1
|
L'Abbate S, Nicolini G, Forini F, Lepore E, Marchetti S, Unfer V, Forte G, Kusmic C. Oral supplementation of inositols effectively recovered lithium-induced cardiac dysfunctions in mice. Biomed Pharmacother 2024; 178:117287. [PMID: 39137652 DOI: 10.1016/j.biopha.2024.117287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/27/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024] Open
Abstract
This study investigates the effects of inositol (INO) supplementation on cardiac changes caused by Li in mice. The study involved 4 groups of C57BL6 mice (n=10 each): (i) mice orally administered with Li2CO3 for 8 weeks, then 4 additional weeks without (Li_group) or (ii) with INO supplementation (Li_INOdelayed_group) (total of 12 weeks); (iii) mice given Li2CO3 and INO supplementation concurrently for 12 weeks (Li+INO_group); (iv) one group left untreated (C-group). The INO was administered as a mixture of myo-inositol and d-chiro-inositol (80:1) in drinking water. The mice were characterised for heart morphology, function, electrical activity, arrhythmogenic susceptibility, and multiorgan histopathology (heart, liver and kidney). Cardiomyocyte size, protein expression of key signalling pathways related to hypertrophy, and transcription levels of ion channel subunits and hypertrophy markers were evaluated in the ventricle tissue. The study found that INO supplementation reduced the Li-induced cardiac adverse effects, including systolic impairment and increased susceptibility to arrhythmias. The positive effect on arrhythmias might be attributed to the restored expression levels of the potassium channel subunit Kv 1.5. Additionally, INO improved cardiomyocyte hypertrophy, possibly by inhibiting the Li-induced activation of the ERK1/2 signalling pathway and by restoring the normal expression level of BNP, and alleviated injury in the liver and kidney. The effect was preventive if INO supplementation was taken concurrently with Li and therapeutic if INO was administered after Li-induced cardiac impairments were established. These results provide new insights into the cardioprotective effect of INO and suggest a potential treatment approach for Li-induced cardiac disease.
Collapse
Affiliation(s)
- Serena L'Abbate
- Istituto di Fisiologia Clinica - Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy
| | - Giuseppina Nicolini
- Istituto di Fisiologia Clinica - Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy
| | - Francesca Forini
- Istituto di Fisiologia Clinica - Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy
| | | | - Sabrina Marchetti
- Istituto di Fisiologia Clinica - Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy
| | - Virginia Unfer
- A.G.Un.Co. Obstetrics and Gynaecology Center, Rome 00155, Italy; The Experts Group on Inositol in Basic and Clinical Research (EGOI), Rome 00161, Italy
| | | | - Claudia Kusmic
- Istituto di Fisiologia Clinica - Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy.
| |
Collapse
|
2
|
Concerto C, Chiarenza C, Di Francesco A, Natale A, Privitera I, Rodolico A, Trovato A, Aguglia A, Fisicaro F, Pennisi M, Bella R, Petralia A, Signorelli MS, Lanza G. Neurobiology and Applications of Inositol in Psychiatry: A Narrative Review. Curr Issues Mol Biol 2023; 45:1762-1778. [PMID: 36826058 PMCID: PMC9955821 DOI: 10.3390/cimb45020113] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Inositol is a natural sugar-like compound, commonly present in many plants and foods. It is involved in several biochemical pathways, most of them controlling vital cellular mechanisms, such as cell development, signaling and nuclear processes, metabolic and endocrine modulation, cell growth, signal transduction, etc. In this narrative review, we focused on the role of inositol in human brain physiology and pathology, with the aim of providing an update on both potential applications and current limits in its use in psychiatric disorders. Overall, imaging and biomolecular studies have shown the role of inositol levels in the pathogenesis of mood disorders. However, when administered as monotherapy or in addition to conventional drugs, inositol did not seem to influence clinical outcomes in both mood and psychotic disorders. Conversely, more encouraging results have emerged for the treatment of panic disorders. We concluded that, despite its multifaceted neurobiological activities and some positive findings, to date, data on the efficacy of inositol in the treatment of psychiatric disorders are still controversial, partly due to the heterogeneity of supporting studies. Therefore, systematic use of inositol in routine clinical practice cannot be recommended yet, although further basic and translational research should be encouraged.
Collapse
Affiliation(s)
- Carmen Concerto
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, 95123 Catania, Italy
| | - Cecilia Chiarenza
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, 95123 Catania, Italy
| | - Antonio Di Francesco
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, 95123 Catania, Italy
| | - Antimo Natale
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, 95123 Catania, Italy
| | - Ivan Privitera
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, 95123 Catania, Italy
| | - Alessandro Rodolico
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, 95123 Catania, Italy
| | - Antonio Trovato
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, 95123 Catania, Italy
| | - Andrea Aguglia
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, 16132 Genoa, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico, Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Francesco Fisicaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Rita Bella
- Department of Medical, Surgical, and Advanced Technology, University of Catania, Via Santa Sofia 87, 95123 Catania, Italy
| | - Antonino Petralia
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, 95123 Catania, Italy
| | - Maria Salvina Signorelli
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, 95123 Catania, Italy
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy
- CERNUT–Research Centre for Nutraceuticals and Health Products, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- Correspondence: ; Tel.: +39-095-3782448
| |
Collapse
|
3
|
Glutamatergic Neurometabolite Levels in Bipolar Disorder: A Systematic Review and Meta-analysis of Proton Magnetic Resonance Spectroscopy Studies. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:140-150. [PMID: 36754485 DOI: 10.1016/j.bpsc.2022.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND The glutamatergic system is thought to play an important role in the pathophysiology of bipolar disorder (BD). While there has been an increase in proton magnetic resonance spectroscopy studies examining this neurotransmission system, the results are inconsistent. Possible reasons for the inconsistency, including clinical features such as mood state and childhood versus adulthood age, were not addressed in previous meta-analyses. METHODS This systematic review and meta-analysis of proton magnetic resonance spectroscopy studies of BD included 40 studies, with 1135 patients with BD and 964 healthy control (HC) subjects. RESULTS Glutamate plus glutamine and glutamine levels in the anterior cingulate cortex of patients with BD were significantly elevated compared with those of HC subjects (standardized mean difference = 0.42, 0.48, respectively). Subgroup analyses showed that adult BD patients had significantly higher levels of glutamate plus glutamine than adult HC subjects, but this was not the case in pediatric patients. For mood states, anterior cingulate cortex glutamate plus glutamine levels were higher in patients with bipolar depression than those in HC subjects. CONCLUSIONS Our results imply that glutamatergic dysfunction in the anterior cingulate cortex may be implicated in the pathophysiology of BD, which is most evident in adult BD patients and patients with bipolar depression.
Collapse
|
4
|
Emerging findings of glutamate-glutamine imbalance in the medial prefrontal cortex in attention deficit/hyperactivity disorder: systematic review and meta-analysis of spectroscopy studies. Eur Arch Psychiatry Clin Neurosci 2022; 272:1395-1411. [PMID: 35322293 DOI: 10.1007/s00406-022-01397-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 03/01/2022] [Indexed: 12/11/2022]
Abstract
One of the main challenges in investigating the neurobiology of ADHD is our limited capacity to study its neurochemistry in vivo. Magnetic resonance spectroscopy (MRS) estimates metabolite concentrations within the brain, but approaches and findings have been heterogeneous. To assess differences in brain metabolites between patients with ADHD and healthy controls, we searched 12 databases screening for MRS studies. Studies were divided into 'children and adolescents' and 'adults' and meta-analyses were performed for each brain region with more than five studies. The quality of studies was assessed by the Newcastle-Ottawa Scale. Thirty-three studies met our eligibility criteria, including 874 patients with ADHD. Primary analyses revealed that the right medial frontal area of children with ADHD presented higher concentrations of a composite of glutamate and glutamine (p = 0.02, SMD = 0.53). Glutamate might be implicated in pruning and neurodegenerative processes as an excitotoxin, while glutamine excess might signal a glutamate depletion that could hinder neurotrophic activity. Both neuro metabolites could be implicated in the differential cortical thinning observed in patients with ADHD across all ages. Notably, more homogeneous designs and reporting guidelines are the key factors to determine how suitable MRS is for research and, perhaps, for clinical psychiatry. Results of this meta-analysis provided an overall map of the brain regions evaluated so far, addressed the role of glutamatergic metabolites in the pathophysiology of ADHD, and pointed to new perspectives for consistent use of the tool in the field.
Collapse
|
5
|
Dopamine transporter silencing in the rat: systems-level alterations in striato-cerebellar and prefrontal-midbrain circuits. Mol Psychiatry 2022; 27:2329-2339. [PMID: 35246636 PMCID: PMC9126810 DOI: 10.1038/s41380-022-01471-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/15/2022] [Accepted: 02/02/2022] [Indexed: 12/12/2022]
Abstract
Silencing of dopamine transporter (DAT), a main controlling factor of dopaminergic signaling, results in biochemical and behavioral features characteristic for neuropsychiatric diseases with presumed hyperdopaminergia including schizophrenia, attention deficit hyperactivity disorder (ADHD), bipolar disorder, and obsessive-compulsive disorder (OCD). Investigation of DAT silencing thus provides a transdiagnostic approach towards a systems-level understanding of common underlying pathways. Using a high-field multimodal imaging approach and a highly sensitive cryogenic coil, we integrated structural, functional and metabolic investigations in tandem with behavioral assessments on a newly developed preclinical rat model, comparing DAT homozygous knockout (DAT-KO, N = 14), heterozygous knockout (N = 8) and wild-type male rats (N = 14). We identified spatially distributed structural and functional brain alterations encompassing motor, limbic and associative loops that demonstrated strong behavioral relevance and were highly consistent across imaging modalities. DAT-KO rats manifested pronounced volume loss in the dorsal striatum, negatively correlating with cerebellar volume increase. These alterations were associated with hyperlocomotion, repetitive behavior and loss of efficient functional small-world organization. Further, prefrontal and midbrain regions manifested opposite changes in functional connectivity and local network topology. These prefrontal disturbances were corroborated by elevated myo-inositol levels and increased volume. To conclude, our imaging genetics approach provides multimodal evidence for prefrontal-midbrain decoupling and striato-cerebellar neuroplastic compensation as two key features of constitutive DAT blockade, proposing them as transdiagnostic mechanisms of hyperdopaminergia. Thus, our study connects developmental DAT blockade to systems-level brain changes, underlying impaired action inhibition control and resulting in motor hyperactivity and compulsive-like features relevant for ADHD, schizophrenia and OCD.
Collapse
|
6
|
Patino LR, Klein CC, Strawn JR, Blom TJ, Tallman MJ, Adler CM, Welge JA, DelBello MP. A Randomized, Double-Blind, Controlled Trial of Lithium Versus Quetiapine for the Treatment of Acute Mania in Youth with Early Course Bipolar Disorder. J Child Adolesc Psychopharmacol 2021; 31:485-493. [PMID: 34520250 PMCID: PMC8568789 DOI: 10.1089/cap.2021.0039] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Objective: To compare the efficacy and tolerability of lithium versus quetiapine for the treatment of manic or mixed episodes in youths with early course bipolar I disorder. Methods: Six-week, randomized, double-blind clinical trial of lithium versus quetiapine for the treatment of adolescents with acute manic/mixed episode. Target dose of quetiapine dose was adjusted to a target dose of 400-600 mg and target serum level for lithium was 1.0-1.2 mEq/L. Primary outcome measure was baseline-to-endpoint change in the Young Mania Rating Scale (YMRS). Secondary outcomes were treatment response (50% or more decrease from baseline in YMRS score) and remission (YMRS score ≤12, Children's Depression Rating Scale-Revised [CDRS-R] total score ≤28 and Clinical Global Impression Bipolar Severity Scale [CGI-BP-S] overall score of ≤3, respectively). Results: A total of 109 patients were randomized (quetiapine = 58 and lithium = 51). Participants in the quetiapine treatment group showed a significantly greater reduction in YMRS score than those in the lithium group (-11.0 vs. -13.2; p < 0.001; effect size 0.39). Response rate was 72% in the quetiapine group and 49% in the lithium group (p = 0.012); no differences in remission rates between groups were observed. Most frequent side effects for lithium were headaches (60.8%), nausea (39.2%), somnolence (27.5%), and tremor (27.5%); for quetiapine somnolence (63.8%), headaches (55.2%), tremor (36.2%), and dizziness (36.2%) were evidenced. Participants receiving quetiapine experienced more somnolence (p < 0.001), dizziness (p < 0.05), and weight gain (p < 0.05). Conclusions: Treatment with both lithium and quetiapine led to clinical improvement. Most study participants in this study experienced a clinical response; however, less than half of the participants in this study achieved symptomatic remission. The head-to-head comparison of both treatment groups showed quetiapine was associated with a statistically significant greater rate of response and overall symptom reduction compared with lithium. Trial registration: clinicaltrials.gov NCT00893581.
Collapse
Affiliation(s)
- Luis R. Patino
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Address correspondence to: Luis R. Patino, MD, MS, Department of Psychiatry and Behavioral Neuroscience, College of Medicine, University of Cincinnati, 260 Stetson St. Suite 3200, Cincinnati, OH 45219, USA
| | - Christina C. Klein
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jeffrey R. Strawn
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Thomas J. Blom
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Maxwell J. Tallman
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Caleb M. Adler
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jeffrey A. Welge
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Melissa P. DelBello
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
7
|
Pacholko AG, Bekar LK. Lithium orotate: A superior option for lithium therapy? Brain Behav 2021; 11:e2262. [PMID: 34196467 PMCID: PMC8413749 DOI: 10.1002/brb3.2262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 06/08/2021] [Indexed: 01/23/2023] Open
Abstract
Bipolar disorder (BD) poses a significant public health concern, with roughly one-quarter of sufferers attempting suicide. BD is characterized by manic and depressive mood cycles, the recurrence of which can be effectively curtailed through lithium therapy. Unfortunately, the most frequently employed lithium salt, lithium carbonate (Li2 CO3 ), is associated with a host of adverse health outcomes following chronic use: these unwanted effects range from relatively minor inconveniences (e.g., polydipsia and polyuria) to potentially major complications (e.g., hypothyroidism and/or renal impairment). As these undesirable effects can limit patient compliance, an alternative lithium compound with a lesser toxicity profile would dramatically improve treatment efficacy and outcomes. Lithium orotate (LiC5 H3 N2 O4 ; henceforth referred to as LiOr), a compound largely abandoned since the late 1970s, may represent such an alternative. LiOr is proposed to cross the blood-brain barrier and enter cells more readily than Li2 CO3 , which will theoretically allow for reduced dosage requirements and ameliorated toxicity concerns. This review addresses the controversial history of LiOr, complete with discussions of experimental and clinical efficacy, putative mechanisms of action, adverse effects, and its potential future in therapy.
Collapse
Affiliation(s)
- Anthony G Pacholko
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Lane K Bekar
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
8
|
Soeiro-de-Souza MG, Scotti-Muzzi E, Fernandes F, De Sousa RT, Leite CC, Otaduy MC, Machado-Vieira R. Anterior cingulate cortex neuro-metabolic changes underlying lithium-induced euthymia in bipolar depression: A longitudinal 1H-MRS study. Eur Neuropsychopharmacol 2021; 49:93-100. [PMID: 33882433 DOI: 10.1016/j.euroneuro.2021.03.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 12/02/2020] [Accepted: 03/23/2021] [Indexed: 12/30/2022]
Abstract
The diagnosis and treatment of bipolar depression (BDep) poses complex clinical challenges for psychiatry. Proton magnetic resonance spectroscopy (1H-MRS) is a useful imaging tool for investigating in vivo levels of brain neuro-metabolites, critical to understanding the process of mood dysregulation in Bipolar Disorder. Few studies have evaluated longitudinal clinical outcomes in BDep associated with 1H-MRS metabolic changes. This study aimed to longitudinally assess brain 1H-MRS metabolites in the anterior cingulate cortex (ACC) correlated with improvement in depression (from BDep to euthymia) after lithium treatment in BDep patients versus matched healthy controls (HC). Twenty-eight medication-free BDep patients and 28 HC, matched for age and gender, were included in this study. All subjects were submitted to a 3-Tesla brain 1H-MRS scan in the ACC using a single-voxel (8cm3) PRESS sequence at baseline. At follow-up (6 weeks), 14 BDep patients repeated the exam in euthymia. Patients with current BDep had higher baseline Myo-inositol/Cr (mI/Cr) and Choline/Cr (Cho/Cr) compared to HC. After six weeks, mI/Cr or Cho/Cr levels in subjects that achieved euthymia no longer differed to levels in HC, while high Cho/Cr levels persisted in non-responders . Elevated ACC mI/Cr and Cho/Cr in BDep might indicate increased abnormal membrane phospholipid metabolism and phosphatidylinositol (PI) cycle activity. Return of mI/Cr and Cho/Cr to normal levels after lithium-induced euthymia suggests a critical regulatory effect of lithium targeting the PI cycle involved in mood regulation.
Collapse
Affiliation(s)
- M G Soeiro-de-Souza
- Department and Institute of Psychiatry, School of Medicine, University of Sao Paulo, Brazil.
| | - E Scotti-Muzzi
- Department and Institute of Psychiatry, School of Medicine, University of Sao Paulo, Brazil
| | - F Fernandes
- Department and Institute of Psychiatry, School of Medicine, University of Sao Paulo, Brazil
| | - R T De Sousa
- Department and Institute of Psychiatry, School of Medicine, University of Sao Paulo, Brazil
| | - C C Leite
- Laboratory of Magnetic Resonance LIM44, Department and Institute of Radiology, University of São Paulo (InRad-FMUSP), Brazil
| | - M C Otaduy
- Laboratory of Magnetic Resonance LIM44, Department and Institute of Radiology, University of São Paulo (InRad-FMUSP), Brazil
| | | |
Collapse
|
9
|
Khayachi A, Schorova L, Alda M, Rouleau GA, Milnerwood AJ. Posttranslational modifications & lithium's therapeutic effect-Potential biomarkers for clinical responses in psychiatric & neurodegenerative disorders. Neurosci Biobehav Rev 2021; 127:424-445. [PMID: 33971223 DOI: 10.1016/j.neubiorev.2021.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/14/2021] [Accepted: 05/03/2021] [Indexed: 01/03/2023]
Abstract
Several neurodegenerative diseases and neuropsychiatric disorders display aberrant posttranslational modifications (PTMs) of one, or many, proteins. Lithium treatment has been used for mood stabilization for many decades, and is highly effective for large subsets of patients with diverse neurological conditions. However, the differential effectiveness and mode of action are not fully understood. In recent years, studies have shown that lithium alters several protein PTMs, altering their function, and consequently neuronal physiology. The impetus for this review is to outline the links between lithium's therapeutic mode of action and PTM homeostasis. We first provide an overview of the principal PTMs affected by lithium. We then describe several neuropsychiatric disorders in which PTMs have been implicated as pathogenic. For each of these conditions, we discuss lithium's clinical use and explore the putative mechanism of how it restores PTM homeostasis, and thereby cellular physiology. Evidence suggests that determining specific PTM patterns could be a promising strategy to develop biomarkers for disease and lithium responsiveness.
Collapse
Affiliation(s)
- A Khayachi
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada.
| | - L Schorova
- McGill University Health Center Research Institute, Montréal, Quebec, Canada
| | - M Alda
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - G A Rouleau
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada; Department of Human Genetics, McGill University, Montréal, Quebec, Canada.
| | - A J Milnerwood
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada.
| |
Collapse
|
10
|
Watkins OC, Yong HEJ, Sharma N, Chan SY. A review of the role of inositols in conditions of insulin dysregulation and in uncomplicated and pathological pregnancy. Crit Rev Food Sci Nutr 2020; 62:1626-1673. [PMID: 33280430 DOI: 10.1080/10408398.2020.1845604] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Inositols, a group of 6-carbon polyols, are highly bioactive molecules derived from diet and endogenous synthesis. Inositols and their derivatives are involved in glucose and lipid metabolism and participate in insulin-signaling, with perturbations in inositol processing being associated with conditions involving insulin resistance, dysglycemia and dyslipidemia such as polycystic ovary syndrome and diabetes. Pregnancy is similarly characterized by substantial and complex changes in glycemic and lipidomic regulation as part of maternal adaptation and is also associated with physiological alterations in inositol processing. Disruptions in maternal adaptation are postulated to have a critical pathophysiological role in pregnancy complications such as gestational diabetes and pre-eclampsia. Inositol supplementation has shown promise as an intervention for the alleviation of symptoms in conditions of insulin resistance and for gestational diabetes prevention. However, the mechanisms behind these affects are not fully understood. In this review, we explore the role of inositols in conditions of insulin dysregulation and in pregnancy, and identify priority areas for research. We particularly examine the role and function of inositols within the maternal-placental-fetal axis in both uncomplicated and pathological pregnancies. We also discuss how inositols may mediate maternal-placental-fetal cross-talk, and regulate fetal growth and development, and suggest that inositols play a vital role in promoting healthy pregnancy.
Collapse
Affiliation(s)
- Oliver C Watkins
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hannah E J Yong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| | - Neha Sharma
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shiao-Yng Chan
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
11
|
Grecias L, Hebert FO, Alves VA, Barber I, Aubin-Horth N. Host behaviour alteration by its parasite: from brain gene expression to functional test. Proc Biol Sci 2020; 287:20202252. [PMID: 33171082 PMCID: PMC7735270 DOI: 10.1098/rspb.2020.2252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/16/2020] [Indexed: 01/04/2023] Open
Abstract
Many parasites with complex life cycles modify their intermediate hosts' behaviour, presumably to increase transmission to their final host. The threespine stickleback (Gasterosteus aculeatus) is an intermediate host in the cestode Schistocephalus solidus life cycle, which ends in an avian host, and shows increased risky behaviours when infected. We studied brain gene expression profiles of sticklebacks infected with S. solidus to determine the proximal causes of these behavioural alterations. We show that infected fish have altered expression levels in genes involved in the inositol pathway. We thus tested the functional implication of this pathway and successfully rescued normal behaviours in infected sticklebacks using lithium exposure. We also show that exposed but uninfected fish have a distinct gene expression profile from both infected fish and control individuals, allowing us to separate gene activity related to parasite exposure from consequences of a successful infection. Finally, we find that selective serotonin reuptake inhibitor-treated sticklebacks and infected fish do not have similarly altered gene expression, despite their comparable behaviours, suggesting that the serotonin pathway is probably not the main driver of phenotypic changes in infected sticklebacks. Taken together, our results allow us to predict that if S. solidus directly manipulates its host, it could target the inositol pathway.
Collapse
Affiliation(s)
- Lucie Grecias
- Département de Biologie et Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
| | - Francois Olivier Hebert
- Département de Biologie et Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
| | - Verônica Angelica Alves
- Département de Biologie et Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
| | - Iain Barber
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Nottingham, UK
| | - Nadia Aubin-Horth
- Département de Biologie et Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
| |
Collapse
|
12
|
Biological Targets Underlying the Antisuicidal Effects of Lithium. Curr Behav Neurosci Rep 2020. [DOI: 10.1007/s40473-020-00208-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
13
|
Pisano S, Pozzi M, Catone G, Scrinzi G, Clementi E, Coppola G, Milone A, Bravaccio C, Santosh P, Masi G. Putative Mechanisms of Action and Clinical Use of Lithium in Children and Adolescents: A Critical Review. Curr Neuropharmacol 2019; 17:318-341. [PMID: 29256353 PMCID: PMC6482478 DOI: 10.2174/1570159x16666171219142120] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/09/2017] [Accepted: 11/28/2017] [Indexed: 01/17/2023] Open
Abstract
Background: Lithium is a first-line treatment for bipolar disorder in adults, but its mechanism of action is still far from clear. Furthermore, evidences of its use in pediatric populations are sparse, not only for bipolar disorders, but also for other possible indications. Objectives: To provide a synthesis of published data on the possible mechanisms of action of lithium, as well as on its use in pediatric samples, including pharmacokinetics, efficacy, and safety data. Methods: Clinical trials in pediatric samples with at least one standardized measure of efficacy/effectiveness were included in this review. We considered: i) randomized and open label trials, ii) combination studies iii) augmentation studies iv) case series including at least 5 patients. Results: Different and non-alternative mechanisms of action can explain the clinical efficacy of lithium. Clinical studies in pediatric samples suggest that lithium is effective in managing manic symptoms/episodes of bipolar disorder, both in the acute phase and as maintenance strategy. Efficacy on depressive symptoms/phases of bipolar disorder is much less clear, while studies do not support its use in unipolar depression and severe mood dysregulation. Conversely, it may be effective on aggression in the context of conduct disorder. Other possible indications, with limited published evidence, are the acute attacks in Kleine-Levin syndrome, behavioral symptoms of X-fragile syndrome, and the management of clozapine- or chemotherapy- induced neutropenia. Generally, lithium resulted relatively safe. Conclusions: Lithium seems an effective and well-tolerated medication in pediatric bipolar disorder and aggression, while further evidences are needed for other clinical indications.
Collapse
Affiliation(s)
- Simone Pisano
- Clinic of Child and Adolescent Neuropsychiatry, Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Marco Pozzi
- Scientific Institute IRCCS Eugenio Medea, 23842 Bosisio Parini, Lecco, Italy
| | - Gennaro Catone
- Dept. of Mental and Physical Health and Preventive Medicine, Child and Adolescent Psychiatry Division, Campania University- Luigi Vanvitelli, Italy
| | - Giulia Scrinzi
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, Child Neuropsychiatry Unit, University of Verona, Verona 37126, Italy
| | - Emilio Clementi
- Scientific Institute IRCCS Eugenio Medea, 23842 Bosisio Parini, Lecco, Italy.,Unit of Clinical Pharmacology, CNR Institute of Neuroscience, Department of Biomedical and Clinical Sciences L. Sacco, "Luigi Sacco" University Hospital, University of Milan, 20157 Milan, Italy
| | - Giangennaro Coppola
- Clinic of Child and Adolescent Neuropsychiatry, Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Annarita Milone
- IRCCS Stella Maris, Scientific Institute of Child Neurology and Psychiatry, Calambrone, Pisa, Italy
| | - Carmela Bravaccio
- Department of Translational Medical Sciences, University Federico II of Naples, Italy
| | - Paramala Santosh
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom.,Centre for Interventional Paediatric Psychopharmacology and Rare Diseases (CIPPRD), National and Specialist Child and Adolescent Mental Health Services, Maudsley Hospital, London, United States.,HealthTracker Ltd, Gillingham, United States
| | - Gabriele Masi
- IRCCS Stella Maris, Scientific Institute of Child Neurology and Psychiatry, Calambrone, Pisa, Italy
| |
Collapse
|
14
|
Rootes-Murdy K, Glazer K, Mondimore FM, Goes FS, Zandi PP, Bakker A, DePaulo JR, Mahon PB. A pilot fMRI study of lithium response in bipolar disorder. Psychiatry Res Neuroimaging 2019; 286:1-3. [PMID: 30822677 PMCID: PMC6749831 DOI: 10.1016/j.pscychresns.2019.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 01/03/2023]
Affiliation(s)
- Kelly Rootes-Murdy
- Department of Psychology, Georgia State University, 140 Decatur Street, Atlanta, GA 30303, USA.
| | - Kara Glazer
- Department of Psychiatry & Behavioral Science, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Francis M Mondimore
- Johns Hopkins Bayview Medical Center, Community Psychiatry Program, Baltimore, MD, USA
| | - Fernando S Goes
- Department of Psychiatry & Behavioral Science, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Peter P Zandi
- Department of Psychiatry & Behavioral Science, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Arnold Bakker
- Department of Psychiatry & Behavioral Science, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - J Raymond DePaulo
- Department of Psychiatry & Behavioral Science, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Pamela B Mahon
- Department of Psychiatry & Behavioral Science, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Psychiatry, Brigham & Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Kim S, Jeon H, Jang KI, Kim YW, Im CH, Lee SH. Mismatch Negativity and Cortical Thickness in Patients With Schizophrenia and Bipolar Disorder. Schizophr Bull 2019; 45:425-435. [PMID: 29684224 PMCID: PMC6403065 DOI: 10.1093/schbul/sby041] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Mismatch negativity (MMN) is a measure of automatic neurophysiological brain processes for detecting unexpected sensory stimuli. This study investigated MMN reduction in patients with schizophrenia and bipolar disorder and examined whether cortical thickness is associated with MMN, for exploratory purposes. METHODS Electroencephalograms were recorded in 38 patients with schizophrenia, 37 patients with bipolar disorder, and 32 healthy controls (HCs) performing a passive auditory oddball paradigm. All participants underwent T1 structural magnetic resonance imaging scanning to investigate the cortical thickness of MMN-generating regions. Average MMN amplitudes from the frontocentral electrodes were analyzed. RESULTS Patients with schizophrenia and bipolar disorder exhibited significantly reduced MMN amplitude compared with HCs. In bipolar disorder, we found intermediate MMN amplitude among the groups. Average MMN and cortical thickness of the right superior temporal gyrus (STG) were significantly negatively correlated in patients with schizophrenia. In patients with bipolar disorder, average MMN was significantly correlated with cortical thickness of the left anterior cingulate cortex and the right STG. MMN showed negative correlations with social and occupational functioning in schizophrenia, and with the Korean auditory verbal learning test for delayed recall in bipolar disorder. CONCLUSIONS MMN reduction was associated with cortical thinning in frontal and temporal areas in patients, particularly with an auditory verbal hallucination-related region in schizophrenia and emotion-related regions in bipolar disorder. MMN was associated with functional outcomes in schizophrenia, whereas it was associated with neurocognition in bipolar disorder.
Collapse
Affiliation(s)
- Sungkean Kim
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Republic of Korea,Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Hyeonjin Jeon
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Republic of Korea
| | - Kuk-In Jang
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Republic of Korea,Department of Biomedicine & Health Sciences, The Catholic University of Korea, College of Medicine, Seoul, Republic of Korea
| | - Yong-Wook Kim
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Republic of Korea,Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Chang-Hwan Im
- Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Seung-Hwan Lee
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Republic of Korea,Department of Psychiatry, Inje University, Ilsan-Paik Hospital, Goyang, Republic of Korea,To whom correspondence should be addressed; Department of Psychiatry, Ilsan Paik Hospital, Inje University College of Medicine, Juhwa-ro 170, Ilsanseo-Gu, Goyang 411-706, Republic of Korea; tel: +82-31-910-7260, fax: +82-31-910-7268, e-mail:
| |
Collapse
|
16
|
Quintero M, Stanisic D, Cruz G, Pontes JGM, Costa TBBC, Tasic L. Metabolomic Biomarkers in Mental Disorders: Bipolar Disorder and Schizophrenia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1118:271-293. [PMID: 30747428 DOI: 10.1007/978-3-030-05542-4_14] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Psychiatric disorders are some of the most impairing human diseases. Among them, bipolar disorder and schizophrenia are the most common. Both have complicated diagnostics due to their phenotypic, biological, and genetic heterogeneity, unknown etiology, and the underlying biological pathways, and molecular mechanisms are still not completely understood. Given the multifactorial complexity of these disorders, identification and implementation of metabolic biomarkers would assist in their early detection and diagnosis and facilitate disease monitoring and treatment responses. To date, numerous studies have utilized metabolomics to better understand psychiatric disorders, and findings from these studies have begun to converge. In this chapter, we briefly describe some of the metabolomic biomarkers found in these two disorders.
Collapse
Affiliation(s)
- Melissa Quintero
- Laboratory of Chemical Biology, Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Danijela Stanisic
- Laboratory of Chemical Biology, Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Guilherme Cruz
- Laboratory of Chemical Biology, Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - João G M Pontes
- Laboratory of Microbial Chemical Biology, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Tássia Brena Barroso Carneiro Costa
- Laboratory of Chemical Biology, Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Ljubica Tasic
- Laboratory of Chemical Biology, Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| |
Collapse
|
17
|
Soeiro-de-Souza MG, Otaduy MCG, Machado-Vieira R, Moreno RA, Nery FG, Leite C, Lafer B. Lithium-associated anterior cingulate neurometabolic profile in euthymic Bipolar I disorder: A 1H-MRS study. J Affect Disord 2018; 241:192-199. [PMID: 30130684 DOI: 10.1016/j.jad.2018.08.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/07/2018] [Accepted: 08/09/2018] [Indexed: 01/28/2023]
Abstract
OBJECTIVE In the treatment of Bipolar disorder (BD), achieving euthymia is highly complex and usually requires a combination of mood stabilizers. The mechanism of action in stabilizing mood has not been fully elucidated, but alterations in N-Acetylaspartate (NAA), Myo-Inositol (mI) and Choline (Cho) have been implicated. Proton magnetic resonance spectroscopy (1H-MRS) is the gold standard technique for measuring brain NAA, Cho and mI in vivo. The objective of this study was to investigate the association of lithium use in BD type I and brain levels of NAA, mI and Cho in the (anterior cingulate cortex) ACC. METHODS 129 BD type I subjects and 79 healthy controls (HC) were submitted to a 3-Tesla brain magnetic resonance imaging scan (1H-MRS) using a PRESS ACC single voxel (8cm3) sequence. RESULTS BD patients exhibited higher NAA and Cho levels compared to HC. Lithium prescription was associated with lower mI (combination + monotherapy) and higher NAA levels (monotherapy). CONCLUSION The results observed add to the knowledge about the mechanisms of action of mood stabilizers on brain metabolites during euthymia. Additionally, the observed decrease in mI levels associated with lithium monotherapy is an in vivo finding that supports the inositol-depletion hypothesis of lithium pharmacodynamics.
Collapse
Affiliation(s)
- Marcio Gerhardt Soeiro-de-Souza
- Mood Disorders Unit (GRUDA), Department and Institute of Psychiatry, University of Sao Paulo, Brazil; Genetics and Pharmacogenetics Unit (PROGENE), Department and Institute of Psychiatry, University of Sao Paulo, Brazil.
| | - Maria Concepcion Garcia Otaduy
- Laboratory of Magnetic Resonance LIM44, Department and Institute of Radiology, University of São Paulo (InRad-FMUSP), Brazil
| | | | - Ricardo Alberto Moreno
- Mood Disorders Unit (GRUDA), Department and Institute of Psychiatry, University of Sao Paulo, Brazil
| | - Fabiano G Nery
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, USA
| | - Claudia Leite
- Laboratory of Magnetic Resonance LIM44, Department and Institute of Radiology, University of São Paulo (InRad-FMUSP), Brazil
| | - Beny Lafer
- Bipolar Disorders Program (PROMAN), Department and Institute of Psychiatry, University of São Paulo, Brazil
| |
Collapse
|
18
|
Urrila AS, Hakkarainen A, Castaneda A, Paunio T, Marttunen M, Lundbom N. Frontal Cortex Myo-Inositol Is Associated with Sleep and Depression in Adolescents: A Proton Magnetic Resonance Spectroscopy Study. Neuropsychobiology 2018; 75:21-31. [PMID: 28793304 DOI: 10.1159/000478861] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 06/19/2017] [Indexed: 01/07/2023]
Abstract
AIM This study used proton magnetic resonance spectroscopy (1H MRS) to evaluate the neurochemistry of the frontal cortex in adolescents with symptoms of sleep and depression. METHODS Nineteen non-medicated adolescent boys (mean age 16.0 years; 9 clinical cases with depression/sleep symptoms and 10 healthy controls) underwent 1H MRS at 3 T. MR spectra were acquired from the anterior cingulate cortex (ACC), the dorsolateral prefrontal cortex, and frontal white matter. Concentrations of N-acetyl aspartate, total creatine, choline-containing compounds, total glutamine plus glutamate, and myo-inositol (mI) were compared in the 2 subgroups, and correlated with sleep and clinical measures in the total sample. Sleep was assessed with self-report questionnaires and ambulatory polysomnography recordings. RESULTS Concentrations of mI were lower in both frontal cortical regions among the depressed adolescents than in controls. No statistically significant differences in other metabolite concentrations were observed between the subgroups. Frontal cortex mI concentrations correlated negatively with depression severity, subjective daytime sleepiness, insomnia symptoms, and the level of anxiety, and correlated positively with total sleep time and overall psychosocial functioning. The correlations between mI in the ACC and total sleep time as well as daytime sleepiness remained statistically significant when depression severity was controlled in the analyses. CONCLUSION Lower frontal cortex mI may indicate a disturbed second messenger system. Frontal cortical mI may thus be linked to the pathophysiology of depression and concomitant sleep symptoms among maturing adolescents. Short sleep and daytime sleepiness may be associated with frontal cortex mI independently from depression.
Collapse
Affiliation(s)
- Anna S Urrila
- Unit of Mental Health, Department of Health, National Institute for Health and Welfare, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
19
|
Woodcock EA, Arshad M, Khatib D, Stanley JA. Automated Voxel Placement: A Linux-based Suite of Tools for Accurate and Reliable Single Voxel Coregistration. ACTA ACUST UNITED AC 2018; 3:1-8. [PMID: 29911203 PMCID: PMC5998677 DOI: 10.17756/jnpn.2018-020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Single-voxel proton magnetic resonance spectroscopy (1H
MRS) is a powerful technique for studying in vivo
neurochemistry, but has an often-overlooked source of error variance:
inconsistent voxel placement between scans. We developed and evaluated an
Automated Voxel Placement (AVP) procedure for accurate and reliable
1H MRS voxel prescription. AVP is a suite of Linux-based
programs that facilitate automated template-driven single-voxel
coregistration. Methods Three studies were conducted to evaluate AVP for prescription of one
voxel: left dorsolateral prefrontal cortex. First, we evaluated how robust
AVP was to ‘extreme’ subject head positions/angulations
within the scanner head coil. Second, subjects (N = 13) were
recruited and underwent MR scans. Manual voxel prescription (n = 5)
was contrasted with AVP (n = 8). A subset of AVP subjects (n
= 4) completed a second scan. Third, ongoing data collection (n
= 16; recruited for a separate study) helped evaluate AVP. Voxel
placement accuracy was quantified as 3D geometric voxel overlap percentage
between each subject’s voxel and the template voxel. Reliability was
quantified as 3D geometric voxel overlap percentage across subjects at each
time point and within subjects who completed two scans. Results Results demonstrated that AVP was robust to ‘extreme’
head positions (97.5% - 97.9% overlap with the template
voxel). AVP was significantly more accurate (baseline and follow-up:
96.2% ± 3.0% and 97.6% ±
1.4% overlap) than manual voxel placement (67.7% ±
22.8% overlap; ps<.05). AVP was reliable
within- (97.9%) and between-subjects (94.2% and
97.2% overlap; baseline and follow-up; respectively). Finally,
ongoing data collection indicates AVP is accurate (96.0%). Conclusion These pilot studies demonstrated that AVP was feasible, accurate, and
reliable method for automated single voxel coregistration.
Collapse
Affiliation(s)
- Eric A Woodcock
- Brain Imaging Research Division, Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Muzamil Arshad
- Brain Imaging Research Division, Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Dalal Khatib
- Brain Imaging Research Division, Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jeffrey A Stanley
- Brain Imaging Research Division, Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
20
|
Lithium, Stress, and Resilience in Bipolar Disorder: Deciphering this key homeostatic synaptic plasticity regulator. J Affect Disord 2018; 233:92-99. [PMID: 29310970 DOI: 10.1016/j.jad.2017.12.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 11/30/2017] [Accepted: 12/19/2017] [Indexed: 01/12/2023]
Abstract
BACKGROUND Lithium is the lightest metal and the only mood stabilizer that has been used for over half a century for the treatment of bipolar disorder (BD). As a small ion, lithium is omnipresent, and consequently, its molecular mechanisms and targets are widespread. Currently, lithium is a crucial pharmacotherapy for the treatment of acute mood episodes, prophylactic therapy, and suicide prevention in BD. Besides, lithium blood level is the most widely used biomarker in clinical psychiatry. The concept of stress in BD characterizes short- and long-term deleterious effects at multiple levels (from genes to behaviors) and the ability to establish homeostatic regulatory mechanisms to either prevent or reverse these effects. Within this concept, lithium has consistently shown anti-stress effects, by normalizing components across several levels associated with BD-induced impairments in cellular resilience and plasticity. METHODS A literature search for biomarkers associated with lithium effects at multiple targets, with a particular focus on those related to clinical outcomes was performed. An extensive search of the published literature using PubMed, Medline and Google Scholar was performed. Example search terms included lithium, plasticity, stress, efficacy, and neuroimaging. Articles determined by the author to focus on lithium's impact on neural plasticity markers (central and periphery) and clinical outcomes were examined in greater depth. Relevant papers were evaluated, selected and included in this review. RESULTS Lithium induces neurotrophic and neuroprotective effects in a wide range of preclinical and translational models. Lithium's neurotrophic effects are related to the enhancement of cellular proliferation, differentiation, growth, and regeneration, whereas its neuroprotective effects limit the progression of neuronal atrophy or cell death following the onset of BD. Lithium's neurotrophic and neuroprotective effects seem most pronounced in the presence of pathology, which again supports its pivotal role as an active homeostatic regulator. LIMITATIONS Few studies associated with clinical outcomes. Due to space limitations, the author was unable to detail all findings, in special those originated from preclinical studies. CONCLUSIONS These results support a potential role for biomarkers involved in neuroprotection and activation of plasticity pathways in lithium's clinical response. Evidence supporting this model comes from results evaluating macroscopic and microscopic brain structure as well neurochemical findings in vivo from cellular to sub-synaptic (molecules and intracellular signaling) compartments using central and peripheral biomarkers. Challenges to precisely decipher lithium's biological mechanisms involved in its therapeutic profile include the complex nature of the illness and clinical subtypes, family history and comorbid conditions. In the context of personalized medicine, it is necessary to validate predictive biomarkers of response to lithium by designing longitudinal clinical studies during mood episodes and associated clinical dimensions in BD.
Collapse
|
21
|
Antoniadou I, Kouskou M, Arsiwala T, Singh N, Vasudevan SR, Fowler T, Cadirci E, Churchill GC, Sharp T. Ebselen has lithium-like effects on central 5-HT 2A receptor function. Br J Pharmacol 2018; 175:2599-2610. [PMID: 29488218 DOI: 10.1111/bph.14179] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 01/23/2018] [Accepted: 01/30/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Lithium's antidepressant action may be mediated by inhibition of inositol monophosphatase (IMPase), a key enzyme in Gq -protein coupled receptor signalling. Recently, the antioxidant agent ebselen was identified as an IMPase inhibitor. Here, we investigated both ebselen and lithium in models of the 5-HT2A receptor, a Gq -protein coupled receptor involved in lithium's actions. EXPERIMENTAL APPROACH 5-HT2A receptor function was assessed in mice by measuring the behavioural (head-twitches, ear scratches) and molecular (cortical immediate early gene [IEG] mRNA; Arc, c-fos, Egr2) responses to 5-HT2A receptor agonists. Ebselen and lithium were administered either acutely or repeatedly prior to assessment of 5-HT2A receptor function. Because lithium and 5-HT2A receptor antagonists augment the action of selective serotonin reuptake inhibitors (SSRIs), ebselen was tested for this activity by co-administration with the SSRI citalopram in microdialysis (extracellular 5-HT) experiments. KEY RESULTS Acute and repeated administration of ebselen inhibited behavioural and IEG responses to the 5-HT2A receptor agonist DOI. Repeated lithium also inhibited DOI-evoked behavioural and IEG responses. In comparison, a selective IMPase inhibitor (L-690330) attenuated the behavioural response to DOI whereas glycogen synthase kinase inhibitor (AR-A014418) did not. Finally, ebselen enhanced the increase in extracellular 5-HT induced by citalopram, and also increased regional brain 5-HT synthesis. CONCLUSIONS AND IMPLICATIONS Our data demonstrated lithium-mimetic effects of ebselen in different experimental models of 5-HT2A receptor function, probably mediated by IMPase inhibition. This evidence of lithium-like neuropharmacological effects of ebselen adds further support for the clinical testing of ebselen in mood disorders, including as an antidepressant augmenting agent.
Collapse
Affiliation(s)
- I Antoniadou
- Department of Pharmacology, University of Oxford, Oxford, UK.,Department of Pharmacy, European University of Cyprus, Nicosia, Cyprus
| | - M Kouskou
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - T Arsiwala
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - N Singh
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - S R Vasudevan
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - T Fowler
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - E Cadirci
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - G C Churchill
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - T Sharp
- Department of Pharmacology, University of Oxford, Oxford, UK
| |
Collapse
|
22
|
Szulc A, Wiedlocha M, Waszkiewicz N, Galińska-Skok B, Marcinowicz P, Gierus J, Mosiolek A. Proton magnetic resonance spectroscopy changes after lithium treatment. Systematic review. Psychiatry Res Neuroimaging 2018; 273:1-8. [PMID: 29414126 DOI: 10.1016/j.pscychresns.2018.01.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 12/10/2017] [Accepted: 01/12/2018] [Indexed: 01/03/2023]
Abstract
1H MRS is widely used in the research of mental disorders. It enables evaluation of concentration or ratios of several metabolites, which play important roles in brain metabolism: N-acetylaspartate (NAA), choline containing compounds, myo-inositol and glutamate, glutamine and GABA (together as Glx complex or separately). Specifically in bipolar disorder brain metabolite abnormalities include mostly NAA reduces and Glx increases in different brain regions. Bipolar disorder is associated with impairment in neurotrophic and cellular plasticity, resilience pathways and in neuroprotective processes. Lithium, which is commonly used in BD treatment, modulates neurotransmitter release, reduces oxidative stress and apoptosis, induces angiogenesis, neurogenesis and neurotrophic response. Thus brain metabolite abnormalities may elucidate the mechanisms of this processes. In the present article we systematically reviewed 26 studies - the majority of them investigated bipolar disorder ( 7 follow-up and all 11 cross-sectional studies). Moreover we dispute whether the influence of lithium on brain metabolites in bipolar disorder could explain the background of its potential neuroprotective action. The results of our literature review do not equivocally confirm Lithium's influence the metabolite changes in the brain. The majority of the follow-up studies do not support the initially assumed influence of Lithium on the increase of NAA level in various brain structures. The results of studies are inconclusive with regard to levels of Glx or Glu and Lithium intake, rather point a lack of relationship. The above results were reviewed according to the most recent theories in the field accounting for the impact of lithium (1)HMRS measures.
Collapse
Affiliation(s)
- Agata Szulc
- Department of Psychiatry, Medical University of Warsaw, Pruszkow, Poland
| | | | | | - Beata Galińska-Skok
- Department of Psychiatry, Medical University of Białystok, Choroszcz, Poland
| | - Piotr Marcinowicz
- Department of Psychiatry, Medical University of Warsaw, Pruszkow, Poland
| | - Jacek Gierus
- Department of Psychiatry, Medical University of Warsaw, Pruszkow, Poland
| | - Anna Mosiolek
- Department of Psychiatry, Medical University of Warsaw, Pruszkow, Poland; Department of Psychiatry, Medical University of Białystok, Choroszcz, Poland
| |
Collapse
|
23
|
Mathias LK, Monette PJ, Harper DG, Forester BP. Application of magnetic resonance spectroscopy in geriatric mood disorders. Int Rev Psychiatry 2017; 29:597-617. [PMID: 29199890 DOI: 10.1080/09540261.2017.1397608] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The prevalence of mood disorders in the rapidly-growing older adult population merits attention due to the likelihood of increased medical comorbidities, risk of hospitalization or institutionalization, and strains placed on caregivers and healthcare providers. Magnetic resonance spectroscopy (MRS) quantifies biochemical compounds in vivo, and has been used specifically for analyses of neural metabolism and bioenergetics in older adults with mood disorders, usually via proton or phosphorous spectroscopy. While yet to be clinically implemented, data gathered from research subjects may help indicate potential biomarkers of disease state or trait or putative drug targets. Three prevailing hypotheses for these mood disorders are used as a framework for the present review, and the current biochemical findings within each are discussed with respect to particular metabolites and brain regions. This review covers studies of MRS in geriatric mood disorders and reveals persisting gaps in research knowledge, especially with regard to older age bipolar disorder. Further MRS work, using higher field strengths and larger sample sizes, is warranted in order to better understand the neurobiology of these prevalent late-life disorders.
Collapse
Affiliation(s)
- Liana K Mathias
- a Division of Geriatric Psychiatry , McLean Hospital , Belmont , MA , USA
| | - Patrick J Monette
- a Division of Geriatric Psychiatry , McLean Hospital , Belmont , MA , USA
| | - David G Harper
- a Division of Geriatric Psychiatry , McLean Hospital , Belmont , MA , USA.,b Department of Psychiatry , Harvard Medical School , Boston , MA , USA
| | - Brent P Forester
- a Division of Geriatric Psychiatry , McLean Hospital , Belmont , MA , USA.,b Department of Psychiatry , Harvard Medical School , Boston , MA , USA
| |
Collapse
|
24
|
Goldstein BI, Birmaher B, Carlson GA, DelBello MP, Findling RL, Fristad M, Kowatch RA, Miklowitz DJ, Nery FG, Perez‐Algorta G, Van Meter A, Zeni CP, Correll CU, Kim H, Wozniak J, Chang KD, Hillegers M, Youngstrom EA. The International Society for Bipolar Disorders Task Force report on pediatric bipolar disorder: Knowledge to date and directions for future research. Bipolar Disord 2017; 19:524-543. [PMID: 28944987 PMCID: PMC5716873 DOI: 10.1111/bdi.12556] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/14/2017] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Over the past two decades, there has been tremendous growth in research regarding bipolar disorder (BD) among children and adolescents (ie, pediatric BD [PBD]). The primary purpose of this article is to distill the extant literature, dispel myths or exaggerated assertions in the field, and disseminate clinically relevant findings. METHODS An international group of experts completed a selective review of the literature, emphasizing areas of consensus, identifying limitations and gaps in the literature, and highlighting future directions to mitigate these gaps. RESULTS Substantial, and increasingly international, research has accumulated regarding the phenomenology, differential diagnosis, course, treatment, and neurobiology of PBD. Prior division around the role of irritability and of screening tools in diagnosis has largely abated. Gold-standard pharmacologic trials inform treatment of manic/mixed episodes, whereas fewer data address bipolar depression and maintenance/continuation treatment. Adjunctive psychosocial treatment provides a forum for psychoeducation and targets primarily depressive symptoms. Numerous neurocognitive and neuroimaging studies, and increasing peripheral biomarker studies, largely converge with prior findings from adults with BD. CONCLUSIONS As data have accumulated and controversy has dissipated, the field has moved past existential questions about PBD toward defining and pursuing pressing clinical and scientific priorities that remain. The overall body of evidence supports the position that perceptions about marked international (US vs elsewhere) and developmental (pediatric vs adult) differences have been overstated, although additional research on these topics is warranted. Traction toward improved outcomes will be supported by continued emphasis on pathophysiology and novel therapeutics.
Collapse
Affiliation(s)
- Benjamin I Goldstein
- Centre for Youth Bipolar DisorderSunnybrook Health Sciences CentreTorontoCanada,Departments of Psychiatry and PharmacologyUniversity of TorontoTorontoCanada
| | - Boris Birmaher
- Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Gabrielle A Carlson
- Department of PsychiatryStony Brook University School of MedicineStony BrookNYUSA
| | - Melissa P DelBello
- Department of Psychiatry & Behavioral NeuroscienceUniversity of CincinnatiCincinnatiOHUSA
| | - Robert L Findling
- Department of Psychiatry & Behavioral SciencesThe Johns Hopkins UniversityBaltimoreMDUSA
| | - Mary Fristad
- Ohio State University Wexner Medical Center/Nationwide Children's HospitalColumbusOHUSA
| | - Robert A Kowatch
- Ohio State University Wexner Medical Center/Nationwide Children's HospitalColumbusOHUSA
| | | | - Fabiano G Nery
- Department of Psychiatry & Behavioral NeuroscienceUniversity of CincinnatiCincinnatiOHUSA
| | | | - Anna Van Meter
- Ferkauf Graduate School of PsychologyYeshiva UniversityBronxNYUSA
| | | | - Christoph U Correll
- The Zucker Hillside HospitalDepartment of PsychiatryNorthwell HealthGlen OaksNYUSA,Department of Psychiatry and Molecular MedicineHofstra Northwell School of MedicineHempsteadNYUSA
| | - Hyo‐Won Kim
- Department of PsychiatryUniversity of Ulsan College of MedicineAsan Medical CenterSeoulKorea
| | - Janet Wozniak
- Clinical and Research Program in Pediatric PsychopharmacologyMassachusetts General HospitalHarvard Medical SchoolBostonMAUSA
| | - Kiki D Chang
- Department of PsychiatryStanford UniversityPalo AltoCAUSA
| | - Manon Hillegers
- Department of Child and Adolescent Psychiatry and PsychologyErasmus Medical Center‐SophiaRotterdamThe Netherlands
| | - Eric A Youngstrom
- Department of Psychology and NeuroscienceUniversity of North CarolinaChapel HillNCUSA
| |
Collapse
|
25
|
Sethi S, Pedrini M, Rizzo LB, Zeni-Graiff M, Mas CD, Cassinelli AC, Noto MN, Asevedo E, Cordeiro Q, Pontes JGM, Brasil AJM, Lacerda A, Hayashi MAF, Poppi R, Tasic L, Brietzke E. 1H-NMR, 1H-NMR T 2-edited, and 2D-NMR in bipolar disorder metabolic profiling. Int J Bipolar Disord 2017; 5:23. [PMID: 28447334 PMCID: PMC5457743 DOI: 10.1186/s40345-017-0088-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/15/2017] [Indexed: 12/24/2022] Open
Abstract
Background The objective of this study was to identify molecular alterations in the human blood serum related to bipolar disorder, using nuclear magnetic resonance (NMR) spectroscopy and chemometrics. Methods Metabolomic profiling, employing 1H-NMR, 1H-NMR T2-edited, and 2D-NMR spectroscopy and chemometrics of human blood serum samples from patients with bipolar disorder (n = 26) compared with healthy volunteers (n = 50) was performed. Results The investigated groups presented distinct metabolic profiles, in which the main differential metabolites found in the serum sample of bipolar disorder patients compared with those from controls were lipids, lipid metabolism-related molecules (choline, myo-inositol), and some amino acids (N-acetyl-l-phenyl alanine, N-acetyl-l-aspartyl-l-glutamic acid, l-glutamine). In addition, amygdalin, α-ketoglutaric acid, and lipoamide, among other compounds, were also present or were significantly altered in the serum of bipolar disorder patients. The data presented herein suggest that some of these metabolites differentially distributed between the groups studied may be directly related to the bipolar disorder pathophysiology. Conclusions The strategy employed here showed significant potential for exploring pathophysiological features and molecular pathways involved in bipolar disorder. Thus, our findings may contribute to pave the way for future studies aiming at identifying important potential biomarkers for bipolar disorder diagnosis or progression follow-up. Electronic supplementary material The online version of this article (doi:10.1186/s40345-017-0088-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sumit Sethi
- Department of Psychiatry, Universidade Federal de São Paulo-UNIFESP, Rua Borges Lagoa, 570. Vila Clementino, São Paulo, CEP 04038-020, Brazil
| | - Mariana Pedrini
- Department of Psychiatry, Universidade Federal de São Paulo-UNIFESP, Rua Borges Lagoa, 570. Vila Clementino, São Paulo, CEP 04038-020, Brazil
| | - Lucas B Rizzo
- Department of Psychiatry, Universidade Federal de São Paulo-UNIFESP, Rua Borges Lagoa, 570. Vila Clementino, São Paulo, CEP 04038-020, Brazil
| | - Maiara Zeni-Graiff
- Department of Psychiatry, Universidade Federal de São Paulo-UNIFESP, Rua Borges Lagoa, 570. Vila Clementino, São Paulo, CEP 04038-020, Brazil
| | - Caroline Dal Mas
- Department of Pharmacology, Universidade Federal de São Paulo-UNIFESP, Rua Três de Maio, 100. Vila Clementino, São Paulo, CEP 04044-020, Brazil
| | - Ana Cláudia Cassinelli
- Department of Psychiatry, Irmandade da Santa Casa de Misericórdia de São Paulo (ISCMSP), Rua Major Maragliano, 287. Vila Mariana, São Paulo, CEP 04017-030, Brazil
| | - Mariane N Noto
- Department of Psychiatry, Universidade Federal de São Paulo-UNIFESP, Rua Borges Lagoa, 570. Vila Clementino, São Paulo, CEP 04038-020, Brazil.,Department of Psychiatry, Irmandade da Santa Casa de Misericórdia de São Paulo (ISCMSP), Rua Major Maragliano, 287. Vila Mariana, São Paulo, CEP 04017-030, Brazil
| | - Elson Asevedo
- Department of Psychiatry, Universidade Federal de São Paulo-UNIFESP, Rua Borges Lagoa, 570. Vila Clementino, São Paulo, CEP 04038-020, Brazil
| | - Quirino Cordeiro
- Department of Psychiatry, Irmandade da Santa Casa de Misericórdia de São Paulo (ISCMSP), Rua Major Maragliano, 287. Vila Mariana, São Paulo, CEP 04017-030, Brazil
| | - João G M Pontes
- Laboratório de Química Biológica, Department of Organic Chemistry, Institute of Chemistry, Universidade Estadual de Campinas-UNICAMP, Caixa Postal 6154, Campinas, São Paulo, CEP 13083-970, Brazil
| | - Antonio J M Brasil
- Laboratório de Química Biológica, Department of Organic Chemistry, Institute of Chemistry, Universidade Estadual de Campinas-UNICAMP, Caixa Postal 6154, Campinas, São Paulo, CEP 13083-970, Brazil
| | - Acioly Lacerda
- Department of Psychiatry, Universidade Federal de São Paulo-UNIFESP, Rua Borges Lagoa, 570. Vila Clementino, São Paulo, CEP 04038-020, Brazil
| | - Mirian A F Hayashi
- Department of Pharmacology, Universidade Federal de São Paulo-UNIFESP, Rua Três de Maio, 100. Vila Clementino, São Paulo, CEP 04044-020, Brazil
| | - Ronei Poppi
- Department of Analytical Chemistry, Institute of Chemistry, Universidade Estadual de Campinas-UNICAMP, Caixa Postal 6154, Campinas, São Paulo, CEP 13083-970, Brazil
| | - Ljubica Tasic
- Laboratório de Química Biológica, Department of Organic Chemistry, Institute of Chemistry, Universidade Estadual de Campinas-UNICAMP, Caixa Postal 6154, Campinas, São Paulo, CEP 13083-970, Brazil.
| | - Elisa Brietzke
- Department of Psychiatry, Universidade Federal de São Paulo-UNIFESP, Rua Borges Lagoa, 570. Vila Clementino, São Paulo, CEP 04038-020, Brazil.
| |
Collapse
|
26
|
Tipping the scales: Lessons from simple model systems on inositol imbalance in neurological disorders. Eur J Cell Biol 2017; 96:154-163. [PMID: 28153412 DOI: 10.1016/j.ejcb.2017.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/18/2017] [Accepted: 01/21/2017] [Indexed: 11/20/2022] Open
Abstract
Inositol and inositol-containing compounds have signalling and regulatory roles in many cellular processes, suggesting that inositol imbalance may lead to wide-ranging changes in cellular functions. Indeed, changes in inositol-dependent signalling have been implicated in various diseases and cellular functions such as autophagy, and these changes have often been proposed as therapeutic targets. However, few studies have highlighted the links between inositol depletion and the downstream effects on inositol phosphates and phosphoinositides in disease states. For this research, many advances have employed simple model systems that include the social amoeba D. discoideum and the yeast S. cerevisiae, since these models enable a range of experimental approaches that are not possible in mammalian models. In this review, we discuss recent findings initiated in simple model systems and translated to higher model organisms where the effect of altered inositol, inositol phosphate and phosphoinositide levels impact on bipolar disorder, Alzheimer disease, epilepsy and autophagy.
Collapse
|
27
|
Aydin B, Yurt A, Gökmen N, Renshaw P, Olson D, Yildiz A. Trait-related alterations of N-acetylaspartate in euthymic bipolar patients: A longitudinal proton magnetic resonance spectroscopy study. J Affect Disord 2016; 206:315-320. [PMID: 27662572 PMCID: PMC5077644 DOI: 10.1016/j.jad.2016.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/27/2016] [Accepted: 09/08/2016] [Indexed: 12/25/2022]
Abstract
BACKGROUND Neurochemical changes are responsible for bipolar disorder (BD) pathophysiology. Despite current progress in BD research, mood- and trait-related alterations in BD continue to elicit further investigation. METHODS In this study, we report a longitudinal proton magnetic resonance spectroscopy study evaluating dorsomedial prefrontal cortex (DMPFC) metabolites N-acetylaspartate (NAA), creatine plus phosphocreatine (total creatine [tCr]), phosphorylcholine plus glycerophosphocholine, myo-inositol, and glutamate plus glutamine levels of manic and euthymic adult BD type I patients (n=48) treated with standard antimanic medicines, compared to matching healthy controls (n=44). RESULTS DMPFC NAA values and NAA/tCr ratio were significantly lower in euthymic BD patients when compared with healthy controls with similar levels of other metabolites in all groups, indicating a trait-related NAA abnormality in euthymic BD patients. LIMITATIONS of our study include a relatively low (1.5T) magnetic resonance field strength and variable drugs administered to achieve euthymia despite the best efforts to standardize the open fashion treatment. CONCLUSIONS Our study contributes to the integrating models of trait-related metabolite alterations observed in euthymia since NAA is considered as a marker of neuronal viability and mitochondrial energy metabolism. In light of supporting and conflicting results reported previously, future studies with longitudinal designs and larger patient groups are warranted to better define both state- and trait-related cerebral metabolic alterations associated with BD pathophysiology.
Collapse
Affiliation(s)
- Burç Aydin
- Department of Medical Pharmacology, School of Medicine, Dokuz Eylul University, Balcova 35340, Izmir, Turkey.
| | - Ayşegül Yurt
- Department of Medical Physics, Health Sciences Institute, Dokuz Eylul University, İzmir, Turkey
| | - Necati Gökmen
- Department of Anesthesiology and Reanimation, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Perry Renshaw
- University of Utah, The Brain Institute & Department of Psychiatry, Salt Lake City, UT, USA
| | - David Olson
- Harvard Medical School, McLean Hospital, Brain Imaging Center, Belmont, MA, USA
| | - Ayşegül Yildiz
- Department of Psychiatry, School of Medicine, Dokuz Eylul University, Izmir, Turkey,International Consortium for Bipolar Disorder Research & Psychopharmacology Program, McLean Division of Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
28
|
Sade Y, Toker L, Kara NZ, Einat H, Rapoport S, Moechars D, Berry GT, Bersudsky Y, Agam G. IP3 accumulation and/or inositol depletion: two downstream lithium's effects that may mediate its behavioral and cellular changes. Transl Psychiatry 2016; 6:e968. [PMID: 27922641 PMCID: PMC5315558 DOI: 10.1038/tp.2016.217] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/17/2016] [Accepted: 09/12/2016] [Indexed: 12/12/2022] Open
Abstract
Lithium is the prototype mood stabilizer but its mechanism is still unresolved. Two hypotheses dominate-the consequences of lithium's inhibition of inositol monophosphatase at therapeutically relevant concentrations (the 'inositol depletion' hypothesis), and of glycogen-synthase kinase-3. To further elaborate the inositol depletion hypothesis that did not decisively determine whether inositol depletion per se, or phosphoinositols accumulation induces the beneficial effects, we utilized knockout mice of either of two inositol metabolism-related genes-IMPA1 or SMIT1, both mimic several lithium's behavioral and biochemical effects. We assessed in vivo, under non-agonist-stimulated conditions, 3H-inositol incorporation into brain phosphoinositols and phosphoinositides in wild-type, lithium-treated, IMPA1 and SMIT1 knockout mice. Lithium treatment increased frontal cortex and hippocampal phosphoinositols labeling by several fold, but decreased phosphoinositides labeling in the frontal cortex of the wild-type mice of the IMPA1 colony strain by ~50%. Inositol metabolites were differently affected by IMPA1 and SMIT1 knockout. Inositoltrisphosphate administered intracerebroventricularly affected bipolar-related behaviors and autophagy markers in a lithium-like manner. Namely, IP3 but not IP1 reduced the immobility time of wild-type mice in the forced swim test model of antidepressant action by 30%, an effect that was reversed by an antagonist of all three IP3 receptors; amphetamine-induced hyperlocomotion of wild-type mice (distance traveled) was 35% reduced by IP3 administration; IP3 administration increased hippocampal messenger RNA levels of Beclin-1 (required for autophagy execution) and hippocampal and frontal cortex protein levels ratio of Beclin-1/p62 by about threefold (p62 is degraded by autophagy). To conclude, lithium affects the phosphatidylinositol signaling system in two ways: depleting inositol, consequently decreasing phosphoinositides; elevating inositol monophosphate levels followed by phosphoinositols accumulation. Each or both may mediate lithium-induced behavior.
Collapse
Affiliation(s)
- Y Sade
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva, Israel,Psychiatry Research Unit, Ben-Gurion University of the Negev, Beer-Sheva, Israel,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel,Mental Health Center, Beer-Sheva, Israel
| | - L Toker
- Department of Psychiatry and Centre for High-Throughput Biology, University of British Columbia Vancouver, BC, Canada
| | - N Z Kara
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva, Israel,Psychiatry Research Unit, Ben-Gurion University of the Negev, Beer-Sheva, Israel,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel,School of Behavioral Sciences, Tel Aviv-Yaffo Academic College, Tel Aviv, Israel
| | - H Einat
- School of Behavioral Sciences, Tel Aviv-Yaffo Academic College, Tel Aviv, Israel
| | - S Rapoport
- Brain Physiology and Metabolism Section, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - D Moechars
- Johnson & Johnson Pharmaceutical Research and Development, Beerse, Belgium
| | - G T Berry
- Metabolism Program Division of Genetics, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA
| | - Y Bersudsky
- Psychiatry Research Unit, Ben-Gurion University of the Negev, Beer-Sheva, Israel,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel,Mental Health Center, Beer-Sheva, Israel
| | - G Agam
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva, Israel,Psychiatry Research Unit, Ben-Gurion University of the Negev, Beer-Sheva, Israel,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel,Mental Health Center, Beer-Sheva, Israel,Professor, , Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev or Psychiatry Research Unit, Ben-Gurion University of the Negev or Faculty of Health Sciences, Ben-Gurion University of the Negev or Mental Health Center, Beer-Sheva 84170, Israel. E-mail:
| |
Collapse
|
29
|
Porcu M, Balestrieri A, Siotto P, Lucatelli P, Anzidei M, Suri JS, Zaccagna F, Argiolas GM, Saba L. Clinical neuroimaging markers of response to treatment in mood disorders. Neurosci Lett 2016; 669:43-54. [PMID: 27737806 DOI: 10.1016/j.neulet.2016.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 09/01/2016] [Accepted: 10/06/2016] [Indexed: 12/22/2022]
Abstract
Mood disorders (MD) are important and frequent psychiatric illness. The management of patients affected by these conditions represents an important factor of disability as well as a significant social and economic burden. The "in-vivo" studies can help researchers to understand the first developmental events of the pathology and to identify the molecular and non-molecular targets of therapies. However, they have strong limitations due to the fact that human brain circuitry can not be reproduced in animal models. In addition, these neural pathways are difficult to be selectively studied with the modern imaging (such as Magnetic Resonance and Positron Emitted Tomography/Computed Tomography) and non-imaging (such as electroencephalography, magnetoencephalography, transcranial magnetic stimulation and evoked potentials) methods. In comparison with other methods, the "in-vivo" imaging investigations have higher temporal and spatial resolution compared to the "in-vivo" non-imaging techniques. All these factors make difficult to fully understand the aetiology and pathophysiology of these disorders, and consequently hinder the analysis of the effects of pharmacological and non-pharmacological therapies, which have been demonstrated effective in clinical settings. In this review, we will focus our attention on the current state of the art of imaging in the assessment of treatment efficacy in MD. We will analyse briefly the actual classification of MD; then we will focus on the "in vivo" imaging methods used in research and clinical activity, the current knowledge about the neural models at the base of MD. Finally the last part of the review will focus on the analysis of the main markers of response to treatment.
Collapse
Affiliation(s)
- Michele Porcu
- Department of Radiology, AOU of Cagliari, SS 554 Monserrato, CA, Italy
| | | | - Paolo Siotto
- Department of Radiology, AOB Azienda Ospedaliera Brotzu, CA, Italy
| | - Pierleone Lucatelli
- Vascular and Interventional Radiology Unit, Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Michele Anzidei
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Jasjit S Suri
- Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA, USA; Electrical Engineering Department, Idaho State University (Aff.), Pocatello, ID, USA
| | - Fulvio Zaccagna
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | | | - Luca Saba
- Department of Radiology, AOU of Cagliari, SS 554 Monserrato, CA, Italy.
| |
Collapse
|
30
|
Yu W, Greenberg ML. Inositol depletion, GSK3 inhibition and bipolar disorder. FUTURE NEUROLOGY 2016; 11:135-148. [PMID: 29339929 DOI: 10.2217/fnl-2016-0003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/04/2016] [Indexed: 12/31/2022]
Abstract
Valproic acid and lithium are widely used to treat bipolar disorder, a severe illness characterized by cycles of mania and depression. However, their efficacy is limited, and treatment is often accompanied by serious side effects. The therapeutic mechanisms of these drugs are not understood, hampering the development of more effective treatments. Among the plethora of biochemical effects of the drugs, those that are common to both may be more related to therapeutic efficacy. Two common outcomes include inositol depletion and GSK3 inhibition, which have been proposed to explain the efficacy of both valproic acid and lithium. Here, we discuss the inositol depletion and GSK3 inhibition hypotheses, and introduce a unified model suggesting that inositol depletion and GSK3 inhibition are inter-related.
Collapse
Affiliation(s)
- Wenxi Yu
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
31
|
Abstract
All living cells require membrane proteins that act as conduits for the regulated transport of ions, solutes and other small molecules across the cell membrane. Ion channels provide a pore that permits often rapid, highly selective and tightly regulated movement of ions down their electrochemical gradient. In contrast, active transporters can move moieties up their electrochemical gradient. The secondary active transporters (such as SLC superfamily solute transporters) achieve this by coupling uphill movement of the substrate to downhill movement of another ion, such as sodium. The primary active transporters (including H(+)/K(+)-ATPases and Na(+)/K(+)-ATPases) utilize ATP hydrolysis as an energy source to power uphill transport. It is well known that proteins in each of these classes work in concert with members of the other classes to ensure, for example, ion homeostasis, ion secretion and restoration of ion balance following action potentials. More recently, evidence is emerging of direct physical interaction between true ion channels, and some primary or secondary active transporters. Here, we review the first known members of this new class of macromolecular complexes that we term "chansporters", explore their biological roles and discuss the pathophysiological consequences of their disruption. We compare functional and/or physical interactions between the ubiquitous KCNQ1 potassium channel and various active transporters, and examine other newly discovered chansporter complexes that suggest we may be seeing the tip of the iceberg in a newly emerging signaling modality.
Collapse
Affiliation(s)
- Daniel L Neverisky
- a Bioelectricity Laboratory, Departments of Pharmacology and Physiology and Biophysics, School of Medicine, University of California , Irvine , CA , USA
| | - Geoffrey W Abbott
- a Bioelectricity Laboratory, Departments of Pharmacology and Physiology and Biophysics, School of Medicine, University of California , Irvine , CA , USA
| |
Collapse
|
32
|
McNamara RK, Jandacek R, Rider T, Tso P, Chu WJ, Weber WA, Welge JA, Strawn JR, Adler CM, DelBello MP. Effects of fish oil supplementation on prefrontal metabolite concentrations in adolescents with major depressive disorder: a preliminary 1H MRS study. Nutr Neurosci 2016; 19:145-55. [PMID: 24915543 DOI: 10.1179/1476830514y.0000000135] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVE To use proton magnetic resonance spectroscopy ((1)H MRS) to investigate the effects of fish oil (FO) supplementation on cortical metabolite concentrations in adolescents with major depressive disorder (MDD). METHODS Metabolite concentrations were determined by (1)H MRS in the anterior cingulate cortex and bilateral dorsolateral prefrontal cortex (DLPFC) of adolescents with MDD before and following 10-week open-label supplementation with low (2.4 g/day, n = 7) or high (16.2 g/day, n = 7) dose FO. Depressive symptom severity scores and erythrocyte fatty acid levels were also determined. RESULTS Baseline erythrocyte eicosapentaenoic acid (EPA) composition was positively correlated, and arachidonic acid (AA) and the AA/EPA ratio were inversely correlated, with choline (Cho) concentrations in the right DLPFC. Docosahexaenoic acid (DHA) composition was inversely correlated with myo-inositol (mI) concentrations in the left DLPFC. Erythrocyte EPA and DHA composition increased, and AA decreased, significantly following low-dose and high-dose FO supplementation. In the intent-to-treat sample, depressive symptom severity scores decreased significantly in the high-dose group (-40%, P < 0.0001) and there was a trend in the low-dose group (-20%, P = 0.06). There were no significant baseline-endpoint changes in metabolite levels in each voxel. In the low-dose group there were changes with large effect sizes, including a decrease in mI in the left DLPFC (-12%, P = 0.18, d = 0.8) and increases in glutamate + glutamine (Glx) (+12%, P = 0.19, d = 0.8) and Cho (+15%, P = 0.08, d = 1.2) in the right DLPFC. In the high-dose group, there was a trend for increases in Cho in the right DLPFC (+10%, P = 0.09, d = 1.2). DISCUSSION These preliminary data suggest that increasing the LCn-3 fatty acid status of adolescent MDD patients is associated with subtle changes in Glx, mI, and Cho concentrations in the DLPFC that warrant further evaluation in a larger controlled trial.
Collapse
Affiliation(s)
- Robert K McNamara
- a Department of Psychiatry and Behavioral Neuroscience, Center for Imaging Research, Division of Bipolar Disorders Research , University of Cincinnati College of Medicine , Cincinnati , OH , USA
| | - Ronald Jandacek
- b Department of Pathology , University of Cincinnati , Cincinnati , OH , USA
| | - Therese Rider
- b Department of Pathology , University of Cincinnati , Cincinnati , OH , USA
| | - Patrick Tso
- b Department of Pathology , University of Cincinnati , Cincinnati , OH , USA
| | - Wen-Jang Chu
- a Department of Psychiatry and Behavioral Neuroscience, Center for Imaging Research, Division of Bipolar Disorders Research , University of Cincinnati College of Medicine , Cincinnati , OH , USA
| | - Wade A Weber
- a Department of Psychiatry and Behavioral Neuroscience, Center for Imaging Research, Division of Bipolar Disorders Research , University of Cincinnati College of Medicine , Cincinnati , OH , USA
| | - Jeffrey A Welge
- a Department of Psychiatry and Behavioral Neuroscience, Center for Imaging Research, Division of Bipolar Disorders Research , University of Cincinnati College of Medicine , Cincinnati , OH , USA
| | - Jeffrey R Strawn
- a Department of Psychiatry and Behavioral Neuroscience, Center for Imaging Research, Division of Bipolar Disorders Research , University of Cincinnati College of Medicine , Cincinnati , OH , USA
| | - Caleb M Adler
- a Department of Psychiatry and Behavioral Neuroscience, Center for Imaging Research, Division of Bipolar Disorders Research , University of Cincinnati College of Medicine , Cincinnati , OH , USA
| | - Melissa P DelBello
- a Department of Psychiatry and Behavioral Neuroscience, Center for Imaging Research, Division of Bipolar Disorders Research , University of Cincinnati College of Medicine , Cincinnati , OH , USA
| |
Collapse
|
33
|
Masaki C, Sharpley AL, Godlewska BR, Berrington A, Hashimoto T, Singh N, Vasudevan SR, Emir UE, Churchill GC, Cowen PJ. Effects of the potential lithium-mimetic, ebselen, on brain neurochemistry: a magnetic resonance spectroscopy study at 7 tesla. Psychopharmacology (Berl) 2016; 233:1097-104. [PMID: 26758281 PMCID: PMC4759215 DOI: 10.1007/s00213-015-4189-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 12/13/2015] [Indexed: 11/27/2022]
Abstract
RATIONALE Lithium is an effective treatment for bipolar disorder, but safety issues complicate its clinical use. The antioxidant drug, ebselen, may be a possible lithium-mimetic based on its ability to inhibit inositol monophosphatase (IMPase), an action which it shares with lithium. OBJECTIVES Our primary aim was to determine whether ebselen lowered levels of inositol in the human brain. We also assessed the effect of ebselen on other brain neurometabolites, including glutathione, glutamate, glutamine, and glutamate + glutamine (Glx) METHODS Twenty healthy volunteers were tested on two occasions receiving either ebselen (3600 mg over 24 h) or identical placebo in a double-blind, random-order, crossover design. Two hours after the final dose of ebselen/placebo, participants underwent proton magnetic resonance spectroscopy ((1)H MRS) at 7 tesla (T) with voxels placed in the anterior cingulate and occipital cortex. Neurometabolite levels were calculated using an unsuppressed water signal as a reference and corrected for individual cerebrospinal fluid content in the voxel. RESULTS Ebselen produced no effect on neurometabolite levels in the occipital cortex. In the anterior cingulate cortex, ebselen lowered concentrations of inositol (p = 0.028, Cohen's d = 0.60) as well as those of glutathione (p = 0.033, d = 0.58), glutamine (p = 0.024, d = 0.62), glutamate (p = 0.01, d = 0.73), and Glx (p = 0.001, d = 1.0). CONCLUSIONS The study suggests that ebselen produces a functional inhibition of IMPase in the human brain. The effect of ebselen to lower glutamate is consistent with its reported ability to inhibit the enzyme, glutaminase. Ebselen may have potential as a repurposed treatment for bipolar disorder.
Collapse
Affiliation(s)
- Charles Masaki
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, OX3 7JX, UK
| | - Ann L Sharpley
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, OX3 7JX, UK
| | - Beata R Godlewska
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, OX3 7JX, UK
| | - Adam Berrington
- The Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Tasuku Hashimoto
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, OX3 7JX, UK
| | - Nisha Singh
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
- Current Address: Centre for Neuroimaging Studies, PO 089, De Crespigny Park, London, SE5 8AF, UK
| | - Sridhar R Vasudevan
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Uzay E Emir
- The Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Grant C Churchill
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Philip J Cowen
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, OX3 7JX, UK.
| |
Collapse
|
34
|
Yildiz A, Aydin B, Gökmen N, Yurt A, Cohen B, Keskinoglu P, Öngür D, Renshaw P. Antimanic Treatment With Tamoxifen Affects Brain Chemistry: A Double-Blind, Placebo-Controlled Proton Magnetic Resonance Spectroscopy Study. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2016; 1:125-131. [PMID: 27231722 DOI: 10.1016/j.bpsc.2015.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND The antimanic efficacy of a protein kinase C (PKC) inhibitor, tamoxifen, has been tested in several clinical trials, all reporting positive results. However, mechanisms underlying the observed clinical effects requires further confirmation through studies of biological markers. METHODS We investigated the effect of tamoxifen versus placebo on brain metabolites via a proton (1H) magnetic resonance spectroscopy (MRS) study. Forty-eight adult bipolar I manic patients (mean Young Mania Rating Scale (YMRS) score of 37.8±5.8) were scanned at baseline and following 3 weeks of double-blind treatment. We hypothesized that manic symptom alleviation would improve the levels of markers associated with brain energy metabolism (creatine plus phosphocreatine [total creatine; tCr]) and neuronal viability (N-acetylaspartate [NAA]). RESULTS The YMRS scores decreased from 38.6±4.5 to 20.0±11.1 in the tamoxifen group and increased from 37.0±6.8 to 43.1±7.8 in the placebo group (p<0.001). 1H MRS measurements revealed a 5.5±13.8% increase in the dorsomedial prefrontal cortex (DMPFC) tCr levels in the tamoxifen group and a 5.3±13.1% decrease in tCr in the placebo group (p=0.027). A significant correlation between the YMRS score change and tCr percent change was observed in the whole group (Spearman ρ=0.341, p=0.029). Both tCr and NAA levels in the responder group were increased by 9.4±15.2% and 6.1±11.7%, whereas levels in the non-responder group were decreased by 2.1±13.2% and 6.5±10.5%, respectively (p<0.05). CONCLUSIONS Tamoxifen effectively treated mania while it also increased brain tCr levels, consistent with involvement of both excessive PKC activation and impaired brain energy metabolism in the development of bipolar mania. CLINICAL TRIAL REGISTRATION Registry name: ClinicalTrials.gov URL: https://clinicaltrials.gov/ct2/show/NCT00411203?term=NCT00411203&rank=1 Registration number: NCT00411203.
Collapse
Affiliation(s)
- Ayşegül Yildiz
- Department of Psychiatry, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Burç Aydin
- Department of Medical Pharmacology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Necati Gökmen
- Department of Anesthesiology and Reanimation, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Ayşegül Yurt
- Department of Medical Physics, Health Sciences Institute, Dokuz Eylul University, İzmir, Turkey
| | - Bruce Cohen
- Schizophrenia and Bipolar Disorder Program, Mclean Hospital, Belmont, MA, USA
| | - Pembe Keskinoglu
- Department of Biostatistics, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Dost Öngür
- Schizophrenia and Bipolar Disorder Program, Mclean Hospital, Belmont, MA, USA
| | - Perry Renshaw
- Brain Institute, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
35
|
Machado-Vieira R, Gattaz WF, Zanetti MV, De Sousa RT, Carvalho AF, Soeiro-de-Souza MG, Leite CC, Otaduy MC. A Longitudinal (6-week) 3T (1)H-MRS Study on the Effects of Lithium Treatment on Anterior Cingulate Cortex Metabolites in Bipolar Depression. Eur Neuropsychopharmacol 2015; 25:2311-7. [PMID: 26428274 DOI: 10.1016/j.euroneuro.2015.08.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 08/27/2015] [Accepted: 08/29/2015] [Indexed: 10/24/2022]
Abstract
The anterior cingulate cortex (ACC) is a key area in mood regulation. To date, no longitudinal study has specifically evaluated lithium׳s effects on ACC metabolites using (1)H-MRS, as well as its association with clinical improvement in bipolar depression. This (1)H-MRS (TE=35ms) study evaluated 24 drug-free BD patients during depressive episodes and after lithium treatment at therapeutic levels. Brain metabolite levels (N-acetyl aspartate (NAA), creatine (tCr), choline, myo-inositol, and glutamate levels) were measured in the ACC at baseline (week 0) and after lithium monotherapy (week 6). The present investigation showed that ACC glutamate (Glu/tCr) and glutamate+glutamine (Glx/tCr) significantly increased after six weeks of lithium therapy. Regarding the association with clinical improvement, remitters showed an increase in myoinositol levels (mI/tCr) after lithium treatment compared to non-remitters. The present findings reinforce a role for ACC glutamate-glutamine cycling and myoinositol pathway as key targets for lithium׳s therapeutic effects in BD.
Collapse
Affiliation(s)
- Rodrigo Machado-Vieira
- Laboratory of Neuroscience, LIM- 27, Institute and Department of Psychiatry, University of Sao Paulo, Brazil; Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, Brazil; Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, NIH, Bethesda, MD, United States.
| | - Wagner F Gattaz
- Laboratory of Neuroscience, LIM- 27, Institute and Department of Psychiatry, University of Sao Paulo, Brazil; Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, Brazil
| | - Marcus V Zanetti
- Laboratory of Neuroscience, LIM- 27, Institute and Department of Psychiatry, University of Sao Paulo, Brazil; Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, Brazil
| | - Rafael T De Sousa
- Laboratory of Neuroscience, LIM- 27, Institute and Department of Psychiatry, University of Sao Paulo, Brazil; Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, Brazil; Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, NIH, Bethesda, MD, United States
| | - Andre F Carvalho
- Department of Clinical Medicine and Translational Psychiatry Research Group Faculty of Medicine Federal University of Ceara, Fortaleza, Brazil
| | | | - Claudia C Leite
- Laboratory of Magnetic Resonance in Neuroradiology, LIM- 44, Institute and Department of Radiology, University of Sao Paulo, Brazil
| | - Maria C Otaduy
- Laboratory of Magnetic Resonance in Neuroradiology, LIM- 44, Institute and Department of Radiology, University of Sao Paulo, Brazil
| |
Collapse
|
36
|
Ehrlich A, Schubert F, Pehrs C, Gallinat J. Alterations of cerebral glutamate in the euthymic state of patients with bipolar disorder. Psychiatry Res 2015; 233:73-80. [PMID: 26050195 DOI: 10.1016/j.pscychresns.2015.05.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 03/08/2015] [Accepted: 05/18/2015] [Indexed: 12/23/2022]
Abstract
The pathophysiology of bipolar disorder (BD) mostly remains unclear. However, some findings argue for a dysfunction in glutamatergic neurotransmission in BD. Proton magnetic resonance spectroscopy at 3T was used to determine glutamate concentrations in the anterior cingulate cortex (ACC) and the hippocampus (HC) of euthymic outpatients with BP-I disorder and age- and sex-matched healthy controls. In patients with BD, glutamate concentrations were significantly increased in the ACC and decreased in the HC compared with concentrations in controls. Significant group differences were also measured for N-acetyl aspartate and choline; no differences were found for other metabolites examined. An inverse correlation was observed for glutamate concentrations in the ACC and number of episodes. The findings of the study add to the concept of abnormalities in glutamatergic regulation in the ACC and HC in patients with BD.
Collapse
Affiliation(s)
- André Ehrlich
- Department of Psychiatry and Psychotherapy, Psychiatric University Hospital, St. Hedwig Krankenhaus, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | - Florian Schubert
- Physikalisch-Technische Bundesanstalt (PTB), Abbestrasse 2-12, 10587 Berlin, Germany
| | - Corinna Pehrs
- Cluster Languages of Emotion, Freie Universität Berlin, Habelschwerdter Allee 45, 14195 Berlin, Germany
| | - Jürgen Gallinat
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf (UKE), Martinistrasse 52, 20246 Hamburg, Germany
| |
Collapse
|
37
|
Using neuroimaging to evaluate and guide pharmacological and psychotherapeutic treatments for mood disorders in children. CNS Spectr 2015; 20:359-68. [PMID: 25659836 DOI: 10.1017/s1092852914000819] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mood disorders are increasing in childhood, and often require multimodal and comprehensive treatment plans to address a complex array of symptoms and associated morbidities. Pharmacotherapy, in combination with psychotherapeutic interventions, is essential for treatment and stabilization. Current evidence supports the use of a number of interventions in children and adolescents diagnosed with DSM-5 mood spectrum disorders, which are associated with impairments in prefrontal-striatal-limbic networks, which are key for emotional functioning and regulation. Yet, little is known about the neurobiological effects of interventions on the developing brain. This chapter provides a synopsis of the literature demonstrating the neural effects of psychotropic medications and psychotherapy in youth with depressive or bipolar spectrum disorders. Additional longitudinal and biological studies are warranted to characterize the effects of these interventions on all phases and stages of mood illness development in children and adolescents.
Collapse
|
38
|
Sikoglu EM, Navarro AAL, Starr D, Dvir Y, Nwosu BU, Czerniak SM, Rogan RC, Castro MC, Edden RAE, Frazier JA, Moore CM. Vitamin D3 Supplemental Treatment for Mania in Youth with Bipolar Spectrum Disorders. J Child Adolesc Psychopharmacol 2015; 25:415-24. [PMID: 26091195 PMCID: PMC4491165 DOI: 10.1089/cap.2014.0110] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE We aimed to determine the effect of an open-label 8 week Vitamin D3 supplementation on manic symptoms, anterior cingulate cortex (ACC) glutamate, and γ-aminobutyric acid (GABA) in youth exhibiting symptoms of mania; that is, patients with bipolar spectrum disorders (BSD). We hypothesized that an 8 week Vitamin D3 supplementation would improve symptoms of mania, decrease ACC glutamate, and increase ACC GABA in BSD patients. Single time point metabolite levels were also evaluated in typically developing children (TD). METHODS The BSD group included patients not only diagnosed with BD but also those exhibiting bipolar symptomology, including BD not otherwise specified (BD-NOS) and subthreshold mood ratings (Young Mania Rating Scale [YMRS] ≥8 and Clinical Global Impressions - Severity [CGI-S] ≥3). Inclusion criteria were: male or female participants, 6-17 years old. Sixteen youth with BSD exhibiting manic symptoms and 19 TD were included. BSD patients were asked to a take daily dose (2000 IU) of Vitamin D3 (for 8 weeks) as a supplement. Neuroimaging data were acquired in both groups at baseline, and also for the BSD group at the end of 8 week Vitamin D3 supplementation. RESULTS Baseline ACC GABA/creatine (Cr) was lower in BSD than in TD (F[1,31]=8.91, p=0.007). Following an 8 week Vitamin D3 supplementation, in BSD patients, there was a significant decrease in YMRS scores (t=-3.66, p=0.002, df=15) and Children's Depression Rating Scale (CDRS) scores (t=-2.93, p=0.01, df=15); and a significant increase in ACC GABA (t=3.18, p=0.007, df=14). CONCLUSIONS Following an 8 week open label trial with Vitamin D3, BSD patients exhibited improvement in their mood symptoms in conjunction with their brain neurochemistry.
Collapse
Affiliation(s)
- Elif M. Sikoglu
- Center for Comparative NeuroImaging, University of Massachusetts Medical School, Worcester, Massachusetts.,Child and Adolescent NeuroDevelopment Initiative, University of Massachusetts Medical School, Worcester, Massachusetts.,Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Ana A. Liso Navarro
- Center for Comparative NeuroImaging, University of Massachusetts Medical School, Worcester, Massachusetts.,Child and Adolescent NeuroDevelopment Initiative, University of Massachusetts Medical School, Worcester, Massachusetts.,Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts.,Office Médico-Pédagogique, Department of Psychiatry, University of Geneva School of Medicine, Geneva, Switzerland
| | - Debra Starr
- Child and Adolescent NeuroDevelopment Initiative, University of Massachusetts Medical School, Worcester, Massachusetts.,Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Yael Dvir
- Child and Adolescent NeuroDevelopment Initiative, University of Massachusetts Medical School, Worcester, Massachusetts.,Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Benjamin Udoka Nwosu
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Suzanne M. Czerniak
- Center for Comparative NeuroImaging, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Ryan C. Rogan
- Center for Comparative NeuroImaging, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Martha C. Castro
- Child and Adolescent NeuroDevelopment Initiative, University of Massachusetts Medical School, Worcester, Massachusetts.,Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Richard A. E. Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | - Jean A. Frazier
- Child and Adolescent NeuroDevelopment Initiative, University of Massachusetts Medical School, Worcester, Massachusetts.,Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts.,Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Constance M. Moore
- Center for Comparative NeuroImaging, University of Massachusetts Medical School, Worcester, Massachusetts.,Child and Adolescent NeuroDevelopment Initiative, University of Massachusetts Medical School, Worcester, Massachusetts.,Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts.,Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
39
|
Normal Metabolic Levels in Prefrontal Cortex in Euthymic Bipolar I Patients with and without Suicide Attempts. Neural Plast 2015; 2015:165180. [PMID: 26075096 PMCID: PMC4444600 DOI: 10.1155/2015/165180] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/23/2014] [Accepted: 01/06/2015] [Indexed: 12/13/2022] Open
Abstract
Introduction/Objective. Evidence suggests that the prefrontal cortex has been implicated in the pathophysiology of bipolar disorder (BD), but few neurochemical studies have evaluated this region in bipolar patients and there is no information from BD suicide attempters using Proton Magnetic Resonance Spectroscopy (H+MRS). The objective was to evaluate the metabolic function of the medial orbital frontal cortex in euthymic BD type I suicide and nonsuicide attempters compared to healthy subjects by H+MRS. Methods. 40 euthymic bipolar I outpatients, 19 without and 21 with history of suicide attempt, and 22 healthy subjects were interviewed using the Structured Clinical Interview with the DSM-IV axis I, the Hamilton Depression Rating Scale, the Young Mania Rating Scale, and the Barratt Impulsiveness Scale-11 and underwent H+MRS. Results. We did not find any metabolic abnormality in medial orbital frontal regions of suicide and nonsuicide BD patients and BD patients as a group compared to healthy subjects. Conclusions. The combined chronic use of psychotropic drugs with neuroprotective or neurotrophic effects leading to a euthymic state for longer periods of time may improve neurometabolic function, at least measured by H+MRS, even in suicide attempters. Besides, these results may implicate mood dependent alterations in brain metabolic activity. However, more studies with larger sample sizes of this heterogeneous disorder are warranted to clarify these data.
Collapse
|
40
|
Effects of lithium on cortical thickness and hippocampal subfield volumes in psychotic bipolar disorder. J Psychiatr Res 2015; 61:180-7. [PMID: 25563516 PMCID: PMC4859940 DOI: 10.1016/j.jpsychires.2014.12.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 11/19/2014] [Accepted: 12/11/2014] [Indexed: 12/13/2022]
Abstract
Relative to healthy controls, lithium free bipolar patients exhibit significant gray matter abnormalities. Lithium, the long-time reference standard medication treatment for bipolar disorder, has been proposed to be neuro-protective against these abnormalities. However, its effects on cortical thickness and hippocampal subfield (HSF) volumes remain unstudied and unclear, respectively, in bipolar disorder. This study included 342 healthy controls (HC), 51 lithium free PBD patients (NoLi), and 51 PBD patients taking lithium (Li). Regional gray matter thickness and HSF volume values were extracted from 3T MRI images. After matching NoLi and Li samples, regions where HC differed from either Li or NoLi were identified. In regions of significant or trending HC-NoLi difference, Li-NoLi comparisons were made. No significant HC-Li thickness or HSF volume differences were found. Significantly thinner occipital cortices were observed in NoLi compared to HC. In these regions, Li consistently exhibited non-significant trends for greater cortical thickness relative to NoLi. Significantly less volume was observed in NoLi compared to both HC and Li in right HSFs. Our results suggest that PBD in patients not treated with Li is associated with thinner occipital cortices and reduced HSF volumes compared with HC. Patients treated with Li exhibited significantly larger HSF volumes than NoLi, and those treated with Li were no different from HC in cortical thickness or hippocampal volumes. This evidence directly supports the hypothesis that Li may counteract the locally thinner and smaller gray matter structure found in PBD.
Collapse
|
41
|
Ortiz AE, Ortiz AG, Falcon C, Morer A, Plana MT, Bargalló N, Lázaro L. 1H-MRS of the anterior cingulate cortex in childhood and adolescent obsessive-compulsive disorder: a case-control study. Eur Neuropsychopharmacol 2015; 25:60-8. [PMID: 25499604 DOI: 10.1016/j.euroneuro.2014.11.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 10/01/2014] [Accepted: 11/08/2014] [Indexed: 02/08/2023]
Abstract
Abnormal glutamate concentrations in the anterior cingulate cortex (ACC) have been identified in children and adults with obsessive-compulsive disorder (OCD). The purpose of the present study was to measure in vivo (1)H-MRS neurometabolite concentrations in the ACC of children and adolescents with OCD, in order to identify metabolite abnormalities compared to healthy controls and to assess their relationship with clinical variables. 3T proton-magnetic resonance spectroscopy was used to probe ACC biochemistry in 47 paediatric and adolescent OCD patients (11-18 years old) compared to 31 healthy subjects of similar age, sex and estimated intellectual quotient. There were no significant differences in the concentration of glutamate plus glutamine (Glx) adjusted for CSF between OCD patients and healthy controls [F1,74=0.00; P=0.943], but there were significant differences in the concentration of Glx adjusted for CSF in paediatric and adolescent OCD patients according to duration of illness (less than or more than 24 months) [F2,73=3.95; P=0.024]. In addition, we found significantly lower levels of myo-inositol adjusted for CSF in the ACC [F1,74=5.686; P=0.02] in patients compared with controls. The present findings do not confirm the hypothesis of differences in Glx concentrations in the ACC between children and adolescents with OCD and healthy controls; however, the observation of differences in the Glx concentration in children and adolescent OCD patients depending on the duration of illness is of interest.
Collapse
Affiliation(s)
- A E Ortiz
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neurosciences, Hospital Clinic de Barcelona, Spain.
| | - A G Ortiz
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neurosciences, Hospital Clinic de Barcelona, Spain
| | - C Falcon
- Centro de Investigación Nacional en Red en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Spain
| | - A Morer
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neurosciences, Hospital Clinic de Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain
| | - M T Plana
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neurosciences, Hospital Clinic de Barcelona, Spain
| | - N Bargalló
- Image diagnostic Center, Hospital Clinic de Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain; Medical Image Core Facility, IDIBAPS (Institut d׳Investigacions Biomèdiques August Pi i Sunyer), Spain
| | - L Lázaro
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neurosciences, Hospital Clinic de Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain; Medical Image Core Facility, IDIBAPS (Institut d׳Investigacions Biomèdiques August Pi i Sunyer), Spain; Department of Psychiatry and Clinical Psychobiology, Health Sciences Division, University of Barcelona, Spain
| |
Collapse
|
42
|
Kondo DG, Hellem TL, Shi XF, Sung YH, Prescot AP, Kim TS, Huber RS, Forrest LN, Renshaw PF. A review of MR spectroscopy studies of pediatric bipolar disorder. AJNR Am J Neuroradiol 2014; 35:S64-80. [PMID: 24557702 DOI: 10.3174/ajnr.a3844] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pediatric bipolar disorder is a severe mental illness whose pathophysiology is poorly understood and for which there is an urgent need for improved diagnosis and treatment. MR spectroscopy is a neuroimaging method capable of in vivo measurement of neurochemicals relevant to bipolar disorder neurobiology. MR spectroscopy studies of adult bipolar disorder provide consistent evidence for alterations in the glutamate system and mitochondrial function. In bipolar disorder, these 2 phenomena may be linked because 85% of glucose in the brain is consumed by glutamatergic neurotransmission and the conversion of glutamate to glutamine. The purpose of this article is to review the MR spectroscopic imaging literature in pediatric bipolar disorder, at-risk samples, and severe mood dysregulation, with a focus on the published findings that are relevant to glutamatergic and mitochondrial functioning. Potential directions for future MR spectroscopy studies of the glutamate system and mitochondrial dysfunction in pediatric bipolar disorder are discussed.
Collapse
Affiliation(s)
- D G Kondo
- From The Brain Institute (D.G.K., T.L.H., X.F.S., Y.H.S., A.P.P., R.S.H., L.N.F., P.F.R), University of Utah, Salt Lake City, UtahDepartments of Psychiatry (D.G.K., X.F.S., Y.H.S., P.F.R.)
| | - T L Hellem
- From The Brain Institute (D.G.K., T.L.H., X.F.S., Y.H.S., A.P.P., R.S.H., L.N.F., P.F.R), University of Utah, Salt Lake City, Utah
| | - X-F Shi
- From The Brain Institute (D.G.K., T.L.H., X.F.S., Y.H.S., A.P.P., R.S.H., L.N.F., P.F.R), University of Utah, Salt Lake City, UtahDepartments of Psychiatry (D.G.K., X.F.S., Y.H.S., P.F.R.)
| | - Y H Sung
- From The Brain Institute (D.G.K., T.L.H., X.F.S., Y.H.S., A.P.P., R.S.H., L.N.F., P.F.R), University of Utah, Salt Lake City, UtahDepartments of Psychiatry (D.G.K., X.F.S., Y.H.S., P.F.R.)
| | - A P Prescot
- From The Brain Institute (D.G.K., T.L.H., X.F.S., Y.H.S., A.P.P., R.S.H., L.N.F., P.F.R), University of Utah, Salt Lake City, UtahRadiology (A.P.P.), University of Utah School of Medicine, Salt Lake City, Utah
| | - T S Kim
- and Department of Psychiatry (T.S.K.), Catholic University of Korea Graduate School of Medicine, Seoul, Republic of Korea
| | - R S Huber
- From The Brain Institute (D.G.K., T.L.H., X.F.S., Y.H.S., A.P.P., R.S.H., L.N.F., P.F.R), University of Utah, Salt Lake City, Utah
| | - L N Forrest
- From The Brain Institute (D.G.K., T.L.H., X.F.S., Y.H.S., A.P.P., R.S.H., L.N.F., P.F.R), University of Utah, Salt Lake City, Utah
| | - P F Renshaw
- From The Brain Institute (D.G.K., T.L.H., X.F.S., Y.H.S., A.P.P., R.S.H., L.N.F., P.F.R), University of Utah, Salt Lake City, UtahDepartments of Psychiatry (D.G.K., X.F.S., Y.H.S., P.F.R.)Veterans Integrated Service Network 19 Mental Illness Research (P.F.R.), Education and Clinical Center, VA Salt Lake City Health Care System, Salt Lake City, Utah
| |
Collapse
|
43
|
Adleman NE, Barnea-Goraly N, Chang KD. Review of magnetic resonance imaging and spectroscopy studies in children with bipolar disorder. Expert Rev Neurother 2014; 4:69-77. [PMID: 15853617 DOI: 10.1586/14737175.4.1.69] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pediatric bipolar disorder is a serious condition that affects a child's ability to function normally during important developmental stages. Pediatric bipolar disorder often presents with a different symptom complex than adult-onset bipolar disorder, including higher rates of irritability and rapid cycling. Due to these differences, it is important to understand the neural substrates of the disease as it presents in children, especially when compared with adults. Understanding the brain abnormalities associated with pediatric bipolar disorder may provide much needed markers useful in diagnosing childhood-onset bipolar disorder, give insight into the neurobiological etiology of the disorder and lead to more effective treatments. Currently, there has been little neuroimaging research into pediatric bipolar disorder, specifically with regards to brain function. This review summarizes the neurobiological research that has been conducted on childhood- and adolescent-onset bipolar disorder using magnetic resonance technology. Future directions of research needed in this area also are discussed in the context of the existing literature.
Collapse
Affiliation(s)
- Nancy E Adleman
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, Stanford, CA 94305 5719, USA.
| | | | | |
Collapse
|
44
|
Chitty KM, Lagopoulos J, Lee RSC, Hickie IB, Hermens DF. A systematic review and meta-analysis of proton magnetic resonance spectroscopy and mismatch negativity in bipolar disorder. Eur Neuropsychopharmacol 2013; 23:1348-63. [PMID: 23968965 DOI: 10.1016/j.euroneuro.2013.07.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 07/16/2013] [Accepted: 07/26/2013] [Indexed: 12/15/2022]
Abstract
Aberrant glutamate neurotransmission has been implicated in the pathophysiology of bipolar disorder with accumulating evidence from imaging, post-mortem and pathology studies. Studies investigating in vivo changes to the glutamatergic system have not been as consistent and warrant clarification. Studies utilizing proton-magnetic resonance spectroscopy ((1)H-MRS) have reported increased levels of combined glutamate and glutamine ("Glx"), which have been linked to impairments in N-methyl-d-aspartate (NMDA) receptor function. Similarly, neurophysiological studies utilising mismatch negativity (MMN) as an index of NMDA receptor function, have reported impairments in bipolar disorder. Here, we provide a systematic review of the literature in regards to the concentration of Glx and the magnitude of MMN in bipolar disorder. Separate meta-analyses revealed that bipolar disorder was associated with increased Glx concentration and decreased MMN-both measured frontally. The current findings corroborate previous evidence indicating that bipolar disorder is characterized by a perturbed frontal glutamate system. These observed changes in bipolar disorder might manifest as impairments in neuronal-glial interactions that lead to disrupted neuronal output and ultimately result in the characteristic neurocognitive sequelae associated with this disorder.
Collapse
Affiliation(s)
- Kate M Chitty
- Clinical Research Unit, Brain and Mind Research Institute, University of Sydney, 94 Mallett Street, Camperdown, NSW 2050, Australia.
| | | | | | | | | |
Collapse
|
45
|
Neurochemical effects of quetiapine in patients with bipolar mania: a proton magnetic resonance spectroscopy study. J Clin Psychopharmacol 2013; 33:528-32. [PMID: 23764689 DOI: 10.1097/jcp.0b013e3182905b77] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Although the neurophysiology underlying pharmacotherapy for bipolar disorder remains poorly understood, recent studies suggest that therapeutic mechanisms may be reflected in changes in concentrations of N-acetylaspartate (NAA), a putative measure of neuronal integrity and metabolism. In this study, we used magnetic resonance spectroscopy (MRS) to examine prefrontal NAA in patients receiving quetiapine for bipolar mania. On the basis of previous findings, we hypothesized that remission would be associated with increased NAA concentrations in the prefrontal cortex. Thirty-one manic bipolar patients and 13 healthy subjects were recruited to participate in this prospective study. All subjects participated in MRS at baseline and after 8 weeks of treatment. Bipolar subjects received open-label quetiapine monotherapy (mean dose [SD], 584 [191] mg). Fourteen patients remitted (Young Mania Rating Scale ≤ 12) ("remitters"), 11 patients did not ("nonremitters"), and 6 patients were lost to follow-up. Bipolar and healthy subjects did not significantly differ in baseline NAA or degree of change during the 8 weeks. Remitters showed greater mean baseline NAA concentrations in the right ventrolateral prefrontal cortex compared with nonremitters (P < 0.05). In the anterior cingulate, remitters showed near significantly decreased baseline NAA concentrations at baseline (P < 0.06), and significant differences in NAA change during the 8 weeks of treatment (P < 0.03). Manic patients who remitted with quetiapine treatment in the course of this study exhibited distinct patterns of baseline prefrontal NAA concentration, coupled with decreased NAA in the anterior cingulate with treatment; the latter possibly reflecting disparate effects of quetiapine on neuronal metabolism. These data support suggestions that therapeutic effects of quetiapine involve metabolic effects on specific prefrontal regions.
Collapse
|
46
|
Howells FM, Ives-Deliperi VL, Horn NR, Stein DJ. Increased thalamic phospholipid concentration evident in bipolar I disorder. Prog Neuropsychopharmacol Biol Psychiatry 2013; 41:1-5. [PMID: 23142769 DOI: 10.1016/j.pnpbp.2012.10.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 10/19/2012] [Accepted: 10/31/2012] [Indexed: 11/18/2022]
Abstract
BACKGROUND Bipolar disorder is characterised by changes in brain metabolites, as measured by (1)H-MRS. However, there is no consistent metabolic profile for bipolar disorder, which includes changes in N-acetyl-aspartate (NAA), choline metabolites and myo-inositol. The aim of the present paper is to add to this literature of (1)H-MRS, the metabolite profiles in bipolar disorder. METHODOLOGY Nineteen individuals with euthymic bipolar I disorder and eight control participants were recruited for the present study. (1)H-MRS chemical shift imaging (CSI) was used to measure NAA, choline metabolites and myo-inositol of several bilateral brain areas potentially involved in bipolar disorder: hippocampal complexes, brain stem including the locus coeruleus, and thalami. RESULTS Compared with healthy controls, individuals with bipolar I disorder showed increased choline metabolites in bilateral thalami and increased NAA in left hippocampus. The (1)H-MRS data were not influenced by age, symptom severity, or medication status. CONCLUSIONS Our present findings suggest that individuals with bipolar I disorder have increased phospholipid concentration in the thalami and increased NAA concentration in the left hippocampus. While MRS data on bipolar data remain somewhat inconsistent, the findings here are consistent with other evidence supporting the hypothesis that dysfunctional thalamocortical gating plays a role in bipolar disorder.
Collapse
Affiliation(s)
- Fleur M Howells
- Department of Psychiatry, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa.
| | | | | | | |
Collapse
|
47
|
Malhi GS, Tanious M, Das P, Coulston CM, Berk M. Potential mechanisms of action of lithium in bipolar disorder. Current understanding. CNS Drugs 2013; 27:135-53. [PMID: 23371914 DOI: 10.1007/s40263-013-0039-0] [Citation(s) in RCA: 256] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lithium has been used for over half a century for the treatment of bipolar disorder as the archetypal mood stabilizer, and has a wealth of empirical evidence supporting its efficacy in this role. Despite this, the specific mechanisms by which lithium exerts its mood-stabilizing effects are not well understood. Given the inherently complex nature of the pathophysiology of bipolar disorder, this paper aims to capture what is known about the actions of lithium ranging from macroscopic changes in mood, cognition and brain structure, to its effects at the microscopic level on neurotransmission and intracellular and molecular pathways. A comprehensive literature search of databases including MEDLINE, EMBASE and PsycINFO was conducted using relevant keywords and the findings from the literature were then reviewed and synthesized. Numerous studies report that lithium is effective in the treatment of acute mania and for the long-term maintenance of mood and prophylaxis; in comparison, evidence for its efficacy in depression is modest. However, lithium possesses unique anti-suicidal properties that set it apart from other agents. With respect to cognition, studies suggest that lithium may reduce cognitive decline in patients; however, these findings require further investigation using both neuropsychological and functional neuroimaging probes. Interestingly, lithium appears to preserve or increase the volume of brain structures involved in emotional regulation such as the prefrontal cortex, hippocampus and amygdala, possibly reflecting its neuroprotective effects. At a neuronal level, lithium reduces excitatory (dopamine and glutamate) but increases inhibitory (GABA) neurotransmission; however, these broad effects are underpinned by complex neurotransmitter systems that strive to achieve homeostasis by way of compensatory changes. For example, at an intracellular and molecular level, lithium targets second-messenger systems that further modulate neurotransmission. For instance, the effects of lithium on the adenyl cyclase and phospho-inositide pathways, as well as protein kinase C, may serve to dampen excessive excitatory neurotransmission. In addition to these many putative mechanisms, it has also been proposed that the neuroprotective effects of lithium are key to its therapeutic actions. In this regard, lithium has been shown to reduce the oxidative stress that occurs with multiple episodes of mania and depression. Further, it increases protective proteins such as brain-derived neurotrophic factor and B-cell lymphoma 2, and reduces apoptotic processes through inhibition of glycogen synthase kinase 3 and autophagy. Overall, it is clear that the processes which underpin the therapeutic actions of lithium are sophisticated and most likely inter-related.
Collapse
Affiliation(s)
- Gin S Malhi
- Discipline of Psychiatry, Sydney Medical School, University of Sydney, and Department of Psychiatry, Royal North Shore Hospital, Sydney, NSW, Australia.
| | | | | | | | | |
Collapse
|
48
|
Tighe SK, Mahon PB, Potash JB. Predictors of lithium response in bipolar disorder. Ther Adv Chronic Dis 2012; 2:209-26. [PMID: 23251751 DOI: 10.1177/2040622311399173] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
While lithium is generally regarded as the first-line agent for patients with bipolar disorder, it does not work for everyone, which raises the question: can we predict who will be most likely to respond? In this paper, we review the most compelling clinical, biologic, and genetic predictors of lithium response in bipolar disorder. Among clinical factors, the strongest predictors of good response are fewer hospitalizations preceding treatment, an episodic course characterized by an illness pattern of mania followed by depression, and a later age at onset of bipolar disorder. While several biologic predictors have been studied, the results are preliminary and require replication with studies of larger patient samples over longer observation periods. Neuroimaging is a particularly promising method given that it might concurrently illuminate pathophysiologic underpinnings of bipolar disorder, the mechanism of action of lithium, and potential predictors of lithium response. The first genome-wide association study of lithium response was recently completed. No definitive results emerged, perhaps because the study was underpowered. With major new initiatives in progress aiming to identify genes and genetic variations associated with lithium response, there is much reason to be hopeful that clinically useful information might be generated within the next several years. This could ultimately translate into tests that could guide the choice of mood-stabilizing medication for patients. In addition, it might facilitate pharmacologic research aimed at developing newer, more effective medications that might act more quickly and yield fewer side effects.
Collapse
Affiliation(s)
- Sarah K Tighe
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | |
Collapse
|
49
|
Singh MK, Chang KD. The Neural Effects of Psychotropic Medications in Children and Adolescents. Child Adolesc Psychiatr Clin N Am 2012; 21:753-71. [PMID: 23040900 PMCID: PMC3590023 DOI: 10.1016/j.chc.2012.07.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Little is known about the neurobiological effects of psychotropic medications used in the treatment of children and adolescents diagnosed with a psychiatric disorder. This review provides a synopsis of the literature demonstrating the neural effects associated with exposure to psychotropic medication in youth using multimodal neuroimaging. The article concludes by illustrating how, taken together, these studies suggest that pharmacological interventions during childhood do indeed affect brain structure and function in a detectable manner, and the effects appear to be ameliorative.
Collapse
|
50
|
Hajek T, Kopecek M, Höschl C, Alda M. Smaller hippocampal volumes in patients with bipolar disorder are masked by exposure to lithium: a meta-analysis. J Psychiatry Neurosci 2012; 37:333-43. [PMID: 22498078 PMCID: PMC3447132 DOI: 10.1503/jpn.110143] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Smaller hippocampal volumes relative to controls are among the most replicated neuroimaging findings in individuals with unipolar but not bipolar depression. Preserved hippocampal volumes in most studies of participants with bipolar disorder may reflect potential neuroprotective effects of lithium (Li). METHODS To investigate hippocampal volumes in patients with bipolar disorder while controlling for Li exposure, we performed a meta-analysis of neuroimaging studies that subdivided patients based on the presence or absence of current Li treatment. To achieve the best coverage of literature, we categorized studies based on whether all or a majority, or whether no or a minority of patients were treated with Li. Hippocampal volumes were compared by combining standardized differences between means (Cohen d) from individual studies using random-effects models. RESULTS Overall, we analyzed data from 101 patients with bipolar disorder in the Li group, 245 patients in the non-Li group and 456 control participants from 16 studies. Both the left and right hippocampal volumes were significantly larger in the Li group than in controls (Cohen d = 0.53, 95% confidence interval [CI] 0.18 to 0.88; Cohen d = 0.51, 95% CI 0.21 to 0.81, respectively) or the non-Li group (Cohen d = 0.93, 95% CI 0.56 to 1.31; Cohen d = 1.07, 95% CI 0.70 to 1.45, respectively), which had smaller left and right hippocampal volumes than the control group (Cohen d = -0.36, 95% CI -0.55 to -0.17; Cohen d = -0.38, 95% CI -0.63 to -0.13, respectively). There was no evidence of publication bias. LIMITATIONS Missing information about the illness burden or lifetime exposure to Li and polypharmacy in some studies may have contributed to statistical heterogeneity in some analyses. CONCLUSION When exposure to Li was minimized, patients with bipolar disorder showed smaller hippocampal volumes than controls or Li-treated patients. Our findings provide indirect support for the negative effects of bipolar disorder on hippocampal volumes and are consistent with the putative neuroprotective effects of Li. The preserved hippocampal volumes among patients with bipolar disorder in most individual studies and all previous meta-analyses may have been related to the inclusion of Li-treated participants.
Collapse
Affiliation(s)
- Tomas Hajek
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada.
| | | | | | | |
Collapse
|