1
|
Danesh Yazdi M, Sonntag A, Kosheleva A, Nassan FL, Wang C, Xu Z, Wu H, Laurent LC, DeHoff P, Comfort NT, Vokonas P, Wright R, Weisskopf M, Baccarelli AA, Schwartz JD. The association between toenail metals and extracellular MicroRNAs (ex-miRNAs) among the participants of the Normative Aging study (NAS). ENVIRONMENTAL RESEARCH 2024; 261:119761. [PMID: 39122161 DOI: 10.1016/j.envres.2024.119761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/22/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Mechanistic studies of the effects of environmental risk factors have been exploring the potential role of microRNA(miRNAs) as a possible pathway to clinical disease. In this study we examine whether levels of toenail metals are associated with changes in extracellular miRNA(ex-miRNA) expression. METHODS We used data derived from the Normative Aging Study from 1996 to 2014 to conduct our analyses. We looked at associations between measured toenail metals: arsenic, cadmium, lead, manganese, and mercury and 282 ex-miRNAs in this population using canonical correlation analyses (CCAs) and longitudinal median regression. We adjusted for covariates such as age, education, body mass index, drinking and smoking behaviors, diabetes, and where available, seafood consumption. The p-values obtained from regression analyses were corrected for multiple comparisons. Ex-miRNAs identified to be associated with toenail metal levels were further examined using pathway analyses. RESULTS Our dataset included 937 observations from 589 men with an average age of 72.9 years at baseline. Both our correlation and regression analyses identified lead and cadmium as exposures most strongly associated with ex-miRNA expression. Numerous ex-miRNAs were identified as being associated with toenail metal levels. miR-27b-3p, in particular, was found to have high correlation with the first canonical dimension in the CCA and was significantly associated with cadmium in the regression analysis. Pathway analyses revealed messenger RNA (mRNA) targets for the ex-miRNAs that were associated with a number of clinical disorders including cancer, cardiovascular disease, and neurological disorders, etc. CONCLUSION: Toenail metals were associated with changes in ex-miRNA levels in both correlational and regression analyses. The ex-miRNAs identified can be linked to a variety of clinical disorders. Further studies are required to validate these findings.
Collapse
Affiliation(s)
- Mahdieh Danesh Yazdi
- Program in Public Health, Department of Family, Population, and Preventive Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA.
| | - Allison Sonntag
- Program in Public Health, Department of Family, Population, and Preventive Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Anna Kosheleva
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Feiby L Nassan
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Cuicui Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Zongli Xu
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Haotian Wu
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY, USA
| | - Louise C Laurent
- Department of Obstetrics, Gynecology, & Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Peter DeHoff
- Department of Obstetrics, Gynecology, & Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Nicole T Comfort
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY, USA
| | - Pantel Vokonas
- VA Normative Aging Study, Department of Veterans Affairs, Boston, MA, USA; Department of Medicine, Chobanian and Avidisian School of Medicine, Boston University, Boston, MA, USA
| | - Robert Wright
- Institute for Exposomic Research, Mount Sinai School of Medicine, New York, NY, USA
| | - Marc Weisskopf
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Joel D Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
2
|
Yu SL, Koo H, Kang Y, Jeon HJ, Kang M, Choi DH, Lee SY, Son JW, Lee DC. Exosomal miR-196b secreted from bronchial epithelial cells chronically exposed to low-dose PM 2.5 promotes invasiveness of adjacent and lung cancer cells. Toxicol Lett 2024; 399:9-18. [PMID: 38971455 DOI: 10.1016/j.toxlet.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 06/14/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Fine particulate matter (PM2.5) is a risk factor for pulmonary diseases and lung cancer, and inhaled PM2.5 is mainly deposited in the bronchial epithelium. In this study, we investigated the effect of long-term exposure to low-dose PM2.5 on BEAS-2B cells derived from the normal bronchial epithelium. BEAS-2B cells chronically exposed to a concentration of 5 µg/ml PM2.5 for 30 passages displayed the phenotype promoting epithelial-mesenchymal transition (EMT) and cell invasion. Cellular internalization of exosomes (designated PM2.5 Exo) extracted from BEAS-2B cells chronically exposed to low-dose PM2.5 promoted cell invasion in vitro and metastatic potential in vivo. Hence, to identify the key players driving phenotypic alterations, we analyzed microRNA (miRNA) expression profiles in PM2.5 Exo. Five miRNAs with altered expression were selected: miRNA-196b-5p, miR-135a-2-5p, miR-3117-3p, miR-218-5p, and miR-497-5p. miR-196b-5p was the most upregulated in both BEAS-2B cells and isolated exosomes after PM2.5 exposure. In a functional validation study, genetically modified exosomes overexpressing a miR-196b-5p mimic induced an enhanced invasive phenotype in BEAS-2B cells. Conversely, miR-196b-5p inhibition diminished the PM2.5-enhanced EMT and cell invasion. These findings indicate that exosomal miR-196b-5p may be a candidate biomarker for predicting the malignant behavior of the bronchial epithelium and a therapeutic target for inhibiting PM2.5-triggered pathogenesis.
Collapse
Affiliation(s)
- Seong-Lan Yu
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea.
| | - Han Koo
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Yujin Kang
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Hye Jin Jeon
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Minho Kang
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Dong Hee Choi
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Su Yel Lee
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Ji Woong Son
- Division Pulmonology, Department of Internal Medicine, Konyang, University Hospital, Daejeon 35365, Republic of Korea
| | - Dong Chul Lee
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34141, Republic of Korea.
| |
Collapse
|
3
|
Marchini T. Redox and inflammatory mechanisms linking air pollution particulate matter with cardiometabolic derangements. Free Radic Biol Med 2023; 209:320-341. [PMID: 37852544 DOI: 10.1016/j.freeradbiomed.2023.10.396] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/27/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
Air pollution is the largest environmental risk factor for disease and premature death. Among the different components that are present in polluted air, fine particulate matter below 2.5 μm in diameter (PM2.5) has been identified as the main hazardous constituent. PM2.5 mainly arises from fossil fuel combustion during power generation, industrial processes, and transportation. Exposure to PM2.5 correlates with enhanced mortality risk from cardiovascular diseases (CVD), such as myocardial infarction and stroke. Over the last decade, it has been increasingly suggested that PM2.5 affects CVD already at the stage of risk factor development. Among the multiple biological mechanisms that have been described, the interplay between oxidative stress and inflammation has been consistently highlighted as one of the main drivers of pulmonary, systemic, and cardiovascular effects of PM2.5 exposure. In this context, PM2.5 uptake by tissue-resident immune cells in the lung promotes oxidative and inflammatory mediators release that alter tissue homeostasis at remote locations. This pathway is central for PM2.5 pathogenesis and might account for the accelerated development of risk factors for CVD, including obesity and diabetes. However, transmission and end-organ mechanisms that explain PM2.5-induced impaired function in metabolic active organs are not completely understood. In this review, the main features of PM2.5 physicochemical characteristics related to PM2.5 ability to induce oxidative stress and inflammation will be presented. Hallmark and recent epidemiological and interventional studies will be summarized and discussed in the context of current air quality guidelines and legislation, knowledge gaps, and inequities. Lastly, mechanistic studies at the intersection between redox metabolism, inflammation, and function will be discussed, with focus on heart and adipose tissue alterations. By offering an integrated analysis of PM2.5-induced effects on cardiometabolic derangements, this review aims to contribute to a better understanding of the pathogenesis and potential interventions of air pollution-related CVD.
Collapse
Affiliation(s)
- Timoteo Marchini
- Vascular Immunology Laboratory, Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany; Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular Prof. Alberto Boveris (IBIMOL), Facultad de Farmacia y Bioquímica, C1113AAD, Buenos Aires, Argentina.
| |
Collapse
|
4
|
Monti P, Solazzo G, Bollati V. Effect of environmental exposures on cancer risk: Emerging role of non-coding RNA shuttled by extracellular vesicles. ENVIRONMENT INTERNATIONAL 2023; 181:108255. [PMID: 37839267 DOI: 10.1016/j.envint.2023.108255] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/11/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
Environmental and lifestyle exposures have a huge impact on cancer risk; nevertheless, the biological mechanisms underlying this association remain poorly understood. Extracellular vesicles (EVs) are membrane-enclosed particles actively released by all living cells, which play a key role in intercellular communication. EVs transport a variegate cargo of biomolecules, including non-coding RNA (ncRNA), which are well-known regulators of gene expression. Once delivered to recipient cells, EV-borne ncRNAs modulate a plethora of cancer-related biological processes, including cell proliferation, differentiation, and motility. In addition, the ncRNA content of EVs can be altered in response to outer stimuli. Such changes can occur either as an active attempt to adapt to the changing environment or as an uncontrolled consequence of cell homeostasis loss. In either case, such environmentally-driven alterations in EV ncRNA might affect the complex crosstalk between malignant cells and the tumor microenvironment, thus modulating the risk of cancer initiation and progression. In this review, we summarize the current knowledge about EV ncRNAs at the interface between environmental and lifestyle determinants and cancer. In particular, we focus on the effect of smoking, air and water pollution, diet, exercise, and electromagnetic radiation. In addition, we have conducted a bioinformatic analysis to investigate the biological functions of the genes targeted by environmentally-regulated EV microRNAs. Overall, we draw a comprehensive picture of the role of EV ncRNA at the interface between external factors and cancer, which could be of great interest to the development of novel strategies for cancer prevention, diagnosis, and therapy.
Collapse
Affiliation(s)
- Paola Monti
- EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giulia Solazzo
- EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Valentina Bollati
- EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; CRC, Center for Environmental Health, University of Milan, Milan, Italy; Occupational Health Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
5
|
Danesh Yazdi M, Nassan FL, Kosheleva A, Wang C, Xu Z, Di Q, Requia WJ, Comfort NT, Wu H, Laurent LC, DeHoff P, Vokonas P, Baccarelli AA, Schwartz JD. Intermediate and long-term exposure to air pollution and temperature and the extracellular microRNA profile of participants in the normative aging study (NAS). ENVIRONMENTAL RESEARCH 2023; 229:115949. [PMID: 37084943 PMCID: PMC10335853 DOI: 10.1016/j.envres.2023.115949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/27/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND The molecular effects of intermediate and long-term exposure to air pollution and temperature, such as those on extracellular microRNA (ex-miRNA) are not well understood but may have clinical consequences. OBJECTIVES To assess the association between exposure to ambient air pollution and temperature and ex-miRNA profiles. METHODS Our study population consisted of 734 participants in the Normative Aging Study (NAS) between 1999 and 2015. We used high-resolution models to estimate four-week, eight-week, twelve-week, six-month, and one-year moving averages of PM2.5, O3, NO2, and ambient temperature based on geo-coded residential addresses. The outcome of interest was the extracellular microRNA (ex-miRNA) profile of each participant over time. We used a longitudinal quantile regression approach to estimate the association between the exposures and each ex-miRNA. Results were corrected for multiple comparisons and ex-miRNAs that were still significantly associated with the exposures were further analyzed using KEGG pathway analysis and Ingenuity Pathway Analysis. RESULTS We found 151 significant associations between levels of PM2.5, O3, NO2, and ambient temperature and 82 unique ex-miRNAs across multiple quantiles. Most of the significant results were associations with intermediate-term exposure to O3, long-term exposure to PM2.5, and both intermediate and long-term exposure to ambient temperature. The exposures were most often associated with the 75th and 90th percentile of the outcomes. Pathway analyses of significant ex-miRNAs revealed their involvement in biological pathways involving cell function and communication as well as clinical diseases such as cardiovascular disease, respiratory disease, and neurological disease. CONCLUSION Our results show that intermediate and long-term exposure to all our exposures of interest were associated with changes in the ex-miRNA profile of study participants. Further studies on environmental risk factors and ex-miRNAs are warranted.
Collapse
Affiliation(s)
- Mahdieh Danesh Yazdi
- Program in Public Health, Department of Family, Population, and Preventive Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA; Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA.
| | - Feiby L Nassan
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA; Biogen Inc, Cambridge, MA, USA
| | - Anna Kosheleva
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Cuicui Wang
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Zongli Xu
- Laboratory of Molecular Carcinogenesis and Biostatistics Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Qian Di
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Weeberb J Requia
- School of Public Policy and Government, Fundação Getúlio Vargas, Brasília, Distrito Federal, Brazil
| | - Nicole T Comfort
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY, USA
| | - Haotian Wu
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY, USA
| | - Louise C Laurent
- Department of Obstetrics, Gynecology, & Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Peter DeHoff
- Department of Obstetrics, Gynecology, & Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Pantel Vokonas
- Department of Veterans Affairs, Boston, MA, USA; Department of Medicine, Boston University Chobanian and Avidisian School of Medicine, Boston, MA, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY, USA
| | - Joel D Schwartz
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
6
|
D’Amico G, Santonocito R, Vitale AM, Scalia F, Marino Gammazza A, Campanella C, Bucchieri F, Cappello F, Caruso Bavisotto C. Air Pollution: Role of Extracellular Vesicles-Derived Non-Coding RNAs in Environmental Stress Response. Cells 2023; 12:1498. [PMID: 37296619 PMCID: PMC10252408 DOI: 10.3390/cells12111498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/17/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
Air pollution has increased over the years, causing a negative impact on society due to the many health-related problems it can contribute to. Although the type and extent of air pollutants are known, the molecular mechanisms underlying the induction of negative effects on the human body remain unclear. Emerging evidence suggests the crucial involvement of different molecular mediators in inflammation and oxidative stress in air pollution-induced disorders. Among these, non-coding RNAs (ncRNAs) carried by extracellular vesicles (EVs) may play an essential role in gene regulation of the cell stress response in pollutant-induced multiorgan disorders. This review highlights EV-transported ncRNAs' roles in physiological and pathological conditions, such as the development of cancer and respiratory, neurodegenerative, and cardiovascular diseases following exposure to various environmental stressors.
Collapse
Affiliation(s)
- Giuseppa D’Amico
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
| | - Radha Santonocito
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
| | - Alessandra Maria Vitale
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Federica Scalia
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Antonella Marino Gammazza
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
| | - Claudia Campanella
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
| | - Fabio Bucchieri
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
| | - Francesco Cappello
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Celeste Caruso Bavisotto
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| |
Collapse
|
7
|
Been T, Alakhtar B, Traboulsi H, Tsering T, Bartolomucci A, Heimbach N, Paoli S, Burnier J, Mann KK, Eidelman DH, Baglole CJ. Chronic low-level JUUL aerosol exposure causes pulmonary immunologic, transcriptomic, and proteomic changes. FASEB J 2023; 37:e22732. [PMID: 36694994 DOI: 10.1096/fj.202201392r] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/18/2022] [Accepted: 12/14/2022] [Indexed: 01/26/2023]
Abstract
E-cigarettes currently divide public opinion, with some considering them a useful tool for smoking cessation and while others are concerned with potentially adverse health consequences. However, it may take decades to fully understand the effects of e-cigarette use in humans given their relative newness on the market. This highlights the need for comprehensive preclinical studies investigating the effects of e-cigarette exposure on health outcomes. Here, we investigated the impact of chronic, low-level JUUL aerosol exposure on multiple lung outcomes. JUUL is a brand of e-cigarettes popular with youth and young adults. To replicate human exposures, 8- to 12-week-old male and female C57BL/6J mice were exposed to commercially available JUUL products (containing 59 mg/ml nicotine). Mice were exposed to room air, PG/VG, or JUUL daily for 4 weeks. After the exposure period, inflammatory markers were assessed via qRT-PCR, multiplex cytokine assays, and differential cell count. Proteomic and transcriptomic analyses were also performed on samples isolated from the lavage of the lungs; this included unbiased analysis of proteins contained within extracellular vesicles (EVs). Mice exposed to JUUL aerosols for 4 weeks had significantly increased neutrophil and lymphocyte populations in the BAL and some changes in cytokine mRNA expression. However, BAL cytokines did not change. Proteomic and transcriptomic analysis revealed significant changes in numerous biological pathways including neutrophil degranulation, PPAR signaling, and xenobiotic metabolism. Thus, e-cigarettes are not inert and can cause significant cellular and molecular changes in the lungs.
Collapse
Affiliation(s)
- Terek Been
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada.,Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Bayan Alakhtar
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Hussein Traboulsi
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Thupten Tsering
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Department of Pathology, McGill University, Montreal, Quebec, Canada
| | - Alexandra Bartolomucci
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Department of Pathology, McGill University, Montreal, Quebec, Canada
| | - Nicole Heimbach
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada.,Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Sofia Paoli
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada.,Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Julia Burnier
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Department of Pathology, McGill University, Montreal, Quebec, Canada
| | - Koren K Mann
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada.,Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - David H Eidelman
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Carolyn J Baglole
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada.,Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada.,Department of Pathology, McGill University, Montreal, Quebec, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Carberry CK, Rager JE. The impact of environmental contaminants on extracellular vesicles and their key molecular regulators: A literature and database-driven review. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2023; 64:50-66. [PMID: 36502378 PMCID: PMC10798145 DOI: 10.1002/em.22522] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Exposure to environmental chemicals is now well recognized as a significant factor contributing to the global burden of disease; however, there remain critical gaps in understanding the types of biological mechanisms that link environmental chemicals to adverse health outcomes. One type of mechanism that remains understudied involves extracellular vesicles (EVs), representing small cell-derived particles capable of carrying molecular signals such as RNAs, miRNAs, proteins, lipids, and chemicals through biological fluids and imparting beneficial, neutral, or negative effects on target cells. In fact, evidence is just now starting to grow that supports the role of EVs in various disease etiologies. This review aims to (1) Provide a landscape of the current understanding of the functional relationship between EVs and environmental chemicals; (2) Summarize current knowledge of EV regulatory processes including production, packaging, and release; and (3) Conduct a database-driven analysis of known chemical-gene interactions to predict and prioritize environmentally relevant chemicals that may impact EV regulatory genes and thus EV regulatory processes. This approach to predicting environmentally relevant chemicals that may alter EVs provides a novel method for evidence-based hypothesis generation for future studies evaluating the link between environmental exposures and EVs.
Collapse
Affiliation(s)
- Celeste K. Carberry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Julia E. Rager
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Curriculum in Toxicology and Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
9
|
Danesh Yazdi M, Nassan FL, Kosheleva A, Wang C, Xu Z, Di Q, Requia WJ, Comfort NT, Wu H, Laurent LC, DeHoff P, Vokonas P, Baccarelli AA, Schwartz JD. Short-term air pollution and temperature exposure and changes in the extracellular microRNA profile of Normative Aging Study (NAS) participants. ENVIRONMENT INTERNATIONAL 2023; 171:107735. [PMID: 36640488 PMCID: PMC10159015 DOI: 10.1016/j.envint.2023.107735] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 05/06/2023]
Abstract
BACKGROUND While the health effects of air pollution and temperature are widely studied, the molecular effects are poorly understood. Extracellular microRNAs (ex-miRNAs) have the potential to serve as diagnostic or prognostic biomarkers and/or to act as intercellular signaling molecules that mediate the effects of environmental exposures on health outcomes. METHODS We examined the relationship between short-term exposure to air pollution and ambient temperature and the ex-miRNA profiles of participants in the Normative Aging Study (NAS) from 1999 to 2015. Our exposures were defined as same-day, two-day, three-day, one-week, two-week, and three-week moving averages of PM2.5, NO2, O3, and temperature which were derived from high-resolution spatio-temporal models. The ex-miRNA profiles of the subjects were obtained during follow-up visits. We analyzed the data using a longitudinal quantile regression model adjusted for individual covariates, batch effects, and time trends. We adjusted for multiple comparisons using a false discovery rate (FDR) correction. Ex-miRNAs that were significantly associated with exposures were further investigated using pathway analyses. RESULTS We found that all the examined exposures were associated with changes in ex-miRNA profiles in our study, particularly PM2.5 which was responsible for most of the statistically significant results. We found 110 statistically significant exposure-outcome relationships that revealed associations with the levels of 52 unique ex-miRNAs. Pathway analyses showed these ex-miRNAs have been linked to target mRNAs, genes, and biological mechanisms that could affect virtually every organ system, and as such may be linked to multiple clinical disease presentations such as cardiovascular disease, respiratory disease, and neurological disease. CONCLUSIONS Air pollution and temperature exposures were significantly associated with alterations in the ex-miRNA profiles of NAS subjects with possible biological consequences.
Collapse
Affiliation(s)
- Mahdieh Danesh Yazdi
- Program in Public Health, Department of Family, Population, and Preventive Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA; Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA.
| | - Feiby L Nassan
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA; Biogen Inc, Cambridge, MA, USA
| | - Anna Kosheleva
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Cuicui Wang
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Zongli Xu
- Laboratory of Molecular Carcinogenesis and Biostatistics Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Qian Di
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Weeberb J Requia
- School of Public Policy and Government, Fundação Getúlio Vargas, Brasília, Distrito Federal, Brazil
| | - Nicole T Comfort
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY, USA
| | - Haotian Wu
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY, USA
| | - Louise C Laurent
- Department of Obstetrics, Gynecology, & Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Peter DeHoff
- Department of Obstetrics, Gynecology, & Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Pantel Vokonas
- Department of Veterans Affairs, Boston, MA, USA; Department of Medicine, Boston University Chobanian and Avidisian School of Medicine, Boston, MA, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY, USA
| | - Joel D Schwartz
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
10
|
He Y, Wu Q. The Effect of Extracellular Vesicles on Thrombosis. J Cardiovasc Transl Res 2022:10.1007/s12265-022-10342-w. [DOI: 10.1007/s12265-022-10342-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022]
Abstract
Abstract
The risk of cardiovascular events caused by acute thrombosis is high, including acute myocardial infarction, acute stroke, acute pulmonary embolism, and deep vein thrombosis. In this review, we summarize the roles of extracellular vesicles of different cellular origins in various cardiovascular events associated with acute thrombosis, as described in the current literature, to facilitate the future development of a precise therapy for thrombosis caused by such vesicles. We hope that our review will indicate a new horizon in the field of cardiovascular research with regard to the treatment of acute thrombosis, especially targeting thrombosis caused by extracellular vesicles secreted by individual cells. As more emerging technologies are being developed, new diagnostic and therapeutic strategies related to EVs are expected to be identified for related diseases in the future.
Collapse
|
11
|
Eckhardt CM, Baccarelli AA, Wu H. Environmental Exposures and Extracellular Vesicles: Indicators of Systemic Effects and Human Disease. Curr Environ Health Rep 2022; 9:465-476. [PMID: 35449498 PMCID: PMC9395256 DOI: 10.1007/s40572-022-00357-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2022] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW Environmental pollutants contribute to the pathogenesis of numerous diseases including chronic cardiovascular, respiratory, and neurodegenerative diseases, among others. Emerging evidence suggests that extracellular vesicles (EVs) may mediate the association of environmental exposures with chronic diseases. The purpose of this review is to describe the impact of common environmental exposures on EVs and their role in linking environmental pollutants to the pathogenesis of chronic systemic diseases. RECENT FINDINGS Common environmental pollutants including particulate matter, tobacco smoke, and chemical pollutants trigger the release of EVs from multiple systems in the body. Existing research has focused primarily on air pollutants, which alter EV production and release in the lungs and systemic circulation. Air pollutants also impact the selective loading of EV cargo including microRNA and proteins, which modify the cellular function in recipient cells. As a result, pollutant-induced EVs often contribute to a pro-inflammatory and pro-thrombotic milieu, which increases the risk of pollutant-related diseases including obstructive lung diseases, cardiovascular disease, neurodegenerative diseases, and lung cancer. Common environmental exposures are associated with multifaceted changes in EVs that lead to functional alterations in recipient cells and contribute to the pathogenesis of chronic systemic diseases. EVs may represent emerging targets for the prevention and treatment of diseases that stem from environmental exposures. However, novel research is required to expand our knowledge of the biological action of EV cargo, elucidate determinants of EV release, and fully understand the impact of environmental pollutants on human health.
Collapse
Affiliation(s)
- Christina M Eckhardt
- Division of Pulmonary, Allergy and Critical, Care Medicine, Department of Medicine, Columbia University Irving Medical Center, 630 West 168th Street, Floor 8, Suite 101, New York, NY, 10032, USA
| | - Andrea A Baccarelli
- Environmental Health Sciences Department, Columbia University Mailman School of Public Health, 630 West 168th Street, Room 16-416, New York, NY, 10032, USA
| | - Haotian Wu
- Environmental Health Sciences Department, Columbia University Mailman School of Public Health, 630 West 168th Street, Room 16-416, New York, NY, 10032, USA.
| |
Collapse
|
12
|
Carberry CK, Koval LE, Payton A, Hartwell H, Ho Kim Y, Smith GJ, Reif DM, Jaspers I, Ian Gilmour M, Rager JE. Wildfires and extracellular vesicles: Exosomal MicroRNAs as mediators of cross-tissue cardiopulmonary responses to biomass smoke. ENVIRONMENT INTERNATIONAL 2022; 167:107419. [PMID: 35863239 PMCID: PMC9389917 DOI: 10.1016/j.envint.2022.107419] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/23/2022] [Accepted: 07/13/2022] [Indexed: 05/25/2023]
Abstract
INTRODUCTION Wildfires are a threat to public health world-wide that are growing in intensity and prevalence. The biological mechanisms that elicit wildfire-associated toxicity remain largely unknown. The potential involvement of cross-tissue communication via extracellular vesicles (EVs) is a new mechanism that has yet to be evaluated. METHODS Female CD-1 mice were exposed to smoke condensate samples collected from the following biomass burn scenarios: flaming peat; smoldering peat; flaming red oak; and smoldering red oak, representing lab-based simulations of wildfire scenarios. Lung tissue, bronchoalveolar lavage fluid (BALF) samples, peripheral blood, and heart tissues were collected 4 and 24 h post-exposure. Exosome-enriched EVs were isolated from plasma, physically characterized, and profiled for microRNA (miRNA) expression. Pathway-level responses in the lung and heart were evaluated through RNA sequencing and pathway analyses. RESULTS Markers of cardiopulmonary tissue injury and inflammation from BALF samples were significantly altered in response to exposures, with the greatest changes occurring from flaming biomass conditions. Plasma EV miRNAs relevant to cardiovascular disease showed exposure-induced expression alterations, including miR-150, miR-183, miR-223-3p, miR-30b, and miR-378a. Lung and heart mRNAs were identified with differential expression enriched for hypoxia and cell stress-related pathways. Flaming red oak exposure induced the greatest transcriptional response in the heart, a large portion of which were predicted as regulated by plasma EV miRNAs, including miRNAs known to regulate hypoxia-induced cardiovascular injury. Many of these miRNAs had published evidence supporting their transfer across tissues. A follow-up analysis of miR-30b showed that it was increased in expression in the heart of exposed mice in the absence of changes to its precursor molecular, pri-miR-30b, suggesting potential transfer from external sources (e.g., plasma). DISCUSSION This study posits a potential mechanism through which wildfire exposures induce cardiopulmonary responses, highlighting the role of circulating plasma EVs in intercellular and systems-level communication between tissues.
Collapse
Affiliation(s)
- Celeste K Carberry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lauren E Koval
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexis Payton
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hadley Hartwell
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yong Ho Kim
- The Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, The University of North Carolina, Chapel Hill, NC, USA
| | - Gregory J Smith
- Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA; Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - David M Reif
- Bioinformatics Research Center, Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Ilona Jaspers
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, The University of North Carolina, Chapel Hill, NC, USA; Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA; Department of Pediatrics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - M Ian Gilmour
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Julia E Rager
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, The University of North Carolina, Chapel Hill, NC, USA; Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
13
|
Hu X, Chen M, Cao X, Yuan X, Zhang F, Ding W. TGF-β-Containing Small Extracellular Vesicles From PM2.5-Activated Macrophages Induces Cardiotoxicity. Front Cardiovasc Med 2022; 9:917719. [PMID: 35872905 PMCID: PMC9304575 DOI: 10.3389/fcvm.2022.917719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/14/2022] [Indexed: 11/29/2022] Open
Abstract
Numerous epidemiological and experimental studies have demonstrated that the exposure to fine particulate matter (aerodynamic diameter <2.5 μm, PM2.5) was closely associated with cardiovascular morbidity and mortality. Our previous studies revealed that PM2.5 exposure induced cardiac dysfunction and fibrosis. However, the corresponding underlying mechanism remains largely unaddressed. Here, PM2.5-induced cardiotoxicity is presented to directly promote collagen deposition in cardiomyocytes through the transforming growth factor-β (TGF-β)-containing small extracellular vesicles (sEV). The sEV transition may play an important role in PM2.5-induced cardiac fibrosis. Firstly, long-term PM2.5 exposure can directly induce cardiac fibrosis and increase the level of serum sEV. Secondly, PM2.5 can directly activate macrophages and increase the release of tumor necrosis factor α (TNF-α), interleukin-6 (IL-6), and TGF-β-containing sEV. Thirdly, TGF-β-containing sEV increases the expression of α-smooth muscle actin (α-SMA), collagen I, and collagen III in mouse cardiac muscle HL-1 cells. Finally, TGF-β-containing sEV released from PM2.5-treated macrophages can increase collagen through the activation of the TGF-β-Smad2/3 signaling pathway in HL-1 cells from which some fibroblasts involved in cardiac fibrosis are thought to originate. These findings suggest that TGF-β-containing sEV from PM2.5-activated macrophages play a critical role in the process of increasing cardiac collagen content via activating the TGF-β-Smad2/3 signaling pathway.
Collapse
Affiliation(s)
- Xiaoqi Hu
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish Center for Education and Research, Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| | - Mo Chen
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish Center for Education and Research, Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| | - Xue Cao
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xinyi Yuan
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fang Zhang
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Fang Zhang
| | - Wenjun Ding
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish Center for Education and Research, Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Wenjun Ding
| |
Collapse
|
14
|
Indirect mediators of systemic health outcomes following nanoparticle inhalation exposure. Pharmacol Ther 2022; 235:108120. [PMID: 35085604 PMCID: PMC9189040 DOI: 10.1016/j.pharmthera.2022.108120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023]
Abstract
The growing field of nanoscience has shed light on the wide diversity of natural and anthropogenic sources of nano-scale particulates, raising concern as to their impacts on human health. Inhalation is the most robust route of entry, with nanoparticles (NPs) evading mucociliary clearance and depositing deep into the alveolar region. Yet, impacts from inhaled NPs are evident far outside the lung, particularly on the cardiovascular system and highly vascularized organs like the brain. Peripheral effects are partly explained by the translocation of some NPs from the lung into the circulation; however, other NPs largely confined to the lung are still accompanied by systemic outcomes. Omic research has only just begun to inform on the complex myriad of molecules released from the lung to the blood as byproducts of pulmonary pathology. These indirect mediators are diverse in their molecular make-up and activity in the periphery. The present review examines systemic outcomes attributed to pulmonary NP exposure and what is known about indirect pathological mediators released from the lung into the circulation. Further focus was directed to outcomes in the brain, a highly vascularized region susceptible to acute and longer-term outcomes. Findings here support the need for big-data toxicological studies to understand what drives these health outcomes and better predict, circumvent, and treat the potential health impacts arising from NP exposure scenarios.
Collapse
|
15
|
Nicholson S, Baccarelli A, Prada D. Role of brain extracellular vesicles in air pollution-related cognitive impairment and neurodegeneration. ENVIRONMENTAL RESEARCH 2022; 204:112316. [PMID: 34728237 PMCID: PMC8671239 DOI: 10.1016/j.envres.2021.112316] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 09/15/2021] [Accepted: 10/28/2021] [Indexed: 05/07/2023]
Abstract
A relationship between environmental exposure to air pollution and cognitive impairment and neurological disorders has been described. Previous literature has focused on the direct effects of the air pollution components on neuronal and glial cells, as well as on involvement of oxidative stress and neuroinflammation on microglia and astrocyte reactivity. However, other mechanisms involved in the air pollution effects on central nervous system (CNS) toxicity can be playing critical roles. Increasingly, extracellular vesicle's (EVs) mediated intercellular communication is being recognized as impacting the development of cognitive impairment and neurological disorders like Alzheimer's disease and others. Here we describe the available evidence about toxic air pollutants and its components on brain, an involvement of brain cells specific and EVs types (based in the origin or in the size of EVs) in the initiation, exacerbation, and propagation of the neurotoxic effects (inflammation, neurodegeneration, and accumulation of neurotoxic proteins) induced by air pollution in the CNS. Additionally, we discuss the identification and isolation of neural-derived EVs from human plasma, the most common markers for neural-derived EVs, and their potential for use as diagnostic or therapeutic molecules for air pollution-related cognitive impairment and neurodegeneration.
Collapse
Affiliation(s)
- Stacia Nicholson
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, 10032, USA
| | - Andrea Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, 10032, USA
| | - Diddier Prada
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, 10032, USA; Instituto Nacional de Cancerología, Mexico City, 14080, Mexico.
| |
Collapse
|
16
|
Tumolo MR, Panico A, De Donno A, Mincarone P, Leo CG, Guarino R, Bagordo F, Serio F, Idolo A, Grassi T, Sabina S. The expression of microRNAs and exposure to environmental contaminants related to human health: a review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:332-354. [PMID: 32393046 DOI: 10.1080/09603123.2020.1757043] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
Environmental contaminants exposure may lead to detrimental changes to the microRNAs (miRNAs) expression resulting in several health effects. miRNAs, small non-coding RNAs that regulate gene expression, have multiple transcript targets and thereby regulate several signalling molecules. Even a minor alteration in the abundance of one miRNA can have deep effects on global gene expression. Altered patterns of miRNAs can be responsible for changes linked to various health outcomes, suggesting that specific miRNAs are activated in pathophysiological processes. In this review, we provide an overview of studies investigating the impact of air pollution, organic chemicals, and heavy metals on miRNA expression and the potential biologic effects on humans.Abbreviations: AHRR, aryl-hydrocarbon receptor repressor; AHR, aryl-hydrocarbon receptor; As, arsenic; BCL2, B-cell lymphoma 2; BCL2L11, B-cell lymphoma 2 like 11; BCL6, B-cell lymphoma 6; BPA, bisphenol A; CVD, cardiovascular diseases; CD40, cluster of differentiation 40; CCND1, Cyclin D1; CDKN1A, cyclin-dependent kinase inhibitor 1A; Cr, chromium; CTBP1, C-terminal binding protein 1; CXCL12, C-X-C motif chemokine ligand 12; DAZAP1, deleted in azoospermia associated protein 1; DEP, diesel exhaust particles; EGFR, epidermal growth factor receptor; eNOS, endothelial nitric oxide synthase; EVs, extracellular vesicles; FAK, focal adhesion kinase; FAS, fas cell surface death receptor; FOXO, forkhead box O; HbA1c, glycated hemoglobin; Hg, mercury; HLA-A, human leukocyte antigen A; HMGB, high-mobility group protein B; IFNAR2, interferon alpha receptor subunit 2; IL-6, interleukin-6; IRAK1, interleukin 1 receptor associated kinase 1; JAK/STAT, janus kinase/signal transducers and activators of transcription; MAPK, mitogen-activated protein kinase; miRNAs, microRNAs; MVs, microvesicles; NCDs, noncommunicable diseases; NFAT, nuclear factor of activated T cells; NFkB, nuclear factor kappa B; NRF2, nuclear factor, erythroid-derived 2; NRG3, neuregulin 3; O3, ozone; OP, organophosphorus pesticides; PAHs, polycyclic aromatic hydrocarbons; Pb, lead; PCBs, polychlorinated biphenyls; PDCD4, programmed cell death 4; PDGFB, platelet derived growth factor subunit beta; PDGFR, platelet-derived growth factor receptor; PI3K/Akt, phosphoinositide-3-kinase/protein kinase B; PKA, protein kinase A; PM, particulate matter; PRKCQ, protein kinase C theta; PTEN, phosphatase and tensin homolog; SORT1, sortilin 1; TGFβ, transforming growth factor-β; TLR, toll-like receptor; TNF, tumor necrosis factors; TRAF1, tumor necrosis factors-receptor associated factors 1; TRAP, traffic-related air pollution; TREM1, triggering receptor expressed on myeloid cells 1; TRIAP1, TP53 regulated inhibitor of apoptosis 1; VCAM-1, vascular cell adhesion molecule 1; VEGFA, vascular endothelial growth factor A; XRCC2, X-ray repair cross complementing 2; YBX2, Y-box-binding protein 2; ZEB1, zinc finger E-box-binding homeobox 1; ZEB2, zinc finger E-box-binding homeobox 2; 8-OH-dG, 8-hydroxy-guanine.
Collapse
Affiliation(s)
- Maria Rosaria Tumolo
- National Research Council, Institute for Research on Population and Social Policies, Research Unit of Brindisi, Brindisi, Italy
| | - Alessandra Panico
- Department of Biological and Environmental Sciences and Technology, University of Salento, Lecce, Italy
| | - Antonella De Donno
- Department of Biological and Environmental Sciences and Technology, University of Salento, Lecce, Italy
| | - Pierpaolo Mincarone
- National Research Council, Institute for Research on Population and Social Policies, Research Unit of Brindisi, Brindisi, Italy
| | - Carlo Giacomo Leo
- National Research Council, Institute of Clinical Physiology, Branch of Lecce, Lecce, Italy
| | - Roberto Guarino
- National Research Council, Institute of Clinical Physiology, Branch of Lecce, Lecce, Italy
| | - Francesco Bagordo
- Department of Biological and Environmental Sciences and Technology, University of Salento, Lecce, Italy
| | - Francesca Serio
- Department of Biological and Environmental Sciences and Technology, University of Salento, Lecce, Italy
| | - Adele Idolo
- Department of Biological and Environmental Sciences and Technology, University of Salento, Lecce, Italy
| | - Tiziana Grassi
- Department of Biological and Environmental Sciences and Technology, University of Salento, Lecce, Italy
| | - Saverio Sabina
- National Research Council, Institute of Clinical Physiology, Branch of Lecce, Lecce, Italy
| |
Collapse
|
17
|
Monti P, Solazzo G, Ferrari L, Bollati V. Extracellular Vesicles: Footprints of environmental exposures in the aging process? Curr Environ Health Rep 2021; 8:309-322. [PMID: 34743313 DOI: 10.1007/s40572-021-00327-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE OF THE REVIEW Extracellular vesicles (EVs) are nano-sized lipid particles that participate in intercellular signaling through the trafficking of bioactive molecules from parental cells to recipient ones. This well-orchestrated communication system is crucial for the organism to respond to external cues in a coordinated manner; indeed, environmental and lifestyle exposures can modify both EV number and content, with consequences on cellular metabolism and homeostasis. In particular, a growing body of evidence suggests that exposome-induced changes in EV profile could regulate the aging process, both at the cellular and organismal levels. Here, we provide an overview of the role played by ambient-induced EVs on aging and age-related diseases. Among the several environmental factors that can affect the communication network operated by EVs, we focused on air pollution, ultraviolet light, diet, and physical exercise. Moreover, we performed a miRNA target analysis, to support the role of EV-miRNA emerging from the literature in the context of aging. RECENT FINDINGS The overall emerging picture strongly supports a key regulatory role for EVs at the interface between external stimuli and cellular/organismal aging, thus providing novel insights into the molecular mechanisms linking a "healthy exposome" to well-being in old age. In addition, this knowledge will pave the way for research aimed at developing innovative antiaging strategies based on EVs.
Collapse
Affiliation(s)
- Paola Monti
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università Degli Studi Di Milano, Milan, Italy
| | - Giulia Solazzo
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università Degli Studi Di Milano, Milan, Italy
| | - Luca Ferrari
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università Degli Studi Di Milano, Milan, Italy
| | - Valentina Bollati
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università Degli Studi Di Milano, Milan, Italy. .,Occupational Health Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
18
|
Particulate Matter Exposure and Allergic Rhinitis: The Role of Plasmatic Extracellular Vesicles and Bacterial Nasal Microbiome. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182010689. [PMID: 34682436 PMCID: PMC8535327 DOI: 10.3390/ijerph182010689] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 12/11/2022]
Abstract
Particulate matter (PM) exposure is linked to the worsening of respiratory conditions, including allergic rhinitis (AR), as it can trigger nasal and systemic inflammation. To unveil the underlying molecular mechanisms, we investigated the effects of PM exposure on the release of plasmatic extracellular vesicles (EV) and on the complex cross-talk between the host and the nasal microbiome. To this aim, we evaluated the effects of PM10 and PM2.5 exposures on both the bacteria-derived-EV portion (bEV) and the host-derived EVs (hEV), as well as on bacterial nasal microbiome (bNM) features in 26 AR patients and 24 matched healthy subjects (HS). In addition, we assessed the role exerted by the bNM as a modifier of PM effects on the complex EV signaling network in the paradigmatic context of AR. We observed that PM exposure differently affected EV release and bNM composition in HS compared to AR, thus potentially contributing to the molecular mechanisms underlying AR. The obtained results represent the first step towards the understanding of the complex signaling network linking external stimuli, bNM composition, and the immune risponse.
Collapse
|
19
|
Mukherjee S, Dasgupta S, Mishra PK, Chaudhury K. Air pollution-induced epigenetic changes: disease development and a possible link with hypersensitivity pneumonitis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:55981-56002. [PMID: 34498177 PMCID: PMC8425320 DOI: 10.1007/s11356-021-16056-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/16/2021] [Indexed: 05/16/2023]
Abstract
Air pollution is a serious threat to our health and has become one of the major causes of many diseases including cardiovascular disease, respiratory disease, and cancer. The association between air pollution and various diseases has long been a topic of research interest. However, it remains unclear how air pollution actually impacts health by modulating several important cellular functions. Recently, some evidence has emerged about air pollution-induced epigenetic changes, which are linked with the etiology of various human diseases. Among several epigenetic modifications, DNA methylation represents the most prominent epigenetic alteration underlying the air pollution-induced pathogenic mechanism. Several other types of epigenetic changes, such as histone modifications, miRNA, and non-coding RNA expression, have also been found to have been linked with air pollution. Hypersensitivity pneumonitis (HP), one of the most prevalent forms of interstitial lung diseases (ILDs), is triggered by the inhalation of certain organic and inorganic substances. HP is characterized by inflammation in the tissues around the lungs' airways and may lead to irreversible lung scarring over time. This review, in addition to other diseases, attempts to understand whether certain pollutants influence HP development through such epigenetic modifications.
Collapse
Affiliation(s)
- Suranjana Mukherjee
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| | - Sanjukta Dasgupta
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Pradyumna K Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, 462030, India
| | - Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| |
Collapse
|
20
|
Sima M, Rossnerova A, Simova Z, Rossner P. The Impact of Air Pollution Exposure on the MicroRNA Machinery and Lung Cancer Development. J Pers Med 2021; 11:60. [PMID: 33477935 PMCID: PMC7833364 DOI: 10.3390/jpm11010060] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/14/2022] Open
Abstract
Small non-coding RNA molecules (miRNAs) play an important role in the epigenetic regulation of gene expression. As these molecules have been repeatedly implicated in human cancers, they have been suggested as biomarkers of the disease. Additionally, miRNA levels have been shown to be affected by environmental pollutants, including airborne contaminants. In this review, we searched the current literature for miRNAs involved in lung cancer, as well as miRNAs deregulated as a result of exposure to air pollutants. We then performed a synthesis of the data and identified those molecules commonly deregulated under both conditions. We detected a total of 25 miRNAs meeting the criteria, among them, miR-222, miR-21, miR-126-3p, miR-155 and miR-425 being the most prominent. We propose these miRNAs as biomarkers of choice for the identification of human populations exposed to air pollution with a significant risk of developing lung cancer.
Collapse
Affiliation(s)
- Michal Sima
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague, Czech Republic; (M.S.); (Z.S.)
| | - Andrea Rossnerova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague, Czech Republic;
| | - Zuzana Simova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague, Czech Republic; (M.S.); (Z.S.)
| | - Pavel Rossner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague, Czech Republic; (M.S.); (Z.S.)
| |
Collapse
|
21
|
Ramos-Lopez O, Milagro FI, Riezu-Boj JI, Martinez JA. Epigenetic signatures underlying inflammation: an interplay of nutrition, physical activity, metabolic diseases, and environmental factors for personalized nutrition. Inflamm Res 2021; 70:29-49. [PMID: 33231704 PMCID: PMC7684853 DOI: 10.1007/s00011-020-01425-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/26/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
AIM AND OBJECTIVE Emerging translational evidence suggests that epigenetic alterations (DNA methylation, miRNA expression, and histone modifications) occur after external stimuli and may contribute to exacerbated inflammation and the risk of suffering several diseases including diabetes, cardiovascular diseases, cancer, and neurological disorders. This review summarizes the current knowledge about the harmful effects of high-fat/high-sugar diets, micronutrient deficiencies (folate, manganese, and carotenoids), obesity and associated complications, bacterial/viral infections, smoking, excessive alcohol consumption, sleep deprivation, chronic stress, air pollution, and chemical exposure on inflammation through epigenetic mechanisms. Additionally, the epigenetic phenomena underlying the anti-inflammatory potential of caloric restriction, n-3 PUFA, Mediterranean diet, vitamin D, zinc, polyphenols (i.e., resveratrol, gallic acid, epicatechin, luteolin, curcumin), and the role of systematic exercise are discussed. METHODS Original and review articles encompassing epigenetics and inflammation were screened from major databases (including PubMed, Medline, Science Direct, Scopus, etc.) and analyzed for the writing of the review paper. CONCLUSION Although caution should be exercised, research on epigenetic mechanisms is contributing to understand pathological processes involving inflammatory responses, the prediction of disease risk based on the epigenotype, as well as the putative design of therapeutic interventions targeting the epigenome.
Collapse
Affiliation(s)
- Omar Ramos-Lopez
- Medicine and Psychology School, Autonomous University of Baja California, Tijuana, Baja California, Mexico
| | - Fermin I Milagro
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, University of Navarra, 1 Irunlarrea Street, 31008, Pamplona, Spain.
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.
- CIBERobn, Fisiopatología de la Obesidad y la Nutrición, Carlos III Health Institute, Madrid, Spain.
| | - Jose I Riezu-Boj
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, University of Navarra, 1 Irunlarrea Street, 31008, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - J Alfredo Martinez
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, University of Navarra, 1 Irunlarrea Street, 31008, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- CIBERobn, Fisiopatología de la Obesidad y la Nutrición, Carlos III Health Institute, Madrid, Spain
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Madrid, Spain
| |
Collapse
|
22
|
Tanwar V, Adelstein JM, Wold LE. Double trouble: combined cardiovascular effects of particulate matter exposure and coronavirus disease 2019. Cardiovasc Res 2021; 117:85-95. [PMID: 33084879 PMCID: PMC7665323 DOI: 10.1093/cvr/cvaa293] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/05/2020] [Indexed: 12/15/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly grown into a pandemic. According to initial reports, the lungs were thought to be the primary target, but recent case studies have shown its reach can extend to other organs including the heart and blood vessels. The severity of cardiac complications of COVID-19 depends on multiple underlying factors, with air pollutant exposure being one of them, as reported by several recent studies. Airborne particulate matter (PM) attracts heightened attention due to its implication in various diseases, especially respiratory and cardiovascular diseases. Inhaled PM not only carries microorganisms inside the body but also elicits local and systemic inflammatory responses resulting in altering the host's immunity and increasing susceptibility to infection. Previous and recent studies have documented that PM acts as a 'carrier' for the virus and aids in spreading viral infections. This review presents the mechanisms and effects of viral entry and how pollution can potentially modulate pathophysiological processes in the heart. We aimed to concisely summarize studies examining cardiovascular outcomes in COVID-19 patients and postulate on how PM can influence these outcomes. We have also reviewed evidence on the use of renin-angiotensin system inhibitors, namely angiotensin-converting enzyme inhibitors and angiotensin receptor blockers, in patients with COVID-19. The interplay of pollution and SARS-CoV-2 is essential to understanding the effects of accentuated cardiovascular effects of COVID-19 and deserves in-depth experimental investigations.
Collapse
Affiliation(s)
- Vineeta Tanwar
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, 473 W. 12th Avenue, Columbus, OH 43210, USA
- College of Nursing, The Ohio State University, Columbus, OH, USA
| | - Jeremy M Adelstein
- Medical Student Research Program, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Loren E Wold
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, 473 W. 12th Avenue, Columbus, OH 43210, USA
- College of Nursing, The Ohio State University, Columbus, OH, USA
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
23
|
Wang S, Wang W, Li X, Zhao X, Wang Y, Zhang H, Xu S. Cooperative application of transcriptomics and ceRNA hypothesis: LncRNA-107052630/miR-205a/G0S2 crosstalk is involved in ammonia-induced intestinal apoptotic injury in chicken. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122605. [PMID: 32334290 DOI: 10.1016/j.jhazmat.2020.122605] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
Ammonia (NH3), as a harmful gas from agricultural production, plays an important role in air pollution, such as haze. Although numerous researchers have paid attention to health damage through NH3 inhalation, the exhaustive mechanism of NH3 induced intestinal toxicity remains unclear. A genes crosstalk named competing endogenous RNAs (ceRNA) can explain many regulatory manners from the molecular perspective. However, few studies have attempted to interpret the injury mechanism of air pollutants to the organism via ceRNA theory. Here, we thoroughly investigated the lncRNA-associated-ceRNA mechanism in jejunum samples from a 42-days-old NH3-exposed chicken model through deep RNA sequencing. We observed the occurrence of apoptosis in jejunum, obtained 46 significantly dysregulated lncRNAs and 30 dysregulated miRNAs, and then constructed lncRNA-associated-ceRNA networks in jejunum. Importantly, a network regulating G0S2 in NH3-induced apoptosis was discovered. Research results showed that G0S2 was upregulated in jejunum of NH3-exposed group and was associated with activation of the mitochondrial apoptosis pathway. G0S2 antagonized the anti-apoptotic effect of Bcl2, which could be reversed by miR-205a. Meanwhile, lncRNA-107052630 acted as ceRNA to affect G0S2 function. These data provide new insight for revealing the biological effect of NH3 toxicity, as well as the environmental research.
Collapse
Affiliation(s)
- Shengchen Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Wei Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaojing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xia Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yue Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
24
|
Alkoussa S, Hulo S, Courcot D, Billet S, Martin PJ. Extracellular vesicles as actors in the air pollution related cardiopulmonary diseases. Crit Rev Toxicol 2020; 50:402-423. [DOI: 10.1080/10408444.2020.1763252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Stéphanie Alkoussa
- Unit of Environmental Chemistry and Interactions with Life, UCEIV EA4492, SFR Condorcet FR CNRS, University of Littoral Côte d’Opale, Dunkerque, France
| | - Sébastien Hulo
- IMPact of Environmental ChemicalS on Human Health, ULR 4483 - IMPECS, Univ. Lille, CHU Lille, Institut Pasteur de Lille, Lille, France
- Department of Occupational Health, Lille University Hospital, Lille, France
| | - Dominique Courcot
- Unit of Environmental Chemistry and Interactions with Life, UCEIV EA4492, SFR Condorcet FR CNRS, University of Littoral Côte d’Opale, Dunkerque, France
| | - Sylvain Billet
- Unit of Environmental Chemistry and Interactions with Life, UCEIV EA4492, SFR Condorcet FR CNRS, University of Littoral Côte d’Opale, Dunkerque, France
| | - Perrine J. Martin
- Unit of Environmental Chemistry and Interactions with Life, UCEIV EA4492, SFR Condorcet FR CNRS, University of Littoral Côte d’Opale, Dunkerque, France
| |
Collapse
|
25
|
Cheng M, Wang B, Yang M, Ma J, Ye Z, Xie L, Zhou M, Chen W. microRNAs expression in relation to particulate matter exposure: A systematic review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:113961. [PMID: 32006883 DOI: 10.1016/j.envpol.2020.113961] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/27/2019] [Accepted: 01/09/2020] [Indexed: 06/10/2023]
Abstract
MicroRNAs (miRNAs) are a class of small, non-coding RNAs with a post-transcriptional regulatory function on gene expression and cell processes, including proliferation, apoptosis and differentiation. In recent decades, miRNAs have attracted increasing interest to explore the role of epigenetics in response to air pollution. Air pollution, which always contains kinds of particulate matters, are able to reach respiratory tract and blood circulation and then causing epigenetics changes. In addition, extensive studies have illustrated that miRNAs serve as a bridge between particulate matter exposure and health-related effects, like inflammatory cytokines, blood pressure, vascular condition and lung function. The purpose of this review is to summarize the present knowledge about the expression of miRNAs in response to particulate matter exposure. Epidemiological and experimental studies were reviewed in two parts according to the size and source of particles. In this review, we also discussed various functions of the altered miRNAs and predicted potential biological mechanism participated in particulate matter-induced health effects. More rigorous studies are worth conducting to understand contribution of particulate matter on miRNAs alteration and the etiology between environmental exposure and disease development.
Collapse
Affiliation(s)
- Man Cheng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meng Yang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jixuan Ma
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zi Ye
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Xie
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Min Zhou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
26
|
Qin Y, Long L, Huang Q. Extracellular vesicles in toxicological studies: key roles in communication between environmental stress and adverse outcomes. J Appl Toxicol 2020; 40:1166-1182. [PMID: 32125006 DOI: 10.1002/jat.3963] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/15/2020] [Accepted: 02/15/2020] [Indexed: 12/11/2022]
Abstract
External stressors, especially environmental toxicants can disturb biological homeostasis and thus lead to adverse health effects. However, there is limited understanding of how cells directly exposed to stressors transmit the signals to cells indirectly in contact with stressors. Extracellular vesicles (EVs) are receiving increasing attention as signal transductors between various types of cells in organisms. Cargo in EVs, including RNAs, proteins, lipids, and other signal molecules can be transferred between cells and become critical determining factors of intercellular communication. EVs can be a powerful mediator of environmental stimuli. It has been shown that external stressors reshape the secretion of EVs, modify the composition of EVs, and thus influence the mediating function of EVs. These abnormal EVs can lead to dysfunction of recipient cells, and even the pathogenesis of diseases. In this review, we first summarized current knowledge about the responses of EVs to external stimuli, including chemicals and chemical mixtures. Then we explained how these altered EVs regulate signal pathways in recipient cells, thus mediating physio-pathological responses in detail. The most up-to-date evidence from molecular, cellular, animal and human levels was synthesized to systematically address the mediating roles of EVs. EVs can be regarded as a bridge to link external stressors and internal response. Further toxicological and molecular epidemiological studies are expected to provide further insight into the roles of EVs in toxicology. The gaps in the engulfment of toxicants into EVs are listed as the priority to be solved in future studies.
Collapse
Affiliation(s)
- Yifei Qin
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Li Long
- Health Management Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiansheng Huang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| |
Collapse
|
27
|
Zhao C, Dang Z, Sun J, Yuan S, Xie L. Up-regulation of microRNA-30b/30d cluster represses hepatocyte apoptosis in mice with fulminant hepatic failure by inhibiting CEACAM1. IUBMB Life 2020; 72:1349-1363. [PMID: 32101367 DOI: 10.1002/iub.2256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/16/2020] [Indexed: 02/06/2023]
Abstract
Recently, impacts of microRNAs have been unraveled in human diseases, and we aimed to confirm the role of miR-30b/30d in fulminant hepatic failure (FHF). Expression of miR-30b/30d and CEACAM1 in serum of FHF patients and healthy people was measured by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis. Mice FHF models were established by injection of D-Galn and lipopolysaccharide, and were treated with miR-30b/30d mimics. Oxidative stress, liver injury, and inflammatory reaction in mouse liver tissues were measured using oxidative stress-related factor kits, hematoxylin-eosin staining and enzyme-linked immunosorbent assay, respectively. Moreover, cell cycle distribution and apoptosis of hepatocytes of mice were determined by flow cytometry, and the target relation between miR-30b/30d and CEACAM1 was confirmed by bioinformatic method and dual luciferase reporter gene assay. MiR-30b/30d expression was positively, and CEACAM1 expression was negatively related to prognosis of FHF patients. Up-regulation of miR-30b/30d attenuated oxidative stress, liver injury, and inflammatory reaction, and improved survival rate of FHF mice. Furthermore, elevated miR-30b/30d ameliorated apoptosis and cell cycle arrest of hepatocytes of FHF mice. CEACAM1 was a target gene of miR-30b/30d. This study highlights that up-regulated miR-30b/30d attenuates the progression of FHF by targeting CEACAM1, which may be helpful to FHF treatment.
Collapse
Affiliation(s)
- Changpu Zhao
- Internal Medicine Department, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhongqin Dang
- Hepatobiliary Spleen and Stomach Department, Henan Hospital of Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Junbo Sun
- Personnel Office, Henan Hospital of Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Shuaiqiang Yuan
- Department of Digestion, Affiliated Hospital of Henan Academy of Chinese Medicine, Zhengzhou, China
| | - Li Xie
- Internal Medicine Department, Henan Electric Power Hospital, Zhengzhou, China
| |
Collapse
|
28
|
Andres J, Smith LC, Murray A, Jin Y, Businaro R, Laskin JD, Laskin DL. Role of extracellular vesicles in cell-cell communication and inflammation following exposure to pulmonary toxicants. Cytokine Growth Factor Rev 2020; 51:12-18. [PMID: 31901309 PMCID: PMC7052797 DOI: 10.1016/j.cytogfr.2019.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 12/09/2019] [Indexed: 12/22/2022]
Abstract
Extracellular vesicles (EVs) have emerged as key regulators of cell-cell communication during inflammatory responses to lung injury induced by diverse pulmonary toxicants including cigarette smoke, air pollutants, hyperoxia, acids, and endotoxin. Many lung cell types, including epithelial cells and endothelial cells, as well as infiltrating macrophages generate EVs. EVs appear to function by transporting cargo to recipient cells that, in most instances, promote their inflammatory activity. Biologically active cargo transported by EVs include miRNAs, cytokines/chemokines, damage-associated molecular patterns (DAMPs), tissue factor (TF)s, and caspases. Findings that EVs are taken up by target cells such as macrophages, and that this leads to increased proinflammatory functioning provide support for their role in the development of pathologies associated with toxicant exposure. Understanding the nature of EVs responding to toxic exposures and their cargo may lead to the development of novel therapeutic approaches to mitigating lung injury.
Collapse
Affiliation(s)
- Jaclynn Andres
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, NJ 08854 USA
| | - Ley Cody Smith
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, NJ 08854 USA
| | - Alexa Murray
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, NJ 08854 USA
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118 USA
| | - Rita Businaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health, Rutgers University School of Public Health, Piscataway, NJ 08854 USA
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, NJ 08854 USA.
| |
Collapse
|
29
|
Boda E, Rigamonti AE, Bollati V. Understanding the effects of air pollution on neurogenesis and gliogenesis in the growing and adult brain. Curr Opin Pharmacol 2020; 50:61-66. [DOI: 10.1016/j.coph.2019.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/03/2019] [Accepted: 12/06/2019] [Indexed: 01/16/2023]
|
30
|
Mariani J, Favero C, Carugno M, Pergoli L, Ferrari L, Bonzini M, Cattaneo A, Pesatori AC, Bollati V. Nasal Microbiota Modifies the Effects of Particulate Air Pollution on Plasma Extracellular Vesicles. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17020611. [PMID: 31963616 PMCID: PMC7013854 DOI: 10.3390/ijerph17020611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 12/12/2022]
Abstract
Air pollution exposure has been linked to modifications of both extracellular vesicle (EV) concentration and nasal microbiota structure (NMB), which might act as the respiratory health gatekeeper. This study aimed to assess whether an unbalanced NMB could modify the effect of particulate matter (PM) exposure on plasmatic EV levels. Due to two different NMB taxonomical profiles characterized by a widely different relative abundance of the Moraxella genus, the enrolled population was stratified into Mor- (balanced NMB) and Mor+ (unbalanced NMB) groups (Moraxella genus's cut-off ≤25% and >25%, respectively). EV features were assessed by nanoparticle tracking analysis (NTA) and flow-cytometry (FC). Multivariable analyses were applied on EV outcomes to evaluate a possible association between PM10 and PM2.5 and plasmatic EV levels. The Mor- group revealed positive associations between PM levels and plasmatic CD105+ EVs (GMR = 4.39 p = 0.02) as for total EV count (GMR = 1.92 p = 0.02). Conversely, the Mor+ group showed a negative association between exposure and EV outcomes (CD66+ GMR = 0.004 p = 0.01; EpCAM+ GMR = 0.005 p = 0.01). Our findings provide an insight regarding how a balanced NMB may help to counteract PM exposure effects in terms of plasmatic EV concentration. Further research is necessary to understand the relationship between the host and the NMB to disentangle the mechanism exerted by inhaled pollutants in modulating EVs and NMB.
Collapse
Affiliation(s)
- Jacopo Mariani
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (J.M.); (C.F.); (M.C.); (L.P.); (L.F.); (M.B.); (A.C.P.)
| | - Chiara Favero
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (J.M.); (C.F.); (M.C.); (L.P.); (L.F.); (M.B.); (A.C.P.)
| | - Michele Carugno
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (J.M.); (C.F.); (M.C.); (L.P.); (L.F.); (M.B.); (A.C.P.)
| | - Laura Pergoli
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (J.M.); (C.F.); (M.C.); (L.P.); (L.F.); (M.B.); (A.C.P.)
| | - Luca Ferrari
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (J.M.); (C.F.); (M.C.); (L.P.); (L.F.); (M.B.); (A.C.P.)
| | - Matteo Bonzini
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (J.M.); (C.F.); (M.C.); (L.P.); (L.F.); (M.B.); (A.C.P.)
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Andrea Cattaneo
- Department of Science and High Technology, University of Insubria, 22100 Como, Italy;
| | - Angela Cecilia Pesatori
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (J.M.); (C.F.); (M.C.); (L.P.); (L.F.); (M.B.); (A.C.P.)
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Valentina Bollati
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (J.M.); (C.F.); (M.C.); (L.P.); (L.F.); (M.B.); (A.C.P.)
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Correspondence: ; Tel.: +39-02-503-20147
| |
Collapse
|
31
|
Signorelli SS, Oliveri Conti G, Zanobetti A, Baccarelli A, Fiore M, Ferrante M. Effect of particulate matter-bound metals exposure on prothrombotic biomarkers: A systematic review. ENVIRONMENTAL RESEARCH 2019; 177:108573. [PMID: 31323394 DOI: 10.1016/j.envres.2019.108573] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/24/2019] [Accepted: 07/01/2019] [Indexed: 05/25/2023]
Abstract
Environmental pollution is an important modifiable determinant for preventing cardiovascular diseases. Acute exposure to air pollution is linked to severe adverse cardiovascular events, including venous thromboembolism risk. The adverse health effects seem to arise from blood-borne metals and transition metal components from exposure to particulate matter that, when breathed, passes through the lungs into the heart and the blood stream. Pollution affects health via mechanisms including oxidative stress and inflammation, and metals may have a detrimental effect on both the blood cells, particularly platelets, and circulation. Some evidences demonstrates atherotrombotic consequences of acute and chronic exposure to air pollution, but few studies have examined exposure effects on the prothrombotic biomarkers leading to venous thromboembolism. Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology, we performed a systematic review (14 papers) of the past twelve years, focusing on the relationship between inhalable airborne metal exposures and coagulative biomarker disorders leading to lower limb venous thromboembolisms, e.g., deep vein thrombosis. Results support the hypothesis that exposure to inhalable metals, as elemental compounds in particulate matter, cause changes or activation of a number of human prothrombotic hemostatic biomarkers.
Collapse
Affiliation(s)
| | - Gea Oliveri Conti
- Environmental and Food Hygiene Laboratories (LIAA) - Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Catania University, Catania, Italy
| | - Antonella Zanobetti
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Andrea Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Maria Fiore
- Environmental and Food Hygiene Laboratories (LIAA) - Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Catania University, Catania, Italy
| | - Margherita Ferrante
- Environmental and Food Hygiene Laboratories (LIAA) - Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Catania University, Catania, Italy.
| |
Collapse
|
32
|
Ferrari L, Pavanello S, Bollati V. Molecular and epigenetic markers as promising tools to quantify the effect of occupational exposures and the risk of developing non-communicable diseases. LA MEDICINA DEL LAVORO 2019; 110:168-190. [PMID: 31268425 PMCID: PMC7812541 DOI: 10.23749/mdl.v110i3.8538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/06/2019] [Indexed: 12/18/2022]
Abstract
Non-communicable diseases (NCDs) are chronic diseases that are by far the leading cause of death in the world. Many occupational hazards, together with social, economic and demographic factors, have been associated to NCDs development. Genetic susceptibility or environmental exposures alone are not usually sufficient to explain the pathogenesis of NCDs, but can be integrated in a more complex scenario that can result in pathological phenotypes. Epigenetics is a crucial component of this scenario, as its changes are related to specific exposures, therefore potentially able to display the effects of environment on the genome, filling the gap between genetic asset and environment in explaining disease development. To date, the most promising biomarkers have been assessed in occupational cohorts as well as in case/control studies and include DNA methylation, histone modifications, microRNA expression, extracellular vesicles, telomere length, and mitochondrial alterations.
Collapse
Affiliation(s)
- Luca Ferrari
- EPIGET - Epidemiology, Epigenetics and Toxicology Lab, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, via San Barnaba 8, 20122 Milan, Italy..
| | | | | |
Collapse
|
33
|
Loxham M, Nieuwenhuijsen MJ. Health effects of particulate matter air pollution in underground railway systems - a critical review of the evidence. Part Fibre Toxicol 2019; 16:12. [PMID: 30841934 PMCID: PMC6404319 DOI: 10.1186/s12989-019-0296-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/21/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Exposure to ambient airborne particulate matter is a major risk factor for mortality and morbidity, associated with asthma, lung cancer, heart disease, myocardial infarction, and stroke, and more recently type 2 diabetes, dementia and loss of cognitive function. Less is understood about differential effects of particulate matter from different sources. Underground railways are used by millions of people on a daily basis in many cities. Poor air exchange with the outside environment means that underground railways often have an unusually high concentration of airborne particulate matter, while a high degree of railway-associated mechanical activity produces particulate matter which is physicochemically highly distinct from ambient particulate matter. The implications of this for the health of exposed commuters and employees is unclear. MAIN BODY A literature search found 27 publications directly assessing the potential health effects of underground particulate matter, including in vivo exposure studies, in vitro toxicology studies, and studies of particulate matter which might be similar to that found in underground railways. The methodology, findings, and conclusions of these studies were reviewed in depth, along with further publications directly relevant to the initial search results. In vitro studies suggest that underground particulate matter may be more toxic than exposure to ambient/urban particulate matter, especially in terms of endpoints related to reactive oxygen species generation and oxidative stress. This appears to be predominantly a result of the metal-rich nature of underground particulate matter, which is suggestive of increased health risks. However, while there are measureable effects on a variety of endpoints following exposure in vivo, there is a lack of evidence for these effects being clinically significant as may be implied by the in vitro evidence. CONCLUSION There is little direct evidence that underground railway particulate matter exposure is more harmful than ambient particulate matter exposure. This may be due to disparities between in vivo exposures and in vitro models, and differences in exposure doses, as well as statistical under powering of in vivo studies of chronic exposure. Future research should focus on outcomes of chronic in vivo exposure, as well as further work to understand mechanisms and potential biomarkers of exposure.
Collapse
Affiliation(s)
- Matthew Loxham
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Mailpoint 888, Level F, University Hospital Southampton, Tremona Road, Southampton, SO16 6YD, UK. .,NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK. .,Institute for Life Sciences, University of Southampton, Southampton, UK. .,Southampton Marine and Maritime Institute, University of Southampton, Southampton, UK.
| | - Mark J Nieuwenhuijsen
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
34
|
Kaewarpai T, Thongboonkerd V. High-glucose-induced changes in macrophage secretome: regulation of immune response. Mol Cell Biochem 2018; 452:51-62. [PMID: 30022449 DOI: 10.1007/s11010-018-3411-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/13/2018] [Indexed: 01/05/2023]
Abstract
Secretory products from infiltrating macrophages have been thought to play crucial roles in development and progression of diabetic complications in various tissues/organs. Nevertheless, diabetes-induced changes in macrophage secretory products remained largely unknown. We thus analyzed high-glucose (HG)-induced changes in secretome of human macrophages derived from U937 human monocytic cell line after phorbol 12-myristate 13-acetate (PMA) activation. Serum-free culture supernatants were collected from macrophages exposed to 5.5 mM glucose (NG-M-sup) (normal control), 25 mM glucose (HG-M-sup), or 5.5 mM glucose + 19.5 mM mannitol (MN-M-sup) (osmotic control) for 16 h. After dialysis and lyophilization, secreted proteins were subjected to 2-DE analysis (n = 5 gels derived from 5 independent cultures per group). Quantitative analysis and statistics revealed 23 protein spots whose secretory levels significantly differed among the three conditions. These proteins were successfully identified by nanoLC-ESI-MS/MS analyses and changes in levels of heat shock protein 90 (HSP90), HSP70, HSP60, and β-actin were confirmed by Western blotting. Global protein network and functional enrichment analyses revealed that the altered proteins in HG-M-sup were involved mainly in regulation of immune response that might communicate with other bystander cells through the release of extracellular vesicles. These data may lead to a wider view of pathogenic mechanisms of diabetic complications.
Collapse
Affiliation(s)
- Taniya Kaewarpai
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand. .,Center for Research in Complex Systems Science, Mahidol University, Bangkok, Thailand. .,Medical Proteomics Unit, Office for Research and Development, Siriraj Hospital, Mahidol University, 6th Floor - SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand.
| |
Collapse
|
35
|
Benedikter BJ, Wouters EFM, Savelkoul PHM, Rohde GGU, Stassen FRM. Extracellular vesicles released in response to respiratory exposures: implications for chronic disease. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2018; 21:142-160. [PMID: 29714636 DOI: 10.1080/10937404.2018.1466380] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Extracellular vesicles (EV) are secreted signaling entities that enhance various pathological processes when released in response to cellular stresses. Respiratory exposures such as cigarette smoke and air pollution exert cellular stresses and are associated with an increased risk of several chronic diseases. The aim of this review was to examine the evidence that modifications in EV contribute to respiratory exposure-associated diseases. Publications were searched using PubMed and Google Scholar with the search terms (cigarette smoke OR tobacco smoke OR air pollution OR particulate matter) AND (extracellular vesicles OR exosomes OR microvesicles OR microparticles OR ectosomes). All original research articles were included and reviewed. Fifty articles were identified, most of which investigated the effect of respiratory exposures on EV release in vitro (25) and/or on circulating EV in human plasma (24). The majority of studies based their main observations on the relatively insensitive scatter-based flow cytometry of EV (29). EV induced by respiratory exposures were found to modulate inflammation (19), thrombosis (13), endothelial dysfunction (11), tissue remodeling (6), and angiogenesis (3). By influencing these processes, EV may play a key role in the development of cardiovascular diseases and chronic obstructive pulmonary disease and possibly lung cancer and allergic asthma. The current findings warrant additional research with improved methodologies to evaluate the contribution of respiratory exposure-induced EV to disease etiology, as well as their potential as biomarkers of exposure or risk and as novel targets for preventive or therapeutic strategies.
Collapse
Affiliation(s)
- Birke J Benedikter
- a Department of Medical Microbiology , NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center , Maastricht , The Netherlands
- b Department of Respiratory Medicine , NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center , Maastricht , The Netherlands
| | - Emiel F M Wouters
- b Department of Respiratory Medicine , NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center , Maastricht , The Netherlands
| | - Paul H M Savelkoul
- a Department of Medical Microbiology , NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center , Maastricht , The Netherlands
- c Department of Medical Microbiology & Infection Control , VU University Medical Center , Amsterdam , The Netherlands
| | - Gernot G U Rohde
- d Medical clinic I, Department of Respiratory Medicine , Goethe University Hospital , Frankfurt/Main , Germany
| | - Frank R M Stassen
- a Department of Medical Microbiology , NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center , Maastricht , The Netherlands
| |
Collapse
|
36
|
Nikodemova M, Yee J, Carney PR, Bradfield CA, Malecki KM. Transcriptional differences between smokers and non-smokers and variance by obesity as a risk factor for human sensitivity to environmental exposures. ENVIRONMENT INTERNATIONAL 2018; 113:249-258. [PMID: 29459183 PMCID: PMC5866236 DOI: 10.1016/j.envint.2018.02.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Obesity has been shown to alter response to air pollution and smoking but underlying biological mechanisms are largely unknown and few studies have explored mechanisms by which obesity increases human sensitivity to environmental exposures. OBJECTIVE Overall study goals were to investigate whole blood gene expression in smokers and non-smokers to examine associations between cigarette smoke and changes in gene expression by obesity status and test for effect modification. METHODS Relative fold-change in mRNA expression levels of 84 genes were analyzed using a Toxicity and Stress PCR array among 50 21-54 year old adults. Data on smoking status was confirmed using urinary cotinine levels. Adjusted models included age, gender, white blood cell count and body-mass index. RESULTS Models comparing gene expression of smokers vs. non-smokers identified six differentially expressed genes associated with smoking after adjustments for covariates. Obesity was associated with 29 genes differentially expressed compared to non-obese. We also identified 9 genes with significant smoking/obesity interactions influencing mRNA levels in adjusted models comparing expression between smokers vs non-smokers for four DNA damage related genes (GADD45A, DDB2, RAD51 and P53), two oxidative stress genes (FTH1, TXN), two hypoxia response genes (BN1P3lL, ARNT), and one gene associated with unfolded protein response (ATF6B). CONCLUSIONS Findings suggest that obesity alters human sensitivity to smoke exposures through several biological pathways by modifying gene expression. Additional studies are needed to fully understand the clinical impact of these effects, but risk assessments should consider underlying phenotypes, such as obesity, that may modulate sensitivity of vulnerable populations to environmental exposures.
Collapse
Affiliation(s)
- Maria Nikodemova
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| | - Jeremiah Yee
- The McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| | - Patrick R Carney
- The McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| | - Christopher A Bradfield
- The McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| | - Kristen Mc Malecki
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States; The McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States.
| |
Collapse
|
37
|
Neven KY, Nawrot TS, Bollati V. Extracellular Vesicles: How the External and Internal Environment Can Shape Cell-To-Cell Communication. Curr Environ Health Rep 2018; 4:30-37. [PMID: 28116555 DOI: 10.1007/s40572-017-0130-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF THE REVIEW To summarize the scientific evidence regarding the effects of environmental exposures on extracellular vesicle (EV) release and their contents. As environmental exposures might influence the aging phenotype in a very strict way, we will also report the role of EVs in the biological aging process. RECENT FINDINGS EV research is a new and quickly developing field. With many investigations conducted so far, only a limited number of studies have explored the potential role EVs play in the response and adaptation to environmental stimuli. The investigations available to date have identified several exposures or lifestyle factors able to modify EV trafficking including air pollutants, cigarette smoke, alcohol, obesity, nutrition, physical exercise, and oxidative stress. EVs are a very promising tool, as biological fluids are easily obtainable biological media that, if successful in identifying early alterations induced by the environment and predictive of disease, would be amenable to use for potential future preventive and diagnostic applications.
Collapse
Affiliation(s)
- Kristof Y Neven
- Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, 3590, Diepenbeek, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, 3590, Diepenbeek, Belgium
| | - Valentina Bollati
- EPIGET - Epidemiology, Epigenetics and Toxicology Lab, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, via San Barnaba 8, 20122, Milan, Italy.
| |
Collapse
|