1
|
Christensen A, McGill CJ, Qian W, Pike CJ. Effects of obesogenic diet and 17β-estradiol in female mice with APOE 3/3, 3/4, and 4/4 genotypes. Front Aging Neurosci 2024; 16:1415072. [PMID: 39347015 PMCID: PMC11427389 DOI: 10.3389/fnagi.2024.1415072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024] Open
Abstract
The main genetic risk factor for Alzheimer's disease (AD) is the apolipoprotein E ε4 allele (APOE4). AD risk associated with APOE4 disproportionately affects women. Furthermore, human and rodent studies indicate that the cognitive deficits associated with APOE4 are greater in females. One modifiable AD risk factor is obesity during middle age. Given that approximately two-thirds of US adults are overweight, it is important to understand how obesity affects AD risk, how it interacts with APOE4, and the extent to which its detrimental effects can be mitigated with therapeutics. One intervention study for women is estrogen-based hormone therapy, which can exert numerous health benefits when administered in early middle age. No experimental studies have examined the interactions among APOE4, obesity, and hormone therapy in aging females. To begin to explore these issues, we considered how obesity outcomes are affected by treatment with estradiol at the onset of middle age in female mice with human APOE3 and APOE4. Furthermore, to explore how gene dosage affects outcomes, we compared mice homozygous for APOE3 (3/3) and homozygous (4/4) or hemizygous (3/4) for APOE4. Mice were examined over a 4-month period that spans the transition into reproductive senescence, a normal age-related change that models many aspects of human perimenopause. Beginning at 5 months of age, mice were maintained on a control diet (10% fat) or high-fat diet (HFD; 60% fat). After 8 weeks, by which time obesity was present in all HFD groups, mice were implanted with an estradiol or vehicle capsule that was maintained for the final 8 weeks. Animals were assessed on a range of metabolic and neural measures. Overall, APOE4 was associated with poorer metabolic function and cognitive performance. However, an obesogenic diet induced relatively greater impairments in metabolic function and cognitive performance in APOE3/3 mice. Estradiol treatment improved metabolic and cognitive outcomes across all HFD groups, with APOE4/4 generally exhibiting the greatest benefit. APOE3/4 mice were intermediate to the homozygous genotypes on many measures but also exhibited unique profiles. Together, these findings highlight the importance of the APOE genotype as a modulator of the risks associated with obesity and the beneficial outcomes of estradiol.
Collapse
Affiliation(s)
| | | | | | - Christian J. Pike
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
2
|
Jiang CL, Lin FJ. Insights into the roles of Apolipoprotein E in adipocyte biology and obesity. Int J Obes (Lond) 2024; 48:1205-1215. [PMID: 38839985 DOI: 10.1038/s41366-024-01549-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 06/07/2024]
Abstract
Apolipoprotein E (APOE) is a multifunctional protein expressed by various cell types, including hepatocytes, adipocytes, immune cells of the myeloid lineage, vascular smooth muscle cells, astrocytes, etc. Initially, APOE was discovered as an arginine-rich peptide within very-low-density lipoprotein, but it was subsequently found in triglyceride-rich lipoproteins in humans and other animals, where its presence facilitates the clearance of these lipoproteins from circulation. Recent epidemiolocal studies and experimental research in mice suggest a link between ApoE and obesity. The latest findings highlight the role of endogenous adipocyte ApoE in regulating browning of white adipose tissue, beige adipocyte differentiation, thermogenesis and energy homeostasis. This review focuses on the emerging evidence showing the involvement of ApoE in the regulation of obesity and its associated metabolic diseases.
Collapse
Affiliation(s)
- Chung-Lin Jiang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Fu-Jung Lin
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan.
- Research Center for Development Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
3
|
Pandit H, Jones NS, Rebeck GW. Obesity affects brain cortex gene expression in an APOE genotype and sex dependent manner. Int J Obes (Lond) 2024; 48:841-848. [PMID: 38454009 PMCID: PMC11379128 DOI: 10.1038/s41366-024-01481-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/07/2024] [Accepted: 01/19/2024] [Indexed: 03/09/2024]
Abstract
OBJECTIVE Obesity is the top modifiable risk factor for Alzheimer's disease. We hypothesized that high fat diet (HFD)-induced obesity alters brain transcriptomics in APOE-genotype and sex dependent manners. Here, we investigated interactions between HFD, APOE, and sex, using a knock-in mouse model of the human APOE3 and APOE4 alleles. METHODS Six-month-old APOE3-TR and APOE4-TR mice were treated with either HFD or control chow. After 4 months, total RNA was extracted from the cerebral cortices and analyzed by poly-A enriched RNA sequencing on the Illumina platform. RESULTS Female mice demonstrated profound HFD-induced transcriptomic changes while there was little to no effect in males. In females, APOE3 brains demonstrated about five times more HFD-induced transcriptomic changes (399 up-regulated and 107 down-regulated genes) compared to APOE4 brains (30 up-regulated and 60 down-regulated). Unsupervised clustering analysis revealed two gene sets that responded to HFD in APOE3 mice but not in APOE4 mice. Pathway analysis demonstrated that HFD in APOE3 mice affected cortical pathways related to feeding behavior, blood circulation, circadian rhythms, extracellular matrix, and cell adhesion. CONCLUSIONS Female mice and APOE3 mice have the strongest cortical transcriptomic responses to HFD related to feeding behavior and extracellular matrix remodeling. The relative lack of response of the APOE4 brain to stress associated with obesity may leave it more susceptible to additional stresses that occur with aging and in AD.
Collapse
Affiliation(s)
- Harshul Pandit
- Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Road N.W., Washington, DC, 20007, USA
| | - Nahdia S Jones
- Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Road N.W., Washington, DC, 20007, USA
| | - G William Rebeck
- Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Road N.W., Washington, DC, 20007, USA.
| |
Collapse
|
4
|
McMaster MW, Shah A, Kangarlu J, Cheikhali R, Frishman WH, Aronow WS. The Impact of the Apolipoprotein E Genotype on Cardiovascular Disease and Cognitive Disorders. Cardiol Rev 2024:00045415-990000000-00250. [PMID: 38661359 DOI: 10.1097/crd.0000000000000703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Apolipoprotein E (ApoE) plays a critical role in cholesterol transport and protection against the development of atherosclerotic cardiovascular disease (ASCVD). Humans have 3 prevalent isoforms of ApoE: apolipoprotein E2 (ApoE2), apolipoprotein E3 (ApoE3), and apolipoprotein E4 (ApoE4). The E4 allele has been associated with higher ASCVD risk. While E4 patients do have higher cholesterol levels, they do not have enough to account for the substantially elevated ASCVD risk relative to E2 and E3 patients. ASCVD risk calculators would underestimate the true effect of E4 if the difference was caused entirely by a difference in cholesterol level. This article reviews the function of ApoE in atherosclerosis, and how each isoform functions differently. We review what is known about the molecular mechanisms through which ApoE prevents endothelial dysfunction and damage, how ApoE stimulates macrophage efflux of cholesterol from atherogenic lesions, and the ways in which ApoE decreases inflammation throughout atherosclerosis. The impact of ApoE on Alzheimer's disease and a discussion of why it is possibly unrelated to ASCVD prevention are included. Clinical applications to hyperlipidemia management and ASCVD prevention in specific patient populations are discussed.
Collapse
Affiliation(s)
- Matthew W McMaster
- From the Department of Medicine, Westchester Medical Center, Valhalla, NY
| | - Avisha Shah
- From the Department of Medicine, Westchester Medical Center, Valhalla, NY
- Department of Cardiology, New York Medical College, Valhalla, NY
| | - John Kangarlu
- From the Department of Medicine, Westchester Medical Center, Valhalla, NY
| | - Ryan Cheikhali
- From the Department of Medicine, Westchester Medical Center, Valhalla, NY
| | - William H Frishman
- From the Department of Medicine, Westchester Medical Center, Valhalla, NY
| | - Wilbert S Aronow
- From the Department of Medicine, Westchester Medical Center, Valhalla, NY
- Department of Cardiology, New York Medical College, Valhalla, NY
| |
Collapse
|
5
|
Topriceanu CC, Shah M, Webber M, Chan F, Shiwani H, Richards M, Schott J, Chaturvedi N, Moon JC, Hughes AD, Hingorani AD, O'Regan DP, Captur G. APOE ε4 carriage associates with improved myocardial performance from adolescence to older age. BMC Cardiovasc Disord 2024; 24:172. [PMID: 38509472 PMCID: PMC10956279 DOI: 10.1186/s12872-024-03808-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 02/21/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Although APOE ε4 allele carriage confers a risk for coronary artery disease, its persistence in humans might be explained by certain survival advantages (antagonistic pleiotropy). METHODS Combining data from ~ 37,000 persons from three older age British cohorts (1946 National Survey of Health and Development [NSHD], Southall and Brent Revised [SABRE], and UK Biobank) and one younger age cohort (Avon Longitudinal Study of Parents and Children [ALSPAC]), we explored whether APOE ε4 carriage associates with beneficial or unfavorable left ventricular (LV) structural and functional metrics by echocardiography and cardiovascular magnetic resonance (CMR). RESULTS Compared to the non-APOE ε4 group, APOE ε4 carriers had similar cardiac phenotypes in terms of LV ejection fraction, E/e', posterior wall and interventricular septal thickness, and LV mass. However, they had improved myocardial performance resulting in greater LV stroke volume generation per 1 mL of myocardium (higher myocardial contraction fraction). In NSHD (n = 1467) and SABRE (n = 1187), ε4 carriers had a 4% higher MCF (95% CI 1-7%, p = 0.016) using echocardiography. Using CMR data, in UK Biobank (n = 32,972), ε4 carriers had a 1% higher MCF 95% (CI 0-1%, p = 0.020) with a dose-response relationship based on the number of ε4 alleles. In addition, UK Biobank ε4 carriers also had more favorable radial and longitudinal strain rates compared to non APOE ε4 carriers. In ALSPAC (n = 1397), APOE ε4 carriers aged < 24 years had a 2% higher MCF (95% CI 0-5%, p = 0.059). CONCLUSIONS By triangulating results in four independent cohorts, across imaging modalities (echocardiography and CMR), and in ~ 37,000 individuals, our results point towards an association between ε4 carriage and improved cardiac performance in terms of LV MCF. This potentially favorable cardiac phenotype adds to the growing number of reported survival advantages attributed to the pleiotropic effects APOE ε4 carriage that might collectively explain its persistence in human populations.
Collapse
Affiliation(s)
- Constantin-Cristian Topriceanu
- UCL MRC Unit for Lifelong Health and Ageing, University College London, London, UK
- UCL Institute of Cardiovascular Science, University College London, London, UK
- Cardiac MRI Unit, Barts Heart Centre, London, UK
- Cardiology Department, Centre for Inherited Heart Muscle Conditions, The Royal Free Hospital, Pond Street, Hampstead, London, UK
| | - Mit Shah
- Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London, UK
- MRC London Institute of Medical Science, Imperial College London, London, UK
| | - Matthew Webber
- UCL MRC Unit for Lifelong Health and Ageing, University College London, London, UK
- UCL Institute of Cardiovascular Science, University College London, London, UK
| | - Fiona Chan
- UCL MRC Unit for Lifelong Health and Ageing, University College London, London, UK
- UCL Institute of Cardiovascular Science, University College London, London, UK
| | - Hunain Shiwani
- UCL Institute of Cardiovascular Science, University College London, London, UK
- Cardiac MRI Unit, Barts Heart Centre, London, UK
| | - Marcus Richards
- UCL MRC Unit for Lifelong Health and Ageing, University College London, London, UK
| | - Jonathan Schott
- UCL MRC Unit for Lifelong Health and Ageing, University College London, London, UK
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Nishi Chaturvedi
- UCL MRC Unit for Lifelong Health and Ageing, University College London, London, UK
- UCL Institute of Cardiovascular Science, University College London, London, UK
| | - James C Moon
- UCL Institute of Cardiovascular Science, University College London, London, UK
- Cardiac MRI Unit, Barts Heart Centre, London, UK
| | - Alun D Hughes
- UCL MRC Unit for Lifelong Health and Ageing, University College London, London, UK
- UCL Institute of Cardiovascular Science, University College London, London, UK
| | - Aroon D Hingorani
- UCL Institute of Cardiovascular Science, University College London, London, UK
- BHF Research Accelerator, University College London, London, UK
- Health Data Research, University College London, London, UK
| | - Declan P O'Regan
- Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London, UK
- MRC London Institute of Medical Science, Imperial College London, London, UK
| | - Gabriella Captur
- UCL MRC Unit for Lifelong Health and Ageing, University College London, London, UK.
- UCL Institute of Cardiovascular Science, University College London, London, UK.
- Cardiac MRI Unit, Barts Heart Centre, London, UK.
- Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London, UK.
- Cardiology Department, Centre for Inherited Heart Muscle Conditions, The Royal Free Hospital, Pond Street, Hampstead, London, UK.
| |
Collapse
|
6
|
Huebbe P, Bilke S, Rueter J, Schloesser A, Campbel G, Glüer CC, Lucius R, Röcken C, Tholey A, Rimbach G. Human APOE4 Protects High-Fat and High-Sucrose Diet Fed Targeted Replacement Mice against Fatty Liver Disease Compared to APOE3. Aging Dis 2024; 15:259-281. [PMID: 37450924 PMCID: PMC10796091 DOI: 10.14336/ad.2023.0530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/30/2023] [Indexed: 07/18/2023] Open
Abstract
Recent genome- and exome-wide association studies suggest that the human APOE ε4 allele protects against non-alcoholic fatty liver disease (NAFLD), while ε3 promotes hepatic steatosis and steatohepatitis. The present study aimed at examining the APOE genotype-dependent development of fatty liver disease and its underlying mechanisms in a targeted replacement mouse model. Male mice expressing the human APOE3 or APOE4 protein isoforms on a C57BL/6J background and unmodified C57BL/6J mice were chronically fed a high-fat and high-sucrose diet to induce obesity. After 7 months, body weight gain was more pronounced in human APOE than endogenous APOE expressing mice with elevated plasma biomarkers suggesting aggravated metabolic dysfunction. APOE3 mice exhibited the highest liver weights and, compared to APOE4, massive hepatic steatosis. An untargeted quantitative proteome analysis of the liver identified a high number of proteins differentially abundant in APOE3 versus APOE4 mice. The majority of the higher abundant proteins in APOE3 mice could be grouped to inflammation and damage-associated response, and lipid storage, amongst others. Results of the targeted qRT-PCR and Western blot analyses contribute to the overall finding that APOE3 as opposed to APOE4 promotes hepatic steatosis, inflammatory- and damage-associated response signaling and fibrosis in the liver of obese mice. Our experimental data substantiate the observation of an increased NAFLD-risk associated with the human APOEε3 allele, while APOEε4 appears protective. The underlying mechanisms of the protection possibly involve a higher capacity of nonectopic lipid deposition in subcutaneous adipose tissue and lower hepatic pathogen recognition in the APOE4 mice.
Collapse
Affiliation(s)
- Patricia Huebbe
- Institute of Human Nutrition and Food Science, Kiel University, D-24118 Kiel, Germany.
| | - Stephanie Bilke
- Institute of Experimental Medicine, Proteomics & Bioanalytics, Kiel University, D-24105 Kiel, Germany.
| | - Johanna Rueter
- Institute of Human Nutrition and Food Science, Kiel University, D-24118 Kiel, Germany.
| | - Anke Schloesser
- Institute of Human Nutrition and Food Science, Kiel University, D-24118 Kiel, Germany.
| | - Graeme Campbel
- Section Biomedical Imaging, Department of Radiology and Neuroradiology, Kiel University, D-24118 Kiel, Germany.
| | - Claus-C. Glüer
- Section Biomedical Imaging, Department of Radiology and Neuroradiology, Kiel University, D-24118 Kiel, Germany.
| | - Ralph Lucius
- Anatomical Institute, Kiel University, D-24118 Kiel, Germany.
| | - Christoph Röcken
- Department of Pathology, Kiel University and University Hospital Schleswig-Holstein, Campus Kiel, D-24105 Kiel, Germany.
| | - Andreas Tholey
- Institute of Experimental Medicine, Proteomics & Bioanalytics, Kiel University, D-24105 Kiel, Germany.
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, Kiel University, D-24118 Kiel, Germany.
| |
Collapse
|
7
|
Ozen E, Lovegrove JA, Jackson KG. Association between body composition and cardiometabolic disease risk: role of dietary fat intake and APOLIPOPROTEIN E genotype on this relationship. Proc Nutr Soc 2024:1-9. [PMID: 38253522 DOI: 10.1017/s0029665124000053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Excess body weight is associated with increased mortality and risk of developing CVD. Body fat distribution is now considered a better indicator of disease risk than BMI, with central adiposity associated with dyslipidaemia and insulin resistance. Dietary modification is unquestionably important in the prevention of obesity and CVD, with the type but not the amount of dietary fat emerging as an important determinant of both diseases. Although reducing SFA intake via replacement with unsaturated fatty acids (UFA) is a key public health strategy for CVD prevention, variability in the lipid lowering response has been observed. This narrative review aims to investigate the link between adiposity and CVD risk, and the role of dietary fat composition and APOLIPOPROTEIN (APO)E genotype on this relationship. In the absence of weight loss, replacing dietary SFA with UFA reduces central adiposity and anthropometric measures, and is linked with lower total and LDL-cholesterol concentrations. However, differences in study populations and body composition techniques need to be taken into consideration. To date, only a limited number of studies have determined the role of APOE on body composition and CVD risk, but findings are inconsistent. Both APOE2 and APOE4 alleles have been correlated with adiposity related markers, and an APOE genotype-BMI interaction has been reported on fasting lipids. However, studies are often performed retrospectively leading to small sample sizes within the genotype groups. Further studies are needed to confirm the relationship between APOE genotype, adiposity and circulating CVD risk markers.
Collapse
Affiliation(s)
- Ezgi Ozen
- Hugh Sinclair Unit of Nutrition, Department of Food and Nutritional Sciences, Institute for Cardiovascular and Metabolic Research and Institute for Food, Nutrition and Health, University of Reading, Whiteknights, ReadingRG6 6DZ, UK
| | - Julie A Lovegrove
- Hugh Sinclair Unit of Nutrition, Department of Food and Nutritional Sciences, Institute for Cardiovascular and Metabolic Research and Institute for Food, Nutrition and Health, University of Reading, Whiteknights, ReadingRG6 6DZ, UK
| | - Kim G Jackson
- Hugh Sinclair Unit of Nutrition, Department of Food and Nutritional Sciences, Institute for Cardiovascular and Metabolic Research and Institute for Food, Nutrition and Health, University of Reading, Whiteknights, ReadingRG6 6DZ, UK
| |
Collapse
|
8
|
Nickhah Klashami Z, Yaghoobi A, Panahi N, Amoli MM. Association of the APOE gene variants with depression in type 2 diabetes. J Diabetes Metab Disord 2023; 22:1481-1487. [PMID: 37975117 PMCID: PMC10638337 DOI: 10.1007/s40200-023-01271-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 07/27/2023] [Indexed: 11/19/2023]
Abstract
Background The risk of depression among patients with diabetes is higher than the general population. The exact mechanisms linking these two diseases are mostly unknown. Energy metabolism disorders seem to be a shared pathway. One of the key genes playing important roles in energy metabolism-related pathways is the APOE gene. We aimed to investigate the association of the APOE gene variants with depression among Iranian patients with type 2 diabetes (T2DM). Methods Three APOE gene alleles and genotypes frequencies (E2, E3, E4) were determined in 244 patients with T2DM (114 with depression and 130 without depression) using the high-resolution melting (HRM) method on the genomic DNA extracted from the patient's peripheral blood. Results Apoe4 allele frequency was significantly higher in T2DM patients without depression compared with those with depression (11.9 vs. 2.2%, p-value < 0.0001 and p-value = 0.001, respectively). Conversely, the wild allele apoe3 frequency was significantly higher in T2DM patients with depression (86% vs., 69%, p-value < 0.0001). Apoe4 carrier status was associated with decreased risk of depression in patients with T2DM [OR: 0.19 (0.07-0.53)]. Conclusion Our results showed that the apoe4 allele and apoe4 carrier status significantly reduced the risk of depression among patients with T2DM. Further studies are needed to unravel the complex role of the APOE gene in depression among patients with diabetes.
Collapse
Affiliation(s)
- Zeynab Nickhah Klashami
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Yaghoobi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nekoo Panahi
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa M. Amoli
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Biosca-Brull J, Basaure P, Guardia-Escote L, Cabré M, Blanco J, Morales-Navas M, Sánchez-Santed F, Colomina MT. Environmental exposure to chlorpyrifos during gestation, APOE polymorphism and the risk on autistic-like behaviors. ENVIRONMENTAL RESEARCH 2023; 237:116969. [PMID: 37659636 DOI: 10.1016/j.envres.2023.116969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/04/2023] [Accepted: 08/22/2023] [Indexed: 09/04/2023]
Abstract
Autism spectrum disorder (ASD) encompasses several neurodevelopmental conditions characterized by communication and social impairment, as well as repetitive patterns of behavior. However, it can co-occur with other mental conditions such as anxiety. The massive use of chlorpyrifos (CPF) has been linked to the increased prevalence of developmental disorders. Likewise, ASD has also been closely linked to a wide variety of genetic factors. The aims of the present investigation are to study how gestational CPF exposure and APOE polymorphism affects communication skills, early development and mid-term anxiety-like behaviors, as well as, changes in gene expression related to the cholinergic system. C57BL/6J and humanized apoE3 and apoE4 homozygous mice were exposed to 0 or 1 mg/kg/day of CPF through the diet, from gestational day (GD) 12-18. In addition, a group of C57BL/6J females were injected subcutaneously with 300 mg/kg/day of valproic acid (VPA) on GD 12 and 13. This group was used as a positive control for studying some core and associated autism-like behaviors. Communication skills by means of ultrasonic vocalizations and physical/motor development were assessed during the preweaning period, whereas locomotor activity, anxiety-like behaviors and the gene expression of cholinergic elements were evaluated during adolescence. Our results showed that C57BL/6J mice prenatally exposed to CPF or VPA showed a decrease in body weight and a delay in eye opening. Communication and anxiety behavior were affected differently depending on treatment, while gene expression was altered by sex and treatment. In addition, none of the parameters evaluated in apoE transgenic mice exposed to CPF were affected, but there were differences between genotypes. Therefore, we suggest that prenatal CPF exposure and VPA produce divergent effects on communication and anxiety.
Collapse
Affiliation(s)
- Judit Biosca-Brull
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Spain; Universitat Rovira i Virgili, Center of Environmental, Food and Toxicological Technology (TECNATOX), Reus, Spain.
| | - Pia Basaure
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain
| | - Laia Guardia-Escote
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain
| | - Maria Cabré
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Department of Biochemistry and Biotechnology, Tarragona, Spain
| | - Jordi Blanco
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Center of Environmental, Food and Toxicological Technology (TECNATOX), Reus, Spain; Universitat Rovira i Virgili, Department of Basic Medical Sciences, Reus, Spain
| | - Miguel Morales-Navas
- Department of Psychology, Health Research Center (CEINSA), Almeria University, 04120, Almeria, Spain
| | - Fernando Sánchez-Santed
- Department of Psychology, Health Research Center (CEINSA), Almeria University, 04120, Almeria, Spain
| | - Maria Teresa Colomina
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Spain; Universitat Rovira i Virgili, Center of Environmental, Food and Toxicological Technology (TECNATOX), Reus, Spain.
| |
Collapse
|
10
|
Fleeman RM, Snyder AM, Kuhn MK, Chan DC, Smith GC, Crowley NA, Arnold AC, Proctor EA. Predictive link between systemic metabolism and cytokine signatures in the brain of apolipoprotein E ε4 mice. Neurobiol Aging 2023; 123:154-169. [PMID: 36572594 PMCID: PMC9892258 DOI: 10.1016/j.neurobiolaging.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
The ε4 variant of apolipoprotein E (APOE) is the strongest and most common genetic risk factor for Alzheimer's disease (AD). While the mechanism of conveyed risk is incompletely understood, promotion of inflammation, dysregulated metabolism, and protein misfolding and aggregation are contributors to accelerating disease. Here we determined the concurrent effects of systemic metabolic changes and brain inflammation in young (3-month-old) and aged (18-month-old) male and female mice carrying the APOE4 gene. Using functional metabolic assays alongside multivariate modeling of hippocampal cytokine levels, we found that brain cytokine signatures are predictive of systemic metabolic outcomes, independent of AD proteinopathies. Male and female mice each produce different cytokine signatures as they age and as their systemic metabolic phenotype declines, and these signatures are APOE genotype dependent. Ours is the first study to identify a quantitative and predictive link between systemic metabolism and specific pathological cytokine signatures in the brain. Our results highlight the effects of APOE4 beyond the brain and suggest the potential for bi-directional influence of risk factors in the brain and periphery.
Collapse
Affiliation(s)
- Rebecca M Fleeman
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA; Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Amanda M Snyder
- Department of Neurology, Penn State College of Medicine, Hershey, PA, USA
| | - Madison K Kuhn
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA; Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA; Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA; Center for Neural Engineering, Pennsylvania State University, University Park, PA, USA
| | - Dennis C Chan
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA; Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA; Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA; Center for Neural Engineering, Pennsylvania State University, University Park, PA, USA
| | - Grace C Smith
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA; Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Nicole A Crowley
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA; Center for Neural Engineering, Pennsylvania State University, University Park, PA, USA; Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Amy C Arnold
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Elizabeth A Proctor
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA; Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA; Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA; Center for Neural Engineering, Pennsylvania State University, University Park, PA, USA; Department of Engineering Science & Mechanics, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
11
|
Chung JY, Jung HU, Kim DJ, Baek EJ, Kim HK, Kang JO, Lim JE, Oh B. Identification of five genetic variants with differential effects on obesity-related traits based on age. Front Genet 2022; 13:970657. [PMID: 36276968 PMCID: PMC9585212 DOI: 10.3389/fgene.2022.970657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Obesity is a major public health concern, and its prevalence generally increases with age. As the number of elderly people is increasing in the aging population, the age-dependent increase in obesity has raised interest in the underlying mechanism. To understand the genetic basis of age-related increase in obesity, we identified genetic variants showing age-dependent differential effects on obesity. We conducted stratified analyses between young and old groups using genome-wide association studies of 355,335 United Kingom Biobank participants for five obesity-related phenotypes, including body mass index, body fat percentage, waist-hip ratio, waist circumference, and hip circumference. Using t-statistic, we identified five significant lead single nucleotide polymorphisms: rs2258461 with body mass index, rs9861311 and rs429358 with body fat percentage, rs2870099 with waist-hip ratio, and rs145500243 with waist circumference. Among these single nucleotide polymorphisms, rs429358, located in APOE gene was associated with diverse age-related diseases, such as Alzheimer’s disease, coronary artery disease, age-related degenerative macular diseases, and cognitive decline. The C allele of rs429358 gradually decreases body fat percentage as one grows older in the range of 40–69 years. In conclusion, we identified five genetic variants with differential effects on obesity-related phenotypes based on age using a stratified analysis between young and old groups, which may help to elucidate the mechanisms by which age influences the development of obesity.
Collapse
Affiliation(s)
- Ju Yeon Chung
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Hae-Un Jung
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Dong Jun Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Eun Ju Baek
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Han Kyul Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Ji-One Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Ji Eun Lim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Korea
- *Correspondence: Ji Eun Lim, ; Bermseok Oh,
| | - Bermseok Oh
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Korea
- *Correspondence: Ji Eun Lim, ; Bermseok Oh,
| |
Collapse
|
12
|
Apolipoprotein E in Cardiometabolic and Neurological Health and Diseases. Int J Mol Sci 2022; 23:ijms23179892. [PMID: 36077289 PMCID: PMC9456500 DOI: 10.3390/ijms23179892] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 11/17/2022] Open
Abstract
A preponderance of evidence obtained from genetically modified mice and human population studies reveals the association of apolipoprotein E (apoE) deficiency and polymorphisms with pathogenesis of numerous chronic diseases, including atherosclerosis, obesity/diabetes, and Alzheimer’s disease. The human APOE gene is polymorphic with three major alleles, ε2, ε3 and ε4, encoding apoE2, apoE3, and apoE4, respectively. The APOE gene is expressed in many cell types, including hepatocytes, adipocytes, immune cells of the myeloid lineage, vascular smooth muscle cells, and in the brain. ApoE is present in subclasses of plasma lipoproteins, and it mediates the clearance of atherogenic lipoproteins from plasma circulation via its interaction with LDL receptor family proteins and heparan sulfate proteoglycans. Extracellular apoE also interacts with cell surface receptors and confers signaling events for cell regulation, while apoE expressed endogenously in various cell types regulates cell functions via autocrine and paracrine mechanisms. This review article focuses on lipoprotein transport-dependent and -independent mechanisms by which apoE deficiency or polymorphisms contribute to cardiovascular disease, metabolic disease, and neurological disorders.
Collapse
|
13
|
Association between APOE Genotype with Body Composition and Cardiovascular Disease Risk Markers Is Modulated by BMI in Healthy Adults: Findings from the BODYCON Study. Int J Mol Sci 2022; 23:ijms23179766. [PMID: 36077164 PMCID: PMC9456146 DOI: 10.3390/ijms23179766] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022] Open
Abstract
Body mass index (BMI) has been suggested to play an important role in the relationship between the APOLIPOPROTEIN (APO)E genotype and cardiovascular disease (CVD) risk. Using data from the BODYCON cross-sectional study (n = 360 adults) we assessed the association between body composition and CVD risk markers according to APOE genotype, with examination of the role of BMI. In this study cohort, the APOE2/E3 group had lower fasting blood lipids than APOE4 carriers and APOE3/E3 group (p ≤ 0.01). After stratifying the group according to BMI, APOE4 carriers in the normal BMI subgroup had a higher lean mass compared with the APOE3/E3 group (p = 0.02) whereas in the overweight/obese subgroup, the android to gynoid percentage fat ratio was lower in APOE4 carriers than APOE3/E3 group (p = 0.04). Fasting lipid concentrations were only different between the APOE2/E3 and other genotype groups within the normal weight BMI subgroup (p ≤ 0.04). This finding was associated with a lower dietary fibre and a higher trans-fat intake compared with APOE4 carriers, and a lower carbohydrate intake relative to the APOE3/E3 group. Our results confirm previous reports that BMI modulates the effect of APOE on CVD risk markers and suggest novel interactions on body composition, with diet a potential modulator of this relationship.
Collapse
|
14
|
Seaks CE, Weekman EM, Sudduth TL, Xie K, Wasek B, Fardo DW, Johnson LA, Bottiglieri T, Wilcock DM. Apolipoprotein E ε4/4 genotype limits response to dietary induction of hyperhomocysteinemia and resulting inflammatory signaling. J Cereb Blood Flow Metab 2022; 42:771-787. [PMID: 35023380 PMCID: PMC9254035 DOI: 10.1177/0271678x211069006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/15/2021] [Accepted: 11/17/2021] [Indexed: 01/16/2023]
Abstract
Vascular contributions to cognitive impairment and dementia (VCID) are the second leading cause of dementia behind Alzheimer's disease. Apolipoprotein E (ApoE) is a lipid transporting lipoprotein found within the brain and periphery. The APOE ε4 allele is the strongest genetic risk factor for late onset Alzheimer's disease and is a risk factor for VCID. Our lab has previously utilized a dietary model of hyperhomocysteinemia (HHcy) to induce VCID pathology and cognitive deficits in mice. This diet induces perivascular inflammation through cumulative oxidative damage leading to glial mediated inflammation and blood brain barrier breakdown. Here, we examine the impact of ApoE ε4 compared to ε3 alleles on the progression of VCID pathology and inflammation in our dietary model of HHcy. We report a significant resistance to HHcy induction in ε4 mice, accompanied by a number of related differences related to homocysteine (Hcy) metabolism and methylation cycle, or 1-C, metabolites. There were also significant differences in inflammatory profiles between ε3 and ε4 mice, as well as significant reduction in Serpina3n, a serine protease inhibitor associated with ApoE ε4, expression in ε4 HHcy mice relative to ε4 controls. Finally, we find evidence of pervasive sex differences within both genotypes in response to HHcy induction.
Collapse
Affiliation(s)
- Charles E Seaks
- Sanders-Brown Center on Aging, Lexington, KY, USA
- Department of Physiology, University of Kentucky, Lexington, KY,
USA
| | - Erica M Weekman
- Sanders-Brown Center on Aging, Lexington, KY, USA
- Department of Physiology, University of Kentucky, Lexington, KY,
USA
| | | | - Kevin Xie
- Department of Biostatistics, University of Kentucky, Lexington,
KY, USA
| | - Brandi Wasek
- Center of Metabolomics, Institute of Metabolic Disease, Baylor
Scott & White Research Institute, Dallas, TX, USA
| | - David W Fardo
- Sanders-Brown Center on Aging, Lexington, KY, USA
- Department of Biostatistics, University of Kentucky, Lexington,
KY, USA
| | - Lance A Johnson
- Sanders-Brown Center on Aging, Lexington, KY, USA
- Department of Physiology, University of Kentucky, Lexington, KY,
USA
| | - Teodoro Bottiglieri
- Center of Metabolomics, Institute of Metabolic Disease, Baylor
Scott & White Research Institute, Dallas, TX, USA
| | - Donna M Wilcock
- Sanders-Brown Center on Aging, Lexington, KY, USA
- Department of Physiology, University of Kentucky, Lexington, KY,
USA
| |
Collapse
|
15
|
Abstract
Sex and gender differences are seen in cognitive disturbances in a variety of neurological and psychiatry diseases. Men are more likely to have cognitive symptoms in schizophrenia whereas women are more likely to have more severe cognitive symptoms with major depressive disorder and Alzheimer's disease. Thus, it is important to understand sex and gender differences in underlying cognitive abilities with and without disease. Sex differences are noted in performance across various cognitive domains - with males typically outperforming females in spatial tasks and females typically outperforming males in verbal tasks. Furthermore, there are striking sex differences in brain networks that are activated during cognitive tasks and in learning strategies. Although rarely studied, there are also sex differences in the trajectory of cognitive aging. It is important to pay attention to these sex differences as they inform researchers of potential differences in resilience to age-related cognitive decline and underlying mechanisms for both healthy and pathological cognitive aging, depending on sex. We review literature on the progressive neurodegenerative disorder, Alzheimer's disease, as an example of pathological cognitive aging in which human females show greater lifetime risk, neuropathology, and cognitive impairment, compared to human males. Not surprisingly, the relationships between sex and cognition, cognitive aging, and Alzheimer's disease are nuanced and multifaceted. As such, this chapter will end with a discussion of lifestyle factors, like education and diet, as modifiable factors that can alter cognitive aging by sex. Understanding how cognition changes across age and contributing factors, like sex differences, will be essential to improving care for older adults.
Collapse
|
16
|
Sex Differences in Metabolic Indices and Chronic Neuroinflammation in Response to Prolonged High-Fat Diet in ApoE4 Knock-In Mice. Int J Mol Sci 2022; 23:ijms23073921. [PMID: 35409283 PMCID: PMC8999114 DOI: 10.3390/ijms23073921] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/22/2022] [Accepted: 03/30/2022] [Indexed: 12/15/2022] Open
Abstract
Late-onset Alzheimer’s disease (LOAD) likely results from combinations of risk factors that include both genetic predisposition and modifiable lifestyle factors. The E4 allele of apolipoprotein E (ApoE) is the most significant genetic risk factor for LOAD. A Western-pattern diet (WD) has been shown to strongly increase the risk of cardiovascular disease and diabetes, conditions which have been strongly linked to an increased risk for developing AD. Little is known about how the WD may contribute to, or enhance, the increased risk presented by possession of the ApoE4 allele. To model this interaction over the course of a lifetime, we exposed male and female homozygote ApoE4 knock-in mice and wild-type controls to nine months of a high-fat WD or standard chow diet. At eleven months of age, the mice were tested for glucose tolerance and then for general activity and spatial learning and memory. Postmortem analysis of liver function and neuroinflammation in the brain was also assessed. Our results suggest that behavior impairments resulted from the convergence of interacting metabolic alterations, made worse in a male ApoE4 mice group who also showed liver dysfunction, leading to a higher level of inflammatory cytokines in the brain. Interestingly, female ApoE4 mice on a WD revealed impairments in spatial learning and memory without the observed liver dysfunction or increase in inflammatory markers in the brain. These results suggest multiple direct and indirect pathways through which ApoE and diet-related factors interact. The striking sex difference in markers of chronic neuroinflammation in male ApoE4 mice fed the high-fat WD suggests a specific mechanism of interaction conferring significant enhanced LOAD risk for humans with the ApoE4 allele, which may differ between sexes. Additionally, our results suggest researchers exercise caution when designing and interpreting results of experiments employing a WD, being careful not to assume a WD impacts both sexes by the same mechanisms.
Collapse
|
17
|
Farmer BC, Williams HC, Devanney NA, Piron MA, Nation GK, Carter DJ, Walsh AE, Khanal R, Young LEA, Kluemper JC, Hernandez G, Allenger EJ, Mooney R, Golden LR, Smith CT, Brandon JA, Gupta VA, Kern PA, Gentry MS, Morganti JM, Sun RC, Johnson LA. APOΕ4 lowers energy expenditure in females and impairs glucose oxidation by increasing flux through aerobic glycolysis. Mol Neurodegener 2021; 16:62. [PMID: 34488832 PMCID: PMC8420022 DOI: 10.1186/s13024-021-00483-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 08/15/2021] [Indexed: 01/21/2023] Open
Abstract
Background Cerebral glucose hypometabolism is consistently observed in individuals with Alzheimer’s disease (AD), as well as in young cognitively normal carriers of the Ε4 allele of Apolipoprotein E (APOE), the strongest genetic predictor of late-onset AD. While this clinical feature has been described for over two decades, the mechanism underlying these changes in cerebral glucose metabolism remains a critical knowledge gap in the field. Methods Here, we undertook a multi-omic approach by combining single-cell RNA sequencing (scRNAseq) and stable isotope resolved metabolomics (SIRM) to define a metabolic rewiring across astrocytes, brain tissue, mice, and human subjects expressing APOE4. Results Single-cell analysis of brain tissue from mice expressing human APOE revealed E4-associated decreases in genes related to oxidative phosphorylation, particularly in astrocytes. This shift was confirmed on a metabolic level with isotopic tracing of 13C-glucose in E4 mice and astrocytes, which showed decreased pyruvate entry into the TCA cycle and increased lactate synthesis. Metabolic phenotyping of E4 astrocytes showed elevated glycolytic activity, decreased oxygen consumption, blunted oxidative flexibility, and a lower rate of glucose oxidation in the presence of lactate. Together, these cellular findings suggest an E4-associated increase in aerobic glycolysis (i.e. the Warburg effect). To test whether this phenomenon translated to APOE4 humans, we analyzed the plasma metabolome of young and middle-aged human participants with and without the Ε4 allele, and used indirect calorimetry to measure whole body oxygen consumption and energy expenditure. In line with data from E4-expressing female mice, a subgroup analysis revealed that young female E4 carriers showed a striking decrease in energy expenditure compared to non-carriers. This decrease in energy expenditure was primarily driven by a lower rate of oxygen consumption, and was exaggerated following a dietary glucose challenge. Further, the stunted oxygen consumption was accompanied by markedly increased lactate in the plasma of E4 carriers, and a pathway analysis of the plasma metabolome suggested an increase in aerobic glycolysis. Conclusions Together, these results suggest astrocyte, brain and system-level metabolic reprogramming in the presence of APOE4, a ‘Warburg like’ endophenotype that is observable in young females decades prior to clinically manifest AD. Supplementary Information The online version contains supplementary material available at 10.1186/s13024-021-00483-y.
Collapse
Affiliation(s)
- Brandon C Farmer
- Department of Physiology, University of Kentucky College of Medicine, UKMC/MS 609, 800 Rose Street, Lexington, KY, 40536, USA
| | - Holden C Williams
- Department of Physiology, University of Kentucky College of Medicine, UKMC/MS 609, 800 Rose Street, Lexington, KY, 40536, USA.,Sanders Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Nicholas A Devanney
- Department of Physiology, University of Kentucky College of Medicine, UKMC/MS 609, 800 Rose Street, Lexington, KY, 40536, USA.,Sanders Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Margaret A Piron
- Department of Physiology, University of Kentucky College of Medicine, UKMC/MS 609, 800 Rose Street, Lexington, KY, 40536, USA
| | - Grant K Nation
- Department of Physiology, University of Kentucky College of Medicine, UKMC/MS 609, 800 Rose Street, Lexington, KY, 40536, USA
| | - David J Carter
- Department of Physiology, University of Kentucky College of Medicine, UKMC/MS 609, 800 Rose Street, Lexington, KY, 40536, USA
| | - Adeline E Walsh
- Department of Physiology, University of Kentucky College of Medicine, UKMC/MS 609, 800 Rose Street, Lexington, KY, 40536, USA
| | - Rebika Khanal
- Department of Physiology, University of Kentucky College of Medicine, UKMC/MS 609, 800 Rose Street, Lexington, KY, 40536, USA
| | - Lyndsay E A Young
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Jude C Kluemper
- Department of Physiology, University of Kentucky College of Medicine, UKMC/MS 609, 800 Rose Street, Lexington, KY, 40536, USA
| | - Gabriela Hernandez
- Department of Physiology, University of Kentucky College of Medicine, UKMC/MS 609, 800 Rose Street, Lexington, KY, 40536, USA
| | - Elizabeth J Allenger
- Department of Physiology, University of Kentucky College of Medicine, UKMC/MS 609, 800 Rose Street, Lexington, KY, 40536, USA
| | - Rachel Mooney
- Department of Physiology, University of Kentucky College of Medicine, UKMC/MS 609, 800 Rose Street, Lexington, KY, 40536, USA
| | - Lesley R Golden
- Department of Physiology, University of Kentucky College of Medicine, UKMC/MS 609, 800 Rose Street, Lexington, KY, 40536, USA
| | - Cathryn T Smith
- Department of Physiology, University of Kentucky College of Medicine, UKMC/MS 609, 800 Rose Street, Lexington, KY, 40536, USA
| | - J Anthony Brandon
- Department of Physiology, University of Kentucky College of Medicine, UKMC/MS 609, 800 Rose Street, Lexington, KY, 40536, USA
| | - Vedant A Gupta
- Gill Heart and Vascular Institute, University of Kentucky, Lexington, KY, USA
| | - Philip A Kern
- Center for Clinical and Translational Science, University of Kentucky College of Medicine, Lexington, KY, USA.,Department of Internal Medicine, Division of Endocrinology, University of Kentucky, Lexington, KY, USA
| | - Matthew S Gentry
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Josh M Morganti
- Sanders Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY, USA.,Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Ramon C Sun
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Lance A Johnson
- Department of Physiology, University of Kentucky College of Medicine, UKMC/MS 609, 800 Rose Street, Lexington, KY, 40536, USA. .,Sanders Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY, USA.
| |
Collapse
|
18
|
Igel E, Haller A, Wolfkiel PR, Orr-Asman M, Jaeschke A, Hui DY. Distinct pro-inflammatory properties of myeloid cell-derived apolipoprotein E2 and E4 in atherosclerosis promotion. J Biol Chem 2021; 297:101106. [PMID: 34425108 PMCID: PMC8437825 DOI: 10.1016/j.jbc.2021.101106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 11/25/2022] Open
Abstract
Polymorphisms in the apolipoprotein E (apoE) gene are risk factors for chronic inflammatory diseases including atherosclerosis. The gene product apoE is synthesized in many cell types and has both lipid transport–dependent and lipid transport–independent functions. Previous studies have shown that apoE expression in myeloid cells protects against atherogenesis in hypercholesterolemic ApoE−/− mice. However, the mechanism of this protection is still unclear. Using human APOE gene replacement mice as models, this study showed that apoE2 and apoE4 expressed endogenously in myeloid cells enhanced the inflammatory response via mechanisms independent of plasma lipoprotein transport. The data revealed that apoE2-expressing myeloid cells contained higher intracellular cholesterol levels because of impaired efflux, causing increasing inflammasome activation and myelopoiesis. In contrast, intracellular cholesterol levels were not elevated in apoE4-expressing myeloid cells, and its proinflammatory property was found to be independent of inflammasome signaling and related to enhanced oxidative stress. When ApoE−/− mice were reconstituted with bone marrow from various human APOE gene replacement mice, effective reduction of atherosclerosis was observed with marrow cells obtained from APOE3 but not APOE2 and APOE4 gene replacement mice. Taken together, these results documented that apoE2 and apoE4 expression in myeloid cells promotes inflammation via distinct mechanisms and promotes atherosclerosis in a plasma lipoprotein transport–independent manner.
Collapse
Affiliation(s)
- Emily Igel
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - April Haller
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Patrick R Wolfkiel
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Melissa Orr-Asman
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Anja Jaeschke
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - David Y Hui
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
| |
Collapse
|
19
|
Liu RM, Chong Z, Chen JC. Ozone and Particulate Matter Exposure and Alzheimer's Disease: A Review of Human and Animal Studies. J Alzheimers Dis 2021; 76:807-824. [PMID: 32568209 DOI: 10.3233/jad-200435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD), an aging-related neurodegenerative disease, is a major cause of dementia in the elderly. Although the early-onset (familial) AD is attributed to mutations in the genes coding for amyloid-β protein precursor (AβPP) and presenilin1/presenilin 2 (PS1/PS2), the cause for the late-onset AD (LOAD), which accounts for more than 95% of AD cases, remains unclear. Aging is the greatest risk factor for LOAD, whereas the apolipo protein E4 allele (APOEɛ4) is believed to be a major genetic risk factor in acquiring LOAD, with female APOEɛ4 carriers at highest risk. Nonetheless, not all the elderly, even older female APOEɛ4 carriers, develop LOAD, suggesting that other factors, including environmental exposure, must play a role. This review summarizes recent studies that show a potential role of environmental exposure, especially ozone and particulate matter exposure, in the development of AD. Interactions between environmental exposure, genetic risk factor (APOEɛ4), and sex in AD pathophysiology are also discussed briefly. Identification of environmental risk factor(s) and elucidation of the complex interactions between genetic and environmental risk factors plus aging and female sex in the onset of AD will be a key to our understanding of the etiology and pathogenesis of AD and the development of the strategies for its prevention and treatment.
Collapse
Affiliation(s)
- Rui-Ming Liu
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zechen Chong
- Department of Genetics, the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jiu-Chiuan Chen
- Department of Biostatistics and Data Science, The University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
20
|
Guardia-Escote L, Blanco J, Basaure P, Biosca-Brull J, Verkaik-Schakel RN, Cabré M, Peris-Sampedro F, Pérez-Fernández C, Sánchez-Santed F, Plösch T, Domingo JL, Colomina MT. Sex and Exposure to Postnatal Chlorpyrifos Influence the Epigenetics of Feeding-Related Genes in a Transgenic APOE Mouse Model: Long-Term Implications on Body Weight after a High-Fat Diet. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 18:ijerph18010184. [PMID: 33383760 PMCID: PMC7795072 DOI: 10.3390/ijerph18010184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 12/25/2022]
Abstract
Developmental exposure to toxicants and diet can interact with an individual's genetics and produce long-lasting metabolic adaptations. The different isoforms of the apolipoprotein E (APOE) are an important source of variability in metabolic disorders and influence the response to the pesticide chlorpyrifos (CPF). We aimed to study the epigenetic regulation on feeding control genes and the influence of postnatal CPF exposure, APOE genotype, and sex, and how these modifications impact on the metabolic response to a high-fat diet (HFD). Both male and female apoE3- and apoE4-TR mice were exposed to CPF on postnatal days 10-15. The DNA methylation pattern of proopiomelanocortin, neuropeptide Y, leptin receptor, and insulin-like growth factor 2 was studied in the hypothalamus. At adulthood, the mice were given a HFD for eight weeks. The results highlight the importance of sex in the epigenetic regulation and the implication of CPF treatment and APOE genotype. The body weight progression exhibited sex-dimorphic differences, apoE4-TR males being the most susceptible to the effects induced by CPF and HFD. Overall, these results underscore the pivotal role of sex, APOE genotype, and developmental exposure to CPF on subsequent metabolic disturbances later in life and show that sex is a key variable in epigenetic regulation.
Collapse
Affiliation(s)
- Laia Guardia-Escote
- Research in Neurobehavior and Health (NEUROLAB), Universitat Rovira i Virgili, 43007 Tarragona, Spain; (L.G.-E.); (J.B.); (P.B.); (J.B.-B.); (M.C.)
- Department of Psychology and Research Center for Behavior Assessment (CRAMC), Universitat Rovira i Virgili, Campus Sescelades, 43007 Tarragona, Spain
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, 43201 Reus, Spain;
| | - Jordi Blanco
- Research in Neurobehavior and Health (NEUROLAB), Universitat Rovira i Virgili, 43007 Tarragona, Spain; (L.G.-E.); (J.B.); (P.B.); (J.B.-B.); (M.C.)
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, 43201 Reus, Spain;
- Department of Basic Medical Sciences, Universitat Rovira i Virgili, 43201 Reus, Spain
| | - Pia Basaure
- Research in Neurobehavior and Health (NEUROLAB), Universitat Rovira i Virgili, 43007 Tarragona, Spain; (L.G.-E.); (J.B.); (P.B.); (J.B.-B.); (M.C.)
| | - Judit Biosca-Brull
- Research in Neurobehavior and Health (NEUROLAB), Universitat Rovira i Virgili, 43007 Tarragona, Spain; (L.G.-E.); (J.B.); (P.B.); (J.B.-B.); (M.C.)
- Department of Psychology and Research Center for Behavior Assessment (CRAMC), Universitat Rovira i Virgili, Campus Sescelades, 43007 Tarragona, Spain
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, 43201 Reus, Spain;
| | - Rikst Nynke Verkaik-Schakel
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (R.N.V.-S.); (T.P.)
| | - Maria Cabré
- Research in Neurobehavior and Health (NEUROLAB), Universitat Rovira i Virgili, 43007 Tarragona, Spain; (L.G.-E.); (J.B.); (P.B.); (J.B.-B.); (M.C.)
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Fiona Peris-Sampedro
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 405 30 Gothenburg, Sweden;
| | - Cristian Pérez-Fernández
- Department of Psychology and Health Research Center (CEINSA), Almeria University-ceiA3, 04120 Almeria, Spain; (C.P.-F.); (F.S.-S.)
| | - Fernando Sánchez-Santed
- Department of Psychology and Health Research Center (CEINSA), Almeria University-ceiA3, 04120 Almeria, Spain; (C.P.-F.); (F.S.-S.)
| | - Torsten Plösch
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (R.N.V.-S.); (T.P.)
| | - José L. Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, 43201 Reus, Spain;
- Department of Basic Medical Sciences, Universitat Rovira i Virgili, 43201 Reus, Spain
| | - Maria Teresa Colomina
- Research in Neurobehavior and Health (NEUROLAB), Universitat Rovira i Virgili, 43007 Tarragona, Spain; (L.G.-E.); (J.B.); (P.B.); (J.B.-B.); (M.C.)
- Department of Psychology and Research Center for Behavior Assessment (CRAMC), Universitat Rovira i Virgili, Campus Sescelades, 43007 Tarragona, Spain
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, 43201 Reus, Spain;
- Correspondence:
| |
Collapse
|
21
|
Johnson LA. APOE and metabolic dysfunction in Alzheimer's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 154:131-151. [PMID: 32739002 DOI: 10.1016/bs.irn.2020.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The strongest genetic risk factor for sporadic Alzheimer's disease (AD) is carriage of the E4 allele of APOE. Metabolic dysfunction also increases risk of dementia and AD. Facing a need for effective therapies and an aging global population, studies aimed at uncovering new therapeutic targets for AD have become critical. Insight into the biology underlying the effects of E4 and metabolic impairment on the brain may lead to novel therapies to reduce AD risk. An understudied hallmark of both AD patients and E4 individuals is a common metabolic impairment-cerebral glucose hypometabolism. This is a robust and replicated finding in humans, and begins decades prior to cognitive decline. Possession of E4 also appears to alter several other aspects of cerebral glucose metabolism, fatty acid metabolism, and management of oxidative stress through the pentose phosphate pathway. A critical knowledge gap in AD is the mechanism by which APOE alters cerebral metabolism and clarification as to its relevance to AD risk. Facing a need for effective therapies, studies aimed at uncovering new therapeutic targets have become critical. One such approach is to gain a better understanding of the metabolic mechanisms that may underlie E4-associated cognitive dysfunction and AD risk.
Collapse
Affiliation(s)
- Lance A Johnson
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, United States; Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY, United States.
| |
Collapse
|
22
|
Yassine HN, Finch CE. APOE Alleles and Diet in Brain Aging and Alzheimer's Disease. Front Aging Neurosci 2020; 12:150. [PMID: 32587511 PMCID: PMC7297981 DOI: 10.3389/fnagi.2020.00150] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
The APOE gene alleles modify human aging and the response to the diet at many levels with diverse pleotropic effects from gut to brain. To understand the interactions of APOE isoforms and diet, we analyze how cellular trafficking of apoE proteins affects energy metabolism, the immune system, and reproduction. The age-accelerating APOE4 allele alters the endosomal trafficking of cell surface receptors that mediate lipid and glucose metabolism. The APOE4 allele is the ancestral human allele, joined by APOE3 and then APOE2 in the human species. Under conditions of high infection, uncertain food, and shorter life expectancy, APOE4 may be adaptive for reducing mortality. As humans transitioned into modern less-infectious environments and longer life spans, APOE4 increased risks of aging-related diseases, particularly impacting arteries and the brain. The association of APOE4 with glucose dysregulation and body weight promotes many aging-associated diseases. Additionally, the APOE gene locus interacts with adjacent genes on chromosome 19 in haplotypes that modify neurodegeneration and metabolism, for which we anticipate complex gene-environment interactions. We summarize how diet and Alzheimer's disease (AD) risk are altered by APOE genotype in both animal and human studies and identify gaps. Much remains obscure in how APOE alleles modify nutritional factors in human aging. Identifying risk variant haplotypes in the APOE gene complex will clarify homeostatic adaptive responses to environmental conditions.
Collapse
Affiliation(s)
- Hussein N. Yassine
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Caleb E. Finch
- Leonard Davis School of Gerontology and Dornsife College, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
23
|
Miladinovic D, Cusick T, Mahon KL, Haynes AM, Cortie CH, Meyer BJ, Stricker PD, Wittert GA, Butler LM, Horvath LG, Hoy AJ. Assessment of Periprostatic and Subcutaneous Adipose Tissue Lipolysis and Adipocyte Size from Men with Localized Prostate Cancer. Cancers (Basel) 2020; 12:cancers12061385. [PMID: 32481537 PMCID: PMC7352157 DOI: 10.3390/cancers12061385] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/21/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023] Open
Abstract
The prostate is surrounded by periprostatic adipose tissue (PPAT), the thickness of which has been associated with more aggressive prostate cancer (PCa). There are limited data regarding the functional characteristics of PPAT, how it compares to subcutaneous adipose tissue (SAT), and whether in a setting of localized PCa, these traits are altered by obesity or disease aggressiveness. PPAT and SAT were collected from 60 men (age: 42–78 years, BMI: 21.3–35.6 kg/m2) undergoing total prostatectomy for PCa. Compared to SAT, adipocytes in PPAT were smaller, had the same basal rates of fatty acid release (lipolysis) yet released less polyunsaturated fatty acid species, and were more sensitive to isoproterenol-stimulated lipolysis. Basal lipolysis of PPAT was increased in men diagnosed with less aggressive PCa (Gleason score (GS) ≤ 3 + 4) compared to men with more aggressive PCa (GS ≥ 4 + 3) but no other measured adipocyte parameters related to PCa aggressiveness. Likewise, there was no difference in PPAT lipid biology between lean and obese men. In conclusion, lipid biological features of PPAT do differ from SAT; however, we did not observe any meaningful difference in ex vivo PPAT biology that is associated with PCa aggressiveness or obesity. As such, our findings do not support a relationship between altered PCa behavior in obese men and the metabolic reprogramming of PPAT.
Collapse
Affiliation(s)
- Dushan Miladinovic
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, New South Wales 2006, Australia;
| | - Thomas Cusick
- Cancer Division, The Kinghorn Cancer Centre/Garvan Institute of Medical Research, New South Wales 2010, Australia; (T.C.); (K.L.M.); (A.-M.H.); (P.D.S.); (L.G.H.)
| | - Kate L. Mahon
- Cancer Division, The Kinghorn Cancer Centre/Garvan Institute of Medical Research, New South Wales 2010, Australia; (T.C.); (K.L.M.); (A.-M.H.); (P.D.S.); (L.G.H.)
- Discipline of Medicine, Central Clinical School, The University of Sydney School of Medicine, Faculty of Medicine and Health, The University of Sydney, New South Wales 2006, Australia
- Department of Medical Oncology, Chris O’Brien Lifehouse, New South Wales 2050, Australia
- Royal Prince Alfred Hospital, New South Wales 2050, Australia
| | - Anne-Maree Haynes
- Cancer Division, The Kinghorn Cancer Centre/Garvan Institute of Medical Research, New South Wales 2010, Australia; (T.C.); (K.L.M.); (A.-M.H.); (P.D.S.); (L.G.H.)
| | - Colin H. Cortie
- School of Medicine, Lipid Research Centre, Molecular Horizons, University of Wollongong, New South Wales 2522, Australia; (C.H.C.); (B.J.M.)
- Illawarra Medical Research Institute, University of Wollongong, New South Wales 2522, Australia
| | - Barbara J. Meyer
- School of Medicine, Lipid Research Centre, Molecular Horizons, University of Wollongong, New South Wales 2522, Australia; (C.H.C.); (B.J.M.)
- Illawarra Medical Research Institute, University of Wollongong, New South Wales 2522, Australia
| | - Phillip D. Stricker
- Cancer Division, The Kinghorn Cancer Centre/Garvan Institute of Medical Research, New South Wales 2010, Australia; (T.C.); (K.L.M.); (A.-M.H.); (P.D.S.); (L.G.H.)
- St. Vincent’s Clinical School, The University of New South Wales, New South Wales 2010, Australia
- St. Vincent’s Prostate Cancer Centre, St. Vincent’s Clinic, New South Wales 2010, Australia
| | - Gary A. Wittert
- South Australian Health and Medical Research Institute, South Australia 5000, Australia; (G.A.W.); (L.M.B.)
- School of Medicine and Freemasons Foundation Centre for Men’s Health, University of Adelaide, South Australia 5000, Australia
| | - Lisa M. Butler
- South Australian Health and Medical Research Institute, South Australia 5000, Australia; (G.A.W.); (L.M.B.)
- School of Medicine and Freemasons Foundation Centre for Men’s Health, University of Adelaide, South Australia 5000, Australia
| | - Lisa G. Horvath
- Cancer Division, The Kinghorn Cancer Centre/Garvan Institute of Medical Research, New South Wales 2010, Australia; (T.C.); (K.L.M.); (A.-M.H.); (P.D.S.); (L.G.H.)
- Discipline of Medicine, Central Clinical School, The University of Sydney School of Medicine, Faculty of Medicine and Health, The University of Sydney, New South Wales 2006, Australia
- Department of Medical Oncology, Chris O’Brien Lifehouse, New South Wales 2050, Australia
- Royal Prince Alfred Hospital, New South Wales 2050, Australia
| | - Andrew J. Hoy
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, New South Wales 2006, Australia;
- Correspondence:
| |
Collapse
|
24
|
Sullivan P. Influence of Western diet and APOE genotype on Alzheimer's disease risk. Neurobiol Dis 2020; 138:104790. [DOI: 10.1016/j.nbd.2020.104790] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/28/2020] [Accepted: 02/03/2020] [Indexed: 10/25/2022] Open
|
25
|
Rhea EM, Raber J, Banks WA. ApoE and cerebral insulin: Trafficking, receptors, and resistance. Neurobiol Dis 2020; 137:104755. [PMID: 31978603 PMCID: PMC7050417 DOI: 10.1016/j.nbd.2020.104755] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/13/2020] [Accepted: 01/20/2020] [Indexed: 12/16/2022] Open
Abstract
Central nervous system (CNS) insulin resistance is associated with Alzheimer's disease (AD). In addition, the apolipoprotein E4 (apoE4) isoform is a risk factor for AD. The connection between these two factors in relation to AD is being actively explored. We summarize this literature with a focus on the transport of insulin and apoE across the blood-brain barrier (BBB) and into the CNS, the impact of apoE and insulin on the BBB, and the interactions between apoE, insulin, and the insulin receptor once present in the CNS. We highlight how CNS insulin resistance is apparent in AD and potential ways to overcome this resistance by repurposing currently approved drugs, with apoE genotype taken into consideration as the treatment response following most interventions is apoE isoform-dependent. This review is part of a special issue focusing on apoE in AD and neurodegeneration.
Collapse
Affiliation(s)
- Elizabeth M Rhea
- Research and Development, Veterans Affairs Puget Sound Healthcare System, Seattle, WA 98108, United States of America; Department of Medicine, University of Washington, Seattle, WA 98195, United States of America.
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States of America; Departments of Neurology and Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR 97239, United States of America
| | - William A Banks
- Research and Development, Veterans Affairs Puget Sound Healthcare System, Seattle, WA 98108, United States of America; Department of Medicine, University of Washington, Seattle, WA 98195, United States of America
| |
Collapse
|
26
|
Lewandowski CT, Maldonado Weng J, LaDu MJ. Alzheimer's disease pathology in APOE transgenic mouse models: The Who, What, When, Where, Why, and How. Neurobiol Dis 2020; 139:104811. [PMID: 32087290 DOI: 10.1016/j.nbd.2020.104811] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/01/2020] [Accepted: 02/18/2020] [Indexed: 02/07/2023] Open
Abstract
The focus on amyloid plaques and neurofibrillary tangles has yielded no Alzheimer's disease (AD) modifying treatments in the past several decades, despite successful studies in preclinical mouse models. This inconsistency has caused a renewed focus on improving the fidelity and reliability of AD mouse models, with disparate views on how this improvement can be accomplished. However, the interactive effects of the universal biological variables of AD, which include age, APOE genotype, and sex, are often overlooked. Age is the greatest risk factor for AD, while the ε4 allele of the human APOE gene, encoding apolipoprotein E, is the greatest genetic risk factor. Sex is the final universal biological variable of AD, as females develop AD at almost twice the rate of males and, importantly, female sex exacerbates the effects of APOE4 on AD risk and rate of cognitive decline. Therefore, this review evaluates the importance of context for understanding the role of APOE in preclinical mouse models. Specifically, we detail how human AD pathology is mirrored in current transgenic mouse models ("What") and describe the critical need for introducing human APOE into these mouse models ("Who"). We next outline different methods for introducing human APOE into mice ("How") and highlight efforts to develop temporally defined and location-specific human apoE expression models ("When" and "Where"). We conclude with the importance of choosing the human APOE mouse model relevant to the question being addressed, using the selection of transgenic models for testing apoE-targeted therapeutics as an example ("Why").
Collapse
Affiliation(s)
- Cutler T Lewandowski
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA.
| | - Juan Maldonado Weng
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 S. Wood St., Chicago, IL 60612, USA.
| | - Mary Jo LaDu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 S. Wood St., Chicago, IL 60612, USA.
| |
Collapse
|
27
|
Beyond the CNS: The many peripheral roles of APOE. Neurobiol Dis 2020; 138:104809. [PMID: 32087284 DOI: 10.1016/j.nbd.2020.104809] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/06/2020] [Accepted: 02/18/2020] [Indexed: 12/28/2022] Open
Abstract
Apolipoprotein E (APOE) is a multifunctional protein synthesized and secreted by multiple mammalian tissues. Although hepatocytes contribute about 75% of the peripheral pool, APOE can also be expressed in adipose tissue, the kidney, and the adrenal glands, among other tissues. High levels of APOE production also occur in the brain, where it is primarily synthesized by glia, and peripheral and brain APOE pools are thought to be distinct. In humans, APOE is polymorphic, with three major alleles (ε2, ε3, and ε4). These allelic forms dramatically alter APOE structure and function. Historically, the vast majority of research on APOE has centered on the important role it plays in modulating risk for cardiovascular disease and Alzheimer's disease. However, the established effects of this pleiotropic protein extend well beyond these two critical health challenges, with demonstrated roles across a wide spectrum of biological conditions, including adipose tissue function and obesity, metabolic syndrome and diabetes, fertility and longevity, and immune function. While the spectrum of biological systems in which APOE plays a role seems implausibly wide at first glance, there are some potential unifying mechanisms that could tie these seemingly disparate disorders together. In the current review, we aim to concisely summarize a wide breadth of APOE-associated pathologies and to analyze the influence of APOE in the development of several distinct disorders in order to provide insight into potential shared mechanisms implied in these various pathophysiological processes.
Collapse
|
28
|
Metabolic Disturbances of a High-Fat Diet Are Dependent on APOE Genotype and Sex. eNeuro 2019; 6:ENEURO.0267-19.2019. [PMID: 31554665 PMCID: PMC6795556 DOI: 10.1523/eneuro.0267-19.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/03/2019] [Accepted: 09/18/2019] [Indexed: 01/12/2023] Open
Abstract
Apolipoprotein E4 (APOE4) is the strongest genetic risk factor for Alzheimer's disease (AD). APOE4 is also associated with an increased risk of metabolic syndrome. Obesity is a major environmental risk factor for AD. While APOE genotype and obesity independently affect metabolism and cognition, they may also have synergistic effects. Here, we examined the metabolic and behavioral alterations associated with a high-fat diet (HFD) in male and female APOE knock-in mice. Male and female mice were fed a 45% kcal HFD or a 10% kcal low-fat diet (LFD) for 12 weeks and adipose tissue accumulation, glucose levels, anxiety-like behavior, and spatial memory were examined. We found that with HFD, male APOE4 mice were more susceptible to metabolic disturbances, including visceral adipose tissue (VAT) accumulation and glucose intolerance when compared to APOE3 mice, while female APOE3 and APOE4 mice had similar metabolic responses. Behaviorally, there were no effects of HFD in mice of either genotype. Our results suggest that metabolic responses to HFD are dependent on both sex and APOE genotype.
Collapse
|
29
|
Johnson LA, Torres ER, Weber Boutros S, Patel E, Akinyeke T, Alkayed NJ, Raber J. Apolipoprotein E4 mediates insulin resistance-associated cerebrovascular dysfunction and the post-prandial response. J Cereb Blood Flow Metab 2019; 39:770-781. [PMID: 29215310 PMCID: PMC6498752 DOI: 10.1177/0271678x17746186] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Metabolic dysfunction, commonly a result of diets high in saturated fats and sugar, is associated with impaired cognitive function and an increased risk of age-related cognitive decline (ACD) and Alzheimer's disease (AD). Compared to the E3 isoform of apolipoprotein (apoE), the E4 isoform is a major genetic risk factor for ACD, AD, and for developing cognitive impairments following various environmental challenges, including dietary challenges such as a high-fat diet (HFD). Both insulin resistance (IR) and E4 are associated with metabolic and vascular impairments. Deficits in cerebral metabolism and cerebrovascular function have been proposed as initiating events leading to these impairments. In the current study, we employed a model of human apoE targeted replacement mice and HFD-induced obesity to study the potential link between E4 and IR, at rest and following a postprandial challenge. HFD-induced IR was associated with impaired cognition, reduced cerebral blood volume and decreased glucose uptake. These effects were more profound in E4 than E3 mice. Furthermore, the cognitive, metabolic and cerebrovascular responses to an exogenous glucose load showed an apoE isoform-dependent response, with E4, but not E3 mice, acutely benefiting from a spike in blood glucose.
Collapse
Affiliation(s)
- Lance A Johnson
- 1 Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA.,2 Department of Physiology, University of Kentucky, Lexington, KY 40536 USA
| | - Eileen Ruth Torres
- 1 Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Sydney Weber Boutros
- 1 Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Esha Patel
- 1 Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Tunde Akinyeke
- 1 Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Nabil J Alkayed
- 3 Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA.,4 Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Jacob Raber
- 1 Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA.,5 Department of Neurology and Radiation Medicine, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
30
|
Kulminski AM, Loika Y, Culminskaya I, Huang J, Arbeev KG, Bagley O, Feitosa MF, Zmuda JM, Christensen K, Yashin AI. Independent associations of TOMM40 and APOE variants with body mass index. Aging Cell 2019; 18:e12869. [PMID: 30462377 PMCID: PMC6351823 DOI: 10.1111/acel.12869] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/13/2018] [Accepted: 10/04/2018] [Indexed: 02/04/2023] Open
Abstract
The TOMM40-APOE variants are known for their strong, antagonistic associations with Alzheimer's disease and body weight. While a stronger role of the APOE than TOMM40 variants in Alzheimer's disease was suggested, comparative contribution of the TOMM40-APOE variants in the regulation of body weight remains elusive. We examined additive effects of rs2075650 and rs157580 TOMM40 variants and rs429358 and rs7412 APOE variants coding the ε2/ε3/ε4 polymorphism on body mass index (BMI) in age-aggregated and age-stratified cohort-specific and cohort-pooled analysis of 27,863 Caucasians aged 20-100 years from seven longitudinal studies. Minor alleles of rs2075650, rs429358, and rs7412 were individually associated with BMI (β = -1.29, p = 3.97 × 10-9 ; β = -1.38, p = 2.78 × 10-10 ; and β = 0.58, p = 3.04 × 10-2 , respectively). Conditional analysis with rs2075650 and rs429358 identified independent BMI-lowering associations for minor alleles (β = -0.63, p = 3.99 × 10-2 and β = -0.94, p = 2.17 × 10-3 , respectively). Polygenic mega-analysis identified additive effects of the rs2075650 and rs429358 heterozygotes (β = -1.68, p = 3.00 × 10-9 ), and the strongest BMI-lowering association for the rs2075650 heterozygous and rs429358 minor allele homozygous carriers (β = -4.11, p = 2.78 × 10-3 ). Conditional analysis with four polymorphisms identified independent BMI-lowering (rs2075650, rs157580, and rs429358) and BMI-increasing (rs7412) associations of heterozygous genotypes with BMI. Age-stratified conditional analysis revealed well-powered support for a differential and independent association of the rs429358 heterozygote with BMI in younger and older individuals, β = 0.58, 95% confidence interval (CI) = -1.18, 2.35, p = 5.18 × 10-1 for 3,068 individuals aged ≤30 years and β = -4.28, CI = -5.65, -2.92, p = 7.71 × 10-10 for 6,052 individuals aged >80 years. TOMM40 and APOE variants are independently and additively associated with BMI. The APOE ε4-coding rs429358 polymorphism is associated with BMI in older individuals but not in younger individuals.
Collapse
Affiliation(s)
- Alexander M. Kulminski
- Biodemography of Aging Research Unit, Social Science Research InstituteDuke UniversityDurhamNorth California
| | - Yury Loika
- Biodemography of Aging Research Unit, Social Science Research InstituteDuke UniversityDurhamNorth California
| | - Irina Culminskaya
- Biodemography of Aging Research Unit, Social Science Research InstituteDuke UniversityDurhamNorth California
| | - Jian Huang
- Biodemography of Aging Research Unit, Social Science Research InstituteDuke UniversityDurhamNorth California
| | - Konstantin G. Arbeev
- Biodemography of Aging Research Unit, Social Science Research InstituteDuke UniversityDurhamNorth California
| | - Olivia Bagley
- Biodemography of Aging Research Unit, Social Science Research InstituteDuke UniversityDurhamNorth California
| | - Mary F. Feitosa
- Division of Statistical Genomics, Department of GeneticsWashington University School of MedicineSt LouisMissouri
| | - Joseph M. Zmuda
- Department of Epidemiology, Graduate School of Public HealthUniversity of PittsburghPittsburghPennsylvania
| | - Kaare Christensen
- The Danish Aging Research CenterUniversity of Southern DenmarkOdense CDenmark
| | - Anatoliy I. Yashin
- Biodemography of Aging Research Unit, Social Science Research InstituteDuke UniversityDurhamNorth California
| | | |
Collapse
|
31
|
Maltais M, de Souto Barreto P, Rolland Y, Vellas B. Is Fat Mass Cross-Sectionally Associated with Cortical Aβ Load in the Human Brain? J Nutr Health Aging 2019; 23:207-210. [PMID: 30697632 DOI: 10.1007/s12603-018-1121-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES The objective of this study was to examine the relationship of fat mass (FM) with brain amyloid (Aβ) load in older adults. METHODS Data from the Multidomain Alzheimer's Preventive Trial (MAPT) for Positron emission tomography and dual-energy X-ray absorptiometry (DXA) were used. Linear regressions controlling for appendicular muscle, age, education, clinical dementia rating scale and Apolipoprotein-E were performed to explore the relationships between FM, trunk FM and Aβ-load. RESULTS Thirty-nine participants (75.7 ± 4.2 years old) with an average BMI of 27.5 ± 4.0 kg/m2 were analyzed in this study. There were significant and positive associations of both total and trunk FM with Aβ load [0.01 (0.002-0.02) and 0.02 (0.001-0.04), respectively]; however, when adding ApoE-ε4 as a confounder, associations were no longer significant. CONCLUSIONS This study has found associations between FM as measured by DXA and cerebral Aβ load, suggesting that excessive FM might be involved in AD pathology.
Collapse
Affiliation(s)
- M Maltais
- Mathieu Maltais, PhD, Gérontopôle de Toulouse, Institut du Vieillissement, Bâtiment B, 37 allée Jules Guesde, 31000, Toulouse France, Phone : (+33) 05 61 14 56 91, E-mail :
| | | | | | | |
Collapse
|
32
|
Jones NS, Rebeck GW. The Synergistic Effects of APOE Genotype and Obesity on Alzheimer's Disease Risk. Int J Mol Sci 2018; 20:ijms20010063. [PMID: 30586872 PMCID: PMC6337558 DOI: 10.3390/ijms20010063] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 12/17/2022] Open
Abstract
The APOE gene has three common alleles—E2, E3, and E4, with APOE4 being the strongest genetic risk factor for developing Alzheimer’s Disease (AD). Obesity is a global epidemic and contributes to multiple metabolic problems. Obesity is also a risk factor for cognitive decline. Here, we review the effects of APOE4 and obesity on cognition and AD development, independently and together. We describe studies that have associated APOE4 with cognitive deficits and AD, as well as studies that have associated obesity to cognitive deficits and AD. We then describe studies that have examined the effects of obesity and APOE genotypes together, with a focus on APOE4 and high fat diets. Both human studies and rodent models have contributed to understanding the effects of obesity on the different APOE genotypes, and we outline possible underlying mechanisms associated with these effects. Data across approaches support a model in which APOE4 and obesity combine for greater detrimental effects on metabolism and cognition, in ways that are influenced by both age and sex.
Collapse
Affiliation(s)
- Nahdia S Jones
- Department of Neuroscience, Georgetown University, 3970 Reservoir Rd NW, Washington, DC 20007, USA.
| | - G William Rebeck
- Department of Neuroscience, Georgetown University, 3970 Reservoir Rd NW, Washington, DC 20007, USA.
| |
Collapse
|
33
|
Postnatal chlorpyrifos exposure and apolipoprotein E (APOE) genotype differentially affect cholinergic expression and developmental parameters in transgenic mice. Food Chem Toxicol 2018; 118:42-52. [DOI: 10.1016/j.fct.2018.04.065] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 04/12/2018] [Accepted: 04/30/2018] [Indexed: 02/08/2023]
|
34
|
Dose J, Schloesser A, Torres GG, Venkatesh G, Häsler R, Flachsbart F, Lieb W, Nebel A, Rimbach G, Huebbe P. On a Western diet, APOEɛ4 is associated with low innate immune sensing, but not APOEɛ3. J Allergy Clin Immunol 2018; 142:1346-1349.e9. [PMID: 29928926 DOI: 10.1016/j.jaci.2018.05.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 04/11/2018] [Accepted: 05/10/2018] [Indexed: 12/01/2022]
Affiliation(s)
- Janina Dose
- Institute of Human Nutrition and Food Science, Kiel University, Kiel, Germany; Institute of Clinical Molecular Biology, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Anke Schloesser
- Institute of Human Nutrition and Food Science, Kiel University, Kiel, Germany
| | - Guillermo G Torres
- Institute of Clinical Molecular Biology, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Geetha Venkatesh
- Institute of Clinical Molecular Biology, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Robert Häsler
- Institute of Clinical Molecular Biology, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Friederike Flachsbart
- Institute of Clinical Molecular Biology, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Wolfgang Lieb
- Institute of Epidemiology, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Almut Nebel
- Institute of Clinical Molecular Biology, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, Kiel University, Kiel, Germany
| | - Patricia Huebbe
- Institute of Human Nutrition and Food Science, Kiel University, Kiel, Germany.
| |
Collapse
|
35
|
Abstract
Apolipoprotein E (apoE) is a 34-kDa glycoprotein that is secreted from many cells throughout the body. ApoE is best known for its role in lipoprotein metabolism. Recent studies underline the association of circulating lipoprotein-associated apoE levels and the development for cardiovascular disease (CVD). Besides its well-established role in pathology of CVD, it is also implicated in neurodegenerative diseases and recent new data on adipose-produced apoE point to a novel metabolic role for apoE in obesity. The regulation of apoE production and secretion is remarkably cell and tissue specific. Here, we summarize recent insights into the differential regulation apoE production and secretion by hepatocytes, monocytes/macrophages, adipocytes, and the central nervous system and relevant variations in apoE biochemistry and function.
Collapse
Affiliation(s)
- Maaike Kockx
- Concord Repatriation General Hospital, ANZAC Research Institute, Sydney, Australia
- Sydney Medical School, University of Sydney, Sydney, Australia
| | - Mathew Traini
- Concord Repatriation General Hospital, ANZAC Research Institute, Sydney, Australia
- Sydney Medical School, University of Sydney, Sydney, Australia
| | - Leonard Kritharides
- Concord Repatriation General Hospital, ANZAC Research Institute, Sydney, Australia.
- Sydney Medical School, University of Sydney, Sydney, Australia.
- Department of Cardiology, Concord Repatriation General Hospital, Concord, NSW, 2139, Australia.
| |
Collapse
|
36
|
New mechanistic insights on the metabolic-disruptor role of chlorpyrifos in apoE mice: a focus on insulin- and leptin-signalling pathways. Arch Toxicol 2018; 92:1717-1728. [DOI: 10.1007/s00204-018-2174-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/31/2018] [Indexed: 01/08/2023]
|
37
|
Site-specific effects of apolipoprotein E expression on diet-induced obesity and white adipose tissue metabolic activation. Biochim Biophys Acta Mol Basis Dis 2018; 1864:471-480. [DOI: 10.1016/j.bbadis.2017.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/27/2017] [Accepted: 11/13/2017] [Indexed: 11/21/2022]
|
38
|
E. Kypreos K, A. Karavia E, Constantinou C, Hatziri A, Kalogeropoulou C, Xepapadaki E, Zvintzou E. Apolipoprotein E in diet-induced obesity: a paradigm shift from conventional perception. J Biomed Res 2017; 32:183. [PMID: 29770778 PMCID: PMC6265402 DOI: 10.7555/jbr.32.20180007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/08/2018] [Indexed: 12/16/2022] Open
Abstract
Apolipoprotein E (APOE) is a major protein component of peripheral and brain lipoprotein transport systems. APOE in peripheral circulation does not cross blood brain barrier or blood cerebrospinal fluid barrier. As a result, peripheral APOE expression does not affect brain APOE levels and vice versa. Numerous epidemiological studies suggest a key role of peripherally expressed APOE in the development and progression of coronary heart disease while brain APOE has been associated with dementia and Alzheimer's disease. More recent studies, mainly in experimental mice, suggested a link between Apoe and morbid obesity. According to the latest findings, expression of human apolipoprotein E3 (APOE3) isoform in the brain of mice is associated with a potent inhibition of visceral white adipose tissue (WAT) mitochondrial oxidative phosphorylation leading to significantly reduced substrate oxidation, increased fat accumulation and obesity. In contrast, hepatically expressed APOE3 is associated with a notable shift of substrate oxidation towards non-shivering thermogenesis in visceral WAT mitochondria, leading to resistance to obesity. These novel findings constitute a major paradigm shift from the widely accepted perception that APOE promotes obesity via receptor-mediated postprandial lipid delivery to WAT. Here, we provide a critical review of the latest facts on the role of APOE in morbid obesity.
Collapse
Affiliation(s)
- Kyriakos E. Kypreos
- Department of Pharmacology, University of Patras Medical School, Rio Achaias, TK 26500, Greece
| | - Eleni A. Karavia
- Department of Pharmacology, University of Patras Medical School, Rio Achaias, TK 26500, Greece
| | - Caterina Constantinou
- Department of Pharmacology, University of Patras Medical School, Rio Achaias, TK 26500, Greece
| | - Aikaterini Hatziri
- Department of Pharmacology, University of Patras Medical School, Rio Achaias, TK 26500, Greece
| | | | - Eva Xepapadaki
- Department of Pharmacology, University of Patras Medical School, Rio Achaias, TK 26500, Greece
| | - Evangelia Zvintzou
- Department of Pharmacology, University of Patras Medical School, Rio Achaias, TK 26500, Greece
| |
Collapse
|
39
|
Moser VA, Pike CJ. Obesity Accelerates Alzheimer-Related Pathology in APOE4 but not APOE3 Mice. eNeuro 2017; 4:ENEURO.0077-17.2017. [PMID: 28612048 PMCID: PMC5469027 DOI: 10.1523/eneuro.0077-17.2017] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/17/2017] [Accepted: 05/22/2017] [Indexed: 12/25/2022] Open
Abstract
Alzheimer's disease (AD) risk is modified by both genetic and environmental risk factors, which are believed to interact to cooperatively modify pathogenesis. Although numerous genetic and environmental risk factors for AD have been identified, relatively little is known about potential gene-environment interactions in regulating disease risk. The strongest genetic risk factor for late-onset AD is the ε4 allele of apolipoprotein E (APOE4). An important modifiable risk factor for AD is obesity, which has been shown to increase AD risk in humans and accelerate development of AD-related pathology in rodent models. Potential interactions between APOE4 and obesity are suggested by the literature but have not been thoroughly investigated. In the current study, we evaluated this relationship by studying the effects of diet-induced obesity (DIO) in the EFAD mouse model, which combines familial AD transgenes with human APOE3 or APOE4. Male E3FAD and E4FAD mice were maintained for 12 weeks on either a control diet or a Western diet high in saturated fat and sugars. We observed that metabolic outcomes of DIO were similar in E3FAD and E4FAD mice. Importantly, our data showed a significant interaction between diet and APOE genotype on AD-related outcomes in which Western diet was associated with robust increases in amyloid deposits, β-amyloid burden, and glial activation in E4FAD but not in E3FAD mice. These findings demonstrate an important gene-environment interaction in an AD mouse model that suggests that AD risk associated with obesity is strongly influenced by APOE genotype.
Collapse
Affiliation(s)
- V Alexandra Moser
- Neuroscience Graduate Program, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Christian J Pike
- Neuroscience Graduate Program, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| |
Collapse
|
40
|
Slim KE, Vauzour D, Tejera N, Voshol PJ, Cassidy A, Minihane AM. The effect of dietary fish oil on weight gain and insulin sensitivity is dependent on APOE genotype in humanized targeted replacement mice. FASEB J 2017; 31:989-997. [PMID: 27895108 PMCID: PMC5295733 DOI: 10.1096/fj.201600921rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/14/2016] [Indexed: 01/19/2023]
Abstract
We investigated the independent and interactive impact of the common APOE genotype and marine n-3 polyunsaturated fatty acids (PUFAs) on the development of obesity and associated cardiometabolic dysfunction in a murine model. Human APOE3 and APOE4 targeted replacement mice were fed either a control high-fat diet (HFD) or an HFD supplemented with 3% n-3 PUFAs from fish oil (HFD + FO) for 8 wk. We established the impact of intervention on food intake, body weight, and visceral adipose tissue (VAT) mass; plasma, lipids (cholesterol and triglycerides), liver enzymes, and adipokines; glucose and insulin during an intraperitoneal glucose tolerance test; and Glut4 and ApoE expression in VAT. HFD feeding induced more weight gain and higher plasma lipids in APOE3 compared to APOE4 mice (P < 0.05), along with a 2-fold higher insulin and impaired glucose tolerance. Supplementing APOE3, but not APOE4, animals with dietary n-3 PUFAs decreased body-weight gain, plasma lipids, and insulin (P < 0.05) and improved glucose tolerance, which was associated with increased VAT Glut4 mRNA levels (P < 0.05). Our findings demonstrate that an APOE3 genotype predisposes mice to develop obesity and its metabolic complications, which was attenuated by n-3 PUFA supplementation.-Slim, K. E., Vauzour, D., Tejera, N., Voshol, P. J., Cassidy, A., Minihane, A. M. The effect of dietary fish oil on weight gain and insulin sensitivity is dependent on APOE genotype in humanized targeted replacement mice.
Collapse
Affiliation(s)
- Kenna E Slim
- Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - David Vauzour
- Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Noemi Tejera
- Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Peter J Voshol
- Department of Nutrition and Health, Louis Bolk Institute, Driebergen, The Netherlands; and
- Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Aedin Cassidy
- Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Anne Marie Minihane
- Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia, Norwich, United Kingdom;
| |
Collapse
|
41
|
Arbones-Mainar JM, Johnson LA, Torres-Perez E, Garcia AE, Perez-Diaz S, Raber J, Maeda N. Metabolic shifts toward fatty-acid usage and increased thermogenesis are associated with impaired adipogenesis in mice expressing human APOE4. Int J Obes (Lond) 2016; 40:1574-1581. [PMID: 27163745 PMCID: PMC5063049 DOI: 10.1038/ijo.2016.93] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/31/2016] [Accepted: 04/23/2016] [Indexed: 11/09/2022]
Abstract
BACKGROUND The Apolipoprotein E (APOE) gene encodes for three isoforms in the human population (APOE2, APOE3 and APOE4). Whereas the role of APOE in lipid metabolism is well characterized, the specific metabolic signatures of the APOE isoforms during metabolic disorders, remain unclear. OBJECTIVE To elucidate the molecular underpinnings of APOE-directed metabolic alterations, we tested the hypothesis that APOE4 drives a whole-body metabolic shift toward increased lipid oxidation. METHODS We employed humanized mice in which the Apoe gene has been replaced by the human APOE*3 or APOE*4 allele to produce human APOE3 or APOE4 proteins and characterized several mechanisms of fatty-acid oxidation, lipid storage, substrate utilization and thermogenesis in those mice. RESULTS We show that, whereas APOE4 mice gained less body weight and mass than their APOE3 counterparts on a Western-type diet (P<0.001), they displayed elevated insulin and homeostatic model assessment, markers of insulin resistance (P=0.004 and P=0.025, respectively). APOE4 mice also demonstrated a reduced respiratory quotient during the postprandial period (0.95±0.03 versus 1.06±0.03, P<0.001), indicating increased usage of lipids as opposed to carbohydrates as a fuel source. Finally, APOE4 mice showed increased body temperature (37.30±0.68 versus 36.9±0.58 °C, P=0.039), augmented cold tolerance and more metabolically active brown adipose tissue compared with APOE3 mice. CONCLUSION These data suggest that APOE4 mice may resist weight gain via an APOE4-directed global metabolic shift toward lipid oxidation and enhanced thermogenesis, and may represent a critical first step in the development of APOE-directed therapies for a large percentage of the population affected by disorders with established links to APOE and metabolism.
Collapse
Affiliation(s)
- Jose M. Arbones-Mainar
- Adipocyte and Fat Biology Laboratory (AdipoFat). Instituto de Investigacion Sanitaria (IIS) Aragon, Instituto Aragonés de Ciencias de la Salud (IACS), Hospital Universitario Miguel Servet, Zaragoza 50009, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Madrid, Spain
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Lance A. Johnson
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University
| | - Elena Torres-Perez
- Adipocyte and Fat Biology Laboratory (AdipoFat). Instituto de Investigacion Sanitaria (IIS) Aragon, Instituto Aragonés de Ciencias de la Salud (IACS), Hospital Universitario Miguel Servet, Zaragoza 50009, Spain
| | - Anna E. Garcia
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Sergio Perez-Diaz
- Adipocyte and Fat Biology Laboratory (AdipoFat). Instituto de Investigacion Sanitaria (IIS) Aragon, Instituto Aragonés de Ciencias de la Salud (IACS), Hospital Universitario Miguel Servet, Zaragoza 50009, Spain
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University
- Departments of Neurology and Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Nobuyo Maeda
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
42
|
Segev Y, Livne A, Mints M, Rosenblum K. Concurrence of High Fat Diet and APOE Gene Induces Allele Specific Metabolic and Mental Stress Changes in a Mouse Model of Alzheimer's Disease. Front Behav Neurosci 2016; 10:170. [PMID: 27656136 PMCID: PMC5011130 DOI: 10.3389/fnbeh.2016.00170] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 08/24/2016] [Indexed: 02/04/2023] Open
Abstract
Aging is the main risk factor for neurodegenerative diseases, including Alzheimer's disease (AD). However, evidence indicates that the pathological process begins long before actual cognitive or pathological symptoms are apparent. The long asymptomatic phase and complex integration between genetic, environmental and metabolic factors make it one of the most challenging diseases to understand and cure. In the present study, we asked whether an environmental factor such as high-fat (HF) diet would synergize with a genetic factor to affect the metabolic and cognitive state in the Apolipoprotein E (ApoE4) mouse model of AD. Our data suggest that a HF diet induces diabetes mellitus (DM)-like metabolism in ApoE4 mice, as well as changes in β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) protein levels between the two ApoE strains. Furthermore, HF diet induces anxiety in this AD mouse model. Our results suggest that young ApoE4 carriers are prone to psychological stress and metabolic abnormalities related to AD, which can easily be triggered via HF nutrition.
Collapse
Affiliation(s)
- Yifat Segev
- Sagol Department of Neurobiology, University of Haifa Haifa, Israel
| | - Adva Livne
- Sagol Department of Neurobiology, University of Haifa Haifa, Israel
| | - Meshi Mints
- Sagol Department of Neurobiology, University of Haifa Haifa, Israel
| | - Kobi Rosenblum
- Sagol Department of Neurobiology, University of HaifaHaifa, Israel; Center for Gene Manipulation in the Brain, University of HaifaHaifa, Israel
| |
Collapse
|
43
|
Rył A, Jasiewicz A, Grzywacz A, Adler G, Skonieczna-Żydecka K, Rotter I, Sipak-Szmigiel O, Rumianowski B, Karakiewicz B, Jurczak A, Parczewski M, Urbańska A, Grabowska M, Laszczyńska M. Analysis of the Relationship between Estradiol and Follicle-Stimulating Hormone Concentrations and Polymorphisms of Apolipoprotein E and LeptinGenes in Women Post-Menopause. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13060543. [PMID: 27240396 PMCID: PMC4924000 DOI: 10.3390/ijerph13060543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/19/2016] [Accepted: 05/25/2016] [Indexed: 12/24/2022]
Abstract
Background: Menopause is the permanent cessation of menstruation due to loss of ovarian follicular activity. A review of the available literature indicates that correlations between the changes that take place in a woman’s body after menopause and different genetic variants are still being sought. Methods: The study was conducted in 252 women who had completed physiological menopause. The women were divided into groups according to the time elapsed since menopause. The total concentrations of estradiol and follicle-stimulating hormone were determined by means of electrochemiluminescence. The apolipoprotein E (APOE) and lepitn (LEP) genotypes were determined by real-time PCR and polymerase chain reaction–restriction fragment length polymorphism, respectively. Results: We observed that people with the APOE3/E3 genotype entered menopause insignificantly later compared to other genotypes. Additionally, in the group of patients with the APOE3/E3 genotypes, differences in the E2 concentration were significantly related to the time since their last menstruation. There is no association found in the literature between these polymorphisms of the LEP gene and hormones. Conclusions: To date, attempts to formulate a model describing the association between E2 and FSH concentration with the polymorphisms of various genes of menopause in women have not been successful. This relationship is difficult to study because of the number of nongenetic factors. Environmental factors can explain variation in postmenopausal changes in hormone levels.
Collapse
Affiliation(s)
- Aleksandra Rył
- Department of Histology and Developmental Biology, Pomeranian Medical University, Szczecin 71-210, Poland.
| | - Andrzej Jasiewicz
- Department of Psychiatry, Pomeranian Medical University, Szczecin 71-460, Poland.
| | - Anna Grzywacz
- Department of Psychiatry, Pomeranian Medical University, Szczecin 71-460, Poland.
| | - Grażyna Adler
- Department of Gerontobiology, Pomeranian Medical University, Szczecin 71-210, Poland.
| | | | - Iwona Rotter
- Department of Rehabilitation Medicine, Pomeranian Medical University, Szczecin 71-210, Poland.
| | - Olimpia Sipak-Szmigiel
- Department of Obstetric and Gynecological Nursing, Pomeranian Medical University, Szczecin 71-210, Poland.
| | - Bogdan Rumianowski
- Department of Histology and Developmental Biology, Pomeranian Medical University, Szczecin 71-210, Poland.
| | - Beata Karakiewicz
- Department of Public Health, Pomeranian Medical University, Szczecin 71-210, Poland.
| | - Anna Jurczak
- Department of Nursing, Pomeranian Medical University, Szczecin 71-210, Poland.
| | - Miłosz Parczewski
- Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University, Szczecin 71-455, Poland.
| | - Anna Urbańska
- Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University, Szczecin 71-455, Poland.
| | - Marta Grabowska
- Department of Histology and Developmental Biology, Pomeranian Medical University, Szczecin 71-210, Poland.
| | - Maria Laszczyńska
- Department of Histology and Developmental Biology, Pomeranian Medical University, Szczecin 71-210, Poland.
| |
Collapse
|
44
|
Moser VA, Pike CJ. Obesity and sex interact in the regulation of Alzheimer's disease. Neurosci Biobehav Rev 2015; 67:102-18. [PMID: 26708713 DOI: 10.1016/j.neubiorev.2015.08.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/01/2015] [Accepted: 08/03/2015] [Indexed: 01/09/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder, for which a number of genetic, environmental, and lifestyle risk factors have been identified. A significant modifiable risk factor is obesity in mid-life. Interestingly, both obesity and AD exhibit sex differences and are regulated by sex steroid hormones. Accumulating evidence suggests interactions between obesity and sex in regulation of AD risk, although the pathways underlying this relationship are unclear. Inflammation and the E4 allele of apolipoprotein E have been identified as independent risk factors for AD and both interact with obesity and sex steroid hormones. We review the individual and cooperative effects of obesity and sex on development of AD and examine the potential contributions of apolipoprotein E, inflammation, and their interactions to this relationship.
Collapse
Affiliation(s)
- V Alexandra Moser
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA.
| | - Christian J Pike
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA; Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
45
|
Torres-Perez E, Ledesma M, Garcia-Sobreviela MP, Leon-Latre M, Arbones-Mainar JM. Apolipoprotein E4 association with metabolic syndrome depends on body fatness. Atherosclerosis 2015; 245:35-42. [PMID: 26691908 DOI: 10.1016/j.atherosclerosis.2015.11.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/05/2015] [Accepted: 11/24/2015] [Indexed: 01/29/2023]
Abstract
BACKGROUND AND AIMS The human Apolipoprotein E (APOE) gene is polymorphic. The APOE*4 allele is a risk factor for cardiovascular disease and could contribute to the development of the metabolic syndrome (MetS) as it may affect all MetS components. We hypothesize that the common APOE4 polymorphism differentially regulates MetS risk and that this association might be modulated by body fatness. METHODS & RESULTS We used body mass index (BMI) as surrogate of fatness and cross-sectionally studied the prevalence of MetS in 4408 middle-aged men of the Aragon Workers Health Study (AWHS). Our analysis revealed i) a gene dose-dependent association between APOE*4 allele and increased risk for MetS, ii) this association primarily derived from the overweight subjects. For these individuals, the MetS risk was higher in APOE*4 carriers than in non-carriers (Odds Ratio = 1.31; 95% CI, 1.03-1.67). Additionally, we examined 3908 healthy young individuals from the Coronary Artery Risk Development in Young Adults (CARDIA) cohort, followed-up for 25 years. Compared with APOE*4 non-carriers, APOE*4 presence significantly increased the risk of developing MetS (Hazard Ratio, 1.12; 95% CI, 1.00-1.26). Again, an interplay between APOE*4 and the longitudinal development of fatness towards the onset of MetS occurred throughout the study. For individuals with BMI gain below the median, the cumulative onset rate of MetS was significantly higher in APOE*4 carriers than in the non-carriers (HR, 1.29; 95% CI, 1.07-1.55). CONCLUSIONS Carrying APOE*4 alleles increases MetS in a dose-dependent manner, characterizing individual's APOE genotype might help identify at-risk subjects for preventive intervention.
Collapse
Affiliation(s)
- Elena Torres-Perez
- Adipocyte and Fat Biology Laboratory (AdipoFat), Unidad de Investigación Traslacional, Hospital Universitario Miguel Servet, Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) Aragón, Zaragoza, Spain
| | - Marta Ledesma
- Instituto de Investigación Sanitaria (IIS) Aragón, Zaragoza, Spain; Unidad de Prevención Cardiovascular, Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, Spain
| | - Maria Pilar Garcia-Sobreviela
- Adipocyte and Fat Biology Laboratory (AdipoFat), Unidad de Investigación Traslacional, Hospital Universitario Miguel Servet, Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) Aragón, Zaragoza, Spain
| | - Montserrat Leon-Latre
- Instituto de Investigación Sanitaria (IIS) Aragón, Zaragoza, Spain; Unidad de Prevención Cardiovascular, Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, Spain
| | - Jose M Arbones-Mainar
- Adipocyte and Fat Biology Laboratory (AdipoFat), Unidad de Investigación Traslacional, Hospital Universitario Miguel Servet, Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) Aragón, Zaragoza, Spain; CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Madrid, Spain.
| |
Collapse
|
46
|
Peris-Sampedro F, Cabré M, Basaure P, Reverte I, Domingo JL, Teresa Colomina M. Adulthood dietary exposure to a common pesticide leads to an obese-like phenotype and a diabetic profile in apoE3 mice. ENVIRONMENTAL RESEARCH 2015; 142:169-76. [PMID: 26162960 DOI: 10.1016/j.envres.2015.06.036] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 06/25/2015] [Accepted: 06/26/2015] [Indexed: 05/19/2023]
Abstract
Increasing evidence links the widespread exposure to organophosphate (OP) pesticides to the global epidemics of type 2 diabetes and obesity. Our recent data highlighted gene×environment interactions: mice expressing the human apolipoprotein E3 (apoE3) isoform were more prone to develop obesity than those expressing apoE2 or apoE4 upon dietary challenge with chlorpyrifos (CPF), the most used OP worldwide. Thus, we aimed to further explore the contribution of the APOE3 genotype on the emergence of obesity and related metabolic dysfunctions upon subchronic exposure to CPF. Seven-month-old targeted replacement apoE3 and C57BL/6N male mice were orally exposed to CPF at 0 or 2mg/kg body weight/day for 8 consecutive weeks. We examined body weight status, food and water intake, lipid and glucose homeostasis, metabolic biomarkers concentrations, insulin levels and insulin resistance, and leptin and ghrelin profiles. CPF exposure generally increased food ingestion, glucose and total cholesterol concentrations, and tended to elevate acyl ghrelin levels. Nonetheless, excess weight gain and increased leptin levels were inherent to apoE3 mice. Moreover, the propensity towards a diabetic profile was markedly higher in these animals than in C57BL/6N, as they showed a higher homeostatic model assessment for insulin resistance index and higher insulin levels. Although both genotypes were metabolically affected by CPF, the results of the present investigation revealed that apoE3 mice were the most vulnerable to developing obesity and related disturbances following CPF administration through the diet. Since the APOE3 genotype is the most prevalent worldwide, current findings have particular implications for human health.
Collapse
Affiliation(s)
- Fiona Peris-Sampedro
- Research in Neurobehaviour and Health (NEUROLAB), Universitat Rovira i Virgili, Tarragona, Spain; Department of Psychology and Research Center for Behavior Assessment (CRAMC), Universitat Rovira i Virgili, Tarragona, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Maria Cabré
- Research in Neurobehaviour and Health (NEUROLAB), Universitat Rovira i Virgili, Tarragona, Spain; Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Pia Basaure
- Research in Neurobehaviour and Health (NEUROLAB), Universitat Rovira i Virgili, Tarragona, Spain; Department of Psychology and Research Center for Behavior Assessment (CRAMC), Universitat Rovira i Virgili, Tarragona, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Ingrid Reverte
- Research in Neurobehaviour and Health (NEUROLAB), Universitat Rovira i Virgili, Tarragona, Spain
| | - José L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Maria Teresa Colomina
- Research in Neurobehaviour and Health (NEUROLAB), Universitat Rovira i Virgili, Tarragona, Spain; Department of Psychology and Research Center for Behavior Assessment (CRAMC), Universitat Rovira i Virgili, Tarragona, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Spain.
| |
Collapse
|
47
|
Rodríguez-Carmona Y, Pérez-Rodríguez M, Gámez-Valdez E, López-Alavez FJ, Hernández-Armenta CI, Vega-Monter N, Leyva-García G, Monge-Cázares T, Barrera Valencia D, Balderas Monroy M, Pfeffer F, Meléndez G, Pérez Lizaur AB, Pardío J, Tejero ME. Association between Apolipoprotein E Variants and Obesity-Related Traits in Mexican School Children. JOURNAL OF NUTRIGENETICS AND NUTRIGENOMICS 2015; 7:243-51. [PMID: 25968937 DOI: 10.1159/000381345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 03/03/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIM Genetic variation in apolipoprotein E (ApoE) has a key role in lipid metabolism. However, its contribution to the amount and distribution of body fat is under investigation. The aim of this study was to analyze the association between genetic variation in ApoE and obesity-related traits in Mexican school children. MATERIAL AND METHODS Anthropometric, body composition and physical activity measures were conducted using standard methods in 300 children (177 girls/123 boys) who fulfilled the inclusion criteria. DNA was isolated from saliva. ApoE genotypes were analyzed by allelic discrimination. The association between variation in ApoE and anthropometric and body composition measures was investigated using the General Linear Model. RESULTS The mean±SD values for age, body mass index (BMI) and waist circumference (WC) were 9.05±0.80 years, 19.01±3.83 and 67.98±10.97 cm, respectively. Approximately 46% of the participants were overweight or obese. A significant association between ApoE isoforms and WC was found after controlling for age, sex and the percentage of physical activity (p=0.025). Significant main effects were found for vigorous physical activity and light physical activity influencing the adiposity-related BMI (p<0.001) and WC (p=0.044), respectively. CONCLUSIONS Variation in ApoE and physical activity intensity were associated with adiposity-related phenotypes in Mexican school children.
Collapse
|
48
|
Chronic exposure to chlorpyrifos triggered body weight increase and memory impairment depending on human apoE polymorphisms in a targeted replacement mouse model. Physiol Behav 2015; 144:37-45. [DOI: 10.1016/j.physbeh.2015.03.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 02/25/2015] [Accepted: 03/03/2015] [Indexed: 11/20/2022]
|
49
|
Cahua-Pablo G, Cruz M, Moral-Hernández OD, Leyva-Vázquez MA, Antúnez-Ortiz DL, Cahua-Pablo JA, Alarcón-Romero LDC, Ortuño-Pineda C, Moreno-Godínez ME, Hernández-Sotelo D, Flores-Alfaro E. Elevated Levels of LDL-C are Associated With ApoE4 but Not With the rs688 Polymorphism in the LDLR Gene. Clin Appl Thromb Hemost 2015; 22:465-70. [PMID: 25601895 DOI: 10.1177/1076029614568714] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
INTRODUCTION Apolipoprotein E (ApoE) 4 isoform has been associated with elevated levels of cholesterol, low-density lipoprotein cholesterol (LDL-C), and triglycerides (TGs), meanwhile several polymorphisms in the LDL receptor (LDLR) gene have been associated with increased levels of total cholesterol and LDL-C. MATERIAL AND METHODS We studied 400 women from Southwest Mexico. Anthropometric features and biochemical profile were evaluated, and genotyping of single nucleotide polymorphisms rs429358 and rs7412 in the APOE gene and rs688 in the LDLR gene was determined by TaqMan assays. RESULTS We found significant association between LDL-C (odds ratio [OR] = 3.3, 95% confidence interval [CI]: 1.9-5.7) and marginal association with TG (OR = 1.7, 95% CI: 1.0-2.9) of atherogenic risk in women carriers of the ApoE4 isoform compared to ApoE3. The TT genotype of rs688 in the LDLR gene was not found to be associated with elevated levels of total cholesterol or LDL-C. CONCLUSION Our results show that carrier women of the ApoE4 isoform are more likely to have elevated levels of LDL-C and therefore increased risk of developing atherosclerosis.
Collapse
Affiliation(s)
- Gabriel Cahua-Pablo
- Clinical and Molecular Epidemiology Laboratory, UA of Chemical and Biological Sciences, Autonomous University of Guerrero, Mexico
| | - Miguel Cruz
- Biochemistry Medical Research Unit, Specialties Hospital, Medical Center Century XXI, Mexican Institute of Social Security, México, Distrito Federal
| | - Oscar Del Moral-Hernández
- Laboratory of Molecular Biomedicine, UA of Chemical and Biological Sciences, Autonomous University of Guerrero, Mexico
| | - Marco A Leyva-Vázquez
- Laboratory of Molecular Biomedicine, UA of Chemical and Biological Sciences, Autonomous University of Guerrero, Mexico
| | - Diana L Antúnez-Ortiz
- Biochemistry Medical Research Unit, Specialties Hospital, Medical Center Century XXI, Mexican Institute of Social Security, México, Distrito Federal
| | - José A Cahua-Pablo
- Clinical and Molecular Epidemiology Laboratory, UA of Chemical and Biological Sciences, Autonomous University of Guerrero, Mexico
| | - Luz Del Carmen Alarcón-Romero
- Clinical and Molecular Epidemiology Laboratory, UA of Chemical and Biological Sciences, Autonomous University of Guerrero, Mexico Laboratory of Molecular Biomedicine, UA of Chemical and Biological Sciences, Autonomous University of Guerrero, Mexico
| | - Carlos Ortuño-Pineda
- Clinical and Molecular Epidemiology Laboratory, UA of Chemical and Biological Sciences, Autonomous University of Guerrero, Mexico
| | - Ma Elena Moreno-Godínez
- Clinical and Molecular Epidemiology Laboratory, UA of Chemical and Biological Sciences, Autonomous University of Guerrero, Mexico
| | - Daniel Hernández-Sotelo
- Laboratory of Molecular Biomedicine, UA of Chemical and Biological Sciences, Autonomous University of Guerrero, Mexico
| | - Eugenia Flores-Alfaro
- Clinical and Molecular Epidemiology Laboratory, UA of Chemical and Biological Sciences, Autonomous University of Guerrero, Mexico
| |
Collapse
|
50
|
Huebbe P, Dose J, Schloesser A, Campbell G, Glüer CC, Gupta Y, Ibrahim S, Minihane AM, Baines JF, Nebel A, Rimbach G. Apolipoprotein E (APOE) genotype regulates body weight and fatty acid utilization-Studies in gene-targeted replacement mice. Mol Nutr Food Res 2014; 59:334-43. [DOI: 10.1002/mnfr.201400636] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/21/2014] [Accepted: 10/29/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Patricia Huebbe
- Institute of Human Nutrition and Food Science; University of Kiel; Kiel Germany
| | - Janina Dose
- Institute of Human Nutrition and Food Science; University of Kiel; Kiel Germany
| | - Anke Schloesser
- Institute of Human Nutrition and Food Science; University of Kiel; Kiel Germany
| | - Graeme Campbell
- Section Biomedical Imaging; Department of Diagnostic Radiology; University of Kiel; Kiel Germany
| | - Claus-Christian Glüer
- Section Biomedical Imaging; Department of Diagnostic Radiology; University of Kiel; Kiel Germany
| | - Yask Gupta
- Department of Dermatology; University of Lübeck; Lübeck Germany
| | - Saleh Ibrahim
- Department of Dermatology; University of Lübeck; Lübeck Germany
| | - Anne-Marie Minihane
- Department of Nutrition; Norwich Medical School; University of East Anglia; Norwich United Kingdom
| | - John F. Baines
- Institute for Experimental Medicine; University of Kiel; Kiel Germany
- Max Planck Institute for Evolutionary Biology; Plön Germany
| | - Almut Nebel
- Institute of Clinical Molecular Biology; University of Kiel; Kiel Germany
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science; University of Kiel; Kiel Germany
| |
Collapse
|