1
|
Vignesh A, Amal TC, Vasanth K. Food contaminants: Impact of food processing, challenges and mitigation strategies for food security. Food Res Int 2024; 191:114739. [PMID: 39059927 DOI: 10.1016/j.foodres.2024.114739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024]
Abstract
Food preparation involves the blending of various food ingredients to make more convenient processed food products. It is a long chain process, where each stage posing a risk of accumulating hazardous contaminants in these food systems. Protecting the public health from contaminated foods has become a demanding task in ensuring food safety. This review focused on the causes, types, and health risks of contaminants or hazardous chemicals during food processing. The impact of cooking such as frying, grilling, roasting, and baking, which may lead to the formation of hazardous by-products, including polycyclic aromatic hydrocarbons (PAHs), heterocyclic amines (HCAs), acrylamide, advanced glycation end products (AGEs), furan, acrolein, nitrosamines, 5-hydroxymethylfurfural (HMF) and trans-fatty acids (TFAs). Potential health risks such as carcinogenicity, genotoxicity, neurotoxicity, and cardiovascular effects are emerging as a major problem in the modern lifestyle era due to the increased uptakes of contaminants. Effects of curing, smoking, and fermentation of the meat products led to affect the sensory and nutritional characteristics of meat products. Selecting appropriate cooking methods include temperature, time and the consumption of the food are major key factors that should be considered to avoid the excess level intake of hazardous contaminants. Overall, this study underscores the importance of understanding the risks associated with food preparation methods, strategies for minimizing the formation of harmful compounds during food processing and highlights the need for healthy dietary choices to mitigate potential health hazards.
Collapse
Affiliation(s)
- Arumugam Vignesh
- Department of Botany, Nallamuthu Gounder Mahalingam College (Autonomous), Pollachi 642 001, Tamil Nadu, India.
| | - Thomas Cheeran Amal
- ICAR - Central Institute for Cotton Research, RS, Coimbatore 641 003, Tamil Nadu, India
| | - Krishnan Vasanth
- Department of Botany, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| |
Collapse
|
2
|
Chiang Yu Y, Lu D, Rege B, Polli JE. Lack of Effect of Antioxidants on Biopharmaceutics Classification System (BCS) Class III Drug Permeability. J Pharm Sci 2024; 113:2215-2222. [PMID: 38484875 DOI: 10.1016/j.xphs.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 08/30/2024]
Abstract
The addition of antioxidants to pharmaceutical products is a potential approach to inhibit nitrosamine formation, particularly in solid oral dosage forms like tablets and capsules. The objective was to assess the effect of ten antioxidants on the permeability of four Biopharmaceutics Classification System (BCS) Class III drugs. Bi-directional drug permeability studies in the absence and presence of antioxidants were performed in vitro across MDCK-II monolayers. No antioxidant increased drug permeability, while the positive control sodium lauryl sulfate always increased drug permeability. Results support that any of the ten antioxidants, up to at least 10 mg, can be added to a solid oral dosage form without modulating passive drug intestinal permeability. Additional considerations are also discussed.
Collapse
Affiliation(s)
- Yuly Chiang Yu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, 21201, USA
| | - Dongmei Lu
- Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Bhagwant Rege
- Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - James E Polli
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, 21201, USA.
| |
Collapse
|
3
|
Möller MN, Vitturi DA. The chemical biology of dinitrogen trioxide. REDOX BIOCHEMISTRY AND CHEMISTRY 2024; 8:100026. [PMID: 38957295 PMCID: PMC11218869 DOI: 10.1016/j.rbc.2024.100026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Dinitrogen trioxide (N 2 O 3 ) mediates low-molecular weight and protein S- and N-nitrosation, with recent reports suggesting a role in the formation of nitrating intermediates as well as in nitrite-dependent hypoxic vasodilatation. However, the reactivity ofN 2 O 3 in biological systems results in an extremely short half-life that renders this molecule essentially undetectable by currently available technologies. As a result, evidence for in vivoN 2 O 3 formation derives from the detection of nitrosated products as well as from in vitro kinetic determinations, isotopic labeling studies, and spectroscopic analyses. This review will discuss mechanisms ofN 2 O 3 formation, reactivity and decomposition, as well as address the role of sub-cellular localization as a key determinant of its actions. Finally, evidence will be discussed supporting different roles forN 2 O 3 as a biologically relevant signaling molecule.
Collapse
Affiliation(s)
- Matías N. Möller
- Laboratorio Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Darío A. Vitturi
- Department of Pathology. University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
4
|
Chai X, Liu L, Chen F. Oral nitrate-reducing bacteria as potential probiotics for blood pressure homeostasis. Front Cardiovasc Med 2024; 11:1337281. [PMID: 38638884 PMCID: PMC11024454 DOI: 10.3389/fcvm.2024.1337281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/12/2024] [Indexed: 04/20/2024] Open
Abstract
Hypertension is a leading cause of morbidity and mortality worldwide and poses a major risk factor for cardiovascular diseases and chronic kidney disease. Research has shown that nitric oxide (NO) is a vasodilator that regulates vascular tension and the decrease of NO bioactivity is considered one of the potential pathogenesis of essential hypertension. The L-arginine-nitric oxide synthase (NOS) pathway is the main source of endogenous NO production. However, with aging or the onset of diseases, the function of the NOS system becomes impaired, leading to insufficient NO production. The nitrate-nitrite-NO pathway allows for the generation of biologically active NO independent of the NOS system, by utilizing endogenous or dietary inorganic nitrate and nitrite through a series of reduction cycles. The oral cavity serves as an important interface between the body and the environment, and dysbiosis or disruption of the oral microbiota has negative effects on blood pressure regulation. In this review, we explore the role of oral microbiota in maintaining blood pressure homeostasis, particularly the connection between nitrate-reducing bacteria and the bioavailability of NO in the bloodstream and blood pressure changes. This review aims to elucidate the potential mechanisms by which oral nitrate-reducing bacteria contribute to blood pressure homeostasis and to highlight the use of oral nitrate-reducing bacteria as probiotics for oral microbiota intervention to prevent hypertension.
Collapse
Affiliation(s)
- Xiaofen Chai
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Libing Liu
- Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Feng Chen
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
5
|
Sirvins C, Goupy P, Promeyrat A, Dufour C. C-Nitrosation, C-Nitration, and Coupling of Flavonoids with N-Acetyltryptophan Limit This Amine N-Nitrosation in a Simulated Cured and Cooked Meat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4777-4787. [PMID: 38377948 DOI: 10.1021/acs.jafc.3c08445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Nitrite is a common additive in cured meat formulation that provides microbiological safety, lipid oxidation management, and typical organoleptic properties. However, it is associated with the formation of carcinogenic N-nitrosamines. In this context, the antinitrosating capacity of selected flavonoids and ascorbate was evaluated in a simulated cooked and cured meat under formulation and digestion conditions. N-Acetyltryptophan was used as a secondary amine target. (-)-Epicatechin, rutin, and quercetin were all able to limit the formation of N-acetyl-N-nitrosotryptophan (NO-AcTrp) at pH 2.5 and pH 5 although (-)-epicatechin was 2 to 3-fold more efficient. Kinetics for the newly identified compounds allowed us to unravel common mechanistic pathways, which are flavonoid oxidation by nitrite followed by C-nitration and an original covalent coupling between NO-AcTrp and flavonoids or their nitro and nitroso counterparts. C-nitrosation of the A-ring was evidenced only for (-)-epicatechin. These major findings suggest that flavonoids could help to manage N-nitrosamine formation during cured meat processing, storage, and digestion.
Collapse
Affiliation(s)
- Charlène Sirvins
- INRAE, Avignon University, UMR408 SQPOV, F-84000 Avignon, France
- IFIP, French Pork and Pig Institute, F-35650 Le Rheu, France
| | - Pascale Goupy
- INRAE, Avignon University, UMR408 SQPOV, F-84000 Avignon, France
| | | | - Claire Dufour
- INRAE, Avignon University, UMR408 SQPOV, F-84000 Avignon, France
| |
Collapse
|
6
|
Dragoev SG. Lipid Peroxidation in Muscle Foods: Impact on Quality, Safety and Human Health. Foods 2024; 13:797. [PMID: 38472909 DOI: 10.3390/foods13050797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
The issue of lipid changes in muscle foods under the action of atmospheric oxygen has captured the attention of researchers for over a century. Lipid oxidative processes initiate during the slaughtering of animals and persist throughout subsequent technological processing and storage of the finished product. The oxidation of lipids in muscle foods is a phenomenon extensively deliberated in the scientific community, acknowledged as one of the pivotal factors affecting their quality, safety, and human health. This review delves into the nature of lipid oxidation in muscle foods, highlighting mechanisms of free radical initiation and the propagation of oxidative processes. Special attention is given to the natural antioxidant protective system and dietary factors influencing the stability of muscle lipids. The review traces mechanisms inhibiting oxidative processes, exploring how changes in lipid oxidative substrates, prooxidant activity, and the antioxidant protective system play a role. A critical review of the oxidative stability and safety of meat products is provided. The impact of oxidative processes on the quality of muscle foods, including flavour, aroma, taste, colour, and texture, is scrutinised. Additionally, the review monitors the effect of oxidised muscle foods on human health, particularly in relation to the autooxidation of cholesterol. Associations with coronary cardiovascular disease, brain stroke, and carcinogenesis linked to oxidative stress, and various infections are discussed. Further studies are also needed to formulate appropriate technological solutions to reduce the risk of chemical hazards caused by the initiation and development of lipid peroxidation processes in muscle foods.
Collapse
Affiliation(s)
- Stefan G Dragoev
- Department of Meat and Fish Technology, Technological Faculty, University of Food Technologies, 26 Maritza Blvd., 4002 Plovdiv, Bulgaria
| |
Collapse
|
7
|
Yang L, Han R, Duan Y, Li J, Gou T, Zhou J, Zhu H, Xu Z, Guo J, Gong H. Exogenous application of silicon and selenium improves the tolerance of tomato plants to calcium nitrate stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108416. [PMID: 38354528 DOI: 10.1016/j.plaphy.2024.108416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
Silicon (Si) and selenium (Se) can improve the tolerance of plants to NaCl-induced salt stress. However, few studies are available on their regulatory effects on plants' tolerance to calcium nitrate stress, which often occurs in protected facilities, causing secondary soil salinization. In this study, we report the effects of Si (6 mM) and Se (20 μM) applied separately or in combination on the growth, photosynthesis, oxidative damage, and nitrogen metabolism of tomato plants, as well as fruit quality under calcium nitrate stress. The results showed that applications of Si or Se alone or in combination improved the plant growth and photosynthetic performance and reduced oxidative damage of the stressed plants. Applications of Si and Se did not decrease the calcium accumulation in leaves of the stressed plants. Under calcium nitrate stress, the concentrations of NO3-, NO2- and NH4+ in leaves were significantly increased, while the activities of nitrogen assimilation-related enzymes (including nitrate reductase, nitrite reductase, glutamine synthase, glutamine-2-oxoglutarate aminotransferase and glutamate dehydrogenase) were decreased. Applications of Si and Se, especially their combined treatment, decreased the NO3-, NO2-, and NH4+ concentrations and enhanced the activities of nitrogen assimilation-related enzymes in the stressed plants. Applied Si and Se also decreased the nitrate and titratable acid concentrations and increased vitamin levels in tomato fruits under calcium nitrate stress. It is suggested that Si and Se improved the tomato plant growth and fruit quality under calcium nitrate stress by alleviating oxidative damage and promoting both photosynthesis and nitrogen assimilation.
Collapse
Affiliation(s)
- Lan Yang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Rong Han
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Yaoke Duan
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Jiayi Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Tianyun Gou
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Jie Zhou
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Haijia Zhu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Zhongmin Xu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Jia Guo
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, PR China.
| | - Haijun Gong
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, PR China.
| |
Collapse
|
8
|
Bayne ACV, Misic Z, Stemmler RT, Wittner M, Frerichs M, Bird JK, Besheer A. N-nitrosamine Mitigation with Nitrite Scavengers in Oral Pharmaceutical Drug Products. J Pharm Sci 2023; 112:1794-1800. [PMID: 37023856 DOI: 10.1016/j.xphs.2023.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/16/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
N-nitrosamines are likely human carcinogens. After N-nitrosamine contaminants were detected in pharmaceutical products in 2018, regulatory authorities set a framework for the risk assessment, testing and mitigation of N-nitrosamines in drug products. One strategy to inhibit the formation of N-nitrosamines during the manufacture and storage of drug products involves the incorporation of nitrite scavengers in the formulation. Diverse molecules have been tested in screening studies including the antioxidant vitamins ascorbic acid and α-tocopherol, amino acids, and other antioxidants used in foods or drugs, for inclusion into drug products to mitigate N-nitrosamine formation. This review article outlines key considerations for the inclusion of nitrite scavengers in oral drug product formulations.
Collapse
Affiliation(s)
- Anne-Cécile V Bayne
- DSM Nutritional Products, 6480 Dobbin Road, Columbia, MD, United States of America.
| | - Zdravka Misic
- DSM Nutritional Products Ltd., P.O. Box 2676, 4002, Basel, Switzerland
| | - René T Stemmler
- DSM Nutritional Products Ltd., P.O. Box 2676, 4002, Basel, Switzerland
| | - Marc Wittner
- DSM Nutritional Products Ltd., P.O. Box 2676, 4002, Basel, Switzerland
| | | | - Julia K Bird
- Bird Scientific Writing, Wassenaar, 2242, the Netherlands
| | - Ahmed Besheer
- DSM Nutritional Products Ltd., P.O. Box 2676, 4002, Basel, Switzerland
| |
Collapse
|
9
|
Wang Q, Qi H, Wu Y, Yu L, Bouchareb R, Li S, Lassén E, Casalena G, Stadler K, Ebefors K, Yi Z, Shi S, Salem F, Gordon R, Lu L, Williams RW, Duffield J, Zhang W, Itan Y, Böttinger E, Daehn I. Genetic susceptibility to diabetic kidney disease is linked to promoter variants of XOR. Nat Metab 2023; 5:607-625. [PMID: 37024752 PMCID: PMC10821741 DOI: 10.1038/s42255-023-00776-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/07/2023] [Indexed: 04/08/2023]
Abstract
The lifetime risk of kidney disease in people with diabetes is 10-30%, implicating genetic predisposition in the cause of diabetic kidney disease (DKD). Here we identify an expression quantitative trait loci (QTLs) in the cis-acting regulatory region of the xanthine dehydrogenase, or xanthine oxidoreductase (Xor), a binding site for C/EBPβ, to be associated with diabetes-induced podocyte loss in DKD in male mice. We examine mouse inbred strains that are susceptible (DBA/2J) and resistant (C57BL/6J) to DKD, as well as a panel of recombinant inbred BXD mice, to map QTLs. We also uncover promoter XOR orthologue variants in humans associated with high risk of DKD. We introduced the risk variant into the 5'-regulatory region of XOR in DKD-resistant mice, which resulted in increased Xor activity associated with podocyte depletion, albuminuria, oxidative stress and damage restricted to the glomerular endothelium, which increase further with type 1 diabetes, high-fat diet and ageing. Therefore, differential regulation of Xor contributes to phenotypic consequences with diabetes and ageing.
Collapse
Affiliation(s)
- Qin Wang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pharmacy, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Haiying Qi
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yiming Wu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Liping Yu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rihab Bouchareb
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shuyu Li
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emelie Lassén
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gabriella Casalena
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Krisztian Stadler
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Kerstin Ebefors
- Department of Neuroscience and Physiology, Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Zhengzi Yi
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shaolin Shi
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fadi Salem
- Pathology, Molecular and Cell based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ronald Gordon
- Pathology, Molecular and Cell based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | - Weijia Zhang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yuval Itan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Erwin Böttinger
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Hasso Plattner Institute for Digital Heath at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Digital Health Center, Hasso Plattner Institut, University of Potsdam, Potsdam, Germany
| | - Ilse Daehn
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
10
|
Maiuolo J, Oppedisano F, Carresi C, Gliozzi M, Musolino V, Macrì R, Scarano F, Coppoletta A, Cardamone A, Bosco F, Mollace R, Muscoli C, Palma E, Mollace V. The Generation of Nitric Oxide from Aldehyde Dehydrogenase-2: The Role of Dietary Nitrates and Their Implication in Cardiovascular Disease Management. Int J Mol Sci 2022; 23:ijms232415454. [PMID: 36555095 PMCID: PMC9779284 DOI: 10.3390/ijms232415454] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Reduced bioavailability of the nitric oxide (NO) signaling molecule has been associated with the onset of cardiovascular disease. One of the better-known and effective therapies for cardiovascular disorders is the use of organic nitrates, such as glyceryl trinitrate (GTN), which increases the concentration of NO. Unfortunately, chronic use of this therapy can induce a phenomenon known as "nitrate tolerance", which is defined as the loss of hemodynamic effects and a reduction in therapeutic effects. As such, a higher dosage of GTN is required in order to achieve the same vasodilatory and antiplatelet effects. Mitochondrial aldehyde dehydrogenase 2 (ALDH2) is a cardioprotective enzyme that catalyzes the bio-activation of GTN to NO. Nitrate tolerance is accompanied by an increase in oxidative stress, endothelial dysfunction, and sympathetic activation, as well as a loss of the catalytic activity of ALDH2 itself. On the basis of current knowledge, nitrate intake in the diet would guarantee a concentration of NO such as to avoid (or at least reduce) treatment with GTN and the consequent onset of nitrate tolerance in the course of cardiovascular diseases, so as not to make necessary the increase in GTN concentrations and the possible inhibition/alteration of ALDH2, which aggravates the problem of a positive feedback mechanism. Therefore, the purpose of this review is to summarize data relating to the introduction into the diet of some natural products that could assist pharmacological therapy in order to provide the NO necessary to reduce the intake of GTN and the phenomenon of nitrate tolerance and to ensure the correct catalytic activity of ALDH2.
Collapse
Affiliation(s)
- Jessica Maiuolo
- Pharmaceutical Biology Laboratory, in Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
- Correspondence: (J.M.); (F.O.)
| | - Francesca Oppedisano
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
- Correspondence: (J.M.); (F.O.)
| | - Cristina Carresi
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Micaela Gliozzi
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Musolino
- Pharmaceutical Biology Laboratory, in Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Roberta Macrì
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Federica Scarano
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Annarita Coppoletta
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Antonio Cardamone
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Bosco
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Rocco Mollace
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Carolina Muscoli
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Ernesto Palma
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
- Renato Dulbecco Institute, Lamezia Terme, 88046 Catanzaro, Italy
| |
Collapse
|
11
|
Colorimetric and fluorogenic detection of nitrite anion in water and food based on Griess reaction of fluorene derivatives. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Guo H, Zhang P, Zhang R, Hua Y, Zhang P, Cui X, Huang X, Li X. Modeling and insights into the structural characteristics of drug-induced autoimmune diseases. Front Immunol 2022; 13:1015409. [PMID: 36353637 PMCID: PMC9637949 DOI: 10.3389/fimmu.2022.1015409] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/11/2022] [Indexed: 09/12/2023] Open
Abstract
The incidence and complexity of drug-induced autoimmune diseases (DIAD) have been on the rise in recent years, which may lead to serious or fatal consequences. Besides, many environmental and industrial chemicals can also cause DIAD. However, there are few effective approaches to estimate the DIAD potential of drugs and other chemicals currently, and the structural characteristics and mechanism of action of DIAD compounds have not been clarified. In this study, we developed the in silico models for chemical DIAD prediction and investigated the structural characteristics of DIAD chemicals based on the reliable drug data on human autoimmune diseases. We collected 148 medications which were reported can cause DIAD clinically and 450 medications that clearly do not cause DIAD. Several different machine learning algorithms and molecular fingerprints were combined to develop the in silico models. The best performed model provided the good overall accuracy on validation set with 76.26%. The model was made freely available on the website http://diad.sapredictor.cn/. To further investigate the differences in structural characteristics between DIAD chemicals and non-DIAD chemicals, several key physicochemical properties were analyzed. The results showed that AlogP, molecular polar surface area (MPSA), and the number of hydrogen bond donors (nHDon) were significantly different between the DIAD and non-DIAD structures. They may be related to the DIAD toxicity of chemicals. In addition, 14 structural alerts (SA) for DIAD toxicity were detected from predefined substructures. The SAs may be helpful to explain the mechanism of action of drug induced autoimmune disease, and can used to identify the chemicals with potential DIAD toxicity. The structural alerts have been integrated in a structural alert-based web server SApredictor (http://www.sapredictor.cn). We hope the results could provide useful information for the recognition of DIAD chemicals and the insights of structural characteristics for chemical DIAD toxicity.
Collapse
Affiliation(s)
- Huizhu Guo
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Peitao Zhang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Ruiqiu Zhang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Yuqing Hua
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Pei Zhang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Xueyan Cui
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Xin Huang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Xiao Li
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
- Department of Clinical Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| |
Collapse
|
13
|
A Model Assessment of the Occurrence and Reactivity of the Nitrating/Nitrosating Agent Nitrogen Dioxide (•NO2) in Sunlit Natural Waters. Molecules 2022; 27:molecules27154855. [PMID: 35956802 PMCID: PMC9370000 DOI: 10.3390/molecules27154855] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Nitrogen dioxide (•NO2) is produced in sunlit natural surface waters by the direct photolysis of nitrate, together with •OH, and upon the oxidation of nitrite by •OH itself. •NO2 is mainly scavenged by dissolved organic matter, and here, it is shown that •NO2 levels in sunlit surface waters are enhanced by high concentrations of nitrate and nitrite, and depressed by high values of the dissolved organic carbon. The dimer of nitrogen dioxide (N2O4) is also formed in the pathway of •NO2 hydrolysis, but with a very low concentration, i.e., several orders of magnitude below •NO2, and even below •OH. Therefore, at most, N2O4 would only be involved in the transformation (nitration/nitrosation) of electron-poor compounds, which would not react with •NO2. Although it is known that nitrite oxidation by CO3•− in high-alkalinity surface waters gives a minor-to-negligible contribution to •NO2 formation, it is shown here that NO2− oxidation by Br2•− can be a significant source of •NO2 in saline waters (saltwater, brackish waters, seawater, and brines), which offsets the scavenging of •OH by bromide. As an example, the anti-oxidant tripeptide glutathione undergoes nitrosation by •NO2 preferentially in saltwater, thanks to the inhibition of the degradation of glutathione itself by •OH, which is scavenged by bromide in saltwater. The enhancement of •NO2 reactions in saltwater could explain the literature findings, that several phenolic nitroderivatives are formed in shallow (i.e., thoroughly sunlit) and brackish lagoons in the Rhône river delta (S. France), and that the laboratory irradiation of phenol-spiked seawater yields nitrophenols in a significant amount.
Collapse
|
14
|
Scholes RC. Emerging investigator series: contributions of reactive nitrogen species to transformations of organic compounds in water: a critical review. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:851-869. [PMID: 35546580 DOI: 10.1039/d2em00102k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Reactive nitrogen species (RNS) pose a potential risk to drinking water quality because they react with organic compounds to form toxic byproducts. Since the discovery of RNS formation in sunlit surface waters, these reactive intermediates have been detected in numerous sunlit natural waters and engineered water treatment systems. This critical review summarizes what is known regarding RNS, including their formation, contributions to contaminant transformation, and products resulting from RNS reactions. Reaction mechanisms and rate constants have been described for nitrogen dioxide (˙NO2) reacting with phenolic compounds. However, significant knowledge gaps remain regarding reactions of RNS with other types of organic compounds. Promising methods to quantify RNS concentrations and reaction rates include the use of selective quenchers and probe compounds as well as electron paramagnetic resonance spectroscopy. Additionally, high resolution mass spectrometry methods have enabled the identification of nitr(os)ated byproducts that form via RNS reactions in sunlit surface waters, UV-based treatment systems, treatment systems that employ chemical oxidants such as chlorine and ozone, and certain types of biological treatment processes. Recommendations are provided for future research to increase understanding of RNS reactions and products, and the implications for drinking water toxicity.
Collapse
Affiliation(s)
- Rachel C Scholes
- Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.
| |
Collapse
|
15
|
Functional and Clean Label Dry Fermented Meat Products: Phytochemicals, Bioactive Peptides, and Conjugated Linoleic Acid. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Consumer demand for specific dietary and nutritional characteristics in their foods has risen in recent years. This trend in consumer preference has resulted in a strong emphasis in the meat industry and scientific research on activities aimed at improving the nutritional value of fermented meat products. These types of meat products are valued by modern consumers due to their nutritional value resulting, among others, from the method of production. One of the major focuses of the current innovations includes the incorporation of bioactive compounds from plant-based food, in relation to the replacement of additives that may raise concerns among consumers (mainly nitrate and nitrite) as well as the modification of processing conditions in order to increase the content of bioactive compounds. Many efforts have been focused on reducing or eliminating the presence of additives, such as curing agents (nitrite or nitrate) in accordance with the idea of “clean label”. The enrichment of fermented meat products in compounds from the plant kingdom can also be framed in the overall strategies of functional meat products design, so that the meat products may be used as the vehicle to deliver bioactive compounds that may exert benefits to the consumer.
Collapse
|
16
|
Arafa A, Ewis A, Eshak E. Chronic exposure to nitrate in drinking water and the risk of bladder cancer: a meta-analysis of epidemiological evidence. Public Health 2022; 203:123-129. [DOI: 10.1016/j.puhe.2021.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/29/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022]
|
17
|
Alfieri ML, Panzella L, Amorati R, Cariola A, Valgimigli L, Napolitano A. Role of Sulphur and Heavier Chalcogens on the Antioxidant Power and Bioactivity of Natural Phenolic Compounds. Biomolecules 2022; 12:90. [PMID: 35053239 PMCID: PMC8774257 DOI: 10.3390/biom12010090] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
The activity of natural phenols is primarily associated to their antioxidant potential, but is ultimately expressed in a variety of biological effects. Molecular scaffold manipulation of this large variety of compounds is a currently pursued approach to boost or modulate their properties. Insertion of S/Se/Te containing substituents on phenols may increase/decrease their H-donor/acceptor ability by electronic and stereo-electronic effects related to the site of substitution and geometrical constrains. Oxygen to sulphur/selenium isosteric replacement in resveratrol or ferulic acid leads to an increase in the radical scavenging activity with respect to the parent phenol. Several chalcogen-substituted phenols inspired by Vitamin E and flavonoids have been prepared, which in some cases prove to be chain-breaking antioxidants, far better than the natural counterparts. Conjugation of catechols with biological thiols (cysteine, glutathione, dihydrolipoic acid) is easily achieved by addition to the corresponding ortho-quinones. Noticeable examples of compounds with potentiated antioxidant activities are the human metabolite 5-S-cysteinyldopa, with high iron-induced lipid peroxidation inhibitory activity, due to strong iron (III) binding, 5-S-glutathionylpiceatannol a most effective inhibitor of nitrosation processes, and 5-S-lipoylhydroxytyrosol, and its polysulfides that proved valuable oxidative-stress protective agents in various cellular models. Different methodologies have been used for evaluation of the antioxidant power of these compounds against the parent compounds. These include kinetics of inhibition of lipid peroxidation alkylperoxyl radicals, common chemical assays of radical scavenging, inhibition of the OH• mediated hydroxylation/oxidation of model systems, ferric- or copper-reducing power, scavenging of nitrosating species. In addition, computational methods allowed researchers to determine the Bond Dissociation Enthalpy values of the OH groups of chalcogen modified phenolics and predict the best performing derivative. Finally, the activity of Se and Te containing compounds as mimic of glutathione peroxidase has been evaluated, together with other biological activities including anticancer action and (neuro)protective effects in various cellular models. These and other achievements are discussed and rationalized to guide future development in the field.
Collapse
Affiliation(s)
- Maria Laura Alfieri
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 21, I-80126 Naples, Italy; (M.L.A.); (L.P.)
| | - Lucia Panzella
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 21, I-80126 Naples, Italy; (M.L.A.); (L.P.)
| | - Riccardo Amorati
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via S. Giacomo 11, I-40126 Bologna, Italy; (R.A.); (A.C.)
| | - Alice Cariola
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via S. Giacomo 11, I-40126 Bologna, Italy; (R.A.); (A.C.)
| | - Luca Valgimigli
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via S. Giacomo 11, I-40126 Bologna, Italy; (R.A.); (A.C.)
| | - Alessandra Napolitano
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 21, I-80126 Naples, Italy; (M.L.A.); (L.P.)
| |
Collapse
|
18
|
Kumar V, Matai I, Kumar A, Sachdev A. GNP-CeO 2- polyaniline hybrid hydrogel for electrochemical detection of peroxynitrite anion and its integration in a microfluidic platform. Mikrochim Acta 2021; 188:436. [PMID: 34837536 DOI: 10.1007/s00604-021-05105-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/10/2021] [Indexed: 01/11/2023]
Abstract
Peroxynitrite anion (ONOO-) is an important in vivo oxidative stress biomarker whose aberrant levels have pathophysiological implications. In this study, an electrochemical sensor for ONOO- detection was developed based on graphene nanoplatelets-cerium oxide nanocomposite (GNP-CeO2) incorporated polyaniline (PANI) conducting hydrogels. The nanocomposite-hydrogel platform exhibited distinct synergistic advantages in terms of large electroactive surface coverage and providing a conductive pathway for electron transfer. Besides, the 3D porous structure of hydrogel integrated the GNP-CeO2 nanocomposite to provide hybrid materials for the evolution of catalytic activity towards electrochemical oxidation of ONOO-. Various microscopic and spectroscopic characterization techniques endorsed the successful formation of GNP-CeO2-PANI hydrogel. Cyclic voltammetry (CV) measurements of GNP-CeO2-PANI hydrogel modified screen-printed electrodes (SPE) were carried out to record the current changes influenced by ONOO-. The prepared sensor demonstrated a significant dose-dependent increase in CV peak current within a linear range of 5-100 µM (at a potential of 1.12 V), and a detection limit of 0.14 with a sensitivity of 29.35 ± 1.4 μA μM-1. Further, a customized microfluidic flow system was integrated with the GNP-CeO2-PANI hydrogel modified SPE to enable continuous electrochemical detection of ONOO- at low sample volumes. The developed microfluidic electrochemical device demonstrated an excellent sensitivity towards ONOO- under optimal experimental conditions. Overall, the fabricated microfluidic device with hybrid hydrogels as electrochemical interfaces provides a reliable assessment of ONOO- levels. This work offers considerable potential for understanding the oxidative stress-related disease mechanisms through determination of ONOO- in biological samples.
Collapse
Affiliation(s)
- Vijayesh Kumar
- Materials Science & Sensor Application Division, CSIR-Central Scientific Instruments Organization (CSIR-CSIO), Chandigarh, 160030, India
| | - Ishita Matai
- Department of Biotechnology, Amity University Punjab, Mohali, 140306, India.
| | - Ankit Kumar
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Abhay Sachdev
- Materials Science & Sensor Application Division, CSIR-Central Scientific Instruments Organization (CSIR-CSIO), Chandigarh, 160030, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 211002, India.
| |
Collapse
|
19
|
Design of an In Vitro Model to Screen the Chemical Reactivity Induced by Polyphenols and Vitamins during Digestion: An Application to Processed Meat. Foods 2021; 10:foods10092230. [PMID: 34574340 PMCID: PMC8468892 DOI: 10.3390/foods10092230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 01/08/2023] Open
Abstract
Processed meats’ nutritional quality may be enhanced by bioactive vegetable molecules, by preventing the synthesis of nitrosamines from N-nitrosation, and harmful aldehydes from lipid oxidation, through their reformulation. Both reactions occur during digestion. The precise effect of these molecules during processed meats’ digestion must be deepened to wisely select the most efficient vegetable compounds. The aim of this study was to design an in vitro experimental method, allowing to foresee polyphenols and vitamins’ effects on the chemical reactivity linked to processed meats’ digestion. The method measured the modulation of end products formation (specific nitroso-tryptophan and thiobarbituric acid reactive substances (TBARS)), by differential UV-visible spectrophotometry, according to the presence or not of phenolic compounds (chlorogenic acid, rutin, naringin, naringenin) or vitamins (ascorbic acid and trolox). The reactional medium was supported by an oil in water emulsion mimicking the physico-chemical environment of the gastric compartment. The model was optimized to uphold the reactions in a stable and simplified model featuring processed meat composition. Rutin, chlorogenic acid, naringin, and naringenin significantly inhibited lipid oxidation. N-nitrosation was inhibited by the presence of lipids and ascorbate. This methodology paves the way for an accurate selection of molecules within the framework of processed meat products reformulation.
Collapse
|
20
|
Nanda KK, Tignor S, Clancy J, Marota MJ, Allain LR, D'Addio SM. Inhibition of N-Nitrosamine Formation in Drug Products: A Model Study. J Pharm Sci 2021; 110:3773-3775. [PMID: 34400183 DOI: 10.1016/j.xphs.2021.08.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
Nitrosamines, in the absence of toxicological data, are regarded as potential mutagens and need to be controlled at nanogram levels in drug products. Recent high profile product withdrawals have increased regulatory scrutiny of nitrosamine formation assessments for marketed products and for new drug applications. Formation of nitrosamine in drug product is possible when nitrite and vulnerable amines are present. Nitrite is often present as an impurity in excipients at ppm levels, whereas vulnerable amines, if present, stem mainly from the drug substance or its major impurities. In the event a drug product were to contain a major source of vulnerable amines (such as a moiety in the drug substance), it would be desirable to have an inhibitor which could be added to the formulation to minimize nitrosamine formation. This work demonstrates, for the first time, that the inhibition of nitrosamine formation in oral solid dosage forms is indeed feasible with suitable inhibitors. Five inhibitors investigated (ascorbic acid, sodium ascorbate, α-tocopherol, caffeic acid, and ferulic acid) showed >80% inhibition when spiked at ∼1 wt% level. This work has also shown the potential use of amino acids (glycine, lysine, histidine) as inhibitors of nitrosamine formation in solution.
Collapse
Affiliation(s)
- Kausik K Nanda
- Discovery Pharmaceutical Sciences, MRL, Merck & Co., Inc., West Point, PA 19486, USA.
| | - Steven Tignor
- Analytical Sciences, MRL, Merck & Co., Inc., West Point, PA 19486, USA
| | - James Clancy
- Oral Formulation Sciences, MRL, Merck & Co., Inc., West Point, PA 19486, USA
| | - Melanie J Marota
- Oral Formulation Sciences, MRL, Merck & Co., Inc., West Point, PA 19486, USA
| | - Leonardo R Allain
- Analytical Sciences, MRL, Merck & Co., Inc., West Point, PA 19486, USA
| | - Suzanne M D'Addio
- Discovery Pharmaceutical Sciences, MRL, Merck & Co., Inc., West Point, PA 19486, USA
| |
Collapse
|
21
|
Hao Y, Zhang R, Morris R, Cheng F, Zhu Z, Xu Y, Wang Y. Metabolome and microbiome alterations in tongue coating of gastric precancerous lesion patients. Expert Rev Gastroenterol Hepatol 2021; 15:949-963. [PMID: 33252275 DOI: 10.1080/17474124.2021.1850259] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Objective: This paper seeks to provide mechanistic insight into the pathological transition through the analysis of metabolites and microorganisms in the tongue coating of gastric precancerous lesions (GPL) patients.Methods: GC-TOF-MS and UHPLC-QE-MS metabolomics, combined with 16S rRNA microbiome techniques, were performed to explore the changes in metabolites and microorganisms in the tongue coating of GPL patients.Results: When compared with 15 controls, 133 metabolites were found to be differentially expressed in 60 GPL cases, of which could be divided into ten categories. Among them, most of the differentially expressed metabolites identified were lipids or lipid-like molecules. These metabolites were implicated in 6 metabolic pathways including glycine, serine and threonine metabolism, arginine and proline metabolism, sphingolipid metabolism, valine, leucine and isoleucine degradation, arachidonic acid metabolism, and tyrosine metabolism. The relative abundances of Alloprevotella, Solobacterium, Rothia, Eikenella, and Aggregatibacter in the GPL group increased significantly relative to the controls and were associated with lipids and lipid-like molecules, organic nitrogen compounds, organic oxygen compounds, phenylpropanoids and polyketides, and organoheterocyclic compounds, respectively.Conclusions: Compared with healthy people, the changes of tongue coating metabolites in GPL patients were mainly characterized by alterations in lipid metabolism and were associated with localized changes in the microbiome.
Collapse
Affiliation(s)
- Yiming Hao
- Shanghai Key Laboratory of Health Identification and Assessment/Laboratory of TCM Four Diagnostic Information, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Renling Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Robert Morris
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Feng Cheng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Zhujing Zhu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifeng Xu
- Shanghai Key Laboratory of Health Identification and Assessment/Laboratory of TCM Four Diagnostic Information, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiqin Wang
- Shanghai Key Laboratory of Health Identification and Assessment/Laboratory of TCM Four Diagnostic Information, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
22
|
Sangija F, Martin H, Matemu A. African nightshades (Solanum nigrum complex): The potential contribution to human nutrition and livelihoods in sub-Saharan Africa. Compr Rev Food Sci Food Saf 2021; 20:3284-3318. [PMID: 33938139 DOI: 10.1111/1541-4337.12756] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/22/2021] [Accepted: 03/26/2021] [Indexed: 12/13/2022]
Abstract
Achieving zero hunger in sub-Saharan Africa (SSA) without minimizing postharvest losses of agricultural products is impossible. Therefore, a holistic approach is vital to end hunger, simultaneously improving food security, diversity, and livelihoods. This review focuses on the African nightshades (ANS) Solanum spp. contribution to improving food and nutrition security in SSA. Different parts of ANS are utilized as food and medicine; however, pests and diseases hinder ANS utilization. African nightshade is rich in micronutrients such as β-carotene, vitamins C and E, minerals (iron, calcium, and zinc), and dietary fiber. The leaves contain a high amount of nutrients than the berries. Proper utilization of ANS can contribute to ending hidden hunger, mainly in children and pregnant women. Literature shows that ANS contains antinutritional factors such as oxalate, phytate, nitrate, and alkaloids; however, their quantities are low to cause potential health effects. Several improved varieties with high yields, rich in nutrients, and low alkaloids have been developed in SSA. Various processing and preservation techniques such as cooking, drying, and fermentation are feasible techniques for value addition on ANS in SSA; moreover, most societies are yet to adopt them effectively. Furthermore, promoting value addition and commercialization of ANS is of importance and can create more jobs. Therefore, this review provides an overview of ANS production and challenges that hinder their utilization, possible solutions, and future research suggestions. This review concludes that ANS is an essential nutritious leafy vegetable for improving nutrition and livelihoods in SSA.
Collapse
Affiliation(s)
- Frank Sangija
- Department of Food Biotechnology and Nutritional Sciences (FBNS), Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha, Tanzania
| | - Haikael Martin
- Department of Food Biotechnology and Nutritional Sciences (FBNS), Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha, Tanzania
| | - Athanasia Matemu
- Department of Food Biotechnology and Nutritional Sciences (FBNS), Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha, Tanzania
| |
Collapse
|
23
|
Shih YM, Chang YJ, Cooke MS, Pan CH, Hu CH, Chao MR, Hu CW. Alkylating and oxidative stresses in smoking and non-smoking patients with COPD: Implications for lung carcinogenesis. Free Radic Biol Med 2021; 164:99-106. [PMID: 33418114 PMCID: PMC7897309 DOI: 10.1016/j.freeradbiomed.2020.12.442] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 02/07/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a disease characterized by chronic inflammation and irreversible airway obstruction. Cigarette smoking is the predominant risk factor for developing COPD. It is well-known that the COPD is also strongly associated with an increased risk of developing lung cancer. Cigarette smoke contains elevated concentrations of oxidants and various carcinogens (e.g., tobacco-derived nitrosamines) that can cause oxidative and alkylating stresses, which can also arise from inflammation. However, it is surprising that, except for oxidative stress, little information is available on the burden of alkylating stress and the detoxification efficiency of tobacco-derived carcinogens in COPD patients. In this study, we used LC-MS/MS to measure the archetypical tobacco-specific carcinogenic 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), its major metabolite, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), three biomarkers of oxidative stress (8-oxo-7,8-dihydroguanine, 8-oxoGua; 8-oxo-7,8-dihydro-2'-deoxyguanosine, 8-oxodGuo; 8-oxo-7,8-dihydroguanosine, 8-oxoGuo) and two biomarkers of alkylating stress (N7-methylguanine, N7-MeGua and N3-methyladenine, N3-MeAde), in the urine of smoking and non-smoking COPD patients and healthy controls. Our results showed that not only was oxidative stress significantly elevated in the COPD patients compared to the controls, but also alkylating stress. Significantly, levels of alkylating stress (i.e., N7-MeGua) were highly correlated with the COPD severity and not affected by age and smoking status. Furthermore, COPD smokers had significantly higher ratios of free NNAL to the total NNAL than control smokers, implying a lower detoxification efficiency of NNK in COPD smokers. This ratio was even higher in COPD smokers with stages 3-4 than in COPD smokers with stages 1-2. Taken together, our results demonstrated that the detoxification efficiency of tobacco-derived carcinogens (e.g., NNK) was associated with the pathogenesis and possibly the progression of COPD. In addition to oxidative stress, alkylating stress derived from chronic inflammation appears to be also dominant in COPD patients.
Collapse
Affiliation(s)
- Ying-Ming Shih
- Department of Public Health, Chung Shan Medical University, Taichung, 402, Taiwan; Division of Chest Medicine, Department of Internal Medicine, Changhua Christian Hospital, Changhua, 500, Taiwan
| | - Yuan-Jhe Chang
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA
| | - Chih-Hong Pan
- Institute of Labor, Occupational Safety and Health, Ministry of Labor, New Taipei City, 221, Taiwan
| | - Ching-Hsuan Hu
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Chang Gung Medical College and Chang Gung University, Taoyuan, 333, Taiwan
| | - Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung, 402, Taiwan.
| | - Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung, 402, Taiwan; Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung, 402, Taiwan.
| |
Collapse
|
24
|
Lassén E, Daehn IS. Molecular Mechanisms in Early Diabetic Kidney Disease: Glomerular Endothelial Cell Dysfunction. Int J Mol Sci 2020; 21:ijms21249456. [PMID: 33322614 PMCID: PMC7764016 DOI: 10.3390/ijms21249456] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease (ESRD), with prevalence increasing at an alarming rate worldwide and today, there are no known cures. The pathogenesis of DKD is complex, influenced by genetics and the environment. However, the underlying molecular mechanisms that contribute to DKD risk in about one-third of diabetics are still poorly understood. The early stage of DKD is characterized by glomerular hyperfiltration, hypertrophy, podocyte injury and depletion. Recent evidence of glomerular endothelial cell injury at the early stage of DKD has been suggested to be critical in the pathological process and has highlighted the importance of glomerular intercellular crosstalk. A potential mechanism may include reactive oxygen species (ROS), which play a direct role in diabetes and its complications. In this review, we discuss different cellular sources of ROS in diabetes and a new emerging paradigm of endothelial cell dysfunction as a key event in the pathogenesis of DKD.
Collapse
|
25
|
Pan Y, Deng Z, Shahidi F. Natural bioactive substances for the control of food-borne viruses and contaminants in food. FOOD PRODUCTION, PROCESSING AND NUTRITION 2020. [PMCID: PMC7700915 DOI: 10.1186/s43014-020-00040-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Abstract
Food-borne viruses and contaminants, as an important global food safety problem, are caused by chemical, microbiological, zoonotic, and other risk factors that represent a health hazard. Natural bioactive substances, originating from plants, animals, or microorganisms, might offer the possibility of preventing and controlling food-borne diseases. In this contribution, the common bioactive substances such as polyphenols, essential oils, proteins, and polysaccharides which are effective in the prevention and treatment of food-borne viruses and contaminants are discussed. Meanwhile, the preventive effects of natural bioactive substances and the possible mechanisms involved in food protection are discussed and detailed. The application and potential effects of natural bioactive substances in the adjuvant treatment for food-borne diseases is also described.
Graphical abstract
Collapse
|
26
|
Zhou S, Li L, Wu Y, Zhu S, Zhu N, Bu L, Dionysiou DD. UV 365 induced elimination of contaminants of emerging concern in the presence of residual nitrite: Roles of reactive nitrogen species. WATER RESEARCH 2020; 178:115829. [PMID: 32375111 DOI: 10.1016/j.watres.2020.115829] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/09/2020] [Accepted: 04/11/2020] [Indexed: 06/11/2023]
Abstract
The presence of nitrite (NO2-) is inevitable with concentrations of several mg L-1 in some typical water bodies. In this study, UV at wavelength of 365 nm was investigated to degrade contaminants of emerging concern (CECs) in the presence of NO2- at environmentally relevant concentrations (0.1-5.0 mg L-1). Six selected CECs with different structures were efficiently removed because of the generation of reactive nitrogen species (RNS) and hydroxyl radical (HO•) from photolysis of NO2-. Contributions of UV365 photolysis, RNS, and HO• to CEC degradation in UV365/NO2- system were calculated, and RNS were found to be the predominant species that are responsible for CEC degradation. The second major contributor is HO• for the degradation of selected CECs except for the case of sulfadiazine. Impacts of water matrix components (including dissolved oxygen, solution pH, and natural organic matter) on CEC degradation in UV365/NO2- system were evaluated. Furthermore, evolution profiles of CECs and NO2- in UV365/NO2- system were tracked when actual water samples were used as background, and a simultaneous removal of CECs and NO2- was observed. Transformation products of bisphenol A and carbamazepine were proposed according to the results of HPLC/MS and quantum chemistry calculations. Nitration induced by RNS and hydroxylation induced by HO• are main reactions occurred during CEC degradation in UV365/NO2- system. Overall, UV365 is a potential technology to remove CECs and NO2- in aquatic environment when residual NO2- is present. Our present study also provides possibility for the application of sunlight to remediate water co-polluted by CECs and NO2-.
Collapse
Affiliation(s)
- Shiqing Zhou
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Ling Li
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Yangtao Wu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Shumin Zhu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China.
| | - Ningyuan Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing, 210008, China
| | - Lingjun Bu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China.
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221-0012, USA
| |
Collapse
|
27
|
Bioactive Compounds in Fermented Sausages Prepared from Beef and Fallow Deer Meat with Acid Whey Addition. Molecules 2020; 25:molecules25102429. [PMID: 32456021 PMCID: PMC7288205 DOI: 10.3390/molecules25102429] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 01/02/2023] Open
Abstract
The present study examined the effect of the type of meat (beef and fallow deer) and the addition of freeze-dried acid whey on nutritional values and the content of bioactive compounds (peptides, L-carnitine, glutathione, and conjugated linoleic acid (CLA)) in uncured fermented sausages. The antioxidant properties of isolated peptides (ABTS, DPPH radical scavenging activity, and ferric-reducing antioxidant power) were also evaluated. The results showed that fallow deer sausages had higher peptide content than beef products. The addition of acid whey caused a decrease in the content of peptides, especially in fallow deer sausages. The glutathione content in beef sausages (22.91–25.28 mg 100 g−1 of sausage) was quite higher than that of fallow deer sausages (10.04–11.59 mg 100 g−1 of sausage). The obtained results showed a significantly higher content of CLA in beef sausages than in products from fallow deer meat. In conclusion, products prepared from fallow deer meat have generally higher nutritional value because of the content of peptides, their antioxidant properties, and the content of L-carnitine, while beef products have higher levels of CLA and glutathione.
Collapse
|
28
|
Gou T, Yang L, Hu W, Chen X, Zhu Y, Guo J, Gong H. Silicon improves the growth of cucumber under excess nitrate stress by enhancing nitrogen assimilation and chlorophyll synthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 152:53-61. [PMID: 32388420 DOI: 10.1016/j.plaphy.2020.04.031] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/14/2020] [Accepted: 04/20/2020] [Indexed: 05/04/2023]
Abstract
Silicon (Si) can increase salt tolerance of plants, and previous studies have focused on NaCl stress; whereas in protected facilities, nitrate (but not NaCl) accumulation is one of the major causes of secondary soil salinization. However, information on Si's effect on plant growth under nitrate stress is very limited, and the underlying mechanism is unknown. Here, we investigated Si's effect on plant growth, nitrogen assimilation and chlorophyll synthesis in cucumber. Cucumber seedlings ('Jinyou 1') were subjected to 200 mM nitrate stress without or with addition of 2 mM Si. The results showed that root application, but not foliar application of Si, could improve cucumber growth under nitrate stress. Root addition of Si increased photosynthetic rate and decreased oxidative damage of stressed plants. Under nitrate stress, Si addition decreased the accumulation of nitrate, nitrite and ammonium, and promoted the activities of nitrate reductase, nitrite reductase, glutamine synthase, glutamine-2-oxoglutarate aminotransferase and glutamate dehydrogenase in leaves. The concentrations of glutamic acid, 5-aminolevulinic acid, porphobilinogen and uroporphyrinogen Ⅲ were increased under nitrate stress, while these were decreased by added Si. Added Si increased the levels of chlorophyll and its precursors (protoporphyrin Ⅸ, Mg-protoporphyrin Ⅸ and protochlorophyllide), and expressions of genes encoding enzymes in chlorophyll synthesis (CHLH, POR and CAO) under nitrate stress. These results suggest that Si could improve cucumber growth under nitrate stress by enhancing nitrogen assimilation and chlorophyll synthesis, and imply an application of Si fertilizer in solving secondary soil salinization in protected facilities.
Collapse
Affiliation(s)
- Tianyun Gou
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Lan Yang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wanxing Hu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xinhang Chen
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yongxing Zhu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China
| | - Jia Guo
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Haijun Gong
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
29
|
Nitro-Oleic Acid in Seeds and Differently Developed Seedlings of Brassica napus L. PLANTS 2020; 9:plants9030406. [PMID: 32214020 PMCID: PMC7154869 DOI: 10.3390/plants9030406] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 12/31/2022]
Abstract
Similar to animals, it has recently been proven that nitro-fatty acids such as nitro-linolenic acid and nitro-oleic acid (NO2-OA) have relevant physiological roles as signalling molecules also in plants. Although NO2-OA is of great therapeutic importance, its presence in plants as a free fatty acid has not been observed so far. Since Brassica napus (oilseed rape) is a crop with high oleic acid content, the abundance of NO2-OA in its tissues can be assumed. Therefore, we quantified NO2-OA in B. napus seeds and differently developed seedlings. In all samples, NO2-OA was detectable at nanomolar concentrations. The seeds showed the highest NO2-OA content, which decreased during germination. In contrast, nitric oxide (•NO) levels increased in the early stages of germination and seedling growth. Exogenous NO2-OA treatment (100 µM, 24 h) of Brassica seeds resulted in significantly increased •NO level and induced germination capacity compared to untreated seeds. The results of in vitro approaches (4-Amino-5-methylamino-2′,7′-difluorofluorescein (DAF-FM) fluorescence, •NO-sensitive electrode) supported the •NO liberating capacity of NO2-OA. We observed for the first time that Brassica seeds and seedlings contain free NO2-OA which may be involved in germination as an •NO donor as suggested both by the results of exogenous NO2-OA treatment of seeds and in vitro approaches. Due to their high NO2-OA content, Brassica sprouts can be considered as a good source of dietary NO2-OA intake.
Collapse
|
30
|
Karwowska M, Kononiuk A. Nitrates/Nitrites in Food-Risk for Nitrosative Stress and Benefits. Antioxidants (Basel) 2020; 9:E241. [PMID: 32188080 PMCID: PMC7139399 DOI: 10.3390/antiox9030241] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/03/2020] [Accepted: 03/11/2020] [Indexed: 12/12/2022] Open
Abstract
In the context of impact on human health, nitrite/nitrate and related nitrogen species such as nitric oxide (NO) are a matter of increasing scientific controversy. An increase in the content of reactive nitrogen species may result in nitrosative stress-a deleterious process, which can be an important mediator of damage to cell structures, including lipids, membranes, proteins and DNA. Nitrates and nitrites are widespread in the environment and occur naturally in foods of plant origin as a part of the nitrogen cycle. Additionally, these compounds are used as additives to improve food quality and protect against microbial contamination and chemical changes. Some vegetables such as raw spinach, beets, celery and lettuce are considered to contain high concentrations of nitrates. Due to the high consumption of vegetables, they have been identified as the primary source of nitrates in the human diet. Processed meats are another source of nitrites in our diet because the meat industry uses nitrates/nitrites as additives in the meat curing process. Although the vast majority of consumed nitrates and nitrites come from natural vegetables and fruits rather than food additives, there is currently a great deal of consumer pressure for the production of meat products free of or with reduced quantities of these compounds. This is because, for years, the cancer risks of nitrates/nitrites have been considered, since they potentially convert into the nitrosamines that have carcinogenic effects. This has resulted in the development and rapid expansion of meat products processed with plant-derived nitrates as nitrite alternatives in meat products. On the other hand, recently, these two ions have been discussed as essential nutrients which allow nitric oxide production and thus help cardiovascular health. Thus, this manuscript reviews the main sources of dietary exposure to nitrates and nitrites, metabolism of nitrites/nitrates, and health concerns related to dietary nitrites/nitrates, with particular emphasis on the effect on nitrosative stress, the role of nitrites/nitrates in meat products and alternatives to these additives used in meat products.
Collapse
Affiliation(s)
- Małgorzata Karwowska
- Department of Meat Technology and Food Quality, University of Life Sciences in Lublin, ul. Skromna 8, 20-704 Lublin, Poland;
| | | |
Collapse
|
31
|
Kong Y, Cheng Q, He Y, Ge Y, Zhou J, Song G. A dual-modal fluorometric and colorimetric nanoprobe based on graphitic carbon nitrite quantum dots and Fe (II)-bathophenanthroline complex for detection of nitrite in sausage and water. Food Chem 2019; 312:126089. [PMID: 31896452 DOI: 10.1016/j.foodchem.2019.126089] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/26/2019] [Accepted: 12/18/2019] [Indexed: 12/14/2022]
Abstract
A fluorometric and colorimetric dual-mode sensing platform based on graphitic carbon nitrite quantum dots (g-CNQDs) and Fe (II)-bathophenanthroline complex (BPS-Fe2+) was designed to the sensitive detection of nitrite (NO2-) in sausage and water. In this system, the fluorescence of g-CNQDs was quenched by BPS-Fe2+ complex due to the inner filter effect (IFE). When NO2- was present, Fe2+ was oxidized by nitrite to form BPS-Fe3+ complex with BPS, leading to the recovery of the fluorescence from g-CNQDs. Therefore, we constructed a "turn-off-on" fluorescence probe for detection of NO2-. Moreover, with the increase of NO2- concentration, the color of the solution changed from red to colorless, so the UV-vis measurements and on-site visual detection were realized. The method is capable of detecting NO2- in the concentration range of 2.32-34.8 μM with good selectivity and high sensitivity. In addition, the method has the potential to determine NO2- in water samples and sausage samples.
Collapse
Affiliation(s)
- Yuelin Kong
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Qiao Cheng
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Yu He
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China; Hubei Province Key Laboratory of Regional Development and Environment Response, Wuhan 430062, China.
| | - Yili Ge
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Jiangang Zhou
- Hubei Province Key Laboratory of Regional Development and Environment Response, Wuhan 430062, China
| | - Gongwu Song
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
32
|
Scholes RC, Prasse C, Sedlak DL. The Role of Reactive Nitrogen Species in Sensitized Photolysis of Wastewater-Derived Trace Organic Contaminants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:6483-6491. [PMID: 31082223 DOI: 10.1021/acs.est.9b01386] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Under conditions typically encountered in the aquatic environment, the absorption of sunlight by nitrite and nitrate leads to the transformation of trace organic contaminants. In addition to the well understood mechanism through which hydroxyl radical (·OH) produced by nitrate and nitrite photolysis oxidizes contaminants, absorption of light also results in the formation of reactive nitrogen species that transform organic contaminants. To assess the importance of this process on the fate of trace organic contaminants, radical quenchers and transformation product analysis were used to discriminate among potential reaction pathways. For sulfamethoxazole, an antibiotic that is frequently detected in municipal wastewater effluent, nitrate and nitrite-sensitized photolysis pathways resulted in production of transformation products that were not detected during direct photolysis or reaction with ·OH. The reactivity of sulfamethoxazole with the reactive species produced when nitrite absorbed sunlight was affected by the presence of hydroxyl radical scavengers, indicating the likely involvement of nitrogen dioxide, which forms when nitrite reacts with hydroxyl radical. Reactive nitrogen species also reacted with emtricitabine, propranolol, and other trace organic contaminants commonly detected in wastewater effluent, indicating the potential importance of this process to the fate of other trace organic contaminants. A kinetic model indicated that reactive nitrogen species could be important to the phototransformation of trace organic contaminants when relatively high concentrations of nitrite are present (e.g., in surface waters receiving reverse osmosis concentrate from potable water reuse projects or in agricultural runoff).
Collapse
Affiliation(s)
- Rachel C Scholes
- Department of Civil and Environmental Engineering , University of California , Berkeley , California 94720 , United States
- NSF Engineering Research Center for Reinventing the Nation's Urban Water Infrastructure (ReNUWIt) , Berkeley , California 94720 , United States
| | - Carsten Prasse
- Department of Civil and Environmental Engineering , University of California , Berkeley , California 94720 , United States
- NSF Engineering Research Center for Reinventing the Nation's Urban Water Infrastructure (ReNUWIt) , Berkeley , California 94720 , United States
| | - David L Sedlak
- Department of Civil and Environmental Engineering , University of California , Berkeley , California 94720 , United States
- NSF Engineering Research Center for Reinventing the Nation's Urban Water Infrastructure (ReNUWIt) , Berkeley , California 94720 , United States
| |
Collapse
|
33
|
Vrzal T, Olšovská J. Pyrolytic profiling nitrosamine specific chemiluminescence detection combined with multivariate chemometric discrimination for non-targeted detection and classification of nitroso compounds in complex samples. Anal Chim Acta 2019; 1059:136-145. [DOI: 10.1016/j.aca.2019.01.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/09/2019] [Accepted: 01/13/2019] [Indexed: 01/26/2023]
|
34
|
Aranda-Caño L, Sánchez-Calvo B, Begara-Morales JC, Chaki M, Mata-Pérez C, Padilla MN, Valderrama R, Barroso JB. Post-Translational Modification of Proteins Mediated by Nitro-Fatty Acids in Plants: Nitroalkylation. PLANTS 2019; 8:plants8040082. [PMID: 30934982 PMCID: PMC6524050 DOI: 10.3390/plants8040082] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/28/2022]
Abstract
Nitrate fatty acids (NO₂-FAs) are considered reactive lipid species derived from the non-enzymatic oxidation of polyunsaturated fatty acids by nitric oxide (NO) and related species. Nitrate fatty acids are powerful biological electrophiles which can react with biological nucleophiles such as glutathione and certain protein⁻amino acid residues. The adduction of NO₂-FAs to protein targets generates a reversible post-translational modification called nitroalkylation. In different animal and human systems, NO₂-FAs, such as nitro-oleic acid (NO₂-OA) and conjugated nitro-linoleic acid (NO₂-cLA), have cytoprotective and anti-inflammatory influences in a broad spectrum of pathologies by modulating various intracellular pathways. However, little knowledge on these molecules in the plant kingdom exists. The presence of NO₂-OA and NO₂-cLA in olives and extra-virgin olive oil and nitro-linolenic acid (NO₂-Ln) in Arabidopsis thaliana has recently been detected. Specifically, NO₂-Ln acts as a signaling molecule during seed and plant progression and beneath abiotic stress events. It can also release NO and modulate the expression of genes associated with antioxidant responses. Nevertheless, the repercussions of nitroalkylation on plant proteins are still poorly known. In this review, we demonstrate the existence of endogenous nitroalkylation and its effect on the in vitro activity of the antioxidant protein ascorbate peroxidase.
Collapse
Affiliation(s)
- Lorena Aranda-Caño
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University Campus Las Lagunillas, University of Jaén, E-23071 Jaén, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Liu L, Du J, Liu WE, Guo Y, Wu G, Qi W, Lu X. Enhanced His@AuNCs oxidase-like activity by reduced graphene oxide and its application for colorimetric and electrochemical detection of nitrite. Anal Bioanal Chem 2019; 411:2189-2200. [DOI: 10.1007/s00216-019-01655-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 02/01/2023]
|
36
|
Gaugg MT, Nussbaumer-Ochsner Y, Bregy L, Engler A, Stebler N, Gaisl T, Bruderer T, Nowak N, Sinues P, Zenobi R, Kohler M. Real-Time Breath Analysis Reveals Specific Metabolic Signatures of COPD Exacerbations. Chest 2019; 156:269-276. [PMID: 30685334 DOI: 10.1016/j.chest.2018.12.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/19/2018] [Accepted: 12/03/2018] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Exacerbations of COPD are defined by acute worsening of respiratory symptoms leading to a change in therapy. Identifying altered metabolic processes in patients at risk for future exacerbations is desirable for treatment optimization, the development of new therapeutic strategies, and perhaps diagnostic value. We aimed to identify affected pathways using the profiles of volatile organic compounds in exhaled breath from patients with COPD with and without frequent exacerbations (≥ 2 exacerbations within the past 12 months). METHODS In this matched cohort study, exhaled breath profiles from patients with COPD and frequent exacerbations ("frequent exacerbators") and without frequent exacerbations ("nonfrequent exacerbators") were analyzed during an exacerbation-free interval using real-time secondary electrospray ionization high-resolution mass spectrometry. We analyzed exhaled breath from 26 frequent exacerbators and 26 nonfrequent exacerbators that were matched in terms of age, sex, and smoking history. To obtain new pathophysiological insights, we investigated significantly altered metabolites, which can be assigned to specific pathways. Metabolites were identified by using a Wilcoxon rank-sum test. RESULTS Metabolite levels from the ω-oxidation pathway, namely ω-hydroxy, ω-oxo, and dicarboxylic acids, were consistently decreased in frequent exacerbators. Additionally, several new nitro-aromatic metabolites, which were significantly increased in frequent exacerbators, were identified. CONCLUSIONS Real-time breath analysis by secondary electrospray high-resolution mass spectrometry allows molecular profiling of exhaled breath, providing insights about ongoing biochemical processes in patients with COPD at risk for exacerbations. TRIAL REGISTRY ClinicalTrials.gov; No.: NCT02186639; URL: www.clinicaltrials.gov.
Collapse
Affiliation(s)
- Martin Thomas Gaugg
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | | | - Lukas Bregy
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Anna Engler
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
| | - Nina Stebler
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
| | - Thomas Gaisl
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
| | - Tobias Bruderer
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland; Division of Respiratory Medicine, Childhood Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Nora Nowak
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Pablo Sinues
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland; University Children's Hospital Basel, University of Basel, Basel, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Malcolm Kohler
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland; Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
37
|
Gargouri M, Soussi A, Akrouti A, Magné C, El Feki A. Potential protective effects of the edible alga Arthrospira platensis against lead-induced oxidative stress, anemia, kidney injury, and histopathological changes in adult rats. Appl Physiol Nutr Metab 2018; 44:271-281. [PMID: 30138569 DOI: 10.1139/apnm-2018-0428] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Oxidative damage has been proposed as a possible mechanism involved in lead toxicity. This study investigated the possible protective effect of dietary Arthrospira platensis supplementation against lead acetate-induced kidney injury in adult male rats. Rats were divided into 4 groups: normal rats (control rats), rats treated with spirulina, rats treated with lead (Pb) (0.344 g/kg body weight), and rats treated with Pb and spirulina. The exposure of rats to Pb for 30 days provoked renal damage with significant increases in hematological parameters, oxidative stress-related parameters (i.e., thiobarbituric acid reactive substances, protein carbonyl content, advanced oxidation protein products, and hydrogen peroxide), creatinine and urea levels in plasma, and uric acid level in urine. Conversely, antioxidant enzyme activities (i.e., catalase, glutathione peroxidase, and superoxide dismutase) and levels of nonprotein thiols, plasma uric acid, and urinary creatinine and urea decreased. The administration of spirulina to Pb-treated rats significantly improved weight, peripheral blood parameters, oxidative stress-related parameters, renal biomarker levels, and antioxidant enzyme activities. Also, rats treated with Pb and spirulina had normal kidney histology. These healing effects are likely the result of the high phenol content and significant antioxidant capacity of A. platensis. Our data strongly suggest that spirulina supplementation improves kidney function and plays an important role in the prevention of complications of Pb intoxication.
Collapse
Affiliation(s)
- Manel Gargouri
- a Laboratory of Animal Ecophysiology, Faculty of Sciences, University of Sfax, 3038 Sfax, Tunisia.,b EA 7462 Géoarchitecture, Faculty of Sciences, University of Western Brittany, 6 Avenue V. Le Gorgeu, CS 93837, 29238 Brest Cedex 3, France
| | - Ahlem Soussi
- a Laboratory of Animal Ecophysiology, Faculty of Sciences, University of Sfax, 3038 Sfax, Tunisia
| | - Amel Akrouti
- a Laboratory of Animal Ecophysiology, Faculty of Sciences, University of Sfax, 3038 Sfax, Tunisia
| | - Christian Magné
- b EA 7462 Géoarchitecture, Faculty of Sciences, University of Western Brittany, 6 Avenue V. Le Gorgeu, CS 93837, 29238 Brest Cedex 3, France
| | - Abdelfattah El Feki
- a Laboratory of Animal Ecophysiology, Faculty of Sciences, University of Sfax, 3038 Sfax, Tunisia
| |
Collapse
|
38
|
Ward MH, Jones RR, Brender JD, de Kok TM, Weyer PJ, Nolan BT, Villanueva CM, van Breda SG. Drinking Water Nitrate and Human Health: An Updated Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E1557. [PMID: 30041450 PMCID: PMC6068531 DOI: 10.3390/ijerph15071557] [Citation(s) in RCA: 416] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/10/2018] [Accepted: 07/14/2018] [Indexed: 02/07/2023]
Abstract
Nitrate levels in our water resources have increased in many areas of the world largely due to applications of inorganic fertilizer and animal manure in agricultural areas. The regulatory limit for nitrate in public drinking water supplies was set to protect against infant methemoglobinemia, but other health effects were not considered. Risk of specific cancers and birth defects may be increased when nitrate is ingested under conditions that increase formation of N-nitroso compounds. We previously reviewed epidemiologic studies before 2005 of nitrate intake from drinking water and cancer, adverse reproductive outcomes and other health effects. Since that review, more than 30 epidemiologic studies have evaluated drinking water nitrate and these outcomes. The most common endpoints studied were colorectal cancer, bladder, and breast cancer (three studies each), and thyroid disease (four studies). Considering all studies, the strongest evidence for a relationship between drinking water nitrate ingestion and adverse health outcomes (besides methemoglobinemia) is for colorectal cancer, thyroid disease, and neural tube defects. Many studies observed increased risk with ingestion of water nitrate levels that were below regulatory limits. Future studies of these and other health outcomes should include improved exposure assessment and accurate characterization of individual factors that affect endogenous nitrosation.
Collapse
Affiliation(s)
- Mary H Ward
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Dr. Room 6E138, Rockville, MD 20850, USA.
| | - Rena R Jones
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Dr. Room 6E138, Rockville, MD 20850, USA.
| | - Jean D Brender
- Department of Epidemiology and Biostatistics, Texas A&M University, School of Public Health, College Station, TX 77843, USA.
| | - Theo M de Kok
- Department of Toxicogenomics, GROW-school for Oncology and Developmental Biology, Maastricht University Medical Center, P.O Box 616, 6200 MD Maastricht, The Netherlands.
| | - Peter J Weyer
- The Center for Health Effects of Environmental Contamination, The University of Iowa, 455 Van Allen Hall, Iowa City, IA 52242, USA.
| | - Bernard T Nolan
- U.S. Geological Survey, Water Mission Area, National Water Quality Program, 12201 Sunrise Valley Drive, Reston, VA 20192, USA.
| | - Cristina M Villanueva
- ISGlobal, 08003 Barcelona, Spain.
- IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain.
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain.
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain.
| | - Simone G van Breda
- Department of Toxicogenomics, GROW-school for Oncology and Developmental Biology, Maastricht University Medical Center, P.O Box 616, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
39
|
Buchan GJ, Bonacci G, Fazzari M, Salvatore SR, Gelhaus Wendell S. Nitro-fatty acid formation and metabolism. Nitric Oxide 2018; 79:38-44. [PMID: 30006146 DOI: 10.1016/j.niox.2018.07.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/29/2018] [Accepted: 07/03/2018] [Indexed: 12/16/2022]
Abstract
Nitro-fatty acids (NO2-FA) are pleiotropic modulators of redox signaling pathways. Their effects on inflammatory signaling have been studied in great detail in cell, animal and clinical models primarily using exogenously administered nitro-oleic acid. While we know a considerable amount regarding NO2-FA signaling, endogenous formation and metabolism is relatively unexplored. This review will cover what is currently known regarding the proposed mechanisms of NO2-FA formation, dietary modulation of endogenous NO2-FA levels, pathways of NO2-FA metabolism and the detection of NO2-FA and corresponding metabolites.
Collapse
Affiliation(s)
- Gregory J Buchan
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Gustavo Bonacci
- CIBICI - CONICET, Departamento de Bioquímica Clínica Facultad de Ciencias Químicas, (U.N.C.), Haya de la Torre y Medina Allende Ciudad Universitaria, Córdoba C.P. N°: X5000HUA, Argentina
| | - Marco Fazzari
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA; Fondazione Ri.MED, Via Bandiera 11, 90133 Palermo, Italy
| | - Sonia R Salvatore
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Stacy Gelhaus Wendell
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA; Clinical Translational Science Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
40
|
Gao X, Peng X, Chen K. The application of nitrogen oxides in industrial preparations of nitro compounds. CAN J CHEM ENG 2018. [DOI: 10.1002/cjce.23246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xi Gao
- School of Chemical Engineering; Nanjing University of Science and Technology; Nanjing 210094, China
| | - Xinhua Peng
- School of Chemical Engineering; Nanjing University of Science and Technology; Nanjing 210094, China
| | - Kaihao Chen
- School of Chemical Engineering; Nanjing University of Science and Technology; Nanjing 210094, China
| |
Collapse
|
41
|
Comparative Analysis of the Effects of Olive Oil Hydroxytyrosol and Its 5- S-Lipoyl Conjugate in Protecting Human Erythrocytes from Mercury Toxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9042192. [PMID: 29849921 PMCID: PMC5924984 DOI: 10.1155/2018/9042192] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 03/04/2018] [Indexed: 12/20/2022]
Abstract
Oxidative stress is one of the underlying mechanisms of the toxic effects exerted by mercury (Hg) on human health. Several antioxidant compounds, including the olive oil phenol hydroxytyrosol (HT), were investigated for their protective action. Recently, we have reported that 5-S-lipoylhydroxytyrosol (Lipo-HT) has shown increased antioxidant activities compared to HT and exerted potent protective effects against reactive oxygen species (ROS) generation and oxidative damage in human hepatocellular carcinoma HepG2 cell lines. In this study, the effects of Lipo-HT and HT on oxidative alterations of human erythrocytes induced by exposure to 40 μM HgCl2 were comparatively evaluated. When administered to the cells, Lipo-HT (5–20 μM) proved nontoxic and it decreased the Hg-induced generation of ROS, the hemolysis, and the depletion of intracellular GSH levels. At all tested concentrations, Lipo-HT exhibited higher ability to counteract Hg-induced cytotoxicity compared to HT. Model studies indicated the formation of a mercury complex at the SH group of Lipo-HT followed by a redox reaction that would spare intracellular GSH. Thus, the enhanced erythrocyte protective action of Lipo-HT from Hg-induced damage with respect to HT is likely due to an effective chelating and reducing ability toward mercury ions. These findings encourage the use of Lipo-HT in nutraceutical strategies to contrast heavy metal toxicity in humans.
Collapse
|
42
|
Li D, Ma Y, Duan H, Deng W, Li D. Griess reaction-based paper strip for colorimetric/fluorescent/SERS triple sensing of nitrite. Biosens Bioelectron 2018; 99:389-398. [DOI: 10.1016/j.bios.2017.08.008] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/01/2017] [Accepted: 08/07/2017] [Indexed: 11/28/2022]
|
43
|
Herraiz T, Galisteo J. Nitrosative deamination of 2'-deoxyguanosine and DNA by nitrite, and antinitrosating activity of β-carboline alkaloids and antioxidants. Food Chem Toxicol 2017; 112:282-289. [PMID: 29277703 DOI: 10.1016/j.fct.2017.12.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 02/01/2023]
Abstract
Endogenous and dietary nitrite produces reactive nitrogen species (RNS) that react with DNA causing mutations. The nitrosation of 2'-deoxyguanosine (dGuo) and DNA with nitrite was studied under different conditions, and the reaction and degradation products identified and analysed by HPLC-DAD-MS. Nitrosative deamination of dGuo produced xanthine along with 2'-deoxyxanthosine whereas DNA afforded xanthine. Formation of xanthine increased with nitrite concentration and in low pH such as that of stomach. Xanthine was measured as a marker of nitrosation of dGuo and DNA, and it was subsequently used to study the antinitrosating activity of β-carboline alkaloids, and selected antioxidants. Food-occurring tetrahydro-β-carbolines (THβCs) decreased nitrosative deamination of dGuo and DNA under conditions simulating the stomach. Antinitrosating activity was also evidenced for flavonoids (catechin, quercetin) and indole (melatonin) antioxidants. Among THβCs the most active antinitrosating compounds were 1,2,3,4-tetrahydro-β-carboline-3-carboxylic acids (THβC-3-COOHs) that reacted with nitrite to give N-nitroso derivatives as main products along with 3,4-dihydro-β-carboline-3-carboxylic acids and aromatic β-carbolines (norharman and harman). Antinitrosating activity of THβCs correlated well with the formation of N-nitroso-THβC-3-COOHs. These N-nitroso derivatives were stable at pH 7 but degraded in acid conditions affording nitrosating species.
Collapse
Affiliation(s)
- Tomás Herraiz
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), Spanish National Research Council (CSIC), Juan de la Cierva 3, 28006, Madrid, Spain.
| | - Juan Galisteo
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), Spanish National Research Council (CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| |
Collapse
|
44
|
Chávez-Morales R, Jaramillo-Juárez F, Rodríguez-Vázquez M, Martínez-Saldaña M, del Río FP, Garfias-López J. The Ginkgo biloba extract (GbE) protects the kidney from damage produced by a single and low dose of carbon tetrachloride in adult male rats. ACTA ACUST UNITED AC 2017; 69:430-434. [DOI: 10.1016/j.etp.2017.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 03/19/2017] [Accepted: 04/03/2017] [Indexed: 01/02/2023]
|
45
|
Chatterjee N, Walker GC. Mechanisms of DNA damage, repair, and mutagenesis. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:235-263. [PMID: 28485537 PMCID: PMC5474181 DOI: 10.1002/em.22087] [Citation(s) in RCA: 1051] [Impact Index Per Article: 150.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 03/16/2017] [Indexed: 05/08/2023]
Abstract
Living organisms are continuously exposed to a myriad of DNA damaging agents that can impact health and modulate disease-states. However, robust DNA repair and damage-bypass mechanisms faithfully protect the DNA by either removing or tolerating the damage to ensure an overall survival. Deviations in this fine-tuning are known to destabilize cellular metabolic homeostasis, as exemplified in diverse cancers where disruption or deregulation of DNA repair pathways results in genome instability. Because routinely used biological, physical and chemical agents impact human health, testing their genotoxicity and regulating their use have become important. In this introductory review, we will delineate mechanisms of DNA damage and the counteracting repair/tolerance pathways to provide insights into the molecular basis of genotoxicity in cells that lays the foundation for subsequent articles in this issue. Environ. Mol. Mutagen. 58:235-263, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
|
46
|
Demeyer D, Mertens B, De Smet S, Ulens M. Mechanisms Linking Colorectal Cancer to the Consumption of (Processed) Red Meat: A Review. Crit Rev Food Sci Nutr 2017; 56:2747-66. [PMID: 25975275 DOI: 10.1080/10408398.2013.873886] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer in the world. The vast majority of CRC cases have been linked to environmental causes rather than to heritable genetic changes. Over the last decades, epidemiological evidence linking the consumption of red and, more convincingly, of processed red meat to CRC has accumulated. In parallel, hypotheses on carcinogenic mechanisms underlying an association between CRC and the intake of red and processed red meat have been proposed and investigated in biological studies. The hypotheses that have received most attention until now include (1) the presence of polycyclic aromatic hydrocarbons and heterocyclic aromatic amines, two groups of compounds recognized as carcinogenic, (2) the enhancing effect of (nitrosyl)heme on the formation of carcinogenic N-nitroso compounds and lipid peroxidation. However, none of these hypotheses completely explains the link between red and processed red meat intake and the CRC risk. Consequently, scientists have proposed additional mechanisms or refined their hypotheses. This review first briefly summarizes the development of CRC followed by an in-depth overview and critical discussion of the different potential carcinogenic mechanisms underlying the increased CRC risk associated with the consumption of red and processed red meat.
Collapse
Affiliation(s)
- Daniel Demeyer
- a Superior Health Council , Brussels , Belgium.,b Laboratory for Animal Nutrition and Animal Product Quality , Faculty of Bioscience Engineering, Ghent University , Melle , Belgium
| | - Birgit Mertens
- a Superior Health Council , Brussels , Belgium.,c Program Toxicology, Department of Food , Medicines and Consumer Safety, Scientific Institute of Public Health (Site Elsene) , Brussels , Belgium
| | - Stefaan De Smet
- a Superior Health Council , Brussels , Belgium.,b Laboratory for Animal Nutrition and Animal Product Quality , Faculty of Bioscience Engineering, Ghent University , Melle , Belgium
| | | |
Collapse
|
47
|
Luo M, Boudier A, Pallotta A, Maincent P, Vincourt JB, Leroy P. Albumin as a carrier for NO delivery: preparation, physicochemical characterization, and interaction with gold nanoparticles. Drug Dev Ind Pharm 2016; 42:1928-1937. [DOI: 10.1080/03639045.2016.1182546] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Ming Luo
- Université De Lorraine – CITHEFOR EA 3452, Nancy Cedex, France
| | - Ariane Boudier
- Université De Lorraine – CITHEFOR EA 3452, Nancy Cedex, France
| | - Arnaud Pallotta
- Université De Lorraine – CITHEFOR EA 3452, Nancy Cedex, France
| | | | - Jean-Baptiste Vincourt
- Université De Lorraine – IMoPA, UMR 7365 CNRS, Vandœuvre-lès-Nancy Cedex, France
- Proteomics Platform of Fédération De Recherche 3209, Biopole De La Faculté De Médecine De Nancy, Vandœuvre-lès-Nancy Cedex, France
| | - Pierre Leroy
- Université De Lorraine – CITHEFOR EA 3452, Nancy Cedex, France
| |
Collapse
|
48
|
Ansari FA, Mahmood R. Sodium Nitrate Induces Reactive Oxygen Species That Lower the Antioxidant Power, Damage the Membrane, and Alter Pathways of Glucose Metabolism in Human Erythrocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:10372-10379. [PMID: 26586154 DOI: 10.1021/acs.jafc.5b04898] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Nitrate salts are widely used as food additives and nitrogenous fertilizers and are present as contaminants in drinking water supplies. The effect of different concentrations (1-15 mM) of sodium nitrate (NaNO3) on human erythrocytes was studied under in vitro conditions. Treatment of erythrocytes with NaNO3 resulted in increases in methemoglobin levels, lipid peroxidation, and protein oxidation and a decrease in glutathione content. There were changes in the activities of all major antioxidant defense enzymes, and the pathways of glucose metabolism were also affected. Increased generation of reactive oxygen species (ROS) took place while the antioxidant power was impaired. The osmotic fragility of cells was increased, and membrane-bound enzymes were greatly inhibited. All changes were statistically significant at a probability level of P < 0.05 at all concentrations of NaNO3 except the lowest (1 mM). Thus, NaNO3 generates ROS that cause significant damage to human erythrocytes and interfere in normal cellular pathways.
Collapse
Affiliation(s)
- Fariheen Aisha Ansari
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University , Aligarh 202002, Uttar Pradesh, India
| | - Riaz Mahmood
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University , Aligarh 202002, Uttar Pradesh, India
| |
Collapse
|
49
|
Kinetics of the Reaction of Pyrogallol Red, a Polyphenolic Dye, with Nitrous Acid: Role of NO and NO2. Molecules 2015; 20:10582-93. [PMID: 26060920 PMCID: PMC6272421 DOI: 10.3390/molecules200610582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/24/2015] [Accepted: 05/26/2015] [Indexed: 12/05/2022] Open
Abstract
In the present work we studied the reaction under gastric conditions of pyrogallol red (PGR), a polyphenolic dye, with nitrous acid (HONO). PGR has been used as a model polyphenol due to its strong UV-visible absorption and its high reactivity towards reactive species (radicals and non-radicals, RS). The reaction was followed by UV-visible spectroscopy and high performance liquid chromatography (HPLC). A clear decrease of the PGR absorbance at 465 nm was observed, evidencing an efficient bleaching of PGR by HONO. In the initial stages of the reaction, each HONO molecule nearly consumed 2.6 PGR molecules while, at long reaction times, ca. 7.0 dye molecules were consumed per each reacted HONO. This result is interpreted in terms of HONO recycling. During the PGR-HONO reaction, nitric oxide was generated in the micromolar range. In addition, the rate of PGR consumption induced by HONO was almost totally abated by argon bubbling, emphasising the role that critical volatile intermediates, such as •NO and/or nitrogen dioxide (•NO2), play in the bleaching of this phenolic compound.
Collapse
|
50
|
Melo SC, Santos RX, Melgaço AC, Pereira ACF, Pungartnik C, Brendel M. Altered Phenotypes in Saccharomyces cerevisiae by Heterologous Expression of Basidiomycete Moniliophthora perniciosa SOD2 Gene. Int J Mol Sci 2015; 16:12324-44. [PMID: 26039235 PMCID: PMC4490446 DOI: 10.3390/ijms160612324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 04/08/2015] [Indexed: 12/23/2022] Open
Abstract
Heterologous expression of a putative manganese superoxide dismutase gene (SOD2) of the basidiomycete Moniliophthora perniciosa complemented the phenotypes of a Saccharomyces cerevisiae sod2Δ mutant. Sequence analysis of the cloned M. perniciosa cDNA revealed an open reading frame (ORF) coding for a 176 amino acid polypeptide with the typical metal-binding motifs of a SOD2 gene, named MpSOD2. Phylogenetic comparison with known manganese superoxide dismutases (MnSODs) located the protein of M. perniciosa (MpSod2p) in a clade with the basidiomycete fungi Coprinopsis cinerea and Laccaria bicolor. Haploid wild-type yeast transformants containing a single copy of MpSOD2 showed increased resistance phenotypes against oxidative stress-inducing hydrogen peroxide and paraquat, but had unaltered phenotype against ultraviolet-C (UVC) radiation. The same transformants exhibited high sensitivity against treatment with the pro-mutagen diethylnitrosamine (DEN) that requires oxidation to become an active mutagen/carcinogen. Absence of MpSOD2 in the yeast sod2Δ mutant led to DEN hyper-resistance while introduction of a single copy of this gene restored the yeast wild-type phenotype. The haploid yeast wild-type transformant containing two SOD2 gene copies, one from M. perniciosa and one from its own, exhibited DEN super-sensitivity. This transformant also showed enhanced growth at 37 °C on the non-fermentable carbon source lactate, indicating functional expression of MpSod2p. The pro-mutagen dihydroethidium (DHE)-based fluorescence assay monitored basal level of yeast cell oxidative stress. Compared to the wild type, the yeast sod2Δ mutant had a much higher level of intrinsic oxidative stress, which was reduced to wild type (WT) level by introduction of one copy of the MpSOD2 gene. Taken together our data indicates functional expression of MpSod2 protein in the yeast S. cerevisiae.
Collapse
Affiliation(s)
- Sônia C Melo
- Departamento de Ciências Biológicas, Laboratório de Biologia de Fungos, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz (UESC), Rodovia Jorge Amado, km 16, Ilhéus, Bahia CEP 45662-900, Brazil.
| | - Regineide X Santos
- Departamento de Ciências Naturais, Universidade Estadual do Sudoeste da Bahia (UESB), Estrada do Bem Querer, km 4, Vitória da Conquista, Bahia CEP 45083-900, Brazil.
| | - Ana C Melgaço
- Departamento de Ciências Biológicas, Laboratório de Biologia de Fungos, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz (UESC), Rodovia Jorge Amado, km 16, Ilhéus, Bahia CEP 45662-900, Brazil.
| | - Alanna C F Pereira
- Departamento de Ciências Biológicas, Laboratório de Biologia de Fungos, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz (UESC), Rodovia Jorge Amado, km 16, Ilhéus, Bahia CEP 45662-900, Brazil.
| | - Cristina Pungartnik
- Departamento de Ciências Biológicas, Laboratório de Biologia de Fungos, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz (UESC), Rodovia Jorge Amado, km 16, Ilhéus, Bahia CEP 45662-900, Brazil.
| | - Martin Brendel
- Departamento de Ciências Biológicas, Laboratório de Biologia de Fungos, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz (UESC), Rodovia Jorge Amado, km 16, Ilhéus, Bahia CEP 45662-900, Brazil.
| |
Collapse
|