1
|
Geels SN, Murat C, Moshensky A, Othy S, Marangoni F. Protocol to quantify the activation dynamics of tumor-associated T cells in mice by functional intravital microscopy. STAR Protoc 2024; 5:103310. [PMID: 39306849 PMCID: PMC11459072 DOI: 10.1016/j.xpro.2024.103310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/22/2024] [Accepted: 08/20/2024] [Indexed: 10/11/2024] Open
Abstract
Tumor-associated T cells orchestrate cancer rejection after checkpoint blockade immunotherapy. T cell function depends on dynamic antigen recognition through the T cell receptor (TCR) resulting in T cell activation. Here, we present an approach to quantify the dynamics and magnitude of tumor-associated T cell activation at multiple time points in living mice using the genetically encoded calcium reporter Salsa6f and functional intravital microscopy (F-IVM). Our protocol allows researchers to measure the activation dynamics of various immune cells in vivo. For complete details on the use and execution of this protocol, please refer to Geels et al.1.
Collapse
Affiliation(s)
- Shannon N Geels
- Department of Physiology and Biophysics and Institute for Immunology, University of California Irvine, Irvine, CA, USA
| | - Claire Murat
- Department of Physiology and Biophysics and Institute for Immunology, University of California Irvine, Irvine, CA, USA.
| | - Alexander Moshensky
- Department of Physiology and Biophysics and Institute for Immunology, University of California Irvine, Irvine, CA, USA
| | - Shivashankar Othy
- Department of Physiology and Biophysics and Institute for Immunology, University of California Irvine, Irvine, CA, USA
| | - Francesco Marangoni
- Department of Physiology and Biophysics and Institute for Immunology, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
2
|
Yin P, Martin CK, Kielian M. Virus stealth technology: Tools to study virus cell-to-cell transmission. PLoS Pathog 2024; 20:e1012590. [PMID: 39383183 PMCID: PMC11463765 DOI: 10.1371/journal.ppat.1012590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024] Open
Affiliation(s)
- Peiqi Yin
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Caroline K. Martin
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Margaret Kielian
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
3
|
Guerrero JF, Lesko SL, Evans EL, Sherer NM. Studying Retroviral Life Cycles Using Visible Viruses and Live Cell Imaging. Annu Rev Virol 2024; 11:125-146. [PMID: 38876144 PMCID: PMC11697243 DOI: 10.1146/annurev-virology-100422-012608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Viruses exploit key host cell factors to accomplish each individual stage of the viral replication cycle. To understand viral pathogenesis and speed the development of new antiviral strategies, high-resolution visualization of virus-host interactions is needed to define where and when these events occur within cells. Here, we review state-of-the-art live cell imaging techniques for tracking individual stages of viral life cycles, focusing predominantly on retroviruses and especially human immunodeficiency virus type 1, which is most extensively studied. We describe how visible viruses can be engineered for live cell imaging and how nonmodified viruses can, in some instances, be tracked and studied indirectly using cell biosensor systems. We summarize the ways in which live cell imaging has been used to dissect the retroviral life cycle. Finally, we discuss select challenges for the future including the need for better labeling strategies, increased resolution, and multivariate systems that will allow for the study of full viral replication cycles.
Collapse
Affiliation(s)
- Jorge F Guerrero
- McArdle Laboratory for Cancer Research, Department of Oncology, and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA;
| | - Sydney L Lesko
- McArdle Laboratory for Cancer Research, Department of Oncology, and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA;
| | - Edward L Evans
- Current affiliation: Department of Biomedical Engineering and Center for Quantitative Imaging, University of Wisconsin-Madison, Madison, Wisconsin, USA
- McArdle Laboratory for Cancer Research, Department of Oncology, and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA;
| | - Nathan M Sherer
- McArdle Laboratory for Cancer Research, Department of Oncology, and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA;
| |
Collapse
|
4
|
Yu X, Zhu Y, Yin G, Wang Y, Shi X, Cheng G. Exploiting hosts and vectors: viral strategies for facilitating transmission. EMBO Rep 2024; 25:3187-3201. [PMID: 39048750 PMCID: PMC11315993 DOI: 10.1038/s44319-024-00214-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 04/17/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Viruses have developed various strategies to ensure their survival and transmission. One intriguing strategy involves manipulating the behavior of infected arthropod vectors and hosts. Through intricate interactions, viruses can modify vector behavior, aiding in crossing barriers and improving transmission to new hosts. This manipulation may include altering vector feeding preferences, thus promoting virus transmission to susceptible individuals. In addition, viruses employ diverse dissemination methods, including cell-to-cell and intercellular transmission via extracellular vesicles. These strategies allow viruses to establish themselves in favorable environments, optimize replication, and increase the likelihood of spreading to other individuals. Understanding these complex viral strategies offers valuable insights into their biology, transmission dynamics, and potential interventions for controlling infections. Unraveling interactions between viruses, hosts, and vectors enables the development of targeted approaches to effectively mitigate viral diseases and prevent transmission.
Collapse
Affiliation(s)
- Xi Yu
- New Cornerstone Science Laboratory, Tsinghua-Peking Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518000, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, 518055, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yibin Zhu
- New Cornerstone Science Laboratory, Tsinghua-Peking Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, 100084, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, 518055, China
| | - Gang Yin
- Department of Parasitology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Yibaina Wang
- China National Center for Food Safety Risk Assessment, Beijing, 100022, China
| | - Xiaolu Shi
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, 518055, China
| | - Gong Cheng
- New Cornerstone Science Laboratory, Tsinghua-Peking Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, 100084, China.
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518000, China.
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, 518055, China.
- Southwest United Graduate School, Kunming, 650092, China.
| |
Collapse
|
5
|
Bellini N, Ye C, Ajibola O, Murooka TT, Lodge R, Cohen ÉA. Downregulation of miRNA-26a by HIV-1 Enhances CD59 Expression and Packaging, Impacting Virus Susceptibility to Antibody-Dependent Complement-Mediated Lysis. Viruses 2024; 16:1076. [PMID: 39066239 PMCID: PMC11281366 DOI: 10.3390/v16071076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/29/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
MicroRNAs (miRNAs) play important roles in the control of HIV-1 infection. Here, we performed RNA-seq profiling of miRNAs and mRNAs expressed in CD4+ T lymphocytes upon HIV-1 infection. Our results reveal significant alterations in miRNA and mRNA expression profiles in infected relative to uninfected cells. One of the miRNAs markedly downregulated in infected cells is miRNA-26a. Among the putative targets of miRNA-26a are CD59 receptor transcripts, which are significantly upregulated in infected CD4+ T cells. The addition of miRNA-26a mimics to CD4+ T cells reduces CD59 at both the mRNA and surface protein levels, validating CD59 as a miRNA-26a target. Consistent with the reported inhibitory role of CD59 in complement-mediated lysis (CML), knocking out CD59 in CD4+ T cells renders both HIV-1-infected cells and progeny virions more prone to antibody-dependent CML (ADCML). The addition of miRNA-26a mimics to infected cells leads to enhanced sensitivity of progeny virions to ADCML, a condition linked to a reduction in CD59 packaging into released virions. Lastly, HIV-1-mediated downregulation of miRNA-26a expression is shown to be dependent on integrated HIV-1 expression but does not involve viral accessory proteins. Overall, these results highlight a novel mechanism by which HIV-1 limits ADCML by upregulating CD59 expression via miRNA-26a downmodulation.
Collapse
Affiliation(s)
- Nicolas Bellini
- Laboratory of Human Retrovirology, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada; (N.B.); (C.Y.); (R.L.)
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Chengyu Ye
- Laboratory of Human Retrovirology, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada; (N.B.); (C.Y.); (R.L.)
| | - Oluwaseun Ajibola
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (O.A.); (T.T.M.)
| | - Thomas T. Murooka
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (O.A.); (T.T.M.)
| | - Robert Lodge
- Laboratory of Human Retrovirology, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada; (N.B.); (C.Y.); (R.L.)
| | - Éric A. Cohen
- Laboratory of Human Retrovirology, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada; (N.B.); (C.Y.); (R.L.)
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
6
|
Guizar P, Abdalla AL, Monette A, Davis K, Caballero RE, Niu M, Liu X, Ajibola O, Murooka TT, Liang C, Mouland AJ. An HIV-1 CRISPR-Cas9 membrane trafficking screen reveals a role for PICALM intersecting endolysosomes and immunity. iScience 2024; 27:110131. [PMID: 38957789 PMCID: PMC11217618 DOI: 10.1016/j.isci.2024.110131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/12/2023] [Accepted: 05/24/2024] [Indexed: 07/04/2024] Open
Abstract
HIV-1 hijacks host proteins involved in membrane trafficking, endocytosis, and autophagy that are critical for virus replication. Molecular details are lacking but are essential to inform on the development of alternative antiviral strategies. Despite their potential as clinical targets, only a few membrane trafficking proteins have been functionally characterized in HIV-1 replication. To further elucidate roles in HIV-1 replication, we performed a CRISPR-Cas9 screen on 140 membrane trafficking proteins. We identified phosphatidylinositol-binding clathrin assembly protein (PICALM) that influences not only infection dynamics but also CD4+ SupT1 biology. The knockout (KO) of PICALM inhibited viral entry. In CD4+ SupT1 T cells, KO cells exhibited defects in intracellular trafficking and increased abundance of intracellular Gag and significant alterations in autophagy, immune checkpoint PD-1 levels, and differentiation markers. Thus, PICALM modulates a variety of pathways that ultimately affect HIV-1 replication, underscoring the potential of PICALM as a future target to control HIV-1.
Collapse
Affiliation(s)
- Paola Guizar
- Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
| | - Ana Luiza Abdalla
- Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
| | - Anne Monette
- Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada
| | - Kristin Davis
- Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
| | - Ramon Edwin Caballero
- Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada
| | - Meijuan Niu
- Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada
| | - Xinyun Liu
- Rady Faculty of Health Science, Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Oluwaseun Ajibola
- Rady Faculty of Health Science, Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Thomas T. Murooka
- Rady Faculty of Health Science, Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
- Rady Faculty of Health Science, Department of Medical Microbiology and Infectious Disease, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Chen Liang
- Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
- Department of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
| | - Andrew J. Mouland
- Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
- Department of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
| |
Collapse
|
7
|
Hikichi Y, Grover JR, Schäfer A, Mothes W, Freed EO. Epistatic pathways can drive HIV-1 escape from integrase strand transfer inhibitors. SCIENCE ADVANCES 2024; 10:eadn0042. [PMID: 38427738 PMCID: PMC10906922 DOI: 10.1126/sciadv.adn0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/26/2024] [Indexed: 03/03/2024]
Abstract
People living with human immunodeficiency virus (HIV) receiving integrase strand transfer inhibitors (INSTIs) have been reported to experience virological failure in the absence of resistance mutations in integrase. To elucidate INSTI resistance mechanisms, we propagated HIV-1 in the presence of escalating concentrations of the INSTI dolutegravir. HIV-1 became resistant to dolutegravir by sequentially acquiring mutations in the envelope glycoprotein (Env) and the nucleocapsid protein. The selected Env mutations enhance the ability of the virus to spread via cell-cell transfer, thereby increasing the multiplicity of infection (MOI). While the selected Env mutations confer broad resistance to multiple classes of antiretrovirals, the fold resistance is ~2 logs higher for INSTIs than for other classes of drugs. We demonstrate that INSTIs are more readily overwhelmed by high MOI than other classes of antiretrovirals. Our findings advance the understanding of how HIV-1 can evolve resistance to antiretrovirals, including the potent INSTIs, in the absence of drug-target gene mutations.
Collapse
Affiliation(s)
- Yuta Hikichi
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Jonathan R. Grover
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Alicia Schäfer
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Eric O. Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| |
Collapse
|
8
|
Crater JM, Dunn D, Nixon DF, O’Brien RLF. HIV-1 Mediated Cortical Actin Disruption Mirrors ARP2/3 Defects Found in Primary T Cell Immunodeficiencies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.27.550856. [PMID: 38405733 PMCID: PMC10888893 DOI: 10.1101/2023.07.27.550856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
During cell movement, cortical actin balances mechanical and osmotic forces to maintain cell function while providing the scaffold for cell shape. Migrating CD4+ T cells have a polarized structure with a leading edge containing dynamic branched and linear F-actin structures that bridge intracellular components to surface adhesion molecules. These actin structures are complemented with a microtubular network beaded with membrane bound organelles in the trailing uropod. Disruption of actin structures leads to dysregulated migration and changes in morphology of affected cells. In HIV-1 infection, CD4+ T cells have dysregulated movement. However, the precise mechanisms by which HIV-1 affects CD4+ T cell movement are unknown. Here, we show that HIV-1 infection of primary CD4+ T cells causes at least four progressive morphological differences as a result of virally induced cortical cytoskeleton disruption, shown by ultrastructural and time lapse imaging. Infection with a ΔNef virus partially abrogated the dysfunctional phenotype in infected cells and partially restored a wild-type shape. The pathological morphologies after HIV-1 infection phenocopy leukocytes which contain genetic determinants of specific T cell Inborn Errors of Immunity (IEI) or Primary Immunodeficiencies (PID) that affect the actin cytoskeleton. To identify potential actin regulatory pathways that may be linked to the morphological deformities, uninfected CD4+ T cell morphology was characterized following addition of small molecule chemical inhibitors. The ARP2/3 inhibitor CK-666 recapitulated three of the four abnormal morphologies we observed in HIV-1 infected cells. Restoring ARP2/3 function and cortical actin integrity in people living with HIV-1 infection is a new avenue of investigation to eradicate HIV-1 infected cells from the body.
Collapse
Affiliation(s)
- Jacqueline M. Crater
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA
| | - Daniel Dunn
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA
| | - Douglas F. Nixon
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA
| | - Robert L. Furler O’Brien
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
9
|
Uderhardt S, Neag G, Germain RN. Dynamic Multiplex Tissue Imaging in Inflammation Research. ANNUAL REVIEW OF PATHOLOGY 2024; 19:43-67. [PMID: 37722698 DOI: 10.1146/annurev-pathmechdis-070323-124158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Inflammation is a highly dynamic process with immune cells that continuously interact with each other and parenchymal components as they migrate through tissue. The dynamic cellular responses and interaction patterns are a function of the complex tissue environment that cannot be fully reconstructed ex vivo, making it necessary to assess cell dynamics and changing spatial patterning in vivo. These dynamics often play out deep within tissues, requiring the optical focus to be placed far below the surface of an opaque organ. With the emergence of commercially available two-photon excitation lasers that can be combined with existing imaging systems, new avenues for imaging deep tissues over long periods of time have become available. We discuss a selected subset of studies illustrating how two-photon microscopy (2PM) has helped to relate the dynamics of immune cells to their in situ function and to understand the molecular patterns that govern their behavior in vivo. We also review some key practical aspects of 2PM methods and point out issues that can confound the results, so that readers can better evaluate the reliability of conclusions drawn using this technology.
Collapse
Affiliation(s)
- Stefan Uderhardt
- Department of Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Exploratory Research Unit, Optical Imaging Competence Centre, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Georgiana Neag
- Department of Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Exploratory Research Unit, Optical Imaging Competence Centre, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Ronald N Germain
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Center for Advanced Tissue Imaging (CAT-I), National Institute of Allergy and Infectious Diseases and National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA;
| |
Collapse
|
10
|
Abstract
Most enveloped viruses encode viral fusion proteins to penetrate host cell by membrane fusion. Interestingly, many enveloped viruses can also use viral fusion proteins to induce cell-cell fusion, both in vitro and in vivo, leading to the formation of syncytia or multinucleated giant cells (MGCs). In addition, some non-enveloped viruses encode specialized viral proteins that induce cell-cell fusion to facilitate viral spread. Overall, viruses that can induce cell-cell fusion are nearly ubiquitous in mammals. Virus cell-to-cell spread by inducing cell-cell fusion may overcome entry and post-entry blocks in target cells and allow evasion of neutralizing antibodies. However, molecular mechanisms of virus-induced cell-cell fusion remain largely unknown. Here, I summarize the current understanding of virus-induced cell fusion and syncytia formation.
Collapse
Affiliation(s)
- Maorong Xie
- Division of Infection and Immunity, UCL, London, UK.
| |
Collapse
|
11
|
Brumbaugh J, Aguado BA, Lysaght T, Goldstein LSB. Human fetal tissue is critical for biomedical research. Stem Cell Reports 2023; 18:2300-2312. [PMID: 37977142 PMCID: PMC10724055 DOI: 10.1016/j.stemcr.2023.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 11/19/2023] Open
Abstract
Human fetal tissue and cells derived from fetal tissue are crucial for biomedical research. Fetal tissues and cells are used to study both normal development and developmental disorders. They are broadly applied in vaccine development and production. Further, research using cells from fetal tissue is instrumental for studying many infectious diseases, including a broad range of viruses. These widespread applications underscore the value of fetal tissue research and reflect an important point: cells derived from fetal tissues have capabilities that cells from other sources do not. In many cases, increased functionality of cells derived from fetal tissues arises from increased proliferative capacity, ability to survive in culture, and developmental potential that is attenuated in adult tissues. This review highlights important, representative applications of fetal tissue for science and medicine.
Collapse
Affiliation(s)
- Justin Brumbaugh
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA; University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO, USA; Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Brian A Aguado
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| | - Tamra Lysaght
- Centre for Biomedical Ethics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lawrence S B Goldstein
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
12
|
Paryad-Zanjani S, Jagarapu A, Piovoso MJ, Zurakowski R. Ongoing HIV replication in lymph node sanctuary sites in treated individuals contributes to the total latent HIV at a very slow rate. J Theor Biol 2023; 575:111651. [PMID: 37898364 PMCID: PMC10680438 DOI: 10.1016/j.jtbi.2023.111651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 10/30/2023]
Abstract
Lymph nodes (LNs) serve as a sanctuary site for HIV viruses due to the heterogeneous distribution of the antiretrovirals (ARVs) inside the LNs. There is an ongoing debate whether this represents ongoing cycles of viral replication in the LNs or merely residual virus production by latently infected cells. Previous work has claimed that the measured levels of genetic variation in proviruses sampled from the blood were inconsistent with ongoing replication. However, it is not clear what rate of variation is consistent with ongoing replication in small sanctuary sites. In this study, we used a spherically symmetric compartmental ODE model to track the HIV viral dynamics in the LN and predict the contribution of ongoing replication within the LN to the whole-body proviral pool in an ARV-suppressed person living with HIV. This model tracks the reaction-diffusion dynamics of uninfected, actively infected, and latently infected T-cells as well as free virus within the LN parenchyma and the blood, and distinguishes between latently infected cells created before ARV therapy and during ARV therapy. We simulated suppressive therapy beginning in year 5 post-infection. Each LN sanctuary site had a volume of 1 ml, and we considered cases of 1 ml, 30 ml, and 250 ml total volume, which represent a single active sanctuary site, moderate systemic involvement, and involvement of the total lymphoid tissue. Viral load in the blood rapidly dropped and remained below the limit of detection in all cases but remained high in the LN sanctuary sites. Novel latent cells increased systemically over time but very slowly, taking between 25 and 50 years to reach 5 % of the total latent pool, depending on the volume of lymphoid tissue involvement. Putative sanctuary sites in LNs are limited in volume and produce novel latent cells slowly. Assays to detect genetic drift due to such sites would require very deep sequencing if sampling only from the blood. Previous studies showing a lack of genetic drift are consistent with the expected contribution of ongoing replication in lymph node sanctuary sites.
Collapse
Affiliation(s)
| | - Aditya Jagarapu
- Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Michael J Piovoso
- Electrical and Computer Engineering, University of Delaware, Newark, DE, USA
| | - Ryan Zurakowski
- Biomedical Engineering, University of Delaware, Newark, DE, USA.
| |
Collapse
|
13
|
Calado M, Pires D, Conceição C, Santos-Costa Q, Anes E, Azevedo-Pereira JM. Human immunodeficiency virus transmission-Mechanisms underlying the cell-to-cell spread of human immunodeficiency virus. Rev Med Virol 2023; 33:e2480. [PMID: 37698498 DOI: 10.1002/rmv.2480] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023]
Abstract
Despite the success of combined antiretroviral therapy in controlling viral load and reducing the risk of human immunodeficiency virus (HIV) transmission, an estimated 1.5 million new infections occurred worldwide in 2021. These new infections are mainly the result of sexual intercourse and thus involve cells present on the genital mucosa, such as dendritic cells (DCs), macrophages (Mø) and CD4+ T lymphocytes. Understanding the mechanisms by which HIV interacts with these cells and how HIV exploits these interactions to establish infection in a new human host is critical to the development of strategies to prevent and control HIV transmission. In this review, we explore how HIV has evolved to manipulate some of the physiological roles of these cells, thereby gaining access to strategic cellular niches that are critical for the spread and pathogenesis of HIV infection. The interaction of HIV with DCs, Mø and CD4+ T lymphocytes, and the role of the intercellular transfer of viral particles through the establishment of the infectious or virological synapses, but also through membrane protrusions such as filopodia and tunnelling nanotubes (TNTs), and cell fusion or cell engulfment processes are presented and discussed.
Collapse
Affiliation(s)
- Marta Calado
- Faculty of Pharmacy, Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Universidade de Lisboa, Lisboa, Portugal
| | - David Pires
- Faculty of Pharmacy, Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Universidade de Lisboa, Lisboa, Portugal
- Center for Interdisciplinary Research in Health, Católica Medical School, Universidade Católica Portuguesa, Rio de Mouro, Portugal
| | - Carolina Conceição
- Faculty of Pharmacy, Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Universidade de Lisboa, Lisboa, Portugal
| | - Quirina Santos-Costa
- Faculty of Pharmacy, Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Universidade de Lisboa, Lisboa, Portugal
| | - Elsa Anes
- Faculty of Pharmacy, Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Universidade de Lisboa, Lisboa, Portugal
| | - José Miguel Azevedo-Pereira
- Faculty of Pharmacy, Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
14
|
Ikeogu N, Ajibola O, Zayats R, Murooka TT. Identifying physiological tissue niches that support the HIV reservoir in T cells. mBio 2023; 14:e0205323. [PMID: 37747190 PMCID: PMC10653859 DOI: 10.1128/mbio.02053-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023] Open
Abstract
Successful antiretroviral therapy (ART) can efficiently suppress Human Immunodeficiency Virus-1 (HIV-1) replication to undetectable levels, but rare populations of infected memory CD4+ T cells continue to persist, complicating viral eradication efforts. Memory T cells utilize distinct homing and adhesion molecules to enter, exit, or establish residence at diverse tissue sites, integrating cellular and environmental cues that maintain homeostasis and life-long protection against pathogens. Critical roles for T cell receptor and cytokine signals driving clonal expansion and memory generation during immunity generation are well established, but whether HIV-infected T cells can utilize similar mechanisms for their own long-term survival is unclear. How infected, but transcriptionally silent T cells maintain their recirculation potential through blood and peripheral tissues, or whether they acquire new capabilities to establish unique peripheral tissue niches, is also not well understood. In this review, we will discuss the cellular and molecular cues that are important for memory T cell homeostasis and highlight opportunities for HIV to hijack normal immunological processes to establish long-term viral persistence.
Collapse
Affiliation(s)
- Nnamdi Ikeogu
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Oluwaseun Ajibola
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Romaniya Zayats
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Thomas T. Murooka
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
15
|
Wang W, Truong K, Ye C, Sharma S, He H, Liu L, Wen M, Misra A, Zhou P, Kimata JT. Engineered CD4 T cells expressing a membrane anchored viral inhibitor restrict HIV-1 through cis and trans mechanisms. Front Immunol 2023; 14:1167965. [PMID: 37781368 PMCID: PMC10538569 DOI: 10.3389/fimmu.2023.1167965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Abstract
HIV-1 infection of target cells can occur through either cell-free virions or cell-cell transmission in a virological synapse, with the latter mechanism of infection reported to be 100- to 1,000-fold more efficient. Neutralizing antibodies and entry inhibitors effectively block cell-free HIV-1, but with few exceptions, they display much less inhibitory activity against cell-mediated HIV-1 transmission. Previously, we showed that engineering HIV-1 target cells by genetically linking single-chain variable fragments (scFvs) of antibodies to glycosyl phosphatidylinositol (GPI) potently blocks infection by cell-free virions and cell-mediated infection by immature dendritic cell (iDC)-captured HIV-1. Expression of scFvs on CD4+ cell lines by transduction with X5 derived anti-HIV-1 Env antibody linked to a GPI attachment signal directs GPI-anchored scFvs into lipid rafts of the plasma membrane. In this study, we further characterize the effect of GPI-scFv X5 on cell-cell HIV-1 transmission from DCs to target cells. We report that expression of GPI-scFv X5 in transduced CD4+ cell lines and human primary CD4+ T cells potently restricts viral replication in iDC- or mDC-captured HIV-1 in trans. Using live-cell imaging, we observed that when GPI-GFP or GPI-scFv X5 transduced T cells are co-cultured with iDCs, GPI-anchored proteins enrich in contact zones and subsequently migrate from T cells into DCs, suggesting that transferred GPI-scFv X5 interferes with HIV-1 infection of iDCs. We conclude that GPI-scFv X5 on the surface of transduced CD4+ T cells not only potently blocks cell-mediated infection by DCs, but it transfers from transduced cells to the surface of iDCs and neutralizes HIV-1 replication in iDCs. Our findings have important implications for HIV-1 antibody-based immunotherapies as they demonstrate a viral inhibitory effect that extends beyond the transduced CD4+ T cells to iDCs which can enhance HIV-1 replication.
Collapse
Affiliation(s)
- Weiming Wang
- Unit of Anti-Viral Immunity and Genetic Therapy, Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Khanghy Truong
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Chaobaihui Ye
- Unit of Anti-Viral Immunity and Genetic Therapy, Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Suman Sharma
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Huan He
- Unit of Anti-Viral Immunity and Genetic Therapy, Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Lihong Liu
- Unit of Anti-Viral Immunity and Genetic Therapy, Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Michael Wen
- Unit of Anti-Viral Immunity and Genetic Therapy, Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Anisha Misra
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Paul Zhou
- Unit of Anti-Viral Immunity and Genetic Therapy, Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Jason T. Kimata
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
16
|
Bruce JW, Park E, Magnano C, Horswill M, Richards A, Potts G, Hebert A, Islam N, Coon JJ, Gitter A, Sherer N, Ahlquist P. HIV-1 virological synapse formation enhances infection spread by dysregulating Aurora Kinase B. PLoS Pathog 2023; 19:e1011492. [PMID: 37459363 PMCID: PMC10374047 DOI: 10.1371/journal.ppat.1011492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 07/27/2023] [Accepted: 06/19/2023] [Indexed: 07/21/2023] Open
Abstract
HIV-1 spreads efficiently through direct cell-to-cell transmission at virological synapses (VSs) formed by interactions between HIV-1 envelope proteins (Env) on the surface of infected cells and CD4 receptors on uninfected target cells. Env-CD4 interactions bring the infected and uninfected cellular membranes into close proximity and induce transport of viral and cellular factors to the VS for efficient virion assembly and HIV-1 transmission. Using novel, cell-specific stable isotope labeling and quantitative mass spectrometric proteomics, we identified extensive changes in the levels and phosphorylation states of proteins in HIV-1 infected producer cells upon mixing with CD4+ target cells under conditions inducing VS formation. These coculture-induced alterations involved multiple cellular pathways including transcription, TCR signaling and, unexpectedly, cell cycle regulation, and were dominated by Env-dependent responses. We confirmed the proteomic results using inhibitors targeting regulatory kinases and phosphatases in selected pathways identified by our proteomic analysis. Strikingly, inhibiting the key mitotic regulator Aurora kinase B (AURKB) in HIV-1 infected cells significantly increased HIV activity in cell-to-cell fusion and transmission but had little effect on cell-free infection. Consistent with this, we found that AURKB regulates the fusogenic activity of HIV-1 Env. In the Jurkat T cell line and primary T cells, HIV-1 Env:CD4 interaction also dramatically induced cell cycle-independent AURKB relocalization to the centromere, and this signaling required the long (150 aa) cytoplasmic C-terminal domain (CTD) of Env. These results imply that cytoplasmic/plasma membrane AURKB restricts HIV-1 envelope fusion, and that this restriction is overcome by Env CTD-induced AURKB relocalization. Taken together, our data reveal a new signaling pathway regulating HIV-1 cell-to-cell transmission and potential new avenues for therapeutic intervention through targeting the Env CTD and AURKB activity.
Collapse
Affiliation(s)
- James W. Bruce
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, United States of America
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Eunju Park
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, United States of America
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Chris Magnano
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, United States of America
- Department of Computer Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Mark Horswill
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, United States of America
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Alicia Richards
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Gregory Potts
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Alexander Hebert
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Nafisah Islam
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, United States of America
- Department of Computer Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Joshua J. Coon
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Morgridge Institute for Research, Madison, Wisconsin, United States of America
| | - Anthony Gitter
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, United States of America
- Department of Computer Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Department of Biostatistics and Medical Informatics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Nathan Sherer
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Paul Ahlquist
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, United States of America
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
17
|
Mascarau R, Woottum M, Fromont L, Gence R, Cantaloube-Ferrieu V, Vahlas Z, Lévêque K, Bertrand F, Beunon T, Métais A, El Costa H, Jabrane-Ferrat N, Gallois Y, Guibert N, Davignon JL, Favre G, Maridonneau-Parini I, Poincloux R, Lagane B, Bénichou S, Raynaud-Messina B, Vérollet C. Productive HIV-1 infection of tissue macrophages by fusion with infected CD4+ T cells. J Cell Biol 2023; 222:213978. [PMID: 36988579 PMCID: PMC10067447 DOI: 10.1083/jcb.202205103] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 12/05/2022] [Accepted: 02/02/2023] [Indexed: 03/30/2023] Open
Abstract
Macrophages are essential for HIV-1 pathogenesis and represent major viral reservoirs. Therefore, it is critical to understand macrophage infection, especially in tissue macrophages, which are widely infected in vivo, but poorly permissive to cell-free infection. Although cell-to-cell transmission of HIV-1 is a determinant mode of macrophage infection in vivo, how HIV-1 transfers toward macrophages remains elusive. Here, we demonstrate that fusion of infected CD4+ T lymphocytes with human macrophages leads to their efficient and productive infection. Importantly, several tissue macrophage populations undergo this heterotypic cell fusion, including synovial, placental, lung alveolar, and tonsil macrophages. We also find that this mode of infection is modulated by the macrophage polarization state. This fusion process engages a specific short-lived adhesion structure and is controlled by the CD81 tetraspanin, which activates RhoA/ROCK-dependent actomyosin contractility in macrophages. Our study provides important insights into the mechanisms underlying infection of tissue-resident macrophages, and establishment of persistent cellular reservoirs in patients.
Collapse
Affiliation(s)
- Rémi Mascarau
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, Centre National de la Recherche Scientifique, Université Toulouse III - Paul Sabatier (UPS) , Toulouse, France
- International Research Project " MAC-TB/HIV " , Toulouse, France
| | - Marie Woottum
- Institut Cochin, Inserm U1016, Centre National de la Recherche Scientifique UMR8104, Université de Paris , Paris, France
| | - Léa Fromont
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, Centre National de la Recherche Scientifique, Université Toulouse III - Paul Sabatier (UPS) , Toulouse, France
| | - Rémi Gence
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037 and Institut Universitaire du Cancer de Toulouse - Oncopôle , Toulouse, France
| | - Vincent Cantaloube-Ferrieu
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Université Toulouse, Centre National de la Recherche Scientifique, Inserm , Toulouse, France
| | - Zoï Vahlas
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, Centre National de la Recherche Scientifique, Université Toulouse III - Paul Sabatier (UPS) , Toulouse, France
- International Research Project " MAC-TB/HIV " , Toulouse, France
| | - Kevin Lévêque
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, Centre National de la Recherche Scientifique, Université Toulouse III - Paul Sabatier (UPS) , Toulouse, France
| | - Florent Bertrand
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, Centre National de la Recherche Scientifique, Université Toulouse III - Paul Sabatier (UPS) , Toulouse, France
| | - Thomas Beunon
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, Centre National de la Recherche Scientifique, Université Toulouse III - Paul Sabatier (UPS) , Toulouse, France
| | - Arnaud Métais
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, Centre National de la Recherche Scientifique, Université Toulouse III - Paul Sabatier (UPS) , Toulouse, France
| | - Hicham El Costa
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Université Toulouse, Centre National de la Recherche Scientifique, Inserm , Toulouse, France
| | - Nabila Jabrane-Ferrat
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Université Toulouse, Centre National de la Recherche Scientifique, Inserm , Toulouse, France
| | - Yohan Gallois
- ENT, Otoneurology and Pediatric ENT Department, University Hospital of Toulouse , Toulouse, France
| | - Nicolas Guibert
- Thoracic Endoscopy Unit, Pulmonology Department, Larrey University Hospital , Toulouse, France
| | | | - Gilles Favre
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037 and Institut Universitaire du Cancer de Toulouse - Oncopôle , Toulouse, France
| | - Isabelle Maridonneau-Parini
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, Centre National de la Recherche Scientifique, Université Toulouse III - Paul Sabatier (UPS) , Toulouse, France
- International Research Project " MAC-TB/HIV " , Toulouse, France
| | - Renaud Poincloux
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, Centre National de la Recherche Scientifique, Université Toulouse III - Paul Sabatier (UPS) , Toulouse, France
- International Research Project " MAC-TB/HIV " , Toulouse, France
| | - Bernard Lagane
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Université Toulouse, Centre National de la Recherche Scientifique, Inserm , Toulouse, France
| | - Serge Bénichou
- Institut Cochin, Inserm U1016, Centre National de la Recherche Scientifique UMR8104, Université de Paris , Paris, France
| | - Brigitte Raynaud-Messina
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, Centre National de la Recherche Scientifique, Université Toulouse III - Paul Sabatier (UPS) , Toulouse, France
- International Research Project " MAC-TB/HIV " , Toulouse, France
| | - Christel Vérollet
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, Centre National de la Recherche Scientifique, Université Toulouse III - Paul Sabatier (UPS) , Toulouse, France
- International Research Project " MAC-TB/HIV " , Toulouse, France
| |
Collapse
|
18
|
Bai R, Song C, Lv S, Chang L, Hua W, Weng W, Wu H, Dai L. Role of microglia in HIV-1 infection. AIDS Res Ther 2023; 20:16. [PMID: 36927791 PMCID: PMC10018946 DOI: 10.1186/s12981-023-00511-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
The usage of antiretroviral treatment (ART) has considerably decreased the morbidity and mortality related to HIV-1 (human immunodeficiency virus type 1) infection. However, ART is ineffective in eradicating the virus from the persistent cell reservoirs (e.g., microglia), noticeably hindering the cure for HIV-1. Microglia participate in the progression of neuroinflammation, brain aging, and HIV-1-associated neurocognitive disorder (HAND). Some methods have currently been studied as fundamental strategies targeting microglia. The purpose of this study was to comprehend microglia biology and its functions in HIV-1 infection, as well as to look into potential therapeutic approaches targeting microglia.
Collapse
Affiliation(s)
- Ruojing Bai
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Chengcheng Song
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Shiyun Lv
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Linlin Chang
- Department of Dermatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Wei Hua
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Wenjia Weng
- Department of Dermatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
| | - Hao Wu
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
| | - Lili Dai
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
19
|
Gantner P, Buranapraditkun S, Pagliuzza A, Dufour C, Pardons M, Mitchell JL, Kroon E, Sacdalan C, Tulmethakaan N, Pinyakorn S, Robb ML, Phanuphak N, Ananworanich J, Hsu D, Vasan S, Trautmann L, Fromentin R, Chomont N. HIV rapidly targets a diverse pool of CD4 + T cells to establish productive and latent infections. Immunity 2023; 56:653-668.e5. [PMID: 36804957 PMCID: PMC10023508 DOI: 10.1016/j.immuni.2023.01.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/15/2022] [Accepted: 01/25/2023] [Indexed: 02/19/2023]
Abstract
Upon infection, HIV disseminates throughout the human body within 1-2 weeks. However, its early cellular targets remain poorly characterized. We used a single-cell approach to retrieve the phenotype and TCR sequence of infected cells in blood and lymphoid tissue from individuals at the earliest stages of HIV infection. HIV initially targeted a few proliferating memory CD4+ T cells displaying high surface expression of CCR5. The phenotype of productively infected cells differed by Fiebig stage and between blood and lymph nodes. The TCR repertoire of productively infected cells was heavily biased, with preferential infection of previously expanded and disseminated clones, but composed almost exclusively of unique clonotypes, indicating that they were the product of independent infection events. Latent genetically intact proviruses were already archived early in infection. Hence, productive infection is initially established in a pool of phenotypically and clonotypically distinct T cells, and latently infected cells are generated simultaneously.
Collapse
Affiliation(s)
- Pierre Gantner
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC, Canada
| | - Supranee Buranapraditkun
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Center of Excellence in Vaccine Research and Development, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Amélie Pagliuzza
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - Caroline Dufour
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC, Canada
| | - Marion Pardons
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC, Canada
| | - Julie L Mitchell
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Eugène Kroon
- SEARCH, Institute of HIV Research and Innovation, Bangkok, Thailand
| | - Carlo Sacdalan
- SEARCH, Institute of HIV Research and Innovation, Bangkok, Thailand
| | | | - Suteeraporn Pinyakorn
- Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
| | - Merlin L Robb
- Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
| | | | - Jintanat Ananworanich
- Department of Global Health, Amsterdam Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Denise Hsu
- Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
| | - Sandhya Vasan
- Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
| | - Lydie Trautmann
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Rémi Fromentin
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - Nicolas Chomont
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
20
|
Rheinberger M, Costa AL, Kampmann M, Glavas D, Shytaj IL, Sreeram S, Penzo C, Tibroni N, Garcia-Mesa Y, Leskov K, Fackler OT, Vlahovicek K, Karn J, Lucic B, Herrmann C, Lusic M. Genomic profiling of HIV-1 integration in microglia cells links viral integration to the topologically associated domains. Cell Rep 2023; 42:112110. [PMID: 36790927 DOI: 10.1016/j.celrep.2023.112110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/15/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
HIV-1 encounters the hierarchically organized host chromatin to stably integrate and persist in anatomically distinct latent reservoirs. The contribution of genome organization in HIV-1 infection has been largely understudied across different HIV-1 targets. Here, we determine HIV-1 integration sites (ISs), associate them with chromatin and expression signatures at different genomic scales in a microglia cell model, and profile them together with the primary T cell reservoir. HIV-1 insertions into introns of actively transcribed genes with IS hotspots in genic and super-enhancers, characteristic of blood cells, are maintained in the microglia cell model. Genome organization analysis reveals dynamic CCCTC-binding factor (CTCF) clusters in cells with active and repressed HIV-1 transcription, whereas CTCF removal impairs viral integration. We identify CTCF-enriched topologically associated domain (TAD) boundaries with signatures of transcriptionally active chromatin as HIV-1 integration determinants in microglia and CD4+ T cells, highlighting the importance of host genome organization in HIV-1 infection.
Collapse
Affiliation(s)
- Mona Rheinberger
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Center for Infection Research (DZIF), 69120 Heidelberg, Germany
| | - Ana Luisa Costa
- Health Data Science Unit, Medical Faculty University Heidelberg and BioQuant, 69120 Heidelberg, Germany
| | - Martin Kampmann
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Dunja Glavas
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Iart Luca Shytaj
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Center for Infection Research (DZIF), 69120 Heidelberg, Germany
| | - Sheetal Sreeram
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Carlotta Penzo
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Nadine Tibroni
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Yoelvis Garcia-Mesa
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Konstantin Leskov
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Oliver T Fackler
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Center for Infection Research (DZIF), 69120 Heidelberg, Germany
| | - Kristian Vlahovicek
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Bojana Lucic
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Center for Infection Research (DZIF), 69120 Heidelberg, Germany.
| | - Carl Herrmann
- Health Data Science Unit, Medical Faculty University Heidelberg and BioQuant, 69120 Heidelberg, Germany.
| | - Marina Lusic
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Center for Infection Research (DZIF), 69120 Heidelberg, Germany.
| |
Collapse
|
21
|
Paryad-Zanjani S, Jagarapu A, Piovoso MJ, Zurakowski R. Ongoing HIV replication in lymph node sanctuary sites in treated patients contributes to the total latent HIV at a very slow rate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.18.529086. [PMID: 36909554 PMCID: PMC10002652 DOI: 10.1101/2023.02.18.529086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Lymph nodes (LNs) serve as a sanctuary site for HIV viruses due to the heterogeneous distribution of the antiretrovirals (ARVs) inside the LNs. There is an ongoing debate whether this represents ongoing cycles of viral replication in the LNs or merely residual virus production by latently infected cells. Previous work has claimed that the measured levels of genetic variation in proviruses sampled from the blood were inconsistent with ongoing replication. However, it is not clear what rate of variation is consistent with ongoing replication in small sanctuary sites. In this study, we used a spherically symmetric compartmental ODE model to track the HIV viral dynamics in the LN and predict the contribution of ongoing replication within the LN to the wholebody proviral pool in an ARV-suppressed patient. This model tracks the reaction-diffusion dynamics of uninfected, actively infected, and latently infected T-cells as well as free virus within the LN parenchyma and the blood, and distinguishes between latently infected cells created before ARV therapy and during ARV therapy. We simulated suppressive therapy beginning in year 5 post-infection. Each LN sanctuary site had a volume of 1 ml, and we considered cases of 1ml, 30ml, and 250ml total volume, which represent a single active sanctuary site, moderate systemic involvement, and involvement of the total lymphoid tissue. Viral load in the blood rapidly dropped and remained below the limit of detection in all cases but remained high in the LN sanctuary sites. Novel latent cells increased systemically over time but very slowly, taking between 25 and 50 years to reach 5% of the total latent pool, depending on the volume of lymphoid tissue involvement. Putative sanctuary sites in LNs are limited in volume and produce novel latent cells slowly. Assays to detect genetic drift due to such sites would require very deep sequencing if sampling only from the blood. Previous studies showing a lack of genetic drift are consistent with the expected contribution of ongoing replication in lymph node sanctuary sites.
Collapse
|
22
|
A Novel Pathway for Porcine Epidemic Diarrhea Virus Transmission from Sows to Neonatal Piglets Mediated by Colostrum. J Virol 2022; 96:e0047722. [PMID: 35758666 PMCID: PMC9327711 DOI: 10.1128/jvi.00477-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanisms of colostrum-mediated virus transmission are difficult to elucidate because of the absence of experimental animal models and the difficulties in tissue sample collection from mothers in the peripartum period. Porcine epidemic diarrhea virus (PEDV) is a reemerging enteropathogenic coronavirus that has catastrophic impacts on the global pig industry. PEDV primarily infects neonatal piglets by multiple routes, especially 1- to 2-day-old neonatal piglets. Here, our epidemiological investigation and animal challenge experiments revealed that PEDV could be vertically transmitted from sows to neonatal piglets via colostrum, and CD3+ T cells in the colostrum play an important role in this process. The results showed that PEDV colonizing the intestinal epithelial cells (IECs) of orally immunized infected sows could be transferred to CD3+ T cells located just beneath the IECs. Next, PEDV-carrying CD3+ T cells, with the expression of integrin α4β7 and CCR10, migrate from the intestine to the mammary gland through blood circulation. Arriving in the mammary gland, PEDV-carrying CD3+ T cells could be transported across mammary epithelial cells (MECs) into the lumen (colostrum), as illustrated by an autotransfusion assay and an MECs/T coculture system. The PEDV-carrying CD3+ T cells in colostrum could be interspersed between IECs of neonatal piglets, causing intestinal infection via cell-to-cell contact. Our study demonstrates for the first time that colostrum-derived CD3+ T cells comprise a potential route for the vertical transmission of PEDV. IMPORTANCE The colostrum represents an important infection route for many viruses. Here, we demonstrate the vertical transmission of porcine epidemic diarrhea virus (PEDV) from sows to neonatal piglets via colostrum. PEDV colonizing the intestinal epithelial cells could transfer the virus to CD3+ T cells located in the sow intestine. The PEDV-carrying CD3+ T cells in the sow intestine, with the expression of integrin α4β7 and CCR10, arrive at the mammary gland through blood circulation and are transported across mammary epithelial cells into the lumen, finally leading to intestinal infection via cell-to-cell contact in neonatal piglets. Our study not only demonstrates an alternative route of PEDV infection but also provides an animal model of vertical transmission of human infectious disease.
Collapse
|
23
|
Monocyte-Macrophage Lineage Cell Fusion. Int J Mol Sci 2022; 23:ijms23126553. [PMID: 35742997 PMCID: PMC9223484 DOI: 10.3390/ijms23126553] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 02/06/2023] Open
Abstract
Cell fusion (fusogenesis) occurs in natural and pathological conditions in prokaryotes and eukaryotes. Cells of monocyte–macrophage lineage are highly fusogenic. They create syncytial multinucleated giant cells (MGCs) such as osteoclasts (OCs), MGCs associated with the areas of infection/inflammation, and foreign body-induced giant cells (FBGCs). The fusion of monocytes/macrophages with tumor cells may promote cancer metastasis. We describe types and examples of monocyte–macrophage lineage cell fusion and the role of actin-based structures in cell fusion.
Collapse
|
24
|
Abstract
The HIV Env glycoprotein is the surface glycoprotein responsible for viral entry into CD4+ immune cells. During infection, Env also serves as a primary target for antibody responses, which are robust but unable to control virus replication. Immune evasion by HIV-1 Env appears to employ complex mechanisms to regulate what antigenic states are presented to the immune system. Immunodominant features appear to be distinct from epitopes that interfere with Env functions in mediating infection. Further, cell-cell transmission studies indicate that vulnerable conformational states are additionally hidden from recognition on infected cells, even though the presence of Env at the cell surface is required for viral infection through the virological synapse. Cell-cell infection studies support that Env on infected cells is presented in distinct conformations from that on virus particles. Here we review data regarding the regulation of conformational states of Env and assess how regulated sorting of Env within the infected cell may underlie mechanisms to distinguish Env on the surface of virus particles versus Env on the surface of infected cells. These mechanisms may allow infected cells to avoid opsonization, providing cell-to-cell infection by HIV with a selective advantage during evolution within an infected individual. Understanding how distinct Env conformations are presented on cells versus viruses may be essential to designing effective vaccine approaches and therapeutic strategies to clear infected cell reservoirs.
Collapse
Affiliation(s)
- Connie Zhao
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hongru Li
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Talia H. Swartz
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Benjamin K. Chen
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
25
|
Kumata R, Iwanami S, Mar KB, Kakizoe Y, Misawa N, Nakaoka S, Koyanagi Y, Perelson AS, Schoggins JW, Iwami S, Sato K. Antithetic effect of interferon-α on cell-free and cell-to-cell HIV-1 infection. PLoS Comput Biol 2022; 18:e1010053. [PMID: 35468127 PMCID: PMC9037950 DOI: 10.1371/journal.pcbi.1010053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/23/2022] [Indexed: 01/23/2023] Open
Abstract
In HIV-1-infected individuals, transmitted/founder (TF) virus contributes to establish new infection and expands during the acute phase of infection, while chronic control (CC) virus emerges during the chronic phase of infection. TF viruses are more resistant to interferon-alpha (IFN-α)-mediated antiviral effects than CC virus, however, its virological relevance in infected individuals remains unclear. Here we perform an experimental-mathematical investigation and reveal that IFN-α strongly inhibits cell-to-cell infection by CC virus but only weakly affects that by TF virus. Surprisingly, IFN-α enhances cell-free infection of HIV-1, particularly that of CC virus, in a virus-cell density-dependent manner. We further demonstrate that LY6E, an IFN-stimulated gene, can contribute to the density-dependent enhancement of cell-free HIV-1 infection. Altogether, our findings suggest that the major difference between TF and CC viruses can be explained by their resistance to IFN-α-mediated inhibition of cell-to-cell infection and their sensitivity to IFN-α-mediated enhancement of cell-free infection.
Collapse
Affiliation(s)
- Ryuichi Kumata
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Faculty of Science, Kyoto University, Kyoto, Japan
| | - Shoya Iwanami
- interdisciplinary Biology Laboratory (iBLab), Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Katrina B. Mar
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Yusuke Kakizoe
- Mathematical Biology Laboratory, Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Naoko Misawa
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Shinji Nakaoka
- Laboratory of Mathematical Biology, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
- PRESTO, Japan Science and Technology Agency, Saitama, Japan
| | - Yoshio Koyanagi
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Alan S. Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - John W. Schoggins
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Shingo Iwami
- interdisciplinary Biology Laboratory (iBLab), Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- CREST, Japan Science and Technology Agency, Saitama, Japan
- MIRAI, Japan Science and Technology Agency, Saitama, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- NEXT-Ganken Program, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
- Science Groove Inc., Fukuoka, Japan
| | - Kei Sato
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- CREST, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
26
|
Vrba SM, Hickman HD. Imaging viral infection in vivo to gain unique perspectives on cellular antiviral immunity. Immunol Rev 2022; 306:200-217. [PMID: 34796538 PMCID: PMC9073719 DOI: 10.1111/imr.13037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 10/17/2021] [Indexed: 11/29/2022]
Abstract
The past decade has seen near continual global public health crises caused by emerging viral infections. Extraordinary increases in our knowledge of the mechanisms underlying successful antiviral immune responses in animal models and during human infection have accompanied these viral outbreaks. Keeping pace with the rapidly advancing field of viral immunology, innovations in microscopy have afforded a previously unseen view of viral infection occurring in real-time in living animals. Here, we review the contribution of intravital imaging to our understanding of cell-mediated immune responses to viral infections, with a particular focus on studies that visualize the antiviral effector cells responding to infection as well as virus-infected cells. We discuss methods to visualize viral infection in vivo using intravital microscopy (IVM) and significant findings arising through the application of IVM to viral infection. Collectively, these works underscore the importance of developing a comprehensive spatial understanding of the relationships between immune effectors and virus-infected cells and how this has enabled unique discoveries about virus/host interactions and antiviral effector cell biology.
Collapse
Affiliation(s)
- Sophia M. Vrba
- Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Heather D. Hickman
- Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
27
|
Engineering T-Cell Resistance to HIV-1 Infection via Knock-In of Peptides from the Heptad Repeat 2 Domain of gp41. mBio 2022; 13:e0358921. [PMID: 35073736 PMCID: PMC8787484 DOI: 10.1128/mbio.03589-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Previous studies suggest that short peptides from the heptad repeat 2 (HR2) domain of gp41 expressed on the cell surface are more potent inhibitors of HIV-1 entry than soluble analogs. However, their therapeutic potential has only been examined using lentiviral vectors. Here, we aimed to develop CRISPR/Cas9-based fusion inhibitory peptide knock-in (KI) technology for the generation and selection of HIV-1-resistant T cells. First, we embedded a series of HIV-1 fusion inhibitory peptides in CD52, the shortest glycosylphosphatidylinositol (GPI)-anchored protein, which efficiently delivers epitope tags to the cell surface and maintains a sufficient level of KI. Among the seven peptides tested, MT-C34, HP-23L, and 2P23 exhibited significant activity against both cell-free and cell-to-cell HIV-1 infection. The shed variant of MT-C34 provided insufficient protection against HIV-1 due to its low concentration in the culture medium. Using Cas9 plasmids or ribonucleoprotein electroporation and peptide-specific antibodies, we sorted CEM/R5 cells with biallelic KI of MT-C34 and 2P23 peptides at the CXCR4 locus. In combination, these peptides provided a higher level of protection than individual KI. By extending homology arms and cloning donor DNA into a plasmid containing signals for nuclear localization, we achieved KI of MT-C34 into the CXCR4 locus and HIV-1 proviral DNA at levels of up to 35% in the T-cell line and up to 4 to 5% in primary CD4 lymphocytes. Compared to lentiviral delivery, KI resulted in the higher MT-C34 surface expression and stronger protection of lymphocytes from HIV-1. Thus, we demonstrate that KI is a viable strategy for peptide-based therapy of HIV infection. IMPORTANCE HIV is a human lentivirus that infects CD4-positive immune cells and, when left untreated, manifests in the fatal disease known as AIDS. Antiretroviral therapy (ART) does not lead to viral clearance, and HIV persists in the organism as a latent provirus. One way to control infection is to increase the population of HIV-resistant CD4 lymphocytes via entry molecule knockout or expression of different antiviral genes. Peptides from the heptad repeat (HR) domain of gp41 are potent inhibitors of HIV-1 fusion, especially when designed to express on the cell surface. Individual gp41 peptides encoded by therapeutic lentiviral vectors have been evaluated and some have entered clinical trials. However, a CRISPR/Cas9-based gp41 peptide delivery platform that operates through concomitant target gene modification has not yet been developed due to low knock-in (KI) rates in primary cells. Here, we systematically evaluated the antiviral activity of different HR2 peptides cloned into the shortest carrier molecule, CD52. The resulting small-size transgene constructs encoding selected peptides, in combination with improvements to enhance donor vector nuclear import, helped to overcome precise editing restrictions in CD4 lymphocytes. Using KI into CXCR4, we demonstrated different options for target gene modification, effectively protecting edited cells against HIV-1.
Collapse
|
28
|
Lopez P, Ajibola O, Pagliuzza A, Zayats R, Koh WH, Herschhorn A, Chomont N, Murooka TT. T cell migration potentiates HIV infection by enhancing viral fusion and integration. Cell Rep 2022; 38:110406. [PMID: 35196491 DOI: 10.1016/j.celrep.2022.110406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 10/27/2021] [Accepted: 01/27/2022] [Indexed: 11/26/2022] Open
Abstract
T cells actively migrate along reticular networks within lymphoid organs in search for cognate antigen, but how these behaviors impact HIV entry and infection is unclear. Here, we show that migratory T cells in 3D collagen matrix display significantly enhanced infection and integration by cell-free R5-tropic lab adapted and transmitted/founder molecular HIV clones in the absence of exogenous cytokines or cationic polymers. Using two different collagen matrices that either support or restrict T cell migration, we observe high levels of HIV fusion in migratory T cells, whereas non-motile T cells display low viral entry and integration. Motile T cells were less sensitive to combination antiretroviral drugs and were able to freely migrate into regions with high HIV densities, resulting in high infection rates. Together, our studies indicate that the environmental context in which initial HIV-T cell encounters occur modulates HIV-1 entry and integration efficiencies.
Collapse
Affiliation(s)
- Paul Lopez
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Oluwaseun Ajibola
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Amelie Pagliuzza
- Department of Microbiology, Infectiology and Immunology, Centre de recherche du CHUM and Université de Montréal, Montreal, QC, Canada
| | - Romaniya Zayats
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Wan Hon Koh
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Alon Herschhorn
- Department of Medicine, Division of Infectious Diseases and International Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Nicolas Chomont
- Department of Microbiology, Infectiology and Immunology, Centre de recherche du CHUM and Université de Montréal, Montreal, QC, Canada
| | - Thomas T Murooka
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada; Department of Medical Microbiology and Infectious Disease, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
29
|
Zayas JP, Mamede JI. HIV Infection and Spread between Th17 Cells. Viruses 2022; 14:v14020404. [PMID: 35215997 PMCID: PMC8874668 DOI: 10.3390/v14020404] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 02/07/2023] Open
Abstract
HIV mainly targets CD4+ T cells, from which Th17 cells represent a major cell type, permissive, and are capable of supporting intracellular replication at mucosal sites. Th17 cells possess well-described dual roles, while being central to maintaining gut integrity, these may induce inflammation and contribute to autoimmune disorders; however, Th17 cells’ antiviral function in HIV infection is not completely understood. Th17 cells are star players to HIV-1 pathogenesis and a potential target to prevent or decrease HIV transmission. HIV-1 can be spread among permissive cells via direct cell-to-cell and/or cell-free infection. The debate on which mode of transmission is more efficient is still ongoing without a concrete conclusion yet. Most assessments of virus transmission analyzing either cell-to-cell or cell-free modes use in vitro systems; however, the actual interactions and conditions in vivo are not fully understood. The fact that infected breast milk, semen, and vaginal secretions contain a mix of both cell-free viral particles and infected cells presents an argument for the probability of HIV taking advantage of both modes of transmission to spread. Here, we review important insights and recent findings about the role of Th17 cells during HIV pathogenesis in mucosal surfaces, and the mechanisms of HIV-1 infection spread among T cells in tissues.
Collapse
|
30
|
Furler RL, Nixon DF. HIV-1 Exploits Transitions Between CD4 + T Cell Migration and Activation. AIDS Res Hum Retroviruses 2022; 38:97-99. [PMID: 34714116 PMCID: PMC8861907 DOI: 10.1089/aid.2021.0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Robert L. Furler
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA.,Address correspondence to: Robert L. Furler, Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, 413 E. 69th Street, Belfer Research Building, New York, NY 10021, USA
| | - Douglas F. Nixon
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
31
|
Engels R, Falk L, Albanese M, Keppler OT, Sewald X. LFA1 and ICAM1 are critical for fusion and spread of murine leukemia virus in vivo. Cell Rep 2022; 38:110279. [PMID: 35045303 DOI: 10.1016/j.celrep.2021.110279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/18/2021] [Accepted: 12/23/2021] [Indexed: 11/25/2022] Open
Abstract
Murine leukemia virus (MLV)-presenting cells form stable intercellular contacts with target cells during infection of lymphoid tissue, indicating a role of cell-cell contacts in retrovirus dissemination. Whether host cell adhesion proteins are required for retrovirus spread in vivo remains unknown. Here, we demonstrate that the lymphocyte-function-associated-antigen-1 (LFA1) and its ligand intercellular-adhesion-molecule-1 (ICAM1) are important for cell-contact-dependent transmission of MLV between leukocytes. Infection experiments in LFA1- and ICAM1-deficient mice demonstrate a defect in MLV spread within lymph nodes. Co-culture of primary leukocytes reveals a specific requirement for ICAM1 on donor cells and LFA1 on target cells for cell-contact-dependent spread through trans- and cis-infection. Importantly, adoptive transfer experiments combined with a newly established MLV-fusion assay confirm that the directed LFA1-ICAM1 interaction is important for retrovirus fusion and transmission in vivo. Taken together, our data provide insights on how retroviruses exploit host proteins and the biology of cell-cell interactions for dissemination.
Collapse
Affiliation(s)
- Rebecca Engels
- LMU München, Max von Pettenkofer Institute & Gene Center, Virology, National Reference Center for Retroviruses, Munich, Germany
| | - Lisa Falk
- LMU München, Max von Pettenkofer Institute & Gene Center, Virology, National Reference Center for Retroviruses, Munich, Germany
| | - Manuel Albanese
- LMU München, Max von Pettenkofer Institute & Gene Center, Virology, National Reference Center for Retroviruses, Munich, Germany
| | - Oliver T Keppler
- LMU München, Max von Pettenkofer Institute & Gene Center, Virology, National Reference Center for Retroviruses, Munich, Germany
| | - Xaver Sewald
- LMU München, Max von Pettenkofer Institute & Gene Center, Virology, National Reference Center for Retroviruses, Munich, Germany.
| |
Collapse
|
32
|
HIV-1 and HTLV-1 Transmission Modes: Mechanisms and Importance for Virus Spread. Viruses 2022; 14:v14010152. [PMID: 35062355 PMCID: PMC8779814 DOI: 10.3390/v14010152] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
So far, only two retroviruses, human immunodeficiency virus (HIV) (type 1 and 2) and human T-cell lymphotropic virus type 1 (HTLV-1), have been recognized as pathogenic for humans. Both viruses mainly infect CD4+ T lymphocytes. HIV replication induces the apoptosis of CD4 lymphocytes, leading to the development of acquired immunodeficiency syndrome (AIDS). After a long clinical latency period, HTLV-1 can transform lymphocytes, with subsequent uncontrolled proliferation and the manifestation of a disease called adult T-cell leukemia (ATLL). Certain infected patients develop neurological autoimmune disorder called HTLV-1-associated myelopathy, also known as tropical spastic paraparesis (HAM/TSP). Both viruses are transmitted between individuals via blood transfusion, tissue/organ transplantation, breastfeeding, and sexual intercourse. Within the host, these viruses can spread utilizing either cell-free or cell-to-cell modes of transmission. In this review, we discuss the mechanisms and importance of each mode of transmission for the biology of HIV-1 and HTLV-1.
Collapse
|
33
|
Snetkov X, Haider T, Mesner D, Groves N, van Engelenburg SB, Jolly C. A Conserved Tryptophan in the Envelope Cytoplasmic Tail Regulates HIV-1 Assembly and Spread. Viruses 2022; 14:v14010129. [PMID: 35062333 PMCID: PMC8778169 DOI: 10.3390/v14010129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/07/2022] [Indexed: 12/14/2022] Open
Abstract
The HIV-1 envelope (Env) is an essential determinant of viral infectivity, tropism and spread between T cells. Lentiviral Env contain an unusually long 150 amino acid cytoplasmic tail (EnvCT), but the function of the EnvCT and many conserved domains within it remain largely uncharacterised. Here, we identified a highly conserved tryptophan motif at position 757 (W757) in the LLP-2 alpha helix of the EnvCT as a key determinant for HIV-1 replication and spread between T cells. Alanine substitution at this position potently inhibited HIV-1 cell–cell spread (the dominant mode of HIV-1 dissemination) by preventing recruitment of Env and Gag to sites of cell–cell contact, inhibiting virological synapse (VS) formation and spreading infection. Single-molecule tracking and super-resolution imaging showed that mutation of W757 dysregulates Env diffusion in the plasma membrane and increases Env mobility. Further analysis of Env function revealed that W757 is also required for Env fusion and infectivity, which together with reduced VS formation, result in a potent defect in viral spread. Notably, W757 lies within a region of the EnvCT recently shown to act as a supporting baseplate for Env. Our data support a model in which W757 plays a key role in regulating Env biology, modulating its temporal and spatial recruitment to virus assembly sites and regulating the inherent fusogenicity of the Env ectodomain, thereby supporting efficient HIV-1 replication and spread.
Collapse
Affiliation(s)
- Xenia Snetkov
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK; (X.S.); (T.H.); (D.M.)
| | - Tafhima Haider
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK; (X.S.); (T.H.); (D.M.)
| | - Dejan Mesner
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK; (X.S.); (T.H.); (D.M.)
| | - Nicholas Groves
- Molecular and Cellular Biophysics Program, Department of Biological Sciences, University of Denver, Denver, CO 80210, USA; (N.G.); (S.B.v.E.)
| | - Schuyler B. van Engelenburg
- Molecular and Cellular Biophysics Program, Department of Biological Sciences, University of Denver, Denver, CO 80210, USA; (N.G.); (S.B.v.E.)
| | - Clare Jolly
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK; (X.S.); (T.H.); (D.M.)
- Correspondence:
| |
Collapse
|
34
|
Calvet-Mirabent M, Claiborne DT, Deruaz M, Tanno S, Serra C, Delgado-Arévalo C, Sánchez-Cerrillo I, de Los Santos I, Sanz J, García-Fraile L, Sánchez-Madrid F, Alfranca A, Muñoz-Fernández MÁ, Allen TM, Buzón MJ, Balazs A, Vrbanac V, Martín-Gayo E. Poly I:C and STING agonist-primed DC increase lymphoid tissue polyfunctional HIV-1-specific CD8 + T cells and limit CD4 + T cell loss in BLT mice. Eur J Immunol 2021; 52:447-461. [PMID: 34935145 DOI: 10.1002/eji.202149502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/19/2021] [Accepted: 12/14/2021] [Indexed: 11/11/2022]
Abstract
Effective function of CD8+ T cells and enhanced innate activation of dendritic cells (DC) in response to HIV-1 is linked to protective antiviral immunity in controllers. Manipulation of DC targeting the master regulator TANK-binding Kinase 1 (TBK1) might be useful to acquire controller-like properties. Here, we evaluated the impact of the combination of 2´3´-c´diAM(PS)2 and Poly I:C as potential adjuvants capable of potentiating DC´s abilities to induce polyfunctional HIV-1 specific CD8+ T cell responses in vitro and in vivo using a humanized BLT mouse model. Adjuvant combination enhanced TBK-1 phosphorylation and IL-12 and IFNβ expression on DC and increased their ability to activate polyfunctional HIV-1-specific CD8+ T cells in vitro. Moreover, higher proportions of hBLT mice vaccinated with ADJ-DC exhibited less severe CD4+ T cell depletion following HIV-1 infection compared to control groups. This was associated with infiltration of CD8+ T cells in the white pulp from the spleen, reduced spread of infected p24+ cells to lymph node and with preserved abilities of CD8+ T cells from the spleen and blood of vaccinated animals to induce specific polyfunctional responses upon antigen stimulation. Therefore, priming of DC with Poly I:C and STING agonists might be useful for future HIV-1 vaccine studies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Marta Calvet-Mirabent
- Immunology Unit from Hospital Universitario de la Princesa and Instituto de Investigación Sanitaria Princesa.,Universidad Autónoma of Madrid, Medicine Department Spain
| | | | - Maud Deruaz
- Human Immune System Mouse Program from Massachusetts General Hospital, Boston.,Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Serah Tanno
- Ragon Institute of MGH, MIT and Harvard.,Human Immune System Mouse Program from Massachusetts General Hospital, Boston
| | - Carla Serra
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona
| | - Cristina Delgado-Arévalo
- Immunology Unit from Hospital Universitario de la Princesa and Instituto de Investigación Sanitaria Princesa.,Universidad Autónoma of Madrid, Medicine Department Spain
| | - Ildefonso Sánchez-Cerrillo
- Immunology Unit from Hospital Universitario de la Princesa and Instituto de Investigación Sanitaria Princesa
| | - Ignacio de Los Santos
- Infectious Diseases Unit from Hospital Universitario de la Princesa and Instituto de Investigación Sanitaria Princesa
| | - Jesús Sanz
- Infectious Diseases Unit from Hospital Universitario de la Princesa and Instituto de Investigación Sanitaria Princesa
| | - Lucio García-Fraile
- Infectious Diseases Unit from Hospital Universitario de la Princesa and Instituto de Investigación Sanitaria Princesa
| | - Francisco Sánchez-Madrid
- Immunology Unit from Hospital Universitario de la Princesa and Instituto de Investigación Sanitaria Princesa.,Universidad Autónoma of Madrid, Medicine Department Spain
| | - Arantzazu Alfranca
- Immunology Unit from Hospital Universitario de la Princesa and Instituto de Investigación Sanitaria Princesa
| | - María Ángeles Muñoz-Fernández
- Immunology Section, Instituto Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario Gregorio Marañón. Madrid, Spain
| | | | - Maria J Buzón
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona
| | - Alejandro Balazs
- Ragon Institute of MGH, MIT and Harvard.,Human Immune System Mouse Program from Massachusetts General Hospital, Boston
| | - Vladimir Vrbanac
- Ragon Institute of MGH, MIT and Harvard.,Human Immune System Mouse Program from Massachusetts General Hospital, Boston
| | - Enrique Martín-Gayo
- Immunology Unit from Hospital Universitario de la Princesa and Instituto de Investigación Sanitaria Princesa.,Universidad Autónoma of Madrid, Medicine Department Spain
| |
Collapse
|
35
|
Murakami T, Ono A. Roles of Virion-Incorporated CD162 (PSGL-1), CD43, and CD44 in HIV-1 Infection of T Cells. Viruses 2021; 13:v13101935. [PMID: 34696365 PMCID: PMC8541244 DOI: 10.3390/v13101935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Nascent HIV-1 particles incorporate the viral envelope glycoprotein and multiple host transmembrane proteins during assembly at the plasma membrane. At least some of these host transmembrane proteins on the surface of virions are reported as pro-viral factors that enhance virus attachment to target cells or facilitate trans-infection of CD4+ T cells via interactions with non-T cells. In addition to the pro-viral factors, anti-viral transmembrane proteins are incorporated into progeny virions. These virion-incorporated transmembrane proteins inhibit HIV-1 entry at the point of attachment and fusion. In infected polarized CD4+ T cells, HIV-1 Gag localizes to a rear-end protrusion known as the uropod. Regardless of cell polarization, Gag colocalizes with and promotes the virion incorporation of a subset of uropod-directed host transmembrane proteins, including CD162, CD43, and CD44. Until recently, the functions of these virion-incorporated proteins had not been clear. Here, we review the recent findings about the roles played by virion-incorporated CD162, CD43, and CD44 in HIV-1 spread to CD4+ T cells.
Collapse
|
36
|
Understanding Willingness to Participate in HIV Biomedical Research: A Mixed Methods Investigation. AIDS Behav 2021; 25:2699-2711. [PMID: 34129144 DOI: 10.1007/s10461-021-03257-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2021] [Indexed: 10/21/2022]
Abstract
Biomedical research often enrolls people living with HIV (PLWH) receiving effective treatment to complete invasive procedures. This mixed methods study characterized determinants of willingness to undergo specific biomedical procedures among PLWH. In 2017, 61 participants (77% Black) from Miami completed a quantitative assessment examining willingness to participate. A subset of 19 participants completed an in-depth qualitative interview. Across all procedures, there was greater willingness to participate if asked by a primary care provider and if experimental results were shared. However, half of participants reported that they would experience undue influence (i.e., excessive persuasion) to participate from their primary care provider. In thematic analyses, altruism and personal benefit were identified as facilitators while medication changes, confidentiality, and perceived stigma were identified as barriers to participation in HIV biomedical research. Addressing participants' expectations and mitigating potential undue influence from primary care providers could optimize the ethical conduct of HIV biomedical studies.
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW The persistence of HIV-1-infected cells, despite the introduction of the combinatorial antiretroviral therapy, is a major obstacle to HIV-1 eradication. Understanding the nature of HIV reservoir will lead to novel therapeutic approaches for the functional cure or eradication of the virus. In this review, we will update the recent development in imaging applications toward HIV-1/simian immunodeficiency virus (SIV) viral reservoirs research and highlight some of their limitations. RECENT FINDINGS CD4 T cells are the primary target of HIV-1/SIV and the predominant site for productive and latent reservoirs. This viral reservoir preferentially resides in lymphoid compartments that are difficult to access, which renders sampling and measurements problematical and a hurdle for understanding HIV-1 pathogenicity. Novel noninvasive technologies are needed to circumvent this and urgently help to find a cure for HIV-1. Recent technological advancements have had a significant impact on the development of imaging methodologies allowing the visualization of relevant biomarkers with high resolution and analytical capacity. Such methodologies have provided insights into our understanding of cellular and molecular interactions in health and disease. SUMMARY Imaging of the HIV-1 reservoir can provide significant insights for the nature (cell types), spatial distribution, and the role of the tissue microenvironment for its in vivo dynamics and potentially lead to novel targets for the virus elimination.
Collapse
|
38
|
Tanabe R, Morikawa Y. Efficient Transendothelial Migration of Latently HIV-1-Infected Cells. Viruses 2021; 13:v13081589. [PMID: 34452453 PMCID: PMC8402846 DOI: 10.3390/v13081589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 11/16/2022] Open
Abstract
A small fraction of HIV-1-infected T cells forms populations of latently infected cells when they are a naive T-cell subset or in transit to a resting memory state. Latently HIV-1-infected cells reside in lymphoid tissues and serve as viral reservoirs. However, whether they systemically recirculate in the body and re-enter the lymphoid nodes are unknown. Here, we employed two in-vitro cell coculture systems mimicking the lymphatic endothelium in lymph nodes and investigated the homing potential, specifically the transendothelial migration (TEM), of two latently HIV-1-infected cell lines (J1.1 and ACH-2). In trans-well coculture systems, J1.1 and ACH-2 showed higher TEM efficiencies than their parental uninfected and acutely infected cells. The efficiency of TEM was enhanced by the presence of stromal cells, such as HS-5 and fibroblastic reticular cells. In an in-vitro reconstituted, three-dimensional coculture system in which stromal cells are embedded in collagen matrices, J1.1 showed slightly higher TEM efficiency in the presence of HS-5. In accordance with these phenotypes, latently infected cells adhered to the endothelial cells more efficiently than uninfected cells. Together, our study showed that latently HIV-1-infected cells enhanced cell adhesion and TEM abilities, suggesting their potential for efficient homing to lymph nodes.
Collapse
|
39
|
Haugh KA, Ladinsky MS, Ullah I, Stone HM, Pi R, Gilardet A, Grunst MW, Kumar P, Bjorkman PJ, Mothes W, Uchil PD. In vivo imaging of retrovirus infection reveals a role for Siglec-1/CD169 in multiple routes of transmission. eLife 2021; 10:64179. [PMID: 34223819 PMCID: PMC8298093 DOI: 10.7554/elife.64179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Early events in retrovirus transmission are determined by interactions between incoming viruses and frontline cells near entry sites. Despite their importance for retroviral pathogenesis, very little is known about these events. We developed a bioluminescence imaging (BLI)-guided multiscale imaging approach to study these events in vivo. Engineered murine leukemia reporter viruses allowed us to monitor individual stages of retrovirus life cycle including virus particle flow, virus entry into cells, infection and spread for retroorbital, subcutaneous, and oral routes. BLI permitted temporal tracking of orally administered retroviruses along the gastrointestinal tract as they traversed the lumen through Peyer’s patches to reach the draining mesenteric sac. Importantly, capture and acquisition of lymph-, blood-, and milk-borne retroviruses spanning three routes was promoted by a common host factor, the I-type lectin CD169, expressed on sentinel macrophages. These results highlight how retroviruses co-opt the immune surveillance function of tissue-resident sentinel macrophages for establishing infection.
Collapse
Affiliation(s)
- Kelsey A Haugh
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States
| | - Mark S Ladinsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Irfan Ullah
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, United States
| | - Helen M Stone
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States
| | - Ruoxi Pi
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States
| | - Alexandre Gilardet
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States
| | - Michael W Grunst
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States
| | - Priti Kumar
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, United States
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States
| | - Pradeep D Uchil
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States
| |
Collapse
|
40
|
Blanco A, Mahajan T, Coronado RA, Ma K, Demma DR, Dar RD. Synergistic Chromatin-Modifying Treatments Reactivate Latent HIV and Decrease Migration of Multiple Host-Cell Types. Viruses 2021; 13:v13061097. [PMID: 34201394 PMCID: PMC8228244 DOI: 10.3390/v13061097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/29/2021] [Accepted: 06/02/2021] [Indexed: 11/29/2022] Open
Abstract
Upon infection of its host cell, human immunodeficiency virus (HIV) establishes a quiescent and non-productive state capable of spontaneous reactivation. Diverse cell types harboring the provirus form a latent reservoir, constituting a major obstacle to curing HIV. Here, we investigate the effects of latency reversal agents (LRAs) in an HIV-infected THP-1 monocyte cell line in vitro. We demonstrate that leading drug treatments synergize activation of the HIV long terminal repeat (LTR) promoter. We establish a latency model in THP-1 monocytes using a replication incompetent HIV reporter vector with functional Tat, and show that chromatin modifiers synergize with a potent transcriptional activator to enhance HIV reactivation, similar to T-cells. Furthermore, leading reactivation cocktails are shown to differentially affect latency reactivation and surface expression of chemokine receptor type 4 (CXCR4), leading to altered host cell migration. This study investigates the effect of chromatin-modifying LRA treatments on HIV latent reactivation and cell migration in monocytes. As previously reported in T-cells, epigenetic mechanisms in monocytes contribute to controlling the relationship between latent reactivation and cell migration. Ultimately, advanced “Shock and Kill” therapy needs to successfully target and account for all host cell types represented in a complex and composite latency milieu.
Collapse
Affiliation(s)
- Alexandra Blanco
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (A.B.); (T.M.); (R.A.C.); (K.M.); (D.R.D.)
| | - Tarun Mahajan
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (A.B.); (T.M.); (R.A.C.); (K.M.); (D.R.D.)
| | - Robert A. Coronado
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (A.B.); (T.M.); (R.A.C.); (K.M.); (D.R.D.)
| | - Kelly Ma
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (A.B.); (T.M.); (R.A.C.); (K.M.); (D.R.D.)
| | - Dominic R. Demma
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (A.B.); (T.M.); (R.A.C.); (K.M.); (D.R.D.)
| | - Roy D. Dar
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (A.B.); (T.M.); (R.A.C.); (K.M.); (D.R.D.)
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Correspondence: ; Tel.: +1-(217)-265-0708
| |
Collapse
|
41
|
The large extracellular loop of CD63 interacts with gp41 of HIV-1 and is essential for establishing the virological synapse. Sci Rep 2021; 11:10011. [PMID: 33976357 PMCID: PMC8113602 DOI: 10.1038/s41598-021-89523-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/21/2021] [Indexed: 11/09/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) persists lifelong in infected individuals and has evolved unique strategies in order to evade the immune system. One of these strategies is the direct cell-to-cell spread of HIV-1. The formation of a virological synapse (VS) between donor and target cell is important for this process. Tetraspanins are cellular proteins that are actively involved in the formation of a VS. However, the molecular mechanisms of recruiting host proteins for the cell–cell transfer of particles to the VS remains unclear. Our study has mapped the binding site for the transmembrane envelope protein gp41 of HIV-1 within the large extracellular loop (LEL) of CD63 and showed that this interaction occurs predominantly at the VS between T cells where viral particles are transferred. Mutations within the highly conserved CCG motif of the tetraspanin superfamily abrogated recruiting of expressed HIV-1 GFP fused Gag core protein and CD63 to the VS. This demonstrates the biological significance of CD63 for enhanced formation of a VS. Since cell–cell spread of HIV-1 is a major route of persistent infection, these results highlight the central role of CD63 as a member of the tetraspanin superfamily during HIV-1 infection and pathogenesis.
Collapse
|
42
|
Abstract
When it comes to cancer evading the immune response, antigen presentation usually gets all the attention. In this issue of Immunity, Tello-Lafoz et al. reveal that cancer cells have another card up their sleeve: by regulating gene expression to "soften" their actin cytoskeleton, cancer cells limit susceptibility to lymphocyte-mediated cytotoxic attack.
Collapse
Affiliation(s)
- Shariq M Usmani
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Thorsten R Mempel
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
43
|
Terahara K, Iwabuchi R, Tsunetsugu-Yokota Y. Perspectives on Non-BLT Humanized Mouse Models for Studying HIV Pathogenesis and Therapy. Viruses 2021; 13:v13050776. [PMID: 33924786 PMCID: PMC8145733 DOI: 10.3390/v13050776] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
A variety of humanized mice, which are reconstituted only with human hematopoietic stem cells (HSC) or with fetal thymus and HSCs, have been developed and widely utilized as in vivo animal models of HIV-1 infection. The models represent some aspects of HIV-mediated pathogenesis in humans and are useful for the evaluation of therapeutic regimens. However, there are several limitations in these models, including their incomplete immune responses and poor distribution of human cells to the secondary lymphoid tissues. These limitations are common in many humanized mouse models and are critical issues that need to be addressed. As distinct defects exist in each model, we need to be cautious about the experimental design and interpretation of the outcomes obtained using humanized mice. Considering this point, we mainly characterize the current conventional humanized mouse reconstituted only with HSCs and describe past achievements in this area, as well as the potential contributions of the humanized mouse models for the study of HIV pathogenesis and therapy. We also discuss the use of various technologies to solve the current problems. Humanized mice will contribute not only to the pre-clinical evaluation of anti-HIV regimens, but also to a deeper understanding of basic aspects of HIV biology.
Collapse
Affiliation(s)
- Kazutaka Terahara
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (K.T.); (R.I.)
| | - Ryutaro Iwabuchi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (K.T.); (R.I.)
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo 162-8480, Japan
| | - Yasuko Tsunetsugu-Yokota
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (K.T.); (R.I.)
- Department of Medical Technology, School of Human Sciences, Tokyo University of Technology, Tokyo 144-8535, Japan
- Correspondence: or ; Tel.: +81-3-6424-2223
| |
Collapse
|
44
|
Tang Y, Woodward BO, Pastor L, George AM, Petrechko O, Nouvet FJ, Haas DW, Jiang G, Hildreth JEK. Endogenous Retroviral Envelope Syncytin Induces HIV-1 Spreading and Establishes HIV Reservoirs in Placenta. Cell Rep 2021; 30:4528-4539.e4. [PMID: 32234485 DOI: 10.1016/j.celrep.2020.03.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/16/2020] [Accepted: 03/05/2020] [Indexed: 02/08/2023] Open
Abstract
Radical cure of HIV-1 (HIV) is hampered by the establishment of HIV reservoirs and persistent infection in deep tissues despite suppressive antiretroviral therapy (ART). Here, we show that among HIV-positive women receiving suppressive ART, cells from placental tissues including trophoblasts contain HIV RNA and DNA. These viruses can be reactivated by latency reversal agents. We find that syncytin, the envelope glycoprotein of human endogenous retrovirus family W1 expressed on placental trophoblasts, triggers cell fusion with HIV-infected T cells. This results in cell-to-cell spread of HIV to placental trophoblasts. Such cell-to-cell spread of HIV is less sensitive to ART than free virus. Replication in syncytin-expressing cells can also produce syncytin-pseudotyped HIV, further expanding its ability to infect non-CD4 cells. These previously unrecognized mechanisms of HIV entry enable the virus to bypass receptor restriction to infect host barrier cells, thereby facilitating viral transmission and persistent infection in deep tissues.
Collapse
Affiliation(s)
- Yuyang Tang
- University of North Carolina at Chapel Hill, HIV Cure Center and Institute of Global Health & Infectious Diseases, Chapel Hill, NC 27599, USA; Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA 95616, USA
| | - Beverly O Woodward
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Lorena Pastor
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA 95616, USA
| | - Alvin M George
- Department of Internal Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | - Oksana Petrechko
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA 95616, USA
| | - Franklin J Nouvet
- Department of Internal Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | - David W Haas
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University School of Medicine, Nashville, TN 37240, USA; Department of Internal Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | - Guochun Jiang
- University of North Carolina at Chapel Hill, HIV Cure Center and Institute of Global Health & Infectious Diseases, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - James E K Hildreth
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA 95616, USA; Department of Internal Medicine, Meharry Medical College, Nashville, TN 37208, USA.
| |
Collapse
|
45
|
Yuan C, Jin Y, Li Y, Zhang E, Zhang P, Yang Q. PEDV infection in neonatal piglets through the nasal cavity is mediated by subepithelial CD3 + T cells. Vet Res 2021; 52:26. [PMID: 33597007 PMCID: PMC7888150 DOI: 10.1186/s13567-020-00883-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/16/2020] [Indexed: 01/18/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) primarily infects neonatal piglets causing catastrophic effects on the global pig farming industry. PEDV infects piglets through the nasal cavity, a process in which dendritic cells (DCs) play an important role. However, neonatal piglets have fewer nasal DCs. This study found that subepithelial CD3+ T cells mediated PEDV invasion through the nasal cavity in neonatal piglets. PEDV could replicate in the nasal epithelial cells (NECs) isolated from the nasal cavity of neonatal piglets. Infection of NECs with PEDV could induce antiviral and inflammatory cytokines at the late stage. The infected NECs mediated transfer of virus to CD3+ T cells distributed in the subepithelial of the nasal cavity via cell-to-cell contact. The infected CD3+ T cells could migrate to the intestine via blood circulation, causing intestinal infection in neonatal piglets. Thus, the findings of this study indicate the importance of CD3+T cells in the dissemination of PEDV from the nasal cavity to the intestinal mucosa in neonatal piglets.
Collapse
Affiliation(s)
- Chen Yuan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, China
| | - Yuxin Jin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, China
| | - Yuchen Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, China
| | - En Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, China
| | - Penghao Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, China
| | - Qian Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
46
|
Hikichi Y, Van Duyne R, Pham P, Groebner JL, Wiegand A, Mellors JW, Kearney MF, Freed EO. Mechanistic Analysis of the Broad Antiretroviral Resistance Conferred by HIV-1 Envelope Glycoprotein Mutations. mBio 2021; 12:e03134-20. [PMID: 33436439 PMCID: PMC7844542 DOI: 10.1128/mbio.03134-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
Despite the effectiveness of antiretroviral (ARV) therapy, virological failure can occur in some HIV-1-infected patients in the absence of mutations in drug target genes. We previously reported that, in vitro, the lab-adapted HIV-1 NL4-3 strain can acquire resistance to the integrase inhibitor dolutegravir (DTG) by acquiring mutations in the envelope glycoprotein (Env) that enhance viral cell-cell transmission. In this study, we investigated whether Env-mediated drug resistance extends to ARVs other than DTG and whether it occurs in other HIV-1 isolates. We demonstrate that Env mutations can reduce susceptibility to multiple classes of ARVs and also increase resistance to ARVs when coupled with target-gene mutations. We observe that the NL4-3 Env mutants display a more stable and closed Env conformation and lower rates of gp120 shedding than the WT virus. We also selected for Env mutations in clinically relevant HIV-1 isolates in the presence of ARVs. These Env mutants exhibit reduced susceptibility to DTG, with effects on replication and Env structure that are HIV-1 strain dependent. Finally, to examine a possible in vivo relevance of Env-mediated drug resistance, we performed single-genome sequencing of plasma-derived virus from five patients failing an integrase inhibitor-containing regimen. This analysis revealed the presence of several mutations in the highly conserved gp120-gp41 interface despite low frequency of resistance mutations in integrase. These results suggest that mutations in Env that enhance the ability of HIV-1 to spread via a cell-cell route may increase the opportunity for the virus to acquire high-level drug resistance mutations in ARV target genes.IMPORTANCE Although combination antiretroviral (ARV) therapy is highly effective in controlling the progression of HIV disease, drug resistance can be a major obstacle. Recent findings suggest that resistance can develop without ARV target gene mutations. We previously reported that mutations in the HIV-1 envelope glycoprotein (Env) confer resistance to an integrase inhibitor. Here, we investigated the mechanism of Env-mediated drug resistance and the possible contribution of Env to virological failure in vivo We demonstrate that Env mutations can reduce sensitivity to major classes of ARVs in multiple viral isolates and define the effect of the Env mutations on Env subunit interactions. We observed that many Env mutations accumulated in individuals failing integrase inhibitor therapy despite a low frequency of resistance mutations in integrase. Our findings suggest that broad-based Env-mediated drug resistance may impact therapeutic strategies and provide clues toward understanding how ARV-treated individuals fail therapy without acquiring mutations in drug target genes.
Collapse
Affiliation(s)
- Yuta Hikichi
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Rachel Van Duyne
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Phuong Pham
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Jennifer L Groebner
- Translational Research Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Ann Wiegand
- Translational Research Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - John W Mellors
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mary F Kearney
- Translational Research Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Eric O Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
47
|
|
48
|
Leroy H, Han M, Woottum M, Bracq L, Bouchet J, Xie M, Benichou S. Virus-Mediated Cell-Cell Fusion. Int J Mol Sci 2020; 21:E9644. [PMID: 33348900 PMCID: PMC7767094 DOI: 10.3390/ijms21249644] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
Cell-cell fusion between eukaryotic cells is a general process involved in many physiological and pathological conditions, including infections by bacteria, parasites, and viruses. As obligate intracellular pathogens, viruses use intracellular machineries and pathways for efficient replication in their host target cells. Interestingly, certain viruses, and, more especially, enveloped viruses belonging to different viral families and including human pathogens, can mediate cell-cell fusion between infected cells and neighboring non-infected cells. Depending of the cellular environment and tissue organization, this virus-mediated cell-cell fusion leads to the merge of membrane and cytoplasm contents and formation of multinucleated cells, also called syncytia, that can express high amount of viral antigens in tissues and organs of infected hosts. This ability of some viruses to trigger cell-cell fusion between infected cells as virus-donor cells and surrounding non-infected target cells is mainly related to virus-encoded fusion proteins, known as viral fusogens displaying high fusogenic properties, and expressed at the cell surface of the virus-donor cells. Virus-induced cell-cell fusion is then mediated by interactions of these viral fusion proteins with surface molecules or receptors involved in virus entry and expressed on neighboring non-infected cells. Thus, the goal of this review is to give an overview of the different animal virus families, with a more special focus on human pathogens, that can trigger cell-cell fusion.
Collapse
Affiliation(s)
- Héloïse Leroy
- Institut Cochin, Inserm U1016, 75014 Paris, France; (H.L.); (M.H.); (M.W.)
- Centre National de la Recherche Scientifique CNRS, UMR8104, 75014 Paris, France
- Faculty of Health, University of Paris, 75014 Paris, France
| | - Mingyu Han
- Institut Cochin, Inserm U1016, 75014 Paris, France; (H.L.); (M.H.); (M.W.)
- Centre National de la Recherche Scientifique CNRS, UMR8104, 75014 Paris, France
- Faculty of Health, University of Paris, 75014 Paris, France
| | - Marie Woottum
- Institut Cochin, Inserm U1016, 75014 Paris, France; (H.L.); (M.H.); (M.W.)
- Centre National de la Recherche Scientifique CNRS, UMR8104, 75014 Paris, France
- Faculty of Health, University of Paris, 75014 Paris, France
| | - Lucie Bracq
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland;
| | - Jérôme Bouchet
- Laboratory Orofacial Pathologies, Imaging and Biotherapies UR2496, University of Paris, 92120 Montrouge, France;
| | - Maorong Xie
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK;
| | - Serge Benichou
- Institut Cochin, Inserm U1016, 75014 Paris, France; (H.L.); (M.H.); (M.W.)
- Centre National de la Recherche Scientifique CNRS, UMR8104, 75014 Paris, France
- Faculty of Health, University of Paris, 75014 Paris, France
| |
Collapse
|
49
|
Kaw S, Ananth S, Tsopoulidis N, Morath K, Coban BM, Hohenberger R, Bulut OC, Klein F, Stolp B, Fackler OT. HIV-1 infection of CD4 T cells impairs antigen-specific B cell function. EMBO J 2020; 39:e105594. [PMID: 33146906 PMCID: PMC7737609 DOI: 10.15252/embj.2020105594] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022] Open
Abstract
Failures to produce neutralizing antibodies upon HIV‐1 infection result in part from B‐cell dysfunction due to unspecific B‐cell activation. How HIV‐1 affects antigen‐specific B‐cell functions remains elusive. Using an adoptive transfer mouse model and ex vivo HIV infection of human tonsil tissue, we found that expression of the HIV‐1 pathogenesis factor NEF in CD4 T cells undermines their helper function and impairs cognate B‐cell functions including mounting of efficient specific IgG responses. NEF interfered with T cell help via a specific protein interaction motif that prevents polarized cytokine secretion at the T‐cell–B‐cell immune synapse. This interference reduced B‐cell activation and proliferation and thus disrupted germinal center formation and affinity maturation. These results identify NEF as a key component for HIV‐mediated dysfunction of antigen‐specific B cells. Therapeutic targeting of the identified molecular surface in NEF will facilitate host control of HIV infection.
Collapse
Affiliation(s)
- Sheetal Kaw
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Swetha Ananth
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, Heidelberg, Germany.,German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Nikolaos Tsopoulidis
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Katharina Morath
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Bahar M Coban
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, Heidelberg, Germany.,German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Ralph Hohenberger
- Department of Otorhinolaryngology, University Hospital Heidelberg, Heidelberg, Germany
| | - Olcay C Bulut
- German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany.,Department of Otorhinolaryngology, Head and Neck Surgery, SLK Klinikum Am Gesundbrunnen, Heilbronn, Germany
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, University Hospital of Cologne, Cologne, Germany.,German Centre for Infection Research (DZIF), Partner Site Köln, Köln, Germany
| | - Bettina Stolp
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Oliver T Fackler
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, Heidelberg, Germany.,German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| |
Collapse
|
50
|
Gaudin R, Goetz JG. Tracking Mechanisms of Viral Dissemination In Vivo. Trends Cell Biol 2020; 31:17-23. [PMID: 33023793 PMCID: PMC7532808 DOI: 10.1016/j.tcb.2020.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 12/18/2022]
Abstract
Dissemination and replication of viruses into hosts is a multistep process where viral particles infect, navigate, and indoctrinate various cell types. Viruses can reach tissues that are distant from their infection site by subverting subcellular mechanisms in ways that are, sometimes, disruptive. Modeling these steps, at appropriate resolution and within animal models, is cumbersome. Yet, mimicking these strategies in vitro fails to recapitulate the complexity of the cellular ecosystem. Here, we will discuss relevant in vivo platforms to dissect the cellular and molecular programs governing viral dissemination and briefly discuss organoid and ex vivo alternatives. We will focus on the zebrafish model and will describe how it provides a transparent window to unravel new cellular mechanisms of viral dissemination in vivo. The zebrafish model allows in vivo investigations of virus-induced molecular processes at subcellular resolution. Viruses have evolved multiple strategies for disseminating over long distance, including by indoctrinating host cell types with high migration potential. Organoids derived from stem cells emerge as powerful alternatives to unravel new molecular mechanisms of viral dissemination.
Collapse
Affiliation(s)
- Raphael Gaudin
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, 34293 Montpellier, France; Université de Montpellier, 34090 Montpellier, France.
| | - Jacky G Goetz
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.
| |
Collapse
|