxologico Italiano, 20149, Milan, Italy
| | - Paola Larghi
- INGM-National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", 20122, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122, Milan, Italy
| | - Moira Paroni
- INGM-National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", 20122, Milan, Italy
| | - Antonella Murgo
- ASST-Gaetano Pini/CTO Orthopedic and Traumatology Specialist Center, Rheumatology and Orthopedic Department, 20122, Milan, Italy
| | - Orazio De Lucia
- ASST-Gaetano Pini/CTO Orthopedic and Traumatology Specialist Center, Rheumatology and Orthopedic Department, 20122, Milan, Italy
| | - Massimiliano Pagani
- INGM-National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", 20122, Milan, Italy
| | - Luca Pierannunzii
- ASST-Gaetano Pini/CTO Orthopedic and Traumatology Specialist Center, Rheumatology and Orthopedic Department, 20122, Milan, Italy
| | - Marcello Truzzi
- ASST-Gaetano Pini/CTO Orthopedic and Traumatology Specialist Center, Rheumatology and Orthopedic Department, 20122, Milan, Italy
| | - Andreea Ioan-Facsinay
- Department of Rheumatology, Leiden University Medical Center, 2300, Leiden, The Netherlands
| | - Sergio Abrignani
- DISCCO-Department of Clinical Science and Community Health Università degli Studi di Milano, 20122, Milan, Italy.,INGM-National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", 20122, Milan, Italy
| | - Jens Geginat
- INGM-National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", 20122, Milan, Italy
| | - Pier Luigi Meroni
- DISCCO-Department of Clinical Science and Community Health Università degli Studi di Milano, 20122, Milan, Italy.,ASST-Gaetano Pini/CTO Orthopedic and Traumatology Specialist Center, Rheumatology and Orthopedic Department, 20122, Milan, Italy.,Laboratory of immuno-rheumatological researches, IRCCS Istituto Auxologico Italiano, 20149, Milan, Italy
| |
Collapse
|