1
|
Doumar H, Mostafi HE, Elhessni A, Ebn Touhami M, Mesfioui A. Exploring the diversity of cannabis cannabinoid and non-cannabinoid compounds and their roles in Alzheimer's disease: A review. IBRO Neurosci Rep 2025; 18:96-119. [PMID: 39866750 PMCID: PMC11763173 DOI: 10.1016/j.ibneur.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/17/2024] [Indexed: 01/28/2025] Open
Abstract
Cannabis sativa is recognized for its chemical diversity and therapeutic potential, particularly in addressing neurodegenerative diseases such as Alzheimer's disease (AD). Given the complexity of AD, where single-target therapies often prove inadequate, a multi-target approach utilizing cannabis-derived compounds may offer promising alternatives. This review first highlights the chemical diversity of cannabis by categorizing its compounds into cannabinoids and non-cannabinoids. It then examines studies investigating the effects of these compounds on AD-related pathological features. By synthesizing existing knowledge, identifying research gaps, and facilitating comparative analysis, this review aims to advance future research and understanding. It underscores cannabis's potential as a multi-target therapeutic strategy for AD, contributing valuable insights to ongoing scientific discussions.
Collapse
Affiliation(s)
- Hanane Doumar
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Hicham El Mostafi
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Aboubaker Elhessni
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Mohamed Ebn Touhami
- Laboratory of Materials Engineering and Environment: Modeling and Application, Department of Chemistry, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Abdelhalem Mesfioui
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| |
Collapse
|
2
|
Yıldırım A, Aksoy T, Kayalar H, Balcıoğlu İC. Semen Cannabis and Oleum Hyperici: Antileishmanial activity against Leishmania tropica promastigotes and intracellular amastigotes. Parasitol Int 2024; 103:102950. [PMID: 39153658 DOI: 10.1016/j.parint.2024.102950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
The exploration of alternative agents and novel drug candidates for the effective treatment of cutaneous leishmaniasis has garnered significant attention, driven by the high cost, toxic effects, and the emergence of drug resistance associated with current therapeutic options. Plant extracts derived from Semen Cannabis, the seeds of the Cannabis sativa L. (hemp) plant, and Oleum Hyperici, the oily macerate of Hypericum perforatum L. (St. John's Wort) plant, were prepared by using solvents of varying polarity (n-hexane, chloroform, ethanol, and 60% aqueous ethanol). The primary objective of this study was to research in vitro and ex vivo antileishmanial efficacy of Semen Cannabis and Oleum Hyperici plant extracts against Leishmania tropica promastigotes and intracellular amastigotes. The efficacy of plant extracts against promastigotes were assessed using the cell counting by hemocytometer and the CellTiter-Glo assay. Additionally, their impact on infected THP-1 macrophages and the quantity of intracelluler amastigotes were investigated. Cytotoxicity was evaluated in THP-1 macrophages. Among the tested plant extracts, chloroform extract of Oleum Hyperici demonstrated significant antileishmanial activity against promastigotes (SI: 12.6) and intracellular amastigotes (SI: 16.8) of L. tropica without inducing cytotoxic effects and hold promise for further investigation as potential antileishmanial agents.
Collapse
Affiliation(s)
- Ahmet Yıldırım
- Manisa Celal Bayar University, Medical Faculty, Department of Parasitology, Manisa, Turkey
| | - Tülay Aksoy
- Manisa Celal Bayar University, Medical Faculty, Department of Parasitology, Manisa, Turkey.
| | - Hüsniye Kayalar
- University of Ege, Faculty of Pharmacy, Department of Pharmacognosy, İzmir, Turkey
| | | |
Collapse
|
3
|
Sulaiman M, Ebehairy L, Nissapatorn V, Rahmatullah M, Villegas J, Dupa HJ, Verzosa RC, Dolma KG, Shabaz M, Lanting S, Rusdi NA, Abdullah NH, Bin Break MK, Khoo T, Wang W, Wiart C. Antibacterial phenolic compounds from the flowering plants of Asia and the Pacific: coming to the light. PHARMACEUTICAL BIOLOGY 2024; 62:713-766. [PMID: 39392281 PMCID: PMC11486068 DOI: 10.1080/13880209.2024.2407530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024]
Abstract
CONTEXT The emergence of pan-resistant bacteria requires the development of new antibiotics and antibiotic potentiators. OBJECTIVE This review identifies antibacterial phenolic compounds that have been identified in Asian and Pacific Angiosperms from 1945 to 2023 and analyzes their strengths and spectra of activity, distributions, molecular masses, solubilities, modes of action, structures-activities, as well as their synergistic effects with antibiotics, toxicities, and clinical potential. METHODS All data in this review was compiled from Google Scholar, PubMed, Science Direct, Web of Science, and library search; other sources were excluded. We used the following combination of keywords: 'Phenolic compound', 'Plants', and 'Antibacterial'. This produced 736 results. Each result was examined and articles that did not contain information relevant to the topic or coming from non-peer-reviewed journals were excluded. Each of the remaining 467 selected articles was read critically for the information that it contained. RESULTS Out of ∼350 antibacterial phenolic compounds identified, 44 were very strongly active, mainly targeting the cytoplasmic membrane of Gram-positive bacteria, and with a molecular mass between 200 and 400 g/mol. 2-Methoxy-7-methyljuglone, [6]-gingerol, anacardic acid, baicalin, vitexin, and malabaricone A and B have the potential to be developed as antibacterial leads. CONCLUSIONS Angiosperms from Asia and the Pacific provide a rich source of natural products with the potential to be developed as leads for treating bacterial infections.
Collapse
Affiliation(s)
- Mazdida Sulaiman
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Layane Ebehairy
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Mohammed Rahmatullah
- Department of Biotechnology, University of Development Alternative, Dhaka, Bangladesh
| | - Jhonnel Villegas
- Faculty of Education and Teacher Training, Davao Oriental State University, Mati, Philippines
| | - Helina Jean Dupa
- Faculty of Education and Teacher Training, Davao Oriental State University, Mati, Philippines
| | - Ricksterlie C. Verzosa
- Faculty of Agriculture and Life Science, Davao Oriental State University, Mati, Philippines
| | - Karma G. Dolma
- Department of Microbiology, Sikkim Manipal University, Gangtok, India
| | - Muhamad Shabaz
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Scholastica Lanting
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Nor Azizun Rusdi
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Nor Hayati Abdullah
- Natural Product Division, Forest Research Institute of Malaysia, Kepong, Malaysia
| | - Mohammed Khaled Bin Break
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha’il, Ha’il, Saudi Arabia
| | - Teng Jin Khoo
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Wei Wang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Christophe Wiart
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| |
Collapse
|
4
|
Chawla R, Fang Z. Hemp macromolecules: Crafting sustainable solutions for food and packaging innovation. Int J Biol Macromol 2024; 273:132823. [PMID: 38852732 DOI: 10.1016/j.ijbiomac.2024.132823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/08/2024] [Accepted: 05/30/2024] [Indexed: 06/11/2024]
Abstract
Industrial hemp has gained increasing interests for its applications in multifaceted areas, including foods, pharmaceuticals and reinforcing materials. The high protein content of hempseeds, presence of essential fatty acids and balanced ratio of omega 6:3 fatty acids, makes hemp an ideal source of choice amongst nutritionists and food product developers. The use of hemp has also been advocated in lowering the risks of certain medical conditions. The antimicrobial and antioxidant feature of oil expands its potential in innovative packaging solutions in the form of coatings or films for shelf-life extension. Fiber from hemp hulls, herd or stalks encourages it as a reinforcement material with eco-friendly attributes. This review explores the applications of hemp in novel product development, with the highlights of its nutritional benefits and antimicrobial efficacy in food and packaging sectors.
Collapse
Affiliation(s)
- Rekha Chawla
- Department of Dairy Technology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India.
| | - Zhongxiang Fang
- School of Agriculture, Food, and Ecosystem Sciences, Faculty of Sciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
5
|
Adel Ali Youssef A, Hayder Abdelrahman M, Geweda MM, Varner C, Joshi PH, Ghonge M, Dudhipala N, Sulochana SP, Gadepalli RS, Majumdar S. Formulation and In Vitro-Ex vivo Evaluation of Cannabidiol and Cannabidiol-Valine-Hemisuccinate Loaded Lipid-Based Nanoformulations for Ocular Applications. Int J Pharm 2024; 657:124110. [PMID: 38604539 DOI: 10.1016/j.ijpharm.2024.124110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
The goal of this investigation is to develop stable ophthalmic nanoformulations containing cannabidiol (CBD) and its analog cannabidiol-valine-hemisuccinate (CBD-VHS) for improved ocular delivery. Two nanoformulations, nanoemulsion (NE) and nanomicelles (NMC), were developed and evaluated for physicochemical characteristics, drug-excipient compatibility, sterilization, thermal analysis, surface morphology, ex-vivo transcorneal permeation, corneal deposition, and stability. The saturation solubility studies revealed that among the surfactants tested, Cremophor EL had the highest solubilizing capacity for CBD (23.3 ± 0.1 mg/mL) and CBD-VHS (11.2 ± 0.2 mg/mL). The globule size for the lead CBD formulations (NE and NMC) ranged between 205 and 270 nm while CBD-VHS-NMC formulation had a particle size of about 78 nm. The sterilized formulations, except for CBD-VHS-NMC at 40 °C, were stable for three months of storage (last time point tested). Release, in terms of CBD, in the in-vitro release/diffusion studies over 18 h, were faster from the CBD-VHS nanomicelles (38 %) compared to that from the CBD nanoemulsion (16 %) and nanomicelles (33 %). Transcorneal permeation studies revealed improvement in CBD permeability and flux with both formulations; however, a greater improvement was observed with the NMC formulation compared to the NE formulation. In conclusion, the nanoformulations prepared could serve as efficient topical ocular drug delivery platforms for CBD and its analog.
Collapse
Affiliation(s)
- Ahmed Adel Ali Youssef
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS 38677, USA; Department of Pharmaceutical Technology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Muna Hayder Abdelrahman
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Mona M Geweda
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Corinne Varner
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Poorva H Joshi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Mihir Ghonge
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Narendar Dudhipala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Suresh P Sulochana
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Rama S Gadepalli
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Soumyajit Majumdar
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS 38677, USA; Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
6
|
Vozza Berardo ME, Mendieta JR, Villamonte MD, Colman SL, Nercessian D. Antifungal and antibacterial activities of Cannabis sativa L. resins. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116839. [PMID: 37400009 DOI: 10.1016/j.jep.2023.116839] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cannabis sativa L. (Cannabaceae) is a plant native to Eastern Asia spread throughout the world because of its medicinal properties. Despite being used for thousands of years as a palliative therapeutic agent for many pathologies, in many countries research on its effects and properties could only be carried out in recent years, after its legalization. AIMS OF THE STUDY Increasing resistance to traditional antimicrobial agents demands finding new strategies to fight against microbial infections in medical therapy and agricultural activities. Upon legalization in many countries, Cannabis sativa is gaining attention as a new source of active components, and the evidence for new applications of these compounds is constantly increasing. METHODS Extracts from five different varieties ofCannabis sativa were performed and their cannabinoids and terpenes profiles were determined by liquid and gas chromatography. Antimicrobial and antifungal activities against Gram (+) and Gram (-) bacteria, yeast and phytopathogen fungus were measured. To analyze a possible action mechanism, cell viability of bacteria and yeast was assessed by propidium iodide stain. RESULTS Cannabis varieties were grouped into chemotype I and II as a consequence of their cannabidiol (CBD) or tetrahydrocannabinol (THC) content. The terpenes profile was different in quantity and quality among varieties, with (-)b-pinene, b-myrcene, p-cymene and b-caryophyllene being present in all plants. All cannabis varieties were effective to different degree against Gram (+) and Gram (-) bacteria as well as on spore germination and vegetative development of phytopathogenic fungi. These effects were not correlated to the content of major cannabinoids such as CBD or THC, but with the presence of a complex terpenes profile. The effectiveness of the extracts allowed to reduce the necessary doses of a widely used commercial antifungal to prevent the development of fungal spores. CONCLUSION All the extracts of the analysed cannabis varieties showed antibacterial and antifungal activities. In addition, plants belonging to the same chemotype showed different antimicrobial activity, demonstrating that the classification of cannabis strains based solely on THC and CBD content is not sufficient to justify their biological activities and that other compounds present in the extracts are involved in their action against pathogens. Cannabis extracts act in synergy with chemical fungicides, allowing to reduce its doses.
Collapse
Affiliation(s)
- María Eugenia Vozza Berardo
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata - CONICET, Funes 3250, CP7600, Mar del Plata, Argentina.
| | - Julieta Renée Mendieta
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata - CONICET, Funes 3250, CP7600, Mar del Plata, Argentina.
| | - María Daniela Villamonte
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata - CONICET, Funes 3250, CP7600, Mar del Plata, Argentina.
| | - Silvana Lorena Colman
- Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3250, CP7600, Mar del Plata, Argentina.
| | - Débora Nercessian
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata - CONICET, Funes 3250, CP7600, Mar del Plata, Argentina.
| |
Collapse
|
7
|
Afridi AJ, Zuberi A, Yousafzai AM, Kamran M. Therapeutic Role of Hemp (Cannabis sativa) Against Copper-Induced Toxicity in Labeo rohita and Cirrhinus mrigala. Biol Trace Elem Res 2024; 202:307-318. [PMID: 37010725 DOI: 10.1007/s12011-023-03650-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/24/2023] [Indexed: 04/04/2023]
Abstract
For decades hemp has been used as a therapeutic agent for enhancing immunity in animals. Current study was conceptualized to find out the protective role of dietary hemp seed products (hemp seed oil (HO) and hemp seed (HS)) against copper-induced toxicity in fish. Fingerlings of Labeo rohita (Rohu) and Cirrhinus mrigala (Mrigal) were exposed to copper at 20% of the 96 h LC50 (1.34 and 1.52 ppm, respectively) for 30 days. Following Cu exposure, fish were maintained on two types of hemp (Cannabis sativa)-supplemented feeds, on graded levels of hemp seed oil (HO: 1%, 2%, 3%) and hemp seed (HS: 5%, 10%, 15%) for 50 days, while one group was the control (without any copper exposure as well as any supplementation). Copper exposure significantly increased (P < 0.05) WBCs, hematocrit, MCHV, eosinophils, and lymphocytes in L. rohita and also in C. mrigala as compared to control. Copper exposure also significantly (P < 0.05) changed lysozymes, plasma protein, and IgM in both species, in comparison to control. Moreover, alkaline phosphatase, bilirubin, serum glutamic-pyruvic transaminase, and aspartate transaminase were significantly (P < 0.05) changed by copper exposure in comparison to control in both species. Additionally, Antioxidant enzymes like catalase, superoxide dismutase, glutathione reductase, and glutathione peroxidase were also significantly (P < 0.05) increased in the brain, gills, liver, and muscle of copper-exposed group in both species as compared to control. Interestingly, all the altered parameter of blood, serum, liver function tests, and antioxidant enzymes (in different organs) because of copper toxicity were successfully reverted to normal level in hemp seed oil (HO) and hemp seed (HS)-supplemented fed groups of both species. In conclusion, hemp seed supplementation showed significant (P < 0.05) improved results against copper toxicity. Thus, it could be recommended as an animal feed ingredient for its therapeutic role.
Collapse
Affiliation(s)
- Azam Jan Afridi
- Department of Zoology, Islamia College Peshawar, Peshawar, 25120, Pakistan.
| | - Amina Zuberi
- Fisheries and Aquaculture Program, Department of Zoology, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
| | | | - Muhammad Kamran
- Aquaculture Laboratory, Department of Zoology, University of Sialkot, Sialkot, 51040, Pakistan
| |
Collapse
|
8
|
Pino S, Espinoza L, Jara-Gutiérrez C, Villena J, Olea AF, Díaz K. Study of Cannabis Oils Obtained from Three Varieties of C. sativa and by Two Different Extraction Methods: Phytochemical Characterization and Biological Activities. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091772. [PMID: 37176831 PMCID: PMC10180737 DOI: 10.3390/plants12091772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Currently, much effort is being placed into obtaining extracts and/or essential oils from Cannabis sativa L. for specific therapeutic purposes or pharmacological compositions. These potential applications depend mainly on the phytochemical composition of the oils, which in turn are determined by the type of C. sativa and the extraction method used to obtain the oils. In this work, we have evaluated the contents of secondary metabolites, delta-9-tetrahydrocannabinol (THC), and cannabidiol (CBD), in addition to the total phenolic, flavonoids, and anthraquinone content in oils obtained using solid-liquid extraction (SLE) and supercritical fluid extraction (SCF). Different varieties of C. sativa were chosen by using the ratio of THC to CBD concentrations. Additionally, antioxidant, antifungal and anticancer activities on different cancer cell lines were evaluated in vitro. The results indicate that oils extracted by SLE, with high contents of CBD, flavonoids, and phenolic compounds, exhibit a high antioxidant capacity and induce a high decrease in the cell viability of the tested breast cancer cell line (MCF-7). The observed biological activities are attributed to the entourage effect, in which CBD, phenols and flavonoids play a key role. Therefore, it is concluded that the right selection of C. sativa variety and the solvent for SLE extraction method could be used to obtain the optimal oil composition to develop a natural anticancer agent.
Collapse
Affiliation(s)
- Sebastián Pino
- LABSUN (Laboratorio Sustentable Natural), Valparaíso 2340000, Chile
| | - Luis Espinoza
- Departamento de Química, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile
| | - Carlos Jara-Gutiérrez
- Laboratorio de Investigación-Estrés Oxidativo, Centro de Investigaciones Biomédicas (CIB), Facultad de Medicina, Universidad de Valparaíso, Viña del Mar 2520000, Chile
| | - Joan Villena
- Laboratorio de Investigación-Estrés Oxidativo, Centro de Investigaciones Biomédicas (CIB), Facultad de Medicina, Universidad de Valparaíso, Viña del Mar 2520000, Chile
| | - Andrés F Olea
- Grupo QBAB, Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, El Llano Subercaseaux 2801, Santiago 8900000, Chile
| | - Katy Díaz
- Departamento de Química, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile
| |
Collapse
|
9
|
Nakov G, Trajkovska B, Atanasova-Pancevska N, Daniloski D, Ivanova N, Lučan Čolić M, Jukić M, Lukinac J. The Influence of the Addition of Hemp Press Cake Flour on the Properties of Bovine and Ovine Yoghurts. Foods 2023; 12:foods12050958. [PMID: 36900475 PMCID: PMC10001388 DOI: 10.3390/foods12050958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
Hemp press cake flour (HPCF) is a by-product of hemp oil production rich in proteins, carbohydrates, minerals, vitamins, oleochemicals, and phytochemicals. The purpose of this study was to investigate how the addition of HPCF to bovine and ovine plain yoghurts at concentrations of 0%, 2%, 4%, 6%, 8%, and 10% could change the physicochemical, microbiological, and sensory properties of the yoghurts, focusing on the improvement of quality and antioxidant activity, and the issue of food by-products and their utilisation. The results showed that the addition of HPCF to yoghurts significantly affected their properties, including an increase in pH and decrease in titratable acidity, change in colour to darker, reddish or yellowish hue, and a rise in total polyphenols and antioxidant activity during storage. Yoghurts fortified with 4% and 6% HPCF exhibited the best sensory properties, thus maintaining viable starter counts in the yoghurts during the study period. There were no statistically significant differences between the control yoghurts and the samples with 4% added HPCF in terms of overall sensory score while maintaining viable starter counts during the seven-day storage. These results suggest that the addition of HPCF to yoghurts can improve product quality and create functional products and may have potential in sustainable food waste management.
Collapse
Affiliation(s)
- Gjore Nakov
- College of Sliven, Technical University of Sofia, 59 Bourgasko Shaussee Blvd., 8800 Sliven, Bulgaria
| | - Biljana Trajkovska
- Faculty of Biotechnical Sciences, University “St. Kliment Ohridski”, 7000 Bitola, North Macedonia
| | - Natalija Atanasova-Pancevska
- Faculty of Natural Sciences and Mathematics-Skopje, Department of Microbiology and Microbial Biotechnology, Ss. Cyril and Methodius University in Skopje, 1000 Skopje, North Macedonia
| | - Davor Daniloski
- Advanced Food Systems Research Unit, Institute for Sustainable Industries and Liveable Cities, College of Health and Biomedicine, Victoria University, Melbourne, VIC 8001, Australia
- Teagasc Food Research Centre, Food Chemistry and Technology Department, Moorepark, Fermoy, P61 C996 Cork, Ireland
| | - Nastia Ivanova
- College of Sliven, Technical University of Sofia, 59 Bourgasko Shaussee Blvd., 8800 Sliven, Bulgaria
| | - Mirela Lučan Čolić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Marko Jukić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Correspondence: ; Tel.: +385-31224308
| | - Jasmina Lukinac
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
10
|
Huang S, Li H, Xu J, Zhou H, Seeram NP, Ma H, Gu Q. Chemical constituents of industrial hemp roots and their anti-inflammatory activities. J Cannabis Res 2023; 5:1. [PMID: 36642726 PMCID: PMC9841654 DOI: 10.1186/s42238-022-00168-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/04/2022] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE Although the chemical constituents of the aerial parts of Cannabis have been extensively studied, phytochemicals of Cannabis roots are not well characterized. Herein, we investigated the chemical constituents of industrial hemp (Cannabis sativa L.) roots and evaluated the anti-inflammatory activities of phytochemicals isolated from the hemp roots extract. METHODS An ethyl acetate extract of hemp roots was subjected to a combination of chromatographic columns to isolate phytochemicals. The chemical structures of the isolates were elucidated based on spectroscopic analyses (by nuclear magnetic resonance and mass spectrometry). The anti-inflammatory effects of phytochemicals from hemp roots were evaluated in an anti-inflammasome assay using human monocyte THP-1 cells. RESULTS Phytochemical investigation of hemp roots extract led to the identification of 32 structurally diverse compounds including six cannabinoids (1-6), three phytosterols (26-28), four triterpenoids (22-25), five lignans (17-21), and 10 hydroxyl contained compounds (7-16), three fatty acids (29-31), and an unsaturated chain hydrocarbon (32). Compounds 14-21, 23, 27, and 32 were identified from the Cannabis species for the first time. Cannabinoids (1-5) reduced the level of cytokine tumor necrosis-alpha (by 38.2, 58.4, 47.7, 52.2, and 56.1%, respectively) and 2 and 5 also decreased the interleukin-1β production (by 42.2 and 92.4%, respectively) in a cell-based inflammasome model. In addition, non-cannabinoids including 11, 13, 20, 25, 29, and 32 also showed selective inhibition of interleukin-1β production (by 23.7, 22.5, 25.6, 78.0, 24.1, 46.6, and 25.4%, respectively) in THP-1 cells. CONCLUSION The phytochemical constituent of a hemp roots extract was characterized and compounds from hemp roots exerted promising anti-inflammatory effects.
Collapse
Affiliation(s)
- Shijie Huang
- grid.12981.330000 0001 2360 039XResearch Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, China
| | - Huifang Li
- grid.20431.340000 0004 0416 2242Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 02881 Kingston, RI USA
| | - Jun Xu
- grid.12981.330000 0001 2360 039XResearch Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, China
| | - Huihao Zhou
- grid.12981.330000 0001 2360 039XResearch Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, China
| | - Navindra P. Seeram
- grid.20431.340000 0004 0416 2242Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 02881 Kingston, RI USA
| | - Hang Ma
- grid.20431.340000 0004 0416 2242Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 02881 Kingston, RI USA
| | - Qiong Gu
- grid.12981.330000 0001 2360 039XResearch Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, China
| |
Collapse
|
11
|
Assouab A, El Filaly H, Akarid K. Inhibiting Human and Leishmania Arginases Using Cannabis sativa as a Potential Therapy for Cutaneous Leishmaniasis: A Molecular Docking Study. Trop Med Infect Dis 2022; 7:tropicalmed7120400. [PMID: 36548655 PMCID: PMC9783378 DOI: 10.3390/tropicalmed7120400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/12/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022] Open
Abstract
Cutaneous leishmaniasis (CL), a vector-borne parasitic disease caused by the Leishmania protozoan, is a serious public health problem in Morocco. The treatment of this disease is still based on pentavalent antimonials as the primary therapy, but these have associated side effects. Thus, the development of effective, risk-free alternative therapeutics based on natural compounds against leishmaniasis is urgent. Arginase, the key enzyme in the polyamine biosynthetic pathway, plays a critical role in leishmaniasis outcome and has emerged as a potential therapeutic target. The objective of this study was to test Cannabis sativa's phytochemical components (cannabinoids and terpenoids) through molecular docking against Leishmania and human arginase enzymes. Our results showed that delta-9-tetrahydrocannabinol (THC) possessed the best binding energies of -6.02 and -6.35 kcal/mol with active sites of Leishmania and human arginases, respectively. Delta-9-THC interacted with Leishmania arginase through various amino acids including His139 and His 154 and linked to human arginase via His 126. In addition to delta-9-THC, caryophyllene oxide and cannabidiol (CBD) also showed a good inhibition of Leishmania and human arginases, respectively. Overall, the studied components were found to inhibit both arginases active sites via hydrogen bonds and hydrophobic interactions. These components may serve as therapeutic agents or in co-administrated therapy for leishmaniasis.
Collapse
|
12
|
Senapati S, Youssef AAA, Sweeney C, Cai C, Dudhipala N, Majumdar S. Cannabidiol Loaded Topical Ophthalmic Nanoemulsion Lowers Intraocular Pressure in Normotensive Dutch-Belted Rabbits. Pharmaceutics 2022; 14:2585. [PMID: 36559077 PMCID: PMC9781840 DOI: 10.3390/pharmaceutics14122585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Cannabidiol (CBD) is the major non-psychoactive and most widely studied of the cannabinoid constituents and has great therapeutic potential in a variety of diseases. However, contradictory reports in the literature with respect to CBD's effect on intraocular pressure (IOP) have raised concerns and halted research exploring its use in ocular therapeutics. Therefore, the current investigation aimed to further evaluate CBD's impact on the IOP in the rabbit model. CBD nanoemulsions, containing Carbopol® 940 NF as a mucoadhesive agent (CBD-NEC), were prepared using hot-homogenization followed by probe sonication. The stability of the formulations post-moist-heat sterilization, in terms of physical and chemical characteristics, was studied for three different storage conditions. The effect of the formulation on the intraocular pressure (IOP) profile in normotensive Dutch Belted male rabbits was then examined. The lead CBD-NEC formulation (1% w/v CBD) exhibited a globule size of 259 ± 2.0 nm, 0.27 ± 0.01 PDI, and 23.2 ± 0.4 cP viscosity, and was physically and chemically stable for one month (last time point tested) at 4 °C, 25 °C, and 40 °C. CBD-NEC significantly lowered the IOP in the treated eyes for up to 360 min, with a peak drop in IOP of 4.5 mmHg observed at the 150 min time point, post-topical application. The IOP of the contralateral eye (untreated) was also observed to be lowered significantly, but the effect lasted up to the 180 min time point only. Overall, topically administered CBD, formulated in a mucoadhesive nanoemulsion formulation, reduced the IOP in the animal model studied. The results support further exploration of CBD as a therapeutic option for various inflammation-based ocular diseases.
Collapse
Affiliation(s)
- Samir Senapati
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
| | - Ahmed Adel Ali Youssef
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Corinne Sweeney
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
| | - Chuntian Cai
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
| | - Narendar Dudhipala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
| | - Soumyajit Majumdar
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
- Research Institute of Pharmaceutical Sciences, University of Mississippi, Oxford, MS 38677, USA
| |
Collapse
|
13
|
Roy P, Dennis DG, Eschbach MD, Anand SD, Xu F, Maturano J, Hellman J, Sarlah D, Das A. Metabolites of Cannabigerol Generated by Human Cytochrome P450s Are Bioactive. Biochemistry 2022; 61:2398-2408. [PMID: 36223199 DOI: 10.1021/acs.biochem.2c00383] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The phytocannabinoid cannabigerol (CBG) is the central biosynthetic precursor to many cannabinoids, including Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). Though the use of CBG has recently witnessed a widespread surge because of its beneficial health effects and lack of psychoactivity, its metabolism by human cytochrome P450s is largely unknown. Herein, we describe comprehensive in vitro and in vivo cytochrome P450 (CYP)-mediated metabolic studies of CBG, ranging from liquid chromatography tandem mass spectrometry-based primary metabolic site determination, synthetic validation, and kinetic behavior using targeted mass spectrometry. These investigations revealed that cyclo-CBG, a recently isolated phytocannabinoid, is the major metabolite that is rapidly formed by selected human cytochrome P450s (CYP2J2, CYP3A4, CYP2D6, CYP2C8, and CYP2C9). Additionally, in vivo studies with mice administered with CBG supported these studies, where cyclo-CBG is the major metabolite as well. Spectroscopic binding studies along with docking and modeling of the CBG molecule near the heme in the active site of P450s confirmed these observations, pointing at the preferred site selectivity of CBG metabolism at the prenyl chain over other positions. Importantly, we found out that CBG and its oxidized CBG metabolites reduced inflammation in BV2 microglial cells stimulated with LPS. Overall, combining enzymological studies, mass spectrometry, and chemical synthesis, we showcase that CBG is rapidly metabolized by human P450s to form oxidized metabolites that are bioactive.
Collapse
Affiliation(s)
- Pritam Roy
- Department of Comparative Biosciences, Center for Biophysics and Quantitative Biology, Beckman Institute for Advanced Science and Technology, Department of Bioengineering, Neuroscience program, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.,School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - David G Dennis
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States.,Cancer Center at Illinois, University of Illinois, Urbana, Illinois 61801, United States
| | - Mark D Eschbach
- Department of Comparative Biosciences, Center for Biophysics and Quantitative Biology, Beckman Institute for Advanced Science and Technology, Department of Bioengineering, Neuroscience program, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.,School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Shravanthi D Anand
- Department of Comparative Biosciences, Center for Biophysics and Quantitative Biology, Beckman Institute for Advanced Science and Technology, Department of Bioengineering, Neuroscience program, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.,School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Fengyun Xu
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, California 94143, United States
| | - Jonathan Maturano
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States.,Cancer Center at Illinois, University of Illinois, Urbana, Illinois 61801, United States
| | - Judith Hellman
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, California 94143, United States
| | - David Sarlah
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States.,Cancer Center at Illinois, University of Illinois, Urbana, Illinois 61801, United States
| | - Aditi Das
- Department of Comparative Biosciences, Center for Biophysics and Quantitative Biology, Beckman Institute for Advanced Science and Technology, Department of Bioengineering, Neuroscience program, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.,School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,Cancer Center at Illinois, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
14
|
Antimicrobial and Cytotoxic Effects of Cannabinoids: An Updated Review with Future Perspectives and Current Challenges. Pharmaceuticals (Basel) 2022; 15:ph15101228. [PMID: 36297340 PMCID: PMC9607911 DOI: 10.3390/ph15101228] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
The development of new antibiotics is urgently needed to combat the threat of bacterial resistance. New classes of compounds that have novel properties are urgently needed for the development of effective antimicrobial agents. The extract of Cannabis sativa L. has been used to treat multiple ailments since ancient times. Its bioactivity is largely attributed to the cannabinoids found in its plant. Researchers are currently searching for new anti-infective agents that can treat various infections. Although its phytocannabinoid ingredients have a wide range of medical benefits beyond the treatment of infections, they are primarily associated to psychotropic effects. Different cannabinoids have been demonstrated to be helpful against harmful bacteria, including Gram-positive bacteria. Moreover, combination therapy involving the use of different antibiotics has shown synergism and broad-spectrum activity. The purpose of this review is to gather current data on the actions of Cannabis sativa (C. sativa) extracts and its primary constituents such as terpenes and cannabinoids towards pathogens in order to determine their antimicrobial properties and cytotoxic effects together with current challenges and future perspectives in biomedical application.
Collapse
|
15
|
Garcia-Romeu A, Elmore J, Mayhugh RE, Schlienz NJ, Martin EL, Strickland JC, Bonn-Miller M, Jackson H, Vandrey R. Online survey of medicinal cannabis users: Qualitative analysis of patient-level data. Front Pharmacol 2022; 13:965535. [PMID: 36147312 PMCID: PMC9485457 DOI: 10.3389/fphar.2022.965535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022] Open
Abstract
Aim: To characterize perceived benefits and challenges experienced by medicinal cannabis users. Methods: An anonymous online survey collected demographics, health information, and open-ended responses from medicinal cannabis users regarding perceptions, motivations, and experience of treatment. Qualitative open-ended responses were thematically analyzed. Results: Respondents (N = 808) were predominantly White (79%), female (63%), with a mean (SD) age of 38 (20). Two hundred eighty-four (35%) respondents provided data on a dependent family member (e.g., child; 22% of total sample). Most used cannabidiol (CBD)-dominant products (58%), primarily for neurological disorders (38%) or pain (25%). Primary motivations for medicinal cannabis use were based on beliefs that traditional treatments were ineffective and/or had intolerable side effects (51%), positive scientific or media portrayals of the safety/efficacy of cannabis as a therapeutic (29%), or preference for “natural” treatments over pharmaceuticals (21%). A majority of respondents (77%) attributed positive effects to the medicinal use of cannabis/cannabinoids. These included physical symptom improvements such as reduced pain (28%), improved sleep (18%), and seizure reduction (18%), and mental health improvements including reduced anxiety (22%) and improved mood (11%). Additionally, respondents reported reduced use of other medications (e.g., opioids) (12%), and improved quality of life (14%). Problems associated with use were cited by 41% of respondents, and included unwanted side effects (16%), lack of information or medical support (16%), prohibitive costs (12%), and legal concerns (10%). Conclusion: Most participants reported benefits from cannabis use for a variety of conditions where traditional treatments were ineffective or unacceptable. Concerns regarding cannabis side effects, legality, lack of information, and cost were raised. Data indicate greater research and education on the safety and efficacy of medicinal cannabis/cannabinoid use is warranted.
Collapse
Affiliation(s)
- Albert Garcia-Romeu
- Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Albert Garcia-Romeu,
| | - Joshua Elmore
- University of Colorado Boulder, Boulder, CO, United States
| | | | | | - Erin L. Martin
- Medical University of South Carolina, Charleston, SC, United States
| | | | | | - Heather Jackson
- Realm of Caring Foundation, Colorado Springs, Colorado, CO, United States
| | - Ryan Vandrey
- Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
16
|
Pormohammad A, Hansen D, Turner RJ. Antibacterial, Antibiofilm, and Antioxidant Activity of 15 Different Plant-Based Natural Compounds in Comparison with Ciprofloxacin and Gentamicin. Antibiotics (Basel) 2022; 11:1099. [PMID: 36009966 PMCID: PMC9404727 DOI: 10.3390/antibiotics11081099] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Plant-based natural compounds (PBCs) are comparatively explored in this study to identify the most effective and safe antibacterial agent/s against six World Health Organization concern pathogens. Based on a contained systematic review, 11 of the most potent PBCs as antibacterial agents are included in this study. The antibacterial and antibiofilm efficacy of the included PBCs are compared with each other as well as common antibiotics (ciprofloxacin and gentamicin). The whole plants of two different strains of Cannabis sativa are extracted to compare the results with sourced ultrapure components. Out of 15 PBCs, tetrahydrocannabinol, cannabidiol, cinnamaldehyde, and carvacrol show promising antibacterial and antibiofilm efficacy. The most common antibacterial mechanisms are explored, and all of our selected PBCs utilize the same pathway for their antibacterial effects. They mostly target the bacterial cell membrane in the initial step rather than the other mechanisms. Reactive oxygen species production and targeting [Fe-S] centres in the respiratory enzymes are not found to be significant, which could be part of the explanation as to why they are not toxic to eukaryotic cells. Toxicity and antioxidant tests show that they are not only nontoxic but also have antioxidant properties in Caenorhabditis elegans as an animal model.
Collapse
Affiliation(s)
- Ali Pormohammad
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB T2N 1N4, Canada
- C-Crest Laboratories Inc., Montreal, QC H1P 3H8, Canada
| | - Dave Hansen
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Raymond J. Turner
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
17
|
Erukainure OL, Rademan S, Erhabor JO, Chukwuma CI, Nde AL, Matsabisa MG. Cannabis sativa L. protects against oxidative injury in kidney (vero) cells by mitigating perturbed metabolic activities linked to chronic kidney diseases. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115312. [PMID: 35476933 DOI: 10.1016/j.jep.2022.115312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cannabis sativa L. is among numerous medicinal plants widely used in traditional medicine in treating various ailments including kidney diseases. AIMS The protective effect of C. sativa on oxidative stress, cholinergic and purinergic dysfunctions, and dysregulated glucogenic activities were investigated in oxidative injured kidney (Vero) cell lines. METHODS Fixed Vero cells were treated with sequential extracts (hexane, dichloromethane [DCM] and ethanol) of C. sativa leaves for 48 h before subjecting to MTT assay. Vero cells were further incubated with FeSO4 for 30 min, following pretreatment with C. sativa extracts for 25 min. Normal control consisted of Vero cells not treated with the extracts and/or FeSO4, while untreated (negative) control consisted of cells treated with only FeSO4. RESULTS MTT assay revealed the extracts were slightly cytotoxic at the highest concentrations (250 μg/mL). There was a significant depletion in glutathione level and catalase activity on induction of oxidative stress, with significant elevation in malondialdehyde level, acetylcholinesterase, ATPase, ENTPDase, fructose-1,6-biphosphatase, glucose 6-phosphatase and glycogen phosphorylase activities. These activities and levels were significantly reversed following pretreatment with C. sativa extracts. CONCLUSION These results portray the protective potentials of C. sativa against iron-mediated oxidative renal injury as depicted by the ability of its extracts to mitigate redox imbalance and suppress acetylcholinestererase activity, while concomitantly modulating purinergic and glucogenic enzymes activities in Vero cells.
Collapse
Affiliation(s)
- Ochuko L Erukainure
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, South Africa
| | - Sunelle Rademan
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, South Africa
| | - Joseph O Erhabor
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, South Africa; Phytomedicine Unit, Department of Plant Biology and Biotechnology, University of Benin, Benin City, Nigeria
| | - Chika I Chukwuma
- Center for Quality of Health and Living, Faculty of Health Sciences, Central University of Technology, Bloemfontein, 9301, South Africa
| | - Adeline Lum Nde
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, South Africa
| | - Motlalepula G Matsabisa
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, South Africa.
| |
Collapse
|
18
|
Gouvêa-Silva JG, Costa-Oliveira CD, Ramos YJ, Mantovanelli DF, Cardoso MS, Viana-Oliveira LD, Costa JL, Moreira DDL, Maciel-Magalhães M. Is There Enough Knowledge to Standardize a Cannabis sativa L. Medicinal Oil Preparation with a High Content of Cannabinoids? Cannabis Cannabinoid Res 2022. [PMID: 35763833 DOI: 10.1089/can.2022.0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction: Cannabis sativa L. medicinal oils are good therapeutic options due to their wide spectrum of pharmacological applications and the easy adjustment of individual doses. The lack of standardization of methodology in the preparation of medicinal oil using the Cannabis crude extract results in elevated variability of cannabinoid concentration in the final product. The elevated variability impairs the understanding of beneficial and adverse effects related to dose-response pharmacological activities. Objective: This study aimed to conduct a review on the current methods of Cannabis oil preparation present in the literature, to demonstrate the most appropriate methodologies to ensure a product with high content of cannabinoids and terpenes. Results: The decarboxylation stage is essential for the conversion of acid cannabinoids into neutral cannabinoids, which are substances with the highest bioavailability. Lower temperatures for longer periods of time instead of high temperatures in less time are highly recommended to ensure that all the acidic cannabinoids have passed through decarboxylation. For the guarantee of a high terpene content, the separate addition of essential oil to the fixed oil prepared from the crude extract should be considered. Ultrasound-assisted extraction is one of the best performing methodologies because it is cheaper than other techniques, such as supercritical fluid extraction, besides that, ultrasound extraction is effective in short extraction times and uses small amounts of solvent when compared with other techniques. Conclusion: Although the literature about the methods of preparation of Cannabis medicinal oil is scarce, it is possible to standardize an optimized, low-cost, and effective Cannabis extractive methodology from the results found in the literature; however, this will depend on new research for methodological validation.
Collapse
Affiliation(s)
- João Gabriel Gouvêa-Silva
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, Brazil.,APEPI-Associação de Apoio à Pesquisa e à Pacientes de Cannabis Medicinal, Rio de Janeiro, Brazil.,Farmanguinhos, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudete da Costa-Oliveira
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, Brazil.,APEPI-Associação de Apoio à Pesquisa e à Pacientes de Cannabis Medicinal, Rio de Janeiro, Brazil.,Farmanguinhos, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Ygor Jessé Ramos
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, Brazil.,Farmanguinhos, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | - Jose Luiz Costa
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, Brazil
| | - Davyson de Lima Moreira
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, Brazil.,Farmanguinhos, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
19
|
Martinelli G, Magnavacca A, Fumagalli M, DellʼAgli M, Piazza S, Sangiovanni E. Cannabis sativa and Skin Health: Dissecting the Role of Phytocannabinoids. PLANTA MEDICA 2022; 88:492-506. [PMID: 33851375 DOI: 10.1055/a-1420-5780] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The use of Cannabis sativa is currently recognized to ease certain types of chronic pain, reduce chemotherapy-induced nausea, and improve anxiety. Nevertheless, few studies highlighted the therapeutic potential of C. sativa extracts and related phytocannabinoids for a variety of widespread skin disorders including acne, atopic dermatitis, psoriasis, pruritus, and pain. This review summarized the current evidence on the effects of phytocannabinoids at the cutaneous level through the collection of in vitro, in vivo, and clinical studies published on PubMed, Scopus, Embase, and Web of Science until October 2020. Phytocannabinoids have demonstrated potential anti-inflammatory, antioxidant, anti-aging, and anti-acne properties by various mechanisms involving either CB1/2-dependent and independent pathways. Not only classical immune cells, but also several skin-specific actors, such as keratinocytes, fibroblasts, melanocytes, and sebocytes, may represent a target for phytocannabinoids. Cannabidiol, the most investigated compound, revealed photoprotective, antioxidant, and anti-inflammatory mechanisms at the cutaneous level, while the possible impact on cell differentiation, especially in the case of psoriasis, would require further investigation. Animal models and pilot clinical studies supported the application of cannabidiol in inflammatory-based skin diseases. Also, one of the most promising applications of non-psychotropic phytocannabinoids is the treatment of seborrheic disorders, especially acne. In conclusion, the incomplete knowledge of the role of the endocannabinoid system in skin disorders emerged as an important limit for pharmacological investigations. Moreover, the limited studies conducted on C. sativa extracts suggested a higher potency than single phytocannabinoids, thus stimulating new research on phytocannabinoid interaction.
Collapse
Affiliation(s)
- Giulia Martinelli
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, Milan, Italy
| | - Andrea Magnavacca
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, Milan, Italy
| | - Marco Fumagalli
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, Milan, Italy
| | - Mario DellʼAgli
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, Milan, Italy
| | - Stefano Piazza
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, Milan, Italy
| | - Enrico Sangiovanni
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
20
|
Li Y, Dai J, Tran LN, Pinkerton KE, Spindel ER, Nguyen TB. Vaping Aerosols from Vitamin E Acetate and Tetrahydrocannabinol Oil: Chemistry and Composition. Chem Res Toxicol 2022; 35:1095-1109. [PMID: 35559605 DOI: 10.1021/acs.chemrestox.2c00064] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The popularity of vaping cannabis products has increased sharply in recent years. In 2019, a sudden onset of electronic cigarette/vaping-associated lung injury (EVALI) was reported, leading to thousands of cases of lung illness and dozens of deaths due to the vaping of tetrahydrocannabinol (THC)-containing e-liquids that were obtained on the black market. A potential cause of EVALI has been hypothesized due to the illicit use of vitamin E acetate (VEA) in cannabis vape cartridges. However, the chemistry that modifies VEA and THC oil, to potentially produce toxic byproducts, is not well understood under different scenarios of use. In this work, we quantified carbonyls, organic acids, cannabinoids, and terpenes in the vaping aerosol of pure VEA, purified THC oil, and an equal volume mixture of VEA and THC oil at various coil temperatures (100-300 °C). It was found under the conditions of our study that degradation of VEA and cannabinoids, including Δ9-THC and cannabigerol (CBG), occurred via radical oxidation and direct thermal decomposition pathways. Evidence of terpene degradation was also observed. The bond cleavage of aliphatic side chains in both VEA and cannabinoids formed a variety of smaller carbonyls. Oxidation at the ring positions of cannabinoids formed various functionalized products. We show that THC oil has a stronger tendency to aerosolize and degrade compared to VEA at a given temperature. The addition of VEA to the e-liquid nonlinearly suppressed the formation of vape aerosol compared to THC oil. At the same time, toxic carbonyls including formaldehyde, 4-methylpentanal, glyoxal, or diacetyl and its isomers were highly enhanced in VEA e-liquid when normalized to particle mass.
Collapse
Affiliation(s)
- Yichen Li
- Department of Environmental Toxicology, University of California Davis, Davis, California 95616, United States
| | - Jiayin Dai
- Department of Environmental Toxicology, University of California Davis, Davis, California 95616, United States
| | - Lillian N Tran
- Department of Environmental Toxicology, University of California Davis, Davis, California 95616, United States
| | - Kent E Pinkerton
- Center for Health and the Environment, University of California Davis, Davis, California 95616, United States
| | - Eliot R Spindel
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon 97006, United States
| | - Tran B Nguyen
- Department of Environmental Toxicology, University of California Davis, Davis, California 95616, United States
| |
Collapse
|
21
|
Hemp and Its Derivatives as a Universal Industrial Raw Material (with Particular Emphasis on the Polymer Industry)-A Review. MATERIALS 2022; 15:ma15072565. [PMID: 35407897 PMCID: PMC9000560 DOI: 10.3390/ma15072565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 11/22/2022]
Abstract
This review article provides basic information about cannabis, its structure, and its impact on human development at the turn of the century. It also contains a brief description of the cultivation and application of these plants in the basic branches of the economy. This overview is also a comprehensive collection of information on the chemical composition of individual cannabis derivatives. It contains the characteristics of the chemical composition as well as the physicochemical and mechanical properties of hemp fibers, oil, extracts and wax, which is unique compared to other review articles. As one of the few articles, it approaches the topic in a holistic and evolutionary way, moving through the plant’s life cycle. Its important element is examples of the use of hemp derivatives in polymer composites based on thermoplastics, elastomers and duroplasts and the influence of these additives on their properties, which cannot be found in other review articles on this subject. It indicates possible directions for further technological development, with particular emphasis on the pro-ecological aspects of these plants. It indicates the gaps and possible research directions in basic knowledge on the use of hemp in elastomers.
Collapse
|
22
|
Muralidhar B, Victoria GG, Kumar KS, Sabbsani RR. Copper‐mediated relay strategy using chlorination/oxidation: An effective synthesis of functionalized coumarin derivatives. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Baitinti Muralidhar
- Vellore Institute of Technology: VIT University school of advanced sciences INDIA
| | | | | | | |
Collapse
|
23
|
Sionov RV, Steinberg D. Anti-Microbial Activity of Phytocannabinoids and Endocannabinoids in the Light of Their Physiological and Pathophysiological Roles. Biomedicines 2022; 10:biomedicines10030631. [PMID: 35327432 PMCID: PMC8945038 DOI: 10.3390/biomedicines10030631] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022] Open
Abstract
Antibiotic resistance has become an increasing challenge in the treatment of various infectious diseases, especially those associated with biofilm formation on biotic and abiotic materials. There is an urgent need for new treatment protocols that can also target biofilm-embedded bacteria. Many secondary metabolites of plants possess anti-bacterial activities, and especially the phytocannabinoids of the Cannabis sativa L. varieties have reached a renaissance and attracted much attention for their anti-microbial and anti-biofilm activities at concentrations below the cytotoxic threshold on normal mammalian cells. Accordingly, many synthetic cannabinoids have been designed with the intention to increase the specificity and selectivity of the compounds. The structurally unrelated endocannabinoids have also been found to have anti-microbial and anti-biofilm activities. Recent data suggest for a mutual communication between the endocannabinoid system and the gut microbiota. The present review focuses on the anti-microbial activities of phytocannabinoids and endocannabinoids integrated with some selected issues of their many physiological and pharmacological activities.
Collapse
|
24
|
Nwonuma CO, Atanu FO, Okonkwo NC, Egharevba GO, Udofia IA, Evbuomwan IO, Alejolowo OO, Osemwegie OO, Adelani-Akande T, Dogunro FA. Evaluation of anti-malarial activity and GC–MS finger printing of cannabis: An in-vivo and in silico approach. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
25
|
Laudanski K, Wain J. Considerations for Cannabinoids in Perioperative Care by Anesthesiologists. J Clin Med 2022; 11:jcm11030558. [PMID: 35160010 PMCID: PMC8836924 DOI: 10.3390/jcm11030558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
Increased usage of recreational and medically indicated cannabinoid compounds has been an undeniable reality for anesthesiologists in recent years. These compounds’ complicated pharmacology, composition, and biological effects result in challenging issues for anesthesiologists during different phases of perioperative care. Here, we review the existing formulation of cannabinoids and their biological activity to put them into the context of the anesthesia plan execution. Perioperative considerations should include a way to gauge the patient’s intake of cannabinoids, the ability to gain consent properly, and vigilance to the increased risk of pulmonary and airway problems. Intraoperative management in individuals with cannabinoid use is complicated by the effects cannabinoids have on general anesthetics and depth of anesthesia monitoring while simultaneously increasing the potential occurrence of intraoperative hemodynamic instability. Postoperative planning should involve higher vigilance to the risk of postoperative strokes and acute coronary syndromes. However, most of the data are not up to date, rending definite conclusions on the importance of perioperative cannabinoid intake on anesthesia management difficult.
Collapse
Affiliation(s)
- Krzysztof Laudanski
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence: (K.L.); (J.W.)
| | - Justin Wain
- School of Osteopathic Medicine, Campbell University, Buies Creek, NC 27506, USA
- Correspondence: (K.L.); (J.W.)
| |
Collapse
|
26
|
de Sousa ACC, Combrinck JM, Maepa K, Egan TJ. THC shows activity against cultured Plasmodium falciparum. Bioorg Med Chem Lett 2021; 54:128442. [PMID: 34763083 DOI: 10.1016/j.bmcl.2021.128442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/19/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022]
Abstract
The FDA approved drug Dronabinol was identified in a previous study applying virtual screening using the haemozoin crystal as a target against malaria parasites. The active ingredient of dronabinol is synthetic tetrahydrocannabinol (THC), which is one of the major cannabinoids from Cannabis sativa. Traditional use of cannabis for malaria fever was reported in the world's oldest pharmacopoeia, dating to around 5000 years ago. In this research we report that THC inhibits β-haematin (synthetic haemozoin) and malaria parasite growth. Due the psychoactivity of THC, CBD, the other major naturally occurring cannabinoid that lacks the off-target psychoactive effects of THC, was also tested and inhibited β-haematin but showed only a mild antimalarial activity. To evaluate whether THC inhibit haemozoin formation, we performed a cellular haem fractionation assay that indicated that is not the likely mechanism of action. For the first time, the cannabinoid chemical structure is raised as a new chemical class to be further studied for malaria treatment, aiming to overcome the undesirable psychoactive effects of THC and optimize the antimalarial effects.
Collapse
Affiliation(s)
| | - Jill M Combrinck
- University of Cape Town, Division of Pharmacology, Department of Medicine, Observatory 7925, South Africa
| | - Keletso Maepa
- University of Cape Town, Division of Pharmacology, Department of Medicine, Observatory 7925, South Africa
| | - Timothy J Egan
- University of Cape Town, Department of Chemistry, Rondebosch 7701, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa.
| |
Collapse
|
27
|
Schlienz NJ, Scalsky R, Martin EL, Jackson H, Munson J, Strickland JC, Bonn-Miller MO, Loflin M, Vandrey R. A Cross-Sectional and Prospective Comparison of Medicinal Cannabis Users and Controls on Self-Reported Health. Cannabis Cannabinoid Res 2021; 6:548-558. [PMID: 33998852 PMCID: PMC8713273 DOI: 10.1089/can.2019.0096] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Introduction: Despite widespread legalization, the impact of medicinal cannabis use on patient-level health and quality of life (QOL) has not been carefully evaluated. The objective of this study was to characterize self-reported demographics, health characteristics, QOL, and health care utilization of Cannabis Users compared with Controls. Methods: A longitudinal, cross-sectional web-based survey study was completed between April 2016 and February 2018. Study participants (n=1276) were a convenience sample of either patients with a diagnosed health condition or caregivers of a patient with a diagnosed health condition registered with the Realm of Caring Foundation (a nonprofit organization dedicated to therapeutic cannabis research and education). Participants were invited through e-mail to complete follow-up assessments every 3 months with 33% of participants completing one or more prospective follow-ups. Assessments included self-reported demographics, health care utilization, medication use, pain, anxiety, depression, sleep, and QOL. Cannabis Users (n=808) were compared with Controls (n=468) using negative binomial regression and linear mixed effects models testing the effect of initiation, cessation, and maintenance of medicinal cannabis use. Results: Cannabis Users self-reported significantly better QOL [t(1054)=-4.19, p<0.001], greater health satisfaction [t(1045)=-4.14, p<0.001], improved sleep [children: t(224)=2.90, p<0.01; adults: [t(758)=3.03, p<0.01], lower average pain severity [t(1150)=2.34, p<0.05], lower anxiety [t(1151)=4.38, p<0.001], and lower depression [t(1210)=5.77, p<0.001] compared with Controls. Cannabis Users reported using fewer prescription medications (rate ratio [RR]=0.86; 95% confidence interval [CI]: 0.77-0.96) and were less likely to have a past-month emergency department visit (RR=0.61; 95% CI: 0.44-0.84) or hospital admission (RR=0.54; 95% CI: 0.34-0.87). Controls who initiated cannabis use after baseline showed significant health improvements at follow-up, and the magnitude of improvement mirrored the between-group differences observed at baseline. Conclusions: Cannabis use was associated with improved health and QOL. Longitudinal testing suggests that group differences may be due to the medicinal use of cannabis. Although bias related to preexisting beliefs regarding the health benefits of cannabis in this sample should be considered, these findings indicate that clinical trials evaluating the efficacy of defined cannabinoid products for specific health conditions are warranted.
Collapse
Affiliation(s)
- Nicolas J. Schlienz
- Department of Community Health and Health Behavior, University at Buffalo, Buffalo, New York, USA
| | - Ryan Scalsky
- University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Erin L. Martin
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | - Joel Munson
- Realm of Caring Foundation, Colorado Springs, Colorado, USA
| | - Justin C. Strickland
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Marcel O. Bonn-Miller
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Mallory Loflin
- Center of Excellence for Stress and Mental Health, VA San Diego Health care System, La Jolla, California, USA
- Department of Psychiatry, University of California San Diego, School of Medicine, La Jolla, California, USA
| | - Ryan Vandrey
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
28
|
Mahmud MS, Hossain MS, Ahmed ATMF, Islam MZ, Sarker ME, Islam MR. Antimicrobial and Antiviral (SARS-CoV-2) Potential of Cannabinoids and Cannabis sativa: A Comprehensive Review. Molecules 2021; 26:7216. [PMID: 34885798 PMCID: PMC8658882 DOI: 10.3390/molecules26237216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/26/2022] Open
Abstract
Antimicrobial resistance has emerged as a global health crisis and, therefore, new drug discovery is a paramount need. Cannabis sativa contains hundreds of chemical constituents produced by secondary metabolism, exerting outstanding antimicrobial, antiviral, and therapeutic properties. This paper comprehensively reviews the antimicrobial and antiviral (particularly against SARS-CoV-2) properties of C. sativa with the potential for new antibiotic drug and/or natural antimicrobial agents for industrial or agricultural use, and their therapeutic potential against the newly emerged coronavirus disease (COVID-19). Cannabis compounds have good potential as drug candidates for new antibiotics, even for some of the WHO's current priority list of resistant pathogens. Recent studies revealed that cannabinoids seem to have stable conformations with the binding pocket of the Mpro enzyme of SARS-CoV-2, which has a pivotal role in viral replication and transcription. They are found to be suppressive of viral entry and viral activation by downregulating the ACE2 receptor and TMPRSS2 enzymes in the host cellular system. The therapeutic potential of cannabinoids as anti-inflammatory compounds is hypothesized for the treatment of COVID-19. However, more systemic investigations are warranted to establish the best efficacy and their toxic effects, followed by preclinical trials on a large number of participants.
Collapse
Affiliation(s)
- Md Sultan Mahmud
- Faculty of Textile Engineering, Bangladesh University of Textiles, Dhaka 1208, Bangladesh; (M.S.M.); (A.T.M.F.A.); (M.Z.I.)
| | - Mohammad Sorowar Hossain
- Biomedical Research Foundation, Dhaka 1230, Bangladesh;
- School of Environment and Life Sciences, Independent University, Dhaka 1229, Bangladesh
| | - A. T. M. Faiz Ahmed
- Faculty of Textile Engineering, Bangladesh University of Textiles, Dhaka 1208, Bangladesh; (M.S.M.); (A.T.M.F.A.); (M.Z.I.)
| | - Md Zahidul Islam
- Faculty of Textile Engineering, Bangladesh University of Textiles, Dhaka 1208, Bangladesh; (M.S.M.); (A.T.M.F.A.); (M.Z.I.)
| | - Md Emdad Sarker
- Faculty of Textile Engineering, Bangladesh University of Textiles, Dhaka 1208, Bangladesh; (M.S.M.); (A.T.M.F.A.); (M.Z.I.)
| | - Md Reajul Islam
- Faculty of Textile Engineering, Bangladesh University of Textiles, Dhaka 1208, Bangladesh; (M.S.M.); (A.T.M.F.A.); (M.Z.I.)
| |
Collapse
|
29
|
Pereira LOR, Sousa CS, Ramos HCP, Torres-Santos EC, Pinheiro LS, Alves MR, Cuervo P, Romero GAS, Boité MC, Porrozzi R, Cupolillo E. Insights from Leishmania (Viannia) guyanensis in vitro behavior and intercellular communication. Parasit Vectors 2021; 14:556. [PMID: 34711290 PMCID: PMC8554959 DOI: 10.1186/s13071-021-05057-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 08/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pentavalent antimonial-based chemotherapy is the first-line approach for leishmaniasis treatment and disease control. Nevertheless antimony-resistant parasites have been reported in some endemic regions. Treatment refractoriness is complex and is associated with patient- and parasite-related variables. Although amastigotes are the parasite stage in the vertebrate host and, thus, exposed to the drug, the stress caused by trivalent antimony in promastigotes has been shown to promote significant modification in expression of several genes involved in various biological processes, which will ultimately affect parasite behavior. Leishmania (Viannia) guyanensis is one of the main etiological agents in the Amazon Basin region, with a high relapse rate (approximately 25%). METHODS Herein, we conducted several in vitro analyses with L. (V.) guyanensis strains derived from cured and refractory patients after treatment with standardized antimonial therapeutic schemes, in addition to a drug-resistant in vitro-selected strain. Drug sensitivity assessed through Sb(III) half-maximal inhibitory concentration (IC50) assays, growth patterns (with and without drug pressure) and metacyclic-like percentages were determined for all strains and compared to treatment outcomes. Finally, co-cultivation without intercellular contact was followed by parasitic density and Sb(III) IC50 measurements. RESULTS Poor treatment response was correlated with increased Sb(III) IC50 values. The decrease in drug sensitivity was associated with a reduced cell replication rate, increased in vitro growth ability, and higher metacyclic-like proportion. Additionally, in vitro co-cultivation assays demonstrated that intercellular communication enabled lower drug sensitivity and enhanced in vitro growth ability, regardless of direct cell contact. CONCLUSIONS Data concerning drug sensitivity in the Viannia subgenus are emerging, and L. (V.) guyanensis plays a pivotal epidemiological role in Latin America. Therefore, investigating the parasitic features potentially related to relapses is urgent. Altogether, the data presented here indicate that all tested strains of L. (V.) guyanensis displayed an association between treatment outcome and in vitro parameters, especially the drug sensitivity. Remarkably, sharing enhanced growth ability and decreased drug sensitivity, without intercellular communication, were demonstrated.
Collapse
Affiliation(s)
- Luiza O R Pereira
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil.
| | - Cíntia S Sousa
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Hellen C P Ramos
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | | | - Liliane S Pinheiro
- Laboratório de Bioquímica de Tripanossomatídeos, IOC, FIOCRUZ, Rio de Janeiro, Brazil.,Instituto de Saúde e Biotecnologia, Universidade Federal do Amazonas, Campus Coari, Amazonas, Brazil
| | - Marcelo R Alves
- Laboratório de Pesquisa Clínica em DST-AIDS, Instituto Nacional de Infectologia Evandro Chagas, FIOCRUZ, Rio de Janeiro, Brazil
| | - Patricia Cuervo
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | | | - Mariana C Boité
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Renato Porrozzi
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Elisa Cupolillo
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| |
Collapse
|
30
|
Gugulothu K, Ramulu Meesa S, Kumar Utkoor U, Rajasekhara Reddy S, Shiva Kumar K. Pd/C and TFA‐promoted One‐pot, Two‐step Cascade Reaction: An Effective Synthesis of Oxepines. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Kishan Gugulothu
- Department of Chemistry Osmania University Hyderabad 500 007 India
| | | | | | - Sabbasani Rajasekhara Reddy
- Department of Chemistry School of Advanced Sciences Vellore Institute of Technology (VIT) Vellore 632014 India
| | - K. Shiva Kumar
- Department of Chemistry Osmania University Hyderabad 500 007 India
| |
Collapse
|
31
|
Lowe H, Toyang N, Steele B, Bryant J, Ngwa W, Nedamat K. The Current and Potential Application of Medicinal Cannabis Products in Dentistry. Dent J (Basel) 2021; 9:106. [PMID: 34562980 PMCID: PMC8466648 DOI: 10.3390/dj9090106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/10/2021] [Accepted: 08/31/2021] [Indexed: 01/02/2023] Open
Abstract
Oral and dental diseases are a major global burden, the most common non-communicable diseases (NCDs), and may even affect an individual's general quality of life and health. The most prevalent dental and oral health conditions are tooth decay (otherwise referred to as dental caries/cavities), oral cancers, gingivitis, periodontitis, periodontal (gum) disease, Noma, oro-dental trauma, oral manifestations of HIV, sensitive teeth, cracked teeth, broken teeth, and congenital anomalies such as cleft lip and palate. Herbs have been utilized for hundreds of years in traditional Chinese, African and Indian medicine and even in some Western countries, for the treatment of oral and dental conditions including but not limited to dental caries, gingivitis and toothaches, dental pulpitis, halitosis (bad breath), mucositis, sore throat, oral wound infections, and periodontal abscesses. Herbs have also been used as plaque removers (chew sticks), antimicrobials, analgesics, anti-inflammatory agents, and antiseptics. Cannabis sativa L. in particular has been utilized in traditional Asian medicine for tooth-pain management, prevention of dental caries and reduction in gum inflammation. The distribution of cannabinoid (CB) receptors in the mouth suggest that the endocannabinoid system may be a target for the treatment of oral and dental diseases. Most recently, interest has been geared toward the use of Cannabidiol (CBD), one of several secondary metabolites produced by C. sativa L. CBD is a known anti-inflammatory, analgesic, anxiolytic, anti-microbial and anti-cancer agent, and as a result, may have therapeutic potential against conditions such burning mouth syndrome, dental anxiety, gingivitis, and possible oral cancer. Other major secondary metabolites of C. sativa L. such as terpenes and flavonoids also share anti-inflammatory, analgesic, anxiolytic and anti-microbial properties and may also have dental and oral applications. This review will investigate the potential of secondary metabolites of C. sativa L. in the treatment of dental and oral diseases.
Collapse
Affiliation(s)
- Henry Lowe
- Biotech R & D Institute, University of the West Indies, Mona 99999, Jamaica; (H.L.); (J.B.)
- Vilotos Pharmaceuticals Inc., Baltimore, MD 21202, USA;
- Flavocure Biotech Inc., Baltimore, MD 21202, USA
- Department of Medicine, University of Maryland Medical School, Baltimore, MD 21202, USA
| | - Ngeh Toyang
- Vilotos Pharmaceuticals Inc., Baltimore, MD 21202, USA;
- Flavocure Biotech Inc., Baltimore, MD 21202, USA
| | - Blair Steele
- Biotech R & D Institute, University of the West Indies, Mona 99999, Jamaica; (H.L.); (J.B.)
| | - Joseph Bryant
- Biotech R & D Institute, University of the West Indies, Mona 99999, Jamaica; (H.L.); (J.B.)
| | - Wilfred Ngwa
- Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA;
- School of Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kaveh Nedamat
- Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA 02142, USA;
- Auraleaf Innovations, Toronto, ON M9B 4H6, Canada
| |
Collapse
|
32
|
Kumar P, Mahato DK, Kamle M, Borah R, Sharma B, Pandhi S, Tripathi V, Yadav HS, Devi S, Patil U, Xiao J, Mishra AK. Pharmacological properties, therapeutic potential, and legal status of Cannabis sativa L.: An overview. Phytother Res 2021; 35:6010-6029. [PMID: 34237796 DOI: 10.1002/ptr.7213] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 06/04/2021] [Accepted: 06/24/2021] [Indexed: 02/05/2023]
Abstract
Marijuana, or Cannabis sativa L., is a common psychoactive plant used for both recreational and medicinal purposes. In many countries, cannabis-based medicines have been legalized under certain conditions because of their immense prospects in medicinal applications. With a comprehensive insight into the prospects and challenges associated with the pharmacological use and global trade of C. sativa, this mini-review focuses on the medicinal importance of the plant and its legal status worldwide; the pharmacological compounds and its therapeutic potential along with the underlying public health concerns and future perspective are herein discussed. The existence of major compounds including Δ9 -tetrahydrocannabinol (Δ9 -THC), cannabidiol, cannabinol, and cannabichromene contributes to the medicinal effects of the cannabis plant. These compounds are also involved in the treatment of various types of cancer, epilepsy, and Parkinson's disease displaying several mechanisms of action. Cannabis sativa is a plant with significant pharmacological potential. However, several aspects of the plant need an in-depth understanding of the drug mechanism and its interaction with other drugs. Only after addressing these health concerns, legalization of cannabis could be utilized to its full potential as a future medicine.
Collapse
Affiliation(s)
- Pradeep Kumar
- Applied Microbiology Laboratory, Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli, India
| | - Dipendra Kumar Mahato
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria, Australia
| | - Madhu Kamle
- Applied Microbiology Laboratory, Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli, India
| | - Rituraj Borah
- Applied Microbiology Laboratory, Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli, India
| | - Bharti Sharma
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Shikha Pandhi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Vijay Tripathi
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture Technology and Sciences, Prayagraj, India
| | - Hardeo Singh Yadav
- Department of Chemistry, North Eastern Regional Institute of Science and Technology, Nirjuli, India
| | - Sheetal Devi
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonipat, India
| | - Umesh Patil
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau
| | | |
Collapse
|
33
|
Oleson EB, Hamilton LR, Gomez DM. Cannabinoid Modulation of Dopamine Release During Motivation, Periodic Reinforcement, Exploratory Behavior, Habit Formation, and Attention. Front Synaptic Neurosci 2021; 13:660218. [PMID: 34177546 PMCID: PMC8222827 DOI: 10.3389/fnsyn.2021.660218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
Motivational and attentional processes energize action sequences to facilitate evolutionary competition and promote behavioral fitness. Decades of neuropharmacology, electrophysiology and electrochemistry research indicate that the mesocorticolimbic DA pathway modulates both motivation and attention. More recently, it was realized that mesocorticolimbic DA function is tightly regulated by the brain's endocannabinoid system and greatly influenced by exogenous cannabinoids-which have been harnessed by humanity for medicinal, ritualistic, and recreational uses for 12,000 years. Exogenous cannabinoids, like the primary psychoactive component of cannabis, delta-9-tetrahydrocannabinol, produce their effects by acting at binding sites for naturally occurring endocannabinoids. The brain's endocannabinoid system consists of two G-protein coupled receptors, endogenous lipid ligands for these receptor targets, and several synthetic and metabolic enzymes involved in their production and degradation. Emerging evidence indicates that the endocannabinoid 2-arachidonoylglycerol is necessary to observe concurrent increases in DA release and motivated behavior. And the historical pharmacology literature indicates a role for cannabinoid signaling in both motivational and attentional processes. While both types of behaviors have been scrutinized under manipulation by either DA or cannabinoid agents, there is considerably less insight into prospective interactions between these two important signaling systems. This review attempts to summate the relevance of cannabinoid modulation of DA release during operant tasks designed to investigate either motivational or attentional control of behavior. We first describe how cannabinoids influence DA release and goal-directed action under a variety of reinforcement contingencies. Then we consider the role that endocannabinoids might play in switching an animal's motivation from a goal-directed action to the search for an alternative outcome, in addition to the formation of long-term habits. Finally, dissociable features of attentional behavior using both the 5-choice serial reaction time task and the attentional set-shifting task are discussed along with their distinct influences by DA and cannabinoids. We end with discussing potential targets for further research regarding DA-cannabinoid interactions within key substrates involved in motivation and attention.
Collapse
Affiliation(s)
- Erik B. Oleson
- Department of Psychology, University of Colorado Denver, Denver, CO, United States
| | - Lindsey R. Hamilton
- Department of Psychology, University of Colorado Denver, Denver, CO, United States
| | - Devan M. Gomez
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, United States
| |
Collapse
|
34
|
Khalid S, Almalki FA, Hadda TB, Bader A, Abu-Izneid T, Berredjem M, Elsharkawy ER, Alqahtani AM. Medicinal Applications of Cannabinoids Extracted from Cannabis sativa (L.): A New Route in the Fight Against COVID-19? Curr Pharm Des 2021; 27:1564-1578. [PMID: 33267756 DOI: 10.2174/1381612826666201202125807] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/22/2020] [Accepted: 11/04/2020] [Indexed: 11/22/2022]
Abstract
Cannabis sativa is a well-known plant that has been recognized for its benefits since ancient times by several medicinal systems, including those of China, India, Greece, and Egypt. Although C. sativa is one of the most investigated medicinal plants in the world, it faces some of the greatest controversies surrounding its legalization and use as a medication. C. sativa contains several hundred phytoconstituents, including the infamous "cannabinoids". It is necessary to properly understand the medicinal importance of these phytochemicals and spread awareness among the countries where cannabis is still facing legal obstacles. The current review focuses on the most recent literature pertaining to various applications of cannabinoids, with a special focus on the medicinal aspect of these phytochemicals. Peer-reviewed articles focusing on the importance of cannabis and cannabinoids are the target of this review. Articles were selected based on the relevance to the general scope of the work, i.e., application of cannabinoids. Cannabinoids can truly be regarded as wonder drugs, considering their immense diversity of usage. Unfortunately, however, many of the mares have never been researched biologically or pharmacologically due to their low yield in the plant. However, the approval of some cannabinoids by the FDA (along with other recognized national medical health systems) has opened the horizon for the use of these natural drugs in medicines such as Epidiolex® (cannabidiol, used for the treatment of severe forms of epilepsy) and Sativex®(Δ9-tetrahydrocannabinol and cannabidiol, used for the treatment of spasticity caused by multiple sclerosis). Many pharmacological properties of C. sativa are attributed to cannabidiol (CBD), a non-psychoactive component, along with Δ9-tetrahydrocannabinol (Δ9-THC), a psychoactive component. This review addresses the most important applications or current utilization of cannabinoids in a variety of treatments such as chronic pain, cancer, emesis, anorexia, irritable bowel syndrome, communicable diseases, glaucoma, and central nervous system disorders. The biosynthetic pathway of cannabinoids is also discussed. In short, cannabis has a myriad of bioactive compounds that have the potential to increase the list of approved cannabinoids suitable for therapy.
Collapse
Affiliation(s)
- Shah Khalid
- Department of Botany, Islamia College, Peshawar, Pakistan
| | - Faisal A Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah Almukkarramah, Saudi Arabia
| | - Taibi Ben Hadda
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah Almukkarramah, Saudi Arabia
| | - Ammar Bader
- Department of Pharmacognosy, Faculty of Pharmacy, Umm Al-Qura University, Makkah Almukkarramah, Saudi Arabia
| | - Tareq Abu-Izneid
- Pharmaceutical Sciences, Collage of Pharmacy, Al Ain University, Al Ain, United Arab Emirates
| | - Malika Berredjem
- Laboratory of Applied Organic Chemistry LCOA, Synthesis of Biomolecules and Molecular Modelling Group, Badji-Mokhtar - Annaba University, Box 12, 23000 Annaba, Algeria
| | - Eman R Elsharkawy
- Chemistry Department, Faculty of Science, Northern Borders University, Arar, Saudi Arabia
| | - Ali M Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| |
Collapse
|
35
|
Radwan MM, Chandra S, Gul S, ElSohly MA. Cannabinoids, Phenolics, Terpenes and Alkaloids of Cannabis. Molecules 2021; 26:2774. [PMID: 34066753 PMCID: PMC8125862 DOI: 10.3390/molecules26092774] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 12/30/2022] Open
Abstract
Cannabis sativa is one of the oldest medicinal plants in the world. It was introduced into western medicine during the early 19th century. It contains a complex mixture of secondary metabolites, including cannabinoids and non-cannabinoid-type constituents. More than 500 compounds have been reported from C. sativa, of which 125 cannabinoids have been isolated and/or identified as cannabinoids. Cannabinoids are C21 terpeno-phenolic compounds specific to Cannabis. The non-cannabinoid constituents include: non-cannabinoid phenols, flavonoids, terpenes, alkaloids and others. This review discusses the chemistry of the cannabinoids and major non-cannabinoid constituents (terpenes, non-cannabinoid phenolics, and alkaloids) with special emphasis on their chemical structures, methods of isolation, and identification.
Collapse
Affiliation(s)
- Mohamed M. Radwan
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA; (M.M.R.); (S.C.)
| | - Suman Chandra
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA; (M.M.R.); (S.C.)
| | - Shahbaz Gul
- ElSohly Laboratories, Inc., 5 Industrial Park Drive, Oxford, MS 38655, USA;
- Sally McDonnell Barksdale Honors College, University of Mississippi, Oxford, MS 38677, USA
| | - Mahmoud A. ElSohly
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA; (M.M.R.); (S.C.)
- Sally McDonnell Barksdale Honors College, University of Mississippi, Oxford, MS 38677, USA
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
| |
Collapse
|
36
|
Schofs L, Sparo MD, Sánchez Bruni SF. The antimicrobial effect behind Cannabis sativa. Pharmacol Res Perspect 2021; 9:e00761. [PMID: 33822478 PMCID: PMC8023331 DOI: 10.1002/prp2.761] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/01/2021] [Indexed: 12/11/2022] Open
Abstract
The development of multidrug-resistant bacteria has revealed the need for new antimicrobial compounds. Cannabis sativa preparations have a long history of medical applications, including the treatment of infectious diseases. This review collects the information about the activity of C. sativa extracts and its main components (cannabinoids and terpenes) against pathogenic bacteria and fungus, to assess its potential using as antimicrobial agents.
Collapse
Affiliation(s)
- Laureano Schofs
- Laboratory of Pharmacology, Faculty of Veterinary Medicine, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina.,Tandil Veterinary Research Center (CIVETAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Comisión de investigaciones científicas de la Provincia de Buenos Aires (CICPBA), Tandil, Argentina
| | - Mónica D Sparo
- Tandil Veterinary Research Center (CIVETAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Comisión de investigaciones científicas de la Provincia de Buenos Aires (CICPBA), Tandil, Argentina.,Clinical Department, Faculty of Health Sciences, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
| | - Sergio F Sánchez Bruni
- Laboratory of Pharmacology, Faculty of Veterinary Medicine, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina.,Tandil Veterinary Research Center (CIVETAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Comisión de investigaciones científicas de la Provincia de Buenos Aires (CICPBA), Tandil, Argentina
| |
Collapse
|
37
|
Anti-fatigue activity of hemp leaves water extract and the related biochemical changes in mice. Food Chem Toxicol 2021; 150:112054. [DOI: 10.1016/j.fct.2021.112054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/31/2021] [Accepted: 02/04/2021] [Indexed: 12/13/2022]
|
38
|
Shakil SSM, Gowan M, Hughes K, Azam MNK, Ahmed MN. A narrative review of the ethnomedicinal usage of Cannabis sativa Linnaeus as traditional phytomedicine by folk medicine practitioners of Bangladesh. J Cannabis Res 2021; 3:8. [PMID: 33741060 PMCID: PMC7980557 DOI: 10.1186/s42238-021-00063-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 03/05/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND There is a worldwide interest in the use of Cannabis sativa for biomedicine purposes. Cannabis has ethnomedicinal usage as a natural medicine in Bangladesh and cultivated during the British Empire period for revenues. OBJECTIVE Folk medicine practitioners (FMPs) from different districts of Bangladesh have been using Cannabis sativa, but until now there have not been any compiled studies particularly regarding this practice. Hence, this review is an effort to retrieve the traditional usage of Cannabis sativa as a phytomedicine from published ethnomedicinal studies. METHODS AND MATERIALS Information was searched by using the search terms "ethnomedicinal Cannabis sativa and Bangladesh"; "Bangladesh cannabaceae and ethnomedicinal survey"; "ganja, bhang and folk medicine Bangladesh"; "tetrahydrocannabinol (THC), cannabinoid and therapeutic, clinical trial"; and "cannabis and pharmacological/biological" and retrieved from ethnobotanical articles available on PubMed, Scopus, Science Direct, and Google Scholar databases. A search of the relevant scientific literature also was conducted to assess the efficacy of the ethnomedicinal usage of Cannabis sativa. RESULTS While reviewing over 200 ethnomedicinal plants' survey articles, we found that FMPs of Bangladesh from 12 different districts used Cannabis sativa to treat cited ailments like sleep-associated problems (n=5), neuropsychiatric and CNS problems (n=5), and infections and respiratory problems (n=5) followed by rheumatism, gastrointestinal, gynecological (n=4 each), cancer, sexual, and other ailments including hypertension, headache, itch, increases bile secretion, abortifacient, dandruff, fever, and urinary problems (n=1 each). There are a total of 15 formulations identified from the 11 out of 18 ethnomedicinal plant survey reports. The leaf was the main plant part used (53.8%), followed by root (23%), seed (7.7%) and flower, inflorescence, resin, and all parts 3.8% respectively. CONCLUSIONS Sales and cultivation of Cannabis are illegal at present in Bangladesh, but the use of Cannabis sativa as a natural phytomedicine has been practiced traditionally by folk medicine practitioners of Bangladesh for many years and validated through relevant pharmacological justification. Although Cannabis sativa possesses ethnomedicinal properties in the folk medicine of Bangladesh, it is, furthermore, needed to conduct biological research to consolidate pharmacological justification about the prospects and challenges of Cannabis and cannabinoids' use in Bangladesh as safer biomedicine in the future.
Collapse
Affiliation(s)
| | - Matt Gowan
- The Canadian College of Naturopathic Medicine, Toronto, Ontario Canada
| | | | - Md. Nur Kabidul Azam
- Department of Genetic Engineering & Biotechnology, Jashore University of Science & Technology, Jashore, Bangladesh
| | - Md. Nasir Ahmed
- Biotechnology & Natural Medicine Division, TechB Nutrigenomics, Dhaka, Bangladesh
| |
Collapse
|
39
|
Śledziński P, Nowak-Terpiłowska A, Zeyland J. Cannabinoids in Medicine: Cancer, Immunity, and Microbial Diseases. Int J Mol Sci 2020; 22:E263. [PMID: 33383838 PMCID: PMC7795897 DOI: 10.3390/ijms22010263] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/16/2020] [Accepted: 12/25/2020] [Indexed: 12/12/2022] Open
Abstract
Recently, there has been a growing interest in the medical applications of Cannabis plants. They owe their unique properties to a group of secondary metabolites known as phytocannabinoids, which are specific for this genus. Phytocannabinoids, and cannabinoids generally, can interact with cannabinoid receptors being part of the endocannabinoid system present in animals. Over the years a growing body of scientific evidence has been gathered, suggesting that these compounds have therapeutic potential. In this article, we review the classification of cannabinoids, the molecular mechanisms of their interaction with animal cells as well as their potential application in the treatment of human diseases. Specifically, we focus on the research concerning the anticancer potential of cannabinoids in preclinical studies, their possible use in cancer treatment and palliative medicine, as well as their influence on the immune system. We also discuss their potential as therapeutic agents in infectious, autoimmune, and gastrointestinal inflammatory diseases. We postulate that the currently ongoing and future clinical trials should be accompanied by research focused on the cellular and molecular response to cannabinoids and Cannabis extracts, which will ultimately allow us to fully understand the mechanism, potency, and safety profile of cannabinoids as single agents and as complementary drugs.
Collapse
Affiliation(s)
- Paweł Śledziński
- Department of Genome Engineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 60-032 Poznan, Poland;
| | | | - Joanna Zeyland
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, 60-632 Poznan, Poland;
| |
Collapse
|
40
|
Singh A, Bilichak A, Kovalchuk I. The genetics of Cannabis-genomic variations of key synthases and their effect on cannabinoid content. Genome 2020; 64:490-501. [PMID: 33186070 DOI: 10.1139/gen-2020-0087] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Despite being a controversial crop, Cannabis sativa L. has a long history of cultivation throughout the world. Following recent legalization in Canada, Cannabis is emerging as an important plant for both medicinal and recreational purposes. Recent progress in genome sequencing of both cannabis and hemp varieties allow for systematic analysis of genes coding for enzymes involved in the cannabinoid biosynthesis pathway. Single-nucleotide polymorphisms in the coding regions of cannabinoid synthases play an important role in determining plant chemotype. Deep understanding of how these variants affect enzyme activity and accumulation of cannabinoids will allow breeding of novel cultivars with desirable cannabinoid profiles. Here we present a short overview of the major cannabinoid synthases and present the data on the analysis of their genetic variants and their effect on cannabinoid content using several in-house sequenced Cannabis cultivars.
Collapse
Affiliation(s)
- Aparna Singh
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Andriy Bilichak
- Morden Research and Development Center, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
41
|
Musetti B, González-Ramos H, González M, Bahnson EM, Varela J, Thomson L. Cannabis sativa extracts protect LDL from Cu 2+-mediated oxidation. J Cannabis Res 2020; 2. [PMID: 33123676 PMCID: PMC7592720 DOI: 10.1186/s42238-020-00042-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background Multiple therapeutic properties have been attributed to Cannabis sativa. However, further research is required to unveil the medicinal potential of Cannabis and the relationship between biological activity and chemical profile. Objectives The primary objective of this study was to characterize the chemical profile and antioxidant properties of three varieties of Cannabis sativa available in Uruguay during progressive stages of maturation. Methods Fresh samples of female inflorescences from three stable Cannabis sativa phenotypes, collected at different time points during the end of the flowering period were analyzed. Chemical characterization of chloroform extracts was performed by 1H-NMR. The antioxidant properties of the cannabis sativa extracts, and pure cannabinoids, were measured in a Cu2+-induced LDL oxidation assay. Results The main cannabinoids in the youngest inflorescences were tetrahydrocannabinolic acid (THC-A, 242 ± 62 mg/g) and tetrahydrocannabinol (THC, 7.3 ± 6.5 mg/g). Cannabinoid levels increased more than twice in two of the mature samples. A third sample showed a lower and constant concentration of THC-A and THC (177 ± 25 and 1 ± 1, respectively). The THC-A/THC rich cannabis extracts increased the latency phase of LDL oxidation by a factor of 1.2-3.5 per μg, and slowed down the propagation phase of lipoperoxidation (IC50 1.7-4.6 μg/mL). Hemp, a cannabidiol (CBD, 198 mg/g) and cannabidiolic acid (CBD-A, 92 mg/g) rich variety, also prevented the formation of conjugated dienes during LDL oxidation. In fact, 1 μg of extract was able to stretch the latency phase 3.7 times and also to significantly reduce the steepness of the propagation phase (IC50 of 8 μg/mL). Synthetic THC lengthened the duration of the lag phase by a factor of 21 per μg, while for the propagation phase showed an IC50 ≤ 1 μg/mL. Conversely, THC-A was unable to improve any parameter. Meanwhile, the presence of 1 μg of pure CBD and CBD-A increased the initial latency phase 4.8 and 9.4 times, respectively, but did not have an effect on the propagation phase. Conclusion Cannabis whole extracts acted on both phases of lipid oxidation in copper challenged LDL. Those effects were just partially related with the content of cannabinoids and partially recapitulated by isolated pure cannabinoids. Our results support the potentially beneficial effects of cannabis sativa whole extracts on the initial phase of atherosclerosis.
Collapse
Affiliation(s)
- Bruno Musetti
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
| | - Helena González-Ramos
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay.,Grupo de Química Orgánica Medicinal, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
| | - Mercedes González
- Grupo de Química Orgánica Medicinal, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
| | - Edward M Bahnson
- Division of Vascular Surgery, Department of Surgery, and Department of Cell Biology & Physiology, Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Javier Varela
- Grupo de Química Orgánica Medicinal, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
| | - Leonor Thomson
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
| |
Collapse
|
42
|
Zheljazkov VD, Sikora V, Semerdjieva IB, Kačániová M, Astatkie T, Dincheva I. Grinding and Fractionation during Distillation Alter Hemp Essential Oil Profile and Its Antimicrobial Activity. Molecules 2020; 25:E3943. [PMID: 32872359 PMCID: PMC7504750 DOI: 10.3390/molecules25173943] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 12/05/2022] Open
Abstract
The hypothesis of this study was that we can modify the essential oil (EO) profile of hemp (Cannabis sativa L.) and obtain fractions with differential composition and antimicrobial activity. Therefore, the objective was to evaluate the effects of grinding of hemp biomass before EO extraction and fractionation during distillation on EO profile and antimicrobial activity. The study generated a several EO fractions with a diversity of chemical profile and antimicrobial activity. The highest concentrations of β-pinene and myrcene in the EO can be obtained in the 5-10 min distillation time (DT) of ground material or in the 80-120 min DT of nonground material. High δ-3-carene and limonene EO can be obtained from 0-5 min DT fraction of nonground material. High eucalyptol EO can be sampled either in the 0-5 min DT of the ground material or in the 80-120 min of nonground material. Overall, the highest concentrations of β-caryophyllene, α-(E)-bergamotene, (Z)-β-farnesene, α-humulene, caryophyllenyl alcohol, germacrene D-4-ol, spathulenol, caryophyllene oxide, humulene epoxide 2, β-bisabolol, α-bisabolol, sesquiterpenes, and cannabidiol (CBD) can be obtained when EO is sampled in the 80-120 min DT and the material is nonground. Monoterpenes in the hemp EO can be increased twofold to 85% by grinding the material prior to distillation and collecting the EO in the first 10 min. However, grinding resulted in a slight but significant decrease in the CBD concentration of the EO. CBD-rich oil can be produced by collecting at 120-180 min DT. Different EO fractions had differential antimicrobial activity. The highest antimicrobial activity of EO fraction was found against Staphylococcus aureus subsp. aureus. THC-free EO can be obtained if the EO distillation is limited to 120 min. The results can be utilized by the hemp processing industry and by companies developing new hemp EO-infused products, including perfumery, cosmetics, dietary supplements, food, and pharmaceutical industries.
Collapse
Affiliation(s)
- Valtcho D. Zheljazkov
- Crop and Soil Science Department, 3050 SW Campus Way, Oregon State University, Corvallis, OR 97331, USA
| | - Vladimir Sikora
- Institute for Field and Vegetable Crops, Alternative Crops and Organic Production Department, Maksima Gorkog 30, 21000 Novi Sad, Serbia;
| | - Ivanka B. Semerdjieva
- Department of Botany and Agrometeorology, Faculty of Agronomy, Agricultural University, 4000 Plovdiv, Bulgaria;
| | - Miroslava Kačániová
- Department of Fruit Science, Viticulture and Enology, Faculty of Horticulture and Landscape Engineering, Tr. A. Hlinku 2, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovak Republic;
- Department of Bioenergetics and Food Analysis, Institution of Food Technology and Nutrition, University of Rzeszow, Cwiklinskiej 1, 35-601 Rzeszow, Poland
| | - Tess Astatkie
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada;
| | - Ivayla Dincheva
- Plant Genetic Research Group, Agrobioinstitute, Agricultural Academy, 8 “Dragan Tsankov” Blvd, 1164 Sofia, Bulgaria;
| |
Collapse
|
43
|
Kapur BM, Aleksa K. What the lab can and cannot do: clinical interpretation of drug testing results. Crit Rev Clin Lab Sci 2020; 57:548-585. [PMID: 32609540 DOI: 10.1080/10408363.2020.1774493] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Urine drug testing is one of the objective tools available to assess adherence. To monitor adherence, quantitative urinary results can assist in differentiating "new" drug use from "previous" (historical) drug use. "Spikes" in urinary concentration can assist in identifying patterns of drug use. Coupled chromatographic-mass spectrometric methods are capable of identifying very small amounts of analyte and can make clinical interpretation rather challenging, specifically for drugs that have a longer half-life. Polypharmacy is common in treatment and rehabilitation programs because of co-morbidities. Medications prescribed for comorbidities can cause drug-drug interaction and phenoconversion of genotypic extensive metabolizers into phenotypic poor metabolizers of the treatment drug. This can have significant impact on both pharmacokinetic (PK) and pharmacodynamic properties of the treatment drug. Therapeutic drug monitoring (TDM) coupled with PKs can assist in interpreting the effects of phenoconversion. TDM-PKs reflects the cumulative effects of pathophysiological changes in the patient as well as drug-drug interactions and should be considered for treatment medications/drugs used to manage pain and treat substance abuse. Since only a few enzyme immunoassays for TDM are available, this is a unique opportunity for clinical laboratory scientists to develop TDM-PK protocols that can have a significant impact on patient care and personalized medicine. Interpretation of drug screening results should be done with caution while considering pharmacological properties and the presence or absence of the parent drug and its metabolites. The objective of this manuscript is to review and address the variables that influence interpretation of different drugs analyzed from a rehabilitation and treatment programs perspective.
Collapse
Affiliation(s)
- Bhushan M Kapur
- Clini Tox Inc., Oakville, Canada.,Seroclinix Corporation, Mississauga, Canada
| | | |
Collapse
|
44
|
Golombek P, Müller M, Barthlott I, Sproll C, Lachenmeier DW. Conversion of Cannabidiol (CBD) into Psychotropic Cannabinoids Including Tetrahydrocannabinol (THC): A Controversy in the Scientific Literature. TOXICS 2020; 8:E41. [PMID: 32503116 PMCID: PMC7357058 DOI: 10.3390/toxics8020041] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 01/15/2023]
Abstract
Cannabidiol (CBD) is a naturally occurring, non-psychotropic cannabinoid of the hemp plant Cannabis sativa L. and has been known to induce several physiological and pharmacological effects. While CBD is approved as a medicinal product subject to prescription, it is also widely sold over the counter (OTC) in the form of food supplements, cosmetics and electronic cigarette liquids. However, regulatory difficulties arise from its origin being a narcotic plant or its status as an unapproved novel food ingredient. Regarding the consumer safety of these OTC products, the question whether or not CBD might be degraded into psychotropic cannabinoids, most prominently tetrahydrocannabinol (THC), under in vivo conditions initiated an ongoing scientific debate. This feature review aims to summarize the current knowledge of CBD degradation processes, specifically the results of in vitro and in vivo studies. Additionally, the literature on psychotropic effects of cannabinoids was carefully studied with a focus on the degradants and metabolites of CBD, but data were found to be sparse. While the literature is contradictory, most studies suggest that CBD is not converted to psychotropic THC under in vivo conditions. Nevertheless, it is certain that CBD degrades to psychotropic products in acidic environments. Hence, the storage stability of commercial formulations requires more attention in the future.
Collapse
Affiliation(s)
| | | | | | | | - Dirk W. Lachenmeier
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Straße 3, 76187 Karlsruhe, Germany; (P.G.); (M.M.); (I.B.); (C.S.)
| |
Collapse
|
45
|
Klahn P. Cannabinoids-Promising Antimicrobial Drugs orIntoxicants with Benefits? Antibiotics (Basel) 2020; 9:E297. [PMID: 32498408 PMCID: PMC7345649 DOI: 10.3390/antibiotics9060297] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 01/03/2023] Open
Abstract
Novel antimicrobial drugs are urgently needed to counteract the increasing occurrence ofbacterial resistance. Extracts of Cannabis sativa have been used for the treatment of several diseasessince ancient times. However, its phytocannabinoid constituents are predominantly associated withpsychotropic effects and medical applications far beyond the treatment of infections. It has beendemonstrated that several cannabinoids show potent antimicrobial activity against primarily Grampositivebacteria including methicillin-resistant Staphylococcus aureus (MRSA). As first in vivoefficacy has been demonstrated recently, it is time to discuss whether cannabinoids are promisingantimicrobial drug candidates or overhyped intoxicants with benefits.
Collapse
Affiliation(s)
- Philipp Klahn
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30,D-38106 Braunschweig, Germany
| |
Collapse
|
46
|
In-vitro evaluation of antimicrobial, antioxidant, alpha-amylase inhibition and cytotoxicity properties of Cannabis sativa. ADVANCES IN TRADITIONAL MEDICINE 2020. [DOI: 10.1007/s13596-019-00414-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
47
|
Stonehouse GC, McCarron BJ, Guignardi ZS, El Mehdawi AF, Lima LW, Fakra SC, Pilon-Smits EAH. Selenium Metabolism in Hemp ( Cannabis sativa L.)-Potential for Phytoremediation and Biofortification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:4221-4230. [PMID: 32182043 DOI: 10.1021/acs.est.9b07747] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Selenium (Se) deficiency and toxicity affect over a billion people worldwide. Plants can mitigate both problems, via Se biofortification and phytoremediation. Here we explore the potential of hemp (Cannabis sativa L.) for these phytotechnologies. Field surveys in naturally seleniferous agricultural areas in Colorado, United States, found 15-25 μg of Se/g in seed and 5-10 μg of Se/g dry weight (DW) in flowers and leaves. Thus, 4 g of this hemp seed provides the U.S. recommended daily allowance of 55-75 μg of Se. In controlled greenhouse experiments, hemp seedlings grown in Turface supplied with 40-320 μM selenate showed complete tolerance up to 160 μM and accumulated up to 1300 mg of Se/kg shoot dry weight. Mature hemp grown in Turface supplied with 5-80 μM selenate was completely tolerant up to 40 μM selenate and accumulated up to 200 mg of Se/kg DW in leaves, flowers, and seeds. Synchrotron X-ray fluorescence and X-ray absorption spectroscopies of selenate-supplied hemp showed Se to accumulate mainly in the leaf vasculature and in the seed embryos, with predominant Se speciation in C-Se-C forms (57-75% in leaf and more than 86% in seeds). Aqueous seed extracts were found by liquid chromatography mass spectrometry to contain selenomethionine and methyl-selenocysteine (1:1-3 ratio), both excellent dietary Se sources. Floral concentrations of medicinal cannabidiol (CBD) and terpenoids were not affected by Se. We conclude that hemp has good potential for Se phytoremediation while producing Se-biofortified dietary products.
Collapse
Affiliation(s)
- Gavin C Stonehouse
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Brandon Jude McCarron
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Zack S Guignardi
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Ali F El Mehdawi
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Leonardo W Lima
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Sirine C Fakra
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | | |
Collapse
|
48
|
Pauli CS, Conroy M, Vanden Heuvel BD, Park SH. Cannabidiol Drugs Clinical Trial Outcomes and Adverse Effects. Front Pharmacol 2020; 11:63. [PMID: 32161538 PMCID: PMC7053164 DOI: 10.3389/fphar.2020.00063] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/22/2020] [Indexed: 12/11/2022] Open
Abstract
This review aims to present completed clinical trial data surrounding the medicinal benefits and potential side effects of the increasingly popular cannabidiol (CBD)-based drug products, specifically Epidiolex. The article is divided into two sections based on if the ailment being treated by this cannabinoid is classified as either physiological or neurological conditions. In addition to describing the current status, we also examined the different primary and secondary outcomes recorded for each study, which varies greatly depending on the funding source of the clinical trial. With the recent FDA-approval of Epidiolex, this review mainly focused on trials involving this specific formulation since it is the only CBD-based drug currently available to clinicians, although all other clinically trialed CBD(A) drugs were also examined. We hope this review will help guide future research and clinical trials by providing the various outcomes measured in a single review.
Collapse
Affiliation(s)
- Christopher S Pauli
- Institute of Cannabis Research, Colorado State University-Pueblo, Pueblo, CO, United States
| | - Matthieu Conroy
- Institute of Cannabis Research, Colorado State University-Pueblo, Pueblo, CO, United States
| | | | - Sang-Hyuck Park
- Institute of Cannabis Research, Colorado State University-Pueblo, Pueblo, CO, United States.,Department of Biology, Colorado State University-Pueblo, Pueblo, CO, United States
| |
Collapse
|
49
|
Hossain MZ, Ando H, Unno S, Kitagawa J. Targeting Peripherally Restricted Cannabinoid Receptor 1, Cannabinoid Receptor 2, and Endocannabinoid-Degrading Enzymes for the Treatment of Neuropathic Pain Including Neuropathic Orofacial Pain. Int J Mol Sci 2020; 21:E1423. [PMID: 32093166 PMCID: PMC7073137 DOI: 10.3390/ijms21041423] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 02/06/2023] Open
Abstract
Neuropathic pain conditions including neuropathic orofacial pain (NOP) are difficult to treat. Contemporary therapeutic agents for neuropathic pain are often ineffective in relieving pain and are associated with various adverse effects. Finding new options for treating neuropathic pain is a major priority in pain-related research. Cannabinoid-based therapeutic strategies have emerged as promising new options. Cannabinoids mainly act on cannabinoid 1 (CB1) and 2 (CB2) receptors, and the former is widely distributed in the brain. The therapeutic significance of cannabinoids is masked by their adverse effects including sedation, motor impairment, addiction and cognitive impairment, which are thought to be mediated by CB1 receptors in the brain. Alternative approaches have been developed to overcome this problem by selectively targeting CB2 receptors, peripherally restricted CB1 receptors and endocannabinoids that may be locally synthesized on demand at sites where their actions are pertinent. Many preclinical studies have reported that these strategies are effective for treating neuropathic pain and produce no or minimal side effects. Recently, we observed that inhibition of degradation of a major endocannabinoid, 2-arachydonoylglycerol, can attenuate NOP following trigeminal nerve injury in mice. This review will discuss the above-mentioned alternative approaches that show potential for treating neuropathic pain including NOP.
Collapse
Affiliation(s)
- Mohammad Zakir Hossain
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan; (S.U.); (J.K.)
| | - Hiroshi Ando
- Department of Biology, School of Dentistry, Matsumoto Dental University, 1780 Gobara, Hirooka, Shiojiri, Nagano 399-0781, Japan;
| | - Shumpei Unno
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan; (S.U.); (J.K.)
| | - Junichi Kitagawa
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan; (S.U.); (J.K.)
| |
Collapse
|
50
|
Ritter S, Zadik-Weiss L, Almogi-Hazan O, Or R. Cannabis, One Health, and Veterinary Medicine: Cannabinoids' Role in Public Health, Food Safety, and Translational Medicine. Rambam Maimonides Med J 2020; 11:RMMJ.10388. [PMID: 32017686 PMCID: PMC7000163 DOI: 10.5041/rmmj.10388] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Public health is connected to cannabis with regard to food, animal feed (feed), and pharmaceuticals. Therefore, the use of phytocannabinoids should be examined from a One Health perspective. Current knowledge on medical cannabis treatment (MCT) does not address sufficiently diseases which are of epidemiological and of zoonotic concern. The use of cannabinoids in veterinary medicine is illegal in most countries, mostly due to lack of evidence-based medicine. To answer the growing need of scientific evidence-based applicable medicine in both human and veterinary medicine, a new approach for the investigation of the therapeutic potential of cannabinoids must be adopted. A model that offers direct study of a specific disease in human and veterinary patients may facilitate development of novel therapies. Therefore, we urge the regulatory authorities-the ministries of health and agriculture (in Israel and worldwide)-to publish guidelines for veterinary use due to its importance to public health, as well as to promote One Health-related preclinical translational medicine studies for the general public health.
Collapse
Affiliation(s)
| | | | - Osnat Almogi-Hazan
- Laboratory of Immunotherapy and Bone Marrow Transplantation, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Reuven Or
- Laboratory of Immunotherapy and Bone Marrow Transplantation, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|