1
|
Malik H, Usman M, Arif M, Ahmed Z, Ali G, Rauf K, Sewell RDE. Diosgenin normalization of disrupted behavioral and central neurochemical activity after single prolonged stress. Front Pharmacol 2023; 14:1232088. [PMID: 37663254 PMCID: PMC10468593 DOI: 10.3389/fphar.2023.1232088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction: Post-traumatic stress disorder (PTSD) is a chronic mental illness triggered by traumatic experiences such as wars, natural disasters, or catastrophes, and it is characterized by anxiety, depression and cognitive impairment. Diosgenin is a steroidal sapogenin with known neuroprotective and antioxidant properties. This study aimed to assess the pharmacological potential of diosgenin in a single prolonged stress (SPS) model of PTSD, plus other behavioral models along with any consequent alterations in brain neurochemistry in male mice. Methodology: SPS was induced by restraining animals for 2 h, followed by 20 min of forced swim, recuperation for 15 min, and finally, exposure to ether to induce anesthesia. The SPS-exposed animals were treated with diosgenin (20, 40, and 60 mg/kg) and compared with the positive controls, fluoxetine or donepezil, then they were observed for any changes in anxiety/depression-like behaviors, and cognitive impairment. After behavioral screening, postmortem serotonin, noradrenaline, dopamine, vitamin C, adenosine and its metabolites inosine and hypoxanthine were quantified in the frontal cortex, hippocampus, and striatum by high-performance liquid chromatography. Additionally, animal serum was screened for changes in corticosterone levels. Results: The results showed that diosgenin reversed anxiety- and depression-like behaviors, and ameliorated cognitive impairment in a dose-dependent manner. Additionally, diosgenin restored monoamine and vitamin C levels dose-dependently and modulated adenosine and its metabolites in the brain regions. Diosgenin also reinstated otherwise increased serum corticosterone levels in SPS mice. Conclusion: The findings suggest that diosgenin may be a potential candidate for improving symptoms of PTSD.
Collapse
Affiliation(s)
- Hurmat Malik
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Muhammad Usman
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Mehreen Arif
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Zainab Ahmed
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Gowhar Ali
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| | - Khalid Rauf
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Robert D. E. Sewell
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
2
|
Madjid N, Lidell V, Nordvall G, Lindskog M, Ögren SO, Forsell P, Sandin J. Antidepressant effects of novel positive allosteric modulators of Trk-receptor mediated signaling - a potential therapeutic concept? Psychopharmacology (Berl) 2023; 240:1789-1804. [PMID: 37394539 PMCID: PMC10349764 DOI: 10.1007/s00213-023-06410-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 06/20/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND Major depressive disorder (MDD) is defined as a complex mental disorder which is characterized by a pervasive low mood and aversion to activity. Several types of neurotransmitter systems e.g. serotonergic, glutamatergic and noradrenergic systems have been suggested to play an important role in the origination of depression, but neurotrophins such as brain derived neurotrophic factor (BDNF) have also been implicated in the disease process. OBJECTIVES The purpose of this study was to examine the effects of a newly developed class of molecules, characterized as positive allosteric modulators of neurotrophin/Trk receptor mediated signaling (Trk-PAM), on neurotransmitter release and depression-like behavior in vivo. METHODS The effect of and possible interaction of neurotrophin/Trk signaling pathways with serotonergic and glutamatergic systems in the modulation of depression-related responses was studied using newly developed Trk-PAM compounds (ACD855, ACD856 and AC26845), as well as ketamine and fluoxetine in the forced swim test (FST) in rodents. Moreover, in vivo microdialysis in freely moving rats was used to assess changes in neurotransmitter levels in the rat. RESULTS The results from the study show that several different compounds, which all potentiate Trk-receptor mediated signaling, display antidepressant-like activity in the FST. Moreover, the data also indicate that the effects of both fluoxetine and ketamine in the FST, both used in clinical practice, are mediated via BDNF/TrkB signaling, which could have implications for novel therapies in MDD. CONCLUSIONS Trk-PAMs could provide an interesting avenue for the development of novel therapeutics in this area.
Collapse
Affiliation(s)
- Nather Madjid
- AlzeCure Pharma AB, Hälsovägen 7, 141 57, Huddinge, Sweden
| | | | - Gunnar Nordvall
- AlzeCure Pharma AB, Hälsovägen 7, 141 57, Huddinge, Sweden
- Division of Neuroscience, Care and Society, Department of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Maria Lindskog
- Division of Neuroscience, Care and Society, Department of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Sven-Ove Ögren
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Pontus Forsell
- AlzeCure Pharma AB, Hälsovägen 7, 141 57, Huddinge, Sweden
- Division of Neuroscience, Care and Society, Department of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Johan Sandin
- AlzeCure Pharma AB, Hälsovägen 7, 141 57, Huddinge, Sweden.
- Division of Neuroscience, Care and Society, Department of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
3
|
Higuchi Y, Arakawa H. Serotonergic mediation of the brain-wide neurogenesis: Region-dependent and receptor-type specific roles on neurogenic cellular transformation. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100102. [PMID: 37638344 PMCID: PMC10458724 DOI: 10.1016/j.crneur.2023.100102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 06/18/2023] [Accepted: 07/15/2023] [Indexed: 08/29/2023] Open
Abstract
Brain serotonin (5-hydroxytryptamine, 5-HT) is a key molecule for the mediation of depression-related brain states, but the neural mechanisms underlying 5-HT mediation need further investigation. A possible mechanism of the therapeutic antidepressant effects is neurogenic cell production, as stimulated by 5-HT signaling. Neurogenesis, the proliferation of neural stem cells (NSCs), and cell differentiation and maturation occur across brain regions, particularly the hippocampal dentate gyrus and the subventricular zone, throughout one's lifespan. 5-HT plays a major role in the mediation of neurogenic processes, which in turn leads to the therapeutic effect on depression-related states. In this review article, we aim to identify how the neuronal 5-HT system mediates the process of neurogenesis, including cell proliferation, cell-type differentiation and maturation. First, we will provide an overview of the neurogenic cell transformation that occurs in brain regions containing or lacking NSCs. Second, we will review brain region-specific mechanisms of 5-HT-mediated neurogenesis by comparing regions localized to NSCs, i.e., the hippocampus and subventricular zone, with those not containing NSCs. Highlighting these 5-HT mechanisms that mediate neurogenic cell production processes in a brain-region-specific manner would provide unique insights into the role of 5-HT in neurogenesis and its associated effects on depression.
Collapse
Affiliation(s)
- Yuki Higuchi
- Department of Systems Physiology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Hiroyuki Arakawa
- Department of Systems Physiology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
4
|
Dremencov E, Jezova D, Barak S, Gaburjakova J, Gaburjakova M, Kutna V, Ovsepian SV. Trophic factors as potential therapies for treatment of major mental disorders. Neurosci Lett 2021; 764:136194. [PMID: 34433100 DOI: 10.1016/j.neulet.2021.136194] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 08/02/2021] [Accepted: 08/20/2021] [Indexed: 12/20/2022]
Abstract
Notwithstanding major advances in psychotherapeutics, their efficacy and specificity remain limited. The slow onset of beneficial outcomes and numerous adverse effects of widely used medications remain of chief concern, warranting in-depth studies. The majority of frontline therapies are thought to enhance the endogenous monoaminergic drive, to initiate a cascade of molecular events leading to lasting functional and structural plasticity. They also involve alterations in trophic factor signalling, including brain-derived neurotrophic factor (BDNF), VGF (non-acronymic), vascular endothelial growth factor (VEGF), fibroblast growth factor 2 (FGF2), glial cell-derived neurotrophic factor (GDNF), and others. In several major mental disorders, emerging data suggest protective and restorative effects of trophic factors in preclinical models, when applied on their own. Antidepressant outcomes of VGF and FGF2, for instance, were shown in experimental animals, while BDNF and GDNF prove useful in the treatment of addiction, schizophrenia, and autism spectrum disorders. The main challenge with the effective translation of these and other findings in the clinic is the knowledge gap in action mechanisms with potential risks, as well as the lack of effective platforms for validation under clinical settings. Herein, we review the state-of-the-art and advances in the therapeutic use of trophic factors in several major neuropsychiatric disorders.
Collapse
Affiliation(s)
- Eliyahu Dremencov
- Institute of Molecular Physiology and Genetics, Center of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Daniela Jezova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Segev Barak
- School of Psychological Sciences and the Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Jana Gaburjakova
- Institute of Molecular Physiology and Genetics, Center of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Marta Gaburjakova
- Institute of Molecular Physiology and Genetics, Center of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Viera Kutna
- Department of Experimental Neurobiology, National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
| | - Saak V Ovsepian
- Department of Experimental Neurobiology, National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
| |
Collapse
|
5
|
Broncel A, Bocian R, Kłos-Wojtczak P, Konopacki J. Noradrenergic Profile of Hippocampal Formation Theta Rhythm in Anaesthetized Rats. Neuroscience 2021; 473:13-28. [PMID: 34418519 DOI: 10.1016/j.neuroscience.2021.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 10/20/2022]
Abstract
The present study was undertaken to identify the noradrenergic receptors underlying the production of hippocampal formation (HPC) type 2 theta rhythm. The experiments were performed on urethanized rats wherein type 2 theta is the only rhythm present. In three independent stages of experiments, the effects of noradrenaline (NE) and selective noradrenergic α and β agonists and antagonists were tested. We indicate that the selective activation of three HPC noradrenergic receptors, α1, α2 and β1, induced a similar effect (i.e., inhibition) on type 2 theta rhythm. The remaining HPC β2 and β3 noradrenergic receptors do not seem to be directly involved in the pharmacological mechanism responsible for the suppression of theta rhythm in anaesthetized rats. Obtained results provide evidence for the suppressant effect of exogenous NE on HPC type 2 theta rhythm and show the crucial role of α1, α2 and β1 noradrenergic receptors in the modulation of HPC mechanisms of oscillations and synchrony. This finding is in contrast to the effects of endogenous NE produced by electrical stimulation of the locus coeruleus (LC) and procaine injection into the LC (Broncel et al., 2020).
Collapse
Affiliation(s)
- A Broncel
- Neuromedical, Research Department, Natolin 15, 92-701 Lodz, Poland.
| | - R Bocian
- Department of Neurobiology, Faculty of Biology and Environmental Protection, The University of Lodz, Pomorska St. No 141/143, 90-236 Lodz, Poland.
| | - P Kłos-Wojtczak
- Neuromedical, Research Department, Natolin 15, 92-701 Lodz, Poland.
| | - J Konopacki
- Department of Neurobiology, Faculty of Biology and Environmental Protection, The University of Lodz, Pomorska St. No 141/143, 90-236 Lodz, Poland.
| |
Collapse
|
6
|
Tsai CJ, Lin HY, Tseng IWY, Gau SSF. White matter microstructural integrity correlates of emotion dysregulation in children with ADHD: A diffusion imaging tractography study. Prog Neuropsychopharmacol Biol Psychiatry 2021; 110:110325. [PMID: 33857524 DOI: 10.1016/j.pnpbp.2021.110325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 01/25/2023]
Abstract
BACKGROUND Emotion dysregulation (ED) is prevalent in youths with attention-deficit hyperactivity disorder (ADHD) and causes more social impairment and poor adaptive function. Alterations in the integrity of white matter (WM) tracts might have important implications for affective processing related to ED. However, little is known about the WM correlates underpinning ED in ADHD. METHODS Using diffusion spectrum image tractography, we obtained generalized fractional anisotropy (GFA) values of 76 WM tracts in 77 children with ADHD and 105 typically developing controls (TDC). ED severity was defined by the dysregulation profile from the child behavior checklist. Canonical correlation analysis (CCA) was performed to identify modes that relate WM microstructural property to ED severity and cognitive measures. RESULTS The application of CCA identified one significant mode (r = 0.638, FWE-corrected p = 0.046) of interdependencies between WM property patterns and diagnosis, ADHD total symptom levels, dysregulation by diagnosis interaction, and full-scale intellectual quotient (FIQ). GFA values of 19 WM tracts that were linked to affective-processing, sensory-processing and integration, and cognitive control circuitry were positively correlated with ED severity in TDC but negatively correlated with ED severity in ADHD. ADHD symptom severity and diagnosis were negatively associated with the GFA patterns of this set of tract bundles. In contrast, FIQ was positively correlated with this set of tract bundles. CONCLUSIONS This study used the CCA to show that children with ADHD and TDC had distinct multivariate associations between ED severity (diagnosis by ED interaction) and microstructural property in a set of WM tracts. These tracts interconnect the cortical regions that are principally involved in emotion processing, integration, and cognitive control in multiple brain systems. The WM microstructure integrity impairment might be an essential correlate of emotion dysregulation in ADHD.
Collapse
Affiliation(s)
- Chia-Jui Tsai
- Department of Psychiatry, Taichung Veterans General Hospital, Taichung, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsiang-Yuan Lin
- Azrieli Adult Neurodevelopmental Centre and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Isaac Wen-Yih Tseng
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Susan Shur-Fen Gau
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan; Graduate Institute of Brain and Mind Sciences and Department of Psychology, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
7
|
Filatova EV, Shadrina MI, Slominsky PA. Major Depression: One Brain, One Disease, One Set of Intertwined Processes. Cells 2021; 10:cells10061283. [PMID: 34064233 PMCID: PMC8224372 DOI: 10.3390/cells10061283] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 01/18/2023] Open
Abstract
Major depressive disorder (MDD) is a heterogeneous disease affecting one out of five individuals and is the leading cause of disability worldwide. Presently, MDD is considered a multifactorial disease with various causes such as genetic susceptibility, stress, and other pathological processes. Multiple studies allowed the formulation of several theories attempting to describe the development of MDD. However, none of these hypotheses are comprehensive because none of them can explain all cases, mechanisms, and symptoms of MDD. Nevertheless, all of these theories share some common pathways, which lead us to believe that these hypotheses depict several pieces of the same big puzzle. Therefore, in this review, we provide a brief description of these theories and their strengths and weaknesses in an attempt to highlight the common mechanisms and relationships of all major theories of depression and combine them together to present the current overall picture. The analysis of all hypotheses suggests that there is interdependence between all the brain structures and various substances involved in the pathogenesis of MDD, which could be not entirely universal, but can affect all of the brain regions, to one degree or another, depending on the triggering factor, which, in turn, could explain the different subtypes of MDD.
Collapse
|
8
|
Delcourte S, Etievant A, Haddjeri N. Role of central serotonin and noradrenaline interactions in the antidepressants' action: Electrophysiological and neurochemical evidence. PROGRESS IN BRAIN RESEARCH 2021; 259:7-81. [PMID: 33541681 DOI: 10.1016/bs.pbr.2021.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The development of antidepressant drugs, in the last 6 decades, has been associated with theories based on a deficiency of serotonin (5-HT) and/or noradrenaline (NA) systems. Although the pathophysiology of major depression (MD) is not fully understood, numerous investigations have suggested that treatments with various classes of antidepressant drugs may lead to an enhanced 5-HT and/or adapted NA neurotransmissions. In this review, particular morpho-physiological aspects of these systems are first considered. Second, principal features of central 5-HT/NA interactions are examined. In this regard, the effects of the acute and sustained antidepressant administrations on these systems are discussed. Finally, future directions including novel therapeutic strategies are proposed.
Collapse
Affiliation(s)
- Sarah Delcourte
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Adeline Etievant
- Integrative and Clinical Neurosciences EA481, University of Bourgogne Franche-Comté, Besançon, France
| | - Nasser Haddjeri
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France.
| |
Collapse
|
9
|
Nocheva H, Sabit Z, Bakalov D, Grigorov E. Interactions between the cannabinoid and the serotonergic systems in modulation of pain perception. PHARMACIA 2021. [DOI: 10.3897/pharmacia.68.e49219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The aim of our study was to evaluate the effects of cannabinoids and serotonergic system on nociception in intact rats and after heat stress. Cannabinoid receptor type 1 (CB1) and 5-hydroxytryptamine receptor (5НТ1А) agonists and antagonists have been administered according to different experimental designs (alone and in combinations) in intact male Wistar rats, as well in animals subjected to one hour of heat stress. Pain perception has been evaluated by Paw pressure test. Our results pointed out that cannabinoids and the serotonergic system interact in nociception in intact animals as well as after heat stress. Cannabinoids seemed to have less prominent role in such interaction in intact animals than after heat stress. The interplay between the two systems probably involves different mechanisms in intact animals and after heat stress with time-dependent effects. The interaction between the cannabinoid and the serotonergic systems exerts a modulating rather than mediating effect on h-SIA.
Collapse
|
10
|
Grinchii D, Dremencov E. Mechanism of Action of Atypical Antipsychotic Drugs in Mood Disorders. Int J Mol Sci 2020; 21:ijms21249532. [PMID: 33333774 PMCID: PMC7765178 DOI: 10.3390/ijms21249532] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/03/2020] [Accepted: 12/11/2020] [Indexed: 01/07/2023] Open
Abstract
Atypical antipsychotic drugs were introduced in the early 1990s. Unlike typical antipsychotics, which are effective only against positive symptoms of schizophrenia, atypical antipsychotics are effective against negative and cognitive symptoms as well. Furthermore, they are effective not only in psychotic but also in affective disorders, on their own or as adjuncts to antidepressant drugs. This review presents the neural mechanisms of currently existing atypical antipsychotics and putative antipsychotics currently being investigated in preclinical and clinical studies and how these relate to their effectiveness in mood disorders such as depression, anxiety, and post-traumatic stress disorder (PTSD). Typical antipsychotics act almost exclusively on the dopamine system. Atypical drugs, however, modulate serotonin (5-HT), norepinephrine, and/or histamine neurotransmission as well. This multimodal mechanism of action putatively underlies the beneficial effect of atypical antipsychotics in mood and anxiety disorders. Interestingly, novel experimental drugs having dual antipsychotic and antidepressant therapeutic potential, such as histamine, adenosine, and trace amine-associated receptors (TAAR) ligand, are also characterized by a multimodal stimulatory effect on central 5-HT, norepinephrine, and/or histamine transmission. The multimodal stimulatory effect on central monoamine neurotransmission may be thus primarily responsible for the combined antidepressant and antipsychotic therapeutic potential of certain central nervous system (CNS) drugs.
Collapse
|
11
|
Pittaluga A. Acute Functional Adaptations in Isolated Presynaptic Terminals Unveil Synaptosomal Learning and Memory. Int J Mol Sci 2019; 20:ijms20153641. [PMID: 31349638 PMCID: PMC6696074 DOI: 10.3390/ijms20153641] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/08/2019] [Accepted: 07/24/2019] [Indexed: 01/19/2023] Open
Abstract
Synaptosomes are used to decipher the mechanisms involved in chemical transmission, since they permit highlighting the mechanisms of transmitter release and confirming whether the activation of presynaptic receptors/enzymes can modulate this event. In the last two decades, important progress in the field came from the observations that synaptosomes retain changes elicited by both “in vivo” and “in vitro” acute chemical stimulation. The novelty of these studies is the finding that these adaptations persist beyond the washout of the triggering drug, emerging subsequently as functional modifications of synaptosomal performances, including release efficiency. These findings support the conclusion that synaptosomes are plastic entities that respond dynamically to ambient stimulation, but also that they “learn and memorize” the functional adaptation triggered by acute exposure to chemical agents. This work aims at reviewing the results so far available concerning this form of synaptosomal learning, also highlighting the role of these acute chemical adaptations in pathological conditions.
Collapse
Affiliation(s)
- Anna Pittaluga
- Department of Pharmacy, DiFAR, Pharmacology and Toxicology Section, Viale Cembrano 4, 16148 and Center of Excellence for Biomedical Research, University of Genoa, Viale Benedetto XV, 16132 University of Genoa, 16145 Genoa, Italy.
- IRCCS Ospedale Policlinico San Martino, 16145, Genova, Italy.
| |
Collapse
|
12
|
Krishna V, Bairy KL, Patil N, Sunny SV. Evaluation of the antianxiety and antidepressant activities of mosapride in Wistar albino rats. J Basic Clin Physiol Pharmacol 2019; 30:jbcpp-2018-0089. [PMID: 31318691 DOI: 10.1515/jbcpp-2018-0089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 11/15/2018] [Indexed: 11/15/2022]
Abstract
Background The 5HT4 receptor agonists are antidepressants with a unique mode of action. Many studies have been done on investigational drugs, and mosapride has been shown to have a 5HT3 antagonistic property. In this study, we assessed the potential anxiolytic and antidepressant effects of mosapride on Wistar albino rats. Methods The rats were randomly assigned to two models containing 4 groups of 6 animals each. In the anxiety model, four groups included 0.5 mL of 0.5% carboxymethyl cellulose (CMC), mosapride 1.5 mg/kg, mosapride 3 mg/kg and diazepam 2 mg/kg. They were dosed for 5 days. On the 3rd day, the elevated plus maze (EPM) was conducted, and on the 5th day, the open field (OF) tests were conducted. In the depression model, four groups included 0.5 mL of 0.5% CMC, mosapride 1.5 mg/kg, mosapride 3 mg/kg and imipramine 30 mg/kg. After 3 days of dosing, the forced swim test (FST) was conducted, followed by a washout period of 1 month. Then, the rats were subjected to chronic unpredictable stress with sucrose preference. Results Compared with the control, the mosapride-treated animals showed significant anxiolytic behavior at both high and low doses in the EPM and OF tests. In the FST, both high and low doses of mosapride reduced immobility. The climbing behavior was prominent at a high dose of mosapride, whereas swimming was prominent at a low dose. In the chronic stress model, both doses of mosapride preserved sucrose preference comparable to imipramine. Conclusion These findings suggest that mosapride has anxiolytic and antidepressant activities at clinically used doses.
Collapse
Affiliation(s)
- Vybhava Krishna
- Kasturba Medical College, Manipal Academy of Higher Education, Pharmacology, MadhavnagarManipal, India
| | - K L Bairy
- Department of Pharmacology, RAK College of Medical Sciences, RAK Medical and Health Sciences, University, Ras Al Khaimah, UAE
| | - Navin Patil
- Kasturba Medical College, Manipal Academy of Higher Education, Pharmacology, MadhavnagarManipal, India
| | - Sweenly V Sunny
- Kasturba Medical College, Manipal Academy of Higher Education, Pharmacology, MadhavnagarManipal, India
| |
Collapse
|
13
|
Morgese MG, Trabace L. Monoaminergic System Modulation in Depression and Alzheimer's Disease: A New Standpoint? Front Pharmacol 2019; 10:483. [PMID: 31156428 PMCID: PMC6533589 DOI: 10.3389/fphar.2019.00483] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 04/16/2019] [Indexed: 12/26/2022] Open
Abstract
The prevalence of depression has dramatically increased, and it has been estimated that over 300 million people suffer from depression all over the world. Depression is highly comorbid with many central and peripheral disorders. In this regard, depressive states have been associated with the development of neurological disorders such as Alzheimer's disease (AD). Accordingly, depression is a risk factor for AD and depressive symptomatology is common in pre-clinical AD, representing an early manifestation of this disease. Neuropsychiatric symptoms may represent prodromal symptoms of dementia deriving from neurobiological changes in specific cerebral regions; thus, the search for common biological substrates is becoming an imperative and intriguing field of research. Soluble forms of beta amyloid peptide (Aβ) have been implicated both in the development of early memory deficits and neuropsychiatric symptoms. Indeed, soluble Aβ species have been shown to induce a depressive-like phenotype in AD animal models. Alterations in monoamine content are a common feature of these neuropathologies. Interestingly, serotonergic system modulation has been implicated in alteration of Aβ production. In addition, noradrenaline is considered crucially involved in compensatory mechanisms, leading to increased Aβ degradation via several mechanisms, including microglia modulation. In further agreement, antidepressant drugs have also been shown to potentially modulate cognitive symptoms in AD and depression. Thus, the present review summarizes the main knowledge about biological and pathological substrates, such as monoamine and related molecules, commonly involved in AD and depression pathology, thus shading light on new therapeutic approaches.
Collapse
Affiliation(s)
- Maria Grazia Morgese
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| |
Collapse
|
14
|
Sant’Ana AB, Vilela-Costa HH, Vicente MA, Hernandes PM, de Andrade TGCS, Zangrossi H. Role of 5-HT2C receptors of the dorsal hippocampus in the modulation of anxiety- and panic-related defensive responses in rats. Neuropharmacology 2019; 148:311-319. [DOI: 10.1016/j.neuropharm.2019.01.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 11/26/2022]
|
15
|
Hökfelt T, Barde S, Xu ZQD, Kuteeva E, Rüegg J, Le Maitre E, Risling M, Kehr J, Ihnatko R, Theodorsson E, Palkovits M, Deakin W, Bagdy G, Juhasz G, Prud’homme HJ, Mechawar N, Diaz-Heijtz R, Ögren SO. Neuropeptide and Small Transmitter Coexistence: Fundamental Studies and Relevance to Mental Illness. Front Neural Circuits 2018; 12:106. [PMID: 30627087 PMCID: PMC6309708 DOI: 10.3389/fncir.2018.00106] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/05/2018] [Indexed: 12/31/2022] Open
Abstract
Neuropeptides are auxiliary messenger molecules that always co-exist in nerve cells with one or more small molecule (classic) neurotransmitters. Neuropeptides act both as transmitters and trophic factors, and play a role particularly when the nervous system is challenged, as by injury, pain or stress. Here neuropeptides and coexistence in mammals are reviewed, but with special focus on the 29/30 amino acid galanin and its three receptors GalR1, -R2 and -R3. In particular, galanin's role as a co-transmitter in both rodent and human noradrenergic locus coeruleus (LC) neurons is addressed. Extensive experimental animal data strongly suggest a role for the galanin system in depression-like behavior. The translational potential of these results was tested by studying the galanin system in postmortem human brains, first in normal brains, and then in a comparison of five regions of brains obtained from depressed people who committed suicide, and from matched controls. The distribution of galanin and the four galanin system transcripts in the normal human brain was determined, and selective and parallel changes in levels of transcripts and DNA methylation for galanin and its three receptors were assessed in depressed patients who committed suicide: upregulation of transcripts, e.g., for galanin and GalR3 in LC, paralleled by a decrease in DNA methylation, suggesting involvement of epigenetic mechanisms. It is hypothesized that, when exposed to severe stress, the noradrenergic LC neurons fire in bursts and release galanin from their soma/dendrites. Galanin then acts on somato-dendritic, inhibitory galanin autoreceptors, opening potassium channels and inhibiting firing. The purpose of these autoreceptors is to act as a 'brake' to prevent overexcitation, a brake that is also part of resilience to stress that protects against depression. Depression then arises when the inhibition is too strong and long lasting - a maladaption, allostatic load, leading to depletion of NA levels in the forebrain. It is suggested that disinhibition by a galanin antagonist may have antidepressant activity by restoring forebrain NA levels. A role of galanin in depression is also supported by a recent candidate gene study, showing that variants in genes for galanin and its three receptors confer increased risk of depression and anxiety in people who experienced childhood adversity or recent negative life events. In summary, galanin, a neuropeptide coexisting in LC neurons, may participate in the mechanism underlying resilience against a serious and common disorder, MDD. Existing and further results may lead to an increased understanding of how this illness develops, which in turn could provide a basis for its treatment.
Collapse
Affiliation(s)
- Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Swapnali Barde
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Zhi-Qing David Xu
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Laboratory of Brain Disorders (Ministry of Science and Technology), Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Eugenia Kuteeva
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Joelle Rüegg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- The Center for Molecular Medicine, Stockholm, Sweden
- Swedish Toxicology Sciences Research Center, Swetox, Södertälje, Sweden
| | - Erwan Le Maitre
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Mårten Risling
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jan Kehr
- Pronexus Analytical AB, Solna, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Robert Ihnatko
- Department of Clinical Chemistry, Linköping University, Linköping, Sweden
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Elvar Theodorsson
- Department of Clinical Chemistry, Linköping University, Linköping, Sweden
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Miklos Palkovits
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - William Deakin
- Neuroscience and Psychiatry Unit, University of Manchester, Manchester, United Kingdom
| | - Gyorgy Bagdy
- Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
- NAP 2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Gabriella Juhasz
- Neuroscience and Psychiatry Unit, University of Manchester, Manchester, United Kingdom
- Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | | | - Naguib Mechawar
- Douglas Hospital Research Centre, Verdun, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | | | - Sven Ove Ögren
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
16
|
Roohi-Azizi M, Torkaman-Boutorabi A, Akhondzadeh S, Nejatisafa AA, Sadat-Shirazi MS, Zarrindast MR. Influence of citicoline on citalopram-induced antidepressant activity in depressive-like symptoms in male mice. Physiol Behav 2018; 195:151-157. [PMID: 30107190 DOI: 10.1016/j.physbeh.2018.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/21/2018] [Accepted: 08/10/2018] [Indexed: 12/21/2022]
Abstract
Depression is associated with significant functional disabilities. Application of new drugs which could enhance the effectiveness of antidepressants drug and reduce side effects of their long-term use seems necessary. Citicoline is used as an effective chemical agent for improving the symptoms of some neurodegenerative diseases. Therefore, in this survey, the application of citicoline as an adjuvant drug was evaluated in mice model of depression. A total of 180 adult NMRI male albino mice were used in this study. All groups were exposed to chronic unexpected mild stress (CUMS) followed by treatment with various doses of citalopram or/and citicoline or saline for 21 days. Sucrose preference (SP), open field (OF), and forced swimming test (FST) were applied to evaluate depression symptoms in the groups. The results indicated that only citicoline at the 5 mg/kg dose had shifted its status from being noneffective to become significantly effective in the co-administered group. The means of SP, OFT, and FST of the treatment groups were significantly different in favor of co-administered group compared with the other groups as well as the control group. Based on the results, it can be concluded that administration of citicoline, as an adjuvant drug, in combination with citalopram, enhanced the effectiveness of selective serotonin reuptake inhibitors (SSRI) drugs for depression treatment.
Collapse
Affiliation(s)
- Mahtab Roohi-Azizi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Rehabilitation Basic Sciences, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Anahita Torkaman-Boutorabi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahin Akhondzadeh
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali-Akbar Nejatisafa
- Department of Psychiatry, Psychosomatic Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mitra-Sadat Sadat-Shirazi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran.; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Neuroendocrinology, Endocrinology and Metabolism Research Institute, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
17
|
Sarubbo F, Moranta D, Pani G. Dietary polyphenols and neurogenesis: Molecular interactions and implication for brain ageing and cognition. Neurosci Biobehav Rev 2018; 90:456-470. [DOI: 10.1016/j.neubiorev.2018.05.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 04/05/2018] [Accepted: 05/07/2018] [Indexed: 12/17/2022]
|
18
|
Changes in the cannabinoids receptors in rats following treatment with antidepressants. Neurotoxicology 2017; 63:13-20. [DOI: 10.1016/j.neuro.2017.08.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/17/2017] [Accepted: 08/24/2017] [Indexed: 11/23/2022]
|
19
|
Shin HC, Lee JH, Kim KJ, Shin HJ, Choi JJ, Lee CY, Namgung U, Jung IC. Modulation of hippocampal neuronal activity by So-ochim-tang-gamibang in mice subjected to chronic restraint stress. Altern Ther Health Med 2017; 17:456. [PMID: 28888226 PMCID: PMC5591508 DOI: 10.1186/s12906-017-1963-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/01/2017] [Indexed: 01/21/2023]
Abstract
Background So-ochim-tang-gamibang (SOCG) is a decoction formula which has been used to improve mental activity in traditional Korean medicine. The present study was performed to evaluate whether the treatment of SOCG was involved in activating hippocampal neurons in mice which were subjected to chronic restraint stress (CRS). Methods Mice were subjected to CRS for 2 weeks to induce depressive-like behaviors. SOCG was orally administered for the same period. mRNA expression in the hippocampus was analyzed by RT-PCR. Levels of serotonin receptor 5-HT1AR in the hippocampus were determined by western blotting and by immunofluorescence staining in coronal brain sections. Cultured neurons were prepared from the dorsal root ganglia (DRG) in mice to examine the effects of CRS and SOCG treatment on neurite outgrowth. Depressive-like behaviors of experimental animals were measured by open field test (OFT) and forced swimming test (FST). Results mRNA levels of serotonin 1A and 1B receptors (5-HT1AR and 5-HT1BR) were decreased in the hippocampus of CRS animals and increased by SOCG treatment. Signals of 5-HT1AR protein in CA3 pyramidal cells were decreased by CRS but elevated back to levels in control animals after SOCG treatment. Phospho-Erk1/2 protein in CA3 cells showed similar pattern of changes as in 5-HT1AR, suggesting coordinated regulation after SOCG treatment in CRS animals. Axonal growth-associated protein GAP-43 levels were also decreased by CRS and then increased by SOCG treatment. In vivo administration of SOCG improved neurite outgrowth of primary DRG neurons from CRS animals and also increased 5-HT1AR protein signals. Behavioral tests of open field and forced swimming showed that immobility time periods were significantly decreased by SOCG treatment. Conclusions Our data suggest that SOCG treatment may increase synaptic responsiveness to serotonergic neuronal inputs by upregulating 5-HT1AR in the hippocampal neurons.
Collapse
|
20
|
Both serotonergic and noradrenergic systems modulate the development of tolerance to chronic stress in rats with lesions of the serotonergic neurons of the median raphe nucleus. Behav Brain Res 2017; 357-358:39-47. [PMID: 28662893 DOI: 10.1016/j.bbr.2017.06.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/23/2017] [Accepted: 06/24/2017] [Indexed: 11/20/2022]
Abstract
Acute exposure to stress induces significant behavioural changes, while repeated exposure to the same stressor leads to the development of tolerance to stress. The development of tolerance appears to involve the serotonergic projections from the Median Raphe Nucleus (MnRN) to the dorsal Hippocampus (dH), since rats with lesions of this pathway does not develop tolerance to stress. Previous data from our laboratory showed that treatment with imipramine, a serotonin (5-HT) and noradrenaline (NA) reuptake inhibitor, lead to the development of tolerance. However, it remains to be elucidated whether such tolerance involves the participation of the noradrenergic system, apart from the serotonergic projections. Therefore, the aim of this work was to investigate the behavioural and neurochemical effects of chronic treatment with desipramine (NA reuptake inhibitor) or fluoxetine (5-HT reuptake inhibitor) in chronically stressed rats with lesions of the serotonergic neurons of the MnRN. Male Wistar rats with or without lesion in the MnRN were submitted or not to acute (2 h) or chronic restraint (2 h/seven days) stress and tested in the elevated pus maze (EPM). Treatment with fluoxetine, desipramine (10 mg/kg) or saline was performed twice daily (12-12 h interval), for 7 consecutive days. EPM test was conducted 24 h after the treatment. Fluoxetine attenuated the anxiogenic-induced effect of lesion in chronically restrained rats, without changing serotonin and noradrenaline levels in the hippocampus of lesioned rats. A similar profile was also observed after treatment with desipramine. These results suggest that both the serotonergic and the noradrenergic systems are involved in the development of tolerance to chronic stress. Additionally, the integrity of the serotonergic pathway of the MnRN-dH is not essential for the anxiolytic-like effects of these drugs.
Collapse
|
21
|
Plasma Metabolites Predict Severity of Depression and Suicidal Ideation in Psychiatric Patients-A Multicenter Pilot Analysis. PLoS One 2016; 11:e0165267. [PMID: 27984586 PMCID: PMC5161310 DOI: 10.1371/journal.pone.0165267] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/07/2016] [Indexed: 12/27/2022] Open
Abstract
Evaluating the severity of depression (SOD), especially suicidal ideation (SI), is crucial in the treatment of not only patients with mood disorders but also psychiatric patients in general. SOD has been assessed on interviews such as the Hamilton Rating Scale for Depression (HAMD)-17, and/or self-administered questionnaires such as the Patient Health Questionnaire (PHQ)-9. However, these evaluation systems have relied on a person's subjective information, which sometimes lead to difficulties in clinical settings. To resolve this limitation, a more objective SOD evaluation system is needed. Herein, we collected clinical data including HAMD-17/PHQ-9 and blood plasma of psychiatric patients from three independent clinical centers. We performed metabolome analysis of blood plasma using liquid chromatography mass spectrometry (LC-MS), and 123 metabolites were detected. Interestingly, five plasma metabolites (3-hydroxybutyrate (3HB), betaine, citrate, creatinine, and gamma-aminobutyric acid (GABA)) are commonly associated with SOD in all three independent cohort sets regardless of the presence or absence of medication and diagnostic difference. In addition, we have shown several metabolites are independently associated with sub-symptoms of depression including SI. We successfully created a classification model to discriminate depressive patients with or without SI by machine learning technique. Finally, we produced a pilot algorithm to predict a grade of SI with citrate and kynurenine. The above metabolites may have strongly been associated with the underlying novel biological pathophysiology of SOD. We should explore the biological impact of these metabolites on depressive symptoms by utilizing a cross species study model with human and rodents. The present multicenter pilot study offers a potential utility for measuring blood metabolites as a novel objective tool for not only assessing SOD but also evaluating therapeutic efficacy in clinical practice. In addition, modification of these metabolites by diet and/or medications may be a novel therapeutic target for depression. To clarify these aspects, clinical trials measuring metabolites before/after interventions should be conducted. Larger cohort studies including non-clinical subjects are also warranted to clarify our pilot findings.
Collapse
|
22
|
Ardalan M, Wegener G, Rafati AH, Nyengaard JR. S-Ketamine Rapidly Reverses Synaptic and Vascular Deficits of Hippocampus in Genetic Animal Model of Depression. Int J Neuropsychopharmacol 2016; 20:247-256. [PMID: 27815416 PMCID: PMC5408982 DOI: 10.1093/ijnp/pyw098] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 11/02/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The neurovascular plasticity of hippocampus is an important theory underlying major depression. Ketamine as a novel glutamatergic antidepressant drug can induce a rapid antidepressant effect within hours. In a mechanistic proof of this concept, we examined whether ketamine leads to an increase in synaptogenesis and vascularization within 24 hours after a single injection in a genetic rat model of depression. METHODS Flinders Sensitive Line and Flinders Resistant Line rats were given a single intraperitoneal injection of ketamine (15 mg/kg) or saline. One day later, their behavior was evaluated by a modified forced swim test. Microvessel length was evaluated with global spatial sampling and optical microscopy, whereas the number of asymmetric synapses was quantified through serial section electron microscopy by using physical disector method in the CA1.stratum radiatum area of hippocampus. RESULTS The immobility time in the forced swim test among Flinders Sensitive Line rats with ketamine treatment was significantly lower compared with Flinders Sensitive Line rats without treatment. The number of nonperforated and perforated synapses was significantly higher in the Flinders Sensitive Line-ketamine vs the Flinders Sensitive Line-vehicle group; however, ketamine did not induce a significant increase in the number of shaft synapses. Additionally, total length of microvessels was significantly increased 1 day after ketamine treatment in Flinders Sensitive Line rats in the hippocampal subregions, including the CA1.stratum radiatum. CONCLUSION Our findings indicate that hippocampal vascularization and synaptogenesis is co-regulated rapidly after ketamine, and microvascular elongation may be a supportive factor for synaptic plasticity and neuronal activity. These findings go hand-in-hand with the behavioral observations, where ketamine acts as a potent antidepressant.
Collapse
Affiliation(s)
- Maryam Ardalan
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University Hospital, Risskov, Denmark (Drs Ardalan and Wegener); Stereology and Electron Microscopy Laboratory, Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark (Drs Ardalan, Rafati, and Nyengaard); Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University, Aarhus, Denmark (Drs Rafati and Nyengaard); Pharmaceutical Research Center of Excellence, School of Pharmacy (Pharmacology), North-West University, Potchefstroom, South Africa (Dr Wegener)
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University Hospital, Risskov, Denmark (Drs Ardalan and Wegener); Stereology and Electron Microscopy Laboratory, Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark (Drs Ardalan, Rafati, and Nyengaard); Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University, Aarhus, Denmark (Drs Rafati and Nyengaard); Pharmaceutical Research Center of Excellence, School of Pharmacy (Pharmacology), North-West University, Potchefstroom, South Africa (Dr Wegener)
| | - Ali H. Rafati
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University Hospital, Risskov, Denmark (Drs Ardalan and Wegener); Stereology and Electron Microscopy Laboratory, Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark (Drs Ardalan, Rafati, and Nyengaard); Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University, Aarhus, Denmark (Drs Rafati and Nyengaard); Pharmaceutical Research Center of Excellence, School of Pharmacy (Pharmacology), North-West University, Potchefstroom, South Africa (Dr Wegener)
| | - Jens R. Nyengaard
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University Hospital, Risskov, Denmark (Drs Ardalan and Wegener); Stereology and Electron Microscopy Laboratory, Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark (Drs Ardalan, Rafati, and Nyengaard); Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University, Aarhus, Denmark (Drs Rafati and Nyengaard); Pharmaceutical Research Center of Excellence, School of Pharmacy (Pharmacology), North-West University, Potchefstroom, South Africa (Dr Wegener)
| |
Collapse
|
23
|
Carlisi CO, Chantiluke K, Norman L, Christakou A, Barrett N, Giampietro V, Brammer M, Simmons A, Rubia K. The effects of acute fluoxetine administration on temporal discounting in youth with ADHD. Psychol Med 2016; 46:1197-1209. [PMID: 26708124 DOI: 10.1017/s0033291715002731] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Serotonin is under-researched in attention deficit hyperactivity disorder (ADHD), despite accumulating evidence for its involvement in impulsiveness and the disorder. Serotonin further modulates temporal discounting (TD), which is typically abnormal in ADHD relative to healthy subjects, underpinned by reduced fronto-striato-limbic activation. This study tested whether a single acute dose of the selective serotonin reuptake inhibitor (SSRI) fluoxetine up-regulates and normalizes reduced fronto-striato-limbic neurofunctional activation in ADHD during TD. METHOD Twelve boys with ADHD were scanned twice in a placebo-controlled randomized design under either fluoxetine (between 8 and 15 mg, titrated to weight) or placebo while performing an individually adjusted functional magnetic resonance imaging TD task. Twenty healthy controls were scanned once. Brain activation was compared in patients under either drug condition and compared to controls to test for normalization effects. RESULTS Repeated-measures whole-brain analysis in patients revealed significant up-regulation with fluoxetine in a large cluster comprising right inferior frontal cortex, insula, premotor cortex and basal ganglia, which further correlated trend-wise with TD performance, which was impaired relative to controls under placebo, but normalized under fluoxetine. Fluoxetine further down-regulated default mode areas of posterior cingulate and precuneus. Comparisons between controls and patients under either drug condition revealed normalization with fluoxetine in right premotor-insular-parietal activation, which was reduced in patients under placebo. CONCLUSIONS The findings show that a serotonin agonist up-regulates activation in typical ADHD dysfunctional areas in right inferior frontal cortex, insula and striatum as well as down-regulating default mode network regions in the context of impulsivity and TD.
Collapse
Affiliation(s)
- C O Carlisi
- Department of Child & Adolescent Psychiatry,Institute of Psychiatry, Psychology and Neuroscience,King's College,London,UK
| | - K Chantiluke
- Department of Child & Adolescent Psychiatry,Institute of Psychiatry, Psychology and Neuroscience,King's College,London,UK
| | - L Norman
- Department of Child & Adolescent Psychiatry,Institute of Psychiatry, Psychology and Neuroscience,King's College,London,UK
| | - A Christakou
- Department of Child & Adolescent Psychiatry,Institute of Psychiatry, Psychology and Neuroscience,King's College,London,UK
| | - N Barrett
- South London and Maudsley NHS Trust,London,UK
| | - V Giampietro
- Department of Neuroimaging,Institute of Psychiatry, Psychology and Neuroscience,King's College,London,UK
| | - M Brammer
- Department of Neuroimaging,Institute of Psychiatry, Psychology and Neuroscience,King's College,London,UK
| | - A Simmons
- Department of Neuroimaging,Institute of Psychiatry, Psychology and Neuroscience,King's College,London,UK
| | - K Rubia
- Department of Child & Adolescent Psychiatry,Institute of Psychiatry, Psychology and Neuroscience,King's College,London,UK
| |
Collapse
|
24
|
Apple DM, Fonseca RS, Kokovay E. The role of adult neurogenesis in psychiatric and cognitive disorders. Brain Res 2016; 1655:270-276. [PMID: 26801829 DOI: 10.1016/j.brainres.2016.01.023] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 12/15/2015] [Accepted: 01/13/2016] [Indexed: 12/23/2022]
Abstract
Neurogenesis in mammals occurs throughout life in two brain regions: the ventricular-subventricular zone (V-SVZ) and the subgranular zone (SGZ) of the hippocampal dentate gyrus. Development and regulation of the V-SVZ and SGZ is unique to each brain region, but with several similar characteristics. Alterations to the production of new neurons in neurogenic regions have been linked to psychiatric and neurodegenerative disorders. Decline in neurogenesis in the SGZ correlates with affective and psychiatric disorders, and can be reversed by antidepressant and antipsychotic drugs. Likewise, neurogenesis in the V-SVZ can also be enhanced by antidepressant drugs. The regulation of neurogenesis by neurotransmitters, particularly monoamines, in both regions suggests that aberrant neurotransmitter signaling observed in psychiatric disease may play a role in the pathology of these mental health disorders. Similarly, the cognitive deficits that accompany neurodegenerative disease may also be exacerbated by decreased neurogenesis. This review explores the regulation and function of neural stem cells in rodents and humans, and the involvement of factors that contribute to psychiatric and cognitive deficits. This article is part of a Special Issue entitled SI:StemsCellsinPsychiatry.
Collapse
Affiliation(s)
- Deana M Apple
- University of Texas Health Science Center at San Antonio, Department of Cellular and Structural Biology, 7703, Floyd Curl Drive, San Antonio, TX 78229, United States.
| | - Rene Solano Fonseca
- University of Texas Health Science Center at San Antonio, Department of Cellular and Structural Biology, 7703, Floyd Curl Drive, San Antonio, TX 78229, United States
| | - Erzsebet Kokovay
- University of Texas Health Science Center at San Antonio, Department of Cellular and Structural Biology, 7703, Floyd Curl Drive, San Antonio, TX 78229, United States
| |
Collapse
|
25
|
Netter P, Hennig J. Discriminating Depression, Physical and Social Anhedonia by Neurotransmitter Related Challenge Tests. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/psych.2016.73030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Mantsch JR, Baker DA, Funk D, Lê AD, Shaham Y. Stress-Induced Reinstatement of Drug Seeking: 20 Years of Progress. Neuropsychopharmacology 2016; 41:335-56. [PMID: 25976297 PMCID: PMC4677117 DOI: 10.1038/npp.2015.142] [Citation(s) in RCA: 332] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/01/2015] [Accepted: 05/08/2015] [Indexed: 12/24/2022]
Abstract
In human addicts, drug relapse and craving are often provoked by stress. Since 1995, this clinical scenario has been studied using a rat model of stress-induced reinstatement of drug seeking. Here, we first discuss the generality of stress-induced reinstatement to different drugs of abuse, different stressors, and different behavioral procedures. We also discuss neuropharmacological mechanisms, and brain areas and circuits controlling stress-induced reinstatement of drug seeking. We conclude by discussing results from translational human laboratory studies and clinical trials that were inspired by results from rat studies on stress-induced reinstatement. Our main conclusions are (1) The phenomenon of stress-induced reinstatement, first shown with an intermittent footshock stressor in rats trained to self-administer heroin, generalizes to other abused drugs, including cocaine, methamphetamine, nicotine, and alcohol, and is also observed in the conditioned place preference model in rats and mice. This phenomenon, however, is stressor specific and not all stressors induce reinstatement of drug seeking. (2) Neuropharmacological studies indicate the involvement of corticotropin-releasing factor (CRF), noradrenaline, dopamine, glutamate, kappa/dynorphin, and several other peptide and neurotransmitter systems in stress-induced reinstatement. Neuropharmacology and circuitry studies indicate the involvement of CRF and noradrenaline transmission in bed nucleus of stria terminalis and central amygdala, and dopamine, CRF, kappa/dynorphin, and glutamate transmission in other components of the mesocorticolimbic dopamine system (ventral tegmental area, medial prefrontal cortex, orbitofrontal cortex, and nucleus accumbens). (3) Translational human laboratory studies and a recent clinical trial study show the efficacy of alpha-2 adrenoceptor agonists in decreasing stress-induced drug craving and stress-induced initial heroin lapse.
Collapse
Affiliation(s)
- John R Mantsch
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - David A Baker
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Douglas Funk
- Center for Addiction and Mental Health, Campbell Family Mental Health Research Institute, University of Toronto, Toronto, ON, Canada
| | - Anh D Lê
- Center for Addiction and Mental Health, Campbell Family Mental Health Research Institute, University of Toronto, Toronto, ON, Canada
| | - Yavin Shaham
- Intramural Research Program, NIDA-NIH, Baltimore, MD, USA
| |
Collapse
|
27
|
Xue R, He XH, Yuan L, Chen HX, Zhang LM, Yong Z, Yu G, Fan SY, Li YF, Zhong BH, Zhang YZ. Effects of 071031B, a novel serotonin and norepinephrine reuptake inhibitor, on monoamine system in mice and rats. J Pharmacol Sci 2016; 130:1-7. [DOI: 10.1016/j.jphs.2015.07.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/30/2015] [Accepted: 07/31/2015] [Indexed: 11/29/2022] Open
|
28
|
Jia T, Ye X, Wei Q, Xie W, Cai C, Mu J, Dong Y, Hu P, Hu X, Tian Y, Wang K. Difference in the binocular rivalry rate between depressive episodes and remission. Physiol Behav 2015; 151:272-8. [PMID: 26247392 DOI: 10.1016/j.physbeh.2015.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/31/2015] [Accepted: 08/01/2015] [Indexed: 10/23/2022]
|
29
|
Chmielarz P, Kreiner G, Kot M, Zelek-Molik A, Kowalska M, Bagińska M, Daniel WA, Nalepa I. Disruption of glucocorticoid receptors in the noradrenergic system leads to BDNF up-regulation and altered serotonergic transmission associated with a depressive-like phenotype in female GR(DBHCre) mice. Pharmacol Biochem Behav 2015; 137:69-77. [PMID: 26261018 DOI: 10.1016/j.pbb.2015.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 07/12/2015] [Accepted: 08/03/2015] [Indexed: 11/28/2022]
Abstract
Recently, we have demonstrated that conditional inactivation of glucocorticoid receptors (GRs) in the noradrenergic system, may evoke depressive-like behavior in female but not male mutant mice (GR(DBHCre) mice). The aim of the current study was to dissect how selective ablation of glucocorticoid signaling in the noradrenergic system influences the previously reported depressive-like phenotype and whether it might be linked to neurotrophic alterations or secondary changes in the serotonergic system. We demonstrated that selective depletion of GRs enhances brain derived neurotrophic factor (BDNF) expression in female but not male GR(DBHCre) mice on both the mRNA and protein levels. The possible impact of the mutation on brain noradrenergic and serotonergic systems was addressed by investigating the tissue neurotransmitter levels under basal conditions and after acute restraint stress. The findings indicated a stress-provoked differential response in tissue noradrenaline content in the GR(DBHCre) female but not male mutant mice. An analogous gender-specific effect was identified in the diminished content of 5-hydroxyindoleacetic acid, the main metabolite of serotonin, in the prefrontal cortex, which suggests down-regulation of this monoamine system in female GR(DBHCre) mice. The lack of GR also resulted in an up-regulation of alpha2-adrenergic receptor (α2-AR) density in the female but not male mutants in the locus coeruleus. We have also confirmed the utility of the investigated model in pharmacological studies, which demonstrates that the depressive-like phenotype of GR(DBHCre) female mice can be reversed by antidepressant treatment with desipramine or fluoxetine, with the latter drug evoking more pronounced effects. Overall, our study validates the use of female GR(DBHCre) mice as an interesting and novel genetic tool for the investigation of the cross-connected mechanisms of depression that is not only based on behavioral phenotypes.
Collapse
Affiliation(s)
- Piotr Chmielarz
- Department of Brain Biochemistry, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Grzegorz Kreiner
- Department of Brain Biochemistry, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Marta Kot
- Department of Pharmacokinetics and Drug Metabolism, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Agnieszka Zelek-Molik
- Department of Brain Biochemistry, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Marta Kowalska
- Department of Brain Biochemistry, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Monika Bagińska
- Department of Brain Biochemistry, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Władysława Anna Daniel
- Department of Pharmacokinetics and Drug Metabolism, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Irena Nalepa
- Department of Brain Biochemistry, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland.
| |
Collapse
|
30
|
Schomaker J, Meeter M. Short- and long-lasting consequences of novelty, deviance and surprise on brain and cognition. Neurosci Biobehav Rev 2015; 55:268-79. [DOI: 10.1016/j.neubiorev.2015.05.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/01/2015] [Accepted: 05/04/2015] [Indexed: 12/15/2022]
|
31
|
Guiard BP, Di Giovanni G. Central serotonin-2A (5-HT2A) receptor dysfunction in depression and epilepsy: the missing link? Front Pharmacol 2015; 6:46. [PMID: 25852551 PMCID: PMC4362472 DOI: 10.3389/fphar.2015.00046] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 02/24/2015] [Indexed: 11/17/2022] Open
Abstract
5-Hydroxytryptamine 2A receptors (5-HT2A-Rs) are G-protein coupled receptors. In agreement with their location in the brain, they have been implicated not only in various central physiological functions including memory, sleep, nociception, eating and reward behaviors, but also in many neuropsychiatric disorders. Interestingly, a bidirectional link between depression and epilepsy is suspected since patients with depression and especially suicide attempters have an increased seizure risk, while a significant percentage of epileptic patients suffer from depression. Such epidemiological data led us to hypothesize that both pathologies may share common anatomical and neurobiological alteration of the 5-HT2A signaling. After a brief presentation of the pharmacological properties of the 5-HT2A-Rs, this review illustrates how these receptors may directly or indirectly control neuronal excitability in most networks involved in depression and epilepsy through interactions with the monoaminergic, GABAergic and glutamatergic neurotransmissions. It also synthetizes the preclinical and clinical evidence demonstrating the role of these receptors in antidepressant and antiepileptic responses.
Collapse
Affiliation(s)
- Bruno P Guiard
- CNRS, Centre de Recherches sur la Cognition Animale, UMR 5169, Toulouse France ; CNRS, Centre de Recherches sur la Cognition Animale Université de Toulouse 3, UMR 5169, Toulouse, France ; INSERM U1178 Team ≪Depression and Antidepressants≫ Faculté de Pharmacie Paris Sud, Châtenay-Malabry, France
| | - Giuseppe Di Giovanni
- Neurophysiology Unit, Laboratory for the Study of Neurological Disorders, Department of Physiology and Biochemistry, University of Malta, Msida Malta ; School of Biosciences, University of Cardiff, Cardiff UK
| |
Collapse
|
32
|
Gutknecht L, Popp S, Waider J, Sommerlandt FMJ, Göppner C, Post A, Reif A, van den Hove D, Strekalova T, Schmitt A, Colaςo MBN, Sommer C, Palme R, Lesch KP. Interaction of brain 5-HT synthesis deficiency, chronic stress and sex differentially impact emotional behavior in Tph2 knockout mice. Psychopharmacology (Berl) 2015; 232:2429-41. [PMID: 25716307 PMCID: PMC4480945 DOI: 10.1007/s00213-015-3879-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 01/20/2015] [Indexed: 12/12/2022]
Abstract
RATIONALE While brain serotonin (5-HT) function is implicated in gene-by-environment interaction (GxE) impacting the vulnerability-resilience continuum in neuropsychiatric disorders, it remains elusive how the interplay of altered 5-HT synthesis and environmental stressors is linked to failure in emotion regulation. OBJECTIVE Here, we investigated the effect of constitutively impaired 5-HT synthesis on behavioral and neuroendocrine responses to unpredictable chronic mild stress (CMS) using a mouse model of brain 5-HT deficiency resulting from targeted inactivation of the tryptophan hydroxylase-2 (Tph2) gene. RESULTS Locomotor activity and anxiety- and depression-like behavior as well as conditioned fear responses were differentially affected by Tph2 genotype, sex, and CMS. Tph2 null mutants (Tph2(-/-)) displayed increased general metabolism, marginally reduced anxiety- and depression-like behavior but strikingly increased conditioned fear responses. Behavioral modifications were associated with sex-specific hypothalamic-pituitary-adrenocortical (HPA) system alterations as indicated by plasma corticosterone and fecal corticosterone metabolite concentrations. Tph2(-/-) males displayed increased impulsivity and high aggressiveness. Tph2(-/-) females displayed greater emotional reactivity to aversive conditions as reflected by changes in behaviors at baseline including increased freezing and decreased locomotion in novel environments. However, both Tph2(-/-) male and female mice were resilient to CMS-induced hyperlocomotion, while CMS intensified conditioned fear responses in a GxE-dependent manner. CONCLUSIONS Our results indicate that 5-HT mediates behavioral responses to environmental adversity by facilitating the encoding of stress effects leading to increased vulnerability for negative emotionality.
Collapse
Affiliation(s)
- Lise Gutknecht
- Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany ,Department of Neurobiology, Functional Genomic Institute, CNRS /INSERM UMR 5203, University of Montpellier, 34094 Montpellier, France
| | - Sandy Popp
- Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Jonas Waider
- Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Frank M. J. Sommerlandt
- Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Corinna Göppner
- Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Antonia Post
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Daniel van den Hove
- Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
| | - Tatyana Strekalova
- Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
| | - Angelika Schmitt
- Center of Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany
| | | | - Claudia Sommer
- Department of Neurology, University of Wuerzburg, Wuerzburg, Germany
| | - Rupert Palme
- Department of Biomedical Sciences/Physiology, Pathophysiology and Experimental Endocrinology, University of Veterinary Medicine, Vienna, Austria
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany ,Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
33
|
Shah A, Frazer A. Influence of acute or chronic administration of ovarian hormones on the effects of desipramine in the forced swim test in female rats. Psychopharmacology (Berl) 2014; 231:3685-94. [PMID: 24590054 PMCID: PMC4146712 DOI: 10.1007/s00213-014-3510-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 02/10/2014] [Indexed: 12/01/2022]
Abstract
RATIONALE Gender may influence antidepressant (AD) treatment outcome. In order to address this preclinically, the potential effects of ovarian hormones on AD treatment in ovariectomized female rats were investigated. OBJECTIVES In the first study, the effect of acute administration of estrogen and progesterone on the antidepressant-like effects of desipramine (DMI), a selective norepinephrine reuptake inhibitor (SNRI), was investigated in the forced swimming test (FST). In the second study, the effect of chronic administration of these hormones on the effects of chronically administered DMI was investigated. RESULTS In the acute study, the hormones blocked the effects of DMI in the FST as demonstrated by the absence of either a reduction in immobility or an increase in climbing behavior in animals treated with DMI in combination with the hormones. Concentration-response experiments on hippocampal synaptosomes revealed no changes in the Km or Bmax for uptake of (3)H-NE in hormone-treated rats. In the chronic study, the antidepressant-like effects of DMI in the FST were not blocked by chronic administration of hormones. Interestingly, the hormones affected the serum concentrations of DMI. These levels were significantly higher in animals receiving 10 or 15 mg/kg/day in hormone-treated rats as compared to those with placebo. CONCLUSIONS Acute administration of hormones blocked the effects of DMI (given three times over 24 h) in the FST. However, chronic administration of these hormones failed to block the effects of chronically administered DMI (at a dose that produces clinically relevant serum concentrations).
Collapse
Affiliation(s)
- Aparna Shah
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, Mail Code 7764, San Antonio, TX, 78229-3900, USA,
| | - Alan Frazer
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX,South Texas Veterans Health Care System (STVHCS), Audie L. Murphy Division
| |
Collapse
|
34
|
Shin E, Rogers JT, Devoto P, Björklund A, Carta M. Noradrenaline neuron degeneration contributes to motor impairments and development of L-DOPA-induced dyskinesia in a rat model of Parkinson's disease. Exp Neurol 2014; 257:25-38. [DOI: 10.1016/j.expneurol.2014.04.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/01/2014] [Accepted: 04/03/2014] [Indexed: 11/26/2022]
|
35
|
Nguyen HT, Guiard BP, Bacq A, David DJ, David I, Quesseveur G, Gautron S, Sanchez C, Gardier AM. Blockade of the high-affinity noradrenaline transporter (NET) by the selective 5-HT reuptake inhibitor escitalopram: an in vivo microdialysis study in mice. Br J Pharmacol 2014; 168:103-16. [PMID: 22233336 DOI: 10.1111/j.1476-5381.2012.01850.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND AND PURPOSE Escitalopram, the S(+)-enantiomer of citalopram is the most selective 5-HT reuptake inhibitor approved. Although all 5-HT selective reuptake inhibitors (SSRIs) increase extracellular levels of 5-HT ([5-HT](ext)). some also enhance, to a lesser extent, extracellular levels of noradrenaline ([NA](ext)). However, the mechanisms by which SSRIs activate noradrenergic transmission in the brain remain to be determined. EXPERIMENTAL APPROACH This study examined the effects of escitalopram, on both [5-HT](ext) and [NA](ext) in the frontal cortex (FCx) of freely moving wild-type (WT) and mutant mice lacking the 5-HT transporter (SERT(-/-)) by using intracerebral microdialysis. We explored the possibilities that escitalopram enhances [NA](ext), either by a direct mechanism involving the inhibition of the low- or high-affinity noradrenaline transporters, or by an indirect mechanism promoted by [5-HT](ext) elevation. The forced swim test (FST) was used to investigate whether enhancing cortical [5-HT](ext) and/or [NA](ext) affected the antidepressant-like activity of escitalopram. KEY RESULTS In WT mice, a single systemic administration of escitalopram produced a significant increase in cortical [5-HT](ext) and [NA](ext). As expected, escitalopram failed to increase cortical [5-HT](ext) in SERT(-/-) mice, whereas its neurochemical effects on [NA](ext) persisted in these mutants. In WT mice subjected to the FST, escitalopram increased swimming parameters without affecting climbing behaviour. Finally, escitalopram, at relevant concentrations, failed to inhibit cortical noradrenaline and 5-HT uptake mediated by low-affinity monoamine transporters. CONCLUSIONS AND IMPLICATIONS These experiments suggest that escitalopram enhances, although moderately, cortical [NA](ext) in vivo by a direct mechanism involving the inhibition of the high-affinity noradrenaline transporter (NET).
Collapse
Affiliation(s)
- Hai T Nguyen
- Laboratoire de Neuropharmacologie, Faculté de Pharmacie, Université Paris-Sud XI, Châtenay-Malabry, France
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Faure C, Mnie-Filali O, Haddjeri N. Long-term adaptive changes induced by serotonergic antidepressant drugs. Expert Rev Neurother 2014; 6:235-45. [PMID: 16466303 DOI: 10.1586/14737175.6.2.235] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The development of conventional antidepressants has been largely based on the hypothesis of monoaminergic dysfunctions and focuses particularly on the serotonin 5-hydroxytryptamine (5-HT) system. Hence, various classes of antidepressant treatments enhance 5-HT neurotransmission with a time course consistent with their delayed therapeutic effect. This delayed onset appears to be associated with the gradual development of specific adaptive changes of functional 5-HT receptors. However, recent theories suggest that major depressive disorders may be associated with impairments of functional plasticity and cellular flexibility. This review discusses several physiological mechanisms by which 5-HT function and hippocampal neuroplasticity are regulated. Knowledge of these long-term adaptations will increase not only our understanding of pathological processes underlying affective disorders, but could also lead to the development of new strategies to treat these devastating illnesses.
Collapse
Affiliation(s)
- Céline Faure
- Laboratoire de Neuropharmacologie et Neurochimie, Faculté de Pharmacie, Université Claude Bernard, Lyon 1, EA-512, 8, Avenue Rockefeller, 69373 Lyon Cedex 08, France.
| | | | | |
Collapse
|
37
|
Effect of long-term aspartame (artificial sweetener) on anxiety, locomotor activity and emotionality behavior in Wistar Albino rats. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.bionut.2013.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
38
|
Noradrenergic neurotransmission within the bed nucleus of the stria terminalis modulates the retention of immobility in the rat forced swimming test. Behav Pharmacol 2013; 24:214-21. [PMID: 23625378 DOI: 10.1097/fbp.0b013e3283618ae4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The bed nucleus of the stria terminalis (BNST) is a limbic structure that has a direct influence on the autonomic, neuroendocrine, and behavioral responses to stress. It was recently reported that reversible inactivation of synaptic transmission within this structure causes antidepressant-like effects, indicating that activation of the BNST during stressful situations would facilitate the development of behavioral changes related to the neurobiology of depression. Moreover, noradrenergic neurotransmission is abundant in the BNST and has an important role in the regulation of emotional processes related to the stress response. Thus, this study aimed to test the hypothesis that activation of adrenoceptors within the BNST facilitates the development of behavioral consequences of stress. To investigate this hypothesis, male Wistar rats were stressed (forced swimming, 15 min) and 24 h later received intra-BNST injections of vehicle, WB4101, RX821002, CGP20712, or ICI118,551, which are selective α(1), α(2), β(1), and β(2) adrenoceptor antagonists, respectively, 10 min before a 5-min forced swimming test. It was observed that administration of WB4101 (10 and 15 nmol), CGP20712 (5 and 10 nmol), or ICI118,551 (5 nmol) into the BNST reduced the immobility time of rats subjected to forced swimming test, indicating an antidepressant-like effect. These findings suggest that activation of α(1), β(1), and β(2) adrenoceptors in the BNST could be involved in the development of the behavioral consequences of stress.
Collapse
|
39
|
The antidepressant-like effect of ethynyl estradiol is mediated by both serotonergic and noradrenergic systems in the forced swimming test. Neuroscience 2013; 250:102-11. [DOI: 10.1016/j.neuroscience.2013.06.058] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 06/25/2013] [Accepted: 06/26/2013] [Indexed: 01/21/2023]
|
40
|
Berg DA, Belnoue L, Song H, Simon A. Neurotransmitter-mediated control of neurogenesis in the adult vertebrate brain. Development 2013; 140:2548-61. [PMID: 23715548 DOI: 10.1242/dev.088005] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It was long thought that no new neurons are added to the adult brain. Similarly, neurotransmitter signaling was primarily associated with communication between differentiated neurons. Both of these ideas have been challenged, and a crosstalk between neurogenesis and neurotransmitter signaling is beginning to emerge. In this Review, we discuss neurotransmitter signaling as it functions at the intersection of stem cell research and regenerative medicine, exploring how it may regulate the formation of new functional neurons and outlining interactions with other signaling pathways. We consider evolutionary and cross-species comparative aspects, and integrate available results in the context of normal physiological versus pathological conditions. We also discuss the potential role of neurotransmitters in brain size regulation and implications for cell replacement therapies.
Collapse
Affiliation(s)
- Daniel A Berg
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | | | | | | |
Collapse
|
41
|
Leung YM, Chu CC, Kuo CS, Chen YW, Wang JJ. Nisoxetine blocks sodium currents and elicits spinal anesthesia in rats. Pharmacol Rep 2013; 65:350-7. [DOI: 10.1016/s1734-1140(13)71010-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 11/26/2012] [Indexed: 11/16/2022]
|
42
|
Quesseveur G, Repérant C, David DJ, Gardier AM, Sanchez C, Guiard BP. 5-HT2A receptor inactivation potentiates the acute antidepressant-like activity of escitalopram: involvement of the noradrenergic system. Exp Brain Res 2013; 226:285-95. [DOI: 10.1007/s00221-013-3434-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 01/25/2013] [Indexed: 11/30/2022]
|
43
|
Lesch KP, Araragi N, Waider J, van den Hove D, Gutknecht L. Targeting brain serotonin synthesis: insights into neurodevelopmental disorders with long-term outcomes related to negative emotionality, aggression and antisocial behaviour. Philos Trans R Soc Lond B Biol Sci 2012; 367:2426-43. [PMID: 22826343 DOI: 10.1098/rstb.2012.0039] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aggression, which comprises multi-faceted traits ranging from negative emotionality to antisocial behaviour, is influenced by an interaction of biological, psychological and social variables. Failure in social adjustment, aggressiveness and violence represent the most detrimental long-term outcome of neurodevelopmental disorders. With the exception of brain-specific tryptophan hydroxylase-2 (Tph2), which generates serotonin (5-HT) in raphe neurons, the contribution of gene variation to aggression-related behaviour in genetically modified mouse models has been previously appraised (Lesch 2005 Novartis Found Symp. 268, 111-140; Lesch & Merschdorf 2000 Behav. Sci. Law 18, 581-604). Genetic inactivation of Tph2 function in mice led to the identification of phenotypic changes, ranging from growth retardation and late-onset obesity, to enhanced conditioned fear response, increased aggression and depression-like behaviour. This spectrum of consequences, which are amplified by stress-related epigenetic interactions, are attributable to deficient brain 5-HT synthesis during development and adulthood. Human data relating altered TPH2 function to personality traits of negative emotionality and neurodevelopmental disorders characterized by deficits in cognitive control and emotion regulation are based on genetic association and are therefore not as robust as the experimental mouse results. Mouse models in conjunction with approaches focusing on TPH2 variants in humans provide unexpected views of 5-HT's role in brain development and in disorders related to negative emotionality, aggression and antisocial behaviour.
Collapse
Affiliation(s)
- Klaus-Peter Lesch
- Division of Molecular Psychiatry (MP), Laboratory of Translational Neuroscience (LTN), Department of Psychiatry, Psychosomatics, and Psychotherapy, University of Wuerzburg, , Fuechsleinstrasse 15, 97080 Wuerzburg, Germany.
| | | | | | | | | |
Collapse
|
44
|
Massart R, Mongeau R, Lanfumey L. Beyond the monoaminergic hypothesis: neuroplasticity and epigenetic changes in a transgenic mouse model of depression. Philos Trans R Soc Lond B Biol Sci 2012; 367:2485-94. [PMID: 22826347 DOI: 10.1098/rstb.2012.0212] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The monoamine hypothesis of depression has dominated our understanding of both the pathophysiology of depression and the action of pharmacological treatments for the last decades, and it has led to the production of several generations of antidepressant agents. However, there are serious limitations to the current monoamine theory, and additional mechanisms, including hypothalamic-pituitary-adrenal (HPA) axis dysfunctions, as well as neurodegenerative and inflammatory alterations, are potentially associated with the pathogenesis of mood disorders. Moreover, new data have recently indicated that epigenetic mechanisms such as histone modifications and DNA methylation could affect diverse pathways leading to depression-like behaviours in animal models. In a transgenic mouse model of depression, in which a downregulation of glucocorticoid receptors (GR) causes a deficit in the HPA axis feedback control, besides alterations in monoamine neurotransmission and neuroplasticity, we found modifications in the expression of many proteins involved in epigenetic regulation, as well as clock genes, in the hippocampus and the frontal cortex, that might be central in the genesis of depressive-like behaviours.
Collapse
Affiliation(s)
- Renaud Massart
- Inserm, U894, , Centre de Psychiatrie et Neurosciences, 75013 Paris, France
| | | | | |
Collapse
|
45
|
Kermanian F, Mehdizadeh M, Soleimani M, Ebrahimzadeh Bideskan AR, Asadi-Shekaari M, Kheradmand H, Haghir H. The role of adenosine receptor agonist and antagonist on Hippocampal MDMA detrimental effects; a structural and behavioral study. Metab Brain Dis 2012; 27:459-69. [PMID: 22961480 DOI: 10.1007/s11011-012-9334-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 08/28/2012] [Indexed: 11/28/2022]
Abstract
There is abundant evidence showing that repeated use of MDMA (3, 4-Methylenedioxymethamphetamine, ecstasy) has been associated with depression, anxiety and deficits in learning and memory, suggesting detrimental effects on hippocampus. Adenosine is an endogenous purine nucleoside that has a neuromodulatory role in the central nervous system. In the present study, we investigated the role of A2a adenosine receptors agonist (CGS) and antagonist (SCH) on the body temperature, learning deficits, and hippocampal cell death induced by MDMA administration. In this study, 63 adult, male, Sprague - Dawley rats were subjected to MDMA (10 and 20 mg/kg) followed by intraperitoneal CGS (0.03 mg/kg) or SCH (0.03 mg/kg) injection. The animals were tested for spatial learning in the Morris water maze (MWM) task performance, accompanied by a recording of body temperature, electron microscopy and stereological study. Our results showed that MDMA treatment increased body temperature significantly, and impaired the ability of rats to locate the hidden platform(P < 0.05). The number of hippocampal dark neurons also increased especially in CA1. These impairments were aggravated by co-administration of A2a antagonist (SCH) with MDMA. Furthermore, the administration of the A2a receptor agonist (CGS) provided partial protection against MWM deficits and hippocampal cell death(P < 0.05). This study provides for the first time evidence that, in contrast to A2a antagonist (SCH) effects, co-administration of A2a agonist (CGS) with MDMA can protect against MDMA hippocampal neurotoxic effects; providing a potential value in the prevention of learning deficits observed in MDMA users. However, the exact mechanism of these interactions requires further studies.
Collapse
Affiliation(s)
- Fatemeh Kermanian
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | | | | | | | | |
Collapse
|
46
|
Hamani C, Nobrega JN. Preclinical studies modeling deep brain stimulation for depression. Biol Psychiatry 2012; 72:916-23. [PMID: 22748616 PMCID: PMC5633367 DOI: 10.1016/j.biopsych.2012.05.024] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 05/29/2012] [Accepted: 05/30/2012] [Indexed: 01/15/2023]
Abstract
Deep brain stimulation (DBS) is currently being investigated for the treatment of depression. Results of early clinical trials have been very promising, but the mechanisms responsible for the effects of DBS are still unknown. This article reviews behavioral findings of stimulation applied to different brain targets in rodents, with a particular focus on the ventromedial prefrontal cortex. Mechanisms and substrates involved in the antidepressant-like effects of DBS, including the role of local tissue inactivation, the modulation of fiber pathways in the vicinity of the electrodes, as well as the importance of the serotonergic system and brain derived neurotrophic factor are discussed.
Collapse
Affiliation(s)
- Clement Hamani
- Behavioural Neurobiology Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.
| | | |
Collapse
|
47
|
Hodes GE, Russo SJ. The Neurobiology of Depression and Anxiety: How Do We Change from Models of Drug Efficacy to Understanding Mood and Anxiety Disorders? DRUG DISCOVERY FOR PSYCHIATRIC DISORDERS 2012. [DOI: 10.1039/9781849734943-00159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Current treatments for depression and anxiety disorders are only effective in approximately half of the patient population. Effective treatments have negative side-effects including sexual dysfunction, weight gain and gastrointestinal problems. Furthermore, even when patients achieve remission, they often need to increase dosage or change treatment across their lifetime as efficacy weakens. The majority of treatments being used today are based on the monoamine hypothesis of depression, a theory of depression that was based on the effectiveness of drugs discovered by chance to alleviate the symptoms of depression. This chapter provides an overview of the neurobiology of depression and anxiety disorders within the context of drug discovery. The chapter starts with what we currently know about these disorders through the lens of the monoamine hypothesis of depression. We then provide a background into the animal models of depression and anxiety that are being used to understand the underlying biology of these disorders and test new treatments. Work conducted using these animal models has directed human imagining and has provided us with new information about both the molecular and cellular mechanism of depression and anxiety as well as the neural circuitry controlling these disorders. Finally, we will conclude with a discussion of new treatments being developed based on empirical evidence about the neurobiology of depression and anxiety and the need to develop more personalized treatments in the future. It is hoped that these new drugs will be able to provide effective treatment for more people, with fewer negative side-effects.
Collapse
Affiliation(s)
- Georgia E. Hodes
- Fishberg Department of Neuroscience and Freidman Brain Institute Mount Sinai School of Medicine 1425 Madison Ave., New York, NY 10029 USA
| | - Scott J. Russo
- Fishberg Department of Neuroscience and Freidman Brain Institute Mount Sinai School of Medicine 1425 Madison Ave., New York, NY 10029 USA
| |
Collapse
|
48
|
Quesseveur G, Nguyen HT, Gardier AM, Guiard BP. 5-HT2 ligands in the treatment of anxiety and depression. Expert Opin Investig Drugs 2012; 21:1701-25. [PMID: 22917059 DOI: 10.1517/13543784.2012.719872] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION One third of depressed patients do not respond adequately to conventional antidepressants including the selective serotonin reuptake inhibitors (SSRIs). Therefore, multi-target drugs or augmentation strategies have been developed for the management of SSRIs-resistant patients. In this context, the 5-HT(2) receptor subtypes represent promising targets but their precise roles have yet to be determined. AREAS COVERED The aim of this review is to shed some light on the preclinical evidence supporting the use of 5-HT(2A) and/or 5-HT(2C) receptor antagonists such as antipsychotics, as potential effective adjuncts in SSRIs-resistant depression. This review synthesizes the current literature about the behavioral, electrophysiological and neurochemical effects of 5-HT(2) receptors ligands on the monoaminergic systems but also on adult hippocampal neurogenesis. EXPERT OPINION Although studies support the hypothesis that the inactivation of 5-HT(2A) and/or 5-HT(2C) receptors might be of interest to reinforce different facets of the therapeutic activity of SSRIs, this pharmacological strategy remains debatable notably because of the lack of chronic data in relevant animal models. Conversely, emerging evidence suggests that the activation of 5-HT(2B) receptor is required for antidepressant-like activity, opening the way to new therapeutic approaches. However, the potential risks related to the enhancement of monoaminergic neurotransmissions could represent a major concern.
Collapse
Affiliation(s)
- Gaël Quesseveur
- EA3544 University Paris-XI, Laboratoire de Neuropharmacologie, Fac. Pharmacie, F-92296, Châtenay-Malabry cedex, France
| | | | | | | |
Collapse
|
49
|
Gutknecht L, Araragi N, Merker S, Waider J, Sommerlandt FMJ, Mlinar B, Baccini G, Mayer U, Proft F, Hamon M, Schmitt AG, Corradetti R, Lanfumey L, Lesch KP. Impacts of brain serotonin deficiency following Tph2 inactivation on development and raphe neuron serotonergic specification. PLoS One 2012; 7:e43157. [PMID: 22912815 PMCID: PMC3422228 DOI: 10.1371/journal.pone.0043157] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Accepted: 07/17/2012] [Indexed: 11/21/2022] Open
Abstract
Brain serotonin (5-HT) is implicated in a wide range of functions from basic physiological mechanisms to complex behaviors, including neuropsychiatric conditions, as well as in developmental processes. Increasing evidence links 5-HT signaling alterations during development to emotional dysregulation and psychopathology in adult age. To further analyze the importance of brain 5-HT in somatic and brain development and function, and more specifically differentiation and specification of the serotonergic system itself, we generated a mouse model with brain-specific 5-HT deficiency resulting from a genetically driven constitutive inactivation of neuronal tryptophan hydroxylase-2 (Tph2). Tph2 inactivation (Tph2−/−) resulted in brain 5-HT deficiency leading to growth retardation and persistent leanness, whereas a sex- and age-dependent increase in body weight was observed in Tph2+/− mice. The conserved expression pattern of the 5-HT neuron-specific markers (except Tph2 and 5-HT) demonstrates that brain 5-HT synthesis is not a prerequisite for the proliferation, differentiation and survival of raphe neurons subjected to the developmental program of serotonergic specification. Furthermore, although these neurons are unable to synthesize 5-HT from the precursor tryptophan, they still display electrophysiological properties characteristic of 5-HT neurons. Moreover, 5-HT deficiency induces an up-regulation of 5-HT1A and 5-HT1B receptors across brain regions as well as a reduction of norepinephrine concentrations accompanied by a reduced number of noradrenergic neurons. Together, our results characterize developmental, neurochemical, neurobiological and electrophysiological consequences of brain-specific 5-HT deficiency, reveal a dual dose-dependent role of 5-HT in body weight regulation and show that differentiation of serotonergic neuron phenotype is independent from endogenous 5-HT synthesis.
Collapse
Affiliation(s)
- Lise Gutknecht
- Molecular Psychiatry, Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
- * E-mail: (LG); (KPL)
| | - Naozumi Araragi
- Molecular Psychiatry, Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Sören Merker
- Molecular Psychiatry, Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Jonas Waider
- Molecular Psychiatry, Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Frank M. J. Sommerlandt
- Molecular Psychiatry, Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Boris Mlinar
- Department of Preclinical and Clinical Pharmacology, University of Florence, Florence, Italy
| | - Gilda Baccini
- Department of Preclinical and Clinical Pharmacology, University of Florence, Florence, Italy
| | - Ute Mayer
- Molecular Psychiatry, Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Florian Proft
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Michel Hamon
- Center of Psychiatry and Neuroscience, National Institute for Health and Medical Research (INSERM U894), Medical Faculty Pierre and Marie Curie, Paris, France
| | - Angelika G. Schmitt
- Molecular Psychiatry, Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Renato Corradetti
- Department of Preclinical and Clinical Pharmacology, University of Florence, Florence, Italy
| | - Laurence Lanfumey
- Center of Psychiatry and Neuroscience, National Institute for Health and Medical Research (INSERM U894), Medical Faculty Pierre and Marie Curie, Paris, France
| | - Klaus-Peter Lesch
- Molecular Psychiatry, Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
- * E-mail: (LG); (KPL)
| |
Collapse
|
50
|
Leung YM, Chu CC, Kuo CS, Chen YW, Hung CH, Wang JJ. Isobolographic analysis of interaction between nisoxetine- and mepivacaine-induced spinal blockades in rats. Fundam Clin Pharmacol 2012; 28:88-94. [DOI: 10.1111/j.1472-8206.2012.01070.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/28/2012] [Accepted: 07/19/2012] [Indexed: 12/01/2022]
Affiliation(s)
- Yuk-Man Leung
- Graduate Institute of Neural and Cognitive Sciences; China Medical University; Taichung Taiwan
| | - Chin-Chen Chu
- Department of Anesthesiology; Chi-Mei Medical Center; Tainan Taiwan
- Department of Recreation and Health-Care Management; Chia Nan University of Pharmacy and Science; Tainan Taiwan
| | - Chang-Shin Kuo
- Graduate Institute of Neural and Cognitive Sciences; China Medical University; Taichung Taiwan
| | - Yu-Wen Chen
- Graduate Institute of Neural and Cognitive Sciences; China Medical University; Taichung Taiwan
- Department of Physical Therapy; China Medical University; Taichung Taiwan
| | - Ching-Hsia Hung
- Institute & Department of Physical Therapy; National Cheng Kung University; No.1 Ta-Hsueh Road Tainan Taiwan
| | - Jhi-Joung Wang
- Department of Medical Research; Chi-Mei Medical Center; Tainan Taiwan
| |
Collapse
|