1
|
Xiang YY, Won JH, Lee SJ, Baek KW. The Effect of Exercise on Mesenchymal Stem Cells and their Application in Obesity Treatment. Stem Cell Rev Rep 2024; 20:1732-1751. [PMID: 38954390 DOI: 10.1007/s12015-024-10755-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2024] [Indexed: 07/04/2024]
Abstract
Mesenchymal stem cells (MSCs) have demonstrated considerable potential in tissue repair and the treatment of immune-related diseases, but there are problems with homing efficiency during MSCs transplantation. Exercise, as an intervention, has been shown to have an important impact on the properties of MSCs. This review summarizes the effects of exercise on the properties (including proliferation, apoptosis, differentiation, and homing) of bone marrow-derived MSCs and adipose-derived MSCs. Studies indicated that exercise enhances bone marrow-derived MSCs proliferation, osteogenic differentiation, and homing while reducing adipogenic differentiation. For adipose-derived MSCs, exercise enhances proliferation and reduces adipogenic differentiation. In addition, studies have investigated the therapeutic effects of combined therapy of MSCs transplantation with exercise on diseases of the bone, cardiac, and nervous systems. The combined therapy improves tissue repair by increasing the homing of transplanted MSCs and cytokine secretion (such as neurotrophin 4). Furthermore, MSCs transplantation also has potential for the treatment of obesity. Although the effect is not significant in weight loss, MSCs transplantation shows effects in controlling blood glucose, improving dyslipidemia, reducing inflammation, and improving liver disease. Finally, the potential role of combined MSCs transplantation and exercise therapy in addressing obesity is discussed.
Collapse
Affiliation(s)
- Ying-Ying Xiang
- Department of Physical Education, Gyeongsang National University, Jinju, 52828, Korea
| | - Jong-Hwa Won
- Department of Physical Education, Gyeongsang National University, Jinju, 52828, Korea
| | - Sam-Jun Lee
- Department of Sport Rehabilitation, College of Health, Tongmyong University, Welfare, and Education, Busan, 48520, Korea
| | - Kyung-Wan Baek
- Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, 52828, Korea.
| |
Collapse
|
2
|
Li P, Wang Y, Liang Y, Jiang X, Tang T, Fan X, Wang R, Yang M, Liu Y, Qi K, Zhang Y. Imbalance of early-life vitamin D intake targets ROS-mediated crosstalk between mitochondrial dysfunction and differentiation potential of MSCs associated the later obesity. Stem Cell Res Ther 2024; 15:252. [PMID: 39135105 PMCID: PMC11321190 DOI: 10.1186/s13287-024-03860-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Obesity is characterized by excessive fat accumulation, which is related with abnormal pluripotency of mesenchymal stem cells (MSCs). Recently, there is growing evidence that the disorder of maternal vitamin D (VD) intake is a well-known risk factor for long-term adverse health outcomes to their offspring. Otherwise, less is known of its repercussion and underlying mechanisms on the different differentiation potential of MSCs. METHODS Four-week-old female C57BL/6J mice were fed with different VD reproductive diets throughout the whole pregnancy and lactation. The characteristics of BMSCs from their seven-day male offspring, VDR knockdown establishment of HuMSCs and HuMSCs under the different VD interventions in vitro were confirmed by flow cytometry, RT-PCR, and immunofluorescence. The roles of VD on their mitochondrial dysfunction and differentiation potential were also investigated. Then their remaining weaned male pups were induced by administrating high-fat-diet (HFD) for 16 weeks and normal fat diet was simultaneously as controls. Their lipid accumulation and adipocytes hypertrophy were determined by histological staining and related gene expressions. RESULTS Herein, it was proved that imbalance of early-life VD intake could significantly aggravate the occurrence of obesity by inducing the adipogenesis through affecting the VD metabolism and related metabolites (P < 0.05). Moreover, abnormally maternal VD intake might be involved on the disorders of differentiation potential to inhibit the maintenance of MSCs stemness through increasing the productions of ROS, which was accompanied by impairing the expression of related genes on the adipo-osteogenic differentiation (P < 0.05). Moreover, it was along with increasing potential of adipogenic differentiation of MSCs as higher ROS in the state of VD deficiency, while excessive maternal VD status could conversely enhance the osteogenic differentiation with slightly lower ROS (P < 0.05). Furthermore, the underlying mechanisms might be involved on the mitochondria dysfunctional, especially the mitophagy, by activating the LC3b, P62 and etc. using in vivo and in vitro studies (P < 0.05). CONCLUSION These findings demonstrated that imbalance of early-life VD intake could target ROS-mediated crosstalk between mitochondrial dysfunction and differentiation potential of MSCs, which was significantly associated with the later obesity. Obviously, our results could open up an attractive modality for the benefits of suitable VD intake during the pregnancy and lactation.
Collapse
Affiliation(s)
- Ping Li
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children's Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56 Nan-Li-Shi Road, Beijing, 100045, China.
| | - Yang Wang
- Department of Stem Cell & Regeneration Medicine, Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, No.27 Tai-Ping Road, Beijing, 100091, China
| | - Yueqing Liang
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children's Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56 Nan-Li-Shi Road, Beijing, 100045, China
| | - Xueyi Jiang
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children's Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56 Nan-Li-Shi Road, Beijing, 100045, China
| | - Tiantian Tang
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children's Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56 Nan-Li-Shi Road, Beijing, 100045, China
| | - Xiuqin Fan
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children's Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56 Nan-Li-Shi Road, Beijing, 100045, China
| | - Rui Wang
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children's Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56 Nan-Li-Shi Road, Beijing, 100045, China
| | - Mengyi Yang
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children's Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56 Nan-Li-Shi Road, Beijing, 100045, China
| | - Yuanlin Liu
- Department of Stem Cell & Regeneration Medicine, Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, No.27 Tai-Ping Road, Beijing, 100091, China
| | - Kemin Qi
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children's Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56 Nan-Li-Shi Road, Beijing, 100045, China.
| | - Yi Zhang
- Department of Stem Cell & Regeneration Medicine, Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, No.27 Tai-Ping Road, Beijing, 100091, China.
| |
Collapse
|
3
|
Ozcagli E, Kubickova B, Jacobs MN. Addressing chemically-induced obesogenic metabolic disruption: selection of chemicals for in vitro human PPARα, PPARγ transactivation, and adipogenesis test methods. Front Endocrinol (Lausanne) 2024; 15:1401120. [PMID: 39040675 PMCID: PMC11260640 DOI: 10.3389/fendo.2024.1401120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/10/2024] [Indexed: 07/24/2024] Open
Abstract
Whilst western diet and sedentary lifestyles heavily contribute to the global obesity epidemic, it is likely that chemical exposure may also contribute. A substantial body of literature implicates a variety of suspected environmental chemicals in metabolic disruption and obesogenic mechanisms. Chemically induced obesogenic metabolic disruption is not yet considered in regulatory testing paradigms or regulations, but this is an internationally recognised human health regulatory development need. An early step in the development of relevant regulatory test methods is to derive appropriate minimum chemical selection lists for the target endpoint and its key mechanisms, such that the test method can be suitably optimised and validated. Independently collated and reviewed reference and proficiency chemicals relevant for the regulatory chemical universe that they are intended to serve, assist regulatory test method development and validation, particularly in relation to the OECD Test Guidelines Programme. To address obesogenic mechanisms and modes of action for chemical hazard assessment, key initiating mechanisms include molecular-level Peroxisome Proliferator-Activated Receptor (PPAR) α and γ agonism and the tissue/organ-level key event of perturbation of the adipogenesis process that may lead to excess white adipose tissue. Here we present a critical literature review, analysis and evaluation of chemicals suitable for the development, optimisation and validation of human PPARα and PPARγ agonism and human white adipose tissue adipogenesis test methods. The chemical lists have been derived with consideration of essential criteria needed for understanding the strengths and limitations of the test methods. With a weight of evidence approach, this has been combined with practical and applied aspects required for the integration and combination of relevant candidate test methods into test batteries, as part of an Integrated Approach to Testing and Assessment for metabolic disruption. The proposed proficiency and reference chemical list includes a long list of negatives and positives (20 chemicals for PPARα, 21 for PPARγ, and 11 for adipogenesis) from which a (pre-)validation proficiency chemicals list has been derived.
Collapse
|
4
|
Liang X, Duan Q, Li B, Wang Y, Bu Y, Zhang Y, Kuang Z, Mao L, An X, Wang H, Yang X, Wan N, Feng Z, Shen W, Miao W, Chen J, Liu S, Storz JF, Liu J, Nevo E, Li K. Genomic structural variation contributes to evolved changes in gene expression in high-altitude Tibetan sheep. Proc Natl Acad Sci U S A 2024; 121:e2322291121. [PMID: 38913905 PMCID: PMC11228492 DOI: 10.1073/pnas.2322291121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/06/2024] [Indexed: 06/26/2024] Open
Abstract
Tibetan sheep were introduced to the Qinghai Tibet plateau roughly 3,000 B.P., making this species a good model for investigating genetic mechanisms of high-altitude adaptation over a relatively short timescale. Here, we characterize genomic structural variants (SVs) that distinguish Tibetan sheep from closely related, low-altitude Hu sheep, and we examine associated changes in tissue-specific gene expression. We document differentiation between the two sheep breeds in frequencies of SVs associated with genes involved in cardiac function and circulation. In Tibetan sheep, we identified high-frequency SVs in a total of 462 genes, including EPAS1, PAPSS2, and PTPRD. Single-cell RNA-Seq data and luciferase reporter assays revealed that the SVs had cis-acting effects on the expression levels of these three genes in specific tissues and cell types. In Tibetan sheep, we identified a high-frequency chromosomal inversion that exhibited modified chromatin architectures relative to the noninverted allele that predominates in Hu sheep. The inversion harbors several genes with altered expression patterns related to heart protection, brown adipocyte proliferation, angiogenesis, and DNA repair. These findings indicate that SVs represent an important source of genetic variation in gene expression and may have contributed to high-altitude adaptation in Tibetan sheep.
Collapse
Affiliation(s)
- Xiaolong Liang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Qijiao Duan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Bowen Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Yinjia Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Yueting Bu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Yonglu Zhang
- Fengjia Town Health Center, Rushan City, Weihai City264200, China
| | - Zhuoran Kuang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Leyan Mao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Xuan An
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Huihua Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing100193, China
| | - Xiaojie Yang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Na Wan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Zhilong Feng
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Wei Shen
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Weilan Miao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Jiaqi Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Sanyuan Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Jay F. Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE68588
| | - Jianquan Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Haifa3498838, Israel
| | - Kexin Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| |
Collapse
|
5
|
Gu H, Pan Y, Xiao H, Zhao L, Tang Y, Ge W. Knockdown of LAP2α inhibits adipogenesis of human adipose-derived stem cells and ameliorates high-fat diet-induced obesity. FASEB J 2024; 38:e23664. [PMID: 38775797 DOI: 10.1096/fj.202302435rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/17/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024]
Abstract
Adipogenesis, a pivotal cellular process involving the differentiation of mesenchymal stem cells (MSCs) to mature adipocytes, plays a significant role in various physiological functions. Dysregulation of adipogenesis is implicated in conditions such as obesity. However, the complete molecular understanding of adipogenesis remains elusive. This study aimed to uncover the novel role of lamina-associated polypeptide 2 alpha (LAP2α) in human adipose-derived stem cells (hASCs) adipogenesis and its impact on high-fat diet (HFD)-induced obesity and associated metabolic disturbances. LAP2α expression was assessed during the adipogenic differentiation of hASCs using RT-qPCR and western blotting. The functional role of LAP2α in adipogenesis was explored both in vitro and in vivo through loss- and gain-of-function studies. Moreover, mice with HFD-induced obesity received lentivirus injection to assess the effect of LAP2α knockdown on fat accumulation. Molecular mechanisms underlying LAP2α in adipogenic differentiation were investigated using RT-qPCR, Western blotting, immunofluorescence staining, and Oil Red O staining. LAP2α expression was upregulated during hASCs adipogenic differentiation. LAP2α knockdown hindered adipogenesis, while LAP2α overexpression promoted adipogenic differentiation. Notably, LAP2α deficiency resisted HFD-induced obesity, improved glucose intolerance, mitigated insulin resistance, and prevented fatty liver development. Mechanistically, LAP2α knockdown attenuated signal transducer and activator of transcription 3 (STAT3) activation by reducing the protein level of phosphorylated STAT3. A STAT3 activator (Colivelin) counteracted the negative impact of LAP2α deficiency on hASCs adipogenic differentiation. Taken together, our current study established LAP2α as a crucial regulator of hASCs adipogenic differentiation, unveiling a new therapeutic target for obesity prevention.
Collapse
Affiliation(s)
- Hang Gu
- Department of General Dentistry II, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, P.R. China
| | - Yuan Pan
- Department of General Dentistry II, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, P.R. China
| | - Han Xiao
- Department of General Dentistry II, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, P.R. China
| | - Lijun Zhao
- Department of General Dentistry II, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, P.R. China
| | - Yiman Tang
- Fourth Clinical Division, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, P.R. China
| | - Wenshu Ge
- Department of General Dentistry II, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, P.R. China
| |
Collapse
|
6
|
Huang X, He W, Fan S, Li H, Ye G. IGF2BP3-mediated enhanced stability of MYLK represses MSC adipogenesis and alleviates obesity and insulin resistance in HFD mice. Cell Mol Life Sci 2024; 81:17. [PMID: 38196046 PMCID: PMC10776757 DOI: 10.1007/s00018-023-05076-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 01/11/2024]
Abstract
Mesenchymal stem cells (MSCs) hold immense potential as multipotent stem cells and serve as a primary source of adipocytes. The process of MSC adipogenesis plays a crucial role in maintaining systemic metabolic homeostasis and has garnered significant attention in tissue bioengineering. N6-methyladenosine (m6A), the most prevalent RNA modification, is known to regulate cell fate and disease. However, the precise involvement of m6A readers in MSC adipogenesis remains unclear. In this study, we investigated the impact of IGF2BP3, a prominent m6A reader, on MSC adipogenesis. Our findings revealed a decrease in IGF2BP3 expression during the natural adipogenic differentiation of MSCs. Furthermore, IGF2BP3 was found to repress MSC adipogenesis by augmenting the levels of MYLK, a calcium/calmodulin-dependent kinase. Mechanistically, IGF2BP3 interacted with MYLK mRNA in an m6A-dependent manner, extending its half-life and subsequently inhibiting the phosphorylation of the ERK1/2 pathway, thereby impeding the adipogenic differentiation of MSCs. Additionally, we successfully achieved the overexpression of IGF2BP3 through intraperitoneal injection of adeno-associated virus serotype Rec2, which specifically targeted adipose tissue. This intervention resulted in reduced body weight and improved insulin resistance in high-fat diet mice. Overall, our study provides novel insights into the role of IGF2BP3 in MSC adipogenesis, shedding light on adipocyte-related disorders and presenting potential targets for related biomedical applications.
Collapse
Affiliation(s)
- Xiuji Huang
- Department of Respiratory and Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, People's Republic of China
| | - Wuhui He
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China
| | - Shuai Fan
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, People's Republic of China
| | - Hui Li
- Department of Respiratory and Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, People's Republic of China.
| | - Guiwen Ye
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, People's Republic of China.
| |
Collapse
|
7
|
Ambrosio MR, Migliaccio T, Napolitano F, Di Somma S, Maneli G, Amato J, Pagano B, Randazzo A, Portella G, Formisano P, Malfitano AM. Targeting G-quadruplex motifs interferes with differentiation of adipose-derived mesenchymal stem cells. Stem Cell Res Ther 2023; 14:98. [PMID: 37076894 PMCID: PMC10116735 DOI: 10.1186/s13287-023-03320-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/29/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND G-quadruplex (G4) motifs are nucleic acid secondary structures observed in mammalian genomes and transcriptomes able to regulate various cellular processes. Several small molecules have been developed so far to modulate G4 stability, frequently associated with anticancer activity. However, how G4 structures are regulated over homeostatic conditions is mostly unexplored. Here, we used human adipose-derived mesenchymal stem cells (ASCs) to address the role of G4 motifs during adipogenic differentiation. METHODS Adipocyte differentiation of ASCs was investigated in the presence or absence of a well-known G4 ligand, Braco-19. Cell viability was determined by sulforhodamine B assay. Cell dimension and granularity, DNA G4 motifs and cell cycle were detected by flow cytometry. Lipid droplet accumulation was assessed by Oil Red O staining. Cell senescence was evaluated by β-galactosidase staining. Gene expression was measured by qPCR. Protein release in the extracellular medium was quantified by ELISA. RESULTS Braco-19 used at non-cytotoxic concentrations induced morphological changes in mature adipocytes partially restoring an undifferentiated-like status. Braco-19 reduced lipid vacuolization and PPARG, AP2, LEP and TNFA mRNA levels in terminally differentiated cells. No effect was observed in cell senescence, fibrotic markers, IL-6 and IL-8 production, while the secretion of VEGF was dose-dependently reduced. Interestingly, G4 structures were increased in differentiated adipocytes compared to their precursors. Braco-19 treatment reduced G4 content in mature adipocytes. CONCLUSIONS Our data highlight a new role of G4 motifs as genomic structural elements related to human ASC differentiation into mature adipocytes, with potential implications in physio-pathological processes.
Collapse
Affiliation(s)
- Maria Rosaria Ambrosio
- Department of Translational Medical Sciences, University "Federico II", 80131, Naples, Italy
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131, Naples, Italy
| | - Teresa Migliaccio
- Department of Translational Medical Sciences, University "Federico II", 80131, Naples, Italy
| | - Fabiana Napolitano
- Department of Translational Medical Sciences, University "Federico II", 80131, Naples, Italy
| | - Sarah Di Somma
- Department of Translational Medical Sciences, University "Federico II", 80131, Naples, Italy
| | - Giovanni Maneli
- Department of Translational Medical Sciences, University "Federico II", 80131, Naples, Italy
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, 80131, Naples, Italy
| | - Bruno Pagano
- Department of Pharmacy, University of Naples Federico II, 80131, Naples, Italy
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples Federico II, 80131, Naples, Italy
| | - Giuseppe Portella
- Department of Translational Medical Sciences, University "Federico II", 80131, Naples, Italy
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131, Naples, Italy
| | - Pietro Formisano
- Department of Translational Medical Sciences, University "Federico II", 80131, Naples, Italy.
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131, Naples, Italy.
| | - Anna Maria Malfitano
- Department of Translational Medical Sciences, University "Federico II", 80131, Naples, Italy.
| |
Collapse
|
8
|
Li N, Chen Y, Wang H, Li J, Zhao RC. SPRY4 promotes adipogenic differentiation of human mesenchymal stem cells through the MEK-ERK1/2 signaling pathway. Adipocyte 2022; 11:588-600. [PMID: 36082406 PMCID: PMC9481072 DOI: 10.1080/21623945.2022.2123097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Obesity is a chronic metabolic disorder characterized by the accumulation of excess fat in the body. Preventing and controlling obesity by inhibiting the adipogenic differentiation of mesenchymal stem cells (MSCs) and thereby avoiding the increase of white adipose tissue is safe and effective. Recent studies have demonstrated that Sprouty proteins (SPRYs) are involved in cell differentiation and related diseases. However, the role and mechanism of SPRY4 in MSC adipogenic differentiation remain to be explored. Here, we found that SPRY4 positively correlates with the adipogenic differentiation of human adipose-derived MSCs (hAMSCs). Via gain- and loss-of-function experiments, we demonstrated that SPRY4 promotes hAMSC adipogenesis both in vitro and in vivo. Mechanistically, SPRY4 functioned by activating the MEK-ERK1/2 pathway. Our findings provide new insights into a critical role for SPRY4 as a regulator of adipogenic differentiation, which may illuminate the underlying mechanisms of obesity and suggest the potential of SPRY4 as a novel treatment option.
Collapse
Affiliation(s)
- Na Li
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences; Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), P.R. China,College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, P.R. China
| | - Yunfei Chen
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences; Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), P.R. China
| | - Haiyan Wang
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences; Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), P.R. China
| | - Jing Li
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences; Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), P.R. China,CONTACT Jing Li Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences; Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), P.R. China
| | - Robert Chunhua Zhao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences; Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), P.R. China,Department of Cell Biology, School of Life Sciences, Shanghai University, Shanghai, P.R. China,Robert Chunhua Zhao Department of Cell Biology, School of Life Sciences Shanghai University, P.R. ChinaShanghai
| |
Collapse
|
9
|
Li P, Wang Y, Li P, Liu YL, Liu WJ, Chen XY, Tang TT, Qi KM, Zhang Y. Maternal inappropriate calcium intake aggravates dietary-induced obesity in male offspring by affecting the differentiation potential of mesenchymal stem cells. World J Stem Cells 2022; 14:756-776. [PMID: 36337156 PMCID: PMC9630989 DOI: 10.4252/wjsc.v14.i10.756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/24/2022] [Accepted: 08/07/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The effects of inappropriate dietary calcium intake in early life on later obesity have not been fully elucidated.
AIM To raise the mechanism of maternal calcium intake on the multi-differentiation potential of mesenchymal stem cells among their male offspring.
METHODS Four-week-old female C57BL/6N mice were fed by deficient, low, normal and excessive calcium reproductive diets throughout pregnancy and lactation. Bone MSCs (BMSCs) were obtained from 7-day-old male offspring to measure the adipogenic differentiation potential by the Wnt/β-catenin signaling pathway. The other weaning male pups were fed a high-fat diet for 16 wk, along with normal-fat diet as the control. Then the serum was collected for the measurement of biochemical indicators. Meanwhile, the adipose tissues were excised to analyze the adipocyte sizes and inflammatory infiltration. And the target gene expressions on the adipogenic differentiation and Wnt/β-catenin signaling pathway in the adipose tissues and BMSCs were determined by real-time reverse transcription polymerase chain reaction.
RESULTS Compared with the control group, maternal deficient, low and excessive calcium intake during pregnancy and lactation aggravated dietary-induced obesity, with larger adipocytes, more serious inflammatory infiltration and higher serum metabolism indicators by interfering with higher expressions of adipogenic differentiation (PPARγ, C/EBPα, Fabp4, LPL, Adiponectin, Resistin and/or Leptin) among their male offspring (P < 0.05). And there were significantly different expression of similar specific genes in the BMSCs to successfully polarize adipogenic differentiation and suppress osteogenic differentiation in vivo and in vitro, respectively (P < 0.05). Meanwhile, it was accompanied by more significant disorders on the expressions of Wnt/β-catenin signaling pathway both in BMSCs and adulthood adipose tissues among the offspring from maternal inappropriate dietary calcium intake groups.
CONCLUSION Early-life abnormal dietary calcium intake might program the adipogenic differentiation potential of BMSCs from male offspring, with significant expressions on the Wnt/β-catenin signaling pathway to aggravate high-fat-diet-induced obesity in adulthood.
Collapse
Affiliation(s)
- Ping Li
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children's Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Yang Wang
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing 100085, China
| | - Pei Li
- Department of Pediatrics, General Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin 300070, China
| | - Yuan-Lin Liu
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing 100085, China
| | - Wei-Jiang Liu
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing 100085, China
| | - Xiao-Yu Chen
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children's Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Tian-Tian Tang
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children's Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Ke-Min Qi
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children's Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Yi Zhang
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing 100085, China
| |
Collapse
|
10
|
Su H, Meng C, Xu J, Su Z, Xiao C, Yang D. Histone methyltransferase Smyd2 drives adipogenesis via regulating STAT3 phosphorylation. Cell Death Dis 2022; 13:890. [PMID: 36270984 PMCID: PMC9586978 DOI: 10.1038/s41419-022-05321-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/01/2022] [Accepted: 10/05/2022] [Indexed: 01/23/2023]
Abstract
Adipogenesis is a complex cascade involved with the preadipocytes differentiation towards mature adipocytes, accelerating the onset of obesity. Histone methyltransferase SET and MYND domain-containing protein 2 (Smyd2), is involved in a variety of cellular biological functions but the epigenetic regulation of Smyd2 in adipogenesis and adipocyte differentiation remains unclear. Both Smyd2 siRNA and LLY-507, an inhibitor of Smyd2, were used to examine the effect of Smyd2 on adipogenesis and adipocyte differentiation in vitro. Smyd2 heterozygous knockout (Smyd2+/-) mice were also constructed to validate the relationship between Smyd2 and adipogenesis in vivo. We found that Smyd2 is abundant in white adipose tissue and closely correlated with adipocyte differentiation. Knockdown or inhibition of Smyd2 restrained adipocyte differentiation in vitro, which requires the phosphorylation of STAT3. In vivo functional validation, Smyd2+/- mice exert significant fat loss but not susceptible to HFD-induced obesity. Taken together, our findings revealed that Smyd2 is a novel regulator of adipocyte differentiation by regulating the phosphorylation of STAT3, which provides insights into the effects of epigenetic regulation in adipogenesis. Inhibition of Smyd2 might represent a viable strategy for anti-adipogenesis and maybe further alleviate obesity-related diseases in humans.
Collapse
Affiliation(s)
- Haibi Su
- grid.8547.e0000 0001 0125 2443Pharmacophenomics Laboratory, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 201203 P. R. China
| | - Chen Meng
- grid.8547.e0000 0001 0125 2443Pharmacophenomics Laboratory, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 201203 P. R. China
| | - Jie Xu
- grid.8547.e0000 0001 0125 2443Pharmacophenomics Laboratory, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 201203 P. R. China
| | - Zhenghua Su
- grid.8547.e0000 0001 0125 2443Pharmacophenomics Laboratory, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 201203 P. R. China
| | - Chenxi Xiao
- grid.8547.e0000 0001 0125 2443Pharmacophenomics Laboratory, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 201203 P. R. China
| | - Di Yang
- grid.8547.e0000 0001 0125 2443Pharmacophenomics Laboratory, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 201203 P. R. China
| |
Collapse
|
11
|
Hoang VT, Nguyen HP, Nguyen VN, Hoang DM, Nguyen TST, Nguyen Thanh L. “Adipose-derived mesenchymal stem cell therapy for the management of female sexual dysfunction: Literature reviews and study design of a clinical trial”. Front Cell Dev Biol 2022; 10:956274. [PMID: 36247008 PMCID: PMC9554747 DOI: 10.3389/fcell.2022.956274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/29/2022] [Indexed: 11/25/2022] Open
Abstract
Hormone imbalance and female sexual dysfunction immensely affect perimenopausal female health and quality of life. Hormone therapy can improve female hormone deficiency, but long-term use increases the risk of cardiovascular diseases and cancer. Therefore, it is necessary to develop a novel effective treatment to achieve long-term improvement in female general and sexual health. This study reviewed factors affecting syndromes of female sexual dysfunction and its current therapy options. Next, the authors introduced research data on mesenchymal stromal cell/mesenchymal stem cell (MSC) therapy to treat female reproductive diseases, including Asherman’s syndrome, premature ovarian failure/primary ovarian insufficiency, and vaginal atrophy. Among adult tissue-derived MSCs, adipose tissue-derived stem cells (ASCs) have emerged as the most potent therapeutic cell therapy due to their abundant presence in the stromal vascular fraction of fat, high proliferation capacity, superior immunomodulation, and strong secretion profile of regenerative factors. Potential mechanisms and side effects of ASCs for the treatment of female sexual dysfunction will be discussed. Our phase I clinical trial has demonstrated the safety of autologous ASC therapy for women and men with sexual hormone deficiency. We designed the first randomized controlled crossover phase II trial to investigate the safety and efficacy of autologous ASCs to treat female sexual dysfunction in perimenopausal women. Here, we introduce the rationale, trial design, and methodology of this clinical study. Because aging and metabolic diseases negatively impact the bioactivity of adult-derived MSCs, this study will use ASCs cultured in physiological oxygen tension (5%) to cope with these challenges. A total of 130 perimenopausal women with sexual dysfunction will receive two intravenous infusions of autologous ASCs in a crossover design. The aims of the proposed study are to evaluate 1) the safety of cell infusion based on the frequency and severity of adverse events/serious adverse events during infusion and follow-up and 2) improvements in female sexual function assessed by the Female Sexual Function Index (FSFI), the Utian Quality of Life Scale (UQOL), and the levels of follicle-stimulating hormone (FSH) and estradiol. In addition, cellular aging biomarkers, including plasminogen activator inhibitor-1 (PAI-1), p16 and p21 expression in T cells and the inflammatory cytokine profile, will also be characterized. Overall, this study will provide essential insights into the effects and potential mechanisms of ASC therapy for perimenopausal women with sexual dysfunction. It also suggests direction and design strategies for future research.
Collapse
Affiliation(s)
- Van T. Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, Hanoi, Vietnam
| | - Hoang-Phuong Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, Hanoi, Vietnam
| | - Viet Nhan Nguyen
- Vinmec International Hospital—Times City, Vinmec Health Care System, Hanoi, Vietnam
- College of Health Science, Vin University, Vinhomes Ocean Park, Hanoi, Vietnam
| | - Duc M. Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, Hanoi, Vietnam
| | - Tan-Sinh Thi Nguyen
- Vinmec International Hospital—Times City, Vinmec Health Care System, Hanoi, Vietnam
| | - Liem Nguyen Thanh
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, Hanoi, Vietnam
- Vinmec International Hospital—Times City, Vinmec Health Care System, Hanoi, Vietnam
- College of Health Science, Vin University, Vinhomes Ocean Park, Hanoi, Vietnam
- *Correspondence: Liem Nguyen Thanh,
| |
Collapse
|
12
|
Ritter A, Kreis NN, Hoock SC, Solbach C, Louwen F, Yuan J. Adipose Tissue-Derived Mesenchymal Stromal/Stem Cells, Obesity and the Tumor Microenvironment of Breast Cancer. Cancers (Basel) 2022; 14:3908. [PMID: 36010901 PMCID: PMC9405791 DOI: 10.3390/cancers14163908] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is the most frequently diagnosed cancer and a common cause of cancer-related death in women. It is well recognized that obesity is associated with an enhanced risk of more aggressive breast cancer as well as reduced patient survival. Adipose tissue is the major microenvironment of breast cancer. Obesity changes the composition, structure, and function of adipose tissue, which is associated with inflammation and metabolic dysfunction. Interestingly, adipose tissue is rich in ASCs/MSCs, and obesity alters the properties and functions of these cells. As a key component of the mammary stroma, ASCs play essential roles in the breast cancer microenvironment. The crosstalk between ASCs and breast cancer cells is multilateral and can occur both directly through cell-cell contact and indirectly via the secretome released by ASC/MSC, which is considered to be the main effector of their supportive, angiogenic, and immunomodulatory functions. In this narrative review, we aim to address the impact of obesity on ASCs/MSCs, summarize the current knowledge regarding the potential pathological roles of ASCs/MSCs in the development of breast cancer, discuss related molecular mechanisms, underline the possible clinical significance, and highlight related research perspectives. In particular, we underscore the roles of ASCs/MSCs in breast cancer cell progression, including proliferation and survival, angiogenesis, migration and invasion, the epithelial-mesenchymal transition, cancer stem cell development, immune evasion, therapy resistance, and the potential impact of breast cancer cells on ASCS/MSCs by educating them to become cancer-associated fibroblasts. We conclude that ASCs/MSCs, especially obese ASCs/MSCs, may be key players in the breast cancer microenvironment. Targeting these cells may provide a new path of effective breast cancer treatment.
Collapse
Affiliation(s)
- Andreas Ritter
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | | | | | | | | | - Juping Yuan
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| |
Collapse
|
13
|
Al-Ali MM, Khan AA, Fayyad AM, Abdallah SH, Khattak MNK. Transcriptomic profiling of the telomerase transformed Mesenchymal stromal cells derived adipocytes in response to rosiglitazone. BMC Genom Data 2022; 23:17. [PMID: 35264099 PMCID: PMC8905835 DOI: 10.1186/s12863-022-01027-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/17/2022] [Indexed: 11/10/2022] Open
Abstract
Background Differentiation of Immortalized Human Bone Marrow Mesenchymal Stromal Cells - hTERT (iMSC3) into adipocytes is in vitro model of obesity. In our earlier study, rosiglitazone enhanced adipogenesis particularly the brown adipogenesis of iMSC3. In this study, the transcriptomic profiles of iMSC3 derived adipocytes with and without rosiglitazone were analyzed through mRNA sequencing. Results A total of 1508 genes were differentially expressed between iMSC3 and the derived adipocytes without rosiglitazone treatment. GO and KEGG enrichment analyses revealed that rosiglitazone regulates PPAR and PI3K-Akt pathways. The constant rosiglitazone treatment enhanced the expression of Fatty Acid Binding Protein 4 (FABP4) which enriched GO terms such as fatty acid binding, lipid droplet, as well as white and brown fat cell differentiation. Moreover, the constant treatment upregulated several lipid droplets (LDs) associated proteins such as PLIN1. Rosiglitazone also activated the receptor complex PTK2B that has essential roles in beige adipocytes thermogenic program. Several uniquely expressed novel regulators of brown adipogenesis were also expressed in adipocytes derived with rosiglitazone: PRDM16, ZBTB16, HOXA4, and KLF15 in addition to other uniquely expressed genes. Conclusions Rosiglitazone regulated several differentially regulated genes and non-coding RNAs that warrant further investigation about their roles in adipogenesis particularly brown adipogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-022-01027-z.
Collapse
Affiliation(s)
- Moza Mohamed Al-Ali
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, 27272, UAE
| | - Amir Ali Khan
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, 27272, UAE. .,Human Genetics & Stem Cells Research Group, Research Institute of Sciences & Engineering, University of Sharjah, Sharjah, 27272, UAE.
| | - Abeer Maher Fayyad
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, 27272, UAE.,Department of Molecular and Genetic Diagnostics, Megalabs Group, Amman, 11953, Jordan
| | - Sallam Hasan Abdallah
- Human Genetics & Stem Cells Research Group, Research Institute of Sciences & Engineering, University of Sharjah, Sharjah, 27272, UAE
| | - Muhammad Nasir Khan Khattak
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, 27272, UAE. .,Human Genetics & Stem Cells Research Group, Research Institute of Sciences & Engineering, University of Sharjah, Sharjah, 27272, UAE.
| |
Collapse
|
14
|
Ning K, Liu S, Yang B, Wang R, Man G, Wang DE, Xu H. Update on the Effects of Energy Metabolism in Bone Marrow Mesenchymal Stem Cells Differentiation. Mol Metab 2022; 58:101450. [PMID: 35121170 PMCID: PMC8888956 DOI: 10.1016/j.molmet.2022.101450] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/16/2022] [Accepted: 01/27/2022] [Indexed: 11/29/2022] Open
Abstract
Background As common progenitor cells of osteoblasts and adipocytes, bone marrow mesenchymal (stromal) stem cells (BMSCs) play key roles in bone homeostasis, tissue regeneration, and global energy homeostasis; however, the intrinsic mechanism of BMSC differentiation is not well understood. Plasticity in energy metabolism allows BMSCs to match the divergent demands of osteo-adipogenic differentiation. Targeting BMSC metabolic pathways may provide a novel therapeutic perspective for BMSC differentiation unbalance related diseases. Scope of review This review covers the recent studies of glucose, fatty acids, and amino acids metabolism fuel the BMSC differentiation. We also discuss recent findings about energy metabolism in BMSC differentiation. Major conclusions Glucose, fatty acids, and amino acids metabolism provide energy to fuel BMSC differentiation. Moreover, some well-known regulators including environmental stress, hormone drugs, and biological and pathological factors may also influence BMSC differentiation by altering metabolism. This offers insight to the significance of metabolism on BMSC fate determination and provides the possibility of treating diseases related to BMSC differentiation, such as obesity and osteoporosis, from a metabolic perspective.
Collapse
|
15
|
Palmitic Acid Methyl Ester Enhances Adipogenic Differentiation in Rat Adipose Tissue-Derived Mesenchymal Stem Cells through a G Protein-Coupled Receptor-Mediated Pathway. Stem Cells Int 2021; 2021:9938649. [PMID: 34650609 PMCID: PMC8510814 DOI: 10.1155/2021/9938649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/29/2021] [Accepted: 09/11/2021] [Indexed: 11/29/2022] Open
Abstract
Adipogenic differentiation from stem cells has become a research target due to the increasing interest in obesity. It has been indicated that adipocytes can secrete palmitic acid methyl ester (PAME), which is able to regulate stem cell proliferation. However, the effects of PAME on adipogenic differentiation in stem cell remain unclear. Here, we present that the adipogenic differentiation medium supplemented with PAME induced the differentiation of rat adipose tissue-derived mesenchymal stem cells (rAD-MSCs) into adipocyte. rAD-MSCs were treated with PAME for 12 days and then subjected to various analyses. The results from the present study show that PAME significantly increased the levels of adipogenic differentiation markers, PPARγ and Gpd1, and enhanced adipogenic differentiation in rAD-MSCs. Furthermore, the level of GPR40/120 protein increased during induction of adipocyte differentiation in rAD-MSCs. Cotreatment with PAME and a GPR40/120 antagonist together inhibited the PAME-enhanced adipogenic differentiation. Moreover, PAME significantly increased phosphorylation of extracellular signal-regulated kinases (ERK), but not AKT and mTOR. Cotreatment with PAME and a GPR40/120 antagonist together inhibited the PAME-enhanced ERK phosphorylation and adipogenic differentiation. PAME also increased the intracellular Ca2+ levels. Cotreatment with PAME and a Ca2+ chelator or a phospholipase C (PLC) inhibitor prevented the PAME-enhanced ERK phosphorylation and adipogenic differentiation. Our data suggest that PAME activated the GPR40/120/PLC-mediated pathway, which in turn increased the intracellular Ca2+ levels, thereby activating the ERK, and eventually enhanced adipogenic differentiation in rAD-MSCs. The findings from the present study might help get insight into the physiological roles and molecular mechanism of PAME in regulating stem cell differentiation.
Collapse
|
16
|
Saleh FA, Jaber H, Eid A. Effect of Adipose derived mesenchymal stem cells on multiple Organ Injuries in diet-induced obese mice. Tissue Barriers 2021; 9:1952150. [PMID: 34308754 PMCID: PMC8794509 DOI: 10.1080/21688370.2021.1952150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 10/20/2022] Open
Abstract
Background: Obesity is a complex disease involving the accumulation of body fat that can inflict a substantial risk to health due to the potent role it plays in the development of a series of chronic diseases including cardiovascular diseases (CVD), nonalcoholic fatty liver diseases (NAFLD), kidney diseases, diabetes, and some cancers. Despite all efforts made, no therapy has succeeded in reversing the obesity pandemic and its associated diseases. Herein, the aim was to study the effect of adipose-derived mesenchymal stem cells on obesity-induced multi-organ injuries in a diet-induced obese mouse model. Male C57BL/6 mice were fed with regular chow diet or high fat diet (HFD) to induce obesity for 15 weeks after which the mice were administered two doses of adipose-derived mesenchymal stem cells (ASC-treated groups) or media as control (media-treated groups). Animals were sacrificed and adipose, hepatic, renal, and cardiac tissues were obtained for histopathological evaluation. Mice on HFD showed excessive pathological alterations such as epididymal adipose tissue expansion, hepatic fat accumulation, glomerular swelling, and cardiomyocyte hypertrophy. However, treatment with ASCs significantly reversed the significant histopathological abnormalities induced by obesity. In conclusion, this study demonstrated the therapeutic effects of adipose-derived mesenchymal stem cells on obesity-associated complications such as NAFLD, CVD, and kidney disorders in a diet-induced obese animal model, which were partly due to the attenuation of inflammatory cytokines such as TNF-α and IL-6.
Collapse
Affiliation(s)
- Fatima A. Saleh
- Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| | - Hala Jaber
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| | - Ali Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
17
|
Lee D, Kim JY, Qi Y, Park S, Lee HL, Yamabe N, Kim H, Jang DS, Kang KS. Phytochemicals from the flowers of Prunus persica (L.) Batsch: Anti-adipogenic effect of mandelamide on 3T3-L1 preadipocytes. Bioorg Med Chem Lett 2021; 49:128326. [PMID: 34403725 DOI: 10.1016/j.bmcl.2021.128326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/26/2021] [Accepted: 08/10/2021] [Indexed: 01/11/2023]
Abstract
Flowers of Prunus persica (L.) Batsch (Rosaceae), known as peach blossoms, have been reported to exert anti-obesity effects by improving hepatic lipid metabolism in obese mice. However, little is known regarding the anti-adipogenic effects of the phenolic compounds isolated from P. persica flowers. This study investigated the inhibitory effects of compounds extracted from P. persica flowers (PPF) on adipogenesis in 3T3-L1 murine preadipocytes using adipogenic differentiation assays. Additionally, we compared the anti-adipogenic effects of the phenolic compounds isolated from PPF, such as prunasin amide (1), amygdalin amide (2), prunasin acid (3), mandelamide (4), methyl caffeate (5), ferulic acid (6), chlorogenic acid (7), benzyl α-l-xylpyranosyl-(1 → 6)-β-d-glucopyranoside (8), prunin (9), naringenin (10), nicotiflorin (11), astragalin (12), afzelin (13), and uridine (14), on adipogenesis in 3T3-L1 murine preadipocytes. PPF and compounds 4-7 and 10 significantly inhibited adipogenesis. Among them, mandelamide (4) exhibited the maximum inhibitory activity with an IC50 of 36.04 ± 1.82 μM. Additionally, mandelamide downregulated the expression of key adipogenic markers, such as extracellular signal-regulated kinase, c-Jun-N-terminal kinase, P38, CCAAT/enhancer-binding protein α, CCAAT/enhancer-binding protein β, peroxisome proliferator activated receptor γ, and glucocorticoid receptor. These results indicate that mandelamide is an active ingredient of PPF possessing anti-obesity properties.
Collapse
Affiliation(s)
- Dahae Lee
- College of Korean Medicine, Gachon University, Seongnam 13120, South Korea
| | - Ji-Young Kim
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, South Korea
| | - Yutong Qi
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, South Korea
| | - Sangsu Park
- Department of Fundamental Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, South Korea
| | - Hye Lim Lee
- Department of Pediatrics, College of Korean Medicine, Daejeon University, Daejeon, South Korea
| | - Noriko Yamabe
- College of Korean Medicine, Gachon University, Seongnam 13120, South Korea
| | - Hocheol Kim
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, South Korea
| | - Dae Sik Jang
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, South Korea.
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, South Korea.
| |
Collapse
|
18
|
Gupta R, Rao R, Johnston TR, Uong J, Yang DS, Lee TQ. Muscle stem cells and rotator cuff injury. JSES REVIEWS, REPORTS, AND TECHNIQUES 2021; 1:186-193. [PMID: 37588948 PMCID: PMC10426486 DOI: 10.1016/j.xrrt.2021.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
The incidence of reinjury after treatment of rotator cuff tears (RCTs) remains very high despite the variety of nonoperative treatments and the high volume of surgical interventions performed. Muscle stem cells (MuSCs), also known as satellite cells, have risen to the forefront of rotator cuff tear research as a potential adjuvant therapy to aid unsatisfactory surgical outcomes. MuSCs are adult stem cells exhibiting the capacity to proliferate and self-renew, both symmetrically and asymmetrically. As part of this niche, they have been shown to adopt an activated phenotype in response to musculoskeletal injury and decrease their cellular populations during aging, implicating them as key players in both pathologic and normal physiological processes. While commonly connected to the regenerative phase of muscle healing, MuSCs also have the potential to differentiate into adverse morphologies. For instance, if MuSCs differentiate into adipocytes, the ensuing fatty infiltration serves as an obstacle to proper muscle healing and has been associated with the failure of surgical management of RCTs. With the potential to both harm and heal, we have identified MuSCs as a key player in RCT repair. To better understand this dichotomy, the following review will identify key studies regarding the morphology, function, and behavior of MuSCs with respect to RCTs and healing.
Collapse
Affiliation(s)
- Ranjan Gupta
- Department of Orthopaedics, University of California, Irvine, CA, USA
| | - Rohan Rao
- Department of Orthopaedics, University of California, Irvine, CA, USA
| | - Tyler R. Johnston
- Department of Orthopaedics, University of California, Irvine, CA, USA
| | - Jennifer Uong
- Department of Orthopaedics, University of California, Irvine, CA, USA
| | - Daniel S. Yang
- Department of Orthopaedics, University of California, Irvine, CA, USA
| | - Thay Q. Lee
- Congress Medical Foundation, Pasadena, CA, USA
| |
Collapse
|
19
|
Martin S, Cule M, Basty N, Tyrrell J, Beaumont RN, Wood AR, Frayling TM, Sorokin E, Whitcher B, Liu Y, Bell JD, Thomas EL, Yaghootkar H. Genetic Evidence for Different Adiposity Phenotypes and Their Opposing Influences on Ectopic Fat and Risk of Cardiometabolic Disease. Diabetes 2021; 70:1843-1856. [PMID: 33980691 DOI: 10.2337/db21-0129] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/06/2021] [Indexed: 11/13/2022]
Abstract
To understand the causal role of adiposity and ectopic fat in type 2 diabetes and cardiometabolic diseases, we aimed to identify two clusters of adiposity genetic variants: one with "adverse" metabolic effects (UFA) and the other with, paradoxically, "favorable" metabolic effects (FA). We performed a multivariate genome-wide association study using body fat percentage and metabolic biomarkers from UK Biobank and identified 38 UFA and 36 FA variants. Adiposity-increasing alleles were associated with an adverse metabolic profile, higher risk of disease, higher CRP, and higher fat in subcutaneous and visceral adipose tissue, liver, and pancreas for UFA and a favorable metabolic profile, lower risk of disease, higher CRP and higher subcutaneous adipose tissue but lower liver fat for FA. We detected no sexual dimorphism. The Mendelian randomization studies provided evidence for a risk-increasing effect of UFA and protective effect of FA for type 2 diabetes, heart disease, hypertension, stroke, nonalcoholic fatty liver disease, and polycystic ovary syndrome. FA is distinct from UFA by its association with lower liver fat and protection from cardiometabolic diseases; it was not associated with visceral or pancreatic fat. Understanding the difference in FA and UFA may lead to new insights in preventing, predicting, and treating cardiometabolic diseases.
Collapse
Affiliation(s)
- Susan Martin
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Royal Devon & Exeter Hospital, Exeter, U.K
| | | | - Nicolas Basty
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, U.K
| | - Jessica Tyrrell
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Royal Devon & Exeter Hospital, Exeter, U.K
| | - Robin N Beaumont
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Royal Devon & Exeter Hospital, Exeter, U.K
| | - Andrew R Wood
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Royal Devon & Exeter Hospital, Exeter, U.K
| | - Timothy M Frayling
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Royal Devon & Exeter Hospital, Exeter, U.K
| | | | - Brandon Whitcher
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, U.K
| | - Yi Liu
- Calico Life Sciences LLC, South San Francisco, CA
| | - Jimmy D Bell
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, U.K
| | - E Louise Thomas
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, U.K
| | - Hanieh Yaghootkar
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Royal Devon & Exeter Hospital, Exeter, U.K.
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, U.K
| |
Collapse
|
20
|
Calvo E, Keiran N, Núñez-Roa C, Maymó-Masip E, Ejarque M, Sabadell-Basallote J, Del Mar Rodríguez-Peña M, Ceperuelo-Mallafré V, Seco J, Benaiges E, Michalopoulou T, Jorba R, Vendrell J, Fernández-Veledo S. Effects of stem cells from inducible brown adipose tissue on diet-induced obesity in mice. Sci Rep 2021; 11:13923. [PMID: 34230537 PMCID: PMC8260805 DOI: 10.1038/s41598-021-93224-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/16/2021] [Indexed: 11/11/2022] Open
Abstract
Adipose-derived mesenchymal stem cells (ASCs) are a promising option for the treatment of obesity and its metabolic co-morbidities. Despite the recent identification of brown adipose tissue (BAT) as a potential target in the management of obesity, the use of ASCs isolated from BAT as a therapy for patients with obesity has not yet been explored. Metabolic activation of BAT has been shown to have not only thermogenic effects, but it also triggers the secretion of factors that confer protection against obesity. Herein, we isolated and characterized ASCs from the visceral adipose tissue surrounding a pheochromocytoma (IB-hASCs), a model of inducible BAT in humans. We then compared the anti-obesity properties of IB-hASCs and human ASCs isolated from visceral white adipose tissue (W-hASCs) in a murine model of diet-induced obesity. We found that both ASC therapies mitigated the metabolic abnormalities of obesity to a similar extent, including reducing weight gain and improving glucose tolerance. However, infusion of IB-hASCs was superior to W-hASCs in suppressing lipogenic and inflammatory markers, as well as preserving insulin secretion. Our findings provide evidence for the metabolic benefits of visceral ASC infusion and support further studies on IB-hASCs as a therapeutic option for obesity-related comorbidities.
Collapse
Affiliation(s)
- Enrique Calvo
- Servei D'Endocrinologia I Nutrició I Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Institut D'Investigació Sanitària Pere Virgili (IISPV), c/ Dr. Mallafré Guasch 4, 43007, Tarragona, Spain
- CIBER de Diabetes Y Enfermedades Metabólicas Asociadas (CIBERDEM) - Instituto de Salud Carlos III, Madrid, Spain
| | - Noelia Keiran
- Servei D'Endocrinologia I Nutrició I Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Institut D'Investigació Sanitària Pere Virgili (IISPV), c/ Dr. Mallafré Guasch 4, 43007, Tarragona, Spain
- CIBER de Diabetes Y Enfermedades Metabólicas Asociadas (CIBERDEM) - Instituto de Salud Carlos III, Madrid, Spain
- Universitat Rovira I Virgili, Tarragona, Spain
| | - Catalina Núñez-Roa
- Servei D'Endocrinologia I Nutrició I Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Institut D'Investigació Sanitària Pere Virgili (IISPV), c/ Dr. Mallafré Guasch 4, 43007, Tarragona, Spain
- CIBER de Diabetes Y Enfermedades Metabólicas Asociadas (CIBERDEM) - Instituto de Salud Carlos III, Madrid, Spain
| | - Elsa Maymó-Masip
- Servei D'Endocrinologia I Nutrició I Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Institut D'Investigació Sanitària Pere Virgili (IISPV), c/ Dr. Mallafré Guasch 4, 43007, Tarragona, Spain
- CIBER de Diabetes Y Enfermedades Metabólicas Asociadas (CIBERDEM) - Instituto de Salud Carlos III, Madrid, Spain
| | - Miriam Ejarque
- Servei D'Endocrinologia I Nutrició I Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Institut D'Investigació Sanitària Pere Virgili (IISPV), c/ Dr. Mallafré Guasch 4, 43007, Tarragona, Spain
- CIBER de Diabetes Y Enfermedades Metabólicas Asociadas (CIBERDEM) - Instituto de Salud Carlos III, Madrid, Spain
| | - Joan Sabadell-Basallote
- Servei D'Endocrinologia I Nutrició I Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Institut D'Investigació Sanitària Pere Virgili (IISPV), c/ Dr. Mallafré Guasch 4, 43007, Tarragona, Spain
- CIBER de Diabetes Y Enfermedades Metabólicas Asociadas (CIBERDEM) - Instituto de Salud Carlos III, Madrid, Spain
- Universitat Rovira I Virgili, Tarragona, Spain
| | - María Del Mar Rodríguez-Peña
- Servei D'Endocrinologia I Nutrició I Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Institut D'Investigació Sanitària Pere Virgili (IISPV), c/ Dr. Mallafré Guasch 4, 43007, Tarragona, Spain
- CIBER de Diabetes Y Enfermedades Metabólicas Asociadas (CIBERDEM) - Instituto de Salud Carlos III, Madrid, Spain
| | - Victòria Ceperuelo-Mallafré
- Servei D'Endocrinologia I Nutrició I Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Institut D'Investigació Sanitària Pere Virgili (IISPV), c/ Dr. Mallafré Guasch 4, 43007, Tarragona, Spain
- CIBER de Diabetes Y Enfermedades Metabólicas Asociadas (CIBERDEM) - Instituto de Salud Carlos III, Madrid, Spain
- Universitat Rovira I Virgili, Tarragona, Spain
| | - Jesús Seco
- Servei D'Endocrinologia I Nutrició I Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Institut D'Investigació Sanitària Pere Virgili (IISPV), c/ Dr. Mallafré Guasch 4, 43007, Tarragona, Spain
- CIBER de Diabetes Y Enfermedades Metabólicas Asociadas (CIBERDEM) - Instituto de Salud Carlos III, Madrid, Spain
| | - Ester Benaiges
- Servei D'Endocrinologia I Nutrició I Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Institut D'Investigació Sanitària Pere Virgili (IISPV), c/ Dr. Mallafré Guasch 4, 43007, Tarragona, Spain
- CIBER de Diabetes Y Enfermedades Metabólicas Asociadas (CIBERDEM) - Instituto de Salud Carlos III, Madrid, Spain
- Universitat Rovira I Virgili, Tarragona, Spain
| | - Theodora Michalopoulou
- Servei D'Endocrinologia I Nutrició I Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Institut D'Investigació Sanitària Pere Virgili (IISPV), c/ Dr. Mallafré Guasch 4, 43007, Tarragona, Spain
| | - Rosa Jorba
- Servei de Cirurgia General I de L'Aparell Digestiu, Hospital Universitari Joan XXIII, Institut D'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Joan Vendrell
- Servei D'Endocrinologia I Nutrició I Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Institut D'Investigació Sanitària Pere Virgili (IISPV), c/ Dr. Mallafré Guasch 4, 43007, Tarragona, Spain.
- CIBER de Diabetes Y Enfermedades Metabólicas Asociadas (CIBERDEM) - Instituto de Salud Carlos III, Madrid, Spain.
- Universitat Rovira I Virgili, Tarragona, Spain.
| | - Sonia Fernández-Veledo
- Servei D'Endocrinologia I Nutrició I Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Institut D'Investigació Sanitària Pere Virgili (IISPV), c/ Dr. Mallafré Guasch 4, 43007, Tarragona, Spain.
- CIBER de Diabetes Y Enfermedades Metabólicas Asociadas (CIBERDEM) - Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
21
|
Wang T, Zhang T, Tang Y, Wang H, Wei Q, Lu Y, Yao J, Qu Y, Cao X. Oxysterol-binding protein-like 2 contributes to the developmental progression of preadipocytes by binding to β-catenin. Cell Death Discov 2021; 7:109. [PMID: 34001864 PMCID: PMC8129138 DOI: 10.1038/s41420-021-00503-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
Oxysterol-binding protein-like 2 (OSBPL2), also known as oxysterol-binding protein-related protein (ORP) 2, is a member of lipid transfer protein well-known for its role in regulating cholesterol homeostasis. A recent study reported that OSBPL2/ORP2 localizes to lipid droplets (LDs) and is associated with energy metabolism and obesity. However, the function of OSBPL2/ORP2 in adipocyte differentiation is poorly understood. Here, we report that OSBPL2/ORP2 contributes to the developmental progression of preadipocytes. We found that OSBPL2/ORP2 binds to β-catenin, a key effector in the Wnt signaling pathway that inhibits adipogenesis. This complex plays a role in regulating the protein level of β-catenin only in preadipocytes, not in mature adipocytes. Our data further indicated that OSBPL2/ORP2 mediates the transport of β-catenin into the nucleus and thus regulates target genes related to adipocyte differentiation. Deletion of OSBPL2/ORP2 markedly reduces β-catenin both in the cytoplasm and in the nucleus, promotes preadipocytes maturation, and ultimately leads to obesity-related characteristics. Altogether, we provide novel insight into the function of OSBPL2/ORP2 in the developmental progression of preadipocytes and suggest OSBPL2/ORP2 may be a potential therapeutic target for the treatment of obesity-related diseases.
Collapse
Affiliation(s)
- Tianming Wang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Tianyu Zhang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Youzhi Tang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Hongshun Wang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Qinjun Wei
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Yajie Lu
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Jun Yao
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Yuan Qu
- Jiangsu Cancer Hospital, Nanjing Medical University, Nanjing, China
| | - Xin Cao
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China. .,Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
22
|
Yang Y, Fan J, Xu H, Fan L, Deng L, Li J, Li D, Li H, Zhang F, Zhao RC. Long noncoding RNA LYPLAL1-AS1 regulates adipogenic differentiation of human mesenchymal stem cells by targeting desmoplakin and inhibiting the Wnt/β-catenin pathway. Cell Death Dis 2021; 7:105. [PMID: 33993187 PMCID: PMC8124068 DOI: 10.1038/s41420-021-00500-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 03/30/2021] [Accepted: 04/24/2021] [Indexed: 02/03/2023]
Abstract
Long noncoding RNAs are crucial factors for modulating adipogenic differentiation, but only a few have been identified in humans. In the current study, we identified a previously unknown human long noncoding RNA, LYPLAL1-antisense RNA1 (LYPLAL1-AS1), which was dramatically upregulated during the adipogenic differentiation of human adipose-derived mesenchymal stem cells (hAMSCs). Based on 5' and 3' rapid amplification of cDNA ends assays, full-length LYPLAL1-AS1 was 523 nt. Knockdown of LYPLAL1-AS1 decreased the adipogenic differentiation of hAMSCs, whereas overexpression of LYPLAL1-AS1 enhanced this process. Desmoplakin (DSP) was identified as a direct target of LYPLAL1-AS1. Knockdown of DSP enhanced adipogenic differentiation and rescued the LYPLAL1-AS1 depletion-induced defect in adipogenic differentiation of hAMSCs. Further experiments showed that LYPLAL1-AS1 modulated DSP protein stability possibly via proteasome degradation, and the Wnt/β-catenin pathway was inhibited during adipogenic differentiation regulated by the LYPLAL1-AS1/DSP complex. Together, our work provides a new mechanism by which long noncoding RNA regulates adipogenic differentiation of human MSCs and suggests that LYPLAL1-AS1 may serve as a novel therapeutic target for preventing and combating diseases related to abnormal adipogenesis, such as obesity.
Collapse
Affiliation(s)
- Yanlei Yang
- grid.506261.60000 0001 0706 7839Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), 100005 Beijing, China ,grid.419897.a0000 0004 0369 313XDepartment of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, The Ministry of Education Key Laboratory, 100005 Beijing, China
| | - Junfen Fan
- grid.506261.60000 0001 0706 7839Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), 100005 Beijing, China
| | - Haoying Xu
- grid.506261.60000 0001 0706 7839Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), 100005 Beijing, China
| | - Linyuan Fan
- grid.506261.60000 0001 0706 7839Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), 100005 Beijing, China
| | - Luchan Deng
- grid.506261.60000 0001 0706 7839Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), 100005 Beijing, China
| | - Jing Li
- grid.506261.60000 0001 0706 7839Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), 100005 Beijing, China
| | - Di Li
- grid.506261.60000 0001 0706 7839Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), 100005 Beijing, China
| | - Hongling Li
- grid.506261.60000 0001 0706 7839Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), 100005 Beijing, China
| | - Fengchun Zhang
- grid.419897.a0000 0004 0369 313XDepartment of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, The Ministry of Education Key Laboratory, 100005 Beijing, China
| | - Robert Chunhua Zhao
- grid.506261.60000 0001 0706 7839Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), 100005 Beijing, China
| |
Collapse
|
23
|
Tai C, Wang L, Xie Y, Gao T, Huang F, Wang B. Analysis of Key Distinct Biological Characteristics of Human Placenta-Derived Mesenchymal Stromal Cells and Individual Heterogeneity Attributing to Donors. Cells Tissues Organs 2021; 210:45-57. [PMID: 33780947 DOI: 10.1159/000513038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 11/13/2020] [Indexed: 11/19/2022] Open
Abstract
For potential clinical applications in the future, we investigated the distinct biological features of mesenchymal stromal cells (MSCs) derived from different origin areas of human placenta and individual heterogeneity among different donors. Chorionic plate MSCs (CP-MSCs), amniotic membrane MSCs (AM-MSCs), and decidual plate MSCs (DP-MSCs) were isolated from 5 human placentae and were analyzed in terms of main features of MSCs including surface marker profile, growth, differentiation potential, immune regulation capability, and tubulin acetylation (Ac-tubulin). The expression profile of surface markers in the 3 types of MSCs derived from the 5 donors was relatively stable. Heterogeneity was found in growth, differentiation potential, and immune regulation among MSCs according to the different areas of isolation and different donors. CP-MSCs and AM-MSCs derived from the placentae of donors 1-3 had a higher osteogenic differentiation potential than the corresponding DP-MSCs, but those derived from the placentae of donors 4 and 5 had a markedly lower osteogenic differentiation potential than DP-MSCs. All CP-MSCs derived from donors 1-3 had the highest adipogenic differentiation potential, but CP-MSCs derived from donors 4 and 5 did not show strong capability of adipogenic differentiation. CP-MSCs markedly inhibited the proliferation of peripheral blood mononuclear cells (PBMCs) induced by phytohemagglutinin, whereas AM- and DP-MSCs did not. All MSCs decreased the proportion of CD3+/CD8-/IFN-γ+ Th1 and CD3+/CD8-/IL17+ Th17 cells, but increased the proportion of Treg cells in PBMCs, with individual differences among the 5 donors. DP-MSCs from donors 1 and 2 had higher levels of Ac-tubulin compared with CP- and AM-MSCs. However, the levels of Ac-tubulin in AM-MSCs from donors 3 and 5 were higher than those of the other 2 types of MSCs. Our results revealed that there was tissue-specific heterogeneity among the 3 types of MSCs from different origin tissues of placenta and individual heterogeneity among donors. In future, the pre-selected placenta-derived MSCs with specific biological advantages may improve the curative effect of cell therapy in different situations.
Collapse
Affiliation(s)
- Chenxu Tai
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Liudi Wang
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yuanyuan Xie
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Tianyun Gao
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Feifei Huang
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Bin Wang
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
24
|
Jaber H, Issa K, Eid A, Saleh FA. The therapeutic effects of adipose-derived mesenchymal stem cells on obesity and its associated diseases in diet-induced obese mice. Sci Rep 2021; 11:6291. [PMID: 33737713 PMCID: PMC7973738 DOI: 10.1038/s41598-021-85917-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/08/2021] [Indexed: 12/15/2022] Open
Abstract
Obesity is a global public health concern associated with increased risk of several comorbidities. Due to the limited effectiveness of current therapies, new treatment strategies are needed. Our aim was to examine the effect of adipose-derived mesenchymal stem cells (AD-MSCs) on obesity and its associated diseases in a diet-induced obese (DIO) animal model. C57BL6 mice were fed with either high fat diet (HFD) or CHOW diet for 15 weeks. Obese and lean mice were then subjected to two doses of AD-MSCs intraperitoneally. Mice body weight and composition; food intake; blood glucose levels; glycated hemoglobin (HbA1c), intraperitoneal glucose tolerance test and atherogenic index of plasma (AIP) were measured. Pro-inflammatory cytokines, tumor necrosis factor-α and interleukin-6, were also determined. AD-MSCs treatment reduced blood glucose levels, HbA1c and AIP as well as improved glucose tolerance in DIO mice. In addition, MSCs caused significant attenuation in the levels of inflammatory mediators in HFD-fed mice. Taken together, AD-MSCs were effective in treating obesity-associated diabetes in an animal model as well as protective against cardiovascular diseases as shown by AIP, which might be partly due to the attenuation of inflammatory mediators. Thus, AD-MSCs may offer a promising therapeutic potential in counteracting obesity-related diseases in patients.
Collapse
Affiliation(s)
- Hala Jaber
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| | - Khodr Issa
- Department of Molecular Diagnostics, Doctors' Center Laboratories, Beirut, Lebanon.,Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ali Eid
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Fatima A Saleh
- Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, Beirut, 115020, Lebanon.
| |
Collapse
|
25
|
Galgaro BC, Beckenkamp LR, van den M Nunnenkamp M, Korb VG, Naasani LIS, Roszek K, Wink MR. The adenosinergic pathway in mesenchymal stem cell fate and functions. Med Res Rev 2021; 41:2316-2349. [PMID: 33645857 DOI: 10.1002/med.21796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/02/2021] [Accepted: 02/17/2021] [Indexed: 12/18/2022]
Abstract
Mesenchymal stem cells (MSCs) play an important role in tissue homeostasis and damage repair through their ability to differentiate into cells of different tissues, trophic support, and immunomodulation. These properties made them attractive for clinical applications in regenerative medicine, immune disorders, and cell transplantation. However, despite multiple preclinical and clinical studies demonstrating beneficial effects of MSCs, their native identity and mechanisms of action remain inconclusive. Since its discovery, the CD73/ecto-5'-nucleotidase is known as a classic marker for MSCs, but its role goes far beyond a phenotypic characterization antigen. CD73 contributes to adenosine production, therefore, is an essential component of purinergic signaling, a pathway composed of different nucleotides and nucleosides, which concentrations are finely regulated by the ectoenzymes and receptors. Thus, purinergic signaling controls pathophysiological functions such as proliferation, migration, cell fate, and immune responses. Despite the remarkable progress already achieved in considering adenosinergic pathway as a therapeutic target in different pathologies, its role is not fully explored in the context of the therapeutic functions of MSCs. Therefore, in this review, we provide an overview of the role of CD73 and adenosine-mediated signaling in the functions ascribed to MSCs, such as homing and proliferation, cell differentiation, and immunomodulation. Additionally, we will discuss the pathophysiological role of MSCs, via CD73 and adenosine, in different diseases, as well as in tumor development and progression. A better understanding of the adenosinergic pathway in the regulation of MSCs functions will help to provide improved therapeutic strategies applicable in regenerative medicine.
Collapse
Affiliation(s)
- Bruna C Galgaro
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Liziane R Beckenkamp
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Martha van den M Nunnenkamp
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Vitória G Korb
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Liliana I S Naasani
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Katarzyna Roszek
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Márcia R Wink
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
26
|
Subbiah R, Sridharan D, Duairaj K, Rajan KS, Khan M, Garikipati VNS. Emerging Roles of Extracellular Vesicles Derived Non-Coding RNAs in the Cardiovascular System. Subcell Biochem 2021; 97:437-453. [PMID: 33779927 DOI: 10.1007/978-3-030-67171-6_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cardiovascular disease is the leading cause of morbidity and mortality all over the world. Emerging evidence emphasize the importance of extracellular vesicles (EVs) in the cell to cell communication in the cardiovascular system which is majorly mediated through non-coding RNA cargo. Advancement in sequencing technologies revealed a major proportion of human genome is composed of non-coding RNAs viz., miRNAs, lncRNAs, tRNAs, snoRNAs, piRNAs and rRNAs. However, our understanding of the role of ncRNAs-containing EVs in cardiovascular health and disease is still in its infancy. This book chapter provides a comprehensive update on our understanding on the role of EVs derived ncRNAs in the cardiovascular pathophysiology and their therapeutic potential.
Collapse
Affiliation(s)
- Ramasamy Subbiah
- Cardiac Hypertrophy Laboratory, Department of Molecular Biology, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Divya Sridharan
- Department of Emergency Medicine, Dorothy M. Davis Heart Lung and Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Karthika Duairaj
- Cardiac Hypertrophy Laboratory, Department of Molecular Biology, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - K Shanmugha Rajan
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Mahmood Khan
- Department of Emergency Medicine, Dorothy M. Davis Heart Lung and Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Venkata Naga Srikanth Garikipati
- Department of Emergency Medicine, Dorothy M. Davis Heart Lung and Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
27
|
Peng H, Guo Q, Su T, Xiao Y, Li CJ, Huang Y, Luo XH. Identification of SCARA3 with potential roles in metabolic disorders. Aging (Albany NY) 2020; 13:2149-2167. [PMID: 33318306 PMCID: PMC7880357 DOI: 10.18632/aging.202228] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/22/2020] [Indexed: 04/11/2023]
Abstract
Obesity is characterized by the expansion of adipose tissue which is partially modulated by adipogenesis. In the present study, we identified five differentially expressed genes by incorporating two adipogenesis-related datasets from the GEO database and their correlation with adipogenic markers. However, the role of scavenger receptor class A member 3 (SCARA3) in obesity-related disorders has been rarely reported. We found that Scara3 expression in old adipose tissue-derived mesenchymal stem cells (Ad-MSCs) was lower than it in young Ad-MSCs. Obese mice caused by deletion of the leptin receptor gene (db/db) or by a high-fat diet both showed reduced Scara3 expression in inguinal white adipose tissue. Moreover, hypermethylation of SCARA3 was observed in patients with type 2 diabetes and atherosclerosis. Data from the CTD database indicated that SCARA3 is a potential target for metabolic diseases. Mechanistically, JUN was predicted as a transcriptional factor of SCARA3 in different databases which is consistent with our further bioinformatics analysis. Collectively, our study suggested that SCARA3 is potentially associated with age-related metabolic dysfunction, which provided new insights into the pathogenesis and treatment of obesity as well as other obesity-associated metabolic complications.
Collapse
Affiliation(s)
- Hui Peng
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Qi Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Tian Su
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Ye Xiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Chang-Jun Li
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Yan Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Xiang-Hang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
28
|
Regeneration during Obesity: An Impaired Homeostasis. Animals (Basel) 2020; 10:ani10122344. [PMID: 33317011 PMCID: PMC7763812 DOI: 10.3390/ani10122344] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Regeneration represents the biological processes that allow cells and tissues to renew and develop. During obesity, a variety of changes and reactions are seen. This includes inflammation and metabolic disorders. These obesity-induced changes do impact the regeneration processes. Such impacts that obesity has on regeneration would affect tissues and organs development and would also have consequences on the outcomes of therapies that depend on cells regeneration (such as burns, radiotherapy and leukemia) given to patients suffering from obesity. Therefore, a particular attention should be given to patients suffering from obesity in biological, therapeutic and clinical contexts that depend on regeneration ability. Abstract Obesity is a health problem that, in addition to the known morbidities, induces the generation of a biological environment with negative impacts on regeneration. Indeed, factors like DNA damages, oxidative stress and inflammation would impair the stem cell functions, in addition to some metabolic and development patterns. At the cellular and tissulaire levels, this has consequences on growth, renewal and restoration which results into an impaired regeneration. This impaired homeostasis concerns also key metabolic tissues including muscles and liver which would worsen the energy balance outcome towards further development of obesity. Such impacts of obesity on regeneration shows the need of a specific care given to obese patients recovering from diseases or conditions requiring regeneration such as burns, radiotherapy and leukemia. On the other hand, since stem cells are suggested to manage obesity, this impaired regeneration homeostasis needs to be considered towards more optimized stem cells-based obesity therapies within the context of precision medicine.
Collapse
|
29
|
Pakhomova A, Pershina O, Nebolsin V, Ermakova N, Krupin V, Sandrikina L, Pan E, Widera D, Dygai A, Skurikhin E. Bisamide Derivative of Dicarboxylic Acid Contributes to Restoration of Testicular Tissue Function and Influences Spermatogonial Stem Cells in Metabolic Disorders. Front Cell Dev Biol 2020; 8:562358. [PMID: 33344442 PMCID: PMC7744787 DOI: 10.3389/fcell.2020.562358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/30/2020] [Indexed: 11/13/2022] Open
Abstract
Metabolic syndrome can lead to several challenging complications including degeneration of the pancreas and hypogonadism. Recently, we have shown that Bisamide Derivative of Dicarboxylic Acid (BDDA) can contribute to pancreatic restoration in mice with metabolic disorders via its positive effects on lipid and glucose metabolism, and by increasing the numbers of pancreatic stem cells. In the present study, we hypothesized that BDDA might also be effective in restoring hypogonadism caused by metabolic syndrome. Experiments were performed on male C57BL/6 mice with hypogonadism, where metabolic disorders have been introduced by a combination of streptozotocin treatment and high fat diet. Using a combination of histological and biochemical methods along with a flow cytometric analysis of stem and progenitor cell markers, we evaluated the biological effects of BDDA on testicular tissue, germ cells, spermatogonial stem cells in vitro and in vivo, as well as on fertility. We demonstrate that in mice with metabolic disorders, BDDA has positive effects on spermatogenesis and restores fertility. We also show that BDDA exerts its therapeutic effects by reducing inflammation and by modulating spermatogonial stem cells. Thus, our results suggest that BDDA could represent a promising lead compound for the development of novel therapeutics able to stimulate regeneration of the testicular tissue and to restore fertility in hypogonadism resulting from complications of metabolic syndrome.
Collapse
Affiliation(s)
- Angelina Pakhomova
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - Olga Pershina
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | | | - Natalia Ermakova
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - Vyacheslav Krupin
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - Lubov Sandrikina
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - Edgar Pan
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - Darius Widera
- Stem Cell Biology and Regenerative Medicine Group, School of Pharmacy, University of Reading, Reading, United Kingdom
| | - Alexander Dygai
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - Evgenii Skurikhin
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
30
|
Pan Y, Xie Z, Cen S, Li M, Liu W, Tang S, Ye G, Li J, Zheng G, Li Z, Yu W, Wang P, Wu Y, Shen H. Long noncoding RNA repressor of adipogenesis negatively regulates the adipogenic differentiation of mesenchymal stem cells through the hnRNP A1-PTX3-ERK axis. Clin Transl Med 2020; 10:e227. [PMID: 33252864 PMCID: PMC7648959 DOI: 10.1002/ctm2.227] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are pluripotent stem cells that can differentiate via osteogenesis and adipogenesis. The mechanism underlying MSC lineage commitment still remains incompletely elucidated. Understanding the regulatory mechanism of MSC differentiation will help researchers induce MSCs toward specific lineages for clinical use. In this research, we intended to figure out the long noncoding RNA (lncRNA) that plays a central role in MSC fate determination and explore its application value in tissue engineering. METHODS The expression pattern of lncRNAs during MSC osteogenesis/adipogenesis was detected by microarray and qRT-PCR. Lentivirus and siRNAs were constructed to regulate the expression of lncRNA repressor of adipogenesis (ROA). MSC osteogenesis/adipogenesis was evaluated by western blot and alizarin red/oil red staining. An adipokine array was used to select the paracrine/autocrine factor PTX3, followed by RNA interference or recombinant human protein stimulation to confirm its function. The activation of signaling pathways was also detected by western blot, and a small molecule inhibitor, SCH772984, was used to inhibit the activation of the ERK pathway. The interaction between ROA and hnRNP A1 was detected by RNA pull-down and RIP assays. Luciferase reporter and chromatin immunoprecipitation assays were used to confirm the binding of hnRNP A1 to the PTX3 promotor. Additionally, an in vivo adipogenesis experiment was conducted to evaluate the regulatory value of ROA in tissue engineering. RESULTS In this study, we demonstrated that MSC adipogenesis is regulated by lncRNA ROA both in vitro and in vivo. Mechanistically, ROA inhibits MSC adipogenesis by downregulating the expression of the key autocrine/paracrine factor PTX3 and the downstream ERK pathway. This downregulation was achieved through transcription inhibition by impeding hnRNP A1 from binding to the promoter of PTX3. CONCLUSIONS ROA negatively regulates MSC adipogenesis through the hnRNP A1-PTX3-ERK axis. ROA may be an effective target for modulating MSCs in tissue engineering.
Collapse
Affiliation(s)
- Yiqian Pan
- Department of OrthopedicsThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
- Department of OrthopedicsSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Zhongyu Xie
- Department of OrthopedicsThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Shuizhong Cen
- Department of OrthopedicsSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
- Department of OrthopedicsZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Ming Li
- Department of OrthopedicsSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Wenjie Liu
- Department of OrthopedicsThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Su'an Tang
- Clinical Research CenterZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Guiwen Ye
- Department of OrthopedicsSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Jinteng Li
- Department of OrthopedicsThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Guan Zheng
- Department of OrthopedicsThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Zhaofeng Li
- Department of OrthopedicsSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Wenhui Yu
- Department of OrthopedicsSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Peng Wang
- Department of OrthopedicsThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Yanfeng Wu
- Center for BiotherapySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Huiyong Shen
- Department of OrthopedicsThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
- Department of OrthopedicsSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
31
|
Han S, Kim J, Lee G, Kim D. Mechanical Properties of Materials for Stem Cell Differentiation. ACTA ACUST UNITED AC 2020; 4:e2000247. [DOI: 10.1002/adbi.202000247] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/28/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Seong‐Beom Han
- KU‐KIST Graduate School of Converging Science and Technology Korea University 145, Anam‐ro, Seongbuk‐gu Seoul 02841 Republic of Korea
| | - Jeong‐Ki Kim
- KU‐KIST Graduate School of Converging Science and Technology Korea University 145, Anam‐ro, Seongbuk‐gu Seoul 02841 Republic of Korea
| | - Geonhui Lee
- KU‐KIST Graduate School of Converging Science and Technology Korea University 145, Anam‐ro, Seongbuk‐gu Seoul 02841 Republic of Korea
| | - Dong‐Hwee Kim
- KU‐KIST Graduate School of Converging Science and Technology Korea University 145, Anam‐ro, Seongbuk‐gu Seoul 02841 Republic of Korea
| |
Collapse
|
32
|
Andersen CB, Runge Walther A, Pipó-Ollé E, Notabi MK, Juul S, Eriksen MH, Lovatt AL, Cowie R, Linnet J, Kobaek-Larsen M, El-Houri R, Andersen MØ, Hedegaard MAB, Christensen LP, Arnspang EC. Falcarindiol Purified From Carrots Leads to Elevated Levels of Lipid Droplets and Upregulation of Peroxisome Proliferator-Activated Receptor-γ Gene Expression in Cellular Models. Front Pharmacol 2020; 11:565524. [PMID: 32982759 PMCID: PMC7485416 DOI: 10.3389/fphar.2020.565524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/12/2020] [Indexed: 12/22/2022] Open
Abstract
Falcarindiol (FaDOH) is a cytotoxic and anti-inflammatory polyacetylenic oxylipin found in food plants of the carrot family (Apiaceae). FaDOH has been shown to activate PPARγ and to increase the expression of the cholesterol transporter ABCA1 in cells, both of which play an important role in lipid metabolism. Thus, a common mechanism of action of the anticancer and antidiabetic properties of FaDOH may be due to a possible effect on lipid metabolism. In this study, the effect of sub-toxic concentration (5 μM) of FaDOH inside human mesenchymal stem cells (hMSCs) was studied using white light microscopy and Raman imaging. Our results show that FaDOH increases lipid content in the hMSCs cells as well as the number of lipid droplets (LDs) and that this can be explained by increased expression of PPARγ2 as shown in human colon adenocarcinoma cells. Activation of PPARγ can lead to increased expression of ABCA1. We demonstrate that ABCA1 is upregulated in colorectal neoplastic rat tissue, which indicates a possible role of this transporter in the redistribution of lipids and increased formation of LDs in cancer cells that may lead to endoplasmic reticulum stress and cancer cell death.
Collapse
Affiliation(s)
- Camilla Bertel Andersen
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Odense, Denmark
| | - Anders Runge Walther
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Odense, Denmark.,The Maersk Mc-Kinney Moller Institute, University of Southern Denmark, Odense, Denmark
| | - Emma Pipó-Ollé
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Odense, Denmark
| | - Martine K Notabi
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Odense, Denmark
| | - Sebastian Juul
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Odense, Denmark
| | - Mathias Hessellund Eriksen
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Odense, Denmark
| | - Adam Leslie Lovatt
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Odense, Denmark
| | - Richard Cowie
- The Maersk Mc-Kinney Moller Institute, University of Southern Denmark, Odense, Denmark
| | - Jes Linnet
- The Maersk Mc-Kinney Moller Institute, University of Southern Denmark, Odense, Denmark.,Mads Clausen Institute, University of Southern Denmark, Odense, Denmark
| | - Morten Kobaek-Larsen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Surgery, Odense University Hospital, Odense, Denmark
| | - Rime El-Houri
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Odense, Denmark
| | - Morten Østergaard Andersen
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Odense, Denmark
| | - Martin Aage Barsøe Hedegaard
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Odense, Denmark
| | - Lars Porskjær Christensen
- Department of Chemistry and Bioscience, Faculty of Engineering and Science, Aalborg University, Esbjerg, Denmark
| | - Eva Christensen Arnspang
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
33
|
Macrophages inhibit adipogenic differentiation of adipose tissue derived mesenchymal stem/stromal cells by producing pro-inflammatory cytokines. Cell Biosci 2020; 10:88. [PMID: 32699606 PMCID: PMC7372775 DOI: 10.1186/s13578-020-00450-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/11/2020] [Indexed: 12/11/2022] Open
Abstract
Background Mesenchymal stem/stromal cells (MSCs) and macrophages are critical components in many tissue microenvironments, including that in adipose tissue. The close interaction between MSCs and macrophages modulates various adipose-related disease development. However, the effects of macrophages on the fate of MSCs remain largely elusive. We here studied the effect of macrophages on the adipogenic differentiation of MSCs. Methods Macrophages were obtained from THP-1 cells treated with phorbol-12-myristate-13-acetate (PMA). The induced matured macrophages were then induced to undergo classically activated macrophage (M1) or alternatively activated macrophage (M2) polarization with Iipopolysaccharide (LPS)/interferon (IFN)-γ and interleukin (IL)-4/IL-13, respectively. The supernatants derived from macrophages under different conditions were applied to cultured human adipose tissue-derived mesenchymal stem/stromal cells (hADSCs) undergoing adipogenic differentiation. Adipogenic differentiation was evaluated by examining Oil Red O staining of lipid droplets and the expression of adipogenesis-related genes with real-time quantitative polymerase chain reaction (Q-PCR) and western blot analysis. Results The adipogenic differentiation of hADSCs was impaired when treated with macrophage-derived supernatants, especially that from the M1-polarized macrophage (M1-sup). The inhibitory effect was found to be mediated by the inflammatory cytokines, mainly tumor necrosis factor-α (TNF-α) and IL-1β. Blocking TNF-α and IL-1β with neutralizing antibodies partially alleviated the inhibitory effect of M1-sup. Conclusion Macrophage-derived supernatants inhibited the adipogenic differentiation of hADSCs in vitro, irrespective of the polarization status (M0, M1 or M2 macrophages). M1-sup was more potent because of the higher expression of pro-inflammatory cytokines. Our findings shed new light on the interaction between hADSCs and macrophages and have implications in our understanding of disrupted adipose tissue homeostasis under inflammation.
Collapse
|
34
|
Robert AW, Marcon BH, Dallagiovanna B, Shigunov P. Adipogenesis, Osteogenesis, and Chondrogenesis of Human Mesenchymal Stem/Stromal Cells: A Comparative Transcriptome Approach. Front Cell Dev Biol 2020; 8:561. [PMID: 32733882 PMCID: PMC7362937 DOI: 10.3389/fcell.2020.00561] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/12/2020] [Indexed: 12/20/2022] Open
Abstract
Adipogenesis, osteogenesis and chondrogenesis of human mesenchymal stem/stromal cells (MSC) are complex and highly regulated processes. Over the years, several studies have focused on understanding the mechanisms involved in the MSC commitment to the osteogenic, adipogenic and/or chondrogenic phenotypes. High-throughput methodologies have been used to investigate the gene expression profile during differentiation. Association of data analysis of mRNAs, microRNAs, circular RNAs and long non-coding RNAs, obtained at different time points over these processes, are important to depict the complexity of differentiation. This review will discuss the results that were highlighted in transcriptome analyses of MSC undergoing adipogenic, osteogenic and chondrogenic differentiation. The focus is to shed light on key molecules, main signaling pathways and biological processes related to different time points of adipogenesis, osteogenesis and chondrogenesis.
Collapse
Affiliation(s)
- Anny W Robert
- Instituto Carlos Chagas - Fiocruz Paraná, Curitiba, Brazil
| | - Bruna H Marcon
- Instituto Carlos Chagas - Fiocruz Paraná, Curitiba, Brazil
| | | | | |
Collapse
|
35
|
Alessio N, Acar MB, Demirsoy IH, Squillaro T, Siniscalco D, Bernardo GD, Peluso G, Özcan S, Galderisi U. Obesity is associated with senescence of mesenchymal stromal cells derived from bone marrow, subcutaneous and visceral fat of young mice. Aging (Albany NY) 2020; 12:12609-12621. [PMID: 32634118 PMCID: PMC7377882 DOI: 10.18632/aging.103606] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023]
Abstract
White adipose tissue (WAT) is distributed in several depots with distinct metabolic and inflammatory functions. In our body there are subcutaneous (sWAT), visceral (vWAT) and bone marrow (bWAT) fat depots. Obesity affects the size, function and inflammatory state of WATs. In particular, obesity may affect the activity of mesenchymal stromal cells (MSCs) present in WAT. MSCs are a heterogeneous population containing stromal cells, progenitor cells, fibroblasts and stem cells that are able to differentiate among adipocytes, chondrocytes, osteocytes and other mesodermal derivatives.In the first study of this kind, we performed a comparison of the effects of obesity on MSCs obtained from sWAT, vWAT and bWAT. Our study showed that obesity affects mainly the biological functions of MSCs obtained from bone marrow and vWAT by decreasing the proliferation rate, reducing the percentage of cells in S phase and triggering senescence. The onset of senescence was confirmed by expression of genes belonging to RB and P53 pathways.Our study revealed that the negative consequences of obesity on body physiology may also be related to impairment in the functions of the stromal compartment present in the several adipose tissues. This finding provides new insights as to the targets that should be considered for an effective treatment of obesity-related diseases.
Collapse
Affiliation(s)
- Nicola Alessio
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Luigi Vanvitelli Campania University, Naples, Italy
| | - Mustafa B. Acar
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
- Department of Biology, Faculty of Sciences, Erciyes University, Kayseri, Turkey
| | - Ibrahim H. Demirsoy
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Luigi Vanvitelli Campania University, Naples, Italy
| | - Tiziana Squillaro
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Luigi Vanvitelli Campania University, Naples, Italy
| | - Dario Siniscalco
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Luigi Vanvitelli Campania University, Naples, Italy
| | - Giovanni Di Bernardo
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Luigi Vanvitelli Campania University, Naples, Italy
| | | | - Servet Özcan
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
- Department of Biology, Faculty of Sciences, Erciyes University, Kayseri, Turkey
| | - Umberto Galderisi
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Luigi Vanvitelli Campania University, Naples, Italy
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
36
|
Dykstra JA, Blue ED, Negrão de Assis PL, Weimer JM, Kota DJ. Human adipose-derived stromal vascular fraction: characterization, safety and therapeutic potential in an experimental mouse model of articular injury. J Stem Cells Regen Med 2020; 16:16-25. [PMID: 32536767 DOI: 10.46582/jsrm.1601004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 01/09/2020] [Indexed: 12/16/2022]
Abstract
Due to their capacity to self-renew, proliferate and generate multi-lineage cells, adult-derived stem cells offer great potential in regenerative therapies to treat maladies such as diabetes, cardiac disease, neurological disorders and orthopedic injuries. Commonly derived from adipose tissue, the stromal vascular fraction (SVF), a heterogeneous cell population enriched with mesenchymal stem cells (MSCs), has garnered interest as a cellular therapy due to ease of accessibility as an autologous, point-of-care application. However, the heterogeneous cell population within SVF is not historically taken into consideration when injecting into patients. Here, we characterized SVF, determined its safety and verify its therapeutic effects in a NOD/scid mouse model of articular injury. SVF were isolated from lipoaspirates utilizing a commercially available system (InGeneron Inc.), while MSCs were isolated from SVF via cell culture. Flow cytometry showed that neither age nor BMI affects the frequency of progenitor cells-like (CD31+CD34+), immune cells-like (CD4+) T cells, (CD14+) monocytes and total number of cells obtained. However, there was a negative correlation between donor BMI and MSC frequency within the SVF. ELISAs showed that following LPS activation in SVF, there were low levels of TNF-α and high levels of IL-10 secreted. However, T cell activation with anti-CD3 or anti-CD3+ anti-CD28, while leading to expected high levels of IFN-γ, did not lead to significant levels of TGF-β. PCR analysis showed no significant numbers of cells outside the joint 1-hour post injection, moreover, no engraftment or abnormal growth in other organs 60-days post injection. Finally, both cell populations were able to ameliorate disease progression, as confirmed by the increase in movement of treated groups compared to injured groups. Noteworthy, the histological analysis indicated that there was no cartilage growth, suggesting an alternative therapeutic mechanism to cartilage regeneration.
Collapse
Affiliation(s)
- Jordan A Dykstra
- Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA.,Sanford Research, Sioux Falls, SD 57104, USA: These authors contributed equally
| | - Elliot D Blue
- Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA.,Sanford Research, Sioux Falls, SD 57104, USA: These authors contributed equally
| | | | - Jill M Weimer
- Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA.,Sanford Research, Sioux Falls, SD 57104, USA: These authors contributed equally
| | - Daniel Jiro Kota
- Sanford Research, Sioux Falls, SD 57104, USA: These authors contributed equally.,Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
37
|
Fellous T, De Maio F, Kalkan H, Carannante B, Boccella S, Petrosino S, Maione S, Di Marzo V, Iannotti FA. Phytocannabinoids promote viability and functional adipogenesis of bone marrow-derived mesenchymal stem cells through different molecular targets. Biochem Pharmacol 2020; 175:113859. [DOI: 10.1016/j.bcp.2020.113859] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/11/2020] [Indexed: 02/07/2023]
|
38
|
Deng W, Chen H, Su H, Wu X, Xie Z, Wu Y, Shen H. IL6 Receptor Facilitates Adipogenesis Differentiation of Human Mesenchymal Stem Cells through Activating P38 Pathway. Int J Stem Cells 2020; 13:142-150. [PMID: 31887846 PMCID: PMC7119205 DOI: 10.15283/ijsc19073] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/30/2019] [Accepted: 09/16/2019] [Indexed: 12/11/2022] Open
Abstract
Background and Objectives Mesenchymal stem cells (MSCs) have the multipotent capacity to differentiate into multiple tissue lineages as well as to self-renew, which is the main origin of adipocytes. IL6/IL6R pathway exerts a significant role in tissue regeneration and cell differentiation. Whereas, the underlying mechanism between IL6/IL6R pathway and MSCs adipogenesis differentiation remains elusive. Methods MSCs from healthy donors were cultured in adipogenesis differentiation medium for 0∼14 days, during which their adipogenesis differentiation degree was evaluated by Oil Red O staining. The expression of IL6R was detected in MSCs during adipogenesis differentiation. Knockdown and overexpression of IL6R were respectively performed using siRNA and lentivirus to investigate its effect on MSCs adipogenesis differentiation. The adipogenesis marker genes expression and MAPK pathway activation were detected by Western blotting. The role of P38 pathway in the adipogenesis differentiation of MSCs was determined using the specific inhibitor SB203580. Results The expression of IL6 and IL6R increased during adipogenesis differentiation in MSCs, which were positively correlated with Oil Red O quantification result. Knockdown and overexpression experiments demonstrated a positive correlation between the expressions of IL6R and MSCs adipogenesis differentiation, accompanied by same trend of P38 phosphorylation. Besides, the specific P38 inhibitor SB203580 markedly inhibited the adipogenesis differentiation potential of MSCs. Conclusions This study reveals IL6R facilitates the adiogenesis differentiation of MSCs via activating P38 pathway.
Collapse
Affiliation(s)
- Wen Deng
- Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huadi Chen
- Organ Transplant Center, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hongjun Su
- Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaohua Wu
- Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhongyu Xie
- Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanfeng Wu
- Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huiyong Shen
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
39
|
Karadeniz F, Oh JH, Lee JI, Kim H, Seo Y, Kong CS. 6-Acetyl-2,2-Dimethylchroman-4-One Isolated from Artemisia princeps Suppresses Adipogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stromal Cells via Activation of AMPK. J Med Food 2020; 23:250-257. [DOI: 10.1089/jmf.2019.4653] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Fatih Karadeniz
- Marine Biotechnology Center for Pharmaceuticals and Foods and College of Medical and Life Sciences, Silla University, Busan, Korea
| | - Jung Hwan Oh
- Marine Biotechnology Center for Pharmaceuticals and Foods and College of Medical and Life Sciences, Silla University, Busan, Korea
| | - Jung Im Lee
- Marine Biotechnology Center for Pharmaceuticals and Foods and College of Medical and Life Sciences, Silla University, Busan, Korea
| | - Hojun Kim
- Division of Marine Bioscience, College of Ocean Science and Technology, Korea Maritime and Ocean University, Busan, Korea
| | - Youngwan Seo
- Division of Marine Bioscience, College of Ocean Science and Technology, Korea Maritime and Ocean University, Busan, Korea
- Department of Convergence Study on the Ocean Science and Technology, Ocean Science and Technology School, Korea Maritime and Ocean University, Busan, Korea
| | - Chang-Suk Kong
- Marine Biotechnology Center for Pharmaceuticals and Foods and College of Medical and Life Sciences, Silla University, Busan, Korea
- Department of Food and Nutrition, College of Medical and Life Sciences, Silla University, Busan, Korea
| |
Collapse
|
40
|
Matsushita K. Heart Failure and Adipose Mesenchymal Stem Cells. Trends Mol Med 2020; 26:369-379. [PMID: 32277931 DOI: 10.1016/j.molmed.2020.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/03/2019] [Accepted: 01/21/2020] [Indexed: 02/08/2023]
Abstract
Mesenchymal stem cells (MSCs) are considered a promising cell type for the treatment of heart failure (HF). In particular, MSCs in adipose tissue are being evaluated as an effective therapeutic tool. However, adipose MSCs are a major source of adipocyte generation and linked to obesity, which is an independent risk factor for HF. MSCs express all of the components of the renin-angiotensin system (RAS), which plays a pivotal role in the pathophysiology of HF. The local RAS also regulates MSC adipogenesis, indicating a connection between MSC-adipogenesis-obesity and HF. This review examines evidence of the complex relationship between HF and adipose MSCs and discusses how to explore this association for favorable therapeutic outcomes for HF.
Collapse
Affiliation(s)
- Kenichi Matsushita
- Division of Cardiology, Second Department of Internal Medicine, Kyorin University School of Medicine, Tokyo, Japan.
| |
Collapse
|
41
|
Antidiabetic Effects of Bisamide Derivative of Dicarboxylic Acid in Metabolic Disorders. Int J Mol Sci 2020; 21:ijms21030991. [PMID: 32028560 PMCID: PMC7037053 DOI: 10.3390/ijms21030991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 01/31/2020] [Accepted: 01/31/2020] [Indexed: 01/02/2023] Open
Abstract
In clinical practice, the metabolic syndrome can lead to multiple complications, including diabetes. It remains unclear which component of the metabolic syndrome (obesity, inflammation, hyperglycemia, or insulin resistance) has the strongest inhibitory effect on stem cells involved in beta cell regeneration. This makes it challenging to develop effective treatment options for complications such as diabetes. In our study, experiments were performed on male C57BL/6 mice where metabolic disorders have been introduced experimentally by a combination of streptozotocin-treatment and a high-fat diet. We evaluated the biological effects of Bisamide Derivative of Dicarboxylic Acid (BDDA) and its impact on pancreatic stem cells in vivo. To assess the impact of BDDA, we applied a combination of histological and biochemical methods along with a cytometric analysis of stem cell and progenitor cell markers. We show that in mice with metabolic disorders, BDDA has a positive effect on lipid and glucose metabolism. The pancreatic restoration was associated with a decrease of the inhibitory effects of inflammation and obesity factors on pancreatic stem cells. Our data shows that BDDA increases the number of pancreatic stem cells. Thus, BDDA could be used as a new compound for treating complication of the metabolic syndrome such as diabetes.
Collapse
|
42
|
Pakhomova AV, Pershina OV, Ermakova NN, Krupin VA, Pan ES, Putrova OD, Khmelevskaya ES, Vaizova OE, Pozdeeva AS, Dygai AM, Skurikhin EG. Pericytes and Smooth Muscle Cells Circulating in the Blood as Markers of Impaired Angiogenesis during Combined Metabolic Impairments and Lung Emphysema. Bull Exp Biol Med 2020; 168:334-340. [PMID: 31940128 DOI: 10.1007/s10517-020-04703-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Indexed: 12/21/2022]
Abstract
The changes in endothelial progenitor cells and progenitor cells of angiogenesis, pericytes and smooth muscle cells, were studied in female C57BL/6 mice with a combination of metabolic impairments induced by injections of sodium glutamate and lung emphysema modeled by the administration of cigarette smoke extract. It was observed that sodium glutamate significantly enhances pathological changes in the lungs (inflammation and lung emphysema) induced by the administration of cigarette smoke extract. Recruiting of endothelial progenitor cells (CD45-CD31+CD34+ and CD31+CD34+CD146-) and progenitor cells of angiogenesis (CD45-CD117+CD309+) was registered in the injured lungs. Angiogenesis impairment induced by combined exposure is related to altered migration of pericytes (CD31-CD34-CD146+) and smooth muscle cells (CD31-CD34+CD146+) in emphysema-like enlarged lung tissue.
Collapse
Affiliation(s)
- A V Pakhomova
- Laboratory of Regenerative Pharmacology, E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Tomsk, Russia
| | - O V Pershina
- Laboratory of Regenerative Pharmacology, E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Tomsk, Russia
| | - N N Ermakova
- Laboratory of Regenerative Pharmacology, E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Tomsk, Russia
| | - V A Krupin
- Laboratory of Regenerative Pharmacology, E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Tomsk, Russia
| | - E S Pan
- Laboratory of Regenerative Pharmacology, E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Tomsk, Russia
| | - O D Putrova
- Laboratory of Regenerative Pharmacology, E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Tomsk, Russia
| | - E S Khmelevskaya
- Laboratory of Regenerative Pharmacology, E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Tomsk, Russia
| | - O E Vaizova
- Department of Pharmacology, Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, Russia
| | - A S Pozdeeva
- Department of Pharmacology, Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, Russia
| | - A M Dygai
- Laboratory of Regenerative Pharmacology, E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Tomsk, Russia
| | - E G Skurikhin
- Laboratory of Regenerative Pharmacology, E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Tomsk, Russia.
| |
Collapse
|
43
|
Gender Differences in the Pharmacological Actions of Pegylated Glucagon-Like Peptide-1 on Endothelial Progenitor Cells and Angiogenic Precursor Cells in a Combination of Metabolic Disorders and Lung Emphysema. Int J Mol Sci 2019; 20:ijms20215414. [PMID: 31671663 PMCID: PMC6862381 DOI: 10.3390/ijms20215414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/20/2019] [Accepted: 10/27/2019] [Indexed: 02/06/2023] Open
Abstract
In clinical practice, the metabolic syndrome (MetS) is often associated with chronic obstructive pulmonary disease (COPD). Although gender differences in MetS are well documented, little is known about sex-specific differences in the pathogenesis of COPD, especially when combined with MetS. Consequently, it is not clear whether the same treatment regime has comparable efficacy in men and women diagnosed with MetS and COPD. In the present study, using sodium glutamate, lipopolysaccharide, and cigarette smoke extract, we simulated lipid metabolism disorders, obesity, hyperglycemia, and pulmonary emphysema (comorbidity) in male and female C57BL/6 mice. We assessed the gender-specific impact of lipid metabolism disorders and pulmonary emphysema on angiogenic precursor cells (endothelial progenitor cells (EPC), pericytes, vascular smooth muscle cells, cells of the lumen of the nascent vessel), as well as the biological effects of pegylated glucagon-like peptide 1 (pegGLP-1) in this experimental paradigm. Simulation of MetS/COPD comorbidity caused an accumulation of EPC (CD45−CD31+CD34+), pericytes, and vascular smooth muscle cells in the lungs of female mice. In contrast, the number of cells involved in the angiogenesis decreased in the lungs of male animals. PegGLP-1 had a positive effect on lipids and area under the curve (AUC), obesity, and prevented the development of pulmonary emphysema. The severity of these effects was stronger in males than in females. Furthermore, PegGLP-1 stimulated regeneration of pulmonary endothelium. At the same time, PegGLP-1 administration caused a mobilization of EPC (CD45−CD31+CD34+) into the bloodstream in females and migration of precursors of angiogenesis and vascular smooth muscle cells to the lungs in male animals. Gender differences in stimulatory action of pegGLP-1 on CD31+ endothelial lung cells in vitro were not observed. Based on these findings, we postulated that the cellular mechanism of in vivo regeneration of lung epithelium was at least partly gender-specific. Thus, we concluded that a pegGLP-1-based treatment regime for metabolic disorder and COPD should be further developed primarily for male patients.
Collapse
|
44
|
Garikipati VNS, Shoja-Taheri F, Davis ME, Kishore R. Extracellular Vesicles and the Application of System Biology and Computational Modeling in Cardiac Repair. Circ Res 2019; 123:188-204. [PMID: 29976687 DOI: 10.1161/circresaha.117.311215] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent literature suggests that extracellular vesicles (EVs), secreted from most cells and containing cell-specific cargo of proteins, lipids, and nucleic acids, are major driver of intracellular communication in normal physiology and pathological conditions. The recent evidence on stem/progenitor cell EVs as potential therapeutic modality mimicking their parental cell function is exciting because EVs could possibly be used as a surrogate for the stem cell-based therapy, and this regimen may overcome certain roadblocks identified with the use of stem/progenitor cell themselves. This review provides a comprehensive update on our understanding on the role of EVs in cardiac repair and emphasizes the applications of stem/progenitor cell-derived EVs as therapeutics and discusses the current challenges associated with the EV therapy.
Collapse
Affiliation(s)
| | - Farnaz Shoja-Taheri
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta (F.S.-T., M.E.D.).,Division of Cardiology, Emory University School of Medicine, Atlanta, GA (F.S.-T., M.E.D).,Children's Heart Research and Outcomes Center, Emory University School of Medicine, Children's Healthcare of Atlanta, GA (F.S.-T., M.E.D)
| | - Michael E Davis
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta (F.S.-T., M.E.D.).,Division of Cardiology, Emory University School of Medicine, Atlanta, GA (F.S.-T., M.E.D).,Children's Heart Research and Outcomes Center, Emory University School of Medicine, Children's Healthcare of Atlanta, GA (F.S.-T., M.E.D)
| | - Raj Kishore
- From the Center for Translational Medicine (V.N.S.G., R.K.) .,Department of Pharmacology (R.K.)
| |
Collapse
|
45
|
Nic-Can GI, Rodas-Junco BA, Carrillo-Cocom LM, Zepeda-Pedreguera A, Peñaloza-Cuevas R, Aguilar-Ayala FJ, Rojas-Herrera RA. Epigenetic Regulation of Adipogenic Differentiation by Histone Lysine Demethylation. Int J Mol Sci 2019; 20:E3918. [PMID: 31408999 PMCID: PMC6719019 DOI: 10.3390/ijms20163918] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 07/29/2019] [Indexed: 12/13/2022] Open
Abstract
Obesity is a rising public health problem that contributes to the development of several metabolic diseases and cancer. Adipocyte precursors outside of adipose depots that expand due to overweight and obesity may have a negative impact on human health. Determining how progenitor cells acquire a preadipocyte commitment and become mature adipocytes remains a significant challenge. Over the past several years, we have learned that the establishment of cellular identity is widely influenced by changes in histone marks, which in turn modulate chromatin structure. In this regard, histone lysine demethylases (KDMs) are now emerging as key players that shape chromatin through their ability to demethylate almost all major histone methylation sites. Recent research has shown that KDMs orchestrate the chromatin landscape, which mediates the activation of adipocyte-specific genes. In addition, KDMs have functions in addition to their enzymatic activity, which are beginning to be revealed, and their dysregulation seems to be related to the development of metabolic disorders. In this review, we highlight the biological functions of KDMs that contribute to the establishment of a permissive or repressive chromatin environment during the mesenchymal stem cell transition into adipocytes. Understanding how KDMs regulate adipogenesis might prompt the development of new strategies for fighting obesity-related diseases.
Collapse
Affiliation(s)
- Geovanny I Nic-Can
- CONACYT-Facultad de Ingeniería Química, Universidad Autónoma de Yucatán.; Periférico Norte Kilómetro 33.5, Tablaje Catastral 13615, Chuburná de Hidalgo Inn, Mérida 97203, Yucatán, Mexico.
- Laboratorio Translacional de Células Troncales-Facultad de Odontología, Universidad Autónoma de Yucatán, Calle 61-A X Av, Itzaes Costado Sur "Parque de la Paz", Col. Centro, Mérida 97000, Yucatán, Mexico.
| | - Beatriz A Rodas-Junco
- CONACYT-Facultad de Ingeniería Química, Universidad Autónoma de Yucatán.; Periférico Norte Kilómetro 33.5, Tablaje Catastral 13615, Chuburná de Hidalgo Inn, Mérida 97203, Yucatán, Mexico
- Laboratorio Translacional de Células Troncales-Facultad de Odontología, Universidad Autónoma de Yucatán, Calle 61-A X Av, Itzaes Costado Sur "Parque de la Paz", Col. Centro, Mérida 97000, Yucatán, Mexico
| | - Leydi M Carrillo-Cocom
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán.; Periférico Norte Kilómetro 33.5, Tablaje Catastral 13615, Chuburná de Hidalgo Inn, Mérida 97203, Yucatán, Mexico
| | - Alejandro Zepeda-Pedreguera
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán.; Periférico Norte Kilómetro 33.5, Tablaje Catastral 13615, Chuburná de Hidalgo Inn, Mérida 97203, Yucatán, Mexico
| | - Ricardo Peñaloza-Cuevas
- Laboratorio Translacional de Células Troncales-Facultad de Odontología, Universidad Autónoma de Yucatán, Calle 61-A X Av, Itzaes Costado Sur "Parque de la Paz", Col. Centro, Mérida 97000, Yucatán, Mexico
| | - Fernando J Aguilar-Ayala
- Laboratorio Translacional de Células Troncales-Facultad de Odontología, Universidad Autónoma de Yucatán, Calle 61-A X Av, Itzaes Costado Sur "Parque de la Paz", Col. Centro, Mérida 97000, Yucatán, Mexico
| | - Rafael A Rojas-Herrera
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán.; Periférico Norte Kilómetro 33.5, Tablaje Catastral 13615, Chuburná de Hidalgo Inn, Mérida 97203, Yucatán, Mexico
| |
Collapse
|
46
|
Singh H, Pragasam SJ, Venkatesan V. Emerging Therapeutic Targets for Metabolic Syndrome: Lessons from Animal Models. Endocr Metab Immune Disord Drug Targets 2019; 19:481-489. [DOI: 10.2174/1871530319666181130142642] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 08/26/2018] [Accepted: 10/30/2018] [Indexed: 01/01/2023]
Abstract
Background:
Metabolic syndrome is a cluster of medical conditions that synergistically
increase the risk of heart diseases and diabetes. The current treatment strategy for metabolic syndrome
focuses on treating its individual components. A highly effective agent for metabolic syndrome has yet
to be developed. To develop a target for metabolic syndrome, the mechanism encompassing different
organs - nervous system, pancreas, skeletal muscle, liver and adipose tissue - needs to be understood.
Many animal models have been developed to understand the pathophysiology of metabolic syndrome.
Promising molecular targets have emerged while characterizing these animals. Modulating these targets
is expected to treat some components of metabolic syndrome.
Objective:
o discuss the emerging molecular targets in an animal model of metabolic syndrome.
Methods:
A literature search was performed for the retrieval of relevant articles.
Conclusion:
Multiple genes/pathways that play important role in the development of Metabolic Syndrome
are discussed.
Collapse
Affiliation(s)
- Himadri Singh
- Stem Cell Research/Biochemistry, National Institute of Nutrition, Hyderabad-500007, India
| | - Samuel Joshua Pragasam
- Stem Cell Research/Biochemistry, National Institute of Nutrition, Hyderabad-500007, India
| | | |
Collapse
|
47
|
Ogrodnik M, Zhu Y, Langhi LGP, Tchkonia T, Krüger P, Fielder E, Victorelli S, Ruswhandi RA, Giorgadze N, Pirtskhalava T, Podgorni O, Enikolopov G, Johnson KO, Xu M, Inman C, Palmer AK, Schafer M, Weigl M, Ikeno Y, Burns TC, Passos JF, von Zglinicki T, Kirkland JL, Jurk D. Obesity-Induced Cellular Senescence Drives Anxiety and Impairs Neurogenesis. Cell Metab 2019; 29:1061-1077.e8. [PMID: 30612898 PMCID: PMC6509403 DOI: 10.1016/j.cmet.2018.12.008] [Citation(s) in RCA: 285] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 10/23/2018] [Accepted: 12/05/2018] [Indexed: 12/25/2022]
Abstract
Cellular senescence entails a stable cell-cycle arrest and a pro-inflammatory secretory phenotype, which contributes to aging and age-related diseases. Obesity is associated with increased senescent cell burden and neuropsychiatric disorders, including anxiety and depression. To investigate the role of senescence in obesity-related neuropsychiatric dysfunction, we used the INK-ATTAC mouse model, from which p16Ink4a-expressing senescent cells can be eliminated, and senolytic drugs dasatinib and quercetin. We found that obesity results in the accumulation of senescent glial cells in proximity to the lateral ventricle, a region in which adult neurogenesis occurs. Furthermore, senescent glial cells exhibit excessive fat deposits, a phenotype we termed "accumulation of lipids in senescence." Clearing senescent cells from high fat-fed or leptin receptor-deficient obese mice restored neurogenesis and alleviated anxiety-related behavior. Our study provides proof-of-concept evidence that senescent cells are major contributors to obesity-induced anxiety and that senolytics are a potential new therapeutic avenue for treating neuropsychiatric disorders.
Collapse
Affiliation(s)
- Mikolaj Ogrodnik
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK; Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Yi Zhu
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Larissa G P Langhi
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Tamar Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Patrick Krüger
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| | - Edward Fielder
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| | - Stella Victorelli
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| | - Rifqha A Ruswhandi
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| | - Nino Giorgadze
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Tamar Pirtskhalava
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Oleg Podgorni
- Department of Anesthesiology, Stony Brook School of Medicine, 101 Nicolls Road, Stony Brook, New York, NY 11794, USA; Center for Developmental Genetics, Stony Brook University, 100 Nicolls Road, Stony Brook, New York, NY 11794, USA
| | - Grigori Enikolopov
- Department of Anesthesiology, Stony Brook School of Medicine, 101 Nicolls Road, Stony Brook, New York, NY 11794, USA; Center for Developmental Genetics, Stony Brook University, 100 Nicolls Road, Stony Brook, New York, NY 11794, USA; Department of Nano-, Bio-, Information Technology and Cognitive Science, Moscow Institute of Physics and Technology, Moscow, Russia; Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Kurt O Johnson
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Ming Xu
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Christine Inman
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Allyson K Palmer
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Marissa Schafer
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Moritz Weigl
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Yuji Ikeno
- The Barshop Institute for Longevity and Aging Studies, San Antonio, Department of Pathology, The University of Texas Health Science Center at San Antonio, Research Service, Audie L. Murphy VA Hospital (STVHCS), San Antonio, TX 78229, USA
| | - Terry C Burns
- Departments of Neurologic Surgery and Neuroscience, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - João F Passos
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Thomas von Zglinicki
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK; Near East University, Arts and Sciences Faculty, Molecular Biology and Genetics, Nicosia, North Cyprus POB 99138 Mersin 10, Turkey
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| | - Diana Jurk
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK; Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
48
|
Lee TM, Harn HJ, Chiou TW, Chuang MH, Chen CH, Chuang CH, Lin PC, Lin SZ. Preconditioned adipose-derived stem cells ameliorate cardiac fibrosis by regulating macrophage polarization in infarcted rat hearts through the PI3K/STAT3 pathway. J Transl Med 2019; 99:634-647. [PMID: 30683900 DOI: 10.1038/s41374-018-0181-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/10/2018] [Accepted: 11/17/2018] [Indexed: 11/09/2022] Open
Abstract
Stem cells can modify macrophage phenotypes; however, the mechanisms remain unclear. We investigated whether n-butylidenephthalide (BP) primed adipose-derived stem cells (ADSCs) attenuated cardiac fibrosis via regulating macrophage phenotype by a PI3K/STAT3-dependent pathway in postinfarcted rats. Male Wistar rats after coronary ligation were allocated to receive either intramyocardial injection of vehicle, ADSCs (1 × 106 cells), BP-preconditioned ADSCs, (BP + lithium)-preconditioned ADSCs, (BP + LY294002)-preconditioned ADSCs, and (BP + S3I-201)-preconditioned ADSCs. ADSCs were primed for 16 h before implantation. BP-pretreated ADSCs increased the cell viability compared with naive ADSCs in the in vitro experiments. Infarct sizes were similar among the infarcted groups at the acute and chronic stages of infarction. At day 3 after infarction, post-infarction was associated with increased M1 macrophage infiltration, which was inhibited by administering naive ADSCs. Compared with naive ADSCs, BP-preconditioned ADSCs provided a significant increase of Akt and STAT3 phosphorylation, STAT3 activity, STAT3 nuclear translocation, myocardial IL-10 levels, and the percentage of M2 macrophage infiltration. The effects of BP on M2 polarization were reversed by LY294002 or S3I-201. Furthermore, the phosphorylation of both Akt and STAT3 was abolished by LY294002, whereas Akt phosphorylation was not affected following the inhibition of STAT3. The addition of lithium did not have additional effects compared with BP alone. After 4 weeks of implantation, ADSCs remained in the myocardium, and reduced fibrosis and improved cardiac function. BP-preconditioned ADSCs provided superior cardioprotection, greater ADSC engraftment, and antifibrotic effects compared with naive ADSCs. These results suggest that BP-pretreated ADSCs polarize macrophages into M2 cells more efficiently than naive ADSCs via the PI3K/STAT3 pathway.
Collapse
Affiliation(s)
- Tsung-Ming Lee
- Cardiovascular Institute, An Nan Hospital, China Medical University, Tainan, Taiwan.,Department of Medicine, China Medical University, Taichung, Taiwan
| | - Horng-Jyh Harn
- Bioinnovation Center, Tzu Chi Foundation, Hualien, Taiwan.,Department of Pathology, Buddhist Tzu Chi General Hospital, Tzu Chi University, Hualien, Taiwan
| | - Tzyy-Wen Chiou
- Department of Life Science and Graduate Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
| | - Ming-Hsi Chuang
- Department of Technology Management, Chung Hua University, Hsinchu, Taiwan.,Gwo Xi Stem Cell Applied Technology, Hsinchu, Taiwan
| | | | | | - Po-Cheng Lin
- Gwo Xi Stem Cell Applied Technology, Hsinchu, Taiwan
| | - Shinn-Zong Lin
- Bioinnovation Center, Tzu Chi Foundation, Hualien, Taiwan. .,Department of Neurosurgery, Buddhist Tzu Chi General Hospital, Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|
49
|
Skurikhin EG, Pershina OV, Pakhomova AV, Pan ES, Krupin VA, Ermakova NN, Vaizova OE, Pozdeeva AS, Zhukova MA, Skurikhina VE, Grimm WD, Dygai AM. Endothelial Progenitor Cells as Pathogenetic and Diagnostic Factors, and Potential Targets for GLP-1 in Combination with Metabolic Syndrome and Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2019; 20:ijms20051105. [PMID: 30836679 PMCID: PMC6429267 DOI: 10.3390/ijms20051105] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 12/16/2022] Open
Abstract
In clinical practice, there are patients with a combination of metabolic syndrome (MS) and chronic obstructive pulmonary disease (COPD). The pathological mechanisms linking MS and COPD are largely unknown. It remains unclear whether the effect of MS (possible obesity) has a major impact on the progression of COPD. This complicates the development of effective approaches for the treatment of patients with a diagnosis of MS and COPD. Experiments were performed on female C57BL/6 mice. Introduction of monosodium glutamate and extract of cigarette smoke was modeled to simulate the combined pathology of lipid disorders and emphysema. Biological effects of glucagon-like peptide 1 (GLP-1) and GLP-1 on endothelial progenitor cells (EPC) in vitro and in vivo were evaluated. Histological, immunohistochemical methods, biochemical methods, cytometric analysis of markers identifying EPC were used in the study. The CD31⁺ endothelial cells in vitro evaluation was produced by Flow Cytometry and Image Processing of each well with a Cytation™ 3. GLP-1 reduces the area of emphysema and increases the number of CD31⁺ endothelial cells in the lungs of mice in conditions of dyslipidemia and damage to alveolar tissue of cigarette smoke extract. The regenerative effects of GLP-1 are caused by a decrease in inflammation, a positive effect on lipid metabolism and glucose metabolism. EPC are proposed as pathogenetic and diagnostic markers of endothelial disorders in combination of MS with COPD. Based on GLP-1, it is proposed to create a drug to stimulate the regeneration of endothelium damaged in MS and COPD.
Collapse
Affiliation(s)
- Evgenii Germanovich Skurikhin
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk 634028, Russia.
| | - Olga Victorovna Pershina
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk 634028, Russia.
| | - Angelina Vladimirovna Pakhomova
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk 634028, Russia.
| | - Edgar Sergeevich Pan
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk 634028, Russia.
| | - Vyacheslav Andreevich Krupin
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk 634028, Russia.
| | - Natalia Nicolaevna Ermakova
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk 634028, Russia.
| | | | | | | | | | - Wolf-Dieter Grimm
- Periodontology, Department of Dental Medicine, Faculty of Health, University of Witten/Herdecke, 355035 Stavropol, Germany.
| | - Alexander Mikhaylovich Dygai
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk 634028, Russia.
| |
Collapse
|
50
|
Zhang X, Chen X, Qi T, Kong Q, Cheng H, Cao X, Li Y, Li C, Liu L, Ding Z. HSPA12A is required for adipocyte differentiation and diet-induced obesity through a positive feedback regulation with PPARγ. Cell Death Differ 2019; 26:2253-2267. [PMID: 30742088 PMCID: PMC6888823 DOI: 10.1038/s41418-019-0300-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/03/2019] [Accepted: 01/24/2019] [Indexed: 01/07/2023] Open
Abstract
Obesity is one of the most serious public health problems. Peroxisome proliferator-activated receptor γ (PPARγ) plays the master role in adipocyte differentiation for obesity development. However, optimum anti-obesity drug has yet been developed, mandating more investigation to identify novel regulator in obesity pathogenesis. Heat shock protein 12A (HSPA12A) encodes a novel member of the HSP70 family. Here, we report that obese patients showed increased adipose HSPA12A expression, which was positively correlated with increase of body mass index. Intriguingly, knockout of HSPA12A (Hspa12a−/−) in mice attenuated high-fat diet (HFD)-induced weight gain, adiposity, hyperlipidemia, and hyperglycemia compared to their wild type (WT) littermates. Increased insulin sensitivity was observed in Hspa12a−/− mice compared to WT mice. The HFD-induced upregulation of PPARγ and its target adipogenic genes in white adipose tissues (WAT) of Hspa12a−/− mice were also attenuated. Loss- and gain-of-function studies revealed that the differentiation of primary adipocyte precursors, as well as the expression of PPARγ and target adipogenic genes during the differentiation, was suppressed by HSPA12A deficiency whereas promoted by HSPA12A overexpression. Importantly, PPARγ inhibition by GW9662 reversed the HSPA12A-mediated adipocyte differentiation. On the other hand, HSPA12A expression was downregulated by PPARγ inhibition but upregulated by PPARγ activation in primary adipocytes. A direct binding of PPARγ to the PPAR response element in the Hspa12a promoter region was confirmed by chromatin immunoprecipitation assay, and this binding was increased after differentiation of primary adipocytes. These findings indicate that HSPA12A is a novel regulator of adipocyte differentiation and diet-induced obesity through a positive feedback regulation with PPARγ. HSPA12A inhibition might represent a viable strategy for the management of obesity in humans.
Collapse
Affiliation(s)
- Xiaojin Zhang
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics,Key Laboratory of Targeted Intervention of Cardiovascular Disease, The First Affiliated Hospital with Nanjing Medical University, 210029, Nanjing, China
| | - Xuan Chen
- Department of Anesthesiology, The First Affiliated Hospital with Nanjing Medical University, 210029, Nanjing, China
| | - Tao Qi
- Department of Anesthesiology, The First Affiliated Hospital with Nanjing Medical University, 210029, Nanjing, China
| | - Qiuyue Kong
- Department of Anesthesiology, The First Affiliated Hospital with Nanjing Medical University, 210029, Nanjing, China
| | - Hao Cheng
- Department of Anesthesiology, The First Affiliated Hospital with Nanjing Medical University, 210029, Nanjing, China
| | - Xiaofei Cao
- Department of Anesthesiology, The First Affiliated Hospital with Nanjing Medical University, 210029, Nanjing, China
| | - Yuehua Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, 210029, Nanjing, China
| | - Chuanfu Li
- Department of Surgery, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Li Liu
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics,Key Laboratory of Targeted Intervention of Cardiovascular Disease, The First Affiliated Hospital with Nanjing Medical University, 210029, Nanjing, China.
| | - Zhengnian Ding
- Department of Anesthesiology, The First Affiliated Hospital with Nanjing Medical University, 210029, Nanjing, China.
| |
Collapse
|