1
|
Maerten A, Callewaert E, Sanz-Serrano J, Devisscher L, Vinken M. Effects of per- and polyfluoroalkyl substances on the liver: Human-relevant mechanisms of toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176717. [PMID: 39383969 DOI: 10.1016/j.scitotenv.2024.176717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are abundantly used in a plethora of products with applications in daily life. As a result, PFAS are widely distributed in the environment, thus providing a source of exposure to humans. The majority of human exposure to PFAS is attributed to the human diet, which encompasses drinking water. Their chemical nature grants persistent, accumulative and toxic properties, which are currently raising concerns. Over the past few years, adverse effects of PFAS on different organs have been repeatedly documented. Numerous epidemiological studies established a clear link between PFAS exposure and liver toxicity. Likewise, effects of PFAS on liver homeostasis, lipid metabolism, bile acid metabolism and hepatocarcinogenesis have been reported in various in vitro and in vivo studies. This review discusses the role of PFAS in liver toxicity with special attention paid to human relevance as well as to the mechanisms underlying the hepatotoxic effects of PFAS. Future perspectives and remaining knowledge gaps were identified to enhance future PFAS risk assessment.
Collapse
Affiliation(s)
- Amy Maerten
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ellen Callewaert
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Julen Sanz-Serrano
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lindsey Devisscher
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Sciences, Universiteit Gent, Gent, Belgium; Liver Research Center Ghent, Universiteit Gent, University Hospital Ghent, Gent, Belgium
| | - Mathieu Vinken
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
2
|
Dangudubiyyam SV, Hofmann A, Yadav P, Kumar S. Per- and polyfluoroalkyl substances (PFAS) and hypertensive disorders of Pregnancy- integration of epidemiological and mechanistic evidence. Reprod Toxicol 2024; 130:108702. [PMID: 39222887 DOI: 10.1016/j.reprotox.2024.108702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Hypertensive disorders of pregnancy (HDP) remain a significant global health burden despite medical advancements. HDP prevalence appears to be rising, leading to increased maternal and fetal complications, mortality, and substantial healthcare costs. The etiology of HDP are complex and multifaceted, influenced by factors like nutrition, obesity, stress, metabolic disorders, and genetics. Emerging evidence suggests environmental pollutants, particularly Per- and polyfluoroalkyl substances (PFAS), may contribute to HDP development. OBJECTIVE This review integrates epidemiological and mechanistic data to explore the intricate relationship between PFAS exposure and HDP. EPIDEMIOLOGICAL EVIDENCE Studies show varying degrees of association between PFAS exposure and HDP, with some demonstrating positive correlations, particularly with preeclampsia. Meta-analyses suggest potential fetal sex-specific differences in these associations. MECHANISTIC INSIGHTS Mechanistically, PFAS exposure appears to disrupt vascular hemodynamics, placental development, and critical processes like angiogenesis and sex steroid regulation. Experimental studies reveal alterations in the renin-angiotensin system, trophoblast invasion, oxidative stress, inflammation, and hormonal dysregulation - all of which contribute to HDP pathogenesis. Elucidating these mechanisms is crucial for developing preventive strategies. THERAPEUTIC POTENTIAL Targeted interventions such as AT2R agonists, caspase inhibitors, and modulation of specific microRNAs show promise in mitigating adverse outcomes associated with PFAS exposure during pregnancy. KNOWLEDGE GAPS AND FUTURE DIRECTIONS Further research is needed to comprehensively understand the full spectrum of PFAS-induced placental alterations and their long-term implications for maternal and fetal health. This knowledge will be instrumental in developing effective preventive and therapeutic strategies for HDP in a changing environmental landscape.
Collapse
Affiliation(s)
- Sri Vidya Dangudubiyyam
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; Endocrinology-Reproductive Physiology Program, University of Wisconsin, Madison, WI 53715, USA
| | - Alissa Hofmann
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; Endocrinology-Reproductive Physiology Program, University of Wisconsin, Madison, WI 53715, USA
| | - Pankaj Yadav
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Sathish Kumar
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; Endocrinology-Reproductive Physiology Program, University of Wisconsin, Madison, WI 53715, USA; Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792, USA.
| |
Collapse
|
3
|
Liu Y, Peng L, Li Y, Lu X, Wang F, Chen D, Lin N. Effect of liver cancer on the accumulation and hepatobiliary transport of per- and polyfluoroalkyl substances. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133743. [PMID: 38377901 DOI: 10.1016/j.jhazmat.2024.133743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024]
Abstract
In this study, we examined the distribution of per- and polyfluoroalkyl substances (PFASs) in liver and bile tissues from the patients with liver cancer (n = 202) and healthy controls (n = 30), and calculated the hepatobiliary transport efficiency (TB-L) of PFASs. Among 21 PFASs, 13 PFASs were frequently detected in the liver (median: 8.80-16.3 ng/g) and bile (median: 11.03-14.26 ng/mL) samples. PFAS concentrations in liver were positively correlated with age, with higher levels of PFASs in the older. Variance analysis showed that gender and BMI (Body Mass Index) have an important impact on the distribution of PFASs. A U-shaped trend in TB-L of PFASs with the increasing of carbon chain length was found for the first time, and the TB-L of most PFASs in the control was higher than that of those in cases (p < 0.05), suggesting that hepatic injury would affect their transport. PFASs were positively associated with liver injury biomarkers, including γ-glutamyl transferase (GGT), alanine aminotransferase (ALT), and total bilirubin (TB) levels (p < 0.05). This is the first study on examining the hepatobiliary transport characteristics of PFASs, which may help understand the connection between PFAS accumulation and liver cancer risk.
Collapse
Affiliation(s)
- Ying Liu
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Lin Peng
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, the Hong Kong Special Administrative Region of China
| | - Yanjie Li
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Xingwen Lu
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Fei Wang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| | - Da Chen
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Nan Lin
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.
| |
Collapse
|
4
|
Møller JJ, Lyngberg AC, Hammer PEC, Flachs EM, Mortensen OS, Jensen TK, Jürgens G, Andersson A, Soja AMB, Lindhardt M. Substantial decrease of PFAS with anion exchange resin treatment - A clinical cross-over trial. ENVIRONMENT INTERNATIONAL 2024; 185:108497. [PMID: 38367552 DOI: 10.1016/j.envint.2024.108497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are heat and stain resisting chemicals. They are persistent, bioaccumulating and spread ubiquitously. Many hotspots where humans are exposed to high levels of PFAS have been reported. A few small observational studies in humans suggest that treatment with an Anion Exchange Resin (AER) decreases serum PFAS. This first clinical controlled crossover study aimed to assess whether AER decreases perfluorooctanesulfonic acid (PFOS) in highly exposed adults. METHODS An open label 1:1 randomized treatment sequence crossover study with allocation to oral AER (cholestyramine 4 g three times daily) or observation for 12 weeks was conducted among citizens from a PFAS hotspot. Main inclusion criteria was serum PFOS > 21 ng/mL. Primary endpoint was change in serum PFOS levels between treatment and observational period. RESULTS In total, 45 participants were included with a mean age of 50 years (SD 13). Serum PFOS baseline median was 191 ng/mL (IQR: 129-229) and decreased with a mean of 115 ng/mL (95 % CI: 89-140) on treatment, and 4.3 ng/mL in observation period corresponding to a decrease of 60 % (95 % CI: 53-67; p < 0.0001). PFHxS, PFOA, PFNA and PFDA decreased during treatment between 15 and 44 %. No serious adverse events were reported. CONCLUSIONS Oral treatment with AER significantly lowered serum PFOS concentrations suggesting a possible treatment for enhancing elimination of PFOS in highly exposed adults.
Collapse
Affiliation(s)
- Janne Julie Møller
- Department of Occupational and Social Medicine, University Hospital of Holbaek, Denmark
| | | | | | | | - Ole Steen Mortensen
- Department of Occupational and Social Medicine, University Hospital of Holbaek, Denmark; Department of Public Health, Section of Social Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Tina Kold Jensen
- Department of Public Health, Clinical Pharmacology, Pharmacy and Environmental Medicine, The Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Gesche Jürgens
- Clinical Pharmacology Unit, Zealand University Hospital, Roskilde, Denmark
| | - Axel Andersson
- School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anne Merete Boas Soja
- Department of Internal Medicine 1, University Hospital - Holbaek, Holbaek, Denmark; Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Morten Lindhardt
- Department of Internal Medicine 1, University Hospital - Holbaek, Holbaek, Denmark; Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
Ducatman A, Tan Y, Nadeau B, Steenland K. Perfluorooctanoic Acid (PFOA) Exposure and Abnormal Alanine Aminotransferase: Using Clinical Consensus Cutoffs Compared to Statistical Cutoffs for Abnormal Values. TOXICS 2023; 11:toxics11050449. [PMID: 37235263 DOI: 10.3390/toxics11050449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFASs) including perfluorooctanoic acid (PFOA) are ubiquitous environmental contaminants. Prior analysis in the large "C8 Health Project" population defined abnormal alanine aminotransferase (ALT) with statistically derived cutoffs (>45 IU/L in men, >34 IU/L in women). OBJECTIVE To explore the degree to which PFOA was associated with modern, clinically predictive ALT biomarker cutoffs in obese and nonobese participants, excluding those with diagnosed liver disease. METHODS We reevaluated the relationship of serum PFOA to abnormal ALT using predictive cutoff recommendations including those of the American College of Gastroenterology (ACG). Evaluations modeled lifetime cumulative exposure and measured internal PFOA exposure. RESULTS ACG cutoff values (≥34 IU/L for males, ≥25 IU/L for females) classified 30% of males (3815/12,672) and 21% of females (3359/15,788) above ALT cutoff values. Odds ratios (OR) for above cutoff values were consistently associated with modeled cumulative and measured serum PFOA. Linear trends were highly significant. ORs by quintile showed near monotonic increases. Trends were stronger for the overweight and obese. However, all weight classes were affected. CONCLUSION Predictive cutoffs increase the OR for abnormal ALT results. Obesity increases ORs, yet association with abnormal ALT pertains to all weight classes. The results are discussed in context of current knowledge about the health implications of PFOA hepatotoxicity.
Collapse
Affiliation(s)
- Alan Ducatman
- School of Public Health, West Virginia University, Morgantown, WV 26506-9190, USA
| | - Youran Tan
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Brian Nadeau
- Department of Gastroenterology, William Beaumont Hospital, Royal Oak, MI 48173, USA
| | - Kyle Steenland
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
6
|
Ling J, Hua L, Qin Y, Gu T, Jiang S, Zhao J. Perfluorooctane sulfonate promotes hepatic lipid accumulation and steatosis in high-fat diet mice through AMP-activated protein kinase/acetyl-CoA carboxylase (AMPK/ACC) pathway. J Appl Toxicol 2023; 43:312-322. [PMID: 35999056 DOI: 10.1002/jat.4383] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/20/2022] [Accepted: 08/20/2022] [Indexed: 01/17/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is a hepatotoxic environmental organic pollutant that can cause aberrant lipid accumulation in the liver. However, the molecular mechanism underlying PFOS-induced hepatic steatosis remains unclear. Our research showed that subchronic PFOS exposure inhibited AMP-activated protein kinase (AMPK) phosphorylation, leading to increased acetyl-CoA carboxylase (ACC) activity, attenuated fatty acid β-oxidation, and consequent liver lipid accumulation. We found that 1 mg/kg/day PFOS exposure significantly aggravated steatosis in high-fat diet (HFD)-fed mice, along with reduced AMPK activity. Oil Red O results showed that PFOS exposure caused fat accumulation in HepG2 cells. As predicted, PFOS treatment reduced the level of phosphorylated AMPK in a concentration-dependent manner, leading to subsequent increase in ACC activity and lipid droplet accumulation in HepG2 cells. Treatment with 200-μM AMPK agonist AICAR alleviated PFOS-induced ACC activation and lipid accumulation. In summary, our data highlight a crucial role of AMPK/ACC pathway in PFOS-mediated liver lipid metabolic disorders.
Collapse
Affiliation(s)
- Junyi Ling
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Lu Hua
- Department of Oncology, Taizhou People's Hospital, Taizhou, China
| | - Yi Qin
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China.,Haimen District Center for Disease Control and Prevention, Nantong, China
| | - Tianye Gu
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| | - Shengyang Jiang
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China.,Jiangsu Nantong Health Higher Vocational Technical School, Nantong, China
| | - Jianya Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| |
Collapse
|
7
|
Abraham K, Monien BH. Transdermal absorption of 13C 4-perfluorooctanoic acid ( 13C 4-PFOA) from a sunscreen in a male volunteer - What could be the contribution of cosmetics to the internal exposure of perfluoroalkyl substances (PFAS)? ENVIRONMENT INTERNATIONAL 2022; 169:107549. [PMID: 36191486 DOI: 10.1016/j.envint.2022.107549] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/20/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a complex group of man-made chemicals with high stability and mobility leading to ubiquitous environmental contamination and accumulation especially of some long-chain perfluoroalkyl acids (PFAA) in humans. While dietary intake is the main route of exposure, transdermal uptake from cosmetic products usually is considered negligible. However, PFAS are present in a part of these products, and recent epidemiological studies have provided evidence for relevant uptake via this route. The crucial question is whether PFAA in cosmetic products can cross the human skin barrier. A defined amount (110 µg) of 13C4-perfluorooctanoic acid (13C4-PFOA) was mixed into a sunscreen (30 g) which was applied on the whole skin of a volunteer. The plasma concentrations of 13C4-PFOA were determined in serial blood samples taken over 115 days using UHPLC-MS/MS and 13C2-PFOA as internal standard. After application, 13C4-PFOA plasma levels increased continuously, reaching levels of 3, 56 and 118 ng/L after 6 h, 3 days and 10 days, respectively. A maximum level of 132 ng/L was measured 22 days after application, representing 9.4 % of the PFOA level resulting from the volunteer's background exposure (1400 ng/L, equivalent to 1.4 ng/mL). In the following weeks, the levels slightly decreased with an estimated half-life of 1.8 years. The best estimate for the fraction absorbed may be 1.6 % of the dose, using a volume of distribution of 0.17 L/kg body weight. For PFOA mixed into a sunscreen, this experimental approach demonstrates a significant uptake of a PFAA via transdermal absorption in humans. In the past, some cosmetic products contained relevant PFAA levels as contaminants/impurities of PFAS added as active ingredients. Depending on these levels and the use (frequency, skin area involved), it is plausible that this route of exposure has contributed to the internal exposure to PFAA, as already suggested by epidemiological observations.
Collapse
Affiliation(s)
- Klaus Abraham
- German Federal Institute for Risk Assessment (BfR), Department of Food Safety, 10589 Berlin, Germany.
| | - Bernhard H Monien
- German Federal Institute for Risk Assessment (BfR), Department of Food Safety, 10589 Berlin, Germany
| |
Collapse
|
8
|
Liu F, Guan X, Xiao F. Photodegradation of per- and polyfluoroalkyl substances in water: A review of fundamentals and applications. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129580. [PMID: 35905606 DOI: 10.1016/j.jhazmat.2022.129580] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/05/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent, mobile, and toxic chemicals that are hazardous to human health and the environment. Several countries, including the United States, plan to set an enforceable maximum contamination level for certain PFAS compounds in drinking water sources. Among the available treatment options, photocatalytic treatment is promising for PFAS degradation and mineralization in the aqueous solution. In this review, recent advances in the abatement of PFAS from water using photo-oxidation and photo-reduction are systematically reviewed. Degradation mechanisms of PFAS by photo-oxidation involving the holes (hvb+) and oxidative radicals and photo-reduction using the electrons (ecb-) and hydrated electrons (eaq-) are integrated. The recent development of innovative heterogeneous photocatalysts and photolysis systems for enhanced degradation of PFAS is highlighted. Photodegradation mechanisms of alternative compounds, such as hexafluoropropylene oxide dimer acid (GenX) and chlorinated polyfluorinated ether sulfonate (F-53B), are also critically evaluated. This paper concludes by identifying major knowledge gaps and some of the challenges that lie ahead in the scalability and adaptability issues of photocatalysis for natural water treatment. Development made in photocatalysts design and system optimization forges a path toward sustainable treatment of PFAS-contaminated water through photodegradation technologies.
Collapse
Affiliation(s)
- Fuqiang Liu
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaohong Guan
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| | - Feng Xiao
- Department of Civil Engineering, University of North Dakota, 243 Centennial Drive Stop 8115, Grand Forks, ND 58202, United States.
| |
Collapse
|
9
|
Dangudubiyyam SV, Mishra JS, Song R, Kumar S. Maternal PFOS exposure during rat pregnancy causes hypersensitivity to angiotensin II and attenuation of endothelium-dependent vasodilation in the uterine arteries. Biol Reprod 2022; 107:1072-1083. [PMID: 35835584 DOI: 10.1093/biolre/ioac141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/21/2022] [Accepted: 07/06/2022] [Indexed: 01/09/2023] Open
Abstract
Epidemiological studies show a strong association between environmental exposure to perfluorooctane sulfonic acid (PFOS) and preeclampsia and fetal growth restriction; however, the underlying mechanisms are unclear. We tested the hypothesis that gestational PFOS exposure leads to pregnancy complications via alterations in uterine vascular endothelium-independent angiotensin II-related mechanisms and endothelium-derived factors such as nitric oxide. Pregnant Sprague Dawley rats were exposed to PFOS 0.005, 0.05, 0.5, 5, 10, and 50 μg/mL through drinking water from gestational day 4 to 20, and dams with PFOS 50 μg/mL were used to assess mechanisms. PFOS exposure dose-dependently increased maternal blood pressure but decreased fetal weights. Uterine artery blood flow was lower and resistance index was higher in the PFOS dams. In PFOS dams, uterine artery contractile responses to angiotensin II were significantly greater, whereas contractile responses to K+ depolarization and phenylephrine were unaffected. Plasma angiotensin II levels were not significantly different between control and PFOS dams; however, PFOS exposure significantly increased AGTR1 and decreased AGTR2 protein levels in uterine arteries. Endothelium-dependent relaxation response to acetylcholine was significantly reduced with decreased endothelial nitric oxide synthase expression in the uterine arteries of PFOS dams. Left ventricular hypertrophy and fibrosis were observed, along with increased ejection fraction and fractional shortening in PFOS dams. These results suggest that elevated maternal PFOS levels decrease uterine blood flow and increase vascular resistance via heightened angiotensin II-mediated vasoconstriction and impaired endothelium-dependent vasodilation, which provides a molecular mechanism linking elevated maternal PFOS levels with gestational hypertension and fetal growth restriction.
Collapse
Affiliation(s)
- Sri Vidya Dangudubiyyam
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA.,Endocrinology-Reproductive Physiology Program, University of Wisconsin, Madison, WI 53715, USA
| | - Jay S Mishra
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Ruolin Song
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Sathish Kumar
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA.,Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792, USA.,Endocrinology-Reproductive Physiology Program, University of Wisconsin, Madison, WI 53715, USA
| |
Collapse
|
10
|
Tachachartvanich P, Singam ERA, Durkin KA, Furlow JD, Smith MT, La Merrill MA. In Vitro characterization of the endocrine disrupting effects of per- and poly-fluoroalkyl substances (PFASs) on the human androgen receptor. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128243. [PMID: 35093747 PMCID: PMC9705075 DOI: 10.1016/j.jhazmat.2022.128243] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 05/15/2023]
Abstract
Per- and poly-fluoroalkyl substances (PFASs) are used extensively in a broad range of industrial applications and consumer products. While a few legacy PFASs have been voluntarily phased out, over 5000 PFASs have been produced as replacements for their predecessors. The potential endocrine disrupting hazards of most emerging PFASs have not been comprehensively investigated. In silico molecular docking to the human androgen receptor (hAR) combined with machine learning techniques were previously applied to 5206 PFASs and predicted 23 PFASs bind the hAR. Herein, the in silico results were validated in vitro for the five candidate AR ligands that were commercially available. Three manufactured PFASs namely (9-(nonafluorobutyl)- 2,3,6,7-tetrahydro-1 H,5 H,11 H-pyrano[2,3-f]pyrido[3,2,1-ij]quinolin-11-one (NON), 2-(heptafluoropropyl)- 3-phenylquinoxaline (HEP), and 2,2,3,3,4,4,5,5,5-nonafluoro-N-(4-nitrophenyl)pentanamide (NNN) elicited significant antiandrogenic effects at relatively low concentrations. We further investigated the mechanism of AR inhibition and found that all three PFASs inhibited AR transactivation induced by testosterone through a competitive binding mechanism. We then examined the antiandrogenic effects of these PFASs on AR expression and its responsive genes. Consistently, these PFASs significantly decreased the expression of PSA and FKBP5 and increased the expression of AR, similar to the effects elicited by a known competitive AR inhibitor, hydroxyflutamide. This suggests they are competitive antagonists of AR activity and western blot analysis revealed these PFASs decreased intracellular AR protein in androgen sensitive human prostate cancer cells. Hence, the findings presented here corroborate our published in silico approach and indicate these emerging PFASs may adversely affect the human endocrine system.
Collapse
Affiliation(s)
- Phum Tachachartvanich
- Department of Environmental Toxicology, University of California, Davis 95616, CA, USA; Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | | | - Kathleen A Durkin
- Molecular Graphics and Computation Facility, College of Chemistry, University of California, Berkeley 94720, CA, USA
| | - J David Furlow
- Department of Neurobiology, Physiology and Behavior, University of California, Davis 95616, CA, USA
| | - Martyn T Smith
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley 94720, CA, USA
| | - Michele A La Merrill
- Department of Environmental Toxicology, University of California, Davis 95616, CA, USA.
| |
Collapse
|
11
|
Wan C, Gu T, Ling J, Qin Y, Luo J, Sun L, Hua L, Zhao J, Jiang S. Perfluorooctane sulfonate aggravates CCl4-induced hepatic fibrosis via HMGB1/TLR4/Smad signaling. ENVIRONMENTAL TOXICOLOGY 2022; 37:983-994. [PMID: 34990082 DOI: 10.1002/tox.23458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is a widespread environmental pollutant and may cause a variety of adverse health effects. The hepatotoxicity of PFOS has attracted particular attention, given the fact that the liver has one of the highest PFOS accumulations among human tissues. In this study, we revealed that subchronic PFOS exposure may exacerbate carbon tetrachloride (CCl4 )-induced liver fibrosis in animal models. Administration with 1 mg/kg PFOS every other day for 56 days dramatically enhanced CCl4 -mediated liver injury and hepatic stellate cell (HSC) activation. Furthermore, PFOS exposure may promote the activation of high-mobility group box 1 (HMGB1)/toll-like receptor 4 (TLR4) signaling pathway through inducing the secretion of HMGB1 from hepatocytes. PFOS exposure induced the translocation of HMGB1 from the nucleus into the cytoplasm of hepatocytes and cultured BRL-3A cells at a starting concentration of 50 μM. This process is accompanied with concurrent flux of calcium, suggesting a link between calcium signaling and HMGB1 release following PFOS exposure. Finally, we showed that PFOS-exposed conditional medium (PFOS-CM) of hepatocytes may induce the translocation of Smad2/3 in HSCs in a TLR4-dependent manner. Taken together, subchronic PFOS exposure might play a pro-fibrotic role via a HMGB1/TLR4-dependent Smad signaling in HSCs. Our findings for the first time uncovered an involvement of PFOS exposure in liver fibrosis via HMGB1/TLR4/Smad signaling.
Collapse
Affiliation(s)
- Chunhua Wan
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| | - Tianye Gu
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| | - Junyi Ling
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Yi Qin
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
- Haimen District Center for Disease Control and Prevention, Haimen, Nantong, People's Republic of China
| | - Jiashan Luo
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Lingli Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| | - Lu Hua
- Department of Oncology, Taizhou People's Hospital, Taizhou, China
| | - Jianya Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| | - Shengyang Jiang
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| |
Collapse
|
12
|
Evaluation and validation of methodologies for the extraction of per- and polyfluoroalkyl substances (PFASs) in serum of birds and mammals. Anal Bioanal Chem 2022; 414:3017-3032. [PMID: 35182167 PMCID: PMC8934760 DOI: 10.1007/s00216-022-03962-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/27/2022] [Accepted: 02/04/2022] [Indexed: 12/16/2022]
Abstract
Advances in analytical techniques have allowed greater detection of environmental contaminants from small volumes of sample. Four methodologies were evaluated for the extraction of 53 per- and polyfluoroalkyl substances (PFASs) from eight classes in 200 µL of avian and mammal serum. Spiked serums at four concentrations (0, 0.5, 5.0 and 25 ng mL−1) were prepared by protein precipitation (PPT), enhanced matrix removal (EMR), weak anion exchange (WAX), and hydrophilic-lipophilic balance (HLB) solid-phase extraction cartridges. The extract from each methodology was analysed by high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC–MS/MS), and concentrations were compared with known concentrations in the spiked media. EMR performed the best overall, with 40 of 53 compounds effectively recovered at 5 ng mL−1. Furthermore, EMR was effective overall at concentrations ranging from 0.5 to 25 ng mL−1 for 39 out of 53. Similarly, PPT was effective for 35 of 53 compounds at all spiked serum concentrations. There was a negative correlation between internal standard recovery for compounds with increasing octanol–water coefficients (Kow) for WAX (R = − 0.65, p = 0.0043) and HLB (R = − 0.62, p = 0.0077) extractions, indicating methanol may not be a suitable solvent for long-chain PFAS extraction from protein-rich tissues. EMR and PPT represent fast and effective methodologies for the extraction of PFASs from low volumes of serum which allows greater accuracy and precision that can be applied to future human and wildlife biomonitoring programmes.
Collapse
|
13
|
Wise LA, Wesselink AK, Schildroth S, Calafat AM, Bethea TN, Geller RJ, Coleman CM, Fruh V, Claus Henn B, Botelho JC, Harmon QE, Thirkill M, Wegienka GR, Baird DD. Correlates of plasma concentrations of per- and poly-fluoroalkyl substances among reproductive-aged Black women. ENVIRONMENTAL RESEARCH 2022; 203:111860. [PMID: 34403666 PMCID: PMC8616815 DOI: 10.1016/j.envres.2021.111860] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals used in commercial and consumer goods. Black women are underrepresented in studies of PFAS exposure. METHODS We performed a cross-sectional analysis of correlates of plasma PFAS concentrations among 1499 Black women aged 23-35 participating in the Study of Environment, Lifestyle, and Fibroids (SELF), a Detroit-based cohort study. At baseline (2010-2012), participants provided questionnaire data on socio-demographics; behaviors; diet; and menstrual, contraceptive, and reproductive histories. Using mass spectrometry in non-fasting plasma samples collected at enrollment, we quantified several PFAS, including perfluorohexane sulfonate (PFHxS), perfluorooctane sulfonate (PFOS), perfluorooctanoate (PFOA), perfluorononanoate (PFNA), perfluorodecanoate (PFDA), perfluoroundecanoate (PFUnDA), and 2-N-methyl-perfluorooctane sulfonamido acetate (MeFOSAA). We used linear regression to calculate percentage differences (%D) and 95 % confidence intervals (CIs) for associations between selected correlates and PFAS concentrations, adjusting for all other correlates. RESULTS PFHxS, PFOS, PFOA, and PFNA were detected in ≥97 % of women; PFDA in 86 %; MeFOSAA in 70 %; and PFUnDA in 52 %. Age, income, education, and intakes of water, alcohol, and seafood were positively associated with several PFAS. Current smoking was positively associated with MeFOSAA. Body mass index was inversely associated with most PFAS, except PFHxS. Strong inverse associations (%D; 95 % CI) were observed between parity (≥3 vs. 0 births) and PFHxS (-34.7; -43.0, -25.1) and PFOA (-33.1; -39.2, -26.3); breastfeeding duration (≥6 months vs. nulliparous) and PFOA (-31.1; -37.8, -23.7), PFHxS (-24.2; -34.5, -12.3), and PFOS (-18.4; -28.3, -7.1); recent birth (<2 years ago vs. nulliparous) and PFOA (-33.1; -39.6, -25.8), PFHxS (-29.3; -39.0, -18.1), PFNA (-25.2; -32.7, -16.8), and PFOS (-18.3; -28.3, -6.9); and intensity of menstrual bleed (heavy vs. light) and PFHxS (-18.8; -28.3, -8.2), PFOS (-16.4; -24.9, -7.1), PFNA (-10.5; -17.8, -2.6), and PFOA (-10.0; -17.2, -2.1). Current use of depot medroxyprogesterone acetate (DMPA) was positively associated with PFOS (20.2; 1.4, 42.5), PFOA (16.2; 1.5, 33.0), and PFNA (15.3; 0.4, 32.4). CONCLUSIONS Reproductive factors that influence PFAS elimination showed strong associations with several PFAS (reduced concentrations with parity, recent birth, lactation, heavy menstrual bleeding; increased concentrations with DMPA use).
Collapse
Affiliation(s)
- Lauren A Wise
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA.
| | - Amelia K Wesselink
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Samantha Schildroth
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Traci N Bethea
- Office of Minority Health & Health Disparities Research, Georgetown Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | - Ruth J Geller
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Chad M Coleman
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Victoria Fruh
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Julianne C Botelho
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Quaker E Harmon
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Maya Thirkill
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | | | - Donna D Baird
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| |
Collapse
|
14
|
Liu H, Cheng J, Zhou Y, Liu F, Griffin N, Faulkner S, Wang L. Interactions of perfluorooctanoic acid with acyl-CoA thioesterase 1 (Acot1). Comp Biochem Physiol C Toxicol Pharmacol 2021; 250:109159. [PMID: 34365018 DOI: 10.1016/j.cbpc.2021.109159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/29/2021] [Accepted: 08/01/2021] [Indexed: 11/19/2022]
Abstract
Perfluorooctanoic acid (PFOA), a typical representative of per- and polyfluoroalkyl substances (PFASs), is a widely utilized persistent organic pollutant (POP) known to induce liver toxicity in laboratory animals and wildlife. Evidence suggests that PFOA interacts with Acyl-CoA thioesterase 1 (Acot1) to modulate levels of β-oxidation. Specifically, PFOA accelerates β-oxidation, while Acot1 is inhibitory. Few studies have investigated the specific relationship between PFOA and Acot1 and the mechanism of their interaction remains unclear. In the following study, purified rat Acot1 protein was synthesized via bacterial recombination and the structural features that facilitate its binding to PFOA were assessed via molecular docking technology. Additionally, through use of circular dichroism spectroscopy (CD) and isothermal titration calorimetry (ITC) we demonstrate that PFOA binds to WT-Acot1 through electrostatic attraction and low strength non-covalent hydrogen bonding at a molar ratio of 1:1. Furthermore, we identify N326 and H373 amino acid residues as key regulators of the binding process. Together, these findings clarify the interaction pattern of PFOA and Acot1 proteins and provide insight into the specific molecular mechanisms that induce PFOA toxicity in humans and animals.
Collapse
Affiliation(s)
- Hui Liu
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu 233030, PR China.
| | - Jingjing Cheng
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu 233030, PR China
| | - Yongbing Zhou
- School of Public Health, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu 233030, PR China
| | - Fangfang Liu
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu 233030, PR China
| | - Nathan Griffin
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Sam Faulkner
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, University of Newcastle, New Lambton, NSW, Australia
| | - Li Wang
- School of Public Health, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu 233030, PR China.
| |
Collapse
|
15
|
Qin Y, Gu T, Ling J, Luo J, Zhao J, Hu B, Hua L, Wan C, Jiang S. PFOS facilitates liver inflammation and steatosis: An involvement of NLRP3 inflammasome-mediated hepatocyte pyroptosis. J Appl Toxicol 2021; 42:806-817. [PMID: 34687223 DOI: 10.1002/jat.4258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/24/2021] [Accepted: 10/01/2021] [Indexed: 01/09/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is a fluorinated organic pollutant with substantial accumulation in mammalian liver tissues. However, the impact of chronic PFOS exposure on liver disease progression and the underlying molecular mechanisms remain elusive. Herein, we for the first time revealed that micromolar range of PFOS exposure initiates the activation of NLR pyrin domain containing 3 (NLRP3) inflammasome to drive hepatocyte pyroptosis. We showed that 5 mg/kg/day PFOS exposure may exacerbated liver inflammation and steatosis in high-fat diet (HFD)-fed mice with concurrently elevated expression of NLRP3 and caspase-1. PFOS exposure resulted in viability impairment and LDH release in BRL-3A rat liver cells. 25-100 μM concentrations of PFOS exposure activated the NLRP3 inflammasome, leading to consequent GSDMD cleavage, IL-1β release and the initiation of pyroptosis in a dose-dependent manner, whereas treatment with 10 μM NLRP3 inhibitor MCC950 abrogated this effect. Moreover, pretreatment of 5 mM ROS scavenger N-acetyl-L-cysteine (NAC) ameliorated PFOS-induced NLRP3 inflammasome activation and pyroptosis. Collectively, our data highlight a pivotal role of pyroptotic death in PFOS-mediated liver inflammation and metabolic disorder.
Collapse
Affiliation(s)
- Yi Qin
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Tianye Gu
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| | - Junyi Ling
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Jiashan Luo
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Jianya Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| | - Baoying Hu
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Lu Hua
- Department of Oncology, Taizhou People's Hospital, Taizhou, China
| | - Chunhua Wan
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| | - Shengyang Jiang
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| |
Collapse
|
16
|
Pascale R, Acquavia MA, Onzo A, Cataldi TRI, Calvano CD, Bianco G. Analysis of surfactants by mass spectrometry: Coming to grips with their diversity. MASS SPECTROMETRY REVIEWS 2021. [PMID: 34570373 DOI: 10.1002/mas.21735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Surfactants are surface-active agents widely used in numerous applications in our daily lives as personal care products, domestic, and industrial detergents. To determine complex mixtures of surfactants and their degradation products, unselective and rather insensitive methods, based on colorimetric and complexometric analyses are no longer employable. Analytical methodologies able to determine low concentration levels of surfactants and closely related compounds in complex matrices are required. The recent introduction of robust, sensitive, and selective mass spectrometry (MS) techniques has led to the rapid expansion of the surfactant research field including complex mixtures of isomers, oligomers, and homologues of surfactants as well as their chemically and biodegradation products at trace levels. In this review, emphasis is given to the state-of-the-art MS-based analysis of surfactants and their degradation products with an overview of the current research landscape from traditional methods involving hyphenate techniques (gas chromatography-MS and liquid chromatography-MS) to the most innovative approaches, based on high-resolution MS. Finally, we outline a detailed explanation on the utilization of MS for mechanistic purposes, such as the study of micelle formation in different solvents.
Collapse
Affiliation(s)
| | - Maria A Acquavia
- Dipartimento di Scienze, Università degli Studi della Basilicata, Potenza, Italy
- ALMAGISI S.r.l Corso Italia, Bolzano, Italy
| | - Alberto Onzo
- Dipartimento di Scienze, Università degli Studi della Basilicata, Potenza, Italy
| | - Tommaso R I Cataldi
- Università degli Studi di Bari Aldo Moro, Bari, Italy
- Dipartimento di Chimica, Bari, Italy
| | | | - Giuliana Bianco
- Dipartimento di Scienze, Università degli Studi della Basilicata, Potenza, Italy
| |
Collapse
|
17
|
Hamilton MC, Heintz MM, Pfohl M, Marques E, Ford L, Slitt AL, Baldwin WS. Increased toxicity and retention of perflourooctane sulfonate (PFOS) in humanized CYP2B6-Transgenic mice compared to Cyp2b-null mice is relieved by a high-fat diet (HFD). Food Chem Toxicol 2021; 152:112175. [PMID: 33838175 PMCID: PMC8154739 DOI: 10.1016/j.fct.2021.112175] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 01/11/2023]
Abstract
PFOS is a persistent, fluorosurfactant used in multiple products. Murine Cyp2b's are induced by PFOS and high-fat diets (HFD) and therefore we hypothesized that human CYP2B6 may alleviate PFOS-induced steatosis. Cyp2b-null and hCYP2B6-Tg mice were treated with 0, 1, or 10 mg/kg/day PFOS by oral gavage for 21-days while provided a chow diet (ND) or HFD. Similar to murine Cyp2b10, CYP2B6 is inducible by PFOS. Furthermore, three ND-fed hCYP2B6-Tg females treated with 10 mg/kg/day PFOS died during the exposure period; neither Cyp2b-null nor HFD-fed mice died. hCYP2B6-Tg mice retained more PFOS in serum and liver than Cyp2b-null mice presumably causing the observed toxicity. In contrast, serum PFOS retention was reduced in the HFD-fed hCYP2B6-Tg mice; the opposite trend observed in HFD-fed Cyp2b-null mice. Hepatotoxicity biomarkers, ALT and ALP, were higher in PFOS-treated mice and repressed by a HFD. However, PFOS combined with a HFD exacerbated steatosis in all mice, especially in the hCYP2B6-Tg mice with significant disruption of key lipid metabolism genes such as Srebp1, Pparg, and Hmgcr. In conclusion, CYP2B6 is induced by PFOS but does not alleviate PFOS toxicity presumably due to increased retention. CYP2B6 protects from PFOS-mediated steatosis in ND-fed mice, but increases steatosis when co-treated with a HFD.
Collapse
Affiliation(s)
- Matthew C Hamilton
- Environmental Toxicology Program, Clemson University, Clemson, SC, 29634, USA
| | - Melissa M Heintz
- Environmental Toxicology Program, Clemson University, Clemson, SC, 29634, USA
| | - Marisa Pfohl
- College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - Emily Marques
- College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - Lucie Ford
- College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - Angela L Slitt
- College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - William S Baldwin
- Environmental Toxicology Program, Clemson University, Clemson, SC, 29634, USA.
| |
Collapse
|
18
|
Fragki S, Dirven H, Fletcher T, Grasl-Kraupp B, Bjerve Gützkow K, Hoogenboom R, Kersten S, Lindeman B, Louisse J, Peijnenburg A, Piersma AH, Princen HMG, Uhl M, Westerhout J, Zeilmaker MJ, Luijten M. Systemic PFOS and PFOA exposure and disturbed lipid homeostasis in humans: what do we know and what not? Crit Rev Toxicol 2021; 51:141-164. [PMID: 33853480 DOI: 10.1080/10408444.2021.1888073] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Associations between per- and polyfluoroalkyl substances (PFASs) and increased blood lipids have been repeatedly observed in humans, but a causal relation has been debated. Rodent studies show reverse effects, i.e. decreased blood cholesterol and triglycerides, occurring however at PFAS serum levels at least 100-fold higher than those in humans. This paper aims to present the main issues regarding the modulation of lipid homeostasis by the two most common PFASs, PFOS and PFOA, with emphasis on the underlying mechanisms relevant for humans. Overall, the apparent contrast between human and animal data may be an artifact of dose, with different molecular pathways coming into play upon exposure to PFASs at very low versus high levels. Altogether, the interpretation of existing rodent data on PFOS/PFOA-induced lipid perturbations with respect to the human situation is complex. From a mechanistic perspective, research on human liver cells shows that PFOS/PFOA activate the PPARα pathway, whereas studies on the involvement of other nuclear receptors, like PXR, are less conclusive. Other data indicate that suppression of the nuclear receptor HNF4α signaling pathway, as well as perturbations of bile acid metabolism and transport might be important cellular events that require further investigation. Future studies with human-relevant test systems would help to obtain more insight into the mechanistic pathways pertinent for humans. These studies shall be designed with a careful consideration of appropriate dosing and toxicokinetics, so as to enable biologically plausible quantitative extrapolations. Such research will increase the understanding of possible perturbed lipid homeostasis related to PFOS/ PFOA exposure and the potential implications for human health.
Collapse
Affiliation(s)
- Styliani Fragki
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Hubert Dirven
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Tony Fletcher
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England (PHE), Chilton, UK
| | - Bettina Grasl-Kraupp
- Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8a, Vienna, Austria
| | | | - Ron Hoogenboom
- Wageningen Food Safety Research (WFSR), Wageningen, The Netherlands
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Birgitte Lindeman
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Jochem Louisse
- Wageningen Food Safety Research (WFSR), Wageningen, The Netherlands
| | - Ad Peijnenburg
- Wageningen Food Safety Research (WFSR), Wageningen, The Netherlands
| | - Aldert H Piersma
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.,Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Hans M G Princen
- Metabolic Health Research, The Netherlands Organization of Applied Scientific Research (TNO), Gaubius Laboratory, Leiden, The Netherlands
| | - Maria Uhl
- Environment Agency Austria (EAA), Vienna, Austria
| | - Joost Westerhout
- Risk Analysis for Products In Development, The Netherlands Organization of Applied Scientific Research (TNO), Utrecht, The Netherlands
| | - Marco J Zeilmaker
- Centre for Nutrition, Prevention and Health Services, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Mirjam Luijten
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
19
|
Wan HT, Wong AYM, Feng S, Wong CKC. Effects of In Utero Exposure to Perfluorooctane Sulfonate on Placental Functions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:16050-16061. [PMID: 33258594 DOI: 10.1021/acs.est.0c06569] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is a metabolic-disrupting chemical. There is a strong association between maternal and cord blood PFOS concentrations, affecting metabolism in early life. However, the underlying effects have not been fully elucidated. In this study, using the maternal-fetal model, we investigated the impact of gestational PFOS exposure on the placental structure and nutrient transport. Pregnant mice were oral gavaged with PFOS (1 or 3 μg PFOS/g body weight) from gestational day (GD) 4.5 until GD 17.5. Our data showed a significant reduction in fetal body weight at high dose exposure. There were no noticeable changes in placental weights and the relative areas of junctional and labyrinth zones among the control and exposed groups. However, a placental nutrient transport assay showed a significant reduction in maternal-fetal transport of the glucose and amino acid analogues. Western blot analysis showed a significant decrease in the expression levels of placental SNAT4 upon PFOS exposure. Moreover, in the high-dose exposed group, placenta and fetal livers were found to have significantly higher corticosterone levels, a negative regulator of fetal growth. The perturbation in the placental transport function and corticosterone levels accounted for the PFOS-induced reduction of fetal body weights.
Collapse
Affiliation(s)
- Hin Ting Wan
- Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Aman Yi-Man Wong
- Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Shi Feng
- Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Chris Kong-Chu Wong
- Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| |
Collapse
|
20
|
Shen Z, Ge J, Ye H, Tang S, Li Y. Cholesterol-like Condensing Effect of Perfluoroalkyl Substances on a Phospholipid Bilayer. J Phys Chem B 2020; 124:5415-5425. [PMID: 32515593 DOI: 10.1021/acs.jpcb.0c00980] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
To understand the potential cytotoxicity of perfluoroalkyl substances (PFAS), we study their interactions with a model phospholipid bilayer membrane using molecular dynamics (MD) simulations. Four typical PFAS molecules are investigated, including perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorooctanesulfonic acid (PFOS), and perfluorohexane sulfonate (PFHxS). All of these PFAS molecules are found to spontaneously penetrate the lipid bilayer within a short simulation time (a few nanoseconds). During the penetration process, further free-energy analysis reveals that a PFAS molecule encounters an energy barrier at the bilayer/water interface. To overcome this free-energy barrier, the PFAS molecule flips itself at the interface. We further investigate the influence of embedded PFAS molecules on the membrane properties. All of the embedded PFAS molecules are found to produce a cholesterol-like condensing effect on the lipid bilayer, which includes increases of the order parameters of lipid tails and the thickness of the lipid bilayer and a decrease of area per lipid. Moreover, the PFAS molecules are found to form hydrogen bonds with oxygen atoms at three different positions of a lipid molecule. Our work reveals the penetration pathway of PFAS molecules entering into a lipid bilayer. In addition, the cholesterol-like condensing effect induced by embedded PFAS molecules on model membranes is systematically investigated and discussed. Our simulations can help understand the physical mechanisms of PFAS cytotoxicity.
Collapse
Affiliation(s)
- Zhiqiang Shen
- Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Jeffrey Ge
- Department of Materials Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Huilin Ye
- Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Shan Tang
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, and International Research Center for Computational Mechanics, Dalian University of Technology, Dalian 116023, P. R. China
| | - Ying Li
- Department of Mechanical Engineering and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
21
|
Behr AC, Plinsch C, Braeuning A, Buhrke T. Activation of human nuclear receptors by perfluoroalkylated substances (PFAS). Toxicol In Vitro 2019; 62:104700. [PMID: 31676336 DOI: 10.1016/j.tiv.2019.104700] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 10/25/2022]
Abstract
Perfluoralkylated substances (PFAS) such as perfluorooctanoic acid (PFOA) or perfluorooctanesulfonic acid (PFOS) are used to produce, e.g., surface coatings with water- and dirt-repellent properties. These substances have been shown to be hepatotoxic in rodents, and the mechanism of action is mostly attributed to the PFAS-mediated activation of the peroxisome proliferator-activated receptor alpha (PPARα). In the present study, we investigated by using luciferase-based reporter gene assays whether PFOA, PFOS and six alternative PFAS can activate, in addition to PPARα, eight other human nuclear receptors. All tested PFAS except for perfluorobutanesulfonic acid (PFBS) were able to activate human PPARα. Perfluoro-2-methyl-3-oxahexanoic acid (PMOH) and 3H-perfluoro-3-[(3-methoxypropoxy) propanoic acid] (PMPP) were weak agonists of human PPARγ. The other human nuclear receptors (PPARδ, CAR, PXR, FXR, LXRα, RXRα and RARα) were not affected by any PFAS tested in this study. Although PMOH was more effective than PFOA in stimulating PPARα in the transactivation assay, it was less effective in stimulating PPARα-dependent target gene expression in human HepG2 hepatocarcinoma cells. Notably, any effect observed in this in vitro study only occurred at concentrations higher than 10 μM of the respective PFAS which is in all cases several magnitudes above the average blood concentration in the Western population. Thus, the results suggest that nuclear receptor activation may only play a minor role in potential PFAS-mediated adverse effects in humans.
Collapse
Affiliation(s)
- Anne-Cathrin Behr
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Christin Plinsch
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Albert Braeuning
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Thorsten Buhrke
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany.
| |
Collapse
|
22
|
Wahlang B, Jin J, Beier JI, Hardesty JE, Daly EF, Schnegelberger RD, Falkner KC, Prough RA, Kirpich IA, Cave MC. Mechanisms of Environmental Contributions to Fatty Liver Disease. Curr Environ Health Rep 2019; 6:80-94. [PMID: 31134516 PMCID: PMC6698418 DOI: 10.1007/s40572-019-00232-w] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE Fatty liver disease (FLD) affects over 25% of the global population and may lead to liver-related mortality due to cirrhosis and liver cancer. FLD caused by occupational and environmental chemical exposures is termed "toxicant-associated steatohepatitis" (TASH). The current review addresses the scientific progress made in the mechanistic understanding of TASH since its initial description in 2010. RECENT FINDINGS Recently discovered modes of actions for volatile organic compounds and persistent organic pollutants include the following: (i) the endocrine-, metabolism-, and signaling-disrupting chemical hypotheses; (ii) chemical-nutrient interactions and the "two-hit" hypothesis. These key hypotheses were then reviewed in the context of the steatosis adverse outcome pathway (AOP) proposed by the US Environmental Protection Agency. The conceptual understanding of the contribution of environmental exposures to FLD has progressed significantly. However, because this is a new research area, more studies including mechanistic human data are required to address current knowledge gaps.
Collapse
Affiliation(s)
- Banrida Wahlang
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- University of Louisville Superfund Research Center, University of Louisville, Louisville, KY, 40202, USA
| | - Jian Jin
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Juliane I Beier
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Josiah E Hardesty
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Erica F Daly
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Regina D Schnegelberger
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - K Cameron Falkner
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Russell A Prough
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Irina A Kirpich
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Hepatobiology & Toxicology COBRE Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY, 40202, USA
| | - Matthew C Cave
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- University of Louisville Superfund Research Center, University of Louisville, Louisville, KY, 40202, USA.
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- Hepatobiology & Toxicology COBRE Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY, 40202, USA.
- The Robley Rex Veterans Affairs Medical Center, Louisville, KY, 40206, USA.
- The Jewish Hospital Liver Transplant Program, Louisville, KY, 40202, USA.
- Kosair Charities Clinical & Translational Research Building, 505 South Hancock Street, Louisville, KY, 40202, USA.
| |
Collapse
|
23
|
Chou WC, Lin Z. Bayesian evaluation of a physiologically based pharmacokinetic (PBPK) model for perfluorooctane sulfonate (PFOS) to characterize the interspecies uncertainty between mice, rats, monkeys, and humans: Development and performance verification. ENVIRONMENT INTERNATIONAL 2019; 129:408-422. [PMID: 31152982 DOI: 10.1016/j.envint.2019.03.058] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 03/07/2019] [Accepted: 03/25/2019] [Indexed: 05/20/2023]
Abstract
A challenge in the risk assessment of perfluorooctane sulfonate (PFOS) is the large interspecies differences in its toxicokinetics that results in substantial uncertainty in the dosimetry and toxicity extrapolation from animals to humans. To address this challenge, the objective of this study was to develop an open-source physiologically based pharmacokinetic (PBPK) model accounting for species-specific toxicokinetic parameters of PFOS. Considering available knowledge about the toxicokinetic properties of PFOS, a PBPK model for PFOS in mice, rats, monkeys, and humans after intravenous and oral administrations was created. Available species-specific toxicokinetic data were used for model calibration and optimization, and independent datasets were used for model evaluation. Bayesian statistical analysis using Markov chain Monte Carlo (MCMC) simulation was performed to optimize the model and to characterize the uncertainty and interspecies variability of chemical-specific parameters. The model predictions well correlated with the majority of datasets for all four species, and the model was validated with independent data in rats, monkeys, and humans. The model was applied to predict human equivalent doses (HEDs) based on reported points of departure in selected critical toxicity studies in rats and monkeys following U.S. EPA's guidelines. The lower bounds of the model-derived HEDs were overall lower than the HEDs estimated by U.S. EPA (e.g., 0.2 vs. 1.3 μg/kg/day based on the rat plasma data). This integrated and comparative analysis provides an important step towards improving interspecies extrapolation and quantitative risk assessment of PFOS, and this open-source model provides a foundation for developing models for other perfluoroalkyl substances.
Collapse
Affiliation(s)
- Wei-Chun Chou
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States.
| | - Zhoumeng Lin
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States.
| |
Collapse
|
24
|
Interspecies differences in perfluoroalkyl substances (PFAS) toxicokinetics and application to health-based criteria. Regul Toxicol Pharmacol 2019; 106:239-250. [DOI: 10.1016/j.yrtph.2019.05.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 04/08/2019] [Accepted: 05/06/2019] [Indexed: 01/07/2023]
|
25
|
Patil PS, Fathollahipour S, Inmann A, Pant A, Amini R, Shriver LP, Leipzig ND. Fluorinated Methacrylamide Chitosan Hydrogel Dressings Improve Regenerated Wound Tissue Quality in Diabetic Wound Healing. Adv Wound Care (New Rochelle) 2019; 8:374-385. [PMID: 31346492 DOI: 10.1089/wound.2018.0887] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/20/2019] [Indexed: 12/19/2022] Open
Abstract
Objective: Oxygen therapy has shown promising results for treating diabetic wounds. However, clinically used oxygen therapies are cumbersome and expensive. Thus, there is a need to develop a localized oxygenating treatment that is easy to use and inexpensive. Approach: In this study, we tested a previously developed hydrogel sheet wound dressing based on fluorinated methacrylamide chitosan (MACF) for enhanced oxygenation and compared it with a commercial sheet hydrogel dressing, AquaDerm™, and no treatment controls in a splinted transgenic diabetic mouse wound model. Results: AquaDerm exhibited poor wound closure response compared with the MACF oxygenating hydrogel sheet dressing (MACF+O2) and no treatment. Histological analysis revealed enhanced collagen synthesis and neovascularization upon MACF+O2 treatment as indicated by higher collagen content and number of blood vessels/capillaries compared with AquaDerm and no treatment. MACF+O2 also improved wound collagen fiber alignment, thus demonstrating improved skin tissue maturation. Nuclear magnetic resonance spectroscopy-based biodistribution analysis revealed that the degradation products of the MACF-based dressing did not accumulate in lung, liver, and kidney tissues of the treated animals after 14 days of treatment. Innovation: This study presents the first application of a unique oxygenating biomaterial (MACF) made into a moist hydrogel wound dressing for treating diabetic wounds. Conclusion: The results of this study confirm the benefits of this novel biomaterial approach for improving regenerated tissue structure in diabetic wound healing.
Collapse
Affiliation(s)
- Pritam S. Patil
- Department of Chemical and Biomolecular Engineering, University of Akron, Akron, Ohio
| | | | | | - Anup Pant
- Department of Biomedical Engineering, University of Akron, Akron, Ohio
| | - Rouzbeh Amini
- Department of Biomedical Engineering, University of Akron, Akron, Ohio
| | | | - Nic D. Leipzig
- Department of Chemical and Biomolecular Engineering, University of Akron, Akron, Ohio
| |
Collapse
|
26
|
Barpaga D, Zheng J, Han KS, Soltis JA, Shutthanandan V, Basuray S, McGrail BP, Chatterjee S, Motkuri RK. Probing the Sorption of Perfluorooctanesulfonate Using Mesoporous Metal–Organic Frameworks from Aqueous Solutions. Inorg Chem 2019; 58:8339-8346. [DOI: 10.1021/acs.inorgchem.9b00380] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Dushyant Barpaga
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jian Zheng
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Kee Sung Han
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jennifer A. Soltis
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Vaithiyalingam Shutthanandan
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Sagnik Basuray
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - B. Peter McGrail
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Sayandev Chatterjee
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Radha Kishan Motkuri
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
27
|
Fort DJ, Mathis MB, Fort CE, Fort HM, Fort TD, Guiney PD, Weeks JA. Effect of perfluorooctanesulfonate exposure on steroid hormone levels and steroidogenic enzyme activities in juvenile Silurana tropicalis. J Appl Toxicol 2019; 39:1066-1078. [PMID: 30847954 DOI: 10.1002/jat.3794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/08/2019] [Accepted: 02/08/2019] [Indexed: 01/02/2023]
Abstract
The impact of the perfluoro-chemical, perfluorooctanesulfonate (PFOS), on gonadal steroidogenesis during sexual differentiation in Silurana tropicalis was examined because of its ubiquity in the environment, bioaccumulative nature and potential to disturb endocrine activity. A partial life cycle study exposing S. tropicalis to varying concentrations of PFOS 0.06, 0.13, 0.25, 0.50 and 1.0 mg PFOS/L [nominal]) was conducted. Gonad and plasma samples were collected from juvenile control specimens and organisms exposed to PFOS from early embryo through 150 days post-metamorphosis. Gonad CYP17, aromatase and 5α-reductase activities were measured. Plasma estradiol, testosterone, dihydrotestosterone (DHT) and gonadal testosterone were measured in both males and females. Increased plasma DHT and gonadal testosterone were found in PFOS-treated juvenile male S. tropicalis compared to controls. Decreased plasma estradiol, but not testosterone, was detected in PFOS-treated female S. tropicalis compared to controls. Plasma DHT was not detected and an increase in gonadal testosterone was detected in PFOS-treated female frogs. Female S. tropicalis exposed to PFOS exhibited a concentration-related decrease in the mean aromatase activity, but not 5α-reductase. PFOS exposure in male frogs induced a concentration-related increase in 5α-reductase activity, but did not alter aromatase activity compared to control frogs. A concentration-related increase in CYP 17,20-lyase activity, but not 17-hydroxylase activity, was found in both female and male S. tropicalis exposed to PFOS.
Collapse
Affiliation(s)
| | | | | | - Hayley M Fort
- Fort Environmental Laboratories, Stillwater, OK, USA
| | - Troy D Fort
- Fort Environmental Laboratories, Stillwater, OK, USA
| | | | | |
Collapse
|
28
|
Mamsen LS, Björvang RD, Mucs D, Vinnars MT, Papadogiannakis N, Lindh CH, Andersen CY, Damdimopoulou P. Concentrations of perfluoroalkyl substances (PFASs) in human embryonic and fetal organs from first, second, and third trimester pregnancies. ENVIRONMENT INTERNATIONAL 2019; 124:482-492. [PMID: 30684806 DOI: 10.1016/j.envint.2019.01.010] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/23/2018] [Accepted: 01/04/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND The persistent environmental contaminants perfluoroalkyl substances (PFASs) have gained attention due to their potential adverse health effects, in particular following early life exposure. Information on human fetal exposure to PFASs is currently limited to one report on first trimester samples. There is no data available on PFAS concentrations in fetal organs throughout all three trimesters of pregnancy. METHODS We measured the concentrations of perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnA), and perfluorohexane sulfonic acid (PFHxS) in human embryos and fetuses with corresponding placentas and maternal serum samples derived from elective pregnancy terminations and cases of intrauterine fetal death. A total of 78 embryos and fetuses aged 7-42 gestational weeks were included and a total of 225 fetal organs covering liver, lung, heart, central nervous system (CNS), and adipose tissue were analyzed, together with 71 placentas and 63 maternal serum samples. PFAS concentrations were assayed by liquid chromatography/triple quadrupole mass spectrometry. RESULTS All evaluated PFASs were detected and quantified in maternal sera, placentas and embryos/fetuses. In maternal serum samples, PFOS was detected in highest concentrations, followed by PFOA > PFNA > PFDA = PFUnA = PFHxS. Similarly, PFOS was detected in highest concentrations in embryo/fetal tissues, followed by PFOA > PFNA = PFDA = PFUnA. PFHxS was detected in very few fetuses. In general, PFAS concentrations in embryo/fetal tissue (ng/g) were lower than maternal serum (ng/ml) but similar to placenta concentrations. The total PFAS burden (i.e. the sum of all PFASs) was highest in lung tissue in first trimester samples and in liver in second and third trimester samples. The burden was lowest in CNS samples irrespective of fetal age. The placenta:maternal serum ratios of PFOS, PFOA and PFNA increased across gestation suggesting bioaccumulation in the placenta. Further, we observed that the ratios were higher in pregnancies with male fetuses compared to female fetuses. CONCLUSIONS Human fetuses were intrinsically exposed to a mixture of PFASs throughout gestation. The compounds were detected in all analyzed tissues, suggesting that PFASs reach and may affect many types of organs. Collectively, our results demonstrate that PFASs pass the placenta and deposit to embryo and fetal tissues, calling for risk assessment of gestational exposures.
Collapse
Affiliation(s)
- Linn Salto Mamsen
- Laboratory of Reproductive Biology, Section 5712, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, University of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| | - Richelle D Björvang
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology, K57 Karolinska University Hospital, Karolinska Institutet, 141 86 Stockholm, Sweden; Swetox, Karolinska Institute, Unit of Toxicology Sciences, Forskargatan 20, 151 36 Södertälje, Sweden.
| | - Daniel Mucs
- Swetox, Karolinska Institute, Unit of Toxicology Sciences, Forskargatan 20, 151 36 Södertälje, Sweden; Unit of Work Environment Toxicology, Institute of Environmental Medicine, Box 210, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | - Marie-Therese Vinnars
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology, K57 Karolinska University Hospital, Karolinska Institutet, 141 86 Stockholm, Sweden.
| | - Nikos Papadogiannakis
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge H5, 141 83 Stockholm, Sweden.
| | - Christian H Lindh
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Medicon Village, Byggnad 402 A, Lund University, 223 61 Lund, Sweden.
| | - Claus Yding Andersen
- Laboratory of Reproductive Biology, Section 5712, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, University of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| | - Pauliina Damdimopoulou
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology, K57 Karolinska University Hospital, Karolinska Institutet, 141 86 Stockholm, Sweden; Swetox, Karolinska Institute, Unit of Toxicology Sciences, Forskargatan 20, 151 36 Södertälje, Sweden.
| |
Collapse
|
29
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Vleminckx C, Vollmer G, Wallace H, Bodin L, Cravedi JP, Halldorsson TI, Haug LS, Johansson N, van Loveren H, Gergelova P, Mackay K, Levorato S, van Manen M, Schwerdtle T. Risk to human health related to the presence of perfluorooctane sulfonic acid and perfluorooctanoic acid in food. EFSA J 2018; 16:e05194. [PMID: 32625773 PMCID: PMC7009575 DOI: 10.2903/j.efsa.2018.5194] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The European Commission asked EFSA for a scientific evaluation on the risks to human health related to the presence of perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in food. Regarding PFOS and PFOA occurrence, the final data set available for dietary exposure assessment contained a total of 20,019 analytical results (PFOS n = 10,191 and PFOA n = 9,828). There were large differences between upper and lower bound exposure due to analytical methods with insufficient sensitivity. The CONTAM Panel considered the lower bound estimates to be closer to true exposure levels. Important contributors to the lower bound mean chronic exposure were 'Fish and other seafood', 'Meat and meat products' and 'Eggs and egg products', for PFOS, and 'Milk and dairy products', 'Drinking water' and 'Fish and other seafood' for PFOA. PFOS and PFOA are readily absorbed in the gastrointestinal tract, excreted in urine and faeces, and do not undergo metabolism. Estimated human half-lives for PFOS and PFOA are about 5 years and 2-4 years, respectively. The derivation of a health-based guidance value was based on human epidemiological studies. For PFOS, the increase in serum total cholesterol in adults, and the decrease in antibody response at vaccination in children were identified as the critical effects. For PFOA, the increase in serum total cholesterol was the critical effect. Also reduced birth weight (for both compounds) and increased prevalence of high serum levels of the liver enzyme alanine aminotransferase (ALT) (for PFOA) were considered. After benchmark modelling of serum levels of PFOS and PFOA, and estimating the corresponding daily intakes, the CONTAM Panel established a tolerable weekly intake (TWI) of 13 ng/kg body weight (bw) per week for PFOS and 6 ng/kg bw per week for PFOA. For both compounds, exposure of a considerable proportion of the population exceeds the proposed TWIs.
Collapse
|
30
|
Chen H, Han J, Cheng J, Sun R, Wang X, Han G, Yang W, He X. Distribution, bioaccumulation and trophic transfer of chlorinated polyfluoroalkyl ether sulfonic acids in the marine food web of Bohai, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:504-510. [PMID: 29883951 DOI: 10.1016/j.envpol.2018.05.087] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/16/2018] [Accepted: 05/25/2018] [Indexed: 06/08/2023]
Abstract
Chlorinated polyfluoroalkyl ether sulfonic acids (Cl-PFESAs) caused great concerns recently as novel fluorinated alternatives. However, information on their bioconcentration, bioaccumulation and biomagnification in marine ecosystems is limited. In this study, 152 biological samples including invertebrates, fishes, seabirds and mammals collected from Bohai Sea of China were analyzed to investigate the residual level, spatial distribution, bioaccumulation and biomagnification of Cl-PFESAs. 6:2 Cl-PFESA was found in concentrations ranging from <MDL (method detection limit) to 3.84 ng/g ww and it is the dominant congener when compared with concentrations of 8:2 Cl-PFESA. Compared with other bays and regions, levels of 6:2 Cl-PFESA are relatively high in bivalves and fishes from Liaodong Bay. These levels were also found to tend to increase as compared with those in 2010-2014. Logarithm bioaccumulation factors (BAFs) for 6:2 Cl-PFESA ranged from 2.23 to 4.21, implying the bioaccumulation of this compound. The trophic magnification factor (BMF) for 6:2 Cl-PFESA was determined to be 3.37 in the marine food web, indicating biomagnification potential along the marine food chain.
Collapse
Affiliation(s)
- Hong Chen
- Key Laboratory of Coastal Ecology and Environment of State Oceanic Administration, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Linghe Street 42, Dalian, 116023, China; Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental and Biological Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Jianbo Han
- Key Laboratory of Coastal Ecology and Environment of State Oceanic Administration, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Linghe Street 42, Dalian, 116023, China.
| | - Jiayi Cheng
- Key Laboratory of Coastal Ecology and Environment of State Oceanic Administration, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Linghe Street 42, Dalian, 116023, China.
| | - Ruijun Sun
- Key Laboratory of Coastal Ecology and Environment of State Oceanic Administration, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Linghe Street 42, Dalian, 116023, China.
| | - Xiaomeng Wang
- Key Laboratory of Coastal Ecology and Environment of State Oceanic Administration, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Linghe Street 42, Dalian, 116023, China.
| | - Gengchen Han
- Key Laboratory of Coastal Ecology and Environment of State Oceanic Administration, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Linghe Street 42, Dalian, 116023, China.
| | - Wenchao Yang
- Key Laboratory of Coastal Ecology and Environment of State Oceanic Administration, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Linghe Street 42, Dalian, 116023, China.
| | - Xin He
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental and Biological Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
31
|
Xin Y, Wan B, Yang Y, Cui XJ, Xie YC, Guo LH. Perfluoroalkyl acid exposure induces protective mitochondrial and endoplasmic reticulum autophagy in lung cells. Arch Toxicol 2018; 92:3131-3147. [PMID: 30022264 DOI: 10.1007/s00204-018-2266-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 07/12/2018] [Indexed: 01/07/2023]
Abstract
Wide application of perfluoroalkyl acids (PFAAs) has raised great concerns on their side-effects on human health. PFAAs have been shown to accumulate mainly in the liver and cause hepatotoxicity. However, PFAAs can also deposit in lung tissues through air-borne particles and cause serious pulmonary toxicity. But the underlying mechanisms are still largely unknown. Autophagy is a type of programmed cell death parallel to necrosis and apoptosis, and may be involved in the lung toxicity of PFAAs. In this study, lung cancer cells, A549, were employed as the model to investigate the effects of three PFAAs with different carbon chain lengths on cell autophagy. Through Western blot analysis on LC3-I/II ratio of cells exposed to non-cytotoxic concentration (200 µM) and cytotoxic concentration (350 µM), we found concentration-dependent increase of autophagosomes in cells, which was further confirmed by TEM examination on ultra-thin section of cells and fluorescence imaging on autophagosomes in live cells. The abundance of p62 increased with the PFAAs concentration indicating the blockage of autophagy flux. Furthermore, we identified the mitochondrial autophagy (mitophagy) and endoplasmic reticulum autophagy (ER-phagy) morphologically as the major types of autophagy, suggesting the disruption on mitochondria and ERs. These organelle damages were confirmed by the overgeneration of ROS, hyperpolarization of mitochondrial membrane potential, as well as the up-regulation of ER-stress-related proteins, ATF4 and p-IRE1. Further analysis on the signaling pathways showed that PFAAs activated the MAPK pathways and inhibited the PI3K/Akt pathway, with potencies following the order of PFDA > PFNA > PFOA. Anti-oxidant (NAC) treatment did not rescue cells from death, indicating that oxidative stress is not the reason of cytotoxicity. Inhibition of autophagy by Atg5 siRNA and chloroquine even increased the toxicity of PFAAs, suggesting that PFAAs-autophagy was induced as the secondary effects of organelle damages and played a protective role during cell death.
Collapse
Affiliation(s)
- Yan Xin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, P.O. Box 2871, Beijing, 100085, People's Republic of China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Bin Wan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, P.O. Box 2871, Beijing, 100085, People's Republic of China. .,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| | - Yu Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, P.O. Box 2871, Beijing, 100085, People's Republic of China
| | - Xue-Jing Cui
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, P.O. Box 2871, Beijing, 100085, People's Republic of China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yi-Chun Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, P.O. Box 2871, Beijing, 100085, People's Republic of China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Liang-Hong Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, P.O. Box 2871, Beijing, 100085, People's Republic of China. .,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China. .,Institute of Environment and Health, Jianghan University, Wuhan, 430056, Hubei, People's Republic of China.
| |
Collapse
|
32
|
Wang X, Cheng W, Yang Q, Niu H, Liu Q, Liu Y, Gao M, Xu M, Xu A, Liu S, Huang X, Du Y. Preliminary investigation on cytotoxicity of fluorinated polymer nanoparticles. J Environ Sci (China) 2018; 69:217-226. [PMID: 29941257 DOI: 10.1016/j.jes.2017.10.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 10/18/2017] [Accepted: 10/24/2017] [Indexed: 06/08/2023]
Abstract
As well-known persistent organic pollutants (POPs), organofluorine pollutants such as perfluorooctane sulfonate (PFOS) have been proven to be bioaccumulated and harmful to health. However, toxicological assessment of organofluorinated nanoparticles, which have emerged as a novel tool for biomedical and industrial applications, is lacking, to the best of our knowledge. To assess the biological effects and health risk of fluorinated nanoparticles, trifluoroethyl aryl ether-based fluorinated poly(methyl methacrylate) nanoparticles (PTFE-PMMA NPs) were synthesized with various fluorine contents (PTFE-PMMA-1 NPs 12.0wt.%, PTFE-PMMA-2 NPs 6.1wt.% and PTFE-PMMA-3 NPs 5.0wt.%), and their cytotoxicity was investigated in this study. The in vitro experimental results indicated that the cytotoxicity of PTFE-PMMA NPs was mild, and was closely related to their fluorine (F) contents and F-containing side chains. Specifically, the cytotoxicity of PTFE-PMMA NPs decreased with increasing F content and F-containing side chains. After exposure to PTFE-PMMA NPs at a sublethal dose (50μg/mL) for 24hr, the phospholipid bilayer was damaged, accompanied by increasing permeability of the cell membrane. Meanwhile, the intracellular accumulation of reactive oxygen species (ROS) occurred, resulting in the increase of DNA damage, cell cycle arrest and cell death. Overall, the PTFE-PMMA NPs were found to be relatively safe compared with typical engineered nanomaterials (ENMs), such as silver nanoparticles and graphene oxide, for biomedical and industrial applications.
Collapse
Affiliation(s)
- Xue Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China; Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei 230031, China
| | - Wenge Cheng
- School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, China; Key Laboratory of Organofluorine Chemistry and Laboratory of Polymer Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qiuyuan Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hongyun Niu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yun Liu
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei 230031, China
| | - Ming Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ming Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - An Xu
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei 230031, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Huang
- Key Laboratory of Organofluorine Chemistry and Laboratory of Polymer Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Yuguo Du
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
33
|
Gomis MI, Vestergren R, Borg D, Cousins IT. Comparing the toxic potency in vivo of long-chain perfluoroalkyl acids and fluorinated alternatives. ENVIRONMENT INTERNATIONAL 2018; 113:1-9. [PMID: 29421396 DOI: 10.1016/j.envint.2018.01.011] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 05/19/2023]
Abstract
Since 2000, long-chain perfluoroalkyl acids (PFAAs) and their respective precursors have been replaced by numerous fluorinated alternatives. The main rationale for this industrial transition was that these alternatives were considered less bioaccumulative and toxic than their predecessors. In this study, we evaluated to what extent differences in toxicological effect thresholds for PFAAs and fluorinated alternatives, expressed as administered dose, were confounded by differences in their distribution and elimination kinetics. A dynamic one-compartment toxicokinetic (TK) model for male rats was constructed and evaluated using test data from toxicity studies for perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA), perfluorobutane sulfonic acid (PFBS), perfluorooctanoic acid (PFOA), perfluoroctanesulfonic acid (PFOS) and ammonium 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)-propanoate (GenX). Dose-response curves of liver enlargement from sub-chronic oral toxicity studies in male rats were converted to internal dose in serum and in liver to examine the toxicity ranking of PFAAs and fluorinated alternatives. Converting administered doses into equivalent serum and liver concentrations reduced the variability in the dose-response curves for PFBA, PFHxA, PFOA and GenX. The toxicity ranking using modeled serum (GenX > PFOA > PFHxA > PFBA) and liver (GenX > PFOA ≈ PFHxA ≈ PFBA) concentrations indicated that some fluorinated alternatives have similar or higher toxic potency than their predecessors when correcting for differences in toxicokinetics. For PFOS and perfluorobutane sulfonic acid (PFBS) the conversion from administered dose to serum concentration equivalents did not change the toxicity ranking. In conclusion, hazard assessment based on internal exposure allows evaluation of toxic potency and bioaccumulation potential independent of kinetics and should be considered when comparing fluorinated alternatives with their predecessors.
Collapse
Affiliation(s)
- Melissa I Gomis
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, SE-10691 Stockholm, Sweden
| | - Robin Vestergren
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, SE-10691 Stockholm, Sweden; IVL Swedish Environmental Research Institute, SE-100 31 Stockholm, Sweden
| | - Daniel Borg
- Swedish Chemicals Agency, 172 13 Sundbyberg, Sweden
| | - Ian T Cousins
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, SE-10691 Stockholm, Sweden.
| |
Collapse
|
34
|
Vedagiri UK, Anderson RH, Loso HM, Schwach CM. Ambient levels of PFOS and PFOA in multiple environmental media. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/rem.21548] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Richard H. Anderson
- Environmental Scientist, U.S. Air Force Civil Engineer Center (AFCEC); San Antonio Texas
| | | | | |
Collapse
|
35
|
Sini K, Bourgeois D, Idouhar M, Carboni M, Meyer D. Metal–organic framework sorbents for the removal of perfluorinated compounds in an aqueous environment. NEW J CHEM 2018. [DOI: 10.1039/c8nj03312a] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A hydrophobic metal–organic framework has revealed high and fast sorption capacity for fluorine pollutants.
Collapse
Affiliation(s)
| | | | - Madjid Idouhar
- Laboratoire de Chimie Organique Appliquée
- USTHB
- 16111 Alger
- Algeria
| | | | | |
Collapse
|
36
|
Honda M, Muta A, Shimazaki A, Akasaka T, Yoshikuni M, Shimasaki Y, Oshima Y. High concentrations of perfluorooctane sulfonate in mucus of tiger puffer fish Takifugu rubripes: a laboratory exposure study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:1551-1558. [PMID: 29098580 DOI: 10.1007/s11356-017-0537-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/19/2017] [Indexed: 06/07/2023]
Abstract
Distribution of perfluorooctane sulfonate (PFOS) was investigated in tissues (plasma, blood clot, mucus, skin, liver, muscle, and gonad) of tiger puffer fish Takifugu rubripes. A single dose of PFOS was intraperitoneally injected at 0.1 mg/kg body weight with samples taken over a 14-day period. The highest concentration of PFOS was found in the plasma, 861 ng/mL at 14 days, followed by the mucus, liver, blood clot, gonads, muscles, and skin of fish. A gradual upward trend in PFOS concentration was observed in the mucus and liver whereas there was no change in the plasma, blood clot, gonad, muscle, and skin after the initial increase in PFOS concentrations following injection. No significant trend for estimated total PFOS content in whole body was observed during the experimental period. Relatively high concentrations of PFOS (690 ng/g ww after 14 days) were detected in body surface mucus that continuously oozes from the skin. These results may suggest that mucus is one of the elimination pathways of PFOS in tiger puffer fish.
Collapse
Affiliation(s)
- Masato Honda
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka, Fukuoka, 812-8581, Japan
| | - Akemi Muta
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka, Fukuoka, 812-8581, Japan
| | - Akinari Shimazaki
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka, Fukuoka, 812-8581, Japan
| | - Taiki Akasaka
- Center for Advanced Instrumental and Educational Supports, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka, Fukuoka, 812-8581, Japan
| | - Michiyasu Yoshikuni
- Fishery Research Laboratory, Faculty of Agriculture, Kyushu University, Tsuyazaki 4-46-24, Fukutsu, Fukuoka, 811-3304, Japan
| | - Yohei Shimasaki
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka, Fukuoka, 812-8581, Japan
| | - Yuji Oshima
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka, Fukuoka, 812-8581, Japan.
| |
Collapse
|
37
|
Mamsen LS, Jönsson BAG, Lindh CH, Olesen RH, Larsen A, Ernst E, Kelsey TW, Andersen CY. Concentration of perfluorinated compounds and cotinine in human foetal organs, placenta, and maternal plasma. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 596-597:97-105. [PMID: 28426990 DOI: 10.1016/j.scitotenv.2017.04.058] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 05/20/2023]
Abstract
BACKGROUND Perfluoroalkyl substances (PFASs) are bio-accumulative pollutants, and prenatal exposure to PFASs is believed to impact human foetal development and may have long-term adverse health effects later in life. Additionally, maternal cigarette smoking may be associated with PFAS levels. Foetal exposure has previously been estimated from umbilical cord plasma, but the actual concentration in foetal organs has never been measured. OBJECTIVES The concentrations of 5 PFASs and cotinine - the primary metabolite of nicotine - were measured in human foetuses, placentas, and maternal plasma to evaluate to what extent these compounds were transferred from mother to foetus and to determine if the PFAS concentrations were associated with maternal cigarette smoking. METHODS Thirty-nine Danish women who underwent legal termination of pregnancy before gestational week 12 were included; 24 maternal blood samples were obtained together with 34 placental samples and 108 foetal organs. PFASs and cotinine were assayed by liquid chromatography/triple quadrupole mass spectrometry. RESULTS In foetal organs, the average concentrations of perfluorooctanesulphonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluoroundecanoic acid (PFUnDa), and perfluorodecanoic acid (PFDA) were 0.6ng/g, 0.2ng/g, 0.1ng/g, 0.1ng/g, and 0.1ng/g, respectively. A significant positive correlation was found between the exposure duration, defined as foetal age, and foetal to maternal ratio for all five PFASs and cotinine. Smokers presented 99ng/g cotinine in plasma, 108ng/g in placenta, and 61ng/g in foetal organs. No correlation between the maternal cotinine concentrations and PFAS concentrations was found. CONCLUSIONS PFASs were transferred from mother to foetus, however, with different efficiencies. The concentrations of PFOS, PFOA, PFNA, PFUnDA, and PFDA in foetal organs were much lower than the maternal concentrations. Furthermore, a significant correlation between the exposure duration and all of the evaluated PFASs was found. The health-compromising concentrations of these substances during foetal development are unknown.
Collapse
Affiliation(s)
- Linn Salto Mamsen
- Laboratory of Reproductive Biology, Section 5712, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, University of Copenhagen, Rigshospitalet, 2100 Copenhagen, Denmark.
| | - Bo A G Jönsson
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, 223 61 Lund, Sweden
| | - Christian H Lindh
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, 223 61 Lund, Sweden.
| | - Rasmus H Olesen
- Department of Biomedicine - Pharmacology, Aarhus University, 8000 Aarhus C, Denmark.
| | - Agnete Larsen
- Department of Biomedicine - Pharmacology, Aarhus University, 8000 Aarhus C, Denmark.
| | - Erik Ernst
- Department of Obstetrics and Gynaecology, University Hospital of Aarhus, Skejby Sygehus, 8000 Aarhus, Denmark.
| | - Thomas W Kelsey
- School of Computer Science, University of St. Andrews, KY16 9SX St. Andrews, United Kingdom.
| | - Claus Yding Andersen
- Laboratory of Reproductive Biology, Section 5712, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, University of Copenhagen, Rigshospitalet, 2100 Copenhagen, Denmark.
| |
Collapse
|
38
|
Effects of perfluoroalkyl substances on neurosteroid synthetic enzymes in the rat. Chem Biol Interact 2017; 272:182-187. [DOI: 10.1016/j.cbi.2017.05.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 05/13/2017] [Accepted: 05/19/2017] [Indexed: 11/17/2022]
|
39
|
Zhao W, Cui R, Wang J, Dai J. Inhibition effects of perfluoroalkyl acids on progesterone production in mLTC-1. J Environ Sci (China) 2017; 56:272-280. [PMID: 28571864 DOI: 10.1016/j.jes.2016.08.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/26/2016] [Accepted: 08/11/2016] [Indexed: 06/07/2023]
Abstract
Perfluoroalkyl substances (PFASs) are a class of fluorine substituted carboxylic acid, sulfonic acid and alcohol, structurally similar to their corresponding parent compounds. Previous study demonstrated the potential endocrine disruption and reproductive toxicity of perfluorooctane sulfonic acid and perfluorooctanoic acid, two dominant PFASs in animals and humans. We explored the relationship between eleven perfluoroalkyl acids (PFAAs) with different carbon chain length and their ability to inhibit progesterone production in mouse Leydig tumor cells (mLTC-1). We found an obvious dose-response relationship between progesterone inhibition rate and PFAA exposure concentration in mLTC-1. The relative inhibition rate of progesterone by PFAAs was linearly related to the carbon chain length and molar refractivity of PFAAs. Mitochondrial membrane potential (MMP) decreased after PFAA exposure at the half-maximal inhibitory effect concentration (IC50) of progesterone production in mLTC-1, while the reactive oxygen species (ROS) content increased significantly. These results imply that the inhibition effect of PFAAs on progesterone production might be due, in part, to ROS damage and the decrease in MMP in mLTC-1.
Collapse
Affiliation(s)
- Wei Zhao
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Ruina Cui
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianshe Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jiayin Dai
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
40
|
Schuricht F, Borovinskaya ES, Reschetilowski W. Removal of perfluorinated surfactants from wastewater by adsorption and ion exchange - Influence of material properties, sorption mechanism and modeling. J Environ Sci (China) 2017; 54:160-170. [PMID: 28391925 DOI: 10.1016/j.jes.2016.06.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 06/07/2023]
Abstract
Perfluorooctane sulfonate (PFOS) has attracted increasing concern in recent years due to its world-wide distribution, persistence, bioaccumulation and potential toxicity. The influence of sorbent properties on the adsorptive elimination of PFOS from wastewater by activated carbons, polymer adsorbents and anion exchange resins was investigated with regard to their isotherms and kinetics. The batch and column tests were combined with physicochemical characterization methods, e.g., N2 physisorption, mercury porosimetry, infrared spectroscopy, differential scanning calorimetry, titrations, as well as modeling. Sorption kinetics was successfully modelled applying the linear driving force (LDF) approach for surface diffusion after introducing a load dependency of the mass transfer coefficient βs. The big difference in the initial mass transfer coefficient βs,0, when non-functionalized adsorbents and ion-exchange resins are compared, suggests that the presence of functional groups impedes the intraparticle mass transport. The more functional groups a resin possesses and the longer the alkyl moieties are the bigger is the decrease in sorption rate. But the selectivity for PFOS sorption is increasing when the character of the functional groups becomes more hydrophobic. Accordingly, ion exchange and hydrophobic interaction were found to be involved in the sorption processes on resins, while PFOS is only physisorptively bound to activated carbons and polymer adsorbents. In agreement with the different adsorption mechanisms, resins possess higher total sorption capacities than adsorbents. Hence, the latter ones are rendered more effective in PFOS elimination at concentrations in the low μg/L range, due to a less pronounced convex curvature of the sorption isotherm in this concentration range.
Collapse
Affiliation(s)
- Falk Schuricht
- Institute of Industrial Chemistry, Dresden University of Technology, 01062 Dresden, Germany
| | | | - Wladimir Reschetilowski
- Institute of Industrial Chemistry, Dresden University of Technology, 01062 Dresden, Germany.
| |
Collapse
|
41
|
Wang Y, Zhang P. Enhanced photochemical decomposition of environmentally persistent perfluorooctanoate by coexisting ferric ion and oxalate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:9660-9668. [PMID: 26846242 DOI: 10.1007/s11356-016-6205-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 01/29/2016] [Indexed: 06/05/2023]
Abstract
Perfluorooctanoic acid (PFOA), an environmentally persistent pollutant, was found to be quickly decomposed under 254 nm UV irradiation in the presence of ferric ion and oxalic acid. To understand the PFOA decomposition mechanism by this process, the effects of reaction atmosphere and concentrations of ferric ions and oxalic acids on PFOA decomposition were investigated, as well as decomposition intermediates. PFOA mainly decomposes via two pathways: (i) photochemical oxidation via Fe(III)-PFOA complexes and (ii) one-electron reduction caused by carboxylate anion radical (CO2 (•-)), which was generated by photolysis of ferrioxalate complexes. Under excess oxalic acid, PFOA decomposition was accelerated, and its corresponding half-life was shortened from 114 to 34 min as ferric concentration increased from 7 to 80 μM. Besides fluoride ions, six shorter chain perfluorinated carboxylic acids (PFCAs) bearing C2-C7 were identified as main intermediates. The presence of O2 promoted the redox recycling of Fe(3+)/Fe(2+) and thus avoided the exhaustion of the Fe(III).
Collapse
Affiliation(s)
- Yuan Wang
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, Guizhou Province, 550025, People's Republic of China
| | - Pengyi Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, People's Republic of China.
| |
Collapse
|
42
|
Chi Y, Huang Q, Zhang H, Chen Y, Dong S. In situ combined chemical and biological assessment of estrogenic pollution in a water recycling system. J Environ Sci (China) 2016; 43:216-223. [PMID: 27155427 DOI: 10.1016/j.jes.2015.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/24/2015] [Accepted: 09/28/2015] [Indexed: 06/05/2023]
Abstract
Estrogenic pollution and its control in aquatic systems have drawn substantial attention around the world. The chemical and biological assessment approaches currently utilized in the laboratory or field cannot give an integrated assessment of the pollution when used separately. In this study, in situ chemical and biological methods were combined to detect pollution in a water recycling system. Data for the water quality index (WQI) demonstrated that the water treatment resulted in the decline of pollution from upstream to downstream. Wild male Nile tilapia, Oreochromis niloticus, was sampled in June and September. The concentrations of four common endocrine disrupting chemicals (EDCs) were determined in the tilapia liver by chromatographic analysis methods. The level of 17β-estradiol (E2) declined from upstream to downstream in both months. In contrast, the levels of bisphenol A (BPA), di-(2-ethylhcxyl) phthalate (DEHP), and perfluorooctane sulfonate (PFOS) did not display this declining tendency. The highest relative expression of vitellogenin 1 (VTG1) was observed in tilapia from upstream, then the level significantly decreased along the water system. The relative expression levels of CYP1A1 in the water system were also significantly higher than that of the control. However, no declining trend could be observed along the water system. The change of VTG1 expression corresponded well with that of E2 levels in the tilapia liver. Overall, our study assessed the pollution by endocrine disruptors using chemical and biological data with good correspondence. This study also demonstrated the effectiveness of the water recycling system in eliminating estrogen pollution in municipal sewage.
Collapse
Affiliation(s)
- Yulang Chi
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qiansheng Huang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Huanteng Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yajie Chen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Sijun Dong
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
43
|
Die Eignung des Wildschweins als Bioindikator für die Kontamination der Umwelt mit perfluorierten Alkylsubstanzen. J Verbrauch Lebensm 2016. [DOI: 10.1007/s00003-015-1010-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
44
|
Kummu M, Sieppi E, Koponen J, Laatio L, Vähäkangas K, Kiviranta H, Rautio A, Myllynen P. Organic anion transporter 4 (OAT 4) modifies placental transfer of perfluorinated alkyl acids PFOS and PFOA in human placental ex vivo perfusion system. Placenta 2015; 36:1185-91. [PMID: 26303760 DOI: 10.1016/j.placenta.2015.07.119] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 07/06/2015] [Accepted: 07/07/2015] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Perfluorinated alkyl acids (PFAAs) are widely used in industry and consumer products. Pregnant women are exposed to PFAAs and their presence in umbilical cord blood represents fetal exposure. Interestingly, PFAAs are substrates for organic anion transporters (OAT) of which OAT4 is expressed in human placenta. METHODS To evaluate the contribution of OAT4 and ATP-binding cassette transporter G2 (ABCG2) proteins in the transplacental transfer of perfluoro octane sulfonate (PFOS) and perfluoro octanoate (PFOA) an ex vivo dual recirculating human placental perfusion was used. Altogether 8 placentas from healthy mothers with uncomplicated pregnancies were successfully perfused. RESULTS Both PFOS and PFOA crossed the placenta as suggested by in vivo data in the literature. The expression of OAT4 and ABCG2 proteins were studied by immunoblotting and correlation with the transfer index %(TI %) of PFOS and PFOA at 120 and 240 min (n = 4) was studied. The expression of OAT4 was in negative correlation with TI % of PFOA (R(2) = 0.92, p = 0.043) and PFOS (R(2) = 0.99, p = 0.007) at 120 min while at 240 min the correlation was statistically significant only with PFOA. The expression of ABCG2 did not correlate with TI% of PFOS or PFOA. DISCUSSION Data obtained in this study suggest the involvement of OAT4 in placental passage of PFAAs. Placental passage of PFOS and PFOA is modified by the transporter protein OAT4 but not by ABCG2. This is the first study indicating that OAT4 may decrease the fetal exposure to PFAAs and protect the fetus after maternal exposure to PFAAs but further studies are needed to confirm our findings.
Collapse
Affiliation(s)
- M Kummu
- Research Group of Biomedicine, Pharmacology and Toxicology, University of Oulu, Finland; Center for Arctic Medicine, Thule Institute, University of Oulu, Oulu, Finland
| | - E Sieppi
- Research Group of Biomedicine, Pharmacology and Toxicology, University of Oulu, Finland; Center for Arctic Medicine, Thule Institute, University of Oulu, Oulu, Finland
| | - J Koponen
- THL National Institute for Health and Welfare, Department of Environmental Health, Kuopio, Finland
| | - L Laatio
- Department of Gynecology and Obstetrics, Oulu University Hospital, Oulu, Finland
| | - K Vähäkangas
- Faculty of Health Sciences, School of Pharmacy/Toxicology, University of Eastern Finland, Kuopio, Finland
| | - H Kiviranta
- THL National Institute for Health and Welfare, Department of Environmental Health, Kuopio, Finland
| | - A Rautio
- Center for Arctic Medicine, Thule Institute, University of Oulu, Oulu, Finland
| | - P Myllynen
- Center for Arctic Medicine, Thule Institute, University of Oulu, Oulu, Finland; Nordlab Oulu, Oulu, Finland.
| |
Collapse
|
45
|
Guruge KS, Noguchi M, Yoshioka K, Yamazaki E, Taniyasu S, Yoshioka M, Yamanaka N, Ikezawa M, Tanimura N, Sato M, Yamashita N, Kawaguchi H. Microminipigs as a new experimental animal model for toxicological studies: comparative pharmacokinetics of perfluoroalkyl acids. J Appl Toxicol 2015; 36:68-75. [DOI: 10.1002/jat.3145] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 02/09/2015] [Accepted: 02/09/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Keerthi S. Guruge
- National Institute of Animal Health, National Agriculture and Food Research Organization; Tsukuba Ibaraki Japan
| | - Michiko Noguchi
- National Institute of Animal Health, National Agriculture and Food Research Organization; Tsukuba Ibaraki Japan
- Joint Faculty of Veterinary Medicine; Kagoshima University; Korimoto Kagoshima Japan
| | - Koji Yoshioka
- National Institute of Animal Health, National Agriculture and Food Research Organization; Tsukuba Ibaraki Japan
| | - Eriko Yamazaki
- National Institute of Advanced Industrial Science and Technology; Tsukuba Japan
| | - Sachi Taniyasu
- National Institute of Advanced Industrial Science and Technology; Tsukuba Japan
| | - Miyako Yoshioka
- National Institute of Animal Health, National Agriculture and Food Research Organization; Tsukuba Ibaraki Japan
| | - Noriko Yamanaka
- National Institute of Animal Health, National Agriculture and Food Research Organization; Tsukuba Ibaraki Japan
| | - Mitsutaka Ikezawa
- National Institute of Animal Health, National Agriculture and Food Research Organization; Tsukuba Ibaraki Japan
| | - Nobuhiko Tanimura
- National Institute of Animal Health, National Agriculture and Food Research Organization; Tsukuba Ibaraki Japan
| | - Masumi Sato
- National Institute of Animal Health, National Agriculture and Food Research Organization; Tsukuba Ibaraki Japan
| | - Nobuyoshi Yamashita
- National Institute of Advanced Industrial Science and Technology; Tsukuba Japan
| | - Hiroaki Kawaguchi
- Joint Faculty of Veterinary Medicine; Kagoshima University; Korimoto Kagoshima Japan
| |
Collapse
|
46
|
Zhang Z, Peng H, Wan Y, Hu J. Isomer-specific trophic transfer of perfluorocarboxylic acids in the marine food web of Liaodong Bay, North China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:1453-1461. [PMID: 25575072 DOI: 10.1021/es504445x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Trophic transfers of perfluorocarboxylic acids (PFCAs) have been well studied in aquatic food webs; however, most studies examined PFCAs as single compounds without differentiating isomers. In this study, an in-port derivatization GC-MS method was used to determine PFCA (perfluorooctanoic acid, PFOA; perfluorononanoic acid, PFNA; perfluorodecanoate acid, PFDA; perfluoroundecanoate acid, PFUnDA; perfluorododecanoate acid, PFDoDA; perfluorotridecanoate acid, PFTriDA, and perfluorotetradecanoate acid, PFTeDA) structural isomers in 11 marine species including benthic invertebrates, fishes, and gulls collected in November 2006 from Liaodong Bay in China. The total concentrations of linear PFCAs were 0.35-1.10, 0.93-2.61, and 2.13-2.69 ng/g ww, and the corresponding percentages of branched PFCAs to linear PFCAs were 6.6-15.5%, 4.2-9.9%, and 4.5-6.0% in invertebrates, fishes, and birds, respectively. Except for linear PFOA, significant positive relationships were found between the concentrations of all the target linear PFCAs and trophic levels, and the trophic magnification factors (TMFs) ranged from 1.90 to 4.88. Positive correlations between the concentrations of branched PFCAs isomers and trophic levels were also observed but were without statistical significance. The relatively high biomagnification of linear isomers of PFCAs would lead to low percentages of branched PFCAs to total PFCAs in organisms at high trophic levels. This study for the first time clarified isomer-specific trophic transfers of PFCAs in a marine food web.
Collapse
Affiliation(s)
- Zhong Zhang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University , Beijing 100871, China
| | | | | | | |
Collapse
|
47
|
Mayilswami S, Krishnan K, Megharaj M, Naidu R. Chronic PFOS exposure alters the expression of neuronal development-related human homologues in Eisenia fetida. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 110:288-297. [PMID: 25285771 DOI: 10.1016/j.ecoenv.2014.09.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 09/13/2014] [Accepted: 09/15/2014] [Indexed: 06/03/2023]
Abstract
PFOS is a toxic, persistent environmental pollutant which is widespread worldwide. PFOS contamination has entered the food chain and is interfering with normal development in man and is neurotoxic, hepatotoxic and tumorigenic. The earthworm, Eisenia fetida is one of the organisms which can help to diagnose soil health and contamination at lower levels in the food chain. Studying the chronic effects of sub-lethal PFOS exposure in such an organism is therefore appropriate. As PFOS bioaccumulates and is not easily biodegraded, it is biomagnified up the food chain. Gene expression studies will give us information to develop biomarkers for early diagnosis of soil contamination, well before this contaminant passes up the food chain. We have carried out mRNA sequencing of control and chronically PFOS exposed E. fetida and reconstructed the transcripts in silico and identified the differentially expressed genes. Our findings suggest that PFOS up/down regulates neurodegenerative-related human homologues and can cause neuronal damage in E. fetida. This information will help to understand the links between neurodegenerative disorders and environmental pollutants such as PFOS. Furthermore, these up/down regulated genes can be used as biomarkers to detect a sub-lethal presence of PFOS in soil. Neuronal calcium sensor-2, nucleoside diphosphate kinase, polyadenylate-binding protein-1 and mitochondrial Pyruvate dehydrogenase protein-X component, could be potential biomarkers for sub lethal concentrations of PFOS.
Collapse
Affiliation(s)
- Srinithi Mayilswami
- Centre for Environmental Risk Assessment and Remediation, University of South Australia & CRC CARE, Mawson Lakes, Adelaide 5095, SA, Australia
| | - Kannan Krishnan
- Centre for Environmental Risk Assessment and Remediation, University of South Australia & CRC CARE, Mawson Lakes, Adelaide 5095, SA, Australia.
| | - Mallavarapu Megharaj
- Centre for Environmental Risk Assessment and Remediation, University of South Australia & CRC CARE, Mawson Lakes, Adelaide 5095, SA, Australia
| | - Ravi Naidu
- Centre for Environmental Risk Assessment and Remediation, University of South Australia & CRC CARE, Mawson Lakes, Adelaide 5095, SA, Australia
| |
Collapse
|
48
|
Midgett K, Peden-Adams MM, Gilkeson GS, Kamen DL. In vitro evaluation of the effects of perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) on IL-2 production in human T-cells. J Appl Toxicol 2014; 35:459-65. [PMID: 25056757 DOI: 10.1002/jat.3037] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/22/2014] [Accepted: 05/23/2014] [Indexed: 12/30/2022]
Abstract
Perfluorinated compounds, such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), have been shown to alter various immune functions suggesting they are immunotoxic. This study assessed the effects of PFOS and PFOA on interleukin (IL)-2 production in the human Jurkat T-cell line and PFOS in healthy human primary T cells. Jurkat cells were stimulated with phytohemagglutinin (PHA)/phorbol myristate acetate (PMA), anti CD-3/anti CD-28, or anti CD-3, and dosed with 0, 0.05, 0.1, 0.5, 1, 5, 10, 50, 75, or 100 µg ml(-1) PFOS or 0, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, or 10 µg ml(-1) PFOA. Jurkat cells stimulated with PHA/PMA or anti CD-3 exhibited decreased IL-2 production beginning at 50 µg PFOS ml(-1) and 5 µg PFOS ml(-1) respectively, but stimulation with anti-CD3/anti-CD28 resulted in no changes compared with the control. Addition of the PPAR-alpha antagonist GW6471 to PFOS-dosed cells stimulated with PHA/PMA resulted in decreases in IL-2 production starting at 50 µg PFOS ml(-1), which suggests PFOS affected T-cell IL-2 production via PPAR-alpha-independent mechanisms. Exposure to PFOA, PFOA + GW6471, or PFOS + PFOA in Jurkat cells resulted in no significant differences in IL-2 production. In vitro dosing studies using healthy primary human CD4+ T cells were consistent with the Jurkat results. These data demonstrated that PFOA did not impact IL-2 production, but PFOS suppressed IL-2 production in both a human cell line and human primary cells at dose levels within the high end of the human exposure range. A decrease in IL-2 production is characteristic of autoimmune diseases such as systemic lupus erythematosus and should be further investigated.
Collapse
Affiliation(s)
- Kristin Midgett
- Department of Natural Sciences, Northwest Florida State College
| | | | | | | |
Collapse
|
49
|
Schuricht F, Reschetilowski W, Reich A, Giebler E. Elimination of Perfluorinated Surfactants - Adsorbent Evaluation Applying Surface Tension Measurements. Chem Eng Technol 2014. [DOI: 10.1002/ceat.201400025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
50
|
Honda M, Muta A, Akasaka T, Inoue Y, Shimasaki Y, Kannan K, Okino N, Oshima Y. Identification of perfluorooctane sulfonate binding protein in the plasma of tiger pufferfish Takifugu rubripes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 104:409-13. [PMID: 24635910 DOI: 10.1016/j.ecoenv.2013.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/12/2013] [Accepted: 11/17/2013] [Indexed: 05/27/2023]
Abstract
It is well known that perfluorooctane sulfonate (PFOS) preferentially accumulates in the plasma of wildlife and humans. Although earlier studies have suggested that this was due to binding of PFOS to a plasma protein, definite characterization of the protein in in vivo exposure studies was not conducted thus far. In this study, we conducted both in vitro and in vivo experiments to identify PFOS binding protein in the plasma of fish. For the in vivo studies, PFOS was administered intraperitoneally to tiger pufferfish, Takifugu rubripes, and the plasma was separated by ammonium sulfate fractionation. High concentrations of PFOS were found in the 65-70 percent ammonium sulfate fraction (190ng/mL). After SDS-PAGE and N-terminal amino acid sequence analysis, the PFOS-binding protein was identified as an apolipoprotein A-I, which was confirmed on the basis of a significant correlation to the PFOS concentration in each fraction. The plasma samples fractionated by ammonium sulfate from untreated pufferfish were subjected to PFOS binding assay by the equilibrium dialysis method. The results further confirmed that the 60-65 percent ammonium sulfate fraction showed a high PFOS-binding ratio, similar to that found from in vivo studies. We demonstrated that PFOS is likely bound to an apolipoprotein A-I in the plasma of tiger pufferfish in in vivo and in vitro studies.
Collapse
Affiliation(s)
- Masato Honda
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan
| | - Akemi Muta
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan
| | - Taiki Akasaka
- Center for Advanced Instrumental and Educational Supports, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan
| | - Yoshiyuki Inoue
- Chemical Biotesting Center, Chemicals Evaluation and Research Institute, Bunkyo-ku, Tokyo 112-0004, Japan
| | - Yohei Shimasaki
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Albany, NY 12201-0509, USA
| | - Nozomu Okino
- Laboratory of Marine Resource Chemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan
| | - Yuji Oshima
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan.
| |
Collapse
|