1
|
AlAsfoor S, Jessen E, Pullapantula SR, Voisin JR, Hsi LC, Pavelko KD, Farwana S, Patraw JA, Chai XY, Ji S, Strausbauch MA, Cipriani G, Wei L, Linden DR, Hou R, Myers R, Bhattarai Y, Wykosky J, Burns AJ, Dasari S, Farrugia G, Grover M. Mass cytometric analysis of circulating monocyte subsets in a murine model of diabetic gastroparesis. Am J Physiol Gastrointest Liver Physiol 2025; 328:G323-G341. [PMID: 39947648 DOI: 10.1152/ajpgi.00229.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/06/2024] [Accepted: 12/23/2024] [Indexed: 03/14/2025]
Abstract
Circulating monocytes (Mo) are precursors to a subset of gastric resident muscularis macrophages. Changes in muscularis macrophages (MMs) result in delayed gastric emptying (DGE) in diabetic gastroparesis. However, the dynamics of Mo in the development of DGE in an animal model are unknown. Using cytometry by time-of-flight and computational approaches, we show a high heterogeneity within the Mo population. In DGE mice, via unbiased clustering, we identified two reduced Mo clusters that exhibit migratory phenotype (Ly6ChiCCR2hi-intCD62LhiLy6GhiCD45RhiMERTKhiintLGALS3intCD14intCX3CR1lowSiglec-Hint-low) resembling classical Mo (CMo-like). All markers enriched in these clusters are known to regulate cell differentiation, proliferation, adhesion, and migration. Trajectory inference analysis predicted these Mo as precursors to subsequent Mo lineages. In gastric muscle tissue, we demonstrated an increase in the gene expression levels of chemokine receptor C-C chemokine receptor type 2 (Ccr2) and its C-C motif ligand 2 (Ccl2), suggesting increased trafficking of classical-Mo. These findings establish a link between two CMo-like clusters and the development of the DGE phenotype and contribute to a better understanding of the heterogenicity of the Mo population.NEW & NOTEWORTHY Using 32 immune cell surface markers, we identified 23 monocyte clusters in murine blood. Diabetic gastroparesis was associated with a significant decrease in two circulating classical monocyte-like clusters and an upregulation of the Ccr2-Ccl2 axis in the gastric muscularis propria, suggesting increased tissue monocyte migration. This study offers new targets by pointing to a possible role for two classical monocyte subsets connected to the Ccr2-Ccl2 axis.
Collapse
Affiliation(s)
- Shefaa AlAsfoor
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States
| | - Erik Jessen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, United States
| | | | - Jennifer R Voisin
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota, United States
| | - Linda C Hsi
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States
| | - Kevin D Pavelko
- Immune Monitoring Core, Office of Core Shared Services, Mayo Clinic, Rochester, Minnesota, United States
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, United States
| | - Samera Farwana
- Immune Monitoring Core, Office of Core Shared Services, Mayo Clinic, Rochester, Minnesota, United States
| | - Jack A Patraw
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota, United States
| | - Xin-Yi Chai
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States
| | - Sihan Ji
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota, United States
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, People's Republic of China
| | - Michael A Strausbauch
- Immune Monitoring Core, Office of Core Shared Services, Mayo Clinic, Rochester, Minnesota, United States
| | - Gianluca Cipriani
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States
| | - Lai Wei
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States
| | - David R Linden
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Ruixue Hou
- Gastrointestinal Drug Discovery Unit, Takeda Development Center Americas, Inc., Cambridge, Massachusetts, United States
| | - Richard Myers
- Gastrointestinal Drug Discovery Unit, Takeda Development Center Americas, Inc., San Diego, California, United States
| | - Yogesh Bhattarai
- Gastrointestinal Drug Discovery Unit, Takeda Development Center Americas, Inc., San Diego, California, United States
| | - Jill Wykosky
- Gastrointestinal Drug Discovery Unit, Takeda Development Center Americas, Inc., Cambridge, Massachusetts, United States
| | - Alan J Burns
- Gastrointestinal Drug Discovery Unit, Takeda Development Center Americas, Inc., Cambridge, Massachusetts, United States
| | - Surendra Dasari
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, United States
| | - Gianrico Farrugia
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States
| | - Madhusudan Grover
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
2
|
Kim YI, Ko I, Yi EJ, Kim J, Hong YR, Lee W, Chang SY. NAD + modulation of intestinal macrophages renders anti-inflammatory functionality and ameliorates gut inflammation. Biomed Pharmacother 2025; 185:117938. [PMID: 40022994 DOI: 10.1016/j.biopha.2025.117938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025] Open
Abstract
Macrophages can maintain gut immune homeostasis by driving clearance of infection, but also can prevent chronic inflammation and induce tissue repair. Reduced nicotinamide adenine dinucleotide (NAD+) levels in macrophages have been reported to be associated with the onset of severe colitis. Given that dysregulation of gut macrophages plays a significant role in inflammatory bowel disease (IBD), they represent a potential target for novel therapies. Here we show an IBD therapeutic candidate LMT503, a substrate that modulates NADH quinone oxidoreductase (NQO1), which induces anti-inflammatory macrophage polarization by NAD+ enhancement. To determine the anti-inflammatory effect of LMT503, a dextran sulfate sodium (DSS)-induced colitis mouse model was used in this study. Treatment of bone marrow-derived macrophages (BMDMs) with LMT503 increased IL-10 and Arg1 levels but decreased levels of TNF-α, iNOS, and IL-6. LMT503 also increased levels of SIRT1, SIRT3, and SIRT6, suggesting that macrophages were driven to an anti-inflammatory character. In a murine DSS-induced colitis model, oral treatment with LMT503 ameliorated colonic inflammation and decreased infiltrating monocytes and neutrophils. Although NAD+ enhancement did not alter CX3CR1intCD206- or CX3CR1hiCD206+ colon macrophage population, it decreased levels of TNF-α and iNOS and increased IL-10 level, with colonic macrophages showing an anti-inflammatory character shift. Depletion of CX3CR1 expressing gut resident macrophages abrogated the immune regulatory effect of LMT503 in the colon. These data suggest that LMT503 is a therapeutic candidate that can target macrophages to drive polarization with an immunosuppressive character and ameliorate IBD.
Collapse
Affiliation(s)
- Young-In Kim
- Laboratory of Microbiology, Department of Pharmacy, and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon 16499, Republic of Korea; Korea Initiative for fostering University of Research and Innovation (KIURI) Program, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Inseok Ko
- Lmito Therapeutics, Yongin-si 16827, Republic of Korea; Department of Chemistry Education, Graduate Department of Chemical Materials, Pusan National University, Busan, Republic of Korea
| | - Eun-Je Yi
- Laboratory of Microbiology, Department of Pharmacy, and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon 16499, Republic of Korea
| | - Jusik Kim
- Lmito Therapeutics, Yongin-si 16827, Republic of Korea
| | - Yong Rae Hong
- Lmito Therapeutics, Yongin-si 16827, Republic of Korea
| | - Wheeseong Lee
- Lmito Therapeutics, Yongin-si 16827, Republic of Korea
| | - Sun-Young Chang
- Laboratory of Microbiology, Department of Pharmacy, and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
3
|
Yang X, Zhang X, Tian Y, Yang J, Jia Y, Xie Y, Cheng L, Chen S, Wu L, Qin Y, Zhao Z, Zhao D, Wei Y. Srsf3-Dependent APA Drives Macrophage Maturation and Limits Atherosclerosis. Circ Res 2025. [PMID: 40160097 DOI: 10.1161/circresaha.124.326111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 04/02/2025]
Abstract
BACKGROUND Circulating monocytes largely contribute to macrophage buildup in atheromata, which is crucial for clearing subendothelial LDLs (low-density lipoproteins) and dead cells; however, the transitional trajectory from monocytes to macrophages in atherosclerotic plaques and the underlying regulatory mechanism remain unclear. Moreover, the role of alternative polyadenylation, a posttranscriptional regulator of cell fate, in monocyte/macrophage fate decisions during atherogenesis is not entirely understood. METHODS To identify monocyte/macrophage subtypes in atherosclerotic lesions and the effect of alternative polyadenylation on these subtypes and atherogenesis, single-cell RNA sequencing, 3'-end sequencing, flow cytometric, and histopathologic analyses were performed on plaques obtained from Apoe-/- mouse arteries with or without myeloid deletion of Srsf3 (serine/arginine-rich splicing factor 3). Cell fractionation, polysome profiling, L-azidohomoalanine metabolic labeling assay, and metabolomic profiling were conducted to disclose the underlying mechanisms. Reprogramming of widespread alternative polyadenylation patterns was estimated in human plaques via bulk RNA sequencing. RESULTS We identified a subset of lesional cells in a monocyte-to-macrophage transitional state, which exhibited high expression of chemokines in mice. Srsf3 deletion caused a maturation delay of these transitional cells and phagocytic impairment of lesional macrophages, aggravating atherosclerosis. Mechanistically, Srsf3 deficiency shortened 3' untranslated regions of mitochondria-associated Aars2 (alanyl-tRNA synthetase 2), disrupting its translation. The resultant impairment of protein synthesis in mitochondria led to mitochondrial dysfunction with declined NAD+ levels, activation of the integrated stress response, and metabolic reprogramming in macrophages. Administering an NAD+ precursor nicotinamide mononucleotide or the integrated stress response inhibitor partially restored Srsf3-deficient macrophage maturation, and nicotinamide mononucleotide treatment mitigated the proatherosclerotic effects of Srsf3 deficiency. Consistently, Srsf3 downregulation, global 3' untranslated region shortening, and accumulation of these transitional macrophages were associated with atherosclerosis progression in humans. CONCLUSIONS Our study reveals that Srsf3-dependent generation of long 3' untranslated region is required for efficient mitochondrial translation, which promotes mature phagocytic macrophage formation, thereby playing a protective role in atherosclerosis.
Collapse
Affiliation(s)
- Xian Yang
- Department of Immunology, Department of Rheumatology, and School of Basic Medical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China. (X.Y., X.Z., Y.T., J.Y., Y.J., Y.X., L.C., S.C., L.W., Y.Q., Y.W.)
| | - Xin Zhang
- Department of Immunology, Department of Rheumatology, and School of Basic Medical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China. (X.Y., X.Z., Y.T., J.Y., Y.J., Y.X., L.C., S.C., L.W., Y.Q., Y.W.)
| | - Yaru Tian
- Department of Immunology, Department of Rheumatology, and School of Basic Medical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China. (X.Y., X.Z., Y.T., J.Y., Y.J., Y.X., L.C., S.C., L.W., Y.Q., Y.W.)
| | - Jiaxuan Yang
- Department of Immunology, Department of Rheumatology, and School of Basic Medical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China. (X.Y., X.Z., Y.T., J.Y., Y.J., Y.X., L.C., S.C., L.W., Y.Q., Y.W.)
| | - Yunhui Jia
- Department of Immunology, Department of Rheumatology, and School of Basic Medical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China. (X.Y., X.Z., Y.T., J.Y., Y.J., Y.X., L.C., S.C., L.W., Y.Q., Y.W.)
| | - Yuhuai Xie
- Department of Immunology, Department of Rheumatology, and School of Basic Medical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China. (X.Y., X.Z., Y.T., J.Y., Y.J., Y.X., L.C., S.C., L.W., Y.Q., Y.W.)
| | - Lianping Cheng
- Department of Immunology, Department of Rheumatology, and School of Basic Medical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China. (X.Y., X.Z., Y.T., J.Y., Y.J., Y.X., L.C., S.C., L.W., Y.Q., Y.W.)
| | - Shenglai Chen
- Department of Immunology, Department of Rheumatology, and School of Basic Medical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China. (X.Y., X.Z., Y.T., J.Y., Y.J., Y.X., L.C., S.C., L.W., Y.Q., Y.W.)
| | - Linfeng Wu
- Department of Immunology, Department of Rheumatology, and School of Basic Medical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China. (X.Y., X.Z., Y.T., J.Y., Y.J., Y.X., L.C., S.C., L.W., Y.Q., Y.W.)
| | - Yihong Qin
- Department of Immunology, Department of Rheumatology, and School of Basic Medical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China. (X.Y., X.Z., Y.T., J.Y., Y.J., Y.X., L.C., S.C., L.W., Y.Q., Y.W.)
| | - Zhen Zhao
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, China (Z.Z.)
- Vascular Center of Shanghai Jiao Tong University, China (Z.Z.)
| | - Dejian Zhao
- Department of Genetics, Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT (D.Z.)
| | - Yuanyuan Wei
- Department of Immunology, Department of Rheumatology, and School of Basic Medical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China. (X.Y., X.Z., Y.T., J.Y., Y.J., Y.X., L.C., S.C., L.W., Y.Q., Y.W.)
- Shanghai Key Laboratory of Bioactive Small Molecules and State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, China. (Y.W.)
| |
Collapse
|
4
|
Becker M, Kälin S, Neubig AH, Lauber M, Opaleva D, Hipp H, Salb VK, Ott VB, Legutko B, Kälin RE, Hippich M, Scherm MG, Nascimento LFR, Serr I, Hosp F, Nikolaev A, Mohebiany A, Krueger M, Flachmeyer B, Pfaffl MW, Haase B, Yi CX, Dietzen S, Bopp T, Woods SC, Waisman A, Weigmann B, Mann M, Tschöp MH, Daniel C. Regulatory T cells in the mouse hypothalamus control immune activation and ameliorate metabolic impairments in high-calorie environments. Nat Commun 2025; 16:2744. [PMID: 40113758 PMCID: PMC11926360 DOI: 10.1038/s41467-025-57918-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 03/07/2025] [Indexed: 03/22/2025] Open
Abstract
The hypothalamus in the central nervous system (CNS) has important functions in controlling systemic metabolism. A calorie-rich diet triggers CNS immune activation, impairing metabolic control and promoting obesity and Type 2 Diabetes (T2D), but the mechanisms driving hypothalamic immune activation remain unclear. Here we identify regulatory T cells (Tregs) as key modulators of hypothalamic immune responses. In mice, calorie-rich environments activate hypothalamic CD4+ T cells, infiltrating macrophages and microglia while reducing hypothalamic Tregs. mRNA profiling of hypothalamic CD4+ T cells reveals a Th1-like activation state, with increased Tbx21, Cxcr3 and Cd226 but decreased Ccr7 and S1pr1. Importantly, results from Treg loss-of function and gain-of-function experiments show that Tregs limit hypothalamic immune activation and reverse metabolic impairments induced by hyper-caloric feeding. Our findings thus help refine the current model of Treg-centered immune-metabolic crosstalk in the brain and may contribute to the development of precision immune modulation for obesity and diabetes.
Collapse
MESH Headings
- Animals
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Hypothalamus/metabolism
- Hypothalamus/immunology
- Mice
- Obesity/immunology
- Obesity/metabolism
- Male
- Mice, Inbred C57BL
- Diabetes Mellitus, Type 2/immunology
- Diabetes Mellitus, Type 2/metabolism
- Receptors, CCR7/metabolism
- Receptors, CCR7/genetics
- Receptors, CXCR3/metabolism
- Receptors, CXCR3/genetics
- Macrophages/immunology
- Macrophages/metabolism
- Microglia/metabolism
- Microglia/immunology
- Diet, High-Fat/adverse effects
Collapse
Affiliation(s)
- Maike Becker
- Research Unit Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Stefanie Kälin
- German Center for Diabetes Research (DZD), Munich, Germany
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Munich and Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - Anne H Neubig
- Research Unit Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Michael Lauber
- Research Unit Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Daria Opaleva
- Research Unit Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Hannah Hipp
- Research Unit Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Victoria K Salb
- Research Unit Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Verena B Ott
- German Center for Diabetes Research (DZD), Munich, Germany
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Munich and Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - Beata Legutko
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Munich and Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - Roland E Kälin
- Department of Neurosurgery, Medical Faculty, Johannes Kepler University Linz, Linz, Austria
- Clinical Research Institute for Neurosciences, Johannes Kepler University Linz and Kepler University Hospital, Linz, Austria
- Neurosurgical Research, Department of Neurosurgery, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Markus Hippich
- German Center for Diabetes Research (DZD), Munich, Germany
- Institute for Diabetes Research, Helmholtz Diabetes Center at Helmholtz Munich, 80939 Munich, and Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Martin G Scherm
- Research Unit Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Lucas F R Nascimento
- Research Unit Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Isabelle Serr
- Research Unit Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Fabian Hosp
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Alexei Nikolaev
- Institute for Molecular Medicine, Universitätsmedizin der Johannes-Gutenberg-Universität, Mainz, Germany
| | - Alma Mohebiany
- Institute for Molecular Medicine, Universitätsmedizin der Johannes-Gutenberg-Universität, Mainz, Germany
| | - Martin Krueger
- Institute for Anatomy, Leipzig University, Leipzig, Germany
| | | | - Michael W Pfaffl
- Animal Physiology and Immunology, Technische Universität München, Freising-Weihenstephan, Germany
| | - Bettina Haase
- Genomics Core Facility, EMBL European Molecular Biology Laboratory, Heidelberg, Germany
| | - Chun-Xia Yi
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Sarah Dietzen
- Institute of Immunology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Tobias Bopp
- Institute of Immunology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stephen C Woods
- Metabolic Diseases Institute, Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Ari Waisman
- Institute for Molecular Medicine, Universitätsmedizin der Johannes-Gutenberg-Universität, Mainz, Germany
| | - Benno Weigmann
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Matthias H Tschöp
- German Center for Diabetes Research (DZD), Munich, Germany.
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Munich and Division of Metabolic Diseases, Technische Universität München, Munich, Germany.
| | - Carolin Daniel
- Research Unit Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Munich, Munich, Germany.
- German Center for Diabetes Research (DZD), Munich, Germany.
- Division of Clinical Pharmacology, Department of Medicine IV, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
5
|
Wang Y, Wang X, Alabdullatif S, Homma ST, Alekseyev YO, Zhou L. Expansion and pathogenic activation of skeletal muscle-resident macrophages in mdx5cv/Ccr2-/- mice. Proc Natl Acad Sci U S A 2025; 122:e2410095122. [PMID: 40067893 PMCID: PMC11929395 DOI: 10.1073/pnas.2410095122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 02/10/2025] [Indexed: 03/25/2025] Open
Abstract
Infiltrating macrophages contribute to muscle dystrophic changes in Duchenne muscular dystrophy (DMD). In a DMD mouse model, mdx5cv mice, CC chemokine receptor type 2 (CCR2) deficiency diminishes Ly6Chi macrophage infiltration by blocking blood Ly6Chi inflammatory monocyte recruitment. This is accompanied by transient improvement of muscle damage, fibrosis, and regeneration. The benefit, however, is lost after the expansion of intramuscular Ly6Clo macrophages. To address the mechanisms underlying the Ly6Clo macrophage expansion, we compared mdx5cv/Nur77-/- and mdx5cv/Ccr2-/-/Nur7-/- mice with mdx5cv and mdx5cv/Ccr2-/- mice, respectively, and found no evidence to suggest Ly6Clo monocyte recruitment by dystrophic muscles. Single-cell RNA sequencing analysis and Flt3cre/Rosa26LSL-YFP-based lineage tracing of macrophage origins demonstrated the expansion and pathogenic activation of muscle resident macrophages in CCR2-deficient mdx5cv mice. The expansion was associated with increased cell proliferation, which appeared induced by colony-stimulating factor-1 (CSF-1) derived from fibro/adipogenic progenitors (FAPs). Our study establishes a pathogenic role for skeletal muscle resident macrophages and supports a regulatory role of FAPs in stimulating the expansion of resident macrophages in the DMD mouse model when the inflammatory macrophage infiltration is inhibited.
Collapse
MESH Headings
- Animals
- Receptors, CCR2/genetics
- Receptors, CCR2/metabolism
- Receptors, CCR2/deficiency
- Macrophages/immunology
- Macrophages/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/metabolism
- Mice
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/immunology
- Mice, Inbred mdx
- Mice, Knockout
- Disease Models, Animal
- Antigens, Ly
Collapse
Affiliation(s)
- Yinhang Wang
- Department of Neurology, Hospital for Special Surgery, New York, NY 10021
| | - Xingyu Wang
- Department of Neurology, Hospital for Special Surgery, New York, NY 10021
| | - Salam Alabdullatif
- Department of Medicine, Single Cell Sequencing Core Facility, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118
| | - Sachiko T Homma
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118
| | - Yuriy O Alekseyev
- Department of Pathology and Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118
| | - Lan Zhou
- Department of Neurology, Hospital for Special Surgery, New York, NY 10021
| |
Collapse
|
6
|
Hickey MJ, Sudhakar V. Looking below the surface: using intravital imaging to decipher inflammatory renal disease and renal cell injury. Am J Physiol Renal Physiol 2025; 328:F418-F430. [PMID: 39918796 DOI: 10.1152/ajprenal.00321.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/22/2024] [Accepted: 02/02/2025] [Indexed: 03/04/2025] Open
Abstract
Renal function can be perturbed by a range of stimuli that cause cellular injury and inflammation in the kidney. These injurious and inflammatory processes are typically dynamic and progressive, involving the actions of highly migratory cells such as leukocytes and cellular responses that occur over time spans ranging from seconds to weeks. Understanding these dynamic responses has entailed the use of imaging technologies that allow visualization and capture of events over different time spans, ideally in intact organs in live, experimental animals. The technique that allows this is intravital imaging. Intravital imaging, particularly multiphoton intravital microscopy, has been crucial to the investigation of dynamic physiological and pathophysiological processes in the kidney for many years, driving key developments in our understanding of renal (patho)physiology. This includes the mechanisms of ultrafiltrate generation, the response to acute kidney injury, and how inflammatory leukocytes are recruited to and cause injury in the kidney. This review describes the key studies that have applied intravital imaging to the investigation of models of inflammatory renal disease. The responses examined include those restricted to the glomerulus and the effects of acute kidney injury on the tubulointerstitium. Future innovations and directions in this field of research are also discussed.
Collapse
Affiliation(s)
- Michael J Hickey
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Monash University, Clayton, Victoria, Australia
| | - Vaishnavi Sudhakar
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
7
|
Zhang G, Yao Q, Long C, Yi P, Song J, Wu L, Wan W, Rao X, Lin Y, Wei G, Ying J, Hua F. Infiltration by monocytes of the central nervous system and its role in multiple sclerosis: reflections on therapeutic strategies. Neural Regen Res 2025; 20:779-793. [PMID: 38886942 PMCID: PMC11433895 DOI: 10.4103/nrr.nrr-d-23-01508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/12/2023] [Accepted: 02/18/2024] [Indexed: 06/20/2024] Open
Abstract
Mononuclear macrophage infiltration in the central nervous system is a prominent feature of neuroinflammation. Recent studies on the pathogenesis and progression of multiple sclerosis have highlighted the multiple roles of mononuclear macrophages in the neuroinflammatory process. Monocytes play a significant role in neuroinflammation, and managing neuroinflammation by manipulating peripheral monocytes stands out as an effective strategy for the treatment of multiple sclerosis, leading to improved patient outcomes. This review outlines the steps involved in the entry of myeloid monocytes into the central nervous system that are targets for effective intervention: the activation of bone marrow hematopoiesis, migration of monocytes in the blood, and penetration of the blood-brain barrier by monocytes. Finally, we summarize the different monocyte subpopulations and their effects on the central nervous system based on phenotypic differences. As activated microglia resemble monocyte-derived macrophages, it is important to accurately identify the role of monocyte-derived macrophages in disease. Depending on the roles played by monocyte-derived macrophages at different stages of the disease, several of these processes can be interrupted to limit neuroinflammation and improve patient prognosis. Here, we discuss possible strategies to target monocytes in neurological diseases, focusing on three key aspects of monocyte infiltration into the central nervous system, to provide new ideas for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Guangyong Zhang
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Qing Yao
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Chubing Long
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Pengcheng Yi
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Jiali Song
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Luojia Wu
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Wei Wan
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Xiuqin Rao
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Yue Lin
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Gen Wei
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Jun Ying
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Fuzhou Hua
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
8
|
van Smoorenburg MY, Remmerswaal EBM, Segui‐Perez C, van Hamme JL, Strijbis K, Geijtenbeek TBH. Vaginal Prevotella timonensis Bacteria Enhance HIV-1 Uptake and Differentially Affect Transmission by Distinct Primary Dendritic Cell Subsets. Eur J Immunol 2025; 55:e202451192. [PMID: 40071689 PMCID: PMC11898549 DOI: 10.1002/eji.202451192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 03/15/2025]
Abstract
Young females are at high risk of acquiring HIV-1 infections and an imbalance in the vaginal microbiome enhances susceptibility to HIV-1 infection. More insights into the underlying mechanisms could open up new strategies to prevent HIV-1 acquisition and dissemination. Here, we investigated the effect of anaerobic bacteria associated with bacterial vaginosis (BV) on HIV-1 transmission by two distinct dendritic cell (DC) subsets, that is, inflammatory monocyte-derived DCs (moDCs) and primary CD1c+ DCs. Notably, in contrast to other BV-associated microbiota, Prevotella timonensis enhanced uptake of HIV-1 by both moDCs and CD1c+ DCs and the increased uptake was independent of cellular HIV-1 (co-)receptors. Imaging flow cytometry analyses showed that HIV-1 did not co-localise with P. timonensis but was internalized into tetraspanin-positive compartments known to be involved in HIV-1 transmission. P. timonensis bacteria enhanced HIV-1 transmission by CD1c+ DCs, but not by moDCs, and the enhanced transmission was independent of viral infection. Our study strongly suggests that mucosal DC subsets have distinct functions in BV-associated HIV-1 susceptibility, and underscores the importance of early diagnosis and targeted treatment of vaginal dysbiosis to reduce the risk of HIV-1 acquisition.
Collapse
Affiliation(s)
- Marleen Y. van Smoorenburg
- Department of Experimental ImmunologyAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands
- Amsterdam institute for Immunology and Infectious DiseasesInfectious DiseasesAmsterdamThe Netherlands
| | - Ester B. M. Remmerswaal
- Department of Experimental ImmunologyAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands
- Amsterdam institute for Immunology and Infectious DiseasesInfectious DiseasesAmsterdamThe Netherlands
| | - Celia Segui‐Perez
- Department of Biomolecular Health SciencesDivision Infectious Diseases and ImmunologyFaculty of Veterinary MedicineUniversity of UtrechtUtrechtThe Netherlands
| | - John L. van Hamme
- Department of Experimental ImmunologyAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands
- Amsterdam institute for Immunology and Infectious DiseasesInfectious DiseasesAmsterdamThe Netherlands
| | - Karin Strijbis
- Department of Biomolecular Health SciencesDivision Infectious Diseases and ImmunologyFaculty of Veterinary MedicineUniversity of UtrechtUtrechtThe Netherlands
| | - Teunis B. H. Geijtenbeek
- Department of Experimental ImmunologyAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands
- Amsterdam institute for Immunology and Infectious DiseasesInfectious DiseasesAmsterdamThe Netherlands
| |
Collapse
|
9
|
Xu W, Guo Y, Zhao L, Fu R, Qin X, Zhang Y, Cheng X, Xu S. The Aging Immune System: A Critical Attack on Ischemic Stroke. Mol Neurobiol 2025; 62:3322-3342. [PMID: 39271626 DOI: 10.1007/s12035-024-04464-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Ischemic stroke caused by cerebrovascular embolism is an age-related disease with high rates of disability and mortality. Although the mechanisms of immune and inflammatory development after stroke have been of great interest, most studies have neglected the critical and unavoidable factor of age. As the global aging trend intensifies, the number of stroke patients is constantly increasing, emphasizing the urgency of finding effective measures to address the needs of elderly stroke patients. The concept of "immunosenescence" appears to explain the worse stroke outcomes in older individuals. Immune remodeling due to aging involves dynamic changes at all levels of the immune system, and the overall consequences of central (brain-resident) and peripheral (non-brain-resident) immune cells in stroke vary according to the age of the individual. Lastly, the review outlines recent strategies aimed at immunosenescence to improve stroke prognosis.
Collapse
Affiliation(s)
- Wenzhe Xu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuying Guo
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Linna Zhao
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Rong Fu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoli Qin
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yunsha Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xueqi Cheng
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shixin Xu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China.
| |
Collapse
|
10
|
Oliveira LPG, Xavier RG, Nora CCV, Mangueira CLP, Rosseto EA, Aloia T, Gil JZ, Neto AS, Lopes FBTP, Carvalho KI. Exhaustion profile on classical monocytes after LPS stimulation on Crohn's disease patients. Hum Immunol 2025; 86:111257. [PMID: 39952081 DOI: 10.1016/j.humimm.2025.111257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/23/2025] [Accepted: 01/31/2025] [Indexed: 02/17/2025]
Abstract
Crohn's disease is a type of inflammatory bowel disease that leads to symptoms such as diarrhea, abdominal pain, weight loss, and increased risk of developing tumors. The immune system plays a vital role in the gastrointestinal tract by maintaining tolerance to commensal antigens and food. However, in Crohn's disease, this tolerance mechanism is disrupted, resulting in chronic inflammatory responses. The involvement of the immune system is central to Crohn's disease, with a wide range of immune cells including monocytes, being affected. Due to the limited understanding of the role of monocytes in Crohn's disease, our study aimed to clarify the cytokine production and activation profile of monocytes subsets in the context of this condition. We used multiparametric flow cytometry to analyze the status of monocyte, quantified gene expression using qPCR, and created a correlation matrix to connect the flow cytometry data with the qPCR results through a bioinformatics approach. Our findings indicate that patients with Crohn's disease show a reduction in all monocyte subsets. Additionally, classical monocytes exhibit an exhaustion profile characterized by increased CD38 expression and reduced IL-1β production following LPS stimulation in patient groups. These results suggest that monocyte subsets play distinct roles in the disease's pathophysiology of Crohn's disease, potentially contributing to chronic inflammation and impairing the resolution of the immune response.
Collapse
Affiliation(s)
| | - Rafaela Gomes Xavier
- Instituto de Ensino e Pesquisa Hospital Israelita Albert Einstein São Paulo Brazil
| | | | | | | | - Thiago Aloia
- Instituto de Ensino e Pesquisa Hospital Israelita Albert Einstein São Paulo Brazil
| | | | | | | | - Karina Inacio Carvalho
- Instituto de Ensino e Pesquisa Hospital Israelita Albert Einstein São Paulo Brazil; Case Comprehensive Cancer Center, Case Western Reserve University Cleveland OH USA.
| |
Collapse
|
11
|
Huang HY, Zheng XN, Tian L. Vascular-Associated Mononuclear Phagocytes: First-Line Soldiers Ambushing Metastasis. Bioessays 2025; 47:e202400261. [PMID: 39988942 DOI: 10.1002/bies.202400261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 02/25/2025]
Abstract
Mononuclear phagocytes (MPs), which consist of dendritic cells, monocytes, and macrophages, are distributed throughout the body and actively eliminate invading microorganisms and abnormal cells. Depending on the local microenvironment, MPs manifest considerably various lifespans and phenotypes to maintain tissue homeostasis. Vascular-associated mononuclear phagocytes (VaMPs) are the special subsets of MPs that are localized either within the lumen side or on the apical surface of vessels, acting as the critical sentinels to recognize and defend against disseminated tumor cells. In this review, we introduce three major types of VaMPs, patrolling monocytes, Kupffer cells, and perivascular macrophages, and discuss their emerging roles in immunosurveillance during incipient metastasis. We also explore the roles of lineage-determining transcription factors and cell surface receptors that endow VaMPs with potent anti-tumor activity. Finally, we highlight the molecular and cellular mechanisms that drive the phenotypic plasticity of VaMPs and summarize combinatory strategies for targeting VaMPs in overt metastasis.
Collapse
Affiliation(s)
- Han-Ying Huang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Xin-Nan Zheng
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Lin Tian
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| |
Collapse
|
12
|
Wang Y, Dowling SD, Rodriguez V, Maciuch J, Mayer M, Therron T, Shaw TN, Gurra MG, Shah CL, Makinde HKM, Ginhoux F, Voehringer D, Harrington CA, Lawrence T, Grainger JR, Cuda CM, Winter DR, Perlman HR. Comprehensive analysis of myeloid reporter mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.24.639159. [PMID: 40060446 PMCID: PMC11888320 DOI: 10.1101/2025.02.24.639159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
Macrophages are a pivotal cell type within the synovial lining and sub-lining of the joint, playing a crucial role in maintaining homeostasis of synovium. Although fate-mapping techniques have been employed to differentiate synovial macrophages from other synovial myeloid cells, no comprehensive study has yet been conducted within the mouse synovial macrophage compartment. In this study, we present, for the first time, lineage tracing results from 18 myeloid-specific fate-mapping models in mouse peripheral blood (PB) and synovial tissue. The identification of synovial macrophages and monocyte-lineage cells through flow cytometry was further validated using cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) datasets. These findings provide a valuable methodological tool for researchers to select appropriate models for studying the function of synovial myeloid cells and serve as a reference for investigations in other tissue types.
Collapse
Affiliation(s)
- Yidan Wang
- Northwestern University, Feinberg School of Medicine. Department of Medicine, Division of Rheumatology. Chicago, IL 60611, USA
| | - Samuel D Dowling
- Northwestern University, Feinberg School of Medicine. Department of Medicine, Division of Rheumatology. Chicago, IL 60611, USA
- Northwestern University, Feinberg School of Medicine. Department of Pediatrics, Division of Rheumatology. Chicago, IL 60611, USA
| | - Vanessa Rodriguez
- Northwestern University, Feinberg School of Medicine. Department of Medicine, Division of Rheumatology. Chicago, IL 60611, USA
| | - Jessica Maciuch
- Northwestern University, Feinberg School of Medicine. Department of Medicine, Division of Rheumatology. Chicago, IL 60611, USA
| | - Meghan Mayer
- Northwestern University, Feinberg School of Medicine. Department of Medicine, Division of Rheumatology. Chicago, IL 60611, USA
| | - Tyler Therron
- Northwestern University, Feinberg School of Medicine. Department of Medicine, Division of Rheumatology. Chicago, IL 60611, USA
| | - Tovah N Shaw
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Miranda G Gurra
- Northwestern University, Feinberg School of Medicine. Department of Medicine, Division of Rheumatology. Chicago, IL 60611, USA
| | - Caroline L Shah
- Northwestern University, Feinberg School of Medicine. Department of Medicine, Division of Rheumatology. Chicago, IL 60611, USA
| | - Hadijat-Kubura M Makinde
- Northwestern University, Feinberg School of Medicine. Department of Medicine, Division of Rheumatology. Chicago, IL 60611, USA
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR). 8A Biomedical Grove IMMUNOS Bldg, Level 3, SINGAPORE 138648
| | - David Voehringer
- University Hospital Erlangen, Department of Infection Biology and Friedrich-Alexander University Erlangen-Nuremberg (FAU). Wasserturmstrasse 3-5, 91054 Erlangen, Germany
| | - Cole A Harrington
- The Ohio State University Wexner Medical Center, Department of Neurology, The Neuroscience Research Institute, College of Medicine, Columbus, OH, USA
| | - Toby Lawrence
- King's College London, Centre for Inflammation Biology and Cancer Immunology, School of Immunology and Microbial Sciences, London, UK
| | - John R Grainger
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester; Manchester, UK
| | - Carla M Cuda
- Northwestern University, Feinberg School of Medicine. Department of Medicine, Division of Rheumatology. Chicago, IL 60611, USA
| | - Deborah R Winter
- Northwestern University, Feinberg School of Medicine. Department of Medicine, Division of Rheumatology. Chicago, IL 60611, USA
- Center for Human Immunobiology (CHI), Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Harris R Perlman
- Northwestern University, Feinberg School of Medicine. Department of Medicine, Division of Rheumatology. Chicago, IL 60611, USA
| |
Collapse
|
13
|
Huang CX, Siwan E, Baker CJ, Wei Z, Shinko D, McGuire HM, Twigg SM, Min D. Uncovering Sex-Related Differences in Skin Macrophage Polarization During Wound Healing in Diabetic Mice. FRONT BIOSCI-LANDMRK 2025; 30:27113. [PMID: 40018936 DOI: 10.31083/fbl27113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/12/2024] [Accepted: 12/20/2024] [Indexed: 03/01/2025]
Abstract
BACKGROUND Chronic wounds, such as diabetes-related foot ulcers, arise from delayed wound healing and create significant health and economic burdens. Macrophages regulate healing by shifting between pro- and anti-inflammatory phenotypes, known as macrophage polarization. Sex and diabetes can impair wound healing, but their influence on macrophage phenotype in skin tissue during wound healing remains unclear, which was investigated in this study using a novel two-sex diabetic mouse model. METHODS Diabetes was induced in male and female C57BL/6J mice using low-dose streptozotocin injections and high-fat diet feeding, with chow-fed mice as controls. After 18 weeks, each mouse received four circular full-thickness dorsal skin wounds. The macrophage phenotypes in wounded skin tissues at Day 0 and Day 10 post-wounding were analyzed using mass cytometry with manual gating and automated computational clustering. RESULTS Male diabetic mice exhibited more severe hyperglycemia and insulin resistance compared to females. Although diabetic mice did not display delayed wound healing, male mice had a greater proportion of total macrophages than females, especially a higher proportion of pro-inflammatory matrix metalloproteinase-9 (MMP-9)+ macrophages and a lower proportion of anti-inflammatory adiponectin receptor 1 (AdipoR1)+ macrophages in male diabetic mice compared to females, indicating an imbalanced polarization towards a pro-inflammatory phenotype that could result in poorer wound healing. Interestingly, computational clustering identified a new pro-inflammatory, pro-healing phenotype (Ly6C+AdipoR1+CD163-CD206-) more abundant in females than males, suggesting this phenotype may play a role in the transition from the inflammatory to the proliferative stage of wound healing. CONCLUSIONS This study demonstrated a significant sex-based difference in macrophage populations, with male diabetic mice showing a pro-inflammatory bias that may impair wound healing, while a unique pro-inflammatory, pro-healing macrophage population more abundant in females could facilitate recovery. Further research is needed to investigate the role of these newly identified phenotypes in regulating impaired wound healing.
Collapse
Affiliation(s)
- Coco X Huang
- Greg Brown Diabetes and Endocrine Research Laboratory, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Elisha Siwan
- Greg Brown Diabetes and Endocrine Research Laboratory, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Callum J Baker
- Greg Brown Diabetes and Endocrine Research Laboratory, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
- School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Zhuoran Wei
- Greg Brown Diabetes and Endocrine Research Laboratory, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Diana Shinko
- Sydney Cytometry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Helen M McGuire
- School of Medical Sciences, Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Stephen M Twigg
- Greg Brown Diabetes and Endocrine Research Laboratory, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - Danqing Min
- Greg Brown Diabetes and Endocrine Research Laboratory, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| |
Collapse
|
14
|
Corken A, Weinkopff T, Wahl EC, Sikes JD, Thakali KM. Platelets Modulate Leukocyte Population Composition Within Perivascular Adipose Tissue. Int J Mol Sci 2025; 26:1625. [PMID: 40004089 PMCID: PMC11855773 DOI: 10.3390/ijms26041625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/05/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Perivascular adipose tissue (PVAT) regulates vascular tone and is composed of adipocytes and several leukocyte subpopulations. Diet can modify PVAT function, as obesogenic diets cause morphological changes to adipocytes and skew the leukocyte phenotype, leading to PVAT dysregulation and impaired vasoregulation. Of note, platelets, the clot-forming cells, also modulate many facets of leukocyte activity, such as tissue infiltration and polarity. We aimed to determine whether platelets regulate the leukocyte populations residing within PVAT. Male C57Bl/6J mice were fed a Western diet (30% kcal sucrose, 40% kcal fat, 8.0% sodium) to develop obesogenic conditions for PVAT leukocyte remodeling. Diet was either administered acutely (2 weeks) or extended (8 weeks) to gauge the length of challenge necessary for remodeling. Additionally, platelet depletion allowed for the assessment of platelet relevance in PVAT leukocyte remodeling. Abdominal PVAT (aPVAT) and thoracic PVAT (tPVAT) were then isolated and leukocyte composition evaluated by flow cytometry. Compared to control, Western diet alone did not significantly impact PVAT leukocyte composition for either diet length. Platelet depletion, independent of diet, significantly disrupted PVAT leukocyte content with monocytes/macrophages most impacted. Furthermore, tPVAT appeared more sensitive to platelet depletion than aPVAT, providing novel evidence of platelet regulation of leukocyte composition within PVAT depots.
Collapse
Affiliation(s)
- Adam Corken
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA;
- Arkansas Children’s Research Institute, Little Rock, AR 72202, USA; (E.C.W.); (J.D.S.)
| | - Tiffany Weinkopff
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Elizabeth C. Wahl
- Arkansas Children’s Research Institute, Little Rock, AR 72202, USA; (E.C.W.); (J.D.S.)
| | - James D. Sikes
- Arkansas Children’s Research Institute, Little Rock, AR 72202, USA; (E.C.W.); (J.D.S.)
| | - Keshari M. Thakali
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA;
- Arkansas Children’s Research Institute, Little Rock, AR 72202, USA; (E.C.W.); (J.D.S.)
| |
Collapse
|
15
|
Huang P, Yang F, Dong R, Wen L, Zang Q, Song D, Guo J, Wang Y, Zhang R, Ren Z, Qin J, Teng J, Miao W. Cerebrospinal fluid and serum cytokine profiles in severe viral encephalitis with implications for refractory status epilepticus: a retrospective observational study. Front Immunol 2025; 16:1528763. [PMID: 39995678 PMCID: PMC11847810 DOI: 10.3389/fimmu.2025.1528763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/22/2025] [Indexed: 02/26/2025] Open
Abstract
Background To identify new intervention targets, we explored the correlation between cytokines and the development of refractory status epilepticus (RSE) in patients with severe viral encephalitis (SVE). Methods We examined the characteristics of 14 cytokines in the cerebrospinal fluid (CSF) and serum, analyzing their correlation with acute symptomatic seizures and prognosis. Furthermore, we conducted a dynamic analysis of differences and correlations in the expression of cytokines among patients with SVE without seizures, those with controlled seizures, and those with RSE. Results We included 161 patients with SVE; the incidence of seizures was 55.2%, and the mortality rate was 5.5%. Notably, 18.9% of these patients developed RSE, with a mortality rate of 20%. During the early stage of SVE, CSF interleukin (IL)-6 and IL-8 levels were significantly higher, declining over time and affecting the prognosis. CSF IL-6 and IL-8 levels were significantly elevated in the RSE group compared to patients without seizures and with controlled seizures, decreasing gradually and independently of serum cytokine levels. CSF IL-8 and age were independent risk factors for RSE, with clinical utility. Conclusions Patients with SVE exhibit intrathecal cytokine storms, primarily characterized by elevated levels of IL-6 and IL-8, which influence prognosis. The strong and persistent hyperinflammation underscored by CSF IL-6 and IL-8 is associated with the occurrence and development of RSE; thus, CSF IL-8 and age are independent risk factors for SVE with RSE, indicating potential anti-inflammatory intervention targets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Wang Miao
- Neurological Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
16
|
Mohapatra A, Howard Z, Ernst JD. CCR2 recruits monocytes to the lung, while CX3CR1 modulates positioning of monocyte-derived CD11c pos cells in the lymph node during pulmonary tuberculosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.07.637199. [PMID: 39974908 PMCID: PMC11839135 DOI: 10.1101/2025.02.07.637199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Infection by Mycobacterium tuberculosis (Mtb) continues to cause more than 1 million deaths annually, due to pathogen persistence in lung macrophages and dendritic cells derived from blood monocytes. While accumulation of monocyte-derived cells in the Mtb-infected lung partially depends on the chemokine receptor CCR2, the other chemoattractant receptors regulating trafficking remain undefined. We used mice expressing knock-in/knockout reporter alleles of Ccr2 and Cx3cr1 to interrogate their expression and function in monocyte-derived populations of the lungs and draining mediastinal lymph nodes during Mtb infection. CCR2 and CX3CR1 expression varied across monocyte-derived subsets stratified by cell surface Ly6C expression in both organs. We found that expression of CCR2 predicted dependence of monocyte-derived cells on the receptor for lung and lymph node accumulation. CCR2-deficient mice were also observed to have worsened lung and lymph node Mtb burden. While CX3CR1 deficiency, alone or in combination with CCR2 deficiency, did not affect cell frequencies or lung Mtb control, its absence was associated with altered positioning of monocyte-derived dendritic cells in mediastinal lymph nodes. We found that combined loss of Ccr2 and Cx3cr1 also worsened Mtb control in the mediastinal lymph node, suggesting a rationale for the persistent expression of CX3CR1 among monocyte-derived cells in pulmonary tuberculosis. IMPORTANCE Mycobacterium tuberculosis is the respiratory pathogen responsible for the deadliest infectious disease worldwide. Susceptible humans exhibit ineffective immune responses, in which infected phagocytes are not able to eliminate the pathogen. Since recruited monocyte-derived cells serve as reservoirs for persistent infection, understanding how these phagocytes accumulate in the lung and why they are unable to eliminate Mtb can inform development of therapies that can synergize with antimicrobials to achieve faster and more durable Mtb elimination. Monocyte-derived cells express the chemokine receptors CCR2 and CX3CR1, but the role of the latter in Mtb infection remains poorly defined. The significance of our study is in elucidating the roles of these receptors in the trafficking of monocyte-derived cells in the infected lung and mediastinal lymph node. These data shed light on the host response in tuberculosis and in other pulmonary infections.
Collapse
|
17
|
Wysocki T, Wajda A, Kmiołek T, Wroński J, Roszkowska M, Olesińska M, Paradowska-Gorycka A. NADPH oxidase expression profile and PBMC immunophenotypic changes in anti-TNF-treated rheumatoid arthritis patients. Clin Immunol 2025; 271:110414. [PMID: 39643026 DOI: 10.1016/j.clim.2024.110414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
The aim of this research was to prospectively evaluate the impact of NOX2 gene expression profile (including NCF1, NCF2 and NCF4 genes) in peripheral blood mononuclear cells (PBMCs) on immune signatures, clinical characteristics and responsiveness to anti-TNF treatment in RA patients. Blood specimens were collected from 31 rheumatoid arthritis (RA) patients and 25 healthy controls, and 16 RA patients were followed at two timepoints during anti-TNF treatment. mRNA expression levels of selected genes and immunoregulatory cytokines concentrations were determined. We observed the significant upregulation of NCF4 and CD14 expression in RA group. The mRNA levels of NCF1 and CD14 positively correlated both in groups of RA patients and healthy controls. NOX2 gene expression profile was not associated with anti-TNF responsiveness, nor with RA clinical features. TNFα inhibition has not influenced NOX2 expression either. Notably, this study indicate the novel links between expression levels of NCF1 and monocyte differentiation antigen CD14.
Collapse
Affiliation(s)
- Tomasz Wysocki
- National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland.
| | - Anna Wajda
- National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Tomasz Kmiołek
- National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Jakub Wroński
- National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Magdalena Roszkowska
- National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Marzena Olesińska
- National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | | |
Collapse
|
18
|
Xu X, Niu M, Lamberty BG, Emanuel K, Apostol MJF, Fox HS. Transformation of brain myeloid cell populations by SIV in rhesus macaques revealed by multiomics. Commun Biol 2025; 8:100. [PMID: 39838075 PMCID: PMC11751027 DOI: 10.1038/s42003-024-07443-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/26/2024] [Indexed: 01/23/2025] Open
Abstract
The primary immune constituents in the brain, microglia and macrophages, are the target for HIV in people and simian immunodeficiency virus (SIV) in nonhuman primates. This infection can lead to neurological dysfunction, known as HIV-associated neurocognitive disorder (HAND). Given the gaps in our knowledge on how these cells respond in vivo to CNS infection, we perform single-cell multiomic sequencing, including gene expression and ATAC-seq, on myeloid cells from the brains of rhesus macaques with SIV-induced encephalitis (SIVE) as well as uninfected controls. We find that SIVE significantly changes the myeloid cell populations. In SIVE, microglia-like cells express high levels of chemoattractants capable of recruiting highly activated CAM-like cells to the site of infection/inflammation. A unique population of microglia-like cells is found in which the chromatin accessibility of genes diverges from their RNA expression. Additionally, we observe a dramatic shift of upstream gene regulators and their targets in brain myeloid cells during SIVE. This study further uncovers the transcriptome, gene regulatory events, and potential roles of different brain myeloid phenotypes in SIVE. This might deepen the understanding of SIVE/HIVE and enlighten the therapeutic development.
Collapse
Affiliation(s)
- Xiaoke Xu
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Meng Niu
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Benjamin G Lamberty
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Katy Emanuel
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Howard S Fox
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
19
|
Tan Z, Hall P, Mack M, Snelgrove SL, Kitching AR, Hickey MJ. Both Classical and Non-Classical Monocytes Patrol Glomerular Capillaries and Promote Acute Glomerular Inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:89-101. [PMID: 39117108 DOI: 10.1016/j.ajpath.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/10/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024]
Abstract
Monocyte patrolling of the vasculature has been ascribed primarily to the non-classical monocyte subset. However, a recent study of the glomerular microvasculature provided evidence that both classical and non-classical monocytes undergo periods of intravascular retention and migration. Despite this, whether these subsets contribute differentially to acute glomerular inflammation is unknown. This study used glomerular multiphoton intravital microscopy to investigate the capacity of classical and non-classical monocytes to patrol the glomerular microvasculature and promote acute, neutrophil-dependent glomerular inflammation. In imaging experiments in monocyte reporter Cx3cr1gfp/+ mice, co-staining with anti-Ly6B or anti-Ly6C revealed that both non-classical monocytes [CX3 chemokine receptor 1-green fluorescent protein positive (CX3CR1-GFP+)] and classical monocytes (CX3CR1-GFP+ and Ly6B+ or Ly6C+) underwent prolonged (>10 minutes) retention and migration in the glomerular microvasculature. On induction of acute glomerulonephritis, these behaviors were increased in classical, but not non-classical, monocytes. Using non-classical monocyte-deficient Csf1rCreNr4a1fl/fl mice, or anti-CCR2 to deplete classical monocytes, the removal of either subset reduced neutrophil retention and activation in acutely inflamed glomeruli, while the depletion of both subsets, via anti-CCR2 treatment in Csf1rCreNr4a1fl/fl mice, led to further reductions in neutrophil activity. In contrast, in a model of CD4+ T cell-dependent glomerulonephritis, the depletion of either monocyte subset failed to alter neutrophil responses. These findings indicate that both classical and non-classical monocytes patrol the glomerular microvasculature and promote neutrophil responses in acutely inflamed glomeruli.
Collapse
Affiliation(s)
- ZheHao Tan
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia
| | - Pam Hall
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia
| | - Matthias Mack
- Department of Internal Medicine II-Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Sarah L Snelgrove
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia
| | - A Richard Kitching
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia; Departments of Nephrology and Pediatric Nephrology, Monash Medical Centre, Clayton, Victoria, Australia
| | - Michael J Hickey
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia.
| |
Collapse
|
20
|
Feghali J, Jackson CM. Therapeutic implications for the PD-1 axis in cerebrovascular injury. Neurotherapeutics 2025; 22:e00459. [PMID: 39368872 PMCID: PMC11840351 DOI: 10.1016/j.neurot.2024.e00459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/22/2024] [Indexed: 10/07/2024] Open
Abstract
Since the discovery and characterization of the PD-1/PD-L pathway, mounting evidence has emerged regarding its role in regulating neuroinflammation following cerebrovascular injury. Classically, PD-L1 on antigen-presenting cells or tissues binds PD-1 on T cell surfaces resulting in T cell inhibition. In myeloid cells, PD-1 stimulation induces polarization of microglia and macrophages into an anti-inflammatory, restorative phenotype. The therapeutic potential of PD-1 agonism in ischemic stroke, intracerebral hemorrhage, subarachnoid hemorrhage-related vasospasm, and traumatic brain injury rests on the notion of harnessing the immunomodulatory function of immune checkpoint pathways to temper the harmful effects of immune overactivation and secondary injury while promoting repair and recovery. Immune checkpoint agonism has greater specificity than the wider and non-specific anti-inflammatory effects of other agents, such as steroids. PD-1 agonism has already demonstrated success in clinical trials for rheumatoid arthritis and is being tested in other chronic inflammatory diseases. Further investigation of PD-1 agonism as a therapeutic strategy in cerebrovascular injury can help clarify the mechanisms underlying clinical benefit, develop drugs with optimal pharmacodynamic and pharmacokinetic properties, and mitigate unwanted side effects.
Collapse
Affiliation(s)
- James Feghali
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher M Jackson
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
21
|
Seta N. Role of Circulating Monocytes and Periodontopathic Bacteria in Pathophysiology of Rheumatoid Arthritis. THE BULLETIN OF TOKYO DENTAL COLLEGE 2024; 65:55-64. [PMID: 39551516 DOI: 10.2209/tdcpublication.2024-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Rheumatoid arthritis (RA) is characterized by chronic inflammation in the synovial membrane, leading to matrix destruction of cartilage and bone. While various types of immune cell are found in inflamed synovium in RA, macrophages and osteoclasts also play important roles in joint destruction. Peripheral blood monocytes migrate to synovial tissue and differentiate into macrophages and osteoclasts in RA. Synovial macrophages are classified into two subsets: M1 (proinflammatory macrophages) or M2 (anti-proinflammatory macrophages). Human circulating monocytes have also been divided into three subsets according expression level of CD14 and CD16: CD14+CD16- (classical); CD14brightCD16+ (intermediate); or CD14dimCD16+ (non-classical). Many recent studies have investigated the involvement of each subset of synovial macrophages and circulating monocytes in the pathophysiology of RA. On the other hand, several distinct human cell populations originating in circulating monocytes have the capacity to differentiate into non-phagocytic cells, including endothelial cells and adipocytes. This review summarizes the role of circulating monocytes in the pathophysiology of RA as precursor cells of not only phagocytes, such as macrophages and osteoclasts, but also non-phagocytes, such as endothelial cells and adipocytes. Furthermore, there is a growing body of evidence showing a significantly positive association between periodontopathic bacterial infection and the pathophysiology of RA. Therefore, the role of periodontopathic bacteria in the development of RA is also discussed.
Collapse
Affiliation(s)
- Noriyuki Seta
- Department of Internal Medicine, Tokyo Dental College, Ichikawa General Hospital
| |
Collapse
|
22
|
Chen S, Zhu J, Hua C, Feng C, Wu X, Zhou C, Chen X, Zhang B, Xu Y, Ma Z, He J, Jin N, Song Y, van der Veen S, Cheng H. Single-cell RNA sequencing reveals the diversity of the immunological landscape response to genital herpes. Virol Sin 2024; 39:860-874. [PMID: 39426602 PMCID: PMC11738787 DOI: 10.1016/j.virs.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024] Open
Abstract
Genital herpes (GH) is a common sexually transmitted disease, which is primarily caused by herpes simplex virus type 2 (HSV-2), and continues to be a global health concern. Although our understanding of the alterations in immune cell populations and immunomodulation in GH patients is still limited, it is evident that systemic intrinsic immunity, innate immunity, and adaptive immunity play crucial roles during HSV-2 infection and GH reactivation. To investigate the mechanisms underlying HSV-2 infection and recurrence, single-cell RNA sequencing (scRNA-seq) was performed on immune cells isolated from the peripheral blood of both healthy individuals and patients with recurrent GH. Furthermore, the systemic immune response in patients with recurrent GH showed activation of classical monocytes, CD4+ T cells, natural killer cells (NK cells), and plasmacytoid dendritic cells (pDCs), especially of genes associated with the Toll-like receptor signaling pathway and T cell activation. Circulating immune cells in GH patients show higher expression of genes associated with inflammation and antiviral responses both in the scRNA-Seq data set and in independent quantitative real-time polymerase chain reaction (qRT-PCR) analysis and ELISA experiments. This study demonstrated that localized genital herpes, resulting from HSV reactivation, may influence the functionality of circulating immune cells, suggesting a potential avenue for future research into the role of systemic immunity during HSV infection and recurrence.
Collapse
Affiliation(s)
- Siji Chen
- Department of Dermatology and Venereology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Jiang Zhu
- Department of Dermatology and Venereology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Chunting Hua
- Department of Dermatology and Venereology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Chenxi Feng
- Department of Dermatology and Venereology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Xia Wu
- Department of Dermatology and Venereology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Can Zhou
- Department of Dermatology and Venereology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Xianzhen Chen
- Department of Dermatology and Venereology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Boya Zhang
- Department of Dermatology and Venereology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Yaohan Xu
- Department of Dermatology and Venereology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Zeyu Ma
- Department of Dermatology and Venereology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Jianping He
- Department of Dermatology and Venereology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Na Jin
- Department of Dermatology and Venereology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Yinjing Song
- Department of Dermatology and Venereology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| | - Stijn van der Veen
- Department of Dermatology and Venereology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; Department of Microbiology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Hao Cheng
- Department of Dermatology and Venereology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| |
Collapse
|
23
|
Lucinian YA, Martineau P, Abikhzer G, Harel F, Pelletier-Galarneau M. Novel tracers to assess myocardial inflammation with radionuclide imaging. J Nucl Cardiol 2024; 42:102012. [PMID: 39069249 DOI: 10.1016/j.nuclcard.2024.102012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
Myocardial inflammation plays a central role in the pathophysiology of various cardiac diseases. While FDG-PET is currently the primary method for molecular imaging of myocardial inflammation, its effectiveness is hindered by physiological myocardial uptake as well as its propensity for uptake by multiple disease-specific mechanisms. Novel radiotracers targeting diverse inflammatory immune cells and molecular pathways may provide unique insight through the visualization of underlying mechanisms central to the pathogenesis of inflammatory cardiac diseases, offering opportunities for increased understanding of immunocardiology. Moreover, the potentially enhanced specificity may lead to better quantification of disease activity, aiding in the guidance and monitoring of immunomodulatory therapy. This review aims to provide an update on advancements in non-FDG radiotracers for imaging myocardial inflammatory diseases, with a focus on cardiac sarcoidosis, myocarditis, and acute myocardial infarction.
Collapse
Affiliation(s)
| | | | - Gad Abikhzer
- Jewish General Hospital, Montreal, Quebec, Canada
| | | | | |
Collapse
|
24
|
Backer RA, Probst HC, Clausen BE. Multiparameter Flow Cytometric Analysis of the Conventional and Monocyte-Derived DC Compartment in the Murine Spleen. Vaccines (Basel) 2024; 12:1294. [PMID: 39591196 PMCID: PMC11598974 DOI: 10.3390/vaccines12111294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/04/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Dendritic cells (DCs) are present in almost all tissues, where they act as sentinels involved in innate recognition and the initiation of adaptive immune responses. The DC family consists of several cell lineages that are heterogenous in their development, phenotype, and function. Within these DC lineages, further subdivisions exist, resulting in smaller, less characterized subpopulations, each with its unique immunomodulatory capabilities. Given the interest in utilizing DC for experimental studies and for vaccination purposes, it becomes increasingly crucial to thoroughly classify and characterize these diverse DC subpopulations. This understanding is vital for comprehending their relative contribution to the initiation, regulation, and propagation of immune responses. To facilitate such investigation, we here provide an easy and ready-to-use multicolor flow cytometry staining panel for the analysis of conventional DC, plasmacytoid DC, and monocyte-derived DC populations isolated from mouse spleens. This adaptable panel can be easily customized for the analysis of other tissue-specific DC populations, providing a valuable tool for DC research.
Collapse
Affiliation(s)
- Ronald A. Backer
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Hans Christian Probst
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Institute for Immunology, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Björn E. Clausen
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| |
Collapse
|
25
|
Watanabe H, Rana M, Son M, Chiu PY, Fei-Bloom Y, Choi K, Diamond B, Sherry B. Single cell RNA-seq reveals cellular and transcriptional heterogeneity in the splenic CD11b +Ly6C high monocyte population expanded in sepsis-surviving mice. Mol Med 2024; 30:202. [PMID: 39506629 PMCID: PMC11539566 DOI: 10.1186/s10020-024-00970-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/18/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Sepsis survivors exhibit immune dysregulation that contributes to poor long-term outcomes. Phenotypic and functional alterations within the myeloid compartment are believed to be a contributing factor. Here we dissect the cellular and transcriptional heterogeneity of splenic CD11b+Ly6Chigh myeloid cells that are expanded in mice that survive the cecal ligation and puncture (CLP) murine model of polymicrobial sepsis to better understand the basis of immune dysregulation in sepsis survivors. METHODS Sham or CLP surgeries were performed on C57BL/6J and BALB/c mice. Four weeks later splenic CD11b+Ly6Chigh cells from both groups were isolated for phenotypic (flow cytometry) and functional (phagocytosis and glycolysis) characterization and RNA was obtained for single-cell RNA-seq (scRNA-seq) and subsequent analysis. RESULTS CD11b+Ly6Chigh cells from sham and CLP surviving mice exhibit phenotypic and functional differences that relate to immune function, some of which are observed in both C57BL/6J and BALB/c strains and others that are not. To dissect disease-specific and strain-specific distinctions within the myeloid compartment, scRNA-seq analysis was performed on CD11b+Ly6Chigh cells from C57BL/6J and BALB/c sham and CLP mice. Uniform Manifold Approximation and Projection from both strains identified 13 distinct clusters of sorted CD11b+Ly6Chigh cells demonstrating significant transcriptional heterogeneity and expressing gene signatures corresponding to classical-monocytes, non-classical monocytes, M1- or M2-like macrophages, dendritic-like cells, monocyte-derived dendritic-like cells, and proliferating monocytic myeloid-derived suppressor cells (M-MDSCs). Frequency plots showed that the percentages of proliferating M-MDSCs (clusters 8, 11 and 12) were increased in CLP mice compared to sham mice in both strains. Pathway and UCell score analysis in CLP mice revealed that cell cycle and glycolytic pathways were upregulated in proliferating M-MDSCs in both strains. Notably, granule protease genes were upregulated in M-MDSCs from CLP mice. ScRNA-seq analyses also showed that phagocytic pathways were upregulated in multiple clusters including the classical monocyte cluster, confirming the increased phagocytic capacity in CD11b+Ly6Chigh cells from CLP mice observed in ex vivo functional assays in C57BL/6J mice. CONCLUSION The splenic CD11b+Ly6Chigh myeloid populations expanded in survivors of CLP sepsis correspond to proliferating cells that have an increased metabolic demand and gene signatures consistent with M-MDSCs, a population known to have immunosuppressive capacity.
Collapse
Affiliation(s)
- Haruki Watanabe
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Dr., Manhasset, NY, 11030, USA
| | - Minakshi Rana
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery at Weill Cornell Medicine, New York, New York, 10021, USA
| | - Myoungsun Son
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Dr., Manhasset, NY, 11030, USA
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11549, USA
| | - Pui Yan Chiu
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Dr., Manhasset, NY, 11030, USA
| | - Yurong Fei-Bloom
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Dr., Manhasset, NY, 11030, USA
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Betty Diamond
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Dr., Manhasset, NY, 11030, USA.
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11549, USA.
| | - Barbara Sherry
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Dr., Manhasset, NY, 11030, USA.
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11549, USA.
| |
Collapse
|
26
|
Yin W, Chen Y, Wang W, Guo M, Tong L, Zhang M, Wang Z, Yuan H. Macrophage-mediated heart repair and remodeling: A promising therapeutic target for post-myocardial infarction heart failure. J Cell Physiol 2024; 239:e31372. [PMID: 39014935 DOI: 10.1002/jcp.31372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/06/2024] [Accepted: 06/25/2024] [Indexed: 07/18/2024]
Abstract
Heart failure (HF) remains prevalent in patients who survived myocardial infarction (MI). Despite the accessibility of the primary percutaneous coronary intervention and medications that alleviate ventricular remodeling with functional improvement, there is an urgent need for clinicians and basic scientists to further reveal the mechanisms behind post-MI HF as well as investigate earlier and more efficient treatment after MI. Growing numbers of studies have highlighted the crucial role of macrophages in cardiac repair and remodeling following MI, and timely intervention targeting the immune response via macrophages may represent a promising therapeutic avenue. Recently, technology such as single-cell sequencing has provided us with an updated and in-depth understanding of the role of macrophages in MI. Meanwhile, the development of biomaterials has made it possible for macrophage-targeted therapy. Thus, an overall and thorough understanding of the role of macrophages in post-MI HF and the current development status of macrophage-based therapy will assist in the further study and development of macrophage-targeted treatment for post-infarction cardiac remodeling. This review synthesizes the spatiotemporal dynamics, function, mechanism and signaling of macrophages in the process of HF after MI, as well as discusses the emerging bio-materials and possible therapeutic agents targeting macrophages for post-MI HF.
Collapse
Affiliation(s)
- Wenchao Yin
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Yong Chen
- Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Wenjun Wang
- Department of Intensive Care Unit, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Mengqi Guo
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Lingjun Tong
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Mingxiang Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Department of Cardiology, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Zhaoyang Wang
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Haitao Yuan
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
27
|
Ao-Di F, Han-Qing L, Xi-Zheng W, Ke Y, Hong-Xin G, Hai-Xia Z, Guan-Wei F, Li-Lan. Advances in macrophage metabolic reprogramming in myocardial ischemia-reperfusion. Cell Signal 2024; 123:111370. [PMID: 39216681 DOI: 10.1016/j.cellsig.2024.111370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Acute myocardial infarction (AMI) is the leading cause of death worldwide, and reperfusion therapy is a critical therapeutic approach to reduce myocardial ischemic injury and minimize infarct size. However, ischemia/reperfusion (I/R) itself also causes myocardial injury, and inflammation is an essential mechanism by which it leads to myocardial injury, with macrophages as crucial immune cells in this process. Macrophages are innate immune cells that maintain tissue homeostasis, host defence during pathogen infection, and repair during tissue injury. During the acute phase of I/R, M1-type macrophages generate a pro-inflammatory milieu, clear necrotic myocardial tissue, and further recruit mononuclear (CCR2+) macrophages. Over time, the reparative (M2 type) macrophages gradually became dominant. In recent years, metabolic studies have shown a clear correlation between the metabolic profile of macrophages and their phenotype and function. M1-type macrophages are mainly characterized by glycolytic energy supply, and their tricarboxylic acid (TCA) cycle and mitochondrial oxidative phosphorylation (OXPHOS) processes are impaired. In contrast, M2 macrophages rely primarily on OXPHOS for energy. Changing the metabolic profile of macrophages can alter the macrophage phenotype. Altered energy pathways are also present in macrophages during I/R, and intervention in this process contributes to earlier and greater M2 macrophage infiltration, which may be a potential target for the treatment of myocardial I/R injury. Therefore, this paper mainly reviews the characteristics of macrophage energy metabolism alteration and phenotypic transition during I/R and its mechanism of mediating myocardial injury to provide a basis for further research in this field.
Collapse
Affiliation(s)
- Fan Ao-Di
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, State Key Laboratory of Component-based Chinese Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Han-Qing
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, State Key Laboratory of Component-based Chinese Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wang Xi-Zheng
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, State Key Laboratory of Component-based Chinese Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yang Ke
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, State Key Laboratory of Component-based Chinese Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guo Hong-Xin
- Heart center, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Zhang Hai-Xia
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, State Key Laboratory of Component-based Chinese Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fan Guan-Wei
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, State Key Laboratory of Component-based Chinese Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Li-Lan
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, State Key Laboratory of Component-based Chinese Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
28
|
Li M, Wang B, Chen J, Jiang L, Zhou Y, Guo G, Jiang F, Hu Y, Wang C, Yang Y, Tang J, Han P, Yu J, Shen H. Staphylococcus aureus SaeRS impairs macrophage immune functions through bacterial clumps formation in the early stage of infection. NPJ Biofilms Microbiomes 2024; 10:102. [PMID: 39370453 PMCID: PMC11456606 DOI: 10.1038/s41522-024-00576-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024] Open
Abstract
The Staphylococcus aureus (S. aureus) SaeRS two-component system (TCS) regulates over 20 virulence factors. While its impact on chronic infection has been thoroughly discussed, its role in the early stage of infection remains elusive. Since macrophages serve as the primary immune defenders at the onset of infection, this study investigates the influence of SaeRS on macrophage functions and elucidates the underlying mechanisms. Macrophage expression of inflammatory and chemotactic factors, phagocytosis, and bactericidal activity against S. aureus were assessed, along with the evaluation of cellular oxidative stress. SaeRS was found to impair macrophage function. Mechanistically, SaeRS inhibited NF-κB pathway activation via toll-like receptor 2 (TLR2). Its immune-modulating effect could partially be explained by the strengthened biofilm formation. More importantly, we found SaeRS compromised macrophage immune functions at early infection stages even prior to biofilm formation. These early immune evasion effects were dependent on bacterial clumping as cytokine secretion, phagocytosis, and bactericidal activity were repaired when clumping was inhibited. We speculate that the bacterial clumping-mediated antigen mask is responsible for SaeRS-mediated immune evasion at the early infection stage. In vivo, ΔsaeRS infection was cleared earlier, accompanied by early pro-inflammatory cytokines production, and increased tissue oxidative stress. Subsequently, macrophages transitioned to an anti-inflammatory state, thereby promoting tissue repair. In summary, our findings underscore the critical role of the SaeRS TCS in S. aureus pathogenicity, particularly during early infection, which is likely initiated by SaeRS-mediated bacterial clumping.
Collapse
Affiliation(s)
- Mingzhang Li
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Boyong Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jiani Chen
- Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Luhui Jiang
- Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yawen Zhou
- Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Geyong Guo
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Feng Jiang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yujie Hu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Changming Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yi Yang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jin Tang
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Pei Han
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China.
| | - Jinlong Yu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China.
| | - Hao Shen
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
29
|
Hachiya K, Masuya M, Kuroda N, Yoneda M, Nishimura K, Shiotani T, Tawara I, Katayama N. Pravastatin prevents colitis-associated carcinogenesis by reducing CX3CR1 high M2-like fibrocyte counts in the inflamed colon. Sci Rep 2024; 14:23021. [PMID: 39362935 PMCID: PMC11449942 DOI: 10.1038/s41598-024-74215-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024] Open
Abstract
Colorectal cancer (CRC) resulting from chronic inflammation is a crucial issue in patients with inflammatory bowel disease (IBD). Although many reports established that intestinal resident CX3CR1high macrophages play an essential role in suppressing intestinal inflammation, their function in colitis-related CRC remains unclear. In this study, we found that colonic CX3CR1high macrophages, which were positive for MHC-II, F4/80 and CD319, promoted colitis-associated CRC. They highly expressed Col1a1, Tgfb, II10, and II4, and were considered to be fibrocytes with an immunosuppressive M2-like phenotype. CX3CR1 deficiency led to reductions in the absolute numbers of CX3CR1high fibrocytes through increased apoptosis, thereby preventing the development of colitis-associated CRC. We next focused statins as drugs targeting CX3CR1high fibrocytes. Statins have been actively discussed for patients with IBD and reported to suppress the CX3CL1/CX3CR1 axis. Statin treatment after azoxymethane/dextran sulfate sodium-induced inflammation reduced CX3CR1high fibrocyte counts and suppressed colitis-associated CRC. Therefore, CX3CR1high fibrocytes represent a potential target for carcinogenesis-preventing therapy, and statins could be safe therapeutic candidates for IBD.
Collapse
Affiliation(s)
- Kensuke Hachiya
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, 514-8507, Mie, Japan
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, Japan
| | - Masahiro Masuya
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, 514-8507, Mie, Japan.
- Course of Nursing Science, Mie University Graduate School of Medicine, Tsu, 514-8507, Mie, Japan.
| | - Naoki Kuroda
- Department of Gastroenterology, Saiseikai Matsusaka General Hospital, Matsusaka, 515- 8557, Mie, Japan
| | - Misao Yoneda
- Department of Clinical Nutrition Medical Technology Course, Suzuka University of Medical Science, Suzuka, 510-0293, Mie, Japan
| | - Komei Nishimura
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, 514-8507, Mie, Japan
| | - Takuya Shiotani
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, 514-8507, Mie, Japan
| | - Isao Tawara
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, 514-8507, Mie, Japan
| | - Naoyuki Katayama
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, 514-8507, Mie, Japan
| |
Collapse
|
30
|
Pezeshkian F, Shahriarirad R, Mahram H. An overview of the role of chemokine CX3CL1 (Fractalkine) and CX3C chemokine receptor 1 in systemic sclerosis. Immun Inflamm Dis 2024; 12:e70034. [PMID: 39392260 PMCID: PMC11467895 DOI: 10.1002/iid3.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
INTRODUCTION Systemic sclerosis (SSc) is a complex autoimmune disease characterized by fibrosis, vascular damage, and immune dysregulation. Fractalkine or chemokine (C-X3-C motif) ligand 1 (CX3CL1), a chemokine and adhesion molecule, along with its receptor CX3CR1, have been implicated in the inflammatory processes of SSc. CX3CL1 functions as both a chemoattractant and an adhesion molecule, guiding immune cell trafficking. This systematic review examines the role of CX3CL1 and its receptor CX3CR1 in the pathogenesis of SSc, with a focus on pulmonary and vascular complications. METHODS A systematic literature search was conducted across databases including PubMed, Scopus, and Web of Science from inception to November 2020. The search focused on studies investigating the CX3CL1/CX3CR1 axis in the context of SSc. RESULTS The review identified elevated CX3CL1 expression in SSc patients, particularly in the skin and lungs, where CX3CR1 is expressed on infiltrating immune cells. Higher levels of CX3CL1 were correlated with the severity of interstitial lung disease in SSc patients, indicating a potential predictive marker for disease progression. CX3CR1-positive monocytes and NK cells were recruited to inflamed tissues, contributing to fibrosis and tissue damage. Animal studies showed that inhibition of the CX3CL1/CX3CR1 axis reduced fibrosis and improved vascular function. CONCLUSION The CX3CL1/CX3CR1 axis plays a key role in immune cell recruitment and fibrosis in SSc. Elevated CX3CL1 levels are associated with lung and vascular complications, making it a potential biomarker for disease progression and a promising therapeutic target.
Collapse
Affiliation(s)
| | - Reza Shahriarirad
- Thoracic and Vascular Surgery Research CenterShiraz University of Medical SciencesShirazIran
| | | |
Collapse
|
31
|
Bootz A, Reuter N, Nimmerjahn F, Britt WJ, Mach M, Winkler TH. Functional Fc receptors are crucial in antibody-mediated protection against cytomegalovirus. Eur J Immunol 2024; 54:e2451044. [PMID: 39014923 DOI: 10.1002/eji.202451044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024]
Abstract
Human cytomegalovirus is a medically important pathogen. Previously, using murine CMV (MCMV), we provided evidence that both neutralizing and nonneutralizing antibodies can confer protection from viral infection in vivo. In this study, we report that serum derived from infected animals had a greater protective capacity in MCMV-infected RAG-/- mice than serum from animals immunized with purified virus. The protective activity of immune serum was strictly dependent on functional Fcγ receptors (FcγR). Deletion of individual FcγRs or combined deletion of FcγRI and FcγRIV had little impact on the protection afforded by serum. Adoptive transfer of CD115-positive cells from noninfected donors demonstrated that monocytes represent important cellular mediators of the protective activity provided by immune serum. Our studies suggest that Fc-FcγR interactions and monocytic cells are critical for antibody-mediated protection against MCMV infection in vivo. These findings may provide new avenues for the development of novel strategies for more effective CMV vaccines or antiviral immunotherapies.
Collapse
Affiliation(s)
- Anna Bootz
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Nina Reuter
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Falk Nimmerjahn
- Division of Genetics, Department Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - William J Britt
- Departments of Pediatrics, Microbiology and Neurobiology, Children's Hospital of Alabama, School of Medicine, University of Alabama, Birmingham, Alabama, USA
| | - Michael Mach
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas H Winkler
- Division of Genetics, Department Biology, Nikolaus-Fiebiger-Center of Molecular Medicine, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
32
|
Opriş EC, Suciu H, Puşcaş AI, Flămând S, Harpa MM, Opriş CI, Jung I, Popa CO, Neeter KAS, Gurzu S. Significance of inflammation-related markers and histopathological features in mitral valve regurgitation. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2024; 65:713-722. [PMID: 39957033 PMCID: PMC11924903 DOI: 10.47162/rjme.65.4.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
The lymphocyte-to-monocyte ratio (LMR), neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), platelet-to-neutrophil ratio (PNR), C-reactive protein (CRP)-to-lymphocyte ratio (CLR) and fibrinogen-to-albumin ratio (FAR) are well-known indicators of the systemic inflammatory response (SIR). Less is known about the association of SIR with the echocardiographic parameters and the histopathological (HP) aspects of the mitral valve in patients who have undergone cardiac surgery to repair or replace the mitral valve. Information on serum parameters, transesophageal echocardiography findings, and HP results was obtained from 166 patients who had undergone cardiac surgery to address mitral valve regurgitation. Among these patients, 30 were diagnosed with mitral valve prolapse, with 15 cases showing mitral valve flail or chordae rupture. The possible association between SIR, echocardiographic aspects of mitral valve flail and the HP aspect was checked. Fibrosis, hyalinization and myxoid degeneration of the valve were scored under microscope. Hyalinization of the mitral valve had a significant positive association with LMR and PLR (p=0.041 and p=0.03, respectively) and with NLR (p=0.093). A higher fibrosis degree was present in the valves without flail compared with those with flail (p=0.000). The monocyte average values of the group without flail were statistically significantly higher than those in the flail group (p=0.029). An increase of one unit in the value of monocytes was found to decrease the chances of flail [odds ratio (OR) 0.017, p=0.068, significant at p<0.1 level]. SIR parameters can be used to appraise inflammation status in mitral valve disease and to establish the risk of chordae rupture/flail in the case of mitral valve prolapse.
Collapse
Affiliation(s)
- Elena Carmen Opriş
- Department of Pathology, Research Center for Oncopathology and Translational Medicine (CCOMT), George Emil Palade University of Medicine, Pharmacy, Science, and Technology, Târgu Mureş, Romania; ,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Soedono S, Julietta V, Nawaz H, Cho KW. Dynamic Roles and Expanding Diversity of Adipose Tissue Macrophages in Obesity. J Obes Metab Syndr 2024; 33:193-212. [PMID: 39324219 PMCID: PMC11443328 DOI: 10.7570/jomes24030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 09/27/2024] Open
Abstract
Adipose tissue macrophages (ATMs) are key regulators of adipose tissue (AT) inflammation and insulin resistance in obesity, and the traditional M1/M2 characterization of ATMs is inadequate for capturing their diversity in obese conditions. Single-cell transcriptomic profiling has revealed heterogeneity among ATMs that goes beyond the old paradigm and identified new subsets with unique functions. Furthermore, explorations of their developmental origins suggest that multiple differentiation pathways contribute to ATM variety. These advances raise concerns about how to define ATM functions, how they are regulated, and how they orchestrate changes in AT. This review provides an overview of the current understanding of ATMs and their updated categorization in both mice and humans during obesity. Additionally, diverse ATM functions and contributions in the context of obesity are discussed. Finally, potential strategies for targeting ATM functions as therapeutic interventions for obesity-induced metabolic diseases are addressed.
Collapse
Affiliation(s)
- Shindy Soedono
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Korea
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Korea
| | - Vivi Julietta
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Korea
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Korea
| | - Hadia Nawaz
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Korea
| | - Kae Won Cho
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Korea
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Korea
| |
Collapse
|
34
|
Hernandez-Torres F, Matias-Valiente L, Alzas-Gomez V, Aranega AE. Macrophages in the Context of Muscle Regeneration and Duchenne Muscular Dystrophy. Int J Mol Sci 2024; 25:10393. [PMID: 39408722 PMCID: PMC11477283 DOI: 10.3390/ijms251910393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Macrophages are essential to muscle regeneration, as they regulate inflammation, carry out phagocytosis, and facilitate tissue repair. These cells exhibit phenotypic switching from pro-inflammatory (M1) to anti-inflammatory (M2) states during muscle repair, influencing myoblast proliferation, differentiation, and myofiber formation. In Duchenne Muscular Dystrophy (DMD), asynchronous muscle injuries disrupt the normal temporal stages of regeneration, leading to fibrosis and failed regeneration. Altered macrophage activity is associated with DMD progression and physiopathology. Gaining insight into the intricate relationship between macrophages and muscle cells is crucial for creating effective therapies aimed at treating this muscle disorder. This review explores the dynamic functions of macrophages in muscle regeneration and their implications in DMD.
Collapse
Affiliation(s)
- Francisco Hernandez-Torres
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, 18016 Granada, Spain;
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain; (L.M.-V.); (V.A.-G.)
| | - Lidia Matias-Valiente
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain; (L.M.-V.); (V.A.-G.)
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, 23071 Jaen, Spain
| | - Virginia Alzas-Gomez
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain; (L.M.-V.); (V.A.-G.)
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, 23071 Jaen, Spain
| | - Amelia Eva Aranega
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain; (L.M.-V.); (V.A.-G.)
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, 23071 Jaen, Spain
| |
Collapse
|
35
|
Pi H, Wang G, Wang Y, Zhang M, He Q, Zheng X, Yin K, Zhao G, Jiang T. Immunological perspectives on atherosclerotic plaque formation and progression. Front Immunol 2024; 15:1437821. [PMID: 39399488 PMCID: PMC11466832 DOI: 10.3389/fimmu.2024.1437821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024] Open
Abstract
Atherosclerosis serves as the primary catalyst for numerous cardiovascular diseases. Growing evidence suggests that the immune response is involved in every stage of atherosclerotic plaque evolution. Rapid, but not specific, innate immune arms, including neutrophils, monocytes/macrophages, dendritic cells (DCs) and other innate immune cells, as well as pattern-recognition receptors and various inflammatory mediators, contribute to atherogenesis. The specific adaptive immune response, governed by T cells and B cells, antibodies, and immunomodulatory cytokines potently regulates disease activity and progression. In the inflammatory microenvironment, the heterogeneity of leukocyte subpopulations plays a very important regulatory role in plaque evolution. With advances in experimental techniques, the fine mechanisms of immune system involvement in atherosclerotic plaque evolution are becoming known. In this review, we examine the critical immune responses involved in atherosclerotic plaque evolution, in particular, looking at atherosclerosis from the perspective of evolutionary immunobiology. A comprehensive understanding of the interplay between plaque evolution and plaque immunity provides clues for strategically combating atherosclerosis.
Collapse
Affiliation(s)
- Hui Pi
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, Guangdong, China
- Department of Microbiology and Immunology, Dali University, Dali, Yunnan, China
| | - Guangliang Wang
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, Guangdong, China
| | - Yu Wang
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, Guangdong, China
| | - Ming Zhang
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, Guangdong, China
| | - Qin He
- Department of Microbiology and Immunology, Dali University, Dali, Yunnan, China
| | - Xilong Zheng
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kai Yin
- Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Guojun Zhao
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, Guangdong, China
| | - Ting Jiang
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, Guangdong, China
| |
Collapse
|
36
|
Gupta S, Mandal S, Banerjee K, Almarshood H, Pushpakumar SB, Sen U. Complex Pathophysiology of Acute Kidney Injury (AKI) in Aging: Epigenetic Regulation, Matrix Remodeling, and the Healing Effects of H 2S. Biomolecules 2024; 14:1165. [PMID: 39334931 PMCID: PMC11429536 DOI: 10.3390/biom14091165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
The kidney is an essential excretory organ that works as a filter of toxins and metabolic by-products of the human body and maintains osmotic pressure throughout life. The kidney undergoes several physiological, morphological, and structural changes with age. As life expectancy in humans increases, cell senescence in renal aging is a growing challenge. Identifying age-related kidney disorders and their cause is one of the contemporary public health challenges. While the structural abnormalities to the extracellular matrix (ECM) occur, in part, due to changes in MMPs, EMMPRIN, and Meprin-A, a variety of epigenetic modifiers, such as DNA methylation, histone alterations, changes in small non-coding RNA, and microRNA (miRNA) expressions are proven to play pivotal roles in renal pathology. An aged kidney is vulnerable to acute injury due to ischemia-reperfusion, toxic medications, altered matrix proteins, systemic hemodynamics, etc., non-coding RNA and miRNAs play an important role in renal homeostasis, and alterations of their expressions can be considered as a good marker for AKI. Other epigenetic changes, such as histone modifications and DNA methylation, are also evident in AKI pathophysiology. The endogenous production of gaseous molecule hydrogen sulfide (H2S) was documented in the early 1980s, but its ameliorative effects, especially on kidney injury, still need further research to understand its molecular mode of action in detail. H2S donors heal fibrotic kidney tissues, attenuate oxidative stress, apoptosis, inflammation, and GFR, and also modulate the renin-angiotensin-aldosterone system (RAAS). In this review, we discuss the complex pathophysiological interplay in AKI and its available treatments along with future perspectives. The basic role of H2S in the kidney has been summarized, and recent references and knowledge gaps are also addressed. Finally, the healing effects of H2S in AKI are described with special emphasis on epigenetic regulation and matrix remodeling.
Collapse
Affiliation(s)
- Shreyasi Gupta
- Department of Zoology, Trivenidevi Bhalotia College, College Para Rd, Raniganj 713347, West Bengal, India
| | - Subhadeep Mandal
- Department of Zoology, Trivenidevi Bhalotia College, College Para Rd, Raniganj 713347, West Bengal, India
| | - Kalyan Banerjee
- Department of Zoology, Trivenidevi Bhalotia College, College Para Rd, Raniganj 713347, West Bengal, India
| | - Hebah Almarshood
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Sathnur B Pushpakumar
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Utpal Sen
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
37
|
Silver SV, Tucker KJ, Vickman RE, Lanman NA, Semmes OJ, Alvarez NS, Popovics P. Characterization of prostate macrophage heterogeneity, foam cell markers, and CXCL17 upregulation in a mouse model of steroid hormone imbalance. Sci Rep 2024; 14:21029. [PMID: 39251671 PMCID: PMC11383972 DOI: 10.1038/s41598-024-71137-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/26/2024] [Indexed: 09/11/2024] Open
Abstract
Benign prostatic hyperplasia (BPH) is a prevalent age-related condition often characterized by debilitating urinary symptoms. Its etiology is believed to stem from hormonal imbalance, particularly an elevated estradiol-to-testosterone ratio and chronic inflammation. Our previous studies using a mouse steroid hormone imbalance model identified a specific increase in macrophages that migrated and accumulated in the prostate lumen where they differentiated into lipid-laden foam cells in mice implanted with testosterone and estradiol pellets, but not in sham animals. The current study focused on further characterizing the cellular heterogeneity of the prostate in this model as well as identifying the specific transcriptomic signature of the recruited foam cells. Moreover, we aimed to identify epithelia-derived signals that drive macrophage infiltration and luminal translocation. Male C57BL/6J mice were implanted with slow-release testosterone and estradiol pellets (T + E2) or sham surgery was performed and the ventral prostates were harvested two weeks later for scRNA-seq analysis. We identified Ear2 + and Cd72 + macrophages that were elevated in response to steroid hormone imbalance, whereas a Mrc1 + resident macrophage population did not change. In addition, an Spp1 + foam cell cluster was almost exclusively found in T + E2 mice. Further markers of foam cells were also identified, including Gpnmb and Trem2, and GPNMB was confirmed as a novel histological marker with immunohistochemistry. Foam cells were also shown to express known pathological factors Vegf, Tgfb1, Ccl6, Cxcl16 and Mmp12. Intriguingly, a screen for chemokines identified the upregulation of epithelia-derived Cxcl17, a known monocyte attractant, in T + E2 prostates suggesting that it might be responsible for the elevated macrophage number as well as their translocation to the lumen. Our study identified macrophage subsets that responded to steroid hormone imbalance as well as further confirmed a potential pathological role of luminal foam cells in the prostate. These results underscore a potential pathological role of the identified prostate foam cells and suggests CXCL17-mediated macrophage migration as a critical initiating event.
Collapse
Affiliation(s)
- Samara V Silver
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, 23507, USA
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Kayah J Tucker
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, 23507, USA
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Renee E Vickman
- Department of Surgery, Endeavor Health, An Academic Affiliate of the University of Chicago Pritzker School of Medicine, Evanston, IL, USA
| | - Nadia A Lanman
- Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - O John Semmes
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, 23507, USA
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Nehemiah S Alvarez
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Petra Popovics
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, 23507, USA.
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, USA.
| |
Collapse
|
38
|
Jin Y, Geng Z, Lin K, Gu X, Feng X, Fu S, Wang W, Xie C, Wang Y, Gong F. Expansion of a Novel Subset of L-Selectin + Classical Monocytes in Kawasaki Disease. J Inflamm Res 2024; 17:6193-6201. [PMID: 39281780 PMCID: PMC11397173 DOI: 10.2147/jir.s468472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/07/2024] [Indexed: 09/18/2024] Open
Abstract
Purpose Kawasaki disease (KD) is an acute systemic vasculitis that is associated with dysregulated immune responses. Monocytes play a central role in innate immunity. Our previous single-cell RNA sequencing of peripheral blood mononuclear cells (PBMC) revealed a new subset of monocytes in children with KD called L-Selectin+ classical monocytes (SELL+ CM). Therefore, we aimed to investigate the correlation between KD and SELL+ CM. Patients and Methods Peripheral blood samples were collected from 81 KD patients, 18 febrile patients and 36 healthy children before treatment. Among them, ten KD patients were followed up, and samples were obtained before and after intravenous immunoglobulin (IVIG) treatment. Analysis of SELL+ CM was performed using flow cytometry. Additionally, ROC curve analysis was conducted to assess the diagnostic value of SELL+ CM for KD. Results Classical monocytes (CM) expressed the highest levels of L-selectin in children with KD. The ratio of SELL+ CM in CM was significantly higher in KD patients than in febrile and healthy children. Following IVIG treatment, the ratio of SELL+ CM in CM showed a downward trend. The receiver operating characteristic (ROC) curve analysis (the area under the curve, AUC = 0.71) indicated the potential diagnostic value of SELL+ CM in KD. The correlation analysis suggested that SELL+ CM may serve as a new clinical index for patients with KD. Conclusion In KD, the ratio of SELL+ CM in CM significantly increases during the acute phase, which may become a potential biomarker and help facilitate KD diagnosis based on clinical features.
Collapse
Affiliation(s)
- Yihua Jin
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, People's Republic of China
| | - Zhimin Geng
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, People's Republic of China
- Pediatric Cardiovascular Diseases Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, People's Republic of China
| | - Kun Lin
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, People's Republic of China
| | - Xinyu Gu
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, People's Republic of China
| | - Xiwei Feng
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, People's Republic of China
| | - Songling Fu
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, People's Republic of China
| | - Wei Wang
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, People's Republic of China
| | - Chunhong Xie
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, People's Republic of China
| | - Yujia Wang
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, People's Republic of China
| | - Fangqi Gong
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, People's Republic of China
| |
Collapse
|
39
|
Mildner A, Kim KW, Yona S. Unravelling monocyte functions: from the guardians of health to the regulators of disease. DISCOVERY IMMUNOLOGY 2024; 3:kyae014. [PMID: 39430099 PMCID: PMC11486918 DOI: 10.1093/discim/kyae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/06/2024] [Accepted: 08/29/2024] [Indexed: 10/22/2024]
Abstract
Monocytes are a key component of the innate immune system. They undergo intricate developmental processes within the bone marrow, leading to diverse monocyte subsets in the circulation. In a state of healthy homeostasis, monocytes are continuously released into the bloodstream, destined to repopulate specific tissue-resident macrophage pools where they fulfil tissue-specific functions. However, under pathological conditions monocytes adopt various phenotypes to resolve inflammation and return to a healthy physiological state. This review explores the nuanced developmental pathways and functional roles that monocytes perform, shedding light on their significance in both physiological and pathological contexts.
Collapse
Affiliation(s)
- Alexander Mildner
- MediCity Research Laboratory, University of Turku, Turku, Finland
- InFLAMES Research Flagship, University of Turku, 20014 Turku, Finland
| | - Ki-Wook Kim
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Simon Yona
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| |
Collapse
|
40
|
Hedrick CC. Single-Cell Sleuthing: Cracking the Monocyte Code for Cardiovascular Clues. Circ Res 2024; 135:701-703. [PMID: 39208126 DOI: 10.1161/circresaha.124.325134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
|
41
|
Cao W, Wang K, Wang J, Chen Y, Gong H, Xiao L, Pan W. Causal relationship between immune cells and risk of myocardial infarction: evidence from a Mendelian randomization study. Front Cardiovasc Med 2024; 11:1416112. [PMID: 39257847 PMCID: PMC11384581 DOI: 10.3389/fcvm.2024.1416112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/01/2024] [Indexed: 09/12/2024] Open
Abstract
Background Atherosclerotic plaque rupture is a major cause of heart attack. Previous studies have shown that immune cells are involved in the development of atherosclerosis, but different immune cells play different roles. The aim of this study was to investigate the causal relationship between immunological traits and myocardial infarction (MI). Methods To assess the causal association of immunological profiles with myocardial infarction based on publicly available genome-wide studies, we used a two-sample mendelian randomization (MR) approach with inverse variance weighted (IVW) as the main analytical method. Sensitivity analyses were used to assess heterogeneity and horizontal pleiotropy. Results A two-sample MR analysis was conducted using IVW as the primary method. At a significance level of 0.001, we identified 47 immunophenotypes that have a significant causal relationship with MI. Seven of these were present in B cells, five in cDC, four in T cells at the maturation stage, six in monocytes, five in myeloid cells, 12 in TBNK cells, and eight in Treg cells. Sensitivity analyses were performed to confirm the robustness of the MR results. Conclusions Our results provide strong evidence that multiple immune cells have a causal effect on the risk of myocardial infarction. This discovery provides a new avenue for the development of therapeutic treatments for myocardial infarction and a new target for drug development.
Collapse
Affiliation(s)
- Wenjing Cao
- Cardiology Department, Geriatrics Department, Foshan Women and Children Hospital, Foshan, Guangdong, China
| | - Kui Wang
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jiawei Wang
- Department of Critical Care Medicine, Jieyang Third People's Hospital, Jieyang, China
| | - Yuhua Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Hanxian Gong
- Cardiology Department, Geriatrics Department, Foshan Women and Children Hospital, Foshan, Guangdong, China
| | - Lei Xiao
- Cardiology Department, Geriatrics Department, Foshan Women and Children Hospital, Foshan, Guangdong, China
| | - Wei Pan
- Cardiology Department, Geriatrics Department, Foshan Women and Children Hospital, Foshan, Guangdong, China
| |
Collapse
|
42
|
Henderson E, Wilson K, Huynh G, Plebanski M, Corrie S. Bionano Interactions of Organosilica Nanoparticles with Myeloid Derived Immune Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43329-43340. [PMID: 39109853 DOI: 10.1021/acsami.4c08415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Investigating the interactions between nanomaterials and the cells they are likely to encounter in vivo is a critical aspect of designing nanomedicines for imaging and therapeutic applications. Immune cells such as dendritic cells, macrophages, and myeloid derived suppressor cells have a frontline role in the identification and removal of foreign materials from the body, with interactions shown to be heavily dependent on variables such as nanoparticle size, charge, and surface chemistry. Interactions such as cellular association or uptake of nanoparticles can lead to diminished functionality or rapid clearance from the body, making it critical to consider these interactions when designing and synthesizing nanomaterials for biomedical applications ranging from drug delivery to imaging and biosensing. We investigated the interactions between PEGylated organosilica nanoparticles and naturally endocytic immune cells grown from stem cells in murine bone marrow. Specifically, we varied the particle size from 60 nm up to 1000 nm and investigated the effects of size on immune cell association, activation, and maturation with these critical gatekeeper cells. These results will help inform future design parameters for in vitro and in vivo biomedical applications utilizing organosilica nanoparticles.
Collapse
Affiliation(s)
- Edward Henderson
- Department of Chemical and Biological Engineering, Monash University, Clayton, Melbourne, Victoria 3800, Australia
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Victoria 3083, Australia
| | - Kirsty Wilson
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Victoria 3083, Australia
| | - Gabriel Huynh
- Department of Chemical and Biological Engineering, Monash University, Clayton, Melbourne, Victoria 3800, Australia
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Victoria 3083, Australia
| | - Simon Corrie
- Department of Chemical and Biological Engineering, Monash University, Clayton, Melbourne, Victoria 3800, Australia
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Victoria 3083, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, Melbourne, Victoria 3800, Australia
| |
Collapse
|
43
|
Gottipati MK, D'Amato AR, Saksena J, Popovich PG, Wang Y, Gilbert RJ. Delayed administration of interleukin-4 coacervate alleviates the neurotoxic phenotype of astrocytes and promotes functional recovery after a contusion spinal cord injury. J Neural Eng 2024; 21:046052. [PMID: 39029499 DOI: 10.1088/1741-2552/ad6596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/19/2024] [Indexed: 07/21/2024]
Abstract
Objective. Macrophages and astrocytes play a crucial role in the aftermath of a traumatic spinal cord injury (SCI). Infiltrating macrophages adopt a pro-inflammatory phenotype while resident astrocytes adopt a neurotoxic phenotype at the injury site, both of which contribute to neuronal death and inhibit axonal regeneration. The cytokine interleukin-4 (IL-4) has shown significant promise in preclinical models of SCI by alleviating the macrophage-mediated inflammation and promoting functional recovery. However, its effect on neurotoxic reactive astrocytes remains to be elucidated, which we explored in this study. We also studied the beneficial effects of a sustained release of IL-4 from an injectable biomaterial compared to bolus administration of IL-4.Approach. We fabricated a heparin-based coacervate capable of anchoring and releasing bioactive IL-4 and tested its efficacyin vitroandin vivo. Main results. We show that IL-4 coacervate is biocompatible and drives a robust anti-inflammatory macrophage phenotype in culture. We also show that IL-4 and IL-4 coacervate can alleviate the reactive neurotoxic phenotype of astrocytes in culture. Finally, using a murine model of contusion SCI, we show that IL-4 and IL-4 coacervate, injected intraspinally 2 d post-injury, can reduce macrophage-mediated inflammation, and alleviate neurotoxic astrocyte phenotype, acutely and chronically, while also promoting neuroprotection with significant improvements in hindlimb locomotor recovery. We observed that IL-4 coacervate can promote a more robust regenerative macrophage phenotypein vitro, as well as match its efficacyin vivo,compared to bolus IL-4.Significance. Our work shows the promise of coacervate as a great choice for local and prolonged delivery of cytokines like IL-4. We support this by showing that the coacervate can release bioactive IL-4, which acts on macrophages and astrocytes to promote a pro-regenerative environment following a SCI leading to robust neuroprotective and functional outcomes.
Collapse
Affiliation(s)
- Manoj K Gottipati
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, United States of America
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, United States of America
- Department of Neuroscience, The Ohio State University, 460 W. 12th Avenue, Columbus, OH 43210, United States of America
- Center for Brain and Spinal Cord Repair, The Ohio State University, 460 W. 12th Avenue, Columbus, OH 43210, United States of America
| | - Anthony R D'Amato
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, 134 Hollister Drive, 283 Kimball Hall, Ithaca, NY 14853, United States of America
| | - Jayant Saksena
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, United States of America
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, United States of America
| | - Phillip G Popovich
- Department of Neuroscience, The Ohio State University, 460 W. 12th Avenue, Columbus, OH 43210, United States of America
- Center for Brain and Spinal Cord Repair, The Ohio State University, 460 W. 12th Avenue, Columbus, OH 43210, United States of America
| | - Yadong Wang
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, 134 Hollister Drive, 283 Kimball Hall, Ithaca, NY 14853, United States of America
| | - Ryan J Gilbert
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, United States of America
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, United States of America
| |
Collapse
|
44
|
Peña OA, Martin P. Cellular and molecular mechanisms of skin wound healing. Nat Rev Mol Cell Biol 2024; 25:599-616. [PMID: 38528155 DOI: 10.1038/s41580-024-00715-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2024] [Indexed: 03/27/2024]
Abstract
Wound healing is a complex process that involves the coordinated actions of many different tissues and cell lineages. It requires tight orchestration of cell migration, proliferation, matrix deposition and remodelling, alongside inflammation and angiogenesis. Whereas small skin wounds heal in days, larger injuries resulting from trauma, acute illness or major surgery can take several weeks to heal, generally leaving behind a fibrotic scar that can impact tissue function. Development of therapeutics to prevent scarring and successfully repair chronic wounds requires a fuller knowledge of the cellular and molecular mechanisms driving wound healing. In this Review, we discuss the current understanding of the different phases of wound healing, from clot formation through re-epithelialization, angiogenesis and subsequent scar deposition. We highlight the contribution of different cell types to skin repair, with emphasis on how both innate and adaptive immune cells in the wound inflammatory response influence classically studied wound cell lineages, including keratinocytes, fibroblasts and endothelial cells, but also some of the less-studied cell lineages such as adipocytes, melanocytes and cutaneous nerves. Finally, we discuss newer approaches and research directions that have the potential to further our understanding of the mechanisms underpinning tissue repair.
Collapse
Affiliation(s)
- Oscar A Peña
- School of Biochemistry, University of Bristol, Bristol, UK.
| | - Paul Martin
- School of Biochemistry, University of Bristol, Bristol, UK.
| |
Collapse
|
45
|
Shi H, Song J, Gao L, Shan X, Panicker SR, Yao L, McDaniel M, Zhou M, McGee S, Zhong H, Griffin CT, Xia L, Shao B. Deletion of Talin1 in Myeloid Cells Facilitates Atherosclerosis in Mice. Arterioscler Thromb Vasc Biol 2024; 44:1799-1812. [PMID: 38899470 DOI: 10.1161/atvbaha.123.319677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 04/23/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Integrin-regulated monocyte recruitment and cellular responses of monocyte-derived macrophages are critical for the pathogenesis of atherosclerosis. In the canonical model, talin1 controls ligand binding to integrins, a prerequisite for integrins to mediate leukocyte recruitment and induce immune responses. However, the role of talin1 in the development of atherosclerosis has not been studied. Our study investigated how talin1 in myeloid cells regulates the progression of atherosclerosis. METHODS On an Apoe-/- background, myeloid talin1-deficient mice and the control mice were fed with a high-fat diet for 8 or 12 weeks to induce atherosclerosis. The atherosclerosis development in the aorta and monocyte recruitment into atherosclerotic lesions were analyzed. RESULTS Myeloid talin1 deletion facilitated the formation of atherosclerotic lesions and macrophage deposition in lesions. Talin1 deletion abolished integrin β2-mediated adhesion of monocytes but did not impair integrin α4β1-dependent cell adhesion in a flow adhesion assay. Strikingly, talin1 deletion did not prevent Mn2+- or chemokine-induced activation of integrin α4β1 to the high-affinity state for ligands. In an in vivo competitive homing assay, monocyte infiltration into inflamed tissues was prohibited by antibodies to integrin α4β1 but was not affected by talin1 deletion or antibodies to integrin β2. Furthermore, quantitative polymerase chain reaction and ELISA (enzyme-linked immunosorbent assay) analysis showed that macrophages produced cytokines to promote inflammation and the proliferation of smooth muscle cells. Ligand binding to integrin β3 inhibited cytokine generation in macrophages, although talin1 deletion abolished the negative effects of integrin β3. CONCLUSIONS Integrin α4β1 controls monocyte recruitment during atherosclerosis. Talin1 is dispensable for integrin α4β1 activation to the high-affinity state and integrin α4β1-mediated monocyte recruitment. Yet, talin1 is required for integrin β3 to inhibit the production of inflammatory cytokines in macrophages. Thus, intact monocyte recruitment and elevated inflammatory responses cause enhanced atherosclerosis in talin1-deficient mice. Our study provides novel insights into the roles of myeloid talin1 and integrins in the progression of atherosclerosis.
Collapse
Affiliation(s)
- Huiping Shi
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation (H.S., J.S., L.G., X.S., S.R.P., L.Y., M.M., M.Z., S.M., C.T.G., L.X., B.S.)
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center (H.S., L.X.)
| | - Jianhua Song
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation (H.S., J.S., L.G., X.S., S.R.P., L.Y., M.M., M.Z., S.M., C.T.G., L.X., B.S.)
| | - Liang Gao
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation (H.S., J.S., L.G., X.S., S.R.P., L.Y., M.M., M.Z., S.M., C.T.G., L.X., B.S.)
| | - Xindi Shan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation (H.S., J.S., L.G., X.S., S.R.P., L.Y., M.M., M.Z., S.M., C.T.G., L.X., B.S.)
| | - Sumith R Panicker
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation (H.S., J.S., L.G., X.S., S.R.P., L.Y., M.M., M.Z., S.M., C.T.G., L.X., B.S.)
| | - Longbiao Yao
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation (H.S., J.S., L.G., X.S., S.R.P., L.Y., M.M., M.Z., S.M., C.T.G., L.X., B.S.)
| | - Michael McDaniel
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation (H.S., J.S., L.G., X.S., S.R.P., L.Y., M.M., M.Z., S.M., C.T.G., L.X., B.S.)
| | - Meixiang Zhou
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation (H.S., J.S., L.G., X.S., S.R.P., L.Y., M.M., M.Z., S.M., C.T.G., L.X., B.S.)
| | - Samuel McGee
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation (H.S., J.S., L.G., X.S., S.R.P., L.Y., M.M., M.Z., S.M., C.T.G., L.X., B.S.)
| | - Hui Zhong
- Lindsley F. Kimball Research Institute, New York Blood Center (H.Z., B.S.)
| | - Courtney T Griffin
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation (H.S., J.S., L.G., X.S., S.R.P., L.Y., M.M., M.Z., S.M., C.T.G., L.X., B.S.)
| | - Lijun Xia
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation (H.S., J.S., L.G., X.S., S.R.P., L.Y., M.M., M.Z., S.M., C.T.G., L.X., B.S.)
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center (H.S., L.X.)
| | - Bojing Shao
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation (H.S., J.S., L.G., X.S., S.R.P., L.Y., M.M., M.Z., S.M., C.T.G., L.X., B.S.)
- Lindsley F. Kimball Research Institute, New York Blood Center (H.Z., B.S.)
| |
Collapse
|
46
|
Yang W, Arora M, Han HW, Jiang W, Kim DM, Ai W, Pan Q, Kumar MNVR, Brashear WA, Sun Y, Guo S. ZnPP-laden nanoparticles improve glucose homeostasis and chronic inflammation during obesity. Br J Pharmacol 2024; 181:2886-2904. [PMID: 38679457 DOI: 10.1111/bph.16356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/16/2024] [Accepted: 02/09/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND AND PURPOSE Chronic inflammation plays a pivotal role in the development of Type 2 diabetes mellitus (T2DM). Previous studies have shown that haem oxygenase-1 (HO-1) plays a proinflammatory role during metabolic stress, suggesting that HO-1 inhibition could be an effective strategy to treat T2DM. However, the application of HO-1 inhibitors is restricted due to solubility-limited bioavailability. In this study, we encapsulated the HO-1 inhibitor, zinc protoporphyrin IX (ZnPP), within nanoparticles and investigated their role in regulating glucose homeostasis and chronic inflammation during obesity. EXPERIMENTAL APPROACH We delivered DMSO-dissolved ZnPP (DMSO-ZnPP) and ZnPP-laden nanoparticles (Nano-ZnPP) to diet-induced obese male mice for 6 weeks. Glucose and insulin tolerance tests were carried out, liver and adipose tissue gene expression profiles analysed, and systemic inflammation analysed using flow cytometry. KEY RESULTS Nanoparticles significantly increased the delivery efficiency of ZnPP in both cells and mice. In mice with diet-induced obesity, inhibition of HO-1 by Nano-ZnPP significantly decreased adiposity, increased insulin sensitivity, and improved glucose tolerance. Moreover, Nano-ZnPP treatment attenuated both local and systemic inflammatory levels during obesity. Mechanistically, Nano-ZnPP significantly attenuated glucagon, TNF, and fatty acid synthesis signalling pathways in the liver. In white adipose tissue, the oxidative phosphorylation signalling pathway was enhanced and the inflammation signalling pathway diminished by Nano-ZnPP. Our results show that Nano-ZnPP has better effects on the improvement of glucose homeostasis and attenuation of chronic inflammation, than those of DMSO-dissolved ZnPP. CONCLUSIONS AND IMPLICATIONS These findings indicate that ZnPP-laden nanoparticles are potential therapeutic agents for treating T2DM.
Collapse
Affiliation(s)
- Wanbao Yang
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas, USA
| | - Meenakshi Arora
- College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama, USA
| | - Hye Won Han
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas, USA
| | - Wen Jiang
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas, USA
| | - Da Mi Kim
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas, USA
| | - Weiqi Ai
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas, USA
| | - Quan Pan
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas, USA
| | - M N V Ravi Kumar
- College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama, USA
| | - Wesley A Brashear
- High Performance Research Computing, Texas A&M University, College Station, Texas, USA
| | - Yuxiang Sun
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas, USA
| | - Shaodong Guo
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
47
|
Charoensaensuk V, Yeh WL, Huang BR, Hsu TC, Xie SY, Chen CW, Wang YW, Yang LY, Tsai CF, Lu DY. Repetitive Administration of Low-Dose Lipopolysaccharide Improves Repeated Social Defeat Stress-Induced Behavioral Abnormalities and Aberrant Immune Response. J Neuroimmune Pharmacol 2024; 19:38. [PMID: 39066908 DOI: 10.1007/s11481-024-10141-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/14/2024] [Indexed: 07/30/2024]
Abstract
Repetitive exposure of innate immune cells to a subthreshold dosage of endotoxin components may modulate inflammatory responses. However, the regulatory mechanisms in the interactions between the central nervous system (CNS) and the immune system remain unclear. This study aimed to investigate the effects of lipopolysaccharide (LPS) preconditioning in repeated social defeat stress (RSDS)-induced abnormal immune responses and behavioral impairments. This study aimed to elucidate the mechanisms that underlie the protective effects of repeated administration of a subthreshold dose LPS on behavioral impairments using the RSDS paradigm. LPS preconditioning improved abnormal behaviors in RSDS-defeated mice, accompanied by decreased monoamine oxidases and increased glucocorticoid receptor expression in the hippocampus. In addition, pre-treated with LPS significantly decreased the recruited peripheral myeloid cells (CD11b+CD45hi), mainly circulating inflammatory monocytes (CD11b+CD45hiLy6ChiCCR2+) into the brain in response to RSDS challenge. Importantly, we found that LPS preconditioning exerts its protective properties by regulating lipocalin-2 (LCN2) expression in microglia, which subsequently induces expressions of chemokine CCL2 and pro-inflammatory cytokine. Subsequently, LPS-preconditioning lessened the resident microglia population (CD11b+CD45intCCL2+) in the brains of the RSDS-defeated mice. Moreover, RSDS-associated expressions of leukocytes (CD11b+CD45+CCR2+) and neutrophils (CD11b+CD45+Ly6G+) in the bone marrow, spleen, and blood were also attenuated by LPS-preconditioning. In particular, LPS preconditioning also promoted the expression of endogenous antioxidants and anti-inflammatory proteins in the hippocampus. Our results demonstrate that LPS preconditioning ameliorates lipocalin 2-associated microglial activation and aberrant immune response and promotes the expression of endogenous antioxidants and anti-inflammatory protein, thereby maintaining the homeostasis of pro-inflammation/anti-inflammation in both the brain and immune system, ultimately protecting the mice from RSDS-induced aberrant immune response and behavioral changes.
Collapse
Affiliation(s)
- Vichuda Charoensaensuk
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Wei-Lan Yeh
- Department of Biochemistry, School of Medicine, China Medical University, Taichung, 40402, Taiwan
- Institute of New Drug Development, China Medical University, Taichung, Taiwan
| | - Bor-Ren Huang
- Department of Neurosurgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Tsung-Che Hsu
- School of Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Sheng-Yun Xie
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Chao-Wei Chen
- Institute of New Drug Development, China Medical University, Taichung, Taiwan
| | - Yu-Wen Wang
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| | - Liang-Yo Yang
- Department of Physiology, School of Medicine, China Medical University, Taichung, 404328, Taiwan
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
- Laboratory for Neural Repair, China Medical University Hospital, Taichung, 404327, Taiwan
| | - Cheng-Fang Tsai
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Dah-Yuu Lu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
48
|
Malinská N, Grobárová V, Knížková K, Černý J. Maternal-Fetal Microchimerism: Impacts on Offspring's Immune Development and Transgenerational Immune Memory Transfer. Physiol Res 2024; 73:315-332. [PMID: 39027950 PMCID: PMC11299782 DOI: 10.33549/physiolres.935296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/06/2024] [Indexed: 07/27/2024] Open
Abstract
Maternal-fetal microchimerism is a fascinating phenomenon in which maternal cells migrate to the tissues of the offspring during both pregnancy and breastfeeding. These cells primarily consist of leukocytes and stem cells. Remarkably, these maternal cells possess functional potential in the offspring and play a significant role in shaping their immune system development. T lymphocytes, a cell population mainly found in various tissues of the offspring, have been identified as the major cell type derived from maternal microchimerism. These T lymphocytes not only exert effector functions but also influence the development of the offspring's T lymphocytes in the thymus and the maturation of B lymphocytes in the lymph nodes. Furthermore, the migration of maternal leukocytes also facilitates the transfer of immune memory across generations. Maternal microchimerism has also been observed to address immunodeficiencies in the offspring. This review article focuses on investigating the impact of maternal cells transported within maternal microchimerism on the immune system development of the offspring, as well as elucidating the effector functions of maternal cells that migrate through the placenta and breast milk to reach the offspring.
Collapse
Affiliation(s)
- N Malinská
- Laboratory of Cell Immunology, Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic.
| | | | | | | |
Collapse
|
49
|
Sánchez MC, Herráiz A, Ciudad MJ, Arias M, Alonso R, Doblas C, Llama-Palacios A, Collado L. Metabolomics and Biochemical Benefits of Multivitamin and Multimineral Supplementation in Healthy Individuals: A Pilot Study. Foods 2024; 13:2207. [PMID: 39063291 PMCID: PMC11275291 DOI: 10.3390/foods13142207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/06/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Scientific evidence regarding the effectiveness of vitamin and mineral supplements in healthy individuals remains scarce. In a randomized, double-blind study, 30 healthy individuals were assigned to receive a single daily dose of multivitamin and multimineral supplementation or a double daily dose for 30 days. Before and after the intake, an untargeted metabolomics assay for serum metabolites was conducted by hydrophilic interaction liquid chromatography-mass spectrometry, and clinical assessments of peripheral blood samples were performed. A paired t-test for metabolic analysis, adjusted using the false discovery rate (FDR) and p-value correction method (rate of change > 2 and FDR < 0.05), the Shapiro-Wilk test, Student's t-test, and the Mann-Whitney U test were applied depending on the variable, with a 5% significance level. An impact on oxidative stress was observed, with a significant reduction in homocysteine levels and an increment of pyridoxic acid (vitamin B6). The effect on energy metabolism was shown by a significant increase in diverse metabolites, such as linoleoylcarnitine. Serum iron and calcium levels were also impacted. Overall, we observed a nutritional balance compatible with a good state of health. In conclusion, beneficial effects on adult health were demonstrated in relation to oxidative stress, energy metabolism, and nutritional balance.
Collapse
Affiliation(s)
- María C. Sánchez
- Department of Medicine, Faculty of Medicine, University Complutense, 28040 Madrid, Spain; (M.C.S.); (A.H.); (A.L.-P.); (L.C.)
- GINTRAMIS Research Group (Translational Research Group on Microbiota and Health), Faculty of Medicine, University Complutense, 28040 Madrid, Spain
| | - Ana Herráiz
- Department of Medicine, Faculty of Medicine, University Complutense, 28040 Madrid, Spain; (M.C.S.); (A.H.); (A.L.-P.); (L.C.)
| | - María J. Ciudad
- Department of Medicine, Faculty of Medicine, University Complutense, 28040 Madrid, Spain; (M.C.S.); (A.H.); (A.L.-P.); (L.C.)
- GINTRAMIS Research Group (Translational Research Group on Microbiota and Health), Faculty of Medicine, University Complutense, 28040 Madrid, Spain
| | - Marta Arias
- Occupational Medicine Service, Faculty of Medicine, University Complutense, 28040 Madrid, Spain; (M.A.); (R.A.)
| | - Raquel Alonso
- Occupational Medicine Service, Faculty of Medicine, University Complutense, 28040 Madrid, Spain; (M.A.); (R.A.)
| | - Carmen Doblas
- Human Nutrition and Dietetics, Faculty of Medicine, University Complutense, 28040 Madrid, Spain;
| | - Arancha Llama-Palacios
- Department of Medicine, Faculty of Medicine, University Complutense, 28040 Madrid, Spain; (M.C.S.); (A.H.); (A.L.-P.); (L.C.)
- GINTRAMIS Research Group (Translational Research Group on Microbiota and Health), Faculty of Medicine, University Complutense, 28040 Madrid, Spain
| | - Luis Collado
- Department of Medicine, Faculty of Medicine, University Complutense, 28040 Madrid, Spain; (M.C.S.); (A.H.); (A.L.-P.); (L.C.)
- GINTRAMIS Research Group (Translational Research Group on Microbiota and Health), Faculty of Medicine, University Complutense, 28040 Madrid, Spain
| |
Collapse
|
50
|
Schlenker R, Schwalie PC, Dettling S, Huesser T, Irmisch A, Mariani M, Martínez Gómez JM, Ribeiro A, Limani F, Herter S, Yángüez E, Hoves S, Somandin J, Siebourg-Polster J, Kam-Thong T, de Matos IG, Umana P, Dummer R, Levesque MP, Bacac M. Myeloid-T cell interplay and cell state transitions associated with checkpoint inhibitor response in melanoma. MED 2024; 5:759-779.e7. [PMID: 38593812 DOI: 10.1016/j.medj.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/23/2023] [Accepted: 03/17/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND The treatment of melanoma, the deadliest form of skin cancer, has greatly benefited from immunotherapy. However, many patients do not show a durable response, which is only partially explained by known resistance mechanisms. METHODS We performed single-cell RNA sequencing of tumor immune infiltrates and matched peripheral blood mononuclear cells of 22 checkpoint inhibitor (CPI)-naive stage III-IV metastatic melanoma patients. After sample collection, the same patients received CPI treatment, and their response was assessed. FINDINGS CPI responders showed high levels of classical monocytes in peripheral blood, which preferentially transitioned toward CXCL9-expressing macrophages in tumors. Trajectories of tumor-infiltrating CD8+ T cells diverged at the level of effector memory/stem-like T cells, with non-responder cells progressing into a state characterized by cellular stress and apoptosis-related gene expression. Consistently, predicted non-responder-enriched myeloid-T/natural killer cell interactions were primarily immunosuppressive, while responder-enriched interactions were supportive of T cell priming and effector function. CONCLUSIONS Our study illustrates that the tumor immune microenvironment prior to CPI treatment can be indicative of response. In perspective, modulating the myeloid and/or effector cell compartment by altering the described cell interactions and transitions could improve immunotherapy response. FUNDING This research was funded by Roche Pharma Research and Early Development.
Collapse
Affiliation(s)
- Ramona Schlenker
- Roche Innovation Center Munich, Roche Pharma Research and Early Development (pRED), Penzberg, Germany.
| | | | - Steffen Dettling
- Roche Innovation Center Munich, Roche Pharma Research and Early Development (pRED), Penzberg, Germany
| | - Tamara Huesser
- Roche Innovation Center Zurich, pRED, Schlieren, Switzerland
| | - Anja Irmisch
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Marisa Mariani
- Roche Innovation Center Zurich, pRED, Schlieren, Switzerland
| | - Julia M Martínez Gómez
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Alison Ribeiro
- Roche Innovation Center Zurich, pRED, Schlieren, Switzerland
| | - Florian Limani
- Roche Innovation Center Zurich, pRED, Schlieren, Switzerland
| | - Sylvia Herter
- Roche Innovation Center Zurich, pRED, Schlieren, Switzerland
| | - Emilio Yángüez
- Roche Innovation Center Zurich, pRED, Schlieren, Switzerland
| | - Sabine Hoves
- Roche Innovation Center Munich, Roche Pharma Research and Early Development (pRED), Penzberg, Germany
| | - Jitka Somandin
- Roche Innovation Center Zurich, pRED, Schlieren, Switzerland
| | | | | | | | - Pablo Umana
- Roche Innovation Center Zurich, pRED, Schlieren, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Mitchell P Levesque
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Marina Bacac
- Roche Innovation Center Zurich, pRED, Schlieren, Switzerland
| |
Collapse
|