1
|
Prichard K, Chau N, Xue J, Krauss M, Sakoff JA, Gilbert J, Bahnik C, Muehlbauer M, Radetzki S, Robinson PJ, Haucke V, McCluskey A. Inhibition Clathrin Mediated Endocytosis: Pitstop 1 and Pitstop 2 Chimeras. ChemMedChem 2024; 19:e202400253. [PMID: 38894585 DOI: 10.1002/cmdc.202400253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/21/2024]
Abstract
Twenty-five chimera compounds of Pitstop 1 and 2 were synthesised and screened for their ability to block the clathrin terminal domain-amphiphysin protein-protein interaction (NTD-PPI using an ELISA) and clathrin mediated endocytosis (CME) in cells. Library 1 was based on Pitstop 2, but no notable clathrin PPI or in-cell activity was observed. With the Pitstop 1, 16 analogues were produced with 1,8-naphthalic imide core as a foundation. Analogues with methylene spaced linkers and simple amides showed a modest to good range of PPI inhibition (7.6-42.5 μM, naphthyl 39 and 4-nitrophenyl 40 respectively) activity. These data reveal the importance of the naphthalene sulfonate moiety, with no des-SO3 analogue displaying PPI inhibition. This was consistent with the observed analogue docked poses within the clathrin terminal domain Site 1 binding pocket. Further modifications targeted the naphthalene imide moiety, with the installation of 5-Br (45 a), 5-OH (45 c) and 5-propyl ether (45 d) moieties. Among them, the OH 45 c and propyl ether 45 d retained PPI inhibition, with propyl ether 45 d being the most active with a PPI inhibition IC50=7.3 μM. This is 2x more potent than Pitstop 2 and 3x more potent than Pitstop 1.
Collapse
Affiliation(s)
- Kate Prichard
- Chemistry, School of Environmental & Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Ngoc Chau
- Cell Signalling Unit, Children's Medical Research Institute, The University of Sydney, Hawkesbury Road, Westmead, Sydney, Australia
| | - Jing Xue
- Cell Signalling Unit, Children's Medical Research Institute, The University of Sydney, Hawkesbury Road, Westmead, Sydney, Australia
| | - Michael Krauss
- Leibniz Institute fur Molecular Pharmacologie, Department of Biology, Chemistry, Pharmacy, Robert-Roessle-Strasse 10, Berlin, 13125, Germany
| | - Jennette A Sakoff
- Experimental Therapeutics Group, Medical Oncology, Calvary Mater Newcastle Hospital, Edith Street, Waratah, NSW, 2298, Australia
| | - Jayne Gilbert
- Experimental Therapeutics Group, Medical Oncology, Calvary Mater Newcastle Hospital, Edith Street, Waratah, NSW, 2298, Australia
| | - Claudia Bahnik
- Leibniz Institute fur Molecular Pharmacologie, Department of Biology, Chemistry, Pharmacy, Robert-Roessle-Strasse 10, Berlin, 13125, Germany
| | - Maria Muehlbauer
- Leibniz Institute fur Molecular Pharmacologie, Department of Biology, Chemistry, Pharmacy, Robert-Roessle-Strasse 10, Berlin, 13125, Germany
| | - Silke Radetzki
- Leibniz Institute fur Molecular Pharmacologie, Department of Biology, Chemistry, Pharmacy, Robert-Roessle-Strasse 10, Berlin, 13125, Germany
| | - Phillip J Robinson
- Cell Signalling Unit, Children's Medical Research Institute, The University of Sydney, Hawkesbury Road, Westmead, Sydney, Australia
| | - Volker Haucke
- Leibniz Institute fur Molecular Pharmacologie, Department of Biology, Chemistry, Pharmacy, Robert-Roessle-Strasse 10, Berlin, 13125, Germany
| | - Adam McCluskey
- Chemistry, School of Environmental & Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| |
Collapse
|
2
|
Fu Z, Yang G, Yun SY, Jang JM, Ha HC, Shin IC, Back MJ, Piao Y, Kim DK. Hyaluronan and proteoglycan link protein 1 - a novel signaling molecule for rejuvenating aged skin. Matrix Biol 2024:S0945-053X(24)00111-2. [PMID: 39226945 DOI: 10.1016/j.matbio.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024]
Abstract
The skin seems to rejuvenate upon exposure to factors within the circulation of young organisms. Intrinsic factors that modulate skin aging are poorly understood. We used heterochronic parabiosis and aptamer-based proteomics to identify serum-derived rejuvenating factors. We discovered a novel extracellular function of hyaluronan and proteoglycan link protein 1 (HAPLN1). Its serum levels decreased with age, disturbing the integrity of the skin extracellular matrix, which is predominantly composed of collagen I and hyaluronan; levels of various markers, which decrease in aged skin, were significantly restored in vivo and in vitro by the administration of recombinant human HAPLN1 (rhHAPLN1). rhHAPLN1 protected transforming growth factor beta receptor 2 on the cell surface from endocytic degradation via mechanisms such as regulation of viscoelasticity, CD44 clustering, and hyaluronan cross-linking. Moreover, rhHAPLN1 regulated the levels of nuclear factor erythroid 2-related factor 2, phosphorylated nuclear factor kappa B, and some cyclin-dependent kinase inhibitors such as p16 and p21. Therefore, rhHAPLN1 may act as a novel biomechanical signaling protein to rejuvenate aged skin.
Collapse
Affiliation(s)
- Zhicheng Fu
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea; HaplnScience Research Institute, HaplnScience, Inc., Seongnam 13494, Republic of Korea
| | - Goowon Yang
- HaplnScience Research Institute, HaplnScience, Inc., Seongnam 13494, Republic of Korea
| | - So Yoon Yun
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea; HaplnScience Research Institute, HaplnScience, Inc., Seongnam 13494, Republic of Korea
| | - Ji Min Jang
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hae Chan Ha
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - In Chul Shin
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Moon Jung Back
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yongwei Piao
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea; HaplnScience Research Institute, HaplnScience, Inc., Seongnam 13494, Republic of Korea
| | - Dae Kyong Kim
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea; HaplnScience Research Institute, HaplnScience, Inc., Seongnam 13494, Republic of Korea.
| |
Collapse
|
3
|
Guduru AT, Mansuri A, Singh U, Kumar A, Bhatia D, Dalvi SV. Engineered microbubbles decorated with red emitting carbon nanoparticles for efficient delivery and imaging. BIOMATERIALS ADVANCES 2024; 161:213886. [PMID: 38735200 DOI: 10.1016/j.bioadv.2024.213886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/24/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2024]
Abstract
Altering the route of uptake by the cells is an attractive strategy to overcome drug-receptor adaptation problems. Carbon nanoparticles (CNPs) with emission beyond tissue autofluorescence for imaging biological tissues were used to study the phenomenon of uptake by the cells. In this regard, red-emitting carbon nanoparticles (CNPs) were synthesized and incorporated onto lipid microbubbles (MBs). The CNPs showed red emissions in the range of 640 nm upon excitation with 480 nm wavelength of light. Atomic force microscopic and confocal microscopic images showed the successful loading of CNPs onto the MB. Carbon nanoparticle loaded microbubbles (CNP-MBs) were treated with NIH 3 T3 cells at different concentrations. Confocal microscopic imaging studies confirm the presence of CNPs inside the treated cells. Cytotoxicity studies revealed that the CNPs showed minimal toxicity towards cells after loading onto MBs. The CNPs are usually taken up by the cells through the clathrin-mediated (CME) pathway, but when loaded onto MBs, the mechanism of uptake of CNPs is altered, and the uptake by the cells was observed even in the presence of inhibitors for the CME pathway. Loading CNPs onto MBs resulted in the uptake of CNPs by the cell through micropinocytosis and sonophoresis in the presence of ultrasound. The in vivo uptake CNP-MBs were performed in Danio rerio (Zebrafish larvae). This study provides insights into altering the uptake pathway through reformulation by loading nanoparticles onto MBs.
Collapse
Affiliation(s)
- Aditya Teja Guduru
- Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, India
| | - Abdulkhalik Mansuri
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Udisha Singh
- Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, India
| | - Ashutosh Kumar
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Dhiraj Bhatia
- Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, India
| | - Sameer V Dalvi
- Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, India.
| |
Collapse
|
4
|
O'Brien NS, Gilbert J, McCluskey A, Sakoff JA. 2,3-Dihydroquinazolin-4(1 H)-ones and quinazolin-4(3 H)-ones as broad-spectrum cytotoxic agents and their impact on tubulin polymerisation. RSC Med Chem 2024; 15:1686-1708. [PMID: 38784470 PMCID: PMC11110758 DOI: 10.1039/d3md00600j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/27/2024] [Indexed: 05/25/2024] Open
Abstract
Tubulin plays a central role in mitosis and has been the target of multiple anticancer drugs, including paclitaxel. Herein two separate families of 2,3-dihydroquinazoline-4(1H)-ones and quinazoline-4(3H) ones, comprising 57 compounds in total, were synthesised. Screening against a broad panel of human cancer cell lines (HT29 colon, U87 and SJ-G2 glioblastoma, MCF-7 breast, A2780 ovarian, H460 lung, A431 skin, Du145 prostate, BE2-C neuroblastoma, and MIA pancreas) reveals these analogues to be broad spectrum cytotoxic compounds. Of particular note, 2-styrylquinazolin-4(3H)-one 51, 2-(4-hydroxystyryl)quinazolin-4(3H)-one 63, 2-(2-methoxystyryl)quinazolin-4(3H)-one 64 and 2-(3-methoxystyryl)quinazolin-4(3H)-one 65 and 2-(naphthalen-1-yl)-2,3-dihydroquinazolin-4(1H)-one 39 exhibited sub-μM potency growth inhibition values. Of these 1-naphthyl 39 has activity <50 nM against the HT29, U87, A2780, H460 and BE2-C cell lines. Molecular modelling of these compounds, e.g. 2-(naphthalen-1-yl)-2,3-dihydroquinazolin-4(1H)-one 39, 2-(2-methoxystyryl)quinazolin-4(3H)-one 64, 2-(3-methoxystyryl)quinazolin-4(3H)-one 65, and 2-(4-methoxystyryl)quinazolin-4(3H)-one 50 docked to the known tubulin polymerisation inhibitor sites highlighted well conserved interactions within the colchicine binding pocket. These compounds were examined in a tubulin polymerisation assay alongside the known tubulin polymerisation promotor, paclitaxel (69), and tubulin inhibitor, nocodazole (68). Of the analogues examined, indoles 43 and 47 were modest promotors of tubulin polymerisation, but less effective than paclitaxel. Analogues 39, 64, and 65 showed reduced microtubule formation consistent with tubulin inhibition. The variation in ring methoxy substituent with 50, 64 and 65, from o- to m- to p-, results in a concomitant reduction in cytotoxicity and a reduction in tubulin polymerisation, with p-OCH350 being the least active in this series of analogues. This presents 64 as a tubulin polymerisation inhibitor possessing novel chemotype and sub micromolar cytotoxicity. Naphthyl 39, with complete inhibition of tubulin polymerisation, gave rise to a sub 0.2 μM cell line cytotoxicity. Compounds 39 and 64 induced G2 + M cell cycle arrest indicative of inhibition of tubulin polymerisation, with 39 inducing an equivalent effect on cell cycle arrest as nocodazole (68).
Collapse
Affiliation(s)
- Nicholas S O'Brien
- Chemistry, School of Environmental & Life Sciences, The University of Newcastle University Drive Callaghan NSW 2308 Australia +61(0)249215472 +61(0)249216486
| | - Jayne Gilbert
- Experimental Therapeutics Group, Department of Medical Oncology, Calvary Mater Newcastle Hospital Edith Street Waratah 2298 NSW Australia
| | - Adam McCluskey
- Chemistry, School of Environmental & Life Sciences, The University of Newcastle University Drive Callaghan NSW 2308 Australia +61(0)249215472 +61(0)249216486
| | - Jennette A Sakoff
- Experimental Therapeutics Group, Department of Medical Oncology, Calvary Mater Newcastle Hospital Edith Street Waratah 2298 NSW Australia
| |
Collapse
|
5
|
Jiang A, Kudo K, Gormal RS, Ellis S, Guo S, Wallis TP, Longfield SF, Robinson PJ, Johnson ME, Joensuu M, Meunier FA. Dynamin1 long- and short-tail isoforms exploit distinct recruitment and spatial patterns to form endocytic nanoclusters. Nat Commun 2024; 15:4060. [PMID: 38744819 PMCID: PMC11094030 DOI: 10.1038/s41467-024-47677-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 04/09/2024] [Indexed: 05/16/2024] Open
Abstract
Endocytosis requires a coordinated framework of molecular interactions that ultimately lead to the fission of nascent endocytic structures. How cytosolic proteins such as dynamin concentrate at discrete sites that are sparsely distributed across the plasma membrane remains poorly understood. Two dynamin-1 major splice variants differ by the length of their C-terminal proline-rich region (short-tail and long-tail). Using sptPALM in PC12 cells, neurons and MEF cells, we demonstrate that short-tail dynamin-1 isoforms ab and bb display an activity-dependent recruitment to the membrane, promptly followed by their concentration into nanoclusters. These nanoclusters are sensitive to both Calcineurin and dynamin GTPase inhibitors, and are larger, denser, and more numerous than that of long-tail isoform aa. Spatiotemporal modelling confirms that dynamin-1 isoforms perform distinct search patterns and undergo dimensional reduction to generate endocytic nanoclusters, with short-tail isoforms more robustly exploiting lateral trapping in the generation of nanoclusters compared to the long-tail isoform.
Collapse
Affiliation(s)
- Anmin Jiang
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Kye Kudo
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Rachel S Gormal
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Sevannah Ellis
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Sikao Guo
- Department of Biophysics, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
| | - Tristan P Wallis
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Shanley F Longfield
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Phillip J Robinson
- Cell Signalling Unit, Children's Medical Research Institute, The University of Sydney, Sydney, NSW, 2145, Australia
| | - Margaret E Johnson
- Department of Biophysics, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
| | - Merja Joensuu
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia.
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia.
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
6
|
Boesze-Battaglia K, Cohen GH, Bates PF, Walker LM, Zekavat A, Shenker BJ. Cellugyrin (synaptogyrin-2) dependent pathways are used by bacterial cytolethal distending toxin and SARS-CoV-2 virus to gain cell entry. Front Cell Infect Microbiol 2024; 14:1334224. [PMID: 38698905 PMCID: PMC11063343 DOI: 10.3389/fcimb.2024.1334224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/19/2024] [Indexed: 05/05/2024] Open
Abstract
Aggregatibacter actinomycetemcomitans cytolethal distending toxin (Cdt) is capable of intoxicating lymphocytes macrophages, mast cells and epithelial cells. Following Cdt binding to cholesterol, in the region of membrane lipid rafts, the CdtB and CdtC subunits are internalized and traffic to intracellular compartments. These events are dependent upon, cellugyrin, a critical component of synaptic like microvesicles (SLMVCg+). Target cells, such as Jurkat cells, rendered unable to express cellugyrin are resistant to Cdt-induced toxicity. Similar to Cdt, SARS-CoV-2 entry into host cells is initiated by binding to cell surface receptors, ACE-2, also associated with cholesterol-rich lipid rafts; this association leads to fusion and/or endocytosis of viral and host cell membranes and intracellular trafficking. The similarity in internalization pathways for both Cdt and SARS-CoV-2 led us to consider the possibility that cellugyrin was a critical component in both processes. Cellugyrin deficient Calu-3 cells (Calu-3Cg-) were prepared using Lentiviral particles containing shRNA; these cells were resistant to infection by VSV/SARS-CoV-2-spike pseudotype virus and partially resistant to VSV/VSV-G pseudotype virus. Synthetic peptides representing various regions of the cellugyrin protein were prepared and assessed for their ability to bind to Cdt subunits using surface plasmon resonance. Cdt was capable of binding to a region designated the middle outer loop (MOL) which corresponds to a region extending into the cytoplasmic surface of the SLMVCg+. SARS-CoV-2 spike proteins were assessed for their ability to bind to cellugyrin peptides; SARS-CoV-2 full length spike protein preferentially binds to a region within the SLMVCg+ lumen, designated intraluminal loop 1A. SARS-CoV-2-spike protein domain S1, which contains the receptor binding domains, binds to cellugyrin N-terminus which extends out from the cytoplasmic surface of SLMV. Binding specificity was further analyzed using cellugyrin scrambled peptide mutants. We propose that SLMVCg+ represent a component of a common pathway that facilitates pathogen and/or pathogen-derived toxins to gain host cell entry.
Collapse
Affiliation(s)
- Kathleen Boesze-Battaglia
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Gary H. Cohen
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Paul F. Bates
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Lisa M. Walker
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ali Zekavat
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Bruce J. Shenker
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
7
|
Pan J, Pany S, Martinez-Carrasco R, Fini ME. Differential Efficacy of Small Molecules Dynasore and Mdivi-1 for the Treatment of Dry Eye Epitheliopathy or as a Countermeasure for Nitrogen Mustard Exposure of the Ocular Surface. J Pharmacol Exp Ther 2024; 388:506-517. [PMID: 37442618 PMCID: PMC10801785 DOI: 10.1124/jpet.123.001697] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/19/2023] [Accepted: 06/05/2023] [Indexed: 07/15/2023] Open
Abstract
The ocular surface comprises the wet mucosal epithelia of the cornea and conjunctiva, the associated glands, and the overlying tear film. Epitheliopathy is the common pathologic outcome when the ocular surface is subjected to oxidative stress. Whether different stresses act via the same or different mechanisms is not known. Dynasore and dyngo-4a, small molecules developed to inhibit the GTPase activity of classic dynamins DNM1, DNM2, and DNM3, but not mdivi-1, a specific inhibitor of DNM1L, protect corneal epithelial cells exposed to the oxidant tert-butyl hydroperoxide (tBHP). Here we report that, while dyngo-4a is the more potent inhibitor of endocytosis, dynasore is the better cytoprotectant. Dynasore also protects corneal epithelial cells against exposure to high salt in an in vitro model of dysfunctional tears in dry eye. We now validate this finding in vivo, demonstrating that dynasore protects against epitheliopathy in a mouse model of dry eye. Knockdown of classic dynamin DNM2 was also cytoprotective against tBHP exposure, suggesting that dynasore's effect is at least partially on target. Like tBHP and high salt, exposure of corneal epithelial cells to nitrogen mustard upregulated the unfolded protein response and inflammatory markers, but dynasore did not protect against nitrogen mustard exposure. In contrast, mdivi-1 was cytoprotective. Interestingly, mdivi-1 did not inhibit the nitrogen mustard-induced expression of inflammatory cytokines. We conclude that exposure to tBHP or nitrogen mustard, two different oxidative stress agents, cause corneal epitheliopathy via different pathologic pathways. SIGNIFICANCE STATEMENT: Results presented in this paper, for the first time, implicate the dynamin DNM2 in ocular surface epitheliopathy. The findings suggest that dynasore could serve as a new topical treatment for dry eye epitheliopathy and that mdivi-1 could serve as a medical countermeasure for epitheliopathy due to nitrogen mustard exposure, with potentially increased efficacy when combined with anti-inflammatory agents and/or UPR modulators.
Collapse
Affiliation(s)
- Jinhong Pan
- New England Eye Center, Tufts Medical Center and Department of Ophthalmology, Tufts University School of Medicine (J.P., S.P., R.M.-C., M.E.F.) and Program in Pharmacology and Drug Development, Tufts Graduate School of Biomedical Sciences (M.E.F.), Tufts University, Boston, Massachusetts
| | - Satyabrata Pany
- New England Eye Center, Tufts Medical Center and Department of Ophthalmology, Tufts University School of Medicine (J.P., S.P., R.M.-C., M.E.F.) and Program in Pharmacology and Drug Development, Tufts Graduate School of Biomedical Sciences (M.E.F.), Tufts University, Boston, Massachusetts
| | - Rafael Martinez-Carrasco
- New England Eye Center, Tufts Medical Center and Department of Ophthalmology, Tufts University School of Medicine (J.P., S.P., R.M.-C., M.E.F.) and Program in Pharmacology and Drug Development, Tufts Graduate School of Biomedical Sciences (M.E.F.), Tufts University, Boston, Massachusetts
| | - M Elizabeth Fini
- New England Eye Center, Tufts Medical Center and Department of Ophthalmology, Tufts University School of Medicine (J.P., S.P., R.M.-C., M.E.F.) and Program in Pharmacology and Drug Development, Tufts Graduate School of Biomedical Sciences (M.E.F.), Tufts University, Boston, Massachusetts
| |
Collapse
|
8
|
Odell LR, Jones NC, Chau N, Robertson MJ, Ambrus JI, Deane FM, Young KA, Whiting A, Xue J, Prichard K, Daniel JA, Gorgani NN, O'Brien TJ, Robinson PJ, McCluskey A. The sulfonadyns: a class of aryl sulfonamides inhibiting dynamin I GTPase and clathrin mediated endocytosis are anti-seizure in animal models. RSC Med Chem 2023; 14:1492-1511. [PMID: 37593570 PMCID: PMC10429932 DOI: 10.1039/d2md00371f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/15/2023] [Indexed: 08/19/2023] Open
Abstract
We show that dansylcadaverine (1) a known in-cell inhibitor of clathrin mediated endocytosis (CME), moderately inhibits dynamin I (dynI) GTPase activity (IC50 45 μM) and transferrin (Tfn) endocytosis in U2OS cells (IC50 205 μM). Synthesis gave a new class of GTP-competitive dynamin inhibitors, the Sulfonadyns™. The introduction of a terminal cinnamyl moiety greatly enhanced dynI inhibition. Rigid diamine or amide links between the dansyl and cinnamyl moieties were detrimental to dynI inhibition. Compounds with in vitro inhibition of dynI activity <10 μM were tested in-cell for inhibition of CME. These data unveiled a number of compounds, e.g. analogues 33 ((E)-N-(6-{[(3-(4-bromophenyl)-2-propen-1-yl]amino}hexyl)-5-isoquinolinesulfonamide)) and 47 ((E)-N-(3-{[3-(4-bromophenyl)-2-propen-1-yl]amino}propyl)-1-naphthalenesulfonamide)isomers that showed dyn IC50 <4 μM, IC50(CME) <30 μM and IC50(SVE) from 12-265 μM. Both analogues (33 and 47) are at least 10 times more potent that the initial lead, dansylcadaverine (1). Enzyme kinetics revealed these sulfonamide analogues as being GTP competitive inhibitors of dynI. Sulfonadyn-47, the most potent SVE inhibitor observed (IC50(SVE) = 12.3 μM), significantly increased seizure threshold in a 6 Hz mouse psychomotor seizure test at 30 (p = 0.003) and 100 mg kg-1 ip (p < 0.0001), with similar anti-seizure efficacy to the established anti-seizure medication, sodium valproate (400 mg kg-1). The Sulfonadyn™ class of drugs target dynamin and show promise as novel leads for future anti-seizure medications.
Collapse
Affiliation(s)
- Luke R Odell
- Chemistry, Centre for Chemical Biology, School of Environmental & Life Science, The University of Newcastle University Drive Callaghan NSW 2308 Australia +612 4921 5472 +612 4921 6486
| | - Nigel C Jones
- Department of Neuroscience, Central Clinical School, Monash University Melbourne Victoria 3004 Australia
- Department of Neurology, The Alfred Hospital Commercial Road Melbourne Victoria 3004 Australia
- Department of Medicine (Royal Melbourne Hospital), University of Melbourne Parkville Victoria 3052 Australia
| | - Ngoc Chau
- Cell Signaling Unit, Children's Medical Research Institute, The University of Sydney 214 Hawkesbury Road Westmead NSW 2145 Australia +612 8865 2915
| | - Mark J Robertson
- Chemistry, Centre for Chemical Biology, School of Environmental & Life Science, The University of Newcastle University Drive Callaghan NSW 2308 Australia +612 4921 5472 +612 4921 6486
| | - Joseph I Ambrus
- Chemistry, Centre for Chemical Biology, School of Environmental & Life Science, The University of Newcastle University Drive Callaghan NSW 2308 Australia +612 4921 5472 +612 4921 6486
| | - Fiona M Deane
- Chemistry, Centre for Chemical Biology, School of Environmental & Life Science, The University of Newcastle University Drive Callaghan NSW 2308 Australia +612 4921 5472 +612 4921 6486
| | - Kelly A Young
- Chemistry, Centre for Chemical Biology, School of Environmental & Life Science, The University of Newcastle University Drive Callaghan NSW 2308 Australia +612 4921 5472 +612 4921 6486
| | - Ainslie Whiting
- Cell Signaling Unit, Children's Medical Research Institute, The University of Sydney 214 Hawkesbury Road Westmead NSW 2145 Australia +612 8865 2915
| | - Jing Xue
- Cell Signaling Unit, Children's Medical Research Institute, The University of Sydney 214 Hawkesbury Road Westmead NSW 2145 Australia +612 8865 2915
| | - Kate Prichard
- Chemistry, Centre for Chemical Biology, School of Environmental & Life Science, The University of Newcastle University Drive Callaghan NSW 2308 Australia +612 4921 5472 +612 4921 6486
| | - James A Daniel
- Cell Signaling Unit, Children's Medical Research Institute, The University of Sydney 214 Hawkesbury Road Westmead NSW 2145 Australia +612 8865 2915
| | - Nick N Gorgani
- Cell Signaling Unit, Children's Medical Research Institute, The University of Sydney 214 Hawkesbury Road Westmead NSW 2145 Australia +612 8865 2915
| | - Terence J O'Brien
- Department of Neurology, The Alfred Hospital Commercial Road Melbourne Victoria 3004 Australia
- Department of Medicine (Royal Melbourne Hospital), University of Melbourne Parkville Victoria 3052 Australia
| | - Phillip J Robinson
- Cell Signaling Unit, Children's Medical Research Institute, The University of Sydney 214 Hawkesbury Road Westmead NSW 2145 Australia +612 8865 2915
| | - Adam McCluskey
- Chemistry, Centre for Chemical Biology, School of Environmental & Life Science, The University of Newcastle University Drive Callaghan NSW 2308 Australia +612 4921 5472 +612 4921 6486
| |
Collapse
|
9
|
Odell LR, Robertson MJ, Young KA, McGeachie AB, Quan A, Robinson PJ, McCluskey A. Prodrugs of the Archetypal Dynamin Inhibitor Bis-T-22. ChemMedChem 2022; 17:e202200400. [PMID: 36351775 PMCID: PMC10947042 DOI: 10.1002/cmdc.202200400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/06/2022] [Indexed: 11/11/2022]
Abstract
The Bis-T series of compounds comprise some of the most potent inhibitors of dynamin GTPase activity yet reported, e. g., (2E,2'E)-N,N'-(propane-1,3-diyl)bis(2-cyano-3-(3,4-dihydroxyphenyl)acrylamide) (2), Bis-T-22. The catechol moieties are believed to limit cell permeability, rendering these compounds largely inactive in cells. To solve this problem, a prodrug strategy was envisaged and eight ester analogues were synthesised. The shortest and bulkiest esters (acetate and butyl/tert-butyl) were found to be insoluble under physiological conditions, whilst the remaining five were soluble and stable under these conditions. These five were analysed for plasma stability and half-lives ranged from ∼2.3 min (propionic ester 4), increasing with size and bulk, to greater than 24 hr (dimethyl carbamate 10). Similar profiles where observed with the rate of formation of Bis-T-22 with half-lives ranging from ∼25 mins (propionic ester 4). Propionic ester 4 was chosen to undergo further testing and was found to inhibit endocytosis in a dose-dependent manner with IC50 ∼8 μM, suggesting this compound is able to effectively cross the cell membrane where it is rapidly hydrolysed to the desired Bis-T-22 parent compound.
Collapse
Affiliation(s)
- Luke R. Odell
- The University of NewcastleUniversity DriveCallaghanNSW 2308Australia
- Present address: Department of Medicinal ChemistryUppsala UniversityBox 57475123UppsalaSweden
| | - Mark J Robertson
- The University of NewcastleUniversity DriveCallaghanNSW 2308Australia
- Present address: Chemistry, College of Science & EngineeringJames Cook UniversityTownsvilleQLD 4814Australia
| | - Kelly A Young
- The University of NewcastleUniversity DriveCallaghanNSW 2308Australia
| | - Andrew B. McGeachie
- Cell Signalling UnitChildren's Medical Research InstituteThe University of Sydney214 Hawkesbury RoadWestmeadNSW 2145Australia
| | - Annie Quan
- Cell Signalling UnitChildren's Medical Research InstituteThe University of Sydney214 Hawkesbury RoadWestmeadNSW 2145Australia
| | - Phillip J. Robinson
- Cell Signalling UnitChildren's Medical Research InstituteThe University of Sydney214 Hawkesbury RoadWestmeadNSW 2145Australia
| | - Adam McCluskey
- The University of NewcastleUniversity DriveCallaghanNSW 2308Australia
| |
Collapse
|
10
|
Internalization of Polymeric Bacterial Peptidoglycan Occurs through Either Actin or Dynamin Dependent Pathways. Microorganisms 2022; 10:microorganisms10030552. [PMID: 35336127 PMCID: PMC8951193 DOI: 10.3390/microorganisms10030552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 01/27/2023] Open
Abstract
Peptidoglycan (PGN), a polymeric glycan macromolecule, is a major constituent of the bacterial cell wall and a conserved pathogen-associated molecular pattern (PAMP) that triggers immune responses through cytosolic sensors. Immune cells encounter both PGN polymers and hydrolyzed muropeptides during infections, and primary human innate immune cells respond better to polymeric PGN than the minimal bioactive subunit muramyl dipeptide (MDP). While MDP is internalized through macropinocytosis and/or clathrin-mediated endocytosis, the internalization of particulate polymeric PGN is unresolved. We show here that PGN macromolecules isolated from Bacillus anthracis display a broad range of sizes, making them amenable for multiple internalization pathways. Pharmacologic inhibition indicates that PGN primarily, but not exclusively, is internalized by actin-dependent endocytosis. An alternate clathrin-independent but dynamin dependent pathway supports 20–30% of PGN uptake. In primary monocytes, this alternate pathway does not require activities of RhoA, Cdc42 or Arf6 small GTPases. Selective inhibition of PGN uptake shows that phagolysosomal trafficking, processing and downstream immune responses are drastically affected by actin depolymerization, while dynamin inhibition has a smaller effect. Overall, we show that polymeric PGN internalization occurs through two endocytic pathways with distinct potentials to trigger immune responses.
Collapse
|
11
|
Prichard KL, O'Brien NS, Murcia SR, Baker JR, McCluskey A. Role of Clathrin and Dynamin in Clathrin Mediated Endocytosis/Synaptic Vesicle Recycling and Implications in Neurological Diseases. Front Cell Neurosci 2022; 15:754110. [PMID: 35115907 PMCID: PMC8805674 DOI: 10.3389/fncel.2021.754110] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/10/2021] [Indexed: 12/17/2022] Open
Abstract
Endocytosis is a process essential to the health and well-being of cell. It is required for the internalisation and sorting of “cargo”—the macromolecules, proteins, receptors and lipids of cell signalling. Clathrin mediated endocytosis (CME) is one of the key processes required for cellular well-being and signalling pathway activation. CME is key role to the recycling of synaptic vesicles [synaptic vesicle recycling (SVR)] in the brain, it is pivotal to signalling across synapses enabling intracellular communication in the sensory and nervous systems. In this review we provide an overview of the general process of CME with a particular focus on two key proteins: clathrin and dynamin that have a central role to play in ensuing successful completion of CME. We examine these two proteins as they are the two endocytotic proteins for which small molecule inhibitors, often of known mechanism of action, have been identified. Inhibition of CME offers the potential to develop therapeutic interventions into conditions involving defects in CME. This review will discuss the roles and the current scope of inhibitors of clathrin and dynamin, providing an insight into how further developments could affect neurological disease treatments.
Collapse
|
12
|
Russell CC, Prichard KL, O'Brien NS, McCluskey A, Robinson PJ, Baker JR. Synthesis of Phthaladyn-29 and Naphthalimide-10, GTP Site Directed Dynamin GTPase Inhibitors. Methods Mol Biol 2022; 2417:239-258. [PMID: 35099804 DOI: 10.1007/978-1-0716-1916-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Herein we describe the detailed synthesis of the dynamin inhibitors Phthaladyn-29 and Napthaladyn-10, and their chemical scaffold matched partner inactive compounds. Combined with the assay data provided, this allows the interrogation of dynamin in vitro and potentially in vivo.
Collapse
Affiliation(s)
- Cecilia C Russell
- Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Kate L Prichard
- Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Nicholas S O'Brien
- Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Adam McCluskey
- Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Phillip J Robinson
- Cell Signaling Unit, Children's Medical Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Jennifer R Baker
- Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia.
| |
Collapse
|
13
|
Wang T, Meunier FA. Live-Cell Superresolution Imaging of Retrograde Axonal Trafficking Using Pulse-Chase Labeling in Cultured Hippocampal Neurons. Methods Mol Biol 2022; 2473:101-128. [PMID: 35819762 DOI: 10.1007/978-1-0716-2209-4_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The entanglement of long axons found in cultured dissociated hippocampal neurons restricts the analysis of the machinery underlying directed axonal trafficking. Further, hippocampal neurons exhibit "en passant" presynapses that may confound the analysis of long-range retrograde axonal transport. To solve these issues, we and others have developed microfluid-based methods to specifically follow the fates of the retrograde axonal cargoes following pulse-chase labeling by super-resolution live-cell imaging, and automatically tracking their directed transport and analyzing their kinetical properties. These methods have allowed us to visualize the trafficking of fluorescently tagged signaling endosomes and autophagosomes derived from axonal terminals and resolve their localizations and movements with high spatial and temporal accuracy. In this chapter, we describe how to use a commercially available microfluidic device to enable the labeling and tracking of retrograde axonal carriers, including (1) how to culture and transfect rat hippocampal neurons in the microfluidic device; (2) how to perform pulse-chase to label specific populations of retrograde axonal carriers; and (3) how to conduct the automatic tracking and data analysis using open-source software.
Collapse
Affiliation(s)
- Tong Wang
- Center for Brain Science, School of Life Science and Technology, Shanghaitech University, Shanghai, China.
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
14
|
Eisa M, Loucif H, van Grevenynghe J, Pearson A. Entry of the Varicellovirus Canid herpesvirus 1 into Madin-Darby canine kidney epithelial cells is pH-independent and occurs via a macropinocytosis-like mechanism but without increase in fluid uptake. Cell Microbiol 2021; 23:e13398. [PMID: 34697890 DOI: 10.1111/cmi.13398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 10/22/2021] [Indexed: 11/30/2022]
Abstract
Canid herpesvirus 1 (CHV-1) is a Varicellovirus that causes self-limiting infections in adult dogs but morbidity and mortality in puppies. Using a multipronged approach, we discovered the CHV-1 entry pathway into Madin-Darby canine kidney (MDCK) epithelial cells. We found that CHV-1 triggered extensive host cell membrane lamellipodial ruffling and rapid internalisation of virions in large, uncoated vacuoles, suggestive of macropinocytosis. Treatment with inhibitors targeting key macropinocytosis factors, including inhibitors of Na+ /H+ exchangers, F-actin, myosin light-chain kinase, protein kinase C, p21-activated kinase, phosphatidylinositol-3-kinase and focal adhesion kinase, significantly reduced viral replication. Moreover, the effect was restricted to exposure to the inhibitors early in infection, confirming a role for the macropinocytic machinery during entry. The profile of inhibitors also suggested a role for signalling via integrins and receptor tyrosine kinases in viral entry. In contrast, inhibitors of clathrin, caveolin, microtubules and endosomal acidification did not affect CHV-1 entry into MDCK cells. We found that the virus colocalised with the fluid-phase uptake marker dextran; however, surprisingly, CHV-1 infection did not enhance the uptake of dextran. Thus, our results indicate that CHV-1 uses a macropinocytosis-like, pH-independent entry pathway into MDCK cells, which nevertheless is not based on stimulation of fluid uptake. TAKE AWAYS: CHV-1 enters epithelial cells via a macropinocytosis-like mechanism. CHV-1 induces extensive lamellipodial ruffling. CHV-1 entry into MDCK cells is pH-independent.
Collapse
Affiliation(s)
- Mohamed Eisa
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Québec, Canada
| | - Hamza Loucif
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Québec, Canada
| | - Julien van Grevenynghe
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Québec, Canada
| | - Angela Pearson
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Québec, Canada
| |
Collapse
|
15
|
Odell LR, Chau N, Russell CC, Young KA, Gilbert J, Robinson PJ, Sakoff JA, McCluskey A. Pyrimidyn-Based Dynamin Inhibitors as Novel Cytotoxic Agents. ChemMedChem 2021; 17:e202100560. [PMID: 34590434 DOI: 10.1002/cmdc.202100560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/28/2021] [Indexed: 11/06/2022]
Abstract
Five focused libraries of pyrimidine-based dynamin GTPase inhibitors, in total 69 compounds were synthesised, and their dynamin inhibition and broad-spectrum cytotoxicity examined. Dynamin plays a crucial role in mitosis, and as such inhibition of dynamin was expected to broadly correlate with the observed cytotoxicity. The pyrimidines synthesised ranged from mono-substituted to trisubstituted. The highest levels of dynamin inhibition were noted with di- and tri- substituted pyrimidines, especially those with pendent amino alkyl chains. Short chains and simple heterocyclic rings reduced dynamin activity. There were three levels of dynamin activity noted: 1-10, 10-25 and 25-60 μM. Screening of these compounds in a panel of cancer cell lines: SW480 (colon), HT29 (colon), SMA (spontaneous murine astrocytoma), MCF-7 (breast), BE2-C (glioblastoma), SJ-G2 (neuroblastoma), MIA (pancreas), A2780 (ovarian), A431 (skin), H460 (lung), U87 (glioblastoma) and DU145 (prostate) cell lines reveal a good correlation between the observed dynamin inhibition and the observed cytotoxicity. The most active analogues (31 a,b) developed returned average GI50 values of 1.0 and 0.78 μM across the twelve cell lines examined. These active analogues were: N2 -(3-dimethylaminopropyl)-N4 -dodecyl-6-methylpyrimidine-2,4-diamine (31 a) and N4 -(3-dimethylaminopropyl)-N2 -dodecyl-6-methylpyrimidine-2,4-diamine (31 b).
Collapse
Affiliation(s)
- Luke R Odell
- Chemistry, School of Environmental & Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Ngoc Chau
- Cell Signalling Unit Children's Medical Research Institute, The University of Sydney, Sydney, 2145 Hawkesbury Road, NSW 2145, Australia
| | - Cecilia C Russell
- Chemistry, School of Environmental & Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Kelly A Young
- Chemistry, School of Environmental & Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Jayne Gilbert
- Experimental Therapeutics Group, Department of Medical Oncology, Calvary Mater Newcastle Hospital, Edith Street, Waratah, NSW 2298, Australia
| | - Phillip J Robinson
- Cell Signalling Unit Children's Medical Research Institute, The University of Sydney, Sydney, 2145 Hawkesbury Road, NSW 2145, Australia
| | - Jennette A Sakoff
- Experimental Therapeutics Group, Department of Medical Oncology, Calvary Mater Newcastle Hospital, Edith Street, Waratah, NSW 2298, Australia
| | - Adam McCluskey
- Chemistry, School of Environmental & Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| |
Collapse
|
16
|
Herold R, Sünwoldt G, Stump-Guthier C, Weiss C, Ishikawa H, Schroten H, Adam R, Schwerk C. Invasion of the choroid plexus epithelium by Neisseria meningitidis is differently mediated by Arp2/3 signaling and possibly by dynamin dependent on the presence of the capsule. Pathog Dis 2021; 79:6354783. [PMID: 34410374 DOI: 10.1093/femspd/ftab042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
Neisseria meningitis (Nm) is a human-specific bacterial pathogen that can cause sepsis and meningitis. To cause meningitis Nm must enter the central nervous system (CNS) across one of the barriers between the blood and the brain. We have previously shown that a capsule-depleted Serogroup B strain of Nm displays enhanced invasion into human choroid plexus (CP) epithelial papilloma (HIBCPP) cells, which represent an in vitro model of the blood-cerebrospinal fluid barrier (BCSFB). Still, the processes involved during CNS invasion by Nm, especially the role of host cell actin cytoskeleton remodeling, are not investigated in detail. Here, we demonstrate that invasion into CP epithelial cells by encapsulated and capsule-depleted Nm is mediated by distinct host cell pathways. Whereas a Serogroup B wild-type strain enters HIBCPP cells by a possibly dynamin-independent, but actin related protein 2/3 (Arp2/3)-dependent mechanism, invasion by a capsule-depleted mutant is reduced by the dynamin inhibitor dynasore and Arp2/3-independent. Both wild-type and mutant bacteria require Src kinase activity for entry into HIBCPP cells. Our data show that Nm can employ different mechanisms for invasion into the CP epithelium dependent on the presence of a capsule.
Collapse
Affiliation(s)
- Rosanna Herold
- Medical Faculty Mannheim, Department of Pediatrics and Infectious Diseases, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| | - Gina Sünwoldt
- Medical Faculty Mannheim, Department of Pediatrics and Infectious Diseases, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| | - Carolin Stump-Guthier
- Medical Faculty Mannheim, Department of Pediatrics and Infectious Diseases, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| | - Christel Weiss
- Medical Faculty Mannheim, Department of Medical Statistics and Biomathematics, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| | - Hiroshi Ishikawa
- Faculty of Medicine, Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, University of Tsukuba, 1-1-1Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Horst Schroten
- Medical Faculty Mannheim, Department of Pediatrics and Infectious Diseases, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| | - Rüdiger Adam
- Medical Faculty Mannheim, Department of Pediatrics and Infectious Diseases, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| | - Christian Schwerk
- Medical Faculty Mannheim, Department of Pediatrics and Infectious Diseases, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| |
Collapse
|
17
|
Štimac I, Jug Vučko N, Blagojević Zagorac G, Marcelić M, Mahmutefendić Lučin H, Lučin P. Dynamin Inhibitors Prevent the Establishment of the Cytomegalovirus Assembly Compartment in the Early Phase of Infection. Life (Basel) 2021; 11:876. [PMID: 34575026 PMCID: PMC8469281 DOI: 10.3390/life11090876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 12/30/2022] Open
Abstract
Cytomegalovirus (CMV) infection initiates massive rearrangement of cytoplasmic organelles to generate assembly compartment (AC). The earliest events, the establishment of the preAC, are initiated in the early phase as an extensive reorganization of early endosomes (EEs), endosomal recycling compartment (ERC), trans-Golgi network (TGN), and the Golgi. Here, we demonstrate that dynamin inhibitors (Dynasore, Dyngo-4a, MiTMAB, and Dynole-34-2) block the establishment of the preAC in murine CMV (MCMV) infected cells. In this study, we extensively analyzed the effect of Dynasore on the Golgi reorganization sequence into the outer preAC. We also monitored the development of the inner preAC using a set of markers that define EEs (Rab5, Vps34, EEA1, and Hrs), the EE-ERC interface (Rab10), the ERC (Rab11, Arf6), three layers of the Golgi (GRASP65, GM130, Golgin97), and late endosomes (Lamp1). Dynasore inhibited the pericentriolar accumulation of all markers that display EE-ERC-TGN interface in the inner preAC and prevented Golgi unlinking and dislocation to the outer preAC. Furthermore, in pulse-chase experiments, we demonstrated that the presence of dynasore only during the early phase of MCMV infection (4-14 hpi) is sufficient to prevent not only AC formation but also the synthesis of late-phase proteins and virion production. Therefore, our results indicate that dynamin-2 acts as a part of the machinery required for AC generation and rearrangement of EE/ERC/Golgi membranes in the early phase of CMV infection.
Collapse
Affiliation(s)
- Igor Štimac
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (I.Š.); (N.J.V.); (G.B.Z.); (M.M.); (P.L.)
| | - Natalia Jug Vučko
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (I.Š.); (N.J.V.); (G.B.Z.); (M.M.); (P.L.)
| | - Gordana Blagojević Zagorac
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (I.Š.); (N.J.V.); (G.B.Z.); (M.M.); (P.L.)
- Nursing Department, University North, University Center Varaždin, Jurja Križanića 31b, 42000 Varaždin, Croatia
| | - Marina Marcelić
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (I.Š.); (N.J.V.); (G.B.Z.); (M.M.); (P.L.)
| | - Hana Mahmutefendić Lučin
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (I.Š.); (N.J.V.); (G.B.Z.); (M.M.); (P.L.)
- Nursing Department, University North, University Center Varaždin, Jurja Križanića 31b, 42000 Varaždin, Croatia
| | - Pero Lučin
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (I.Š.); (N.J.V.); (G.B.Z.); (M.M.); (P.L.)
- Nursing Department, University North, University Center Varaždin, Jurja Križanića 31b, 42000 Varaždin, Croatia
| |
Collapse
|
18
|
Buri MV, Sperandio LP, de Souza KFS, Antunes F, Rezende MM, Melo CM, Pinhal MAS, Barros CC, Fernig DG, Yates EA, Ide JS, Smaili SS, Riske KA, Nader HB, Luis Dos Santos Tersariol I, Lima MA, Judice WAS, Miranda A, Paredes-Gamero EJ. Endocytosis and the Participation of Glycosaminoglycans Are Important to the Mechanism of Cell Death Induced by β-Hairpin Antimicrobial Peptides. ACS APPLIED BIO MATERIALS 2021; 4:6488-6501. [PMID: 35006908 DOI: 10.1021/acsabm.1c00390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The cytotoxic mode of action of four antimicrobial peptides (AMPs) (gomesin, tachyplesin, protegrin, and polyphemusin) against a HeLa cell tumor model is discussed. A study of cell death by AMP stimulation revealed some similarities, including annexin-V externalization, reduction of mitochondrial potential, insensitivity against inhibitors of cell death, and membrane permeabilization. Evaluation of signaling proteins and gene expression that control cell death revealed wide variation in the responses to AMPs. However, the ability to cross cell membranes emerged as an important characteristic of AMP-dependent cell death, where endocytosis mediated by dynamin is a common mechanism. Furthermore, the affinity between AMPs and glycosaminoglycans (GAGs) and GAG participation in the cytotoxicity of AMPs were verified. The results show that, despite their primary and secondary structure homology, these peptides present different modes of action, but endocytosis and GAG participation are an important and common mechanism of cytotoxicity for β-hairpin peptides.
Collapse
Affiliation(s)
- Marcus Vinicius Buri
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo 04044-020, São Paulo, Brazil
| | - Letícia Paulino Sperandio
- Centro Interdisciplinar de Investigação Bioquímica, Universidade de Mogi Das Cruzes, Av. Dr. Cândido Xavier de Almeida Souza, 200, Mogi Das Cruzes 08780-911, São Paulo, Brazil.,Departamento de Farmacologia, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo 04044-020, São Paulo, Brazil
| | - Kamylla F S de Souza
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo 04044-020, São Paulo, Brazil
| | - Fernanda Antunes
- Departamento de Farmacologia, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo 04044-020, São Paulo, Brazil
| | - Marina Mastelaro Rezende
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo 04044-020, São Paulo, Brazil
| | - Carina Mucciolo Melo
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo 04044-020, São Paulo, Brazil
| | - Maria A S Pinhal
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo 04044-020, São Paulo, Brazil.,Departmento de Bioquímica, Faculdade de Medicina Do ABC, Santo André 09060-870, Brazil
| | - Carlos C Barros
- Departamento de Nutrição, Universidade Federal de Pelotas, R. Gomes Carneiro, No1, Pelotas 96010-610, Rio Grande do Sul, Brazil
| | - David G Fernig
- Department of Biochemistry and Systems Biology, ISMIB, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Edwin A Yates
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo 04044-020, São Paulo, Brazil.,Department of Biochemistry and Systems Biology, ISMIB, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Jaime S Ide
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06519, United States
| | - Soraya S Smaili
- Departamento de Farmacologia, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo 04044-020, São Paulo, Brazil
| | - Karin A Riske
- Departamento de Biofísica, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo 04044-020, São Paulo, Brazil
| | - Helena B Nader
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo 04044-020, São Paulo, Brazil
| | | | - Marcelo Andrade Lima
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo 04044-020, São Paulo, Brazil
| | - Wagner A S Judice
- Centro Interdisciplinar de Investigação Bioquímica, Universidade de Mogi Das Cruzes, Av. Dr. Cândido Xavier de Almeida Souza, 200, Mogi Das Cruzes 08780-911, São Paulo, Brazil
| | - Antonio Miranda
- Departamento de Biofísica, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo 04044-020, São Paulo, Brazil
| | - Edgar J Paredes-Gamero
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo 04044-020, São Paulo, Brazil.,Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso Do Sul, Campo Grande 79070-900, Mato Grosso do Sul, Brazil
| |
Collapse
|
19
|
Lynn KS, Easley KF, Martinez FJ, Reed RC, Schlingmann B, Koval M. Asymmetric distribution of dynamin-2 and β-catenin relative to tight junction spikes in alveolar epithelial cells. Tissue Barriers 2021; 9:1929786. [PMID: 34107845 DOI: 10.1080/21688370.2021.1929786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Tight junctions between lung alveolar epithelial cells maintain an air-liquid barrier necessary for healthy lung function. Previously, we found that rearrangement of tight junctions from a linear, cortical orientation into perpendicular protrusions (tight junction spikes) is associated with a decrease in alveolar barrier function, especially in alcoholic lung syndrome. Using quantitative super-resolution microscopy, we found that spikes in control cells were enriched for claudin-18 as compared with alcohol-exposed cells. Moreover, using an in situ method to measure barrier function, tight junction spikes were not associated with localized increases in permeability. This suggests that tight junction spikes have a regulatory role as opposed to causing a physical weakening of the epithelial barrier. We found that tight junction spikes form at cell-cell junctions oriented away from pools of β-catenin associated with actin filaments, suggesting that adherens junctions determine the directionality of tight junction spikes. Dynamin-2 was associated with junctional claudin-18 and ZO-1, but showed little localization with β-catenin and tight junction spikes. Treatment with Dynasore decreased the number of tight junction spikes/cell, increased tight junction spike length, and stimulated actin to redistribute to cortical tight junctions. By contrast, Dynole 34-2 and MiTMAB altered β-catenin localization, and reduced tight junction spike length. These data suggest a novel role for dynamin-2 in tight junction spike formation by reorienting junction-associated actin. Moreover, the greater spatial separation of adherens and tight junctions in squamous alveolar epithelial cells as compared with columnar epithelial cells facilitates analysis of molecular regulation of the apical junctional complex.
Collapse
Affiliation(s)
- K Sabrina Lynn
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, USA
| | - Kristen F Easley
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, USA
| | - Francisco J Martinez
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, USA
| | - Ryan C Reed
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, USA
| | - Barbara Schlingmann
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, USA
| | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, USA.,Department of Cell Biology, Emory University School of Medicine, Atlanta, USA
| |
Collapse
|
20
|
Herskovitz J, Hasan M, Machhi J, Mukadam I, Ottemann BM, Hilaire JR, Woldstad C, McMillan J, Liu Y, Seravalli J, Sarella A, Gendelman HE, Kevadiya BD. Europium sulfide nanoprobes predict antiretroviral drug delivery into HIV-1 cell and tissue reservoirs. Nanotheranostics 2021; 5:417-430. [PMID: 33972918 PMCID: PMC8100756 DOI: 10.7150/ntno.59568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/05/2021] [Indexed: 11/25/2022] Open
Abstract
Background: Delivery of long-acting nanoformulated antiretroviral drugs (ARVs) to human immunodeficiency virus type one cell and tissue reservoirs underlies next generation antiretroviral therapeutics. Nanotheranostics, comprised of trackable nanoparticle adjuncts, can facilitate ARV delivery through real-time drug tracking made possible through bioimaging platforms. Methods: To model HIV-1 therapeutic delivery, europium sulfide (EuS) nanoprobes were developed, characterized and then deployed to cells, tissues, and rodents. Tests were performed with nanoformulated rilpivirine (NRPV), a non-nucleoside reverse transcriptase inhibitor (NNRTI) used clinically to suppress or prevent HIV-1 infection. First, CD4+ T cells and monocyte-derived macrophages were EuS-treated with and without endocytic blockers to identify nanoprobe uptake into cells. Second, Balb/c mice were co-dosed with NRPV and EuS or lutetium177-doped EuS (177LuEuS) theranostic nanoparticles to assess NRPV biodistribution via mass spectrometry. Third, single photon emission computed tomography (SPECT-CT) and magnetic resonance imaging (MRI) bioimaging were used to determine nanotheranostic and NRPV anatomic redistribution over time. Results: EuS nanoprobes and NRPV entered cells through dynamin-dependent pathways. SPECT-CT and MRI identified biodistribution patterns within the reticuloendothelial system for EuS that was coordinate with NRPV trafficking. Conclusions: EuS nanoprobes parallel the uptake and biodistribution of NRPV. These data support their use in modeling NRPV delivery to improve treatment strategies.
Collapse
Affiliation(s)
- Jonathan Herskovitz
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mahmudul Hasan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Jatin Machhi
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Insiya Mukadam
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Brendan M. Ottemann
- Department of Otorhinolaryngology, University of Kansas Medical Center, Kansas City, KS 66213 USA
| | - James R. Hilaire
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | | | - JoEllyn McMillan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Yutong Liu
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Javier Seravalli
- Department of Biochemistry, University of Nebraska Lincoln, Lincoln, NE 68588 USA
| | - Anandakumar Sarella
- Nebraska Center for Materials and Nanoscience, University of Nebraska Lincoln, Lincoln, NE 68588 USA
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Bhavesh D. Kevadiya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
| |
Collapse
|
21
|
Li X, Zhu W, Fan M, Zhang J, Peng Y, Huang F, Wang N, He L, Zhang L, Holmdahl R, Meng L, Lu S. Dependence of SARS-CoV-2 infection on cholesterol-rich lipid raft and endosomal acidification. Comput Struct Biotechnol J 2021; 19:1933-1943. [PMID: 33850607 PMCID: PMC8028701 DOI: 10.1016/j.csbj.2021.04.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 12/11/2022] Open
Abstract
Coronavirus disease 2019 is a kind of viral pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the mechanism whereby SARS-CoV-2 invades host cells remains poorly understood. Here we used SARS-CoV-2 pseudoviruses to infect human angiotensin-converting enzyme 2 (ACE2) expressing HEK293T cells and evaluated virus infection. We confirmed that SARS-CoV-2 entry was dependent on ACE2 and sensitive to pH of endosome/lysosome in HEK293T cells. The infection of SARS-CoV-2 pseudoviruses is independent of dynamin, clathrin, caveolin and endophilin A2, as well as macropinocytosis. Instead, we found that the infection of SARS-CoV-2 pseudoviruses was cholesterol-rich lipid raft dependent. Cholesterol depletion of cell membranes with methyl-β-cyclodextrin resulted in reduction of pseudovirus infection. The infection of SARS-CoV-2 pseudoviruses resumed with cholesterol supplementation. Together, cholesterol-rich lipid rafts, and endosomal acidification, are key steps of SARS-CoV-2 required for infection of host cells. Therefore, our finding expands the understanding of SARS-CoV-2 entry mechanism and provides a new anti-SARS-CoV-2 strategy.
Collapse
Affiliation(s)
- Xiaowei Li
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi'an Jiaotong University, 710004 Xi'an, China.,Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061 Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, 710061 Xi'an, China
| | - Wenhua Zhu
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061 Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, 710061 Xi'an, China
| | - Meiyang Fan
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061 Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, 710061 Xi'an, China
| | - Jing Zhang
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061 Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, 710061 Xi'an, China
| | - Yizhao Peng
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061 Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, 710061 Xi'an, China
| | - Fumeng Huang
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061 Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, 710061 Xi'an, China
| | - Nan Wang
- School of Pharmacy, Xi'an Jiaotong University, 710061 Xi'an, China
| | - Langchong He
- School of Pharmacy, Xi'an Jiaotong University, 710061 Xi'an, China
| | - Lei Zhang
- Shaanxi Provincial Centre for Disease Control and Prevention, 710054 Xi'an, China
| | - Rikard Holmdahl
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi'an Jiaotong University, 710004 Xi'an, China.,Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061 Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, 710061 Xi'an, China.,Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 171 77, Sweden
| | - Liesu Meng
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi'an Jiaotong University, 710004 Xi'an, China.,Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061 Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, 710061 Xi'an, China
| | - Shemin Lu
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi'an Jiaotong University, 710004 Xi'an, China.,Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061 Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, 710061 Xi'an, China
| |
Collapse
|
22
|
Cardoso DA, Chau N, Robinson PJ. High-Content Drug Discovery Screening of Endocytosis Pathways. Methods Mol Biol 2021; 2233:71-91. [PMID: 33222128 DOI: 10.1007/978-1-0716-1044-2_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Endocytosis is the dynamic internalization of cargo (receptors, hormones, viruses) for cellular signaling or processing. It involves multiple mechanisms, classified depending on critical proteins involved, speed, morphology of the derived intracellular vesicles, or substance trafficked. Pharmacological targeting of specific endocytosis pathways has a proven utility for diverse clinical applications from epilepsy to cancer. A multiplexable, high-content screening assay has been designed and implemented to assess various forms of endocytic trafficking and the associated impact of potential small molecule modulators. The applications of this assay include (1) drug discovery in the search for specific, cell-permeable endocytosis pathway inhibitors (and associated analogues from structure-activity relationship studies), (2) deciphering the mechanism of internalization for a novel ligand (using pathway-specific inhibitors), (3) assessment of the importance of specific proteins in the trafficking process (using CRISPR-Cas9 technology, siRNA treatment, or transfection), and (4) identifying whether endocytosis inhibition is an off-target for novel compounds designed for alternative purposes. We describe this method in detail and provide a range of troubleshooting options and alternatives to modify the protocol for lab-specific applications.
Collapse
Affiliation(s)
- David A Cardoso
- Cell Signalling Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Ngoc Chau
- Cell Signalling Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Phillip J Robinson
- Cell Signalling Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia.
| |
Collapse
|
23
|
Stip E, Rizvi TA, Mustafa F, Javaid S, Aburuz S, Ahmed NN, Abdel Aziz K, Arnone D, Subbarayan A, Al Mugaddam F, Khan G. The Large Action of Chlorpromazine: Translational and Transdisciplinary Considerations in the Face of COVID-19. Front Pharmacol 2020; 11:577678. [PMID: 33390948 PMCID: PMC7772402 DOI: 10.3389/fphar.2020.577678] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a severe acute respiratory syndrome (SARS) in humans that is caused by SARS-associated coronavirus type 2 (SARS-CoV-2). In the context of COVID-19, several aspects of the relations between psychiatry and the pandemic due to the coronavirus have been described. Some drugs used as antiviral medication have neuropsychiatric side effects, and conversely some psychotropic drugs have antiviral properties. Chlorpromazine (CPZ, Largactil®) is a well-established antipsychotic medication that has recently been proposed to have antiviral activity against SARS-CoV-2. This review aims to 1) inform health care professionals and scientists about the history of CPZ use in psychiatry and its potential anti- SARS-CoV-2 activities 2) inform psychiatrists about its potential anti-SARS-CoV-2 activities, and 3) propose a research protocol for investigating the use of CPZ in the treatment of COVID-19 during the potential second wave. The history of CPZ's discovery and development is described in addition to the review of literature from published studies within the discipline of virology related to CPZ. The early stages of infection with coronavirus are critical events in the course of the viral cycle. In particular, viral entry is the first step in the interaction between the virus and the cell that can initiate, maintain, and spread the infection. The possible mechanism of action of CPZ is related to virus cell entry via clathrin-mediated endocytosis. Therefore, CPZ could be useful to treat COVID-19 patients provided that its efficacy is evaluated in adequate and well-conducted clinical trials. Interestingly, clinical trials of very good quality are in progress. However, more information is still needed about the appropriate dosage regimen. In short, CPZ repositioning is defined as a new use beyond the field of psychiatry.
Collapse
Affiliation(s)
- Emmanuel Stip
- Department of Psychiatry, University of Montréal, Montréal, QC, Canada
- Department of Psychiatry and Behavioral Science, College of Medicine and Health Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Tahir A. Rizvi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Farah Mustafa
- Department of Biochemistry, College of Medicine and Health Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Syed Javaid
- Department of Psychiatry and Behavioral Science, College of Medicine and Health Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Salahdein Aburuz
- Department of Pharmacology and Therapeutics, College of Medicine and Health Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Nahida Nayaz Ahmed
- Ambulatory Healthcare Services, Al Maqtaa Healthcare Center, Middle Regions Clinics Division, SEHA, Abu Dhabi, United Arab Emirates
| | - Karim Abdel Aziz
- Department of Psychiatry and Behavioral Science, College of Medicine and Health Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Danilo Arnone
- Department of Psychiatry and Behavioral Science, College of Medicine and Health Science, United Arab Emirates University, Al Ain, United Arab Emirates
- Kings’ College London, Institute of Psychiatry, Psychology, Neuroscience, Department of Psychological Medicine, Centre for Affective Disorders, London, United Kingdom
| | - Aravinthan Subbarayan
- Behavioral Sciences Institute (BSI), Al Ain Hospital, SEHA, Al Ain, United Arab Emirates
| | - Fadwa Al Mugaddam
- Department of Psychiatry, University of Montréal, Montréal, QC, Canada
| | - Gulfaraz Khan
- Department of Medical Microbiology and Immunology, College of Medicine and Health Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
24
|
Gao Y, Gao J, Mu G, Zhang Y, Huang F, Zhang W, Ren C, Yang C, Liu J. Selectively enhancing radiosensitivity of cancer cells via in situ enzyme-instructed peptide self-assembly. Acta Pharm Sin B 2020; 10:2374-2383. [PMID: 33354508 PMCID: PMC7745053 DOI: 10.1016/j.apsb.2020.07.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/20/2020] [Accepted: 06/23/2020] [Indexed: 01/20/2023] Open
Abstract
The radiotherapy modulators used in clinic have disadvantages of high toxicity and low selectivity. For the first time, we used the in situ enzyme-instructed self-assembly (EISA) of a peptide derivative (Nap-GDFDFpYSV) to selectively enhance the sensitivity of cancer cells with high alkaline phosphatase (ALP) expression to ionizing radiation (IR). Compared with the in vitro pre-assembled control formed by the same molecule, assemblies formed by in situ EISA in cells greatly sensitized the ALP-high-expressing cancer cells to γ-rays, with a remarkable sensitizer enhancement ratio. Our results indicated that the enhancement was a result of fixing DNA damage, arresting cell cycles and inducing cell apoptosis. Interestingly, in vitro pre-formed assemblies mainly localized in the lysosomes after incubating with cells, while the assemblies formed via in situ EISA scattered in the cell cytosol. The accumulation of these molecules in cells could not be inhibited by endocytosis inhibitors. We believed that this molecule entered cancer cells by diffusion and then in situ self-assembled to form nanofibers under the catalysis of endogenous ALP. This study provides a successful example to utilize intracellular in situ EISA of small molecules to develop selective tumor radiosensitizers. The intracellular in situ enzyme-instructed self-assembly (in situ EISA) was firstly used for selective cancer radiosensitization. Compared with the in vitro pre-assembled control formed by the same molecule, assemblies formed by in-situ EISA in cells greatly sensitized the ALP-high-expressing cancer cells to γ-rays. This work provides a successful example to utilize intracellular in situ EISA of small molecules to develop selective tumor radiosensitizers.
Collapse
Affiliation(s)
- Yang Gao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Jie Gao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Ganen Mu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Yumin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Fan Huang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Wenxue Zhang
- Radiation Oncology Department, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Chunhua Ren
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
- Corresponding authors.
| | - Cuihong Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
- Corresponding authors.
| | - Jianfeng Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
- Corresponding authors.
| |
Collapse
|
25
|
Modular transient nanoclustering of activated β2-adrenergic receptors revealed by single-molecule tracking of conformation-specific nanobodies. Proc Natl Acad Sci U S A 2020; 117:30476-30487. [PMID: 33214152 DOI: 10.1073/pnas.2007443117] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
None of the current superresolution microscopy techniques can reliably image the changes in endogenous protein nanoclustering dynamics associated with specific conformations in live cells. Single-domain nanobodies have been invaluable tools to isolate defined conformational states of proteins, and we reasoned that expressing these nanobodies coupled to single-molecule imaging-amenable tags could allow superresolution analysis of endogenous proteins in discrete conformational states. Here, we used anti-GFP nanobodies tagged with photoconvertible mEos expressed as intrabodies, as a proof-of-concept to perform single-particle tracking on a range of GFP proteins expressed in live cells, neurons, and small organisms. We next expressed highly specialized nanobodies that target conformation-specific endogenous β2-adrenoreceptor (β2-AR) in neurosecretory cells, unveiling real-time mobility behaviors of activated and inactivated endogenous conformers during agonist treatment in living cells. We showed that activated β2-AR (Nb80) is highly immobile and organized in nanoclusters. The Gαs-GPCR complex detected with Nb37 displayed higher mobility with surprisingly similar nanoclustering dynamics to that of Nb80. Activated conformers are highly sensitive to dynamin inhibition, suggesting selective targeting for endocytosis. Inactivated β2-AR (Nb60) molecules are also largely immobile but relatively less sensitive to endocytic blockade. Expression of single-domain nanobodies therefore provides a unique opportunity to capture highly transient changes in the dynamic nanoscale organization of endogenous proteins.
Collapse
|
26
|
Wojtowicz S, Lee S, Chan E, Ng E, Campbell CI, Di Guglielmo GM. SMURF2 and SMAD7 induce SARA degradation via the proteasome. Cell Signal 2020; 72:109627. [DOI: 10.1016/j.cellsig.2020.109627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/11/2020] [Accepted: 03/31/2020] [Indexed: 10/24/2022]
|
27
|
Davis LC, Morgan AJ, Galione A. NAADP-regulated two-pore channels drive phagocytosis through endo-lysosomal Ca 2+ nanodomains, calcineurin and dynamin. EMBO J 2020; 39:e104058. [PMID: 32510172 PMCID: PMC7360967 DOI: 10.15252/embj.2019104058] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/22/2020] [Accepted: 04/29/2020] [Indexed: 12/15/2022] Open
Abstract
Macrophages clear pathogens by phagocytosis and lysosomes that fuse with phagosomes are traditionally regarded as to a source of membranes and luminal degradative enzymes. Here, we reveal that endo-lysosomes act as platforms for a new phagocytic signalling pathway in which FcγR activation recruits the second messenger NAADP and thereby promotes the opening of Ca2+ -permeable two-pore channels (TPCs). Remarkably, phagocytosis is driven by these local endo-lysosomal Ca2+ nanodomains rather than global cytoplasmic or ER Ca2+ signals. Motile endolysosomes contact nascent phagosomes to promote phagocytosis, whereas endo-lysosome immobilization prevents it. We show that TPC-released Ca2+ rapidly activates calcineurin, which in turn dephosphorylates and activates the GTPase dynamin-2. Finally, we find that different endo-lysosomal Ca2+ channels play diverse roles, with TPCs providing a universal phagocytic signal for a wide range of particles and TRPML1 being only required for phagocytosis of large targets.
Collapse
Affiliation(s)
- Lianne C Davis
- Department of Pharmacology, University of Oxford, Oxford, UK
| | | | - Antony Galione
- Department of Pharmacology, University of Oxford, Oxford, UK
| |
Collapse
|
28
|
Chew HY, De Lima PO, Gonzalez Cruz JL, Banushi B, Echejoh G, Hu L, Joseph SR, Lum B, Rae J, O’Donnell JS, Merida de Long L, Okano S, King B, Barry R, Moi D, Mazzieri R, Thomas R, Souza-Fonseca-Guimaraes F, Foote M, McCluskey A, Robinson PJ, Frazer IH, Saunders NA, Parton RG, Dolcetti R, Cuff K, Martin JH, Panizza B, Walpole E, Wells JW, Simpson F. Endocytosis Inhibition in Humans to Improve Responses to ADCC-Mediating Antibodies. Cell 2020; 180:895-914.e27. [DOI: 10.1016/j.cell.2020.02.019] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/19/2020] [Accepted: 02/07/2020] [Indexed: 12/31/2022]
|
29
|
Cao H, Krueger EW, Chen J, Drizyte-Miller K, Schulz ME, McNiven MA. The anti-viral dynamin family member MxB participates in mitochondrial integrity. Nat Commun 2020; 11:1048. [PMID: 32102993 PMCID: PMC7044337 DOI: 10.1038/s41467-020-14727-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/23/2020] [Indexed: 12/19/2022] Open
Abstract
The membrane deforming dynamin family members MxA and MxB are large GTPases that convey resistance to a variety of infectious viruses. During viral infection, Mx proteins are known to show markedly increased expression via an interferon-responsive promoter to associate with nuclear pores. In this study we report that MxB is an inner mitochondrial membrane GTPase that plays an important role in the morphology and function of this organelle. Expression of mutant MxB or siRNA knockdown of MxB leads to fragmented mitochondria with disrupted inner membranes that are unable to maintain a proton gradient, while expelling their nucleoid-based genome into the cytoplasm. These findings implicate a dynamin family member in mitochondrial-based changes frequently observed during an interferon-based, anti-viral response. Mx proteins belong to the dynamin family of large GTPases and are highly induced by interferon in virally infected cells. The authors show that uninfected immune cells and hepatocytes also express MxB protein that associates with mitochondria to alter the morphology and genome of this organelle.
Collapse
Affiliation(s)
- Hong Cao
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA.,Center for Basic Research in Digestive Diseases, Division of Gastroenterology & Hepatology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - E W Krueger
- Center for Basic Research in Digestive Diseases, Division of Gastroenterology & Hepatology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Jing Chen
- Center for Basic Research in Digestive Diseases, Division of Gastroenterology & Hepatology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Kristina Drizyte-Miller
- Biochemistry and Molecular Biology Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Mary E Schulz
- Center for Basic Research in Digestive Diseases, Division of Gastroenterology & Hepatology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Mark A McNiven
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA. .,Center for Basic Research in Digestive Diseases, Division of Gastroenterology & Hepatology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
30
|
Kemmerer M, Bonning BC. Transcytosis of Junonia coenia densovirus VP4 across the gut epithelium of Spodoptera frugiperda (Lepidoptera: Noctuidae). INSECT SCIENCE 2020; 27:22-32. [PMID: 29704325 DOI: 10.1111/1744-7917.12600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/10/2018] [Accepted: 04/19/2018] [Indexed: 06/08/2023]
Abstract
The Junonia coenia densovirus rapidly traverses the gut epithelium of the host lepidopteran without replicating in the gut cells. The ability of this virus to transcytose across the gut epithelium is of interest for the potential use of virus structural proteins as delivery vehicles for insecticidal peptides that act within the insect hemocoel, rather than in the gut. In this study, we used fall armyworm, Spodoptera frugiperda to examine the binding of the virus to brush border membrane vesicle proteins by two-dimensional ligand blot analysis. We also assessed the rate of flux of the primary viral structural protein, VP4 fused to eGFP with a proline-rich linker (VP4-P-eGFP) through the gut epithelium ex vivo in an Ussing chamber. The mechanisms involved with transcytosis of VP4-P-eGFP were assessed by use of inhibitors. Bovine serum albumin (BSA) and eGFP were used as positive and negative control proteins, respectively. In contrast to BSA, which binds to multiple proteins on the brush border membrane, VP4-P-eGFP binding was specific to a protein of high molecular mass. Protein flux was significantly higher for VP4-P-eGFP after 2 h than for albumin or eGFP, with rapid transcytosis of VP4-P-eGFP within the first 30 min. In contrast to BSA which transcytosed following clathrin-mediated endocytosis, the movement of VP4-P-eGFP was vesicle-mediated but clathrin-independent. The specificity of binding combined with the efficiency of transport across the gut epithelium suggest that VP4 will provide a useful carrier for insecticidal peptides active within the hemocoel of key lepidopteran pests including S. frugiperda.
Collapse
Affiliation(s)
- Mariah Kemmerer
- Department of Entomology, Iowa State University, Ames, Iowa, USA
| | - Bryony C Bonning
- Department of Entomology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
31
|
O'Brien NS, McCluskey A. A Facile Microwave and SnCl2 Synthesis of 2,3-Dihydroquinazolin-4(1H)-ones. Aust J Chem 2020. [DOI: 10.1071/ch20101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An elegantly simple, facile, and robust approach to a scaffold of biological importance, 2,3-dihydroquinazolin-4(1H)-ones, is reported. A catalytic 1% SnCl2/microwave-mediated approach afforded access to pure material, collected by cooling and filtration after 20-min microwave irradiation at 120°C. A total of 41 analogues were prepared in isolated yields of 17–99%. This process was highly tolerant of aliphatic, aromatic, heterocyclic, and acyclic aldehydes, but furan, pyrrole, and thiophene aldehyde reactivity correlated with propensity towards electrophilic addition and/or Diels–Alder addition. As a result, thiophene afforded high yields (80%) whereas pyrrole carboxaldehyde failed to react. With simple cinnamaldehydes, and in the SbCl3-mediated reaction, and with α,β-unsaturated aldehydes the equivalent quinazolin-4(3H)-ones, and not the 2,3-dihydroquinazolin-4(1H)-ones, was favoured.
Collapse
|
32
|
Camarero N, Trapero A, Pérez-Jiménez A, Macia E, Gomila-Juaneda A, Martín-Quirós A, Nevola L, Llobet A, Llebaria A, Hernando J, Giralt E, Gorostiza P. Photoswitchable dynasore analogs to control endocytosis with light. Chem Sci 2020. [DOI: 10.1039/d0sc03820b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We've combined the pharmacological properties of the dynamin inhibitor dynasore and the photochromic properties of an azobenzene group, to obtain the first light-regulated small-molecule inhibitor of endocytosis.
Collapse
Affiliation(s)
- Núria Camarero
- Institute for Bioengineering of Catalonia (IBEC)
- The Barcelona Institute of Science and Technology (BIST)
- Spain
| | - Ana Trapero
- Institute for Bioengineering of Catalonia (IBEC)
- The Barcelona Institute of Science and Technology (BIST)
- Spain
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC)
- Spain
| | - Ariadna Pérez-Jiménez
- Institute for Bioengineering of Catalonia (IBEC)
- The Barcelona Institute of Science and Technology (BIST)
- Spain
| | - Eric Macia
- Institut de Pharmacologie Moléculaire et Cellulaire (IPMC)
- Université Nice Sophia Antipolis
- France
| | - Alexandre Gomila-Juaneda
- Institute for Bioengineering of Catalonia (IBEC)
- The Barcelona Institute of Science and Technology (BIST)
- Spain
| | - Andrés Martín-Quirós
- Institute for Bioengineering of Catalonia (IBEC)
- The Barcelona Institute of Science and Technology (BIST)
- Spain
| | - Laura Nevola
- Institute for Research in Biomedicine (IRB Barcelona)
- Spain
| | - Artur Llobet
- Bellvitge Biomedical Research Institute (IDIBELL)
- Spain
| | - Amadeu Llebaria
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC)
- Spain
| | - Jordi Hernando
- Departament de Química
- Universitat Autònoma de Barcelona (UAB)
- Spain
| | - Ernest Giralt
- Institute for Research in Biomedicine (IRB Barcelona)
- Spain
- Universitat de Barcelona (UB)
- Spain
| | - Pau Gorostiza
- Institute for Bioengineering of Catalonia (IBEC)
- The Barcelona Institute of Science and Technology (BIST)
- Spain
- CIBER-BBN
- Spain
| |
Collapse
|
33
|
Li M, Yan P, Liu Z, Cai D, Luo Y, Wu X, Wang Q, Huang Y, Wu Y. Muscovy duck reovirus enters susceptible cells via a caveolae-mediated endocytosis-like pathway. Virus Res 2019; 276:197806. [PMID: 31704247 DOI: 10.1016/j.virusres.2019.197806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/21/2019] [Accepted: 11/04/2019] [Indexed: 01/27/2023]
Abstract
Muscovy duck reovirus (MDRV) causes immunosuppression and results in high mortality among Muscovy ducklings. Cell entry is the first step of virus infection and represents a potential therapeutic target. However, very little is known about the mechanism by which MDRV penetrates the cells. The aim of this study was to explore the mechanism of MDRV cell entry and subsequent infection. DF-1 and Vero cells were pretreated with the inhibitors chlorpromazine (CPZ), cytochalasin D, methyl-beta-cyclodextrin (M-β-CD), genistein, dynasore, nocodazole, or NH4Cl, and then infected with MDRV. The copy number of the MDRV p10.8 gene and the expression of viral sigma A protein were determined by RT-PCR and western blot, respectively. Both sigma A expression and p10.8 gene copy number were decreased by treatment with M-β-CD, genistein, dynasore, nocodazole, and NH4Cl. In contrast, no effects on virus infection were detected when inhibitors of clathrin-mediated endocytosis or macropinocytosis were used. In addition, the colocalization between MDRV sigma A protein and caveolin-1 was evaluated by double-label immunofluorescence. Collectively, our data revealed that MDRV can enter susceptible cells through caveolin-dependent endocytosis involving dynamin and microtubules. Moreover, the acidic environment of the endosomes was found to be critical for efficient infection. Our findings provide new insights into the infection process of MDRV.
Collapse
Affiliation(s)
- Minghui Li
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China
| | - Ping Yan
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China
| | - Zhenni Liu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China
| | - Dongling Cai
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China
| | - Yu Luo
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China
| | - Xiaoping Wu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China; Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health (Fujian Agricultural and Forestry University), Fuzhou 350002, People's Republic of China
| | - Quanxi Wang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China; Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health (Fujian Agricultural and Forestry University), Fuzhou 350002, People's Republic of China
| | - Yifan Huang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China; Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health (Fujian Agricultural and Forestry University), Fuzhou 350002, People's Republic of China
| | - Yijian Wu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China; Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health (Fujian Agricultural and Forestry University), Fuzhou 350002, People's Republic of China.
| |
Collapse
|
34
|
Kitajima Y, Ishii T, Kohda T, Ishizuka M, Yamazaki K, Nishimura Y, Tanaka T, Dan S, Nakajima M. Mechanistic study of PpIX accumulation using the JFCR39 cell panel revealed a role for dynamin 2-mediated exocytosis. Sci Rep 2019; 9:8666. [PMID: 31209282 PMCID: PMC6572817 DOI: 10.1038/s41598-019-44981-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/29/2019] [Indexed: 12/21/2022] Open
Abstract
5-aminolevulinic acid (5-ALA) has recently been employed for photodynamic diagnosis (ALA-PDD) and photodynamic therapy (ALA-PDT) of various types of cancer because hyperproliferating tumor cells do not utilize oxidative phosphorylation and do not efficiently produce heme; instead, they accumulate protoporphyrin IX (PpIX), which is a precursor of heme that is activated by violet light irradiation that results in the production of red fluorescence and singlet oxygen. The efficiencies of ALA-PDD and ALA-PDT depend on the efficient cellular uptake of 5-ALA and the inefficient excretion of PpIX. We employed the JFCR39 cell panel to determine whether tumor cells originating from different tissues can produce and accumulate PpIX. We also investigated cellular factors/molecules involved in PpIX excretion by tumor cells with the JFCR39 cell panel. Unexpectedly, the expression levels of ABCG2, which has been considered to play a major role in PpIX extracellular transport, did not show a strong correlation with PpIX excretion levels in the JFCR39 cell panel, although an ABCG2 inhibitor significantly increased intracellular PpIX accumulation in several tumor cell lines. In contrast, the expression levels of dynamin 2, which is a cell membrane-associated molecule involved in exocytosis, were correlated with the PpIX excretion levels. Moreover, inhibitors of dynamin significantly suppressed PpIX excretion and increased the intracellular levels of PpIX. This is the first report demonstrating the causal relationship between dynamin 2 expression and PpIX excretion in tumor cells.
Collapse
Affiliation(s)
| | | | | | | | - Kanami Yamazaki
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japan Foundation for Cancer Research, Tokyo, Japan
| | - Yumiko Nishimura
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japan Foundation for Cancer Research, Tokyo, Japan
| | | | - Shingo Dan
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japan Foundation for Cancer Research, Tokyo, Japan.
| | | |
Collapse
|
35
|
Verweij FJ, Revenu C, Arras G, Dingli F, Loew D, Pegtel DM, Follain G, Allio G, Goetz JG, Zimmermann P, Herbomel P, Del Bene F, Raposo G, van Niel G. Live Tracking of Inter-organ Communication by Endogenous Exosomes In Vivo. Dev Cell 2019; 48:573-589.e4. [PMID: 30745143 DOI: 10.1016/j.devcel.2019.01.004] [Citation(s) in RCA: 211] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 12/21/2018] [Accepted: 12/31/2018] [Indexed: 01/05/2023]
Abstract
Extracellular vesicles (EVs) are released by most cell types but providing evidence for their physiological relevance remains challenging due to a lack of appropriate model organisms. Here, we developed an in vivo model to study EV function by expressing CD63-pHluorin in zebrafish embryos. A combination of imaging methods and proteomic analysis allowed us to study biogenesis, composition, transfer, uptake, and fate of individual endogenous EVs. We identified a subpopulation of EVs with exosome features, released in a syntenin-dependent manner from the yolk syncytial layer into the blood circulation. These exosomes are captured, endocytosed, and degraded by patrolling macrophages and endothelial cells in the caudal vein plexus (CVP) in a scavenger receptor- and dynamin-dependent manner. Interference with exosome biogenesis affected CVP growth, suggesting a role in trophic support. Altogether, our work represents a system for studying endogenous EV function in vivo with high spatiotemporal accuracy, demonstrating functional inter-organ communication by exosomes.
Collapse
Affiliation(s)
- Frederik J Verweij
- Institut Curie, PSL Research University, CNRS UMR144, Paris 75005, France; Institute for Psychiatry and Neuroscience Paris, Hopital Saint-Anne, Université Descartes, INSERM U894, Paris 75014, France.
| | - Celine Revenu
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, Sorbonne Université, Paris 75005, France
| | - Guillaume Arras
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Paris, France
| | - Florent Dingli
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Paris, France
| | - Damarys Loew
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Paris, France
| | - D Michiel Pegtel
- Department of Pathology, Cancer Center Amsterdam, the Netherlands
| | - Gautier Follain
- INSERM UMR_S1109, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Guillaume Allio
- INSERM UMR_S1109, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Jacky G Goetz
- INSERM UMR_S1109, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Pascale Zimmermann
- Centre de Recherche en Cancérologie de Marseille, Aix-Marseille Université, Marseille 13284, France
| | - Philippe Herbomel
- Institut Pasteur, Department of Developmental & Stem Cell Biology, 25 rue du Dr Roux, Paris 75015, France
| | - Filippo Del Bene
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, Sorbonne Université, Paris 75005, France
| | - Graça Raposo
- Institut Curie, PSL Research University, CNRS UMR144, Paris 75005, France
| | - Guillaume van Niel
- Institut Curie, PSL Research University, CNRS UMR144, Paris 75005, France; Institute for Psychiatry and Neuroscience Paris, Hopital Saint-Anne, Université Descartes, INSERM U894, Paris 75014, France.
| |
Collapse
|
36
|
Porębska N, Latko M, Kucińska M, Zakrzewska M, Otlewski J, Opaliński Ł. Targeting Cellular Trafficking of Fibroblast Growth Factor Receptors as a Strategy for Selective Cancer Treatment. J Clin Med 2018; 8:jcm8010007. [PMID: 30577533 PMCID: PMC6352210 DOI: 10.3390/jcm8010007] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022] Open
Abstract
Fibroblast growth factor receptors (FGFRs) in response to fibroblast growth factors (FGFs) transmit signals across the cell membrane, regulating important cellular processes, like differentiation, division, motility, and death. The aberrant activity of FGFRs is often observed in various diseases, especially in cancer. The uncontrolled FGFRs' function may result from their overproduction, activating mutations, or generation of FGFRs' fusion proteins. Besides their typical subcellular localization on the cell surface, FGFRs are often found inside the cells, in the nucleus and mitochondria. The intracellular pool of FGFRs utilizes different mechanisms to facilitate cancer cell survival and expansion. In this review, we summarize the current stage of knowledge about the role of FGFRs in oncogenic processes. We focused on the mechanisms of FGFRs' cellular trafficking-internalization, nuclear translocation, and mitochondrial targeting, as well as their role in carcinogenesis. The subcellular sorting of FGFRs constitutes an attractive target for anti-cancer therapies. The blocking of FGFRs' nuclear and mitochondrial translocation can lead to the inhibition of cancer invasion. Moreover, the endocytosis of FGFRs can serve as a tool for the efficient and highly selective delivery of drugs into cancer cells overproducing these receptors. Here, we provide up to date examples how the cellular sorting of FGFRs can be hijacked for selective cancer treatment.
Collapse
Affiliation(s)
- Natalia Porębska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Marta Latko
- Department of Protein Engineering, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Marika Kucińska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Małgorzata Zakrzewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Jacek Otlewski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Łukasz Opaliński
- Department of Protein Engineering, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| |
Collapse
|
37
|
Dynamin Is Required for Efficient Cytomegalovirus Maturation and Envelopment. J Virol 2018; 92:JVI.01418-18. [PMID: 30282704 DOI: 10.1128/jvi.01418-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 09/22/2018] [Indexed: 12/17/2022] Open
Abstract
Cytomegalovirus secondary envelopment occurs in a virus-induced cytoplasmic assembly compartment (vAC) generated via a drastic reorganization of the membranes of the secretory and endocytic systems. Dynamin is a eukaryotic GTPase that is implicated in membrane remodeling and endocytic membrane fission events; however, the role of dynamin in cellular trafficking of viruses beyond virus entry is only partially understood. Mouse embryonic fibroblasts (MEF) engineered to excise all three isoforms of dynamin were infected with mouse cytomegalovirus (MCMV-K181). Immediate-early (IE1; m123) viral protein was detected in these triple dynamin knockout (TKO) cells, as well as in mock-induced parental MEF, at early times postinfection, although levels were reduced in TKO cells, indicating that virus entry was affected but not eliminated. Levels of IE1 protein and another viral early protein (m04) were normalized by 48 h postinfection; however, late protein (m55; gB) expression was reduced in infected TKO cells compared to parental MEF. Ultrastructural analysis revealed intact stages of nuclear virus maturation in both cases with equivalent numbers of nucleocapsids containing packaged viral DNA (C-capsids), indicating successful viral DNA replication, capsid assembly, and genome packaging. Most importantly, severe defects in virus envelopment were visualized in TKO cells but not in parental cells. Dynamin inhibitor (dynasore)-treated MEF showed a phenotype similar to TKO cells upon mouse cytomegalovirus infection, confirming the role of dynamin in late maturation processes. In summary, dynamin-mediated endocytic pathways are critical for the completion of cytoplasmic stages of cytomegalovirus maturation.IMPORTANCE Viruses are known to exploit specific cellular functions at different stages of their life cycle in order to replicate, avoid immune recognition by the host and to establish a successful infection. Cytomegalovirus (CMV)-infected cells are characterized by a prominent cytoplasmic inclusion (virus assembly compartment [vAC]) that is the site of virus maturation and envelopment. While endocytic membranes are known to be the functional components of vAC, knowledge of specific endocytic pathways implicated in CMV maturation and envelopment is lacking. We show here that dynamin, which is an integral part of host endocytic machinery, is largely dispensable for early stages of CMV infection but is required at a late stage of CMV maturation. Studies on dynamin function in CMV infection will help us understand the host-virus interaction pathways amenable to targeting by conventional small molecules, as well as by newer generation nucleotide-based therapeutics (e.g., small interfering RNA, CRISPR/CAS gRNA, etc.).
Collapse
|
38
|
Eschenburg S, Reubold TF. Modulation of dynamin function by small molecules. Biol Chem 2018; 399:1421-1432. [PMID: 30067507 DOI: 10.1515/hsz-2018-0257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/17/2018] [Indexed: 02/05/2023]
Abstract
Dynamins are essential as membrane remodelers in various cellular processes, like receptor-mediated endocytosis, synaptic vesicle recycling and spermatogenesis. Moreover, dynamin is involved in the internalization of numerous viruses and in the motility of several cancer cell lines. As tools for dissecting the underlying mechanisms of these important biological processes and as potential future therapeutics, small molecules have been developed in the last two decades that modulate the functions of dynamin. In this review we give an overview of the compound classes that are currently in use and describe how they affect dynamin function.
Collapse
Affiliation(s)
- Susanne Eschenburg
- Medizinische Hochschule Hannover, Institut für Biophysikalische Chemie, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Thomas F Reubold
- Medizinische Hochschule Hannover, Institut für Biophysikalische Chemie, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| |
Collapse
|
39
|
Kong L, Sochacki KA, Wang H, Fang S, Canagarajah B, Kehr AD, Rice WJ, Strub MP, Taraska JW, Hinshaw JE. Cryo-EM of the dynamin polymer assembled on lipid membrane. Nature 2018; 560:258-262. [PMID: 30069048 PMCID: PMC6121775 DOI: 10.1038/s41586-018-0378-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 06/20/2018] [Indexed: 12/17/2022]
Abstract
Membrane fission is a fundamental process in the regulation and remodeling of cell membranes. Dynamin, a large GTPase, mediates membrane fission by assembling around, constricting and cleaving the necks of budding vesicles1. Here, we report a 3.75 Å resolution cryo-EM structure of the membrane-associated helical polymer of human dynamin-1 in the GMPPCP bound state. The structure defines the helical symmetry of the dynamin polymer and the positions of the oligomeric interfaces, which were validated by cell-based endocytosis assays. Compared to the lipid-free tetramer form2, membrane-associated dynamin binds to the lipid bilayer with its pleckstrin homology domain (PHD) and self-assembles across the helical rungs via the GTPase domain3. Notably, interaction with the membrane and helical assembly is accommodated by a severely bent bundle signaling element (BSE), which connects the GTPase domain with the rest of the protein. The BSE conformation is asymmetric across the inter-rung GTPase interface, and is unique compared to all known nucleotide-bound states of dynamin. The structure suggests that the BSE bends from forces generated from the GTPase dimer interaction that are transferred across the stalk to the PHD and lipid membrane. Mutations disrupting the BSE kink impaired endocytosis. We also report a 10.1 Å resolution cryo-EM map of a super-constricted dynamin polymer showing localized conformational changes at the BSE and GTPase domains induced by GTP hydrolysis that drive membrane constriction. Altogether, the results provide a structural basis for dynamin’s mechanism of action on lipid membrane.
Collapse
Affiliation(s)
- Leopold Kong
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Kem A Sochacki
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Huaibin Wang
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Shunming Fang
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Bertram Canagarajah
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Andrew D Kehr
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - William J Rice
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Marie-Paule Strub
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Justin W Taraska
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Jenny E Hinshaw
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA.
| |
Collapse
|
40
|
Dunn VK, Gleason E. Inhibition of endocytosis suppresses the nitric oxide-dependent release of Cl- in retinal amacrine cells. PLoS One 2018; 13:e0201184. [PMID: 30044876 PMCID: PMC6059450 DOI: 10.1371/journal.pone.0201184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/10/2018] [Indexed: 11/18/2022] Open
Abstract
Our lab has previously shown that nitric oxide (NO) can alter the synaptic response properties of amacrine cells by releasing Cl- from internal acidic compartments. This alteration in the Cl- gradient brings about a positive shift in the reversal potential of the GABA-gated current, which can convert inhibitory synapses into excitatory synapses. Recently, we have shown that the cystic fibrosis transmembrane regulator (CFTR) Cl- channel is involved in the Cl- release. Here, we test the hypothesis that (acidic) synaptic vesicles are a source of NO-releasable Cl- in chick retinal amacrine cells. If SVs are a source of Cl-, then depleting synaptic vesicles should decrease the nitric oxide-dependent shift in the reversal potential of the GABA-gated current. The efficacy of four inhibitors of dynamin (dynasore, Dyngo 4a, Dynole 34-2, and MiTMAB) were evaluated. In order to deplete synaptic vesicles, voltage-steps were used to activate V-gated Ca2+ channels and stimulate the synaptic vesicle cycle either under control conditions or after treatment with the dynamin inhibitors. Voltage-ramps were used to measure the NO-dependent shift in the reversal potential of the GABA-gated currents under both conditions. Our results reveal that activating the synaptic vesicle cycle in the presence of dynasore or Dyngo 4a blocked the NO-dependent shift in EGABA. However, we also discovered that some dynamin inhibitors reduced Ca2+ signaling and L-type Ca2+ currents. Conversely, dynasore also increased neurotransmitter release at autaptic sites. To further resolve the mechanism underlying the inhibition of the NO-dependent shift in the reversal potential for the GABA-gated currents, we also tested the effects of the clathrin assembly inhibitor Pitstop 2 and found that this compound also inhibited the shift. These data provide evidence that dynamin inhibitors have multiple effects on amacrine cell synaptic transmission. These data also suggest that inhibition of endocytosis disrupts the ability of NO to elicit Cl- release from internal stores which may in part be due to depletion of synaptic vesicles.
Collapse
Affiliation(s)
- Vernon K. Dunn
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Evanna Gleason
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| |
Collapse
|
41
|
Owczarek K, Szczepanski A, Milewska A, Baster Z, Rajfur Z, Sarna M, Pyrc K. Early events during human coronavirus OC43 entry to the cell. Sci Rep 2018; 8:7124. [PMID: 29740099 PMCID: PMC5940804 DOI: 10.1038/s41598-018-25640-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/25/2018] [Indexed: 12/23/2022] Open
Abstract
The Coronaviridae family clusters a number of large RNA viruses, which share several structural and functional features. However, members of this family recognize different cellular receptors and exploit different entry routes, what affects their species specificity and virulence. The aim of this study was to determine how human coronavirus OC43 enters the susceptible cell. Using confocal microscopy and molecular biology tools we visualized early events during infection. We found that the virus employs caveolin-1 dependent endocytosis for the entry and the scission of virus-containing vesicles from the cell surface is dynamin-dependent. Furthermore, the vesicle internalization process requires actin cytoskeleton rearrangements. With our research we strove to broaden the understanding of the infection process, which in future may be beneficial for the development of a potential therapeutics.
Collapse
Affiliation(s)
- Katarzyna Owczarek
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387, Krakow, Poland
| | - Artur Szczepanski
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387, Krakow, Poland
| | - Aleksandra Milewska
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387, Krakow, Poland
| | - Zbigniew Baster
- Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Sciences, Jagiellonian University, Lojasiewicza 11, 30-348, Krakow, Poland
| | - Zenon Rajfur
- Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Sciences, Jagiellonian University, Lojasiewicza 11, 30-348, Krakow, Poland
| | - Michal Sarna
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387, Krakow, Poland
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Krzysztof Pyrc
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland.
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387, Krakow, Poland.
| |
Collapse
|
42
|
Nakashima M, Watanabe M, Uchimaru K, Horie R. Trogocytosis of ligand-receptor complex and its intracellular transport in CD30 signalling. Biol Cell 2018; 110:109-124. [DOI: 10.1111/boc.201800002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 01/31/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Makoto Nakashima
- Department of Molecular Hematology; Faculty of Molecular Medical Biology; Graduate School of Medical Sciences; Kitasato University; Minami-ku Sagamihara Kanagawa 252-0374 Japan
- Laboratory of Tumor Cell Biology; Department of Computational Biology and Medical Sciences; Graduate School of Frontier Sciences; University of Tokyo; Minato-ku Tokyo 108-8639 Japan
| | - Mariko Watanabe
- Department of Molecular Hematology; Faculty of Molecular Medical Biology; Graduate School of Medical Sciences; Kitasato University; Minami-ku Sagamihara Kanagawa 252-0374 Japan
- Division of Hematology; Department of Laboratory Sciences; School of Allied Health Sciences; Kitasato University; Minami-ku Sagamihara Kanagawa 252-0373 Japan
| | - Kaoru Uchimaru
- Laboratory of Tumor Cell Biology; Department of Computational Biology and Medical Sciences; Graduate School of Frontier Sciences; University of Tokyo; Minato-ku Tokyo 108-8639 Japan
| | - Ryouichi Horie
- Department of Molecular Hematology; Faculty of Molecular Medical Biology; Graduate School of Medical Sciences; Kitasato University; Minami-ku Sagamihara Kanagawa 252-0374 Japan
- Division of Hematology; Department of Laboratory Sciences; School of Allied Health Sciences; Kitasato University; Minami-ku Sagamihara Kanagawa 252-0373 Japan
| |
Collapse
|
43
|
Takahashi T, Kulkarni NN, Lee EY, Zhang LJ, Wong GCL, Gallo RL. Cathelicidin promotes inflammation by enabling binding of self-RNA to cell surface scavenger receptors. Sci Rep 2018; 8:4032. [PMID: 29507358 PMCID: PMC5838106 DOI: 10.1038/s41598-018-22409-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 02/22/2018] [Indexed: 12/20/2022] Open
Abstract
Under homeostatic conditions the release of self-RNA from dying cells does not promote inflammation. However, following injury or inflammatory skin diseases such as psoriasis and rosacea, expression of the cathelicidin antimicrobial peptide LL37 breaks tolerance to self-nucleic acids and triggers inflammation. Here we report that LL37 enables keratinocytes and macrophages to recognize self-non-coding U1 RNA by facilitating binding to cell surface scavenger receptors that enable recognition by nucleic acid pattern recognition receptors within the cell. The interaction of LL37 with scavenger receptors was confirmed in human psoriatic skin, and the ability of LL37 to stimulate expression of interleukin-6 and interferon-β1 was dependent on a 3-way binding interaction with scavenger receptors and subsequent clathrin-mediated endocytosis. These results demonstrate that the inflammatory activity of LL37 is mediated by a cell-surface-dependent interaction and provides important new insight into mechanisms that drive auto-inflammatory responses in the skin.
Collapse
Affiliation(s)
- Toshiya Takahashi
- Department of Dermatology, University of California, San Diego, La Jolla, CA, 92037, United States
| | - Nikhil Nitin Kulkarni
- Department of Dermatology, University of California, San Diego, La Jolla, CA, 92037, United States
| | - Ernest Y Lee
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, United States
| | - Ling-Juan Zhang
- Department of Dermatology, University of California, San Diego, La Jolla, CA, 92037, United States
| | - Gerard C L Wong
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, United States
| | - Richard L Gallo
- Department of Dermatology, University of California, San Diego, La Jolla, CA, 92037, United States.
| |
Collapse
|
44
|
Yuan M, Yan J, Xun J, Chen C, Zhang Y, Wang M, Chu W, Song Z, Hu Y, Zhang S, Zhang X. Enhanced human enterovirus 71 infection by endocytosis inhibitors reveals multiple entry pathways by enterovirus causing hand-foot-and-mouth diseases. Virol J 2018; 15:1. [PMID: 29298696 PMCID: PMC5751926 DOI: 10.1186/s12985-017-0913-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 12/18/2017] [Indexed: 12/23/2022] Open
Abstract
Background Human enterovirus 71 (EV71) was previously known to enter cells through clathrin or caveolar mediated endocytic pathways. However, we observed chlorpromazine (CPZ) or dynasore (DNS), which inhibit clathrin and dynamin mediated endocytosis, did not suppress EV71 cell entry in particular cell types. So the current knowledge of entry mechanisms by EV71 is not complete. Methods Viral infection was examined by flow cytometry or end-point dilution assays. Viral entry was monitored by immunofluorescence or pseudoviral infections. Various inhibitors were utilized for manipulating endocytic pathways. Cellular proteins were knockdown by siRNA. Results CPZ and DNS did not inhibit but rather enhance viral infection in A549 cells, while they inhibited infections in other cells tested. We further found CPZ did not affect EV71 binding to target cells and failed to affect viral translation and replication, but enhanced viral entry in A549 cells. Immunofluorescence microscopy further confirmed this increased entry. Using siRNA experiment, we found that the enhancement of EV71 infection by CPZ did not require the components of clathrin mediated endocytosis. Finally, CPZ also enhanced infection by Coxackivirus A16 in A549 cells. Conclusions CPZ and DNS, previously reported as EV71 entry inhibitors, may rather lead to increased viral infection in particular cell types. CPZ and DNS increased viral entry and not other steps of viral life cycles. Therefore, our study indicated an unknown dynamin-independent entry pathway utilized by enteroviruses that cause Hand-Foot-and-Mouth Diseases. Electronic supplementary material The online version of this article (10.1186/s12985-017-0913-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Meichun Yuan
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jingjing Yan
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jingna Xun
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Chong Chen
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yuling Zhang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Min Wang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Wenqi Chu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zhigang Song
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yunwen Hu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Shuye Zhang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China. .,Key Laboratory of Medical Molecular Virology of Ministries of Education/Health, Institute of Medical Microbiology, Shanghai Medical College of Fudan University, Shanghai, China. .,Department of Scientific Research, Shanghai Emerging and Re-emerging infectious Diseases Institute, 2901 Caolang Road, Jin-Shan District, Shanghai, 201508, People's Republic of China.
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China. .,Department of Scientific Research, Shanghai Emerging and Re-emerging infectious Diseases Institute, 2901 Caolang Road, Jin-Shan District, Shanghai, 201508, People's Republic of China.
| |
Collapse
|
45
|
Joensuu M, Martínez-Mármol R, Padmanabhan P, Glass NR, Durisic N, Pelekanos M, Mollazade M, Balistreri G, Amor R, Cooper-White JJ, Goodhill GJ, Meunier FA. Visualizing endocytic recycling and trafficking in live neurons by subdiffractional tracking of internalized molecules. Nat Protoc 2017; 12:2590-2622. [PMID: 29189775 DOI: 10.1038/nprot.2017.116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Our understanding of endocytic pathway dynamics is restricted by the diffraction limit of light microscopy. Although super-resolution techniques can overcome this issue, highly crowded cellular environments, such as nerve terminals, can also dramatically limit the tracking of multiple endocytic vesicles such as synaptic vesicles (SVs), which in turn restricts the analytical dissection of their discrete diffusional and transport states. We recently introduced a pulse-chase technique for subdiffractional tracking of internalized molecules (sdTIM) that allows the visualization of fluorescently tagged molecules trapped in individual signaling endosomes and SVs in presynapses or axons with 30- to 50-nm localization precision. We originally developed this approach for tracking single molecules of botulinum neurotoxin type A, which undergoes activity-dependent internalization and retrograde transport in autophagosomes. This method was then adapted to localize the signaling endosomes containing cholera toxin subunit-B that undergo retrograde transport in axons and to track SVs in the crowded environment of hippocampal presynapses. We describe (i) the construction of a custom-made microfluidic device that enables control over neuronal orientation; (ii) the 3D printing of a perfusion system for sdTIM experiments performed on glass-bottom dishes; (iii) the dissection, culturing and transfection of hippocampal neurons in microfluidic devices; and (iv) guidance on how to perform the pulse-chase experiments and data analysis. In addition, we describe the use of single-molecule-tracking analytical tools to reveal the average and the heterogeneous single-molecule mobility behaviors. We also discuss alternative reagents and equipment that can, in principle, be used for sdTIM experiments and describe how to adapt sdTIM to image nanocluster formation and/or tubulation in early endosomes during sorting events. The procedures described in this protocol take ∼1 week.
Collapse
Affiliation(s)
- Merja Joensuu
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia.,Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Ramon Martínez-Mármol
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Pranesh Padmanabhan
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Nick R Glass
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Nela Durisic
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Matthew Pelekanos
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Mahdie Mollazade
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Giuseppe Balistreri
- Division of General Microbiology, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Rumelo Amor
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Justin J Cooper-White
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia.,Division of General Microbiology, Department of Biosciences, University of Helsinki, Helsinki, Finland.,School of Chemical Engineering, The University of Queensland, Brisbane, Queensland, Australia.,Materials Science and Engineering Division, CSIRO, Clayton, Victoria, Australia.,UQ Centre for Stem Cell Ageing and Regenerative Engineering, The University of Queensland, Brisbane, Queensland, Australia
| | - Geoffrey J Goodhill
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia.,School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland, Australia
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
46
|
Boesze-Battaglia K, Walker LP, Dhingra A, Kandror K, Tang HY, Shenker BJ. Internalization of the Active Subunit of the Aggregatibacter actinomycetemcomitans Cytolethal Distending Toxin Is Dependent upon Cellugyrin (Synaptogyrin 2), a Host Cell Non-Neuronal Paralog of the Synaptic Vesicle Protein, Synaptogyrin 1. Front Cell Infect Microbiol 2017; 7:469. [PMID: 29184850 PMCID: PMC5694546 DOI: 10.3389/fcimb.2017.00469] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/25/2017] [Indexed: 12/17/2022] Open
Abstract
The Aggregatibacter actinomycetemcomitans cytolethal distending toxin (Cdt) is a heterotrimeric AB2 toxin capable of inducing lymphocytes, and other cell types, to undergo cell cycle arrest and apoptosis. Exposure to Cdt results in binding to the cell surface followed by internalization and translocation of the active subunit, CdtB, to intracellular compartments. These events are dependent upon toxin binding to cholesterol in the context of lipid rich membrane microdomains often referred to as lipid rafts. We now demonstrate that, in addition to binding to the plasma membrane of lymphocytes, another early and critical event initiated by Cdt is the translocation of the host cell protein, cellugyrin (synaptogyrin-2) to the same cholesterol-rich microdomains. Furthermore, we demonstrate that cellugyrin is an intracellular binding partner for CdtB as demonstrated by immunoprecipitation. Using CRISPR/cas9 gene editing we established a Jurkat cell line deficient in cellugyrin expression (JurkatCg−); these cells were capable of binding Cdt, but unable to internalize CdtB. Furthermore, JurkatCg− cells were not susceptible to Cdt-induced toxicity; these cells failed to exhibit blockade of the PI-3K signaling pathway, cell cycle arrest or cell death. We propose that cellugyrin plays a critical role in the internalization and translocation of CdtB to critical intracellular target sites. These studies provide critical new insight into the mechanism by which Cdt, and in particular, CdtB is able to induce toxicity.
Collapse
Affiliation(s)
- Kathleen Boesze-Battaglia
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Lisa P Walker
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Anuradha Dhingra
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Konstantin Kandror
- Department of Biochemistry, School of Medicine, Boston University, Boston, MA, United States
| | - Hsin-Yao Tang
- Wistar Proteomics and Metabolomics Core Facility, Wistar Institute, Philadelphia, PA, United States
| | - Bruce J Shenker
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
47
|
Gormal R, Valmas N, Fath T, Meunier F. A role for tropomyosins in activity-dependent bulk endocytosis? Mol Cell Neurosci 2017; 84:112-118. [PMID: 28545680 DOI: 10.1016/j.mcn.2017.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 04/06/2017] [Accepted: 04/11/2017] [Indexed: 02/06/2023] Open
Abstract
Bulk endocytosis allows stimulated neurons to take up a large portion of the presynaptic plasma membrane in order to regenerate synaptic vesicle pools. Actin, one of the most abundant proteins in eukaryotic cells, plays an important role in this process, but a detailed mechanistic understanding of the involvement of the cortical actin network is still lacking, in part due to the relatively small size of nerve terminals and the limitation of optical microscopy. We recently discovered that neurosecretory cells display a similar, albeit much larger, form of bulk endocytosis in response to secretagogue stimulation. This allowed us to identify a novel highly dynamic role for the acto-myosin II cortex in generating constricting rings that precede the fission of nascent bulk endosomes. In this review we focus on the mechanism underpinning this dramatic switch in the organization and function of the cortical actin network. We provide additional experimental data that suggest a role of tropomyosin Tpm3.1 and Tpm4.2 in this process, together with an emerging model of how actin controls bulk endocytosis.
Collapse
Affiliation(s)
- Rachel Gormal
- The University of Queensland, Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, Brisbane, Queensland 4072, Australia
| | - Nicholas Valmas
- The University of Queensland, Queensland Brain Institute, Brisbane, Queensland 4072, Australia
| | - Thomas Fath
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Frederic Meunier
- The University of Queensland, Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
48
|
Foster SR, Bräuner-Osborne H. Investigating Internalization and Intracellular Trafficking of GPCRs: New Techniques and Real-Time Experimental Approaches. Handb Exp Pharmacol 2017; 245:41-61. [PMID: 29018878 DOI: 10.1007/164_2017_57] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The ability to regulate the interaction between cells and their extracellular environment is essential for the maintenance of appropriate physiological function. For G protein-coupled receptors (GPCRs), this regulation occurs through multiple mechanisms that provide spatial and temporal control for signal transduction. One of the major mechanisms for GPCR regulation involves their endocytic trafficking, which serves to internalize the receptors from the plasma membrane and thereby attenuate G protein-dependent signaling. However, there is accumulating evidence to suggest that GPCRs can signal independently of G proteins, as well as from intracellular compartments including endosomes. It is in this context that receptor internalization and intracellular trafficking have attracted renewed interest within the GPCR field. In this chapter, we will review the current understanding and methodologies that have been used to investigate internalization and intracellular signaling of GPCRs, with a particular focus on emerging real-time techniques. These recent developments have improved our understanding of the complexities of GPCR internalization and intracellular signaling and suggest that the broader biological relevance and potential therapeutic implications of these processes remain to be explored.
Collapse
Affiliation(s)
- Simon R Foster
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
| |
Collapse
|
49
|
Odell LR, Abdel-Hamid MK, Hill TA, Chau N, Young KA, Deane FM, Sakoff JA, Andersson S, Daniel JA, Robinson PJ, McCluskey A. Pyrimidine-Based Inhibitors of Dynamin I GTPase Activity: Competitive Inhibition at the Pleckstrin Homology Domain. J Med Chem 2016; 60:349-361. [DOI: 10.1021/acs.jmedchem.6b01422] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Luke R. Odell
- Chemistry,
School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Mohammed K. Abdel-Hamid
- Chemistry,
School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Timothy A. Hill
- Chemistry,
School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Ngoc Chau
- Children’s
Medical Research Institute, The University of Sydney, 214 Hawkesbury
Road, Westmead New South
Wales 2145, Australia
| | - Kelly A. Young
- Chemistry,
School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Fiona M. Deane
- Chemistry,
School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Jennette A. Sakoff
- Experimental
Therapeutics Group, Department of Medical Oncology, Calvary Mater Newcastle Hospital, Edith Street, Waratah, 2298, New South Wales Australia
| | - Sofia Andersson
- Department
of Biology and Chemical Engineering, Mälardalens University, Box 325, S-631
05, Eskilstuna, Sweden
| | - James A. Daniel
- Children’s
Medical Research Institute, The University of Sydney, 214 Hawkesbury
Road, Westmead New South
Wales 2145, Australia
| | - Phillip J. Robinson
- Children’s
Medical Research Institute, The University of Sydney, 214 Hawkesbury
Road, Westmead New South
Wales 2145, Australia
| | - Adam McCluskey
- Chemistry,
School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| |
Collapse
|
50
|
Robertson MJ, Horatscheck A, Sauer S, von Kleist L, Baker JR, Stahlschmidt W, Nazaré M, Whiting A, Chau N, Robinson PJ, Haucke V, McCluskey A. 5-Aryl-2-(naphtha-1-yl)sulfonamido-thiazol-4(5H)-ones as clathrin inhibitors. Org Biomol Chem 2016; 14:11266-11278. [PMID: 27853797 DOI: 10.1039/c6ob02308h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of a (Z)-5-((6,8-dichloro-4-oxo-4H-chromen-3-yl)methylene)-2-thioxothiazolidin-4-one (2), rhodanine-based lead that led to the Pitstop® 2 family of clathrin inhibitors is described herein. Head group substitution and bioisosteric replacement of the rhodanine core with a 2-aminothiazol-4(5H)-one scaffold eliminated off target dynamin activity. A series of N-substituents gave first phenylglycine (20, IC50 ∼ 20 μM) then phenyl (25, IC50 ∼ 7.1 μM) and 1-napthyl sulfonamide (26, Pitstop® 2 compound, IC50 ∼ 1.9 μM) analogues with good activity, validating this approach. A final library exploring the head group resulted in three analogues displaying either slight improvements or comparable activity (33, 38, and 29 with IC50 ∼ 1.4, 1.6 and 1.8 μM respectively) and nine others with IC50 < 10 μM. These results were rationalized using in silico docking studies. Docking studies predicted enhanced Pitstop® 2 family binding, not a loss of binding, within the Pistop® groove of the reported clathrin mutant invalidating recent assumptions of poor selectivity for this family of clathrin inhibitors.
Collapse
Affiliation(s)
- Mark J Robertson
- Chemistry, Priority Research Centre for Chemical Biology, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.
| | - André Horatscheck
- Leibniz Institut für Molekulare Pharmakologie & Freie Universität Berlin, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Samantha Sauer
- Chemistry, Priority Research Centre for Chemical Biology, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.
| | - Lisa von Kleist
- Leibniz Institut für Molekulare Pharmakologie & Freie Universität Berlin, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Jennifer R Baker
- Chemistry, Priority Research Centre for Chemical Biology, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.
| | - Wiebke Stahlschmidt
- Leibniz Institut für Molekulare Pharmakologie & Freie Universität Berlin, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Marc Nazaré
- Leibniz Institut für Molekulare Pharmakologie & Freie Universität Berlin, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Ainslie Whiting
- Cell Signaling Unit, Children's Medical Research Institute, The University of Sydney, Sydney, NSW 2145, Australia
| | - Ngoc Chau
- Cell Signaling Unit, Children's Medical Research Institute, The University of Sydney, Sydney, NSW 2145, Australia
| | - Phillip J Robinson
- Cell Signaling Unit, Children's Medical Research Institute, The University of Sydney, Sydney, NSW 2145, Australia
| | - Volker Haucke
- Leibniz Institut für Molekulare Pharmakologie & Freie Universität Berlin, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Adam McCluskey
- Chemistry, Priority Research Centre for Chemical Biology, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.
| |
Collapse
|