1
|
Lori A, Patel AV, Westmaas JL, Diver WR. A novel smoking cessation behavior based on quit attempts may identify new genes associated with long-term abstinence. Addict Behav 2025; 161:108192. [PMID: 39504611 DOI: 10.1016/j.addbeh.2024.108192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Smoking cessation at any age has been shown to improve quality of life, decrease illness, and reduce mortality. About half of smokers attempt to quit each year, but only ∼ 7 % maintain long-term abstinence unaided. Few genetic factors have been consistently associated with smoking cessation, possibly due to poor phenotype definition. METHODS We performed a genome-wide association study (GWAS) with an alternative phenotype based on the difficulty of quitting smoking (DQS) in the Cancer Prevention Study-3 cohort. Difficult quitters were defined as having made at least ten quit attempts, whether successful or not, and easy quitters as having quit after only one attempt. Only individuals of European ancestry were selected for the study. Among 10,004 smokers (5,071 difficult quitters, 4,933 easy quitters), we assessed the genetic heritability of DQS and evaluated associations between DQS and each genome-wide variant using logistic regression while adjusting for confounders, including smoking intensity (cigarettes per day). RESULTS The genetic heritability of the DQS phenotype was 13 %, comparable to, or higher than, the reported heritability of other smoking behaviors (e.g., smoking intensity, cessation). Although no variants were genome-wide significant, several genes were identified at a subthreshold level (p < 10-4). A variant in MEGF9 (rs149760032), a transmembrane protein largely expressed in the central nervous system, showed the strongest association with DQS (OR = 0.60, p = 1.3x10-7). Additional variants associated with DQS independently by smoking intensity were also detected in GLRA3 (rs73006492, OR = 0.77, p = 5.6x10-7) and FOCAD (rs112251973, OR = 1.96, p = 1.8x10-6) and are plausibly related to smoking cessation through pathways in the brain and respiratory system. CONCLUSIONS The use of an alternative cessation phenotype based on difficulty quitting smoking facilitated the identification of new pathways that could lead to unique smoking treatments.
Collapse
Affiliation(s)
- Adriana Lori
- Department of Population Science, American Cancer Society, Atlanta, GA, USA.
| | - Alpa V Patel
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - J Lee Westmaas
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - W Ryan Diver
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| |
Collapse
|
2
|
Reed ZE, Wootton RE, Khouja JN, Richardson TG, Sanderson E, Davey Smith G, Munafò MR. Exploring pleiotropy in Mendelian randomisation analyses: What are genetic variants associated with 'cigarette smoking initiation' really capturing? Genet Epidemiol 2025; 49:e22583. [PMID: 39099143 PMCID: PMC7616876 DOI: 10.1002/gepi.22583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 06/28/2024] [Accepted: 07/17/2024] [Indexed: 08/06/2024]
Abstract
Genetic variants used as instruments for exposures in Mendelian randomisation (MR) analyses may have horizontal pleiotropic effects (i.e., influence outcomes via pathways other than through the exposure), which can undermine the validity of results. We examined the extent of this using smoking behaviours as an example. We first ran a phenome-wide association study in UK Biobank, using a smoking initiation genetic instrument. From the most strongly associated phenotypes, we selected those we considered could either plausibly or not plausibly be caused by smoking. We examined associations between genetic instruments for smoking initiation, smoking heaviness and lifetime smoking and these phenotypes in UK Biobank and the Avon Longitudinal Study of Parents and Children (ALSPAC). We conducted negative control analyses among never smokers, including children. We found evidence that smoking-related genetic instruments were associated with phenotypes not plausibly caused by smoking in UK Biobank and (to a lesser extent) ALSPAC. We observed associations with phenotypes among never smokers. Our results demonstrate that smoking-related genetic risk scores are associated with unexpected phenotypes that are less plausibly downstream of smoking. This may reflect horizontal pleiotropy in these genetic risk scores, and we would encourage researchers to exercise caution this when using these and genetic risk scores for other complex behavioural exposures. We outline approaches that could be taken to consider this and overcome issues caused by potential horizontal pleiotropy, for example, in genetically informed causal inference analyses (e.g., MR) it is important to consider negative control outcomes and triangulation approaches, to avoid arriving at incorrect conclusions.
Collapse
Affiliation(s)
- Zoe E. Reed
- School of Psychological ScienceUniversity of BristolBristolUK
- MRC Integrative Epidemiology Unit, Bristol Medical SchoolUniversity of BristolBristolUK
| | - Robyn E. Wootton
- School of Psychological ScienceUniversity of BristolBristolUK
- MRC Integrative Epidemiology Unit, Bristol Medical SchoolUniversity of BristolBristolUK
- Nic Waals Institute, Lovisenberg Diaconal HospitalOsloNorway
| | - Jasmine N. Khouja
- School of Psychological ScienceUniversity of BristolBristolUK
- MRC Integrative Epidemiology Unit, Bristol Medical SchoolUniversity of BristolBristolUK
| | - Tom G. Richardson
- MRC Integrative Epidemiology Unit, Bristol Medical SchoolUniversity of BristolBristolUK
| | - Eleanor Sanderson
- MRC Integrative Epidemiology Unit, Bristol Medical SchoolUniversity of BristolBristolUK
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, Bristol Medical SchoolUniversity of BristolBristolUK
| | - Marcus R. Munafò
- School of Psychological ScienceUniversity of BristolBristolUK
- MRC Integrative Epidemiology Unit, Bristol Medical SchoolUniversity of BristolBristolUK
- National Institute for Health Research Bristol Biomedical Research Centre, University Hospitals Bristol NHS Foundation TrustUniversity of BristolBristolUK
| |
Collapse
|
3
|
Wang T, Wang W, Xu C, Tian X, Zhang D. Genome-wide analysis in northern Chinese twins identifies twelve new susceptibility loci for pulmonary function. BMC Genomics 2024; 25:1255. [PMID: 39736507 DOI: 10.1186/s12864-024-11165-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 12/17/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND Previous genome-wide association studies (GWAS) have established association between genetic variants and pulmonary function across various ethnics, whereas such associations are scarcely reported in Chinese adults. Therefore, we conducted an GWAS to explore relationships between genetic variants and pulmonary function among middle-aged Chinese dizygotic twins and further validated the top variants using data from the UK Biobank (UKB). METHODS In the discovery phase, 139 dizygotic twin pairs were drawn from the Qingdao Twin Registry. Pulmonary function was assessed using three parameters: forced expiratory volume the first second (FEV1), forced vital capacity (FVC), and FEV1/FVC ratio. GWAS was performed using GEMMA, Gene-based analysis was conducted by VEGAS2. And pathway enrichment analysis was performed using PASCAL. In the validation phase, Single-nucleotide polymorphisms (SNPs) with suggestive significance were examined through linear regression analysis of the additive effect model among 1573 Chinese ethnic participants from UKB. RESULTS The median age of twin pairs in the study was 49 years. 3 SNPs (rs80345886, rs117883876, and 75139439) related to FEV1 achieved genome-wide significance. Moreover, 222, 150, and 73 SNPs surpassed suggestive evidence level (p < 1 × 10- 5) for FEV1, FVC, and FEV1/FVC, respectively. Among them, 16 SNPs located in TBC1D16 for FEV1, 25 SNPs located in GPR126 for FVC, and 2 SNPs located in CCDC110 for FEV1/FVC, the three genes were also revealed by gene-based analysis. Moreover, 12 novel SNPs related to pulmonary function were validated to reach the nominal significance level (p < 0.05) in the UKB, with some located in the TBC1D16, TAFA5, and MTHFD1L genes. CONCLUSION Our GWAS results on Chinese dizygotic twins provide new references for the genetic regulation on pulmonary function. Twelve novel susceptibility loci are considered as possible crucial to pulmonary function.
Collapse
Affiliation(s)
- Tong Wang
- Department of Epidemiology and Health Statistics, The College of Public Health, Qingdao University, NO. 308 Ning Xia Street, Qingdao, Shandong Province, 266071, People's Republic of China
| | - Weijing Wang
- Department of Epidemiology and Health Statistics, The College of Public Health, Qingdao University, NO. 308 Ning Xia Street, Qingdao, Shandong Province, 266071, People's Republic of China
| | - Chunsheng Xu
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, Shandong Province, China
| | - Xiaocao Tian
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, Shandong Province, China.
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, The College of Public Health, Qingdao University, NO. 308 Ning Xia Street, Qingdao, Shandong Province, 266071, People's Republic of China.
| |
Collapse
|
4
|
Huguet G, Renne T, Poulain C, Dubuc A, Kumar K, Kazem S, Engchuan W, Shanta O, Douard E, Proulx C, Jean-Louis M, Saci Z, Mollon J, Schultz LM, Knowles EEM, Cox SR, Porteous D, Davies G, Redmond P, Harris SE, Schumann G, Dumas G, Labbe A, Pausova Z, Paus T, Scherer SW, Sebat J, Almasy L, Glahn DC, Jacquemont S. Effects of gene dosage on cognitive ability: A function-based association study across brain and non-brain processes. CELL GENOMICS 2024; 4:100721. [PMID: 39667348 DOI: 10.1016/j.xgen.2024.100721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/30/2024] [Accepted: 11/13/2024] [Indexed: 12/14/2024]
Abstract
Copy-number variants (CNVs) that increase the risk for neurodevelopmental disorders also affect cognitive ability. However, such CNVs remain challenging to study due to their scarcity, limiting our understanding of gene-dosage-sensitive biological processes linked to cognitive ability. We performed a genome-wide association study (GWAS) in 258,292 individuals, which identified-for the first time-a duplication at 2q12.3 associated with higher cognitive performance. We developed a functional-burden analysis, which tested the association between cognition and CNVs disrupting 6,502 gene sets biologically defined across tissues, cell types, and ontologies. Among those, 864 gene sets were associated with cognition, and effect sizes of deletion and duplication were negatively correlated. The latter suggested that functions across all biological processes were sensitive to either deletions (e.g., subcortical regions, postsynaptic) or duplications (e.g., cerebral cortex, presynaptic). Associations between non-brain tissues and cognition were driven partly by constrained genes, which may shed light on medical comorbidities in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Guillaume Huguet
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC, Canada.
| | - Thomas Renne
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, Canada
| | - Cécile Poulain
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, Canada
| | - Alma Dubuc
- École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Kuldeep Kumar
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC, Canada
| | - Sayeh Kazem
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, Canada
| | - Worrawat Engchuan
- The Hospital for Sick Children, Genetics and Genome Biology, Toronto, ON, Canada; The Hospital for Sick Children, The Centre for Applied Genomics, Toronto, ON, Canada
| | - Omar Shanta
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Elise Douard
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC, Canada
| | - Catherine Proulx
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC, Canada
| | - Martineau Jean-Louis
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC, Canada
| | - Zohra Saci
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC, Canada
| | - Josephine Mollon
- Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Laura M Schultz
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Emma E M Knowles
- Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Simon R Cox
- Lothian Birth Cohorts, Department of Psychology, School of Philosophy, Psychology and Language Sciences, The University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - David Porteous
- Lothian Birth Cohorts, Department of Psychology, School of Philosophy, Psychology and Language Sciences, The University of Edinburgh, Edinburgh EH8 9JZ, UK; Medical Genetics Section, Centre for Genomic & Experimental Medicine, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK; Generation Scotland, Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Gail Davies
- Lothian Birth Cohorts, Department of Psychology, School of Philosophy, Psychology and Language Sciences, The University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Paul Redmond
- Lothian Birth Cohorts, Department of Psychology, School of Philosophy, Psychology and Language Sciences, The University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Sarah E Harris
- Lothian Birth Cohorts, Department of Psychology, School of Philosophy, Psychology and Language Sciences, The University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Gunter Schumann
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Guillaume Dumas
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC, Canada; Mila - Quebec Artificial Intelligence Institute, Montréal, QC, Canada
| | - Aurélie Labbe
- Département de Sciences de la Décision, HEC Montreal, Montreal, QC, Canada
| | - Zdenka Pausova
- Research Institute of the Hospital for Sick Children, Toronto, ON, Canada; Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, ON, Canada; ECOGENE-21, Chicoutimi, QC, Canada
| | - Tomas Paus
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC, Canada; Department of Psychiatry and Addictology, Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Stephen W Scherer
- The Hospital for Sick Children, Genetics and Genome Biology, Toronto, ON, Canada; The Hospital for Sick Children, The Centre for Applied Genomics, Toronto, ON, Canada; McLaughlin Centre and Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Jonathan Sebat
- University of California, San Diego, Department of Psychiatry, Department of Cellular & Molecular Medicine, Beyster Center of Psychiatric Genomics, San Diego, CA, USA
| | - Laura Almasy
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - David C Glahn
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Olin Neuropsychiatric Research Center, Institute of Living, Hartford Hospital, Hartford, CT, USA
| | - Sébastien Jacquemont
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC, Canada; Department of Pediatrics, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
5
|
Voloudakis G, Therrien K, Tomasi S, Rajagopal VM, Choi SW, Demontis D, Fullard JF, Børglum AD, O'Reilly PF, Hoffman GE, Roussos P. Neuropsychiatric polygenic scores are weak predictors of professional categories. Nat Hum Behav 2024:10.1038/s41562-024-02074-5. [PMID: 39658624 DOI: 10.1038/s41562-024-02074-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/24/2024] [Indexed: 12/12/2024]
Abstract
Polygenic scores (PGS) enable the exploration of pleiotropic effects and genomic dissection of complex traits. Here, in 421,889 individuals with European ancestry from the Million Veteran Program and UK Biobank, we examine how PGS of 17 neuropsychiatric traits are related to membership in 22 broad professional categories. Overall, we find statistically significant but weak (the highest odds ratio is 1.1 per PGS standard deviation) associations between most professional categories and genetic predisposition for at least one neuropsychiatric trait. Secondary analyses in UK Biobank revealed independence of these associations from observed fluid intelligence and sex-specific effects. By leveraging aggregate population trends, we identified patterns in the public interest, such as the mediating effect of education attainment on the association of attention-deficit/hyperactivity disorder PGS with multiple professional categories. However, at the individual level, PGS explained less than 0.5% of the variance of professional membership, and almost none after we adjusted for education and socio-economic status.
Collapse
Affiliation(s)
- Georgios Voloudakis
- Center for Precision Medicine and Translational Therapeutics, JJ Peters VA Medical Center, Bronx, NY, USA.
- Mental Illness Research Education and Clinical Center, JJ Peters VA Medical Center, Bronx, NY, USA.
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Karen Therrien
- Center for Precision Medicine and Translational Therapeutics, JJ Peters VA Medical Center, Bronx, NY, USA
- Mental Illness Research Education and Clinical Center, JJ Peters VA Medical Center, Bronx, NY, USA
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Simone Tomasi
- Center for Precision Medicine and Translational Therapeutics, JJ Peters VA Medical Center, Bronx, NY, USA
- Mental Illness Research Education and Clinical Center, JJ Peters VA Medical Center, Bronx, NY, USA
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Veera M Rajagopal
- Department of Biomedicine/Human Genetics, Aarhus University, Aarhus, Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
- Regeneron Genetics Center, Tarrytown, NY, USA
| | - Shing Wan Choi
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ditte Demontis
- Department of Biomedicine/Human Genetics, Aarhus University, Aarhus, Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - John F Fullard
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anders D Børglum
- Department of Biomedicine/Human Genetics, Aarhus University, Aarhus, Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - Paul F O'Reilly
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gabriel E Hoffman
- Center for Precision Medicine and Translational Therapeutics, JJ Peters VA Medical Center, Bronx, NY, USA
- Mental Illness Research Education and Clinical Center, JJ Peters VA Medical Center, Bronx, NY, USA
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Panos Roussos
- Center for Precision Medicine and Translational Therapeutics, JJ Peters VA Medical Center, Bronx, NY, USA.
- Mental Illness Research Education and Clinical Center, JJ Peters VA Medical Center, Bronx, NY, USA.
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
6
|
Chen F, Zhao J, Mo R, Ding X, Zhang Y, Huang L, Xie T, Ding Y. Genetic Variants in the Adhesive G Protein-Coupled Receptor ADGRG6 are Associated with Increased Susceptibility to COPD in the Elderly Han Chinese Population of Southern China. Int J Chron Obstruct Pulmon Dis 2024; 19:2599-2610. [PMID: 39650745 PMCID: PMC11624663 DOI: 10.2147/copd.s478095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/14/2024] [Indexed: 12/11/2024] Open
Abstract
Background Mutations in ADGRG6 are associated with a variety of cancers and multiple types of diseases. However, the impact of genetic variations in ADGRG6 on chronic obstructive pulmonary disease (COPD) susceptibility has not yet been evaluated. Methods Considering the high prevalence of COPD among the elderly population in China, this study specifically targets the elderly Han population in Southern China as the study subject. Following the acquisition of participants' whole-genome DNA, genotyping was conducted using the Agena MassARRAY platform. The online tool 'SNPStats', which utilizes logistic regression, was employed to analyze and assess the correlation. Multi-factor dimensionality reduction was utilized to clarify the impact of "SNP-SNP" interactions on COPD risk. The False-Positive Report Probability (FPRP) was applied to determine whether significant results are noteworthy findings. Results The mutant allele "C" of rs11155242 was a protective genetic factor against COPD susceptibility (OR = 0.57, 95% CI = 0.36 to 0.91, p = 0.017). The heterozygous mutant genotype "CA" of rs11155242 was found to be significantly associated with reduced COPD risk (CA Vs AA: OR = 0.53, 95% CI = 0.32 to 0.90, p = 0.018). ADGRG6-rs11155242 was found to be strongly associated with a reduced risk of COPD in males, non-smokers, and subjects with a BMI below 24 kg/m2 (OR < 1, p < 0.05). The FPRP analysis indicated that the positive results identified in this study are noteworthy new findings. Conclusion The mutant allele "C" and mutant genotype "CA" of rs11155242 act as protective genetic factors against COPD susceptibility. This study will provide a new research direction for the personalized prevention and treatment of COPD in the elderly Han population in southern China, and lay a potential scientific basis.
Collapse
Affiliation(s)
- Fei Chen
- Department of Respiratory and Critical Care Medicine, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou City, Hainan Province, People’s Republic of China
- Department of General Practice, Bai Majing Town Central Health Center, Danzhou City, Hainan Province, People’s Republic of China
| | - Jie Zhao
- Department of Respiratory and Critical Care Medicine, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou City, Hainan Province, People’s Republic of China
| | - Rubing Mo
- Department of Respiratory and Critical Care Medicine, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou City, Hainan Province, People’s Republic of China
| | - Xiuxiu Ding
- Department of Respiratory and Critical Care Medicine, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou City, Hainan Province, People’s Republic of China
| | - Yue Zhang
- Department of Respiratory and Critical Care Medicine, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou City, Hainan Province, People’s Republic of China
| | - Linhui Huang
- Department of Respiratory and Critical Care Medicine, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou City, Hainan Province, People’s Republic of China
| | - Tian Xie
- Department of Respiratory and Critical Care Medicine, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou City, Hainan Province, People’s Republic of China
| | - Yipeng Ding
- Department of Respiratory and Critical Care Medicine, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou City, Hainan Province, People’s Republic of China
| |
Collapse
|
7
|
Guo L, Huang E, Wang T, Ling Y, Li Z. Exploring the molecular mechanisms of asthma across multiple datasets. Ann Med 2024; 56:2258926. [PMID: 38489401 PMCID: PMC10946276 DOI: 10.1080/07853890.2023.2258926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/09/2023] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Asthma, a prevalent chronic respiratory disorder, remains enigmatic, notwithstanding considerable advancements in our comprehension. Continuous efforts are crucial for discovering novel molecular targets and gaining a comprehensive understanding of its pathogenesis. MATERIALS AND METHODS In this study, we analyzed gene expression data from 212 individuals, including asthma patients and healthy controls, to identify 267 differentially expressed genes, among which C1orf64 and C7orf26 emerged as potential key genes in asthma pathogenesis. Various bioinformatics tools, including differential gene expression analysis, pathway enrichment, drug target prediction, and single-cell analysis, were employed to explore the potential roles of the genes. RESULTS Quantitative PCR demonstrated differential expression of C1orf64 and C7orf26 in the asthmatic airway epithelial tissue, implying their potential involvement in asthma pathogenesis. GSEA enrichment analysis revealed significant enrichment of these genes in signaling pathways associated with asthma progression, such as ABC transporters, cell cycle, CAMs, DNA replication, and the Notch signaling pathway. Drug target prediction, based on upregulated and downregulated differential expression, highlighted potential asthma treatments, including Tyrphostin-AG-126, Cephalin, Verrucarin-a, and Emetine. The selection of these drugs was based on their significance in the analysis and their established anti-inflammatory and antiviral invasion properties. Utilizing Seurat and Celldex packages for single-cell sequencing analysis unveiled disease-specific gene expression patterns and cell types. Expression of C1orf64 and C7orf26 in T cells, NK cells, and B cells, instrumental in promoting hallmark features of asthma, was observed, suggesting their potential influence on asthma development and progression. CONCLUSION This study uncovers novel genetic aspects of asthma, highlighting potential therapeutic pathways. It exemplifies the power of integrative bioinformatics in decoding complex disease patterns. However, these findings require further validation, and the precise roles of C1orf64 and C7orf26 in asthma warrant additional investigation to validate their therapeutic potential.
Collapse
Affiliation(s)
- Lianshan Guo
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Enhao Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tongting Wang
- Department of Nursing, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yun Ling
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhengzhao Li
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
8
|
Jurkowska RZ. Role of epigenetic mechanisms in the pathogenesis of chronic respiratory diseases and response to inhaled exposures: From basic concepts to clinical applications. Pharmacol Ther 2024; 264:108732. [PMID: 39426605 DOI: 10.1016/j.pharmthera.2024.108732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/15/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Epigenetic modifications are chemical groups in our DNA (and chromatin) that determine which genes are active and which are shut off. Importantly, they integrate environmental signals to direct cellular function. Upon chronic environmental exposures, the epigenetic signature of lung cells gets altered, triggering aberrant gene expression programs that can lead to the development of chronic lung diseases. In addition to driving disease, epigenetic marks can serve as attractive lung disease biomarkers, due to early onset, disease specificity, and stability, warranting the need for more epigenetic research in the lung field. Despite substantial progress in mapping epigenetic alterations (mostly DNA methylation) in chronic lung diseases, the molecular mechanisms leading to their establishment are largely unknown. This review is meant as a guide for clinicians and lung researchers interested in epigenetic regulation with a focus on DNA methylation. It provides a short introduction to the main epigenetic mechanisms (DNA methylation, histone modifications and non-coding RNA) and the machinery responsible for their establishment and removal. It presents examples of epigenetic dysregulation across a spectrum of chronic lung diseases and discusses the current state of epigenetic therapies. Finally, it introduces the concept of epigenetic editing, an exciting novel approach to dissecting the functional role of epigenetic modifications. The promise of this emerging technology for the functional study of epigenetic mechanisms in cells and its potential future use in the clinic is further discussed.
Collapse
Affiliation(s)
- Renata Z Jurkowska
- Division of Biomedicine, School of Biosciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
9
|
Onuzulu CD, Lee S, Basu S, Comte J, Hai Y, Hizon N, Chadha S, Fauni MS, Halayko AJ, Pascoe CD, Jones MJ. Novel DNA methylation changes in mouse lungs associated with chronic smoking. Epigenetics 2024; 19:2322386. [PMID: 38436597 PMCID: PMC10913724 DOI: 10.1080/15592294.2024.2322386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
Smoking is a potent cause of asthma exacerbations, chronic obstructive pulmonary disease (COPD) and many other health defects, and changes in DNA methylation (DNAm) have been identified as a potential link between smoking and these health outcomes. However, most studies of smoking and DNAm have been done using blood and other easily accessible tissues in humans, while evidence from more directly affected tissues such as the lungs is lacking. Here, we identified DNAm patterns in the lungs that are altered by smoking. We used an established mouse model to measure the effects of chronic smoke exposure first on lung phenotype immediately after smoking and then after a period of smoking cessation. Next, we determined whether our mouse model recapitulates previous DNAm patterns observed in smoking humans, specifically measuring DNAm at a candidate gene responsive to cigarette smoke, Cyp1a1. Finally, we carried out epigenome-wide DNAm analyses using the newly released Illumina mouse methylation microarrays. Our results recapitulate some of the phenotypes and DNAm patterns observed in human studies but reveal 32 differentially methylated genes specific to the lungs which have not been previously associated with smoking. The affected genes are associated with nicotine dependency, tumorigenesis and metastasis, immune cell dysfunction, lung function decline, and COPD. This research emphasizes the need to study CS-mediated DNAm signatures in directly affected tissues like the lungs, to fully understand mechanisms underlying CS-mediated health outcomes.
Collapse
Affiliation(s)
- Chinonye Doris Onuzulu
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Samantha Lee
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sujata Basu
- Biology of Breathing Theme, Children’s Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jeannette Comte
- Biology of Breathing Theme, Children’s Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Yan Hai
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nikho Hizon
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Shivam Chadha
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Maria Shenna Fauni
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Andrew J. Halayko
- Biology of Breathing Theme, Children’s Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Christopher D. Pascoe
- Biology of Breathing Theme, Children’s Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Meaghan J. Jones
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
- Biology of Breathing Theme, Children’s Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
10
|
Bondonno NP, Parmenter BH, Thompson AS, Jennings A, Murray K, Rasmussen DB, Tresserra-Rimbau A, Kühn T, Cassidy A. Flavonoid intakes, chronic obstructive pulmonary disease, adult asthma, and lung function: a cohort study in the UK Biobank. Am J Clin Nutr 2024; 120:1195-1206. [PMID: 39222688 PMCID: PMC11600086 DOI: 10.1016/j.ajcnut.2024.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Given their antioxidative stress, anti-allergic, anti-inflammatory, and immune-modulating effects, flavonoids are hypothesized to play a role in preventing chronic obstructive pulmonary disease (COPD) and asthma. OBJECTIVES This cohort study aimed to examine associations between flavonoid intake and COPD, asthma, and lung function. METHODS Among 119,466 participants of the UK Biobank, median [interquartile range] age of 60 [53, 65] y, we estimated intakes of flavonoids, flavonoid-rich foods, and a flavodiet score from 24-h diet assessments. Prospective associations with both incident COPD and asthma and cross-sectional associations with measures of lung function [%predicted forced expiratory volume in 1s (FEV1); and FEV1/forced vital capacity (FVC)] were examined using multivariable-adjusted Cox proportional hazards and linear regression models, respectively. We investigated mediation by inflammation--represented by the INFLA score--and stratified analyses by smoking status. RESULTS Compared with low intakes, moderate intakes of total flavonoids, flavonols, theaflavins + thearubigins, and flavanones, and moderate-to-high intakes of flavanol monomers, proanthocyanidins, anthocyanins, flavones, and the flavodiet score were associated with up to an 18% lower risk of incident COPD {e.g., [hazard ratio (95% confidence interval) for total flavonoids: 0.83 (0.75, 0.92)]} but not incident asthma. Furthermore, compared with low intakes, higher intakes of all flavonoid subclasses (except theaflavins + thearubigins), and the flavodiet score were associated with better percent predicted FEV1 baseline. Associations were most apparent in ever (current or former) smokers. Flavonoid intakes were inversely associated with the INFLA score, which appeared to mediate 11%-14% of the association between intakes of proanthocyanidins and flavones and incident COPD. CONCLUSIONS Moderate-to-high flavonoid intakes were associated with a lower risk of COPD and better lung function, particularly among ever smokers. Promoting intakes of healthy flavonoid-rich foods, namely, tea, apples, and berries, may improve respiratory health and lower COPD risk, particularly in individuals with a smoking history.
Collapse
Affiliation(s)
- Nicola P Bondonno
- Institute for Nutrition Research, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia; The Danish Cancer Society Research Centre, Copenhagen, Denmark; Institute for Global Food Security, Queen's University Belfast, Northern Ireland.
| | - Benjamin H Parmenter
- Institute for Nutrition Research, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia; Institute for Global Food Security, Queen's University Belfast, Northern Ireland
| | - Alysha S Thompson
- Institute for Global Food Security, Queen's University Belfast, Northern Ireland
| | - Amy Jennings
- Institute for Global Food Security, Queen's University Belfast, Northern Ireland
| | - Kevin Murray
- School of Population and Global Health, University of Western Australia, Australia
| | - Daniel Bech Rasmussen
- Respiratory Research Unit Zealand, Department of Respiratory Medicine, Zealand University Hospital, Naestved, Denmark; Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Anna Tresserra-Rimbau
- Institute for Global Food Security, Queen's University Belfast, Northern Ireland; Department of Nutrition, Food Science and Gastronomy, XIA, School of Pharmacy and Food Sciences, INSA, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Tilman Kühn
- Institute for Global Food Security, Queen's University Belfast, Northern Ireland; Department of Nutritional Sciences, University of Vienna, Vienna, Austria; Centre for Public Health, Medical University of Vienna, Vienna, Austria
| | - Aedín Cassidy
- Institute for Global Food Security, Queen's University Belfast, Northern Ireland.
| |
Collapse
|
11
|
Talaei M, Waters S, Portas L, Jacobs BM, Dodd JW, Marshall CR, Minelli C, Shaheen SO. Lung development genes, adult lung function and cognitive traits. Brain Commun 2024; 6:fcae380. [PMID: 39544701 PMCID: PMC11562126 DOI: 10.1093/braincomms/fcae380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/18/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024] Open
Abstract
Lower lung function is associated with lower cognitive function and an increased risk of dementia. This has not been adequately explained and may partly reflect shared developmental pathways. In UK Biobank participants of European ancestry, we tested the association between lung function measures (forced vital capacity and forced expiratory volume in 1 s to forced vital capacity ratio; n = 306 476) and cognitive traits including nine cognitive function test scores (n = 32 321-428 609), all-cause dementia, Alzheimer's disease and vascular dementia (6805, 2859 and 1544 cases, respectively, and ∼421 241 controls). In the same population, we derived summary statistics for associations between common genetic variants in 55 lung development genes and lung function measures and cognitive traits using adjusted linear/logistic regression models. Using a hypothesis-driven Bayesian co-localization analysis, we finally investigated the presence of shared genetic signals between lung function measures and cognitive traits at each of these 55 genes. Higher lung function measures were generally associated with higher scores of cognitive function tests as well as lower risk of dementia. The strongest association was between forced vital capacity and vascular dementia (adjusted hazard ratio 0.74 per standard deviation increase, 95% confidence interval 0.67-0.83). Of the 55 genes of interest, we found shared variants in four genes, namely: CSNK2B rs9267531 (forced vital capacity and forced expiratory volume in 1 s to forced vital capacity ratio with fluid intelligence and pairs matching), NFATC3 rs548092276 & rs11275011 (forced expiratory volume in 1 s to forced vital capacity ratio with fluid intelligence), PTCH1 rs2297086 & rs539078574 (forced expiratory volume in 1 s to forced vital capacity ratio with reaction time) and KAT8 rs138259061 (forced vital capacity with pairs matching). However, the direction of effects was not in keeping with our hypothesis, i.e. variants associated with lower lung function were associated with better cognitive function or vice versa. We also found distinct variants associated with lung function and cognitive function in KAT8 (forced vital capacity and Alzheimer's disease) and PTCH1 (forced vital capacity and forced expiratory volume in 1 s to forced vital capacity ratio with fluid intelligence and reaction time). The links between CSNK2B and NFATC3 and cognitive traits have not been previously reported by genome-wide association studies. Despite shared genes and variants, our findings do not support the hypothesis that shared developmental signalling pathways explain the association of lower adult lung function with poorer cognitive function.
Collapse
Affiliation(s)
- Mohammad Talaei
- Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University of London, London EC1M 6BQ, UK
| | - Sheena Waters
- Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University of London, London EC1M 6BQ, UK
| | - Laura Portas
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, UK
| | - Benjamin M Jacobs
- Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University of London, London EC1M 6BQ, UK
| | - James W Dodd
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol BS8 2BN, UK
- Academic Respiratory Unit, Southmead Hospital, University of Bristol, Bristol BS10 5NB, UK
| | - Charles R Marshall
- Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University of London, London EC1M 6BQ, UK
| | - Cosetta Minelli
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Seif O Shaheen
- Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University of London, London EC1M 6BQ, UK
- Allergy and Lung Health Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
12
|
Ozahata MC, Guo Y, Gomes I, Malta B, Belisário A, Amorim L, Teles D, Park M, Kelly S, Sabino EC, Page GP, Custer B, Dinardo CL. Genetic variants associated with white blood cell count amongst individuals with sickle cell disease. Br J Haematol 2024; 205:1974-1984. [PMID: 39279196 PMCID: PMC11568933 DOI: 10.1111/bjh.19758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/27/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND Sickle cell disease (SCD) is a Mendelian disorder characterized by a point mutation in the β-globin gene that leads to sickling of erythrocytes. Several studies have shown that absolute neutrophil count is strongly associated with clinical severity of SCD, suggesting an apparent role of white blood cells (WBC) in SCD pathology. However, the mechanism by which genetic variants lead to WBC count differences in SCD patients remains unclear. METHODS Genome-wide association (GWA) analyses were carried out amongst a cohort of 2409 Brazil SCD participants. Association of WBC count and genetic markers were investigated in homozygous sickle cell anaemia participants and compound heterozygous sickle cell haemoglobin C participants. RESULTS GWA analysis showed that variants in genes TERT, ACKR1, and FAM3C are associated with WBC count variation. The well-studied association between WBC count and Duffy null phenotype (variant in ACKR1) in healthy populations was replicated, reinforcing the influence of the SNP rs2814778 (T>C) in WBC count. CONCLUSION Genetics plays an important role in regulating WBC count in patients with SCD. Our results point to possible mechanisms involved in WBC count variation and as increased WBC count is associated with more severe SCD, these results could suggest potential therapeutic targets for individuals with SCD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Miriam Park
- Children Institute – University of São Paulo, São Paulo, Brazil
| | - Shannon Kelly
- University of California San Francisco Benioff Children's Hospital Oakland, Oakland, CA, USA
| | | | | | - Brian Custer
- Vitalant Research Institute, San Francisco, CA, USA
| | | |
Collapse
|
13
|
Stuart KV, Biradar MI, Luben RN, Dhaun N, Wagner SK, Warwick AN, Sun Z, Madjedi KM, Pasquale LR, Wiggs JL, Kang JH, Lentjes MAH, Aschard H, Kim J, Foster PJ, Khawaja AP. The Association of Urinary Sodium Excretion with Glaucoma and Related Traits in a Large United Kingdom Population. Ophthalmol Glaucoma 2024; 7:499-511. [PMID: 38723778 DOI: 10.1016/j.ogla.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/07/2024] [Accepted: 04/30/2024] [Indexed: 06/22/2024]
Abstract
PURPOSE Excessive dietary sodium intake has known adverse effects on intravascular fluid volume and systemic blood pressure, which may influence intraocular pressure (IOP) and glaucoma risk. This study aimed to assess the association of urinary sodium excretion, a biomarker of dietary intake, with glaucoma and related traits, and determine whether this relationship is modified by genetic susceptibility to disease. DESIGN Cross-sectional observational and gene-environment interaction analyses in the population-based UK Biobank study. PARTICIPANTS Up to 103 634 individuals (mean age: 57 years; 51% women) with complete urinary, ocular, and covariable data. METHODS Urine sodium:creatinine ratio (UNa:Cr; mmol:mmol) was calculated from a midstream urine sample. Ocular parameters were measured as part of a comprehensive eye examination, and glaucoma case ascertainment was through a combination of self-report and linked national hospital records. Genetic susceptibility to glaucoma was calculated based on a glaucoma polygenic risk score comprising 2673 common genetic variants. Multivariable linear and logistic regression, adjusted for key sociodemographic, medical, anthropometric, and lifestyle factors, were used to model associations and gene-environment interactions. MAIN OUTCOME MEASURES Corneal-compensated IOP, OCT derived macular retinal nerve fiber layer and ganglion cell-inner plexiform layer (GCIPL) thickness, and prevalent glaucoma. RESULTS In maximally adjusted regression models, a 1 standard deviation increase in UNa:Cr was associated with higher IOP (0.14 mmHg; 95% confidence interval [CI], 0.12-0.17; P < 0.001) and greater prevalence of glaucoma (odds ratio, 1.11; 95% CI, 1.07-1.14; P < 0.001) but not macular retinal nerve fiber layer or ganglion cell-inner plexiform layer thickness. Compared with those with UNa:Cr in the lowest quintile, those in the highest quintile had significantly higher IOP (0.45 mmHg; 95% CI, 0.36-0.53, P < 0.001) and prevalence of glaucoma (odds ratio, 1.30; 95% CI, 1.17-1.45; P < 0.001). Stronger associations with glaucoma (P interaction = 0.001) were noted in participants with a higher glaucoma polygenic risk score. CONCLUSIONS Urinary sodium excretion, a biomarker of dietary intake, may represent an important modifiable risk factor for glaucoma, especially in individuals at high underlying genetic risk. These findings warrant further investigation because they may have important clinical and public health implications. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Kelsey V Stuart
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK.
| | - Mahantesh I Biradar
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Robert N Luben
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK; MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Neeraj Dhaun
- Edinburgh Kidney, University/BHF Centre of Research Excellence, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Siegfried K Wagner
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Alasdair N Warwick
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK; UCL Institute of Cardiovascular Science, University College London, London, UK
| | - Zihan Sun
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Kian M Madjedi
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK; Department of Ophthalmology, University of Calgary, Calgary, Alberta, Canada
| | - Louis R Pasquale
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Janey L Wiggs
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Jae H Kang
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Hugues Aschard
- Department of Computational Biology, Institut Pasteur, Université Paris Cité, Paris, France
| | - Jihye Kim
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Paul J Foster
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Anthony P Khawaja
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| |
Collapse
|
14
|
Sayers I, John C, Chen J, Hall IP. Genetics of chronic respiratory disease. Nat Rev Genet 2024; 25:534-547. [PMID: 38448562 DOI: 10.1038/s41576-024-00695-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2024] [Indexed: 03/08/2024]
Abstract
Chronic respiratory diseases, such as chronic obstructive pulmonary disease (COPD), asthma and interstitial lung diseases are frequently occurring disorders with a polygenic basis that account for a large global burden of morbidity and mortality. Recent large-scale genetic epidemiology studies have identified associations between genetic variation and individual respiratory diseases and linked specific genetic variants to quantitative traits related to lung function. These associations have improved our understanding of the genetic basis and mechanisms underlying common lung diseases. Moreover, examining the overlap between genetic associations of different respiratory conditions, along with evidence for gene-environment interactions, has yielded additional biological insights into affected molecular pathways. This genetic information could inform the assessment of respiratory disease risk and contribute to stratified treatment approaches.
Collapse
Affiliation(s)
- Ian Sayers
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, University Park, Nottingham, UK
- Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, UK
| | - Catherine John
- University of Leicester, Leicester, UK
- University Hospitals of Leicester, Leicester, UK
| | - Jing Chen
- University of Leicester, Leicester, UK
| | - Ian P Hall
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, University Park, Nottingham, UK.
- Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, UK.
| |
Collapse
|
15
|
Sinnott-Armstrong N, Strausz S, Urpa L, Abner E, Valliere J, Palta P, Dashti HS, Daly M, Pritchard JK, Saxena R, Jones SE, Ollila HM. Genetic variants affect diurnal glucose levels throughout the day. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.22.604631. [PMID: 39091879 PMCID: PMC11291026 DOI: 10.1101/2024.07.22.604631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Circadian rhythms not only coordinate the timing of wake and sleep but also regulate homeostasis within the body, including glucose metabolism. However, the genetic variants that contribute to temporal control of glucose levels have not been previously examined. Using data from 420,000 individuals from the UK Biobank and replicating our findings in 100,000 individuals from the Estonian Biobank, we show that diurnal serum glucose is under genetic control. We discover a robust temporal association of glucose levels at the Melatonin receptor 1B ( MTNR1B) (rs10830963, P = 1e-22) and a canonical circadian pacemaker gene Cryptochrome 2 ( CRY2) loci (rs12419690, P = 1e-16). Furthermore, we show that sleep modulates serum glucose levels and the genetic variants have a separate mechanism of diurnal control. Finally, we show that these variants independently modulate risk of type 2 diabetes. Our findings, together with earlier genetic and epidemiological evidence, show a clear connection between sleep and metabolism and highlight variation at MTNR1B and CRY2 as temporal regulators for glucose levels.
Collapse
|
16
|
Firoozi Z, Shahi A, Mohammadisoleimani E, Afzali S, Mansoori B, Bahmanyar M, Mohaghegh P, Dastsooz H, Pezeshki B, Nikfar G, Kouhpayeh SA, Mansoori Y. CircRNA-associated ceRNA networks (circCeNETs) in chronic obstructive pulmonary disease (COPD). Life Sci 2024; 349:122715. [PMID: 38740326 DOI: 10.1016/j.lfs.2024.122715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Chronic obstructive pulmonary disease (COPD), a chronic airway disorder, which is mostly brought on by cigarette smoke extract (CSE), is a leading cause of death which has a high frequency. In COPD patients, smoking cigarette could also trigger the epithelial-mesenchymal transition (EMT) of airway remodeling. One of the most significant elements of environmental contaminants that is linked to pulmonary damage is fine particulate matter (PM2.5). However, the basic processes of lung injury brought on by environmental contaminants and cigarette smoke are poorly understood, particularly the molecular pathways involved in inflammation. For the clinical management of COPD, investigating the molecular process and identifying workable biomarkers will be important. According to newly available research, circular RNAs (circRNAs) are aberrantly produced and serve as important regulators in the pathological processes of COPD. This class of non-coding RNAs (ncRNAs) functions as microRNA (miRNA) sponges to control the levels of gene expression, changing cellular phenotypes and advancing disease. These findings led us to concentrate our attention in this review on new studies about the regulatory mechanism and potential roles of circRNA-associated ceRNA networks (circCeNETs) in COPD.
Collapse
Affiliation(s)
- Zahra Firoozi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Abbas Shahi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran; Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Mohammadisoleimani
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran; Department of Medical Microbiology (Bacteriology & Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Shima Afzali
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnam Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Maryam Bahmanyar
- Pediatrics Department, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Poopak Mohaghegh
- Pediatrics Department, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Hassan Dastsooz
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy; Candiolo, C/o IRCCS, IIGM-Italian Institute for Genomic Medicine, Turin, Italy; Candiolo Cancer (IT), FPO-IRCCS, Candiolo Cancer Institute, Turin, Italy
| | - Babak Pezeshki
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Ghasem Nikfar
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Seyed Amin Kouhpayeh
- Department of Pharmacology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Yaser Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran; Department of Medical Genetics, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
17
|
Styrkarsdottir U, Tragante V, Stefansdottir L, Thorleifsson G, Oddsson A, Sørensen E, Erikstrup C, Schwarz P, Jørgensen HL, Lauritzen JB, Brunak S, Knowlton KU, Nadauld LD, Ullum H, Pedersen OBV, Ostrowski SR, Holm H, Gudbjartsson DF, Sulem P, Stefansson K. Obesity Variants in the GIPR Gene Are not Associated With Risk of Fracture or Bone Mineral Density. J Clin Endocrinol Metab 2024; 109:e1608-e1615. [PMID: 38118020 PMCID: PMC11244190 DOI: 10.1210/clinem/dgad734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/22/2023]
Abstract
CONTEXT It is not clear if antagonizing the GIP (glucose-dependent insulinotropic polypeptide) receptor (GIPR) for treatment of obesity is likely to increase the risk of fractures, or to lower bone mineral density (BMD) beyond what is expected with rapid weight loss. OBJECTIVE The objective of this study was to investigate the risk of fracture and BMD of sequence variants in GIPR that reduce the activity of the GIP receptor and have been associated with reduced body mass index (BMI). METHODS We analyzed the association of 3 missense variants in GIPR, a common variant, rs1800437 (p.Glu354Gln), and 2 rare variants, rs139215588 (p.Arg190Gln) and rs143430880 (p.Glu288Gly), as well as a burden of predicted loss-of-function (LoF) variants with risk of fracture and with BMD in a large meta-analysis of up to 1.2 million participants. We analyzed associations with fractures at different skeletal sites in the general population: any fractures, hip fractures, vertebral fractures and forearm fractures, and specifically nonvertebral and osteoporotic fractures in postmenopausal women. We also evaluated associations with BMD at the lumbar spine, femoral neck, and total body measured with dual-energy x-ray absorptiometry (DXA), and with BMD estimated from heel ultrasound (eBMD). RESULTS None of the 3 missense variants in GIPR was significantly associated with increased risk of fractures or with lower BMD. Burden of LoF variants in GIPR was not associated with fractures or with BMD measured with clinically validated DXA, but was associated with eBMD. CONCLUSION Missense variants in GIPR, or burden of LoF variants in the gene, are not associated with risk of fractures or with lower BMD.
Collapse
Affiliation(s)
| | - Vinicius Tragante
- Population Genomics, deCODE genetics/Amgen Inc, Reykjavik 102, Iceland
| | | | | | - Asmundur Oddsson
- Population Genomics, deCODE genetics/Amgen Inc, Reykjavik 102, Iceland
| | - Erik Sørensen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen 2100, Denmark
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus 8200, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus 8200, Denmark
| | - Peter Schwarz
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
- Department of Endocrinology, Copenhagen University Hospital, Rigshospitalet, Copenhagen 2100, Denmark
| | - Henrik Løvendahl Jørgensen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
- Department of Clinical Biochemistry, Amager Hvidovre Hospital, Copenhagen 2650, Denmark
| | - Jes Bruun Lauritzen
- Department of Orthopedic Surgery, Bispebjerg Hospital, University of Copenhagen, Copenhagen 2400, Denmark
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Kirk U Knowlton
- Intermountain Health, Heart Institute, Salt Lake City, UT 84143, USA
| | | | - Henrik Ullum
- Statens Serum Institut, Copenhagen 2300, Denmark
| | - Ole Birger Vesterager Pedersen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
- Department of Clinical Immunology, Zealand University Hospital, Køge 4600, Denmark
| | - Sisse Rye Ostrowski
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen 2100, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Hilma Holm
- Population Genomics, deCODE genetics/Amgen Inc, Reykjavik 102, Iceland
| | - Daniel F Gudbjartsson
- Population Genomics, deCODE genetics/Amgen Inc, Reykjavik 102, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik 102, Iceland
| | - Patrick Sulem
- Population Genomics, deCODE genetics/Amgen Inc, Reykjavik 102, Iceland
| | - Kari Stefansson
- Population Genomics, deCODE genetics/Amgen Inc, Reykjavik 102, Iceland
- Faculty of Medicine, School of Health Science, University of Iceland, Reykjavik 102, Iceland
| |
Collapse
|
18
|
Bazemore K, Joo J, Hwang WT, Himes BE. Clarifying Chronic Obstructive Pulmonary Disease Genetic Associations Observed in Biobanks via Mediation Analysis of Smoking. AMIA JOINT SUMMITS ON TRANSLATIONAL SCIENCE PROCEEDINGS. AMIA JOINT SUMMITS ON TRANSLATIONAL SCIENCE 2024; 2024:499-508. [PMID: 38827081 PMCID: PMC11141825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Varying case definitions of COPD have heterogenous genetic risk profiles, potentially reflective of disease subtypes or classification bias (e.g., smokers more likely to be diagnosed with COPD). To better understand differences in genetic loci associated with ICD-defined versus spirometry-defined COPD we contrasted their GWAS results with those for heavy smoking among 337,138 UK Biobank participants. Overlapping risk loci were found in/near the genes ZEB2, FAM136B, CHRNA3, and CHRNA4, with the CHRNA3 locus shared across all three traits. Mediation analysis to estimate the effects of lead genotyped variants mediated by smoking found significant indirect effects for the FAM136B, CHRNA3, and CHRNA4 loci for both COPD definitions. Adjustment for mediator-outcome confounders modestly attenuated indirect effects, though in the CHRNA4 locus for spirometry-defined COPD the proportion mediated increased an additional 8.47%. Our results suggest that differences between ICD-defined and spirometry-defined COPD associated genetic loci are not a result of smoking biasing classification.
Collapse
Affiliation(s)
- Katrina Bazemore
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jaehyun Joo
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei-Ting Hwang
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Blanca E Himes
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
19
|
Xie B, Wu T, Hong D, Lu Z. Comprehensive landscape of junctional genes and their association with overall survival of patients with lung adenocarcinoma. Front Mol Biosci 2024; 11:1380384. [PMID: 38841188 PMCID: PMC11150628 DOI: 10.3389/fmolb.2024.1380384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/22/2024] [Indexed: 06/07/2024] Open
Abstract
Objectives Junctional proteins are involved in tumorigenesis. Therefore, this study aimed to investigate the association between junctional genes and the prognosis of patients with lung adenocarcinoma (LUAD). Methods Transcriptome, mutation, and clinical data were retrieved from The Cancer Genome Atlas (TCGA). "Limma" was used to screen differentially expressed genes. Moreover, Kaplan-Meier survival analysis was used to identify junctional genes associated with LUAD prognosis. The junctional gene-related risk score (JGRS) was generated based on multivariate Cox regression analysis. An overall survival (OS) prediction model combining the JGRS and clinicopathological properties was proposed using a nomogram and further validated in the Gene Expression Omnibus (GEO) LUAD cohort. Results To our knowledge, this study is the first to demonstrate the correlation between the mRNA levels of 14 junctional genes (CDH15, CDH17, CDH24, CLDN6, CLDN12, CLDN18, CTNND2, DSG2, ITGA2, ITGA8, ITGA11, ITGAL, ITGB4, and PKP3) and clinical outcomes of patients with LUAD. The JGRS was generated based on these 14 genes, and a higher JGRS was associated with older age, higher stage levels, and lower immune scores. Thus, a prognostic prediction nomogram was proposed based on the JGRS. Internal and external validation showed the good performance of the prediction model. Mechanistically, JGRS was associated with cell proliferation and immune regulatory pathways. Mutational analysis revealed that more somatic mutations occurred in the high-JGRS group than in the low-JGRS group. Conclusion The association between junctional genes and OS in patients with LUAD demonstrated by our "TCGA filtrating and GEO validating" model revealed a new function of junctional genes.
Collapse
Affiliation(s)
- Bin Xie
- School of Information Science and Technology, Hangzhou Normal University, Hangzhou, China
| | - Ting Wu
- School of Information Science and Technology, Hangzhou Normal University, Hangzhou, China
| | - Duiguo Hong
- Jincheng Community Health Service Center, Hangzhou, China
| | - Zhe Lu
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
- School of Basic Medicine, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
20
|
van der Plaat DA, Lenoir A, Dharmage S, Potts J, Gómez Real F, Shaheen SO, Jarvis D, Minelli C, Leynaert B. Effects of testosterone and sex hormone binding globulin on lung function in males and females: a multivariable Mendelian Randomisation study. Thorax 2024; 79:564-572. [PMID: 38418196 DOI: 10.1136/thorax-2023-220374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 01/12/2024] [Indexed: 03/01/2024]
Abstract
BACKGROUND Observational studies suggest that total testosterone (TT) and sex hormone-binding globulin (SHBG) may have beneficial effects on lung function, but these findings might be spurious due to confounding and reverse causation. We addressed these limitations by using multivariable Mendelian randomisation (MVMR) to investigate the independent causal effects of TT and SHBG on lung function. METHODS We first identified genetic instruments by performing genome-wide association analyses of TT and SHBG in the large UK Biobank, separately in males and females. We then assessed the independent effects of TT and SHBG on forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC) and FEV1/FVC using one-sample MVMR. We addressed pleiotropy, which could bias MVMR, using several methods that account for it. We performed subgroup MVMR analyses by obesity, physical activity and menopausal status, and assessed associations between TT and SHBG with lung function decline. Finally, we compared the MVMR results with those of observational analyses in the UK Biobank. FINDINGS In the MVMR analyses, there was evidence of pleiotropy, but results were consistent when accounting for it. We found a strong beneficial effect of TT on FVC and FEV1 in both males and females, but a moderate detrimental effect of SHBG on FEV1 and FEV1/FVC in males only. Subgroup analyses suggested stronger effects of TT among obese and older males. The observational analyses, in line with previous studies, agreed with MRMV for TT, but not for SHBG. INTERPRETATION These findings suggest that testosterone improves lung function in males and females, while SHBG has an opposite independent effect in males.
Collapse
Affiliation(s)
| | - Alexandra Lenoir
- Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Gesundheitsamt Fürstenfeldbruck, Fürstenfeldbruck, Switzerland
| | - Shyamali Dharmage
- Allergy and Lung Health Unit, The University of Melbourne School of Population and Global Health, Melbourne, Victoria, Australia
| | - James Potts
- National Heart and Lung Institute (NHLI), Imperial College London, London, UK
| | - Francisco Gómez Real
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - Seif O Shaheen
- Wolfson Institute of Population Health, Queen Mary University of London, Barts and The London School of Medicine and Dentistry, London, London, UK
| | - Debbie Jarvis
- National Heart and Lung Institute (NHLI), Imperial College London, London, UK
| | - Cosetta Minelli
- National Heart and Lung Institute (NHLI), Imperial College London, London, UK
| | - Bénédicte Leynaert
- Université Paris-Saclay, UVSQ, Université Paris-Sud, Inserm, Équipe d'Épidémiologie Respiratoire Intégrative, CESP, INSERM, Villejuif, France
| |
Collapse
|
21
|
Feng L, Ye Z, Du Z, Pan Y, Canida T, Ke H, Liu S, Chen S, Hong LE, Kochunov P, Chen J, Lei DK, Shenassa E, Ma T. Association between allostatic load and accelerated white matter brain aging: findings from the UK Biobank. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.26.24301793. [PMID: 38343822 PMCID: PMC10854327 DOI: 10.1101/2024.01.26.24301793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
White matter (WM) brain age, a neuroimaging-derived biomarker indicating WM microstructural changes, helps predict dementia and neurodegenerative disorder risks. The cumulative effect of chronic stress on WM brain aging remains unknown. In this study, we assessed cumulative stress using a multi-system composite allostatic load (AL) index based on inflammatory, anthropometric, respiratory, lipidemia, and glucose metabolism measures, and investigated its association with WM brain age gap (BAG), computed from diffusion tensor imaging data using a machine learning model, among 22 951 European ancestries aged 40 to 69 (51.40% women) from UK Biobank. Linear regression, Mendelian randomization, along with inverse probability weighting and doubly robust methods, were used to evaluate the impact of AL on WM BAG adjusting for age, sex, socioeconomic, and lifestyle behaviors. We found increasing one AL score unit significantly increased WM BAG by 0.29 years in association analysis and by 0.33 years in Mendelian analysis. The age- and sex-stratified analysis showed consistent results among participants 45-54 and 55-64 years old, with no significant sex difference. This study demonstrated that higher chronic stress was significantly associated with accelerated brain aging, highlighting the importance of stress management in reducing dementia and neurodegenerative disease risks.
Collapse
Affiliation(s)
- Li Feng
- Department of Nutrition and Food Science, College of Agriculture & Natural Resources, University of Maryland, College Park, Maryland, United States of America
- Department of Epidemiology and Biostatistics, School of Public Health, University of Maryland, College Park, Maryland, United States of America
| | - Zhenyao Ye
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Zewen Du
- Department of Biostatistics, School of Global Public Health, New York University, New York, New York, United States of America
| | - Yezhi Pan
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Travis Canida
- Department of Mathematics, The college of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park, Maryland, United States of America
| | - Hongjie Ke
- Department of Epidemiology and Biostatistics, School of Public Health, University of Maryland, College Park, Maryland, United States of America
| | - Song Liu
- School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Shuo Chen
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - L. Elliot Hong
- Louis A. Faillace Department of Psychiatry & Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Peter Kochunov
- Louis A. Faillace Department of Psychiatry & Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Jie Chen
- Department of Health Policy and Management, School of Public Health, University of Maryland, College Park, Maryland, United States of America
| | - David K.Y. Lei
- Department of Nutrition and Food Science, College of Agriculture & Natural Resources, University of Maryland, College Park, Maryland, United States of America
| | - Edmond Shenassa
- Department of Epidemiology and Biostatistics, School of Public Health, University of Maryland, College Park, Maryland, United States of America
- Maternal & Child Health Program, School of Public Health, University of Maryland, College Park, Maryland, United States of America
- Department of Epidemiology, School of Public Health, Brown University, Rhode Island, United States of America
- Department of Epidemiology & Public Health, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Tianzhou Ma
- Department of Epidemiology and Biostatistics, School of Public Health, University of Maryland, College Park, Maryland, United States of America
| |
Collapse
|
22
|
Lazarev D, Chau G, Bloemendal A, Churchhouse C, Neale BM. GUIDE deconstructs genetic architectures using association studies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592285. [PMID: 38766146 PMCID: PMC11100597 DOI: 10.1101/2024.05.03.592285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Genome-wide association studies have revealed that the genetic architecture of most complex traits is characterized by a large number of distinct effects scattered across the genome. Functional enrichment analyses of these results suggest that the associations for any given complex trait are not purely random. Thus, we set out to leverage the genetic association results from many traits with a view to identifying the set of modules, or latent factors, that mediate these associations. The identification of such modules may aid in disease classification as well as the elucidation of complex disease mechanisms. We propose a method, Genetic Unmixing by Independent Decomposition (GUIDE), to estimate a set of statistically independent latent factors that best express the patterns of association across many traits. The resulting latent factors not only have desirable mathematical properties, such as sparsity and a higher variance explained (for both traits and variants), but are also able to single out and prioritize key biological features or pathophysiological mechanisms underlying a given trait or disease. Moreover, we show that these latent factors can index biological pathways as well as epidemiological and environmental influences that compose the genetic architecture of complex traits.
Collapse
|
23
|
Seo J, Gaddis NC, Patchen BK, Xu J, Barr RG, O'Connor G, Manichaikul AW, Gharib SA, Dupuis J, North KE, Cassano PA, Hancock DB. Exploiting meta-analysis of genome-wide interaction with serum 25-hydroxyvitamin D to identify novel genetic loci associated with pulmonary function. Am J Clin Nutr 2024; 119:1227-1237. [PMID: 38484975 PMCID: PMC11130669 DOI: 10.1016/j.ajcnut.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/12/2024] [Accepted: 03/07/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND Higher 25-hydroxyvitamin D (25(OH)D) concentrations in serum has a positive association with pulmonary function. Investigating genome-wide interactions with 25(OH)D may reveal new biological insights into pulmonary function. OBJECTIVES We aimed to identify novel genetic variants associated with pulmonary function by accounting for 25(OH)D interactions. METHODS We included 211,264 participants from the observational United Kingdom Biobank study with pulmonary function tests (PFTs), genome-wide genotypes, and 25(OH)D concentrations from 4 ancestral backgrounds-European, African, East Asian, and South Asian. Among PFTs, we focused on forced expiratory volume in the first second (FEV1) and forced vital capacity (FVC) because both were previously associated with 25(OH)D. We performed genome-wide association study (GWAS) analyses that accounted for variant×25(OH)D interaction using the joint 2 degree-of-freedom (2df) method, stratified by participants' smoking history and ancestry, and meta-analyzed results. We evaluated interaction effects to determine how variant-PFT associations were modified by 25(OH)D concentrations and conducted pathway enrichment analysis to examine the biological relevance of our findings. RESULTS Our GWAS meta-analyses, accounting for interaction with 25(OH)D, revealed 30 genetic variants significantly associated with FEV1 or FVC (P2df <5.00×10-8) that were not previously reported for PFT-related traits. These novel variant signals were enriched in lung function-relevant pathways, including the p38 MAPK pathway. Among variants with genome-wide-significant 2df results, smoking-stratified meta-analyses identified 5 variants with 25(OH)D interactions that influenced FEV1 in both smoking groups (never smokers P1df interaction<2.65×10-4; ever smokers P1df interaction<1.71×10-5); rs3130553, rs2894186, rs79277477, and rs3130929 associations were only evident in never smokers, and the rs4678408 association was only found in ever smokers. CONCLUSION Genetic variant associations with lung function can be modified by 25(OH)D, and smoking history can further modify variant×25(OH)D interactions. These results expand the known genetic architecture of pulmonary function and add evidence that gene-environment interactions, including with 25(OH)D and smoking, influence lung function.
Collapse
Affiliation(s)
- Jungkyun Seo
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, United States
| | - Nathan C Gaddis
- RTI International, Research Triangle Park, NC, United States
| | - Bonnie K Patchen
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States
| | - Jiayi Xu
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - R Graham Barr
- Divisions of Pulmonary, Allergy, and Critical Care Medicine, Columbia University Medical Center, New York, NY, United States
| | - George O'Connor
- Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Ani W Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States
| | - Sina A Gharib
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, United States; Division of Pulmonary, Critical Care and Sleep Medicine, Computational Medicine Core, Center for Lung Biology, University of Washington, Seattle, WA, United States
| | - Josée Dupuis
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Kari E North
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, United States
| | - Patricia A Cassano
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States; Division of Epidemiology, Department of Population Health Sciences, Weill Cornell Medicine, NY, United States
| | - Dana B Hancock
- RTI International, Research Triangle Park, NC, United States.
| |
Collapse
|
24
|
Skuladottir AT, Stefansdottir L, Halldorsson GH, Stefansson OA, Bjornsdottir A, Jonsson P, Palmadottir V, Thorgeirsson TE, Walters GB, Gisladottir RS, Bjornsdottir G, Jonsdottir GA, Sulem P, Gudbjartsson DF, Knowlton KU, Jones DA, Ottas A, Pedersen OB, Didriksen M, Brunak S, Banasik K, Hansen TF, Erikstrup C, Haavik J, Andreassen OA, Rye D, Igland J, Ostrowski SR, Milani LA, Nadauld LD, Stefansson H, Stefansson K. GWAS meta-analysis reveals key risk loci in essential tremor pathogenesis. Commun Biol 2024; 7:504. [PMID: 38671141 PMCID: PMC11053069 DOI: 10.1038/s42003-024-06207-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Essential tremor (ET) is a prevalent neurological disorder with a largely unknown underlying biology. In this genome-wide association study meta-analysis, comprising 16,480 ET cases and 1,936,173 controls from seven datasets, we identify 12 sequence variants at 11 loci. Evaluating mRNA expression, splicing, plasma protein levels, and coding effects, we highlight seven putative causal genes at these loci, including CA3 and CPLX1. CA3 encodes Carbonic Anhydrase III and carbonic anhydrase inhibitors have been shown to decrease tremors. CPLX1, encoding Complexin-1, regulates neurotransmitter release. Through gene-set enrichment analysis, we identify a significant association with specific cell types, including dopaminergic and GABAergic neurons, as well as biological processes like Rho GTPase signaling. Genetic correlation analyses reveals a positive association between ET and Parkinson's disease, depression, and anxiety-related phenotypes. This research uncovers risk loci, enhancing our knowledge of the complex genetics of this common but poorly understood disorder, and highlights CA3 and CPLX1 as potential therapeutic targets.
Collapse
Affiliation(s)
- Astros Th Skuladottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland.
| | | | | | | | | | - Palmi Jonsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Geriatric Medicine, Landspitali University Hospital, Reykjavik, Iceland
| | - Vala Palmadottir
- Department of Internal Medicine, Landspitali University Hospital, Reykjavik, Iceland
| | | | | | - Rosa S Gisladottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Icelandic and Comparative Cultural Studies, University of Iceland, Reykjavik, Iceland
| | | | | | | | - Daniel F Gudbjartsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Kirk U Knowlton
- Intermountain Medical Center, Intermountain Heart Institute, Salt Lake City, USA
| | - David A Jones
- Precision Genomics, Intermountain Healthcare, Saint George, Utah, UK
| | - Aigar Ottas
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Ole B Pedersen
- Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maria Didriksen
- Department of Clinical Immunology, Copenhagen University Hospital, Righospitale, Copenhagen, Denmark
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Karina Banasik
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Folkmann Hansen
- Danish Headache Center, Department of Neurology, Copenhagen University Hospital, Righospitalet-Glostrup, Copenhagen, Denmark
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Righospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, Aarhus University, Aarhus, Denmark
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Bergen Center of Brain Plasticity, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Ole A Andreassen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - David Rye
- Emory Department of Neurology, Wesley Woods Health Center, Atlanta, GA, USA
| | - Jannicke Igland
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- Department of Health and Caring sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | - Sisse Rye Ostrowski
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Copenhagen University Hospital, Righospitale, Copenhagen, Denmark
| | - Lili A Milani
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Lincoln D Nadauld
- Precision Genomics, Intermountain Healthcare, Saint George, Utah, UK
- Stanford University, School of Medicine, Stanford, CA, USA
| | | | - Kari Stefansson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
25
|
Gao J, Yang Y, Xiang X, Zheng H, Yi X, Wang F, Liang Z, Chen D, Shi W, Wang L, Wu D, Feng S, Huang Q, Li X, Shu W, Chen R, Zhong N, Wang Z. Human genetic associations of the airway microbiome in chronic obstructive pulmonary disease. Respir Res 2024; 25:165. [PMID: 38622589 PMCID: PMC11367891 DOI: 10.1186/s12931-024-02805-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/04/2024] [Indexed: 04/17/2024] Open
Abstract
Little is known about the relationships between human genetics and the airway microbiome. Deeply sequenced airway metagenomics, by simultaneously characterizing the microbiome and host genetics, provide a unique opportunity to assess the microbiome-host genetic associations. Here we performed a co-profiling of microbiome and host genetics with the identification of over 5 million single nucleotide polymorphisms (SNPs) through deep metagenomic sequencing in sputum of 99 chronic obstructive pulmonary disease (COPD) and 36 healthy individuals. Host genetic variation was the most significant factor associated with the microbiome except for geography and disease status, with its top 5 principal components accounting for 12.11% of the microbiome variability. Within COPD individuals, 113 SNPs mapped to candidate genes reported as genetically associated with COPD exhibited associations with 29 microbial species and 48 functional modules (P < 1 × 10-5), where Streptococcus salivarius exhibits the strongest association to SNP rs6917641 in TBC1D32 (P = 9.54 × 10-8). Integration of concurrent host transcriptomic data identified correlations between the expression of host genes and their genetically-linked microbiome features, including NUDT1, MAD1L1 and Veillonella parvula, TTLL9 and Stenotrophomonas maltophilia, and LTA4H and Haemophilus influenzae. Mendelian randomization analyses revealed a potential causal link between PARK7 expression and microbial type III secretion system, and a genetically-mediated association between COPD and increased relative abundance of airway Streptococcus intermedius. These results suggest a previously underappreciated role of host genetics in shaping the airway microbiome and provide fresh hypotheses for genetic-based host-microbiome interactions in COPD.
Collapse
Affiliation(s)
- Jingyuan Gao
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Yuqiong Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Xiaopeng Xiang
- The Hong Kong Polytechnic University, Hong Kong, Hung Hom Kowloon, China
| | - Huimin Zheng
- Department of Obstetrics and Gynecology, The First People's Hospital of Foshan, Foshan, Guangdong Province, China
| | - Xinzhu Yi
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Fengyan Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Zhenyu Liang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Dandan Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Weijuan Shi
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Lingwei Wang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Di Wu
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Shengchuan Feng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Qiaoyun Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Xueping Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Wensheng Shu
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China.
| | - Rongchang Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China.
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China.
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China.
| | - Zhang Wang
- Institute of Ecological Sciences, Biomedical Research Center, School of Life Sciences, State Key Laboratory of Respiratory Disease, South China Normal University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
26
|
Luo L, Zeng Z, Li T, Liu X, Cui Y, Tao Y, Li Y, Chen Y. TET2 stabilized by deubiquitinase USP21 ameliorates cigarette smoke-induced apoptosis in airway epithelial cells. iScience 2024; 27:109252. [PMID: 38439981 PMCID: PMC10910280 DOI: 10.1016/j.isci.2024.109252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 12/29/2023] [Accepted: 02/13/2024] [Indexed: 03/06/2024] Open
Abstract
DNA demethylase TET2 was related with lung function. However, the precise role of TET2 in cigarette smoke (CS)-induced apoptosis of airway epithelium cells, and the mechanisms involved, have yet to be elucidated. Here, we showed that CS decreased TET2 protein levels but had no significant effect on its mRNA levels in lung tissues of chronic obstructive pulmonary disease (COPD) patients and CS-induced COPD mice model and even in airway epithelial cell lines. TET2 could inhibit CS-induced apoptosis of airway epithelial cell in vivo and in vitro. Moreover, we identified ubiquitin-specific protease 21 (USP21) as a deubiquitinase of TET2 in airway epithelial cells. USP21 interacted with TET2 and inhibited CSE-induced TET2 degradation. USP21 downregulated decreased TET2 abundance and further reduced the anti-apoptosis effect of TET2. Thus, we draw a conclusion that the USP21/TET2 axis is involved in CS-induced apoptosis of airway epithelial cells.
Collapse
Affiliation(s)
- Lijuan Luo
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Diagnosis and Treatment center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, Hunan 410011, China
| | - Zihang Zeng
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Diagnosis and Treatment center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, Hunan 410011, China
| | - Tiao Li
- Department of Pulmonary and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xiangming Liu
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Diagnosis and Treatment center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, Hunan 410011, China
| | - Yanan Cui
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Diagnosis and Treatment center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, Hunan 410011, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| | - Yi Li
- Department of Infectious Disease Department, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yan Chen
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Diagnosis and Treatment center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, Hunan 410011, China
| |
Collapse
|
27
|
Park JK, Brake MA, Schulman S. Human Genetic Variation in F3 and Its Impact on Tissue Factor-Dependent Disease. Semin Thromb Hemost 2024; 50:188-199. [PMID: 37201535 DOI: 10.1055/s-0043-1769079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Tissue factor (TF) is the primary initiator of blood coagulation in humans. As improper intravascular TF expression and procoagulant activity underlie numerous thrombotic disorders, there has been longstanding interest in the contribution of heritable genetic variation in F3, the gene encoding TF, to human disease. This review seeks to comprehensively and critically synthesize small case-control studies focused on candidate single nucleotide polymorphisms (SNPs), as well as modern genome-wide association studies (GWAS) seeking to discover novel associations between variants and clinical phenotypes. Where possible, correlative laboratory studies, expression quantitative trait loci, and protein quantitative trait loci are evaluated to glean potential mechanistic insights. Most disease associations implicated in historical case-control studies have proven difficult to replicate in large GWAS. Nevertheless, SNPs linked to F3, such as rs2022030, are associated with increased F3 mRNA expression, monocyte TF expression after endotoxin exposure, and circulating levels of the prothrombotic biomarker D-dimer, consistent with the central role of TF in the initiation of blood coagulation.
Collapse
Affiliation(s)
- Jin K Park
- Division of Health, Sciences, and Technology, Massachusetts Institute of Technology and Harvard Medical School, Boston, Massachusetts
| | - Marisa A Brake
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Sol Schulman
- Division of Health, Sciences, and Technology, Massachusetts Institute of Technology and Harvard Medical School, Boston, Massachusetts
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
- Division of Hematology and Hematologic Malignancies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
28
|
Wu J, Li X, Kong D, Zheng X, Du W, Zhang Y, Jiao Y, Li X. Exploring the importance of m5c in the diagnosis and subtype classification of COPD using the GEO database. Gene 2024; 895:147987. [PMID: 37972696 DOI: 10.1016/j.gene.2023.147987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/01/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND 5-Methylcytosine (m5C) is an mRNA modifier that is associated with the occurrence and development of viral infection, pulmonary fibrosis, lung cancer, and other diseases. However, the role of m5C regulators in chronic obstructive pulmonary disease (COPD) remains unknown. METHODS In this study, by analysing the GSE42057 dataset, the differential expression of m5c regulators in the COPD group and control group was obtained, and a correlation analysis was conducted. The random forest model and support vector machine model were used to predict the occurrence of COPD. A nomogram model was also constructed to predict the prevalence of COPD. The COPD patients were divided into subtypes by consistent cluster analysis based on m5c methylation regulators. Immune cell infiltration was performed on the m5c methylation subtypes. Differentially expressed genes (DEGs) between m5c methylation subtypes were screened, and the DEGs were analysed by Gene Ontology (GO) Kyoto Encyclopedia of Genes and Genomes (KEGG). Finally, we verified the expression of several m5C regulators and related pathways using a COPD cell model. RESULTS Seven m5c methylation regulators were differentially expressed. The random forest model based on the above genes was the most accurate for predicting the occurrence of COPD. A nomogram model based on the above genes could also accurately predict the prevalence of COPD, and the implementation of these models could benefit COPD patients. The consistent cluster analysis divided the COPD patients into two subtypes (Cluster A and Cluster B). The main component analysis algorithm determined the m5c methylation subtypes and found that patients in Cluster A had a higher m5c score than those in Cluster B. GO analysis of the DEGs between the m5c methylation COPD patient subtypes revealed that DEGS were mainly enriched in leukocyte-mediated immunity and regulation of T-cell activation. KEGG analysis revealed that DEGS were mainly enriched in Th1 and Th2 cell differentiation, neutrophil extracellular trap formation, and the NF-κB signalling pathway. Immunocyte correlation analysis revealed that Cluster B was associated with neutrophil- and macrophage-mediated immunity, while Cluster A was associated with CD4 + T-cell- and CD8 + T-cell-mediated immunity. Cell experiments have also verified some of the above research results. CONCLUSION The diagnosis and subtype classification of COPD patients based on m5c regulators may provide a new strategy for the diagnosis and treatment of COPD.
Collapse
Affiliation(s)
- Jianjun Wu
- Respiratory Department, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Xiaoning Li
- Respiratory Department, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Deyu Kong
- Respiratory Department, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xudong Zheng
- Respiratory Department, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Weisha Du
- Respiratory Department, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yi Zhang
- Respiratory Department, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yang Jiao
- Respiratory Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China.
| | - Xin Li
- Glaucoma, Eye Hospital China academy of Chinese Medical Sciences, Beijing 100040, China.
| |
Collapse
|
29
|
Edris A, Voorhies K, Lutz SM, Iribarren C, Hall I, Wu AC, Tobin M, Fawcett K, Lahousse L. Asthma exacerbations and eosinophilia in the UK Biobank: a genome-wide association study. ERJ Open Res 2024; 10:00566-2023. [PMID: 38196893 PMCID: PMC10772900 DOI: 10.1183/23120541.00566-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/31/2023] [Indexed: 01/11/2024] Open
Abstract
Background Asthma exacerbations reflect disease severity, affect morbidity and mortality, and may lead to declining lung function. Inflammatory endotypes (e.g. T2-high (eosinophilic)) may play a key role in asthma exacerbations. We aimed to assess whether genetic susceptibility underlies asthma exacerbation risk and additionally tested for an interaction between genetic variants and eosinophilia on exacerbation risk. Methods UK Biobank data were used to perform a genome-wide association study of individuals with asthma and at least one exacerbation compared to individuals with asthma and no history of exacerbations. Individuals with asthma were identified using self-reported data, hospitalisation data and general practitioner records. Exacerbations were identified as either asthma-related hospitalisation, general practitioner record of asthma exacerbation or an oral corticosteroid burst prescription. A logistic regression model adjusted for age, sex, smoking status and genetic ancestry via principal components was used to assess the association between genetic variants and asthma exacerbations. We sought replication for suggestive associations (p<5×10-6) in the GERA cohort. Results In the UK Biobank, we identified 11 604 cases and 37 890 controls. While no variants reached genome-wide significance (p<5×10-8) in the primary analysis, 116 signals were suggestively significant (p<5×10-6). In GERA, two single nucleotide polymorphisms (rs34643691 and rs149721630) replicated (p<0.05), representing signals near the NTRK3 and ABCA13 genes. Conclusions Our study has identified reproducible associations with asthma exacerbations in the UK Biobank and GERA cohorts. Confirmation of these findings in different asthma subphenotypes in diverse ancestries and functional investigation will be required to understand their mechanisms of action and potentially inform therapeutic development.
Collapse
Affiliation(s)
- Ahmed Edris
- Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, UK
| | - Kirsten Voorhies
- Precision Medicine Translational Research Center, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Sharon M. Lutz
- Precision Medicine Translational Research Center, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Carlos Iribarren
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Ian Hall
- Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Ann Chen Wu
- Precision Medicine Translational Research Center, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Martin Tobin
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, UK
| | - Katherine Fawcett
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, UK
- These authors contributed equally
| | - Lies Lahousse
- Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
- These authors contributed equally
| |
Collapse
|
30
|
Du Z, Zhang X, Hu Y, Huang Y, Bulloch G, Shang X, Liang Y, Wu G, Wang Y, Xiao Y, Kong H, Lawali DJAM, Hu Y, Zhu Z, Yang X, Yu H. Association of hyperopia with incident clinically significant depression: epidemiological and genetic evidence in the middle-aged and older population. Br J Ophthalmol 2023; 107:1907-1913. [PMID: 36241375 DOI: 10.1136/bjo-2022-321876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/27/2022] [Indexed: 11/04/2022]
Abstract
AIMS To investigate the association between hyperopia and clinically significant depression (CSD) in middle-aged and older individuals. The effect of genetic determinants of hyperopia on incident CSD was also explored. METHODS We included participants who had available data on mean spherical equivalent (MSE) and were free of depression at baseline from the UK Biobank. For the phenotypic association, hyperopia was defined as MSE of+2.00 dioptres (D) or greater, and was divided into mild, moderate and high groups. Diagnosis of CSD across follow-up was determined based on electronic hospital inpatients records. For the genetic association analysis, the association between hyperopia Polygenic Risk Score and incident CSD was assessed. Mendelian randomisation was assessed for causality association. RESULTS Over a median follow-up of 11.11 years (IQR: 10.92-11.38), hyperopia was significantly associated with incident CSD independent of genetic risk (HR 1.29, 95% CI 1.05 to 1.59) compared with emmetropia participants, especially in those hyperopic patients without optical correction (HR 1.38, 95% CI 1.07 to 1.76). In addition, participants in the high degree of hyperopia were more likely to have incident CSD than participants in the mild degree of hyperopia (P for trend=0.009). Genetic analyses did not show any significant associations between hyperopia and incident CSD (p≥0.1). CONCLUSIONS Hyperopia was significantly associated with an increased risk of incident CSD. This was independent of genetic predisposition to hyperopia, emphasising the importance of regular vision screening and correction of hyperopia to reduce the risk of CSD regardless of genetic risk.
Collapse
Affiliation(s)
- Zijing Du
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences/The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiayin Zhang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences/The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yijun Hu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences/The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yu Huang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences/The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Gabriella Bulloch
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - Xianwen Shang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences/The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yingying Liang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences/The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Guanrong Wu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences/The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yaxin Wang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences/The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yu Xiao
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences/The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Huiqian Kong
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences/The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Dan Jouma Amadou Maman Lawali
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences/The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yunyan Hu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences/The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zhuoting Zhu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences/The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiaohong Yang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences/The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Honghua Yu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences/The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
31
|
Williams AT, Shrine N, Naghra-van Gijzel H, Betts JC, Chen J, Hessel EM, John C, Packer R, Reeve NF, Yeo AJ, Abner E, Åsvold BO, Auvinen J, Bartz TM, Bradford Y, Brumpton B, Campbell A, Cho MH, Chu S, Crosslin DR, Feng Q, Esko T, Gharib SA, Hayward C, Hebbring S, Hveem K, Järvelin MR, Jarvik GP, Landis SH, Larson EB, Liu J, Loos RJ, Luo Y, Moscati A, Mullerova H, Namjou B, Porteous DJ, Quint JK, Ritchie MD, Sliz E, Stanaway IB, Thomas L, Wilson JF, Hall IP, Wain LV, Michalovich D, Tobin MD. Genome-wide association study of susceptibility to hospitalised respiratory infections. Wellcome Open Res 2023; 6:290. [PMID: 39220670 PMCID: PMC11362726 DOI: 10.12688/wellcomeopenres.17230.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2023] [Indexed: 09/04/2024] Open
Abstract
Background: Globally, respiratory infections contribute to significant morbidity and mortality. However, genetic determinants of respiratory infections are understudied and remain poorly understood. Methods: We conducted a genome-wide association study in 19,459 hospitalised respiratory infection cases and 101,438 controls from UK Biobank (Stage 1). We followed-up well-imputed top signals from our Stage 1 analysis in 50,912 respiratory infection cases and 150,442 controls from 11 cohorts (Stage 2). We aggregated effect estimates across studies using inverse variance-weighted meta-analyses. Additionally, we investigated the function of the top signals in order to gain understanding of the underlying biological mechanisms. Results: From our Stage 1 analysis, we report 56 signals at P<5×10 -6, one of which was genome-wide significant ( P<5×10 -8). The genome-wide significant signal was in an intron of PBX3, a gene that encodes pre-B-cell leukaemia transcription factor 3, a homeodomain-containing transcription factor. Further, the genome-wide significant signal was found to colocalise with gene-specific expression quantitative trait loci (eQTLs) affecting expression of PBX3 in lung tissue, where the respiratory infection risk alleles were associated with decreased PBX3 expression in lung tissue, highlighting a possible biological mechanism. Of the 56 signals, 40 were well-imputed in UK Biobank and were investigated in Stage 2. None of the 40 signals replicated, with effect estimates attenuated. Conclusions: Our Stage 1 analysis implicated PBX3 as a candidate causal gene and suggests a possible role of transcription factor binding activity in respiratory infection susceptibility. However, the PBX3 signal, and the other well-imputed signals, did not replicate in the meta-analysis of Stages 1 and 2. Significant phenotypic heterogeneity and differences in study ascertainment may have contributed to this lack of statistical replication. Overall, our study highlighted putative associations and possible biological mechanisms that may provide insight into respiratory infection susceptibility.
Collapse
Affiliation(s)
| | - Nick Shrine
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | | | | | - Jing Chen
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | | | - Catherine John
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Richard Packer
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Nicola F. Reeve
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | | | - Erik Abner
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Riia 23b, 51010, Estonia
| | - Bjørn Olav Åsvold
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Center, Department of Public Health, Norwegian University of Science and Technology, Levanger, Norway
- Department of Endocrinology, Clinic of Medicine, St Olav’s Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Juha Auvinen
- Medical Research Center Oulu, Oulu University Hospital, Center for Life Course Health Research, University of Oulu, Oulu, Finland
| | - Traci M. Bartz
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Yuki Bradford
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ben Brumpton
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Center, Department of Public Health, Norwegian University of Science and Technology, Levanger, Norway
- Clinic of Thoracic and Occupational Medicine, St Olav’s Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Michael H. Cho
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Su Chu
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - David R. Crosslin
- University of Washington, School of Medicine, Seattle, Washington, USA
| | - QiPing Feng
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Tõnu Esko
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Riia 23b, 51010, Estonia
| | - Sina A. Gharib
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, USA
- Center for Lung Biology, Division of Pulmonary & Critical Care Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Scott Hebbring
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, Wisconsin, USA
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Center, Department of Public Health, Norwegian University of Science and Technology, Levanger, Norway
| | - Marjo-Riitta Järvelin
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Unit of Primary Care, Oulu University Hospital, Oulu, Finland
- Department of Epidemiology and Biostatistics, School of Public Health, MRC Centre for Environment and Health, Imperial College London, London, UK
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, UK
| | - Gail P. Jarvik
- University of Washington, School of Medicine, Seattle, Washington, USA
| | | | - Eric B. Larson
- University of Washington, School of Medicine, Seattle, Washington, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, Washington, USA
| | - Jiangyuan Liu
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Ruth J.F. Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yuan Luo
- Department of Preventive Medicine, Northwestern University, Chicago, Illinois, USA
| | - Arden Moscati
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Bahram Namjou
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - David J. Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Jennifer K. Quint
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Regeneron Genomics Center
- Department of Population Health Sciences, University of Leicester, Leicester, UK
- R&D, GSK, Stevenage, UK
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Riia 23b, 51010, Estonia
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Center, Department of Public Health, Norwegian University of Science and Technology, Levanger, Norway
- Department of Endocrinology, Clinic of Medicine, St Olav’s Hospital, Trondheim University Hospital, Trondheim, Norway
- Medical Research Center Oulu, Oulu University Hospital, Center for Life Course Health Research, University of Oulu, Oulu, Finland
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Clinic of Thoracic and Occupational Medicine, St Olav’s Hospital, Trondheim University Hospital, Trondheim, Norway
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- University of Washington, School of Medicine, Seattle, Washington, USA
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Center for Lung Biology, Division of Pulmonary & Critical Care Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, Wisconsin, USA
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Unit of Primary Care, Oulu University Hospital, Oulu, Finland
- Department of Epidemiology and Biostatistics, School of Public Health, MRC Centre for Environment and Health, Imperial College London, London, UK
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, UK
- R&D, GSK, Stockley Park, UK
- Kaiser Permanente Washington Health Research Institute, Seattle, Washington, USA
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Preventive Medicine, Northwestern University, Chicago, Illinois, USA
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- National Heart and Lung Institute, Imperial College London, London, UK
- Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- BioCore - Bioinformatics Core Facility, Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olav’s Hospital, Trondheim University Hospital, Trondheim, Norway
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
- Division of Respiratory Medicine and NIHR-Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
- National Institute for Health Research, Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Marylyn D. Ritchie
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Eeva Sliz
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Ian B. Stanaway
- University of Washington, School of Medicine, Seattle, Washington, USA
| | - Laurent Thomas
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- BioCore - Bioinformatics Core Facility, Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olav’s Hospital, Trondheim University Hospital, Trondheim, Norway
| | - James F. Wilson
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Ian P. Hall
- Division of Respiratory Medicine and NIHR-Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Louise V. Wain
- Department of Population Health Sciences, University of Leicester, Leicester, UK
- National Institute for Health Research, Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | | | - Martin D. Tobin
- Department of Population Health Sciences, University of Leicester, Leicester, UK
- National Institute for Health Research, Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| |
Collapse
|
32
|
Zeng Z, Li T, Liu X, Ma Y, Luo L, Wang Z, Zhao Z, Li H, He X, Zeng H, Tao Y, Chen Y. DNA dioxygenases TET2 deficiency promotes cigarette smoke induced chronic obstructive pulmonary disease by inducing ferroptosis of lung epithelial cell. Redox Biol 2023; 67:102916. [PMID: 37812881 PMCID: PMC10579541 DOI: 10.1016/j.redox.2023.102916] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/21/2023] [Accepted: 10/02/2023] [Indexed: 10/11/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a significant global cause of morbidity and mortality currently. Long-term exposure of cigarette smoke (CS) inducing persistent inflammation, small airway remodeling and emphysematous lung are the distinguishing features of COPD. Ferroptosis, occurred in lung epithelial cells has recently been reported to be associated with COPD pathogenesis. DNA dioxygenase ten-eleven translocation 2 (TET2) is an important demethylase and its genetic mutation is associated with low forced expiratory volume in 1 s (FEV1) of lung function. However, its role in COPD remains elusive. Here, we found that TET2 regulates CS induced lipid peroxidation through demethylating glutathione peroxidase 4 (GPx4), thus alleviating airway epithelial cell ferroptosis in COPD. TET2 protein levels were mainly reduced in the airway epithelia of COPD patients, mouse models, and CS extract-treated bronchial epithelial cells. The deletion of TET2 triggered ferroptosis and further exaggerated CS-induced airway remodeling, inflammation, and emphysema in vivo. Moreover, we demonstrated that TET2 silencing intensified ferroptosis, while TET2 overexpression inhibited ferroptosis in airway epithelial cell treated with CSE. Mechanically, TET2 protected airway epithelial cells from CS-induced lipid peroxidation and ferroptosis through demethylating the promoter of glutathione peroxidase 4 (GPx4). Finally, co-administration of methylation inhibitor 5'-aza-2'-deoxycytidine (5-AZA) and the antioxidant N-acetyl-cysteine (NAC) have more protective effects on CS-induced COPD than either administration alone. Overall, our study reveals that TET2 is an essential modulator in the lipid peroxidation and ferroptosis of airway epithelial cell, and could act as a potential therapeutic target for CS-induced COPD.
Collapse
Affiliation(s)
- Zihang Zeng
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, China; Research Unit of Respiratory Disease, Central South University, Changsha, China; Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Tiao Li
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, China; Research Unit of Respiratory Disease, Central South University, Changsha, China; Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China; Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiangming Liu
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, China; Research Unit of Respiratory Disease, Central South University, Changsha, China; Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Yiming Ma
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, China; Research Unit of Respiratory Disease, Central South University, Changsha, China; Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Lijuan Luo
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, China; Research Unit of Respiratory Disease, Central South University, Changsha, China; Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - ZuLi Wang
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Changsha, China
| | - Zhiqi Zhao
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, China; Research Unit of Respiratory Disease, Central South University, Changsha, China; Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Herui Li
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, China; Research Unit of Respiratory Disease, Central South University, Changsha, China; Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Xue He
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, China; Research Unit of Respiratory Disease, Central South University, Changsha, China; Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Huihui Zeng
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, China; Research Unit of Respiratory Disease, Central South University, Changsha, China; Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Hunan, 410078, China; NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Yan Chen
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, China; Research Unit of Respiratory Disease, Central South University, Changsha, China; Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China.
| |
Collapse
|
33
|
Margaritte-Jeannin P, Vernet R, Budu-Aggrey A, Ege M, Madore AM, Linhard C, Mohamdi H, von Mutius E, Granell R, Demenais F, Laprise C, Bouzigon E, Dizier MH. TNS1 and NRXN1 Genes Interacting With Early-Life Smoking Exposure in Asthma-Plus-Eczema Susceptibility. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2023; 15:779-794. [PMID: 37957795 PMCID: PMC10643854 DOI: 10.4168/aair.2023.15.6.779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 05/15/2023] [Accepted: 06/13/2023] [Indexed: 11/15/2023]
Abstract
PURPOSE Numerous genes have been associated with allergic diseases (asthma, allergic rhinitis, and eczema), but they explain only part of their heritability. This is partly because most previous studies ignored complex mechanisms such as gene-environment (G-E) interactions and complex phenotypes such as co-morbidity. However, it was recently evidenced that the co-morbidity of asthma-plus-eczema appears as a sub-entity depending on specific genetic factors. Besides, evidence also suggest that gene-by-early life environmental tobacco smoke (ETS) exposure interactions play a role in asthma, but were never investigated for asthma-plus-eczema. To identify genetic variants interacting with ETS exposure that influence asthma-plus-eczema susceptibility. METHODS To conduct a genome-wide interaction study (GWIS) of asthma-plus-eczema according to ETS exposure, we applied a 2-stage strategy with a first selection of single nucleotide polymorphisms (SNPs) from genome-wide association meta-analysis to be tested at a second stage by interaction meta-analysis. All meta-analyses were conducted across 4 studies including a total of 5,516 European-ancestry individuals, of whom 1,164 had both asthma and eczema. RESULTS Two SNPs showed significant interactions with ETS exposure. They were located in 2 genes, NRXN1 (2p16) and TNS1 (2q35), never reported associated and/or interacting with ETS exposure for asthma, eczema or more generally for allergic diseases. TNS1 is a promising candidate gene because of its link to lung and skin diseases with possible interactive effect with tobacco smoke exposure. CONCLUSIONS This first GWIS of asthma-plus-eczema with ETS exposure underlines the importance of studying sub-phenotypes such as co-morbidities as well as G-E interactions to detect new susceptibility genes.
Collapse
Affiliation(s)
- Patricia Margaritte-Jeannin
- Université Paris Cité, UMRS 1124, INSERM, Genomic Epidemiology and Multifactorial Diseases Group, Paris, France
| | - Raphaël Vernet
- Université Paris Cité, UMRS 1124, INSERM, Genomic Epidemiology and Multifactorial Diseases Group, Paris, France
| | - Ashley Budu-Aggrey
- Medical Research Council (MRC) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Markus Ege
- Dr von Hauner Children's Hospital, Ludwig Maximilian University; Institute of Asthma and Allergy prevention, Helmholtz Centre Munich; Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research, Munich, Germany
| | - Anne-Marie Madore
- Département des sciences fondamentales, Centre intersectoriel en santé durable (CISD), Université du Québec à Chicoutimi, Saguenay, QC, Canada
| | - Christophe Linhard
- Université Paris Cité, UMRS 1124, INSERM, Genomic Epidemiology and Multifactorial Diseases Group, Paris, France
| | - Hamida Mohamdi
- Université Paris Cité, UMRS 1124, INSERM, Genomic Epidemiology and Multifactorial Diseases Group, Paris, France
| | - Erika von Mutius
- Dr von Hauner Children's Hospital, Ludwig Maximilian University; Institute of Asthma and Allergy prevention, Helmholtz Centre Munich; Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research, Munich, Germany
| | - Raquell Granell
- Medical Research Council (MRC) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Florence Demenais
- Université Paris Cité, UMRS 1124, INSERM, Genomic Epidemiology and Multifactorial Diseases Group, Paris, France
| | - Cathrine Laprise
- Département des sciences fondamentales, Centre intersectoriel en santé durable (CISD), Université du Québec à Chicoutimi, Saguenay, QC, Canada
| | - Emmanuelle Bouzigon
- Université Paris Cité, UMRS 1124, INSERM, Genomic Epidemiology and Multifactorial Diseases Group, Paris, France
| | - Marie-Hélène Dizier
- Université Paris Cité, UMRS 1124, INSERM, Genomic Epidemiology and Multifactorial Diseases Group, Paris, France.
| |
Collapse
|
34
|
Bjornsdottir G, Chalmer MA, Stefansdottir L, Skuladottir AT, Einarsson G, Andresdottir M, Beyter D, Ferkingstad E, Gretarsdottir S, Halldorsson BV, Halldorsson GH, Helgadottir A, Helgason H, Hjorleifsson Eldjarn G, Jonasdottir A, Jonasdottir A, Jonsdottir I, Knowlton KU, Nadauld LD, Lund SH, Magnusson OT, Melsted P, Moore KHS, Oddsson A, Olason PI, Sigurdsson A, Stefansson OA, Saemundsdottir J, Sveinbjornsson G, Tragante V, Unnsteinsdottir U, Walters GB, Zink F, Rødevand L, Andreassen OA, Igland J, Lie RT, Haavik J, Banasik K, Brunak S, Didriksen M, T Bruun M, Erikstrup C, Kogelman LJA, Nielsen KR, Sørensen E, Pedersen OB, Ullum H, Masson G, Thorsteinsdottir U, Olesen J, Ludvigsson P, Thorarensen O, Bjornsdottir A, Sigurdardottir GR, Sveinsson OA, Ostrowski SR, Holm H, Gudbjartsson DF, Thorleifsson G, Sulem P, Stefansson H, Thorgeirsson TE, Hansen TF, Stefansson K. Rare variants with large effects provide functional insights into the pathology of migraine subtypes, with and without aura. Nat Genet 2023; 55:1843-1853. [PMID: 37884687 PMCID: PMC10632135 DOI: 10.1038/s41588-023-01538-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 09/18/2023] [Indexed: 10/28/2023]
Abstract
Migraine is a complex neurovascular disease with a range of severity and symptoms, yet mostly studied as one phenotype in genome-wide association studies (GWAS). Here we combine large GWAS datasets from six European populations to study the main migraine subtypes, migraine with aura (MA) and migraine without aura (MO). We identified four new MA-associated variants (in PRRT2, PALMD, ABO and LRRK2) and classified 13 MO-associated variants. Rare variants with large effects highlight three genes. A rare frameshift variant in brain-expressed PRRT2 confers large risk of MA and epilepsy, but not MO. A burden test of rare loss-of-function variants in SCN11A, encoding a neuron-expressed sodium channel with a key role in pain sensation, shows strong protection against migraine. Finally, a rare variant with cis-regulatory effects on KCNK5 confers large protection against migraine and brain aneurysms. Our findings offer new insights with therapeutic potential into the complex biology of migraine and its subtypes.
Collapse
Affiliation(s)
| | - Mona A Chalmer
- Danish Headache Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet-Glostrup, Copenhagen, Denmark
| | | | | | | | | | | | | | | | - Bjarni V Halldorsson
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- Reykjavik University, School of Technology, Reykjavik, Iceland
| | - Gisli H Halldorsson
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Hannes Helgason
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | | | - Ingileif Jonsdottir
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | - Sigrun H Lund
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Physical Sciences, School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Pall Melsted
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | | | | | | | | | | | | | | | | | | | - Linn Rødevand
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Jannicke Igland
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- Department of Health and Social Science, Centre for Evidence-Based Practice, Western Norway University of Applied Science, Bergen, Norway
| | - Rolv T Lie
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Karina Banasik
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maria Didriksen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Mie T Bruun
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine Health, Aarhus University, Aarhus, Denmark
| | - Lisette J A Kogelman
- Danish Headache Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet-Glostrup, Copenhagen, Denmark
| | - Kaspar R Nielsen
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Erik Sørensen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Ole B Pedersen
- Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Unnur Thorsteinsdottir
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Jes Olesen
- Danish Headache Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet-Glostrup, Copenhagen, Denmark
| | - Petur Ludvigsson
- Department of Pediatrics, Landspitali University Hostpital, Reykjavik, Iceland
| | - Olafur Thorarensen
- Department of Pediatrics, Landspitali University Hostpital, Reykjavik, Iceland
| | | | | | - Olafur A Sveinsson
- Laeknasetrid Clinic, Reykjavik, Iceland
- Department of Neurology, Landspitali University Hospital, Reykjavik, Iceland
| | - Sisse R Ostrowski
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hilma Holm
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
| | - Daniel F Gudbjartsson
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | | | | | - Thomas F Hansen
- Danish Headache Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet-Glostrup, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kari Stefansson
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland.
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
35
|
Feng L, Ye Z, Mo C, Wang J, Liu S, Gao S, Ke H, Canida TA, Pan Y, van Greevenbroek MM, Houben AJ, Wang K, Hatch KS, Ma Y, Lei DK, Chen C, Mitchell BD, Hong LE, Kochunov P, Chen S, Ma T. Elevated blood pressure accelerates white matter brain aging among late middle-aged women: a Mendelian Randomization study in the UK Biobank. J Hypertens 2023; 41:1811-1820. [PMID: 37682053 PMCID: PMC11083214 DOI: 10.1097/hjh.0000000000003553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
BACKGROUND Elevated blood pressure (BP) is a modifiable risk factor associated with cognitive impairment and cerebrovascular diseases. However, the causal effect of BP on white matter brain aging remains unclear. METHODS In this study, we focused on N = 228 473 individuals of European ancestry who had genotype data and clinical BP measurements available (103 929 men and 124 544 women, mean age = 56.49, including 16 901 participants with neuroimaging data available) collected from UK Biobank (UKB). We first established a machine learning model to compute the outcome variable brain age gap (BAG) based on white matter microstructure integrity measured by fractional anisotropy derived from diffusion tensor imaging data. We then performed a two-sample Mendelian randomization analysis to estimate the causal effect of BP on white matter BAG in the whole population and subgroups stratified by sex and age brackets using two nonoverlapping data sets. RESULTS The hypertension group is on average 0.31 years (95% CI = 0.13-0.49; P < 0.0001) older in white matter brain age than the nonhypertension group. Women are on average 0.81 years (95% CI = 0.68-0.95; P < 0.0001) younger in white matter brain age than men. The Mendelian randomization analyses showed an overall significant positive causal effect of DBP on white matter BAG (0.37 years/10 mmHg, 95% CI 0.034-0.71, P = 0.0311). In stratified analysis, the causal effect was found most prominent among women aged 50-59 and aged 60-69. CONCLUSION High BP can accelerate white matter brain aging among late middle-aged women, providing insights on planning effective control of BP for women in this age group.
Collapse
Affiliation(s)
- Li Feng
- Department of Nutrition and Food Science, College of Agriculture & Natural Resources, University of Maryland, College Park
| | - Zhenyao Ye
- Maryland Psychiatric Research Center, Department of Psychiatry
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Chen Mo
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Jingtao Wang
- Department of Hematology, Qilu Hospital of Shandong University
| | - Song Liu
- School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Si Gao
- Maryland Psychiatric Research Center, Department of Psychiatry
| | - Hongjie Ke
- Department of Epidemiology and Biostatistics, School of Public Health
| | - Travis A. Canida
- Department of Mathematics, The College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park, Maryland, USA
| | - Yezhi Pan
- Maryland Psychiatric Research Center, Department of Psychiatry
| | - Marleen M.J. van Greevenbroek
- Department of Internal Medicine, Maastricht University Medical Centre
- CARIM Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Alfons J.H.M. Houben
- Department of Internal Medicine, Maastricht University Medical Centre
- CARIM Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Kai Wang
- Department of Internal Medicine, Maastricht University Medical Centre
- CARIM Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | | | - Yizhou Ma
- Maryland Psychiatric Research Center, Department of Psychiatry
| | - David K.Y. Lei
- Department of Nutrition and Food Science, College of Agriculture & Natural Resources, University of Maryland, College Park
| | - Chixiang Chen
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Braxton D. Mitchell
- Department of Epidemiology and Biostatistics, University of Maryland School of Public Health, College Park, MD, USA
| | - L. Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry
| | - Shuo Chen
- Maryland Psychiatric Research Center, Department of Psychiatry
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Tianzhou Ma
- Department of Epidemiology and Biostatistics, School of Public Health
| |
Collapse
|
36
|
Eldjarn GH, Ferkingstad E, Lund SH, Helgason H, Magnusson OT, Gunnarsdottir K, Olafsdottir TA, Halldorsson BV, Olason PI, Zink F, Gudjonsson SA, Sveinbjornsson G, Magnusson MI, Helgason A, Oddsson A, Halldorsson GH, Magnusson MK, Saevarsdottir S, Eiriksdottir T, Masson G, Stefansson H, Jonsdottir I, Holm H, Rafnar T, Melsted P, Saemundsdottir J, Norddahl GL, Thorleifsson G, Ulfarsson MO, Gudbjartsson DF, Thorsteinsdottir U, Sulem P, Stefansson K. Large-scale plasma proteomics comparisons through genetics and disease associations. Nature 2023; 622:348-358. [PMID: 37794188 PMCID: PMC10567571 DOI: 10.1038/s41586-023-06563-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/22/2023] [Indexed: 10/06/2023]
Abstract
High-throughput proteomics platforms measuring thousands of proteins in plasma combined with genomic and phenotypic information have the power to bridge the gap between the genome and diseases. Here we performed association studies of Olink Explore 3072 data generated by the UK Biobank Pharma Proteomics Project1 on plasma samples from more than 50,000 UK Biobank participants with phenotypic and genotypic data, stratifying on British or Irish, African and South Asian ancestries. We compared the results with those of a SomaScan v4 study on plasma from 36,000 Icelandic people2, for 1,514 of whom Olink data were also available. We found modest correlation between the two platforms. Although cis protein quantitative trait loci were detected for a similar absolute number of assays on the two platforms (2,101 on Olink versus 2,120 on SomaScan), the proportion of assays with such supporting evidence for assay performance was higher on the Olink platform (72% versus 43%). A considerable number of proteins had genomic associations that differed between the platforms. We provide examples where differences between platforms may influence conclusions drawn from the integration of protein levels with the study of diseases. We demonstrate how leveraging the diverse ancestries of participants in the UK Biobank helps to detect novel associations and refine genomic location. Our results show the value of the information provided by the two most commonly used high-throughput proteomics platforms and demonstrate the differences between them that at times provides useful complementarity.
Collapse
Affiliation(s)
| | | | - Sigrun H Lund
- deCODE Genetics/Amgen, Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Hannes Helgason
- deCODE Genetics/Amgen, Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | | | - Bjarni V Halldorsson
- deCODE Genetics/Amgen, Reykjavik, Iceland
- School of Technology, Reykjavik University, Reykjavik, Iceland
| | | | | | | | | | | | - Agnar Helgason
- deCODE Genetics/Amgen, Reykjavik, Iceland
- Department of Anthropology, University of Iceland, Reykjavik, Iceland
| | | | | | - Magnus K Magnusson
- deCODE Genetics/Amgen, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Saedis Saevarsdottir
- deCODE Genetics/Amgen, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | | | - Ingileif Jonsdottir
- deCODE Genetics/Amgen, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Hilma Holm
- deCODE Genetics/Amgen, Reykjavik, Iceland
| | | | - Pall Melsted
- deCODE Genetics/Amgen, Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | | | - Magnus O Ulfarsson
- deCODE Genetics/Amgen, Reykjavik, Iceland
- Faculty of Electrical and Computer Engineering, University of Iceland, Reykjavik, Iceland
| | - Daniel F Gudbjartsson
- deCODE Genetics/Amgen, Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Unnur Thorsteinsdottir
- deCODE Genetics/Amgen, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Kari Stefansson
- deCODE Genetics/Amgen, Reykjavik, Iceland.
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
37
|
Madjedi KM, Stuart KV, Chua SYL, Ramulu PY, Warwick A, Luben RN, Sun Z, Chia MA, Aschard H, Wiggs JL, Kang JH, Pasquale LR, Foster PJ, Khawaja AP. The Association of Physical Activity with Glaucoma and Related Traits in the UK Biobank. Ophthalmology 2023; 130:1024-1036. [PMID: 37331483 PMCID: PMC10913205 DOI: 10.1016/j.ophtha.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/18/2023] [Accepted: 06/02/2023] [Indexed: 06/20/2023] Open
Abstract
PURPOSE To examine the association of physical activity (PA) with glaucoma and related traits, to assess whether genetic predisposition to glaucoma modified these associations, and to probe causal relationships using Mendelian randomization (MR). DESIGN Cross-sectional observational and gene-environment interaction analyses in the UK Biobank. Two-sample MR experiments using summary statistics from large genetic consortia. PARTICIPANTS UK Biobank participants with data on self-reported or accelerometer-derived PA and intraocular pressure (IOP; n = 94 206 and n = 27 777, respectively), macular inner retinal OCT measurements (n = 36 274 and n = 9991, respectively), and glaucoma status (n = 86 803 and n = 23 556, respectively). METHODS We evaluated multivariable-adjusted associations of self-reported (International Physical Activity Questionnaire) and accelerometer-derived PA with IOP and macular inner retinal OCT parameters using linear regression and with glaucoma status using logistic regression. For all outcomes, we examined gene-PA interactions using a polygenic risk score (PRS) that combined the effects of 2673 genetic variants associated with glaucoma. MAIN OUTCOME MEASURES Intraocular pressure, macular retinal nerve fiber layer (mRNFL) thickness, macular ganglion cell-inner plexiform layer (mGCIPL) thickness, and glaucoma status. RESULTS In multivariable-adjusted regression models, we found no association of PA level or time spent in PA with glaucoma status. Higher overall levels and greater time spent in higher levels of both self-reported and accelerometer-derived PA were associated positively with thicker mGCIPL (P < 0.001 for trend for each). Compared with the lowest quartile of PA, participants in the highest quartiles of accelerometer-derived moderate- and vigorous-intensity PA showed a thicker mGCIPL by +0.57 μm (P < 0.001) and +0.42 μm (P = 0.005). No association was found with mRNFL thickness. High overall level of self-reported PA was associated with a modestly higher IOP of +0.08 mmHg (P = 0.01), but this was not replicated in the accelerometry data. No associations were modified by a glaucoma PRS, and MR analyses did not support a causal relationship between PA and any glaucoma-related outcome. CONCLUSIONS Higher overall PA level and greater time spent in moderate and vigorous PA were not associated with glaucoma status but were associated with thicker mGCIPL. Associations with IOP were modest and inconsistent. Despite the well-documented acute reduction in IOP after PA, we found no evidence that high levels of habitual PA are associated with glaucoma status or IOP in the general population. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Kian M Madjedi
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust & UCL Institute of Ophthalmology, London, United Kingdom; Department of Ophthalmology, University of Calgary, Calgary, Alberta, Canada
| | - Kelsey V Stuart
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust & UCL Institute of Ophthalmology, London, United Kingdom
| | - Sharon Y L Chua
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust & UCL Institute of Ophthalmology, London, United Kingdom
| | - Pradeep Y Ramulu
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Robert N Luben
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust & UCL Institute of Ophthalmology, London, United Kingdom; MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Zihan Sun
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust & UCL Institute of Ophthalmology, London, United Kingdom
| | - Mark A Chia
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust & UCL Institute of Ophthalmology, London, United Kingdom
| | - Hugues Aschard
- Department of Computational Biology, Institute Pasteur, Paris, France
| | - Janey L Wiggs
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Jae H Kang
- Brigham and Women's Hospital / Harvard Medical School, Boston, Massachusetts
| | - Louis R Pasquale
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Paul J Foster
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust & UCL Institute of Ophthalmology, London, United Kingdom
| | - Anthony P Khawaja
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust & UCL Institute of Ophthalmology, London, United Kingdom; UCL Institute of Cardiovascular Science, London, United Kingdom.
| |
Collapse
|
38
|
Thorpe HHA, Fontanillas P, Pham BK, Meredith JJ, Jennings MV, Courchesne-Krak NS, Vilar-Ribó L, Bianchi SB, Mutz J, Elson SL, Khokhar JY, Abdellaoui A, Davis LK, Palmer AA, Sanchez-Roige S. Genome-Wide Association Studies of Coffee Intake in UK/US Participants of European Ancestry Uncover Gene-Cohort Influences. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.09.23295284. [PMID: 37745582 PMCID: PMC10516045 DOI: 10.1101/2023.09.09.23295284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Coffee is one of the most widely consumed beverages. We performed a genome-wide association study (GWAS) of coffee intake in US-based 23andMe participants (N=130,153) and identified 7 significant loci, with many replicating in three multi-ancestral cohorts. We examined genetic correlations and performed a phenome-wide association study across thousands of biomarkers and health and lifestyle traits, then compared our results to the largest available GWAS of coffee intake from UK Biobank (UKB; N=334,659). The results of these two GWAS were highly discrepant. We observed positive genetic correlations between coffee intake and psychiatric illnesses, pain, and gastrointestinal traits in 23andMe that were absent or negative in UKB. Genetic correlations with cognition were negative in 23andMe but positive in UKB. The only consistent observations were positive genetic correlations with substance use and obesity. Our study shows that GWAS in different cohorts could capture cultural differences in the relationship between behavior and genetics.
Collapse
Affiliation(s)
- Hayley H A Thorpe
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | | | - Benjamin K Pham
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - John J Meredith
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Mariela V Jennings
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | | | - Laura Vilar-Ribó
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d’Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sevim B Bianchi
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Julian Mutz
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - 23andMe Research Team
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Sarah L Elson
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Jibran Y Khokhar
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Abdel Abdellaoui
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Lea K Davis
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sandra Sanchez-Roige
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
39
|
Tomasoni M, Beyeler MJ, Vela SO, Mounier N, Porcu E, Corre T, Krefl D, Button AL, Abouzeid H, Lazaros K, Bochud M, Schlingemann R, Bergin C, Bergmann S. Genome-wide Association Studies of Retinal Vessel Tortuosity Identify Numerous Novel Loci Revealing Genes and Pathways Associated With Ocular and Cardiometabolic Diseases. OPHTHALMOLOGY SCIENCE 2023; 3:100288. [PMID: 37131961 PMCID: PMC10149284 DOI: 10.1016/j.xops.2023.100288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023]
Abstract
Purpose To identify novel susceptibility loci for retinal vascular tortuosity, to better understand the molecular mechanisms modulating this trait, and reveal causal relationships with diseases and their risk factors. Design Genome-wide Association Studies (GWAS) of vascular tortuosity of retinal arteries and veins followed by replication meta-analysis and Mendelian randomization (MR). Participants We analyzed 116 639 fundus images of suitable quality from 63 662 participants from 3 cohorts, namely the UK Biobank (n = 62 751), the Swiss Kidney Project on Genes in Hypertension (n = 397), and OphtalmoLaus (n = 512). Methods Using a fully automated retina image processing pipeline to annotate vessels and a deep learning algorithm to determine the vessel type, we computed the median arterial, venous and combined vessel tortuosity measured by the distance factor (the length of a vessel segment over its chord length), as well as by 6 alternative measures that integrate over vessel curvature. We then performed the largest GWAS of these traits to date and assessed gene set enrichment using the novel high-precision statistical method PascalX. Main Outcome Measure We evaluated the genetic association of retinal tortuosity, measured by the distance factor. Results Higher retinal tortuosity was significantly associated with higher incidence of angina, myocardial infarction, stroke, deep vein thrombosis, and hypertension. We identified 175 significantly associated genetic loci in the UK Biobank; 173 of these were novel and 4 replicated in our second, much smaller, metacohort. We estimated heritability at ∼25% using linkage disequilibrium score regression. Vessel type specific GWAS revealed 116 loci for arteries and 63 for veins. Genes with significant association signals included COL4A2, ACTN4, LGALS4, LGALS7, LGALS7B, TNS1, MAP4K1, EIF3K, CAPN12, ECH1, and SYNPO2. These tortuosity genes were overexpressed in arteries and heart muscle and linked to pathways related to the structural properties of the vasculature. We demonstrated that retinal tortuosity loci served pleiotropic functions as cardiometabolic disease variants and risk factors. Concordantly, MR revealed causal effects between tortuosity, body mass index, and low-density lipoprotein. Conclusions Several alleles associated with retinal vessel tortuosity suggest a common genetic architecture of this trait with ocular diseases (glaucoma, myopia), cardiovascular diseases, and metabolic syndrome. Our results shed new light on the genetics of vascular diseases and their pathomechanisms and highlight how GWASs and heritability can be used to improve phenotype extraction from high-dimensional data, such as images. Financial Disclosures The author(s) have no proprietary or commercial interest in any materials discussed in this article.
Collapse
Affiliation(s)
- Mattia Tomasoni
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Jules-Gonin Eye Hospital, Lausanne, Switzerland
| | - Michael Johannes Beyeler
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sofia Ortin Vela
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Ninon Mounier
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Eleonora Porcu
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Tanguy Corre
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Daniel Krefl
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Alexander Luke Button
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Hana Abouzeid
- Division of Ophthalmology, Geneva University Hospitals, Geneva, Switzerland
- Clinical Eye Research Center Memorial Adolphe de Rothschild, Geneva, Switzerland
| | | | - Murielle Bochud
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Reinier Schlingemann
- Jules-Gonin Eye Hospital, Lausanne, Switzerland
- Department of Ophthalmology, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | | | - Sven Bergmann
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
40
|
Li JX, Huang XZ, Fu WP, Zhang XH, Mauki DH, Zhang J, Sun C, Dai LM, Zhong L, Yu L, Zhang YP. Remote regulation of rs80245547 and rs72673891 mediated by transcription factors C-Jun and CREB1 affect GSTCD expression. iScience 2023; 26:107383. [PMID: 37609638 PMCID: PMC10440715 DOI: 10.1016/j.isci.2023.107383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 12/30/2022] [Accepted: 07/11/2023] [Indexed: 08/24/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD), the third leading cause of death worldwide, is influenced by genetic factors. The genetic signal rs10516526 in the glutathione S-transferase C-terminal domain containing (GSTCD) gene is a highly significant and reproducible signal associated with lung function and COPD on chromosome 4q24. In this study, comprehensive bioinformatics analyses and experimental verifications were detailly implemented to explore the regulation mechanism of rs10516526 and GSTCD in COPD. The results suggested that low expression of GSTCD was associated with COPD (p = 0.010). And C-Jun and CREB1 transcription factors were found to be essential for the regulation of GSTCD by rs80245547 and rs72673891. Moreover, rs80245547T and rs72673891G had a stronger binding ability to these transcription factors, which may promote the allele-specific long-range enhancer-promoter interactions on GSTCD, thus making COPD less susceptible. Our study provides a new insight into the relationship between rs10516526, GSTCD, and COPD.
Collapse
Affiliation(s)
- Jin-Xiu Li
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming 650000, China
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650000, China
| | - Xue-Zhen Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming 650000, China
| | - Wei-ping Fu
- Department of Respiratory Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming 650000, China
| | - Xiao-hua Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming 650000, China
| | - David H. Mauki
- Faculty of Pharmaceutical Sciences, Institute of Biomedicine and Biotechnology, Center for Cancer Immunology, Chinese Academy of Sciences, Shenzhen Institute of Advanced Technology, Shenzhen 518000, Guangdong China
| | - Jing Zhang
- Department of Respiratory Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming 650000, China
| | - Chang Sun
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming 650000, China
- College of Life Sciences, Shaanxi Normal University, Xi’an 710000, China
| | - Lu-Ming Dai
- Department of Respiratory Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming 650000, China
| | - Li Zhong
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming 650000, China
- College of Life Sciences, Shaanxi Normal University, Xi’an 710000, China
- Provincial Demonstration Center for Experimental Biology Education, Shaanxi Normal University, Xi’an 710000, China
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming 650000, China
| | - Ya-ping Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming 650000, China
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650000, China
| |
Collapse
|
41
|
Bagheri M, Agrawal V, Annis J, Shi M, Ferguson JF, Freiberg MS, Mosley JD, Brittain EL. Genetics of Pulmonary Pressure and Right Ventricle Stress Identify Diabetes as a Causal Risk Factor. J Am Heart Assoc 2023; 12:e029190. [PMID: 37522172 PMCID: PMC10492967 DOI: 10.1161/jaha.122.029190] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/05/2023] [Indexed: 08/01/2023]
Abstract
Background Epidemiologic studies have identified risk factors associated with pulmonary hypertension and right heart failure, but causative drivers of pulmonary hypertension and right heart adaptation are not well known. We sought to leverage unbiased genetic approaches to determine clinical conditions that share genetic architecture with pulmonary pressure and right ventricular dysfunction. Methods and Results We leveraged Vanderbilt University's deidentified electronic health records and DNA biobank to identify 14 861 subjects of European ancestry who underwent at least 1 echocardiogram with available estimates of pulmonary pressure and right ventricular function. Analyses of the study were performed between 2020 and 2022. The final analytical sample included 14 861 participants (mean [SD] age, 63 [15] years and mean [SD] body mass index, 29 [7] kg/m2). An unbiased phenome-wide association study identified diabetes as the most statistically significant clinical International Classifications of Diseases, Ninth Revision (ICD-9) code associated with polygenic risk for increased pulmonary pressure. We validated this finding further by finding significant associations between genetic risk for diabetes and a related condition, obesity, with pulmonary pressure estimate. We then used 2-sample univariable Mendelian randomization and multivariable Mendelian randomization to show that diabetes, but not obesity, was independently associated with genetic risk for increased pulmonary pressure and decreased right ventricle load stress. Conclusions Our findings show that genetic risk for diabetes is the only significant independent causative driver of genetic risk for increased pulmonary pressure and decreased right ventricle load stress. These findings suggest that therapies targeting genetic risk for diabetes may also potentially be beneficial in treating pulmonary hypertension and right heart dysfunction.
Collapse
Affiliation(s)
- Minoo Bagheri
- Division of Cardiovascular Medicine, Department of MedicineVanderbilt University Medical CenterNashvilleTNUSA
- Department of Biomedical InformaticsVanderbilt University Medical CenterNashvilleTNUSA
| | - Vineet Agrawal
- Division of Cardiovascular Medicine, Department of MedicineVanderbilt University Medical CenterNashvilleTNUSA
| | - Jeffrey Annis
- Division of Cardiovascular Medicine, Department of MedicineVanderbilt University Medical CenterNashvilleTNUSA
| | - Mingjian Shi
- Department of Biomedical InformaticsVanderbilt University Medical CenterNashvilleTNUSA
| | - Jane F. Ferguson
- Division of Cardiovascular Medicine, Department of MedicineVanderbilt University Medical CenterNashvilleTNUSA
- Department of Biomedical InformaticsVanderbilt University Medical CenterNashvilleTNUSA
| | - Matthew S. Freiberg
- Division of Cardiovascular Medicine, Department of MedicineVanderbilt University Medical CenterNashvilleTNUSA
| | - Jonathan D. Mosley
- Division of Clinical Pharmacology, Department of MedicineVanderbilt University Medical CenterNashvilleTNUSA
- Department of Biomedical InformaticsVanderbilt University Medical CenterNashvilleTNUSA
| | - Evan L. Brittain
- Division of Cardiovascular Medicine, Department of MedicineVanderbilt University Medical CenterNashvilleTNUSA
| |
Collapse
|
42
|
Woolf B, Gill D, Sallis H, Munafò MR. The UK BiLEVE and Mendelian randomisation: using multivariable instrumental variables to address "damned if you, damned if you don't" adjustment problems. BMC Res Notes 2023; 16:157. [PMID: 37491359 PMCID: PMC10369748 DOI: 10.1186/s13104-023-06434-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/17/2023] [Indexed: 07/27/2023] Open
Abstract
OBJECTIVE To explore the use of multivariable instrumental variables to resolve the "damned if you do, damned if you don't" adjustment problem created for Mendelian randomisation (MR) analysis using the smoking or lung function related phenotypes in the UK Biobank (UKB). RESULT "damned if you do, damned if you don't" adjustment problems occur when both adjusting and not-adjusting for a variable will induce bias in an analysis. One instance of this occurs because the genotyping chip of UKB participants differed based on lung function/smoking status. In simulations, we show that multivariable instrumental variables analyses can attenuate potential collider bias introduced by adjusting for a proposed covariate, such as the UKB genotyping chip. We then explore the effect of adjusting for genotyping chip in a multivariable MR model exploring the effect of smoking on seven medical outcomes (lung cancer, emphysema, hypertension, stroke, heart diseases, depression, and disabilities). We additionally compare our results to a traditional univariate MR analysis using genome-wide analyses summary statistics which had and had not adjusted for genotyping chip. This analysis implies that the difference in genotyping chip has introduced only a small amount of bias.
Collapse
Affiliation(s)
- Benjamin Woolf
- School of Psychological Science, University of Bristol, Bristol, UK.
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK.
| | - Dipender Gill
- Research and Early Development, Novo Nordisk, Copenhagen, Denmark
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Hannah Sallis
- School of Psychological Science, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Marcus R Munafò
- School of Psychological Science, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| |
Collapse
|
43
|
Kristjansson RP, Oskarsson GR, Skuladottir A, Oddsson A, Rognvaldsson S, Sveinbjornsson G, Lund SH, Jensson BO, Styrmisdottir EL, Halldorsson GH, Ferkingstad E, Eldjarn GH, Beyter D, Kristmundsdottir S, Juliusson K, Fridriksdottir R, Arnadottir GA, Katrinardottir H, Snorradottir MH, Tragante V, Stefansdottir L, Ivarsdottir EV, Bjornsdottir G, Halldorsson BV, Thorleifsson G, Ludviksson BR, Onundarson PT, Saevarsdottir S, Melsted P, Norddahl GL, Bjornsdottir US, Olafsdottir T, Gudbjartsson DF, Thorsteinsdottir U, Jonsdottir I, Sulem P, Stefansson K. Sequence variant affects GCSAML splicing, mast cell specific proteins, and risk of urticaria. Commun Biol 2023; 6:703. [PMID: 37430141 DOI: 10.1038/s42003-023-05079-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/28/2023] [Indexed: 07/12/2023] Open
Abstract
Urticaria is a skin disorder characterized by outbreaks of raised pruritic wheals. In order to identify sequence variants associated with urticaria, we performed a meta-analysis of genome-wide association studies for urticaria with a total of 40,694 cases and 1,230,001 controls from Iceland, the UK, Finland, and Japan. We also performed transcriptome- and proteome-wide analyses in Iceland and the UK. We found nine sequence variants at nine loci associating with urticaria. The variants are at genes participating in type 2 immune responses and/or mast cell biology (CBLB, FCER1A, GCSAML, STAT6, TPSD1, ZFPM1), the innate immunity (C4), and NF-κB signaling. The most significant association was observed for the splice-donor variant rs56043070[A] (hg38: chr1:247556467) in GCSAML (MAF = 6.6%, OR = 1.24 (95%CI: 1.20-1.28), P-value = 3.6 × 10-44). We assessed the effects of the variants on transcripts, and levels of proteins relevant to urticaria pathophysiology. Our results emphasize the role of type 2 immune response and mast cell activation in the pathogenesis of urticaria. Our findings may point to an IgE-independent urticaria pathway that could help address unmet clinical need.
Collapse
Affiliation(s)
| | - Gudjon R Oskarsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | | | | | | | | | | | | | | | | | | | - Snædis Kristmundsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Science and Engineering, Reykjavik University, Reykjavik, Iceland
| | | | | | | | | | | | | | | | - Erna V Ivarsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Bjarni V Halldorsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Science and Engineering, Reykjavik University, Reykjavik, Iceland
| | | | - Bjorn R Ludviksson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Immunology, Landspitali, the National University Hospital of Iceland, Reykjavik, Iceland
| | - Pall T Onundarson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Laboratory Hematology, Landspitali, the National University Hospital of Iceland, Reykjavik, Iceland
| | - Saedis Saevarsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, Solna, Stockholm, Sweden
- Department of Medicine, Landspitali, the National University Hospital of Iceland, Reykjavik, Iceland
| | - Pall Melsted
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Unnur S Bjornsdottir
- Department of Medicine, Landspitali, the National University Hospital of Iceland, Reykjavik, Iceland
- The Medical Center Mjodd, Reykjavik, Iceland
| | - Thorunn Olafsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Daniel F Gudbjartsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Ingileif Jonsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Kari Stefansson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
44
|
Stuart KV, Luben RN, Warwick AN, Madjedi KM, Patel PJ, Biradar MI, Sun Z, Chia MA, Pasquale LR, Wiggs JL, Kang JH, Kim J, Aschard H, Tran JH, Lentjes MAH, Foster PJ, Khawaja AP. The Association of Alcohol Consumption with Glaucoma and Related Traits: Findings from the UK Biobank. Ophthalmol Glaucoma 2023; 6:366-379. [PMID: 36481453 PMCID: PMC10239785 DOI: 10.1016/j.ogla.2022.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 05/12/2023]
Abstract
PURPOSE To examine the associations of alcohol consumption with glaucoma and related traits, to assess whether a genetic predisposition to glaucoma modified these associations, and to perform Mendelian randomization (MR) experiments to probe causal effects. DESIGN Cross-sectional observational and gene-environment interaction analyses in the UK Biobank. Two-sample MR experiments using summary statistics from large genetic consortia. PARTICIPANTS UK Biobank participants with data on intraocular pressure (IOP) (n = 109 097), OCT-derived macular inner retinal layer thickness measures (n = 46 236) and glaucoma status (n = 173 407). METHODS Participants were categorized according to self-reported drinking behaviors. Quantitative estimates of alcohol intake were derived from touchscreen questionnaires and food composition tables. We performed a 2-step analysis, first comparing categories of alcohol consumption (never, infrequent, regular, and former drinkers) before assessing for a dose-response effect in regular drinkers only. Multivariable linear, logistic, and restricted cubic spline regression, adjusted for key sociodemographic, medical, anthropometric, and lifestyle factors, were used to examine associations. We assessed whether any association was modified by a multitrait glaucoma polygenic risk score. The inverse-variance weighted method was used for the main MR analyses. MAIN OUTCOME MEASURES Intraocular pressure, macular retinal nerve fiber layer (mRNFL) thickness, macular ganglion cell-inner plexiform layer (mGCIPL) thickness, and prevalent glaucoma. RESULTS Compared with infrequent drinkers, regular drinkers had higher IOP (+0.17 mmHg; P < 0.001) and thinner mGCIPL (-0.17 μm; P = 0.049), whereas former drinkers had a higher prevalence of glaucoma (odds ratio, 1.53; P = 0.002). In regular drinkers, alcohol intake was adversely associated with all outcomes in a dose-dependent manner (all P < 0.001). Restricted cubic spline regression analyses suggested nonlinear associations, with apparent threshold effects at approximately 50 g (∼6 UK or 4 US alcoholic units)/week for mRNFL and mGCIPL thickness. Significantly stronger alcohol-IOP associations were observed in participants at higher genetic susceptibility to glaucoma (Pinteraction < 0.001). Mendelian randomization analyses provided evidence for a causal association with mGCIPL thickness. CONCLUSIONS Alcohol intake was consistently and adversely associated with glaucoma and related traits, and at levels below current United Kingdom (< 112 g/week) and United States (women, < 98 g/week; men, < 196 g/week) guidelines. Although we cannot infer causality definitively, these results will be of interest to people with or at risk of glaucoma and their advising physicians. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found after the references.
Collapse
Affiliation(s)
- Kelsey V Stuart
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom.
| | - Robert N Luben
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom; MRC Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Alasdair N Warwick
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom; UCL Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Kian M Madjedi
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom; Department of Ophthalmology, University of Calgary, Calgary, Alberta, Canada
| | - Praveen J Patel
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| | - Mahantesh I Biradar
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| | - Zihan Sun
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| | - Mark A Chia
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| | - Louis R Pasquale
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Janey L Wiggs
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Jae H Kang
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jihye Kim
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Hugues Aschard
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts; Institut Pasteur, Université Paris Cité, Department of Computational Biology, Paris, France
| | - Jessica H Tran
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Paul J Foster
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| | - Anthony P Khawaja
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| |
Collapse
|
45
|
Bai X, Schountz T, Buckle AM, Talbert JL, Sandhaus RA, Chan ED. Alpha-1-antitrypsin antagonizes COVID-19: a review of the epidemiology, molecular mechanisms, and clinical evidence. Biochem Soc Trans 2023; 51:1361-1375. [PMID: 37294003 PMCID: PMC10317171 DOI: 10.1042/bst20230078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/10/2023]
Abstract
Alpha-1-antitrypsin (AAT), a serine protease inhibitor (serpin), is increasingly recognized to inhibit SARS-CoV-2 infection and counter many of the pathogenic mechanisms of COVID-19. Herein, we reviewed the epidemiologic evidence, the molecular mechanisms, and the clinical evidence that support this paradigm. As background to our discussion, we first examined the basic mechanism of SARS-CoV-2 infection and contend that despite the availability of vaccines and anti-viral agents, COVID-19 remains problematic due to viral evolution. We next underscored that measures to prevent severe COVID-19 currently exists but teeters on a balance and that current treatment for severe COVID-19 remains grossly suboptimal. We then reviewed the epidemiologic and clinical evidence that AAT deficiency increases risk of COVID-19 infection and of more severe disease, and the experimental evidence that AAT inhibits cell surface transmembrane protease 2 (TMPRSS2) - a host serine protease required for SARS-CoV-2 entry into cells - and that this inhibition may be augmented by heparin. We also elaborated on the panoply of other activities of AAT (and heparin) that could mitigate severity of COVID-19. Finally, we evaluated the available clinical evidence for AAT treatment of COVID-19.
Collapse
Affiliation(s)
- Xiyuan Bai
- Department of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, U.S.A
- Department of Academic Affairs, National Jewish Health, Denver, CO, U.S.A
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, U.S.A
| | - Tony Schountz
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, U.S.A
| | - Ashley M. Buckle
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- PTNG Bio, Melbourne, Australia
| | - Janet L. Talbert
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, U.S.A
| | | | - Edward D. Chan
- Department of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, U.S.A
- Department of Academic Affairs, National Jewish Health, Denver, CO, U.S.A
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, U.S.A
| |
Collapse
|
46
|
Zhang YH, Cho MH, Morrow JD, Castaldi PJ, Hersh CP, Midha MK, Hoopmann MR, Lutz SM, Moritz RL, Silverman EK. Integrating Genetics, Transcriptomics, and Proteomics in Lung Tissue to Investigate Chronic Obstructive Pulmonary Disease. Am J Respir Cell Mol Biol 2023; 68:651-663. [PMID: 36780661 PMCID: PMC10257075 DOI: 10.1165/rcmb.2022-0302oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/13/2023] [Indexed: 02/15/2023] Open
Abstract
The integration of transcriptomic and proteomic data from lung tissue with chronic obstructive pulmonary disease (COPD)-associated genetic variants could provide insight into the biological mechanisms of COPD. Here, we assessed associations between lung transcriptomics and proteomics with COPD in 98 subjects from the Lung Tissue Research Consortium. Low correlations between transcriptomics and proteomics were generally observed, but higher correlations were found for COPD-associated proteins. We integrated COPD risk SNPs or SNPs near COPD-associated proteins with lung transcripts and proteins to identify regulatory cis-quantitative trait loci (QTLs). Significant expression QTLs (eQTLs) and protein QTLs (pQTLs) were found regulating multiple COPD-associated biomarkers. We investigated mediated associations from significant pQTLs through transcripts to protein levels of COPD-associated proteins. We also attempted to identify colocalized effects between COPD genome-wide association studies and eQTL and pQTL signals. Evidence was found for colocalization between COPD genome-wide association study signals and a pQTL for RHOB and an eQTL for DSP. We applied weighted gene co-expression network analysis to find consensus COPD-associated network modules. Two network modules generated by consensus weighted gene co-expression network analysis were associated with COPD with a false discovery rate lower than 0.05. One network module is related to the catenin complex, and the other module is related to plasma membrane components. In summary, multiple cis-acting determinants of transcripts and proteins associated with COPD were identified. Colocalization analysis, mediation analysis, and correlation-based network analysis of multiple omics data may identify key genes and proteins that work together to influence COPD pathogenesis.
Collapse
Affiliation(s)
- Yu-Hang Zhang
- Channing Division of Network Medicine, Harvard Medical School, and
| | - Michael H. Cho
- Channing Division of Network Medicine, Harvard Medical School, and
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, Massachusetts; and
| | | | | | - Craig P. Hersh
- Channing Division of Network Medicine, Harvard Medical School, and
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, Massachusetts; and
| | | | | | - Sharon M. Lutz
- Channing Division of Network Medicine, Harvard Medical School, and
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, Massachusetts; and
| | | | - Edwin K. Silverman
- Channing Division of Network Medicine, Harvard Medical School, and
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, Massachusetts; and
| |
Collapse
|
47
|
Colin F, Burger P, Mazzucotelli T, Strehle A, Kummeling J, Collot N, Broly E, Morgan AT, Myers KA, Bloch-Zupan A, Ockeloen CW, de Vries BB, Kleefstra T, Parrend P, Koolen DA, Mandel JL. GenIDA, a participatory patient registry for genetic forms of intellectual disability provides detailed caregiver-reported information on 237 individuals with Koolen-de Vries syndrome. GENETICS IN MEDICINE OPEN 2023; 1:100817. [PMID: 39669247 PMCID: PMC11613717 DOI: 10.1016/j.gimo.2023.100817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 12/14/2024]
Abstract
Purpose GenIDA is an international patient registry for individuals diagnosed with intellectual disability, autism spectrum disorder, and/or epilepsy, which is based on an online questionnaire that is completed by parent caregivers. In this study, the GenIDA data on Koolen-de Vries syndrome (KdVS) was analyzed illustrating the value of GenIDA and patient/caregiver participation in rare genetic neurodevelopmental disorders (NDDs). Methods Recruitment was done on the GenIDA website from November 2016 to February 2022. Clinical information on individuals with KdVS was extracted for in-depth analysis and for comparison with the GenIDA data of individuals diagnosed with other NDDs. Results A total of 1417 patients/caregivers across 35 genetic conditions answered to the GenIDA questionnaire, including caregivers of 237 individuals with KdVS. GenIDA findings on KdVS were consistent with the existing literature, and there were no significant differences between individuals with a 17q21.31 microdeletion and those with a pathogenic variant in the KANSL1 gene. GenIDA provided detailed clinical information including features that are over-represented in KdVS compared with other NDDs (eg, laryngomalacia). Modeling of the natural history showed a positive development of speech and language over time and relatively good reading ability in KdVS. Valproate and oxcarbazepine were reported as effective antiepileptic drugs, and responses to open-ended questions indicated that childhood recurrent pneumonia and asthma are clinically relevant comorbidities that were not described in KdVS before. Conclusion GenIDA is a powerful registry to collect and harness valuable data on rare NDDs. The study shows that caregiver-driven data collection is effective in terms of global recruitment and centralization of clinical data.
Collapse
Affiliation(s)
- Florent Colin
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Université de Strasbourg, INSERM U1258, CNRS UMR7104, Illkirch, France
- INSERM UMR_S1109, Tumor Biomechanics Lab, University of Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Pauline Burger
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Université de Strasbourg, INSERM U1258, CNRS UMR7104, Illkirch, France
| | - Timothée Mazzucotelli
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Université de Strasbourg, INSERM U1258, CNRS UMR7104, Illkirch, France
| | - Axelle Strehle
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Université de Strasbourg, INSERM U1258, CNRS UMR7104, Illkirch, France
| | - Joost Kummeling
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud university medical center, Nijmegen, The Netherlands
| | - Nicole Collot
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Université de Strasbourg, INSERM U1258, CNRS UMR7104, Illkirch, France
| | - Elyette Broly
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Université de Strasbourg, INSERM U1258, CNRS UMR7104, Illkirch, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
- Centre de référence des maladies rares orales et dentaires, O-Rares, Filière Santé Maladies rares Tête Cou, European Reference Network ERN CRANIO, Hôpitaux Universitaires de Strasbourg (HUS), Strasbourg, France
| | - Angela T. Morgan
- Murdoch Children’s Research Institute, Parkville, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Melbourne, Australia
| | - Kenneth A. Myers
- Department of Pediatrics, Montreal Children’s Hospital, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, Montreal Children’s Hospital, McGill University, Montreal, Quebec, Canada
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Agnès Bloch-Zupan
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Université de Strasbourg, INSERM U1258, CNRS UMR7104, Illkirch, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
- Centre de référence des maladies rares orales et dentaires, O-Rares, Filière Santé Maladies rares Tête Cou, European Reference Network ERN CRANIO, Hôpitaux Universitaires de Strasbourg (HUS), Strasbourg, France
| | - Charlotte W. Ockeloen
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud university medical center, Nijmegen, The Netherlands
| | - Bert B.A. de Vries
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud university medical center, Nijmegen, The Netherlands
| | - Tjitske Kleefstra
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud university medical center, Nijmegen, The Netherlands
- Centre of Excellence for Neuropsychiatry, Vincent van Gogh Institute for Psychiatry, Venray, The Netherlands
- Department Clinical Genetics, Erasmus MC Rotterdam, The Netherlands
| | - Pierre Parrend
- ICube laboratory (Laboratoire des sciences de l’ingénieur, de l’informatique et de l’imagerie), UMR 7357, Université de Strasbourg, CNRS, Strasbourg, France
- EPITA, Strasbourg, France
| | - David A. Koolen
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud university medical center, Nijmegen, The Netherlands
| | - Jean-Louis Mandel
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Université de Strasbourg, INSERM U1258, CNRS UMR7104, Illkirch, France
- University of Strasbourg Institute for Advanced Studies (USIAS), Strasbourg, France
| |
Collapse
|
48
|
Cosentino J, Behsaz B, Alipanahi B, McCaw ZR, Hill D, Schwantes-An TH, Lai D, Carroll A, Hobbs BD, Cho MH, McLean CY, Hormozdiari F. Inference of chronic obstructive pulmonary disease with deep learning on raw spirograms identifies new genetic loci and improves risk models. Nat Genet 2023; 55:787-795. [PMID: 37069358 DOI: 10.1038/s41588-023-01372-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/14/2023] [Indexed: 04/19/2023]
Abstract
Chronic obstructive pulmonary disease (COPD), the third leading cause of death worldwide, is highly heritable. While COPD is clinically defined by applying thresholds to summary measures of lung function, a quantitative liability score has more power to identify genetic signals. Here we train a deep convolutional neural network on noisy self-reported and International Classification of Diseases labels to predict COPD case-control status from high-dimensional raw spirograms and use the model's predictions as a liability score. The machine-learning-based (ML-based) liability score accurately discriminates COPD cases and controls, and predicts COPD-related hospitalization without any domain-specific knowledge. Moreover, the ML-based liability score is associated with overall survival and exacerbation events. A genome-wide association study on the ML-based liability score replicates existing COPD and lung function loci and also identifies 67 new loci. Lastly, our method provides a general framework to use ML methods and medical-record-based labels that does not require domain knowledge or expert curation to improve disease prediction and genomic discovery for drug design.
Collapse
Affiliation(s)
| | | | | | | | - Davin Hill
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Tae-Hwi Schwantes-An
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
- Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Dongbing Lai
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Brian D Hobbs
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
49
|
Yang L, Feng H, Ai S, Liu Y, Lei B, Chen J, Tan X, Benedict C, Wang N, Wing YK, Qi L, Zhang J. Association of accelerometer-derived circadian abnormalities and genetic risk with incidence of atrial fibrillation. NPJ Digit Med 2023; 6:31. [PMID: 36869222 PMCID: PMC9984286 DOI: 10.1038/s41746-023-00781-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/17/2023] [Indexed: 03/05/2023] Open
Abstract
Evidence suggests potential links between circadian rhythm and atrial fibrillation (AF). However, whether circadian disruption can predict the onset of AF in the general population remains largely unknown. We aim to investigate the association of accelerometer-measured circadian rest-activity rhythm (CRAR, the most prominent circadian rhythm in humans) with the risk of AF, and examine joint associations and potential interactions of CRAR and genetic susceptibility with AF incidence. We include 62,927 white British participants of UK Biobank without AF at baseline. CRAR characteristics, including amplitude (strength), acrophase (timing of peak activity), pseudo-F (robustness), and mesor (height), are derived by applying an extended cosine model. Genetic risk is assessed with polygenic risk scores. The outcome is the incidence of AF. During a median follow-up of 6.16 years, 1920 participants developed AF. Low amplitude [hazard ratio (HR): 1.41, 95% confidence interval (CI): 1.25-1.58], delayed acrophase (HR: 1.24, 95% CI: 1.10-1.39), and low mesor (HR: 1.36, 95% CI: 1.21-1.52), but not low pseudo-F, are significantly associated with a higher risk of AF. No significant interactions between CRAR characteristics and genetic risk are observed. Joint association analyses reveal that participants with unfavourable CRAR characteristics and high genetic risk yield the highest risk of incident AF. These associations are robust after controlling for multiple testing and in a series of sensitivity analyses. Accelerometer-measured CRAR abnormalities, characterized by decreased strength and height, and later timing of peak activity of circadian rhythm, are associated with a higher risk of AF in the general population.
Collapse
Affiliation(s)
- Lulu Yang
- grid.410643.4Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong China
| | - Hongliang Feng
- grid.410643.4Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong China ,grid.10784.3a0000 0004 1937 0482Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Sizhi Ai
- grid.410737.60000 0000 8653 1072Center for Sleep and Circadian Medicine, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong China ,grid.493088.e0000 0004 1757 7279Department of Cardiology, Heart Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan China ,grid.10784.3a0000 0004 1937 0482Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yue Liu
- grid.410643.4Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong China
| | - Binbin Lei
- grid.410643.4Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong China
| | - Jie Chen
- grid.10784.3a0000 0004 1937 0482Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiao Tan
- grid.13402.340000 0004 1759 700XDepartment of Big Data in Health Science, Zhejiang University School of Public Health and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China ,grid.8993.b0000 0004 1936 9457Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Christian Benedict
- grid.8993.b0000 0004 1936 9457Molecular Neuropharmacology (Sleep Science Laboratory), Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Ningjian Wang
- grid.16821.3c0000 0004 0368 8293Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yun Kwok Wing
- grid.10784.3a0000 0004 1937 0482Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA. .,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Jihui Zhang
- Center for Sleep and Circadian Medicine, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China. .,Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China. .,Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China. .,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
50
|
Jia Y, Qi X, Ma M, Cheng S, Cheng B, Liang C, Guo X, Zhang F. Integrating genome-wide association study with regulatory SNP annotations identified novel candidate genes for osteoporosis. Bone Joint Res 2023; 12:147-154. [PMID: 37051837 PMCID: PMC10003063 DOI: 10.1302/2046-3758.122.bjr-2022-0206.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
Osteoporosis (OP) is a metabolic bone disease, characterized by a decrease in bone mineral density (BMD). However, the research of regulatory variants has been limited for BMD. In this study, we aimed to explore novel regulatory genetic variants associated with BMD. We conducted an integrative analysis of BMD genome-wide association study (GWAS) and regulatory single nucleotide polymorphism (rSNP) annotation information. Firstly, the discovery GWAS dataset and replication GWAS dataset were integrated with rSNP annotation database to obtain BMD associated SNP regulatory elements and SNP regulatory element-target gene (E-G) pairs, respectively. Then, the common genes were further subjected to HumanNet v2 to explore the biological effects. Through discovery and replication integrative analysis for BMD GWAS and rSNP annotation database, we identified 36 common BMD-associated genes for BMD irrespective of regulatory elements, such as FAM3C (pdiscovery GWAS = 1.21 × 10-25, preplication GWAS = 1.80 × 10-12), CCDC170 (pdiscovery GWAS = 1.23 × 10-11, preplication GWAS = 3.22 × 10-9), and SOX6 (pdiscovery GWAS = 4.41 × 10-15, preplication GWAS = 6.57 × 10-14). Then, for the 36 common target genes, multiple gene ontology (GO) terms were detected for BMD such as positive regulation of cartilage development (p = 9.27 × 10-3) and positive regulation of chondrocyte differentiation (p = 9.27 × 10-3). We explored the potential roles of rSNP in the genetic mechanisms of BMD and identified multiple candidate genes. Our study results support the implication of regulatory genetic variants in the development of OP.
Collapse
Affiliation(s)
- Yumeng Jia
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xin Qi
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mei Ma
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Shiqiang Cheng
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Bolun Cheng
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Chujun Liang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xiong Guo
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Feng Zhang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|