1
|
Quarles E, Petreanu L, Narain A, Jain A, Rai A, Wang J, Oleson B, Jakob U. Cryosectioning and immunofluorescence of C. elegans reveals endogenous polyphosphate in intestinal endo-lysosomal organelles. CELL REPORTS METHODS 2024; 4:100879. [PMID: 39413779 DOI: 10.1016/j.crmeth.2024.100879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 06/11/2024] [Accepted: 09/20/2024] [Indexed: 10/18/2024]
Abstract
Polyphosphate (polyP) is a ubiquitous polyanion present throughout the tree of life. While polyP's widely varied functions have been interrogated in single-celled organisms, little is known about the cellular distribution and function of polyP in multicellular organisms. To study polyP in metazoans, we developed the nematode Caenorhabditis elegans as a model system. We designed a high-throughput, longitudinal-orientation cryosectioning method that allowed us to scrutinize the intracellular localization of polyP in fixed C. elegans using fluorescent polyP probes and co-immunostaining targeting appropriate marker proteins. We discovered that the vast majority of polyP is localized within the endo-lysosomal compartments of the intestinal cells and is highly sensitive toward the disruption of endo-lysosomal compartment generation and food availability. This study lays the groundwork for further mechanistic research of polyPs in multicellular organisms and provides a reliable method for immunostaining hundreds of fixed worms in a single experiment.
Collapse
Affiliation(s)
- Ellen Quarles
- University of Michigan, Molecular, Cellular, and Developmental Biology Department, Ann Arbor, MI, USA.
| | - Lauren Petreanu
- University of Michigan, Molecular, Cellular, and Developmental Biology Department, Ann Arbor, MI, USA
| | - Anjali Narain
- University of Michigan, Molecular, Cellular, and Developmental Biology Department, Ann Arbor, MI, USA
| | - Aanchal Jain
- University of Michigan, Molecular, Cellular, and Developmental Biology Department, Ann Arbor, MI, USA
| | - Akash Rai
- University of Michigan, Molecular, Cellular, and Developmental Biology Department, Ann Arbor, MI, USA
| | - Joyful Wang
- University of Michigan, Molecular, Cellular, and Developmental Biology Department, Ann Arbor, MI, USA
| | - Bryndon Oleson
- University of Michigan, Molecular, Cellular, and Developmental Biology Department, Ann Arbor, MI, USA
| | - Ursula Jakob
- University of Michigan, Molecular, Cellular, and Developmental Biology Department, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Yao Y, Zhao Q, Tao Y, Liu K, Cao T, Chen Z, Liu C, Le W, Zhao J, Li D, Kang W. Different charged biopolymers induce α-synuclein to form fibrils with distinct structures. J Biol Chem 2024:107862. [PMID: 39374778 DOI: 10.1016/j.jbc.2024.107862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/09/2024] Open
Abstract
The aggregation of α-synuclein (α-syn) into amyloid fibrils, a key process in the development of Parkinson's disease (PD) and other synucleinopathies, is influenced by a range of factors such as charged biopolymers, chaperones, and metabolites. However, the specific impacts of different biopolymers on α-syn fibril structure are not well understood. In our work, we found that different polyanions and polycations, such as polyphosphate (polyP), polyuridine (polyU), and polyamines (including putrescine, spermidine, and spermine), markedly altered the fibrillation kinetics of α-syn in vitro. Furthermore, seeding assay revealed distinct cross-seeding capacities across different biopolymer-induced α-syn fibrils, suggesting the formation of structurally distinct strains under different conditions. Utilizing cryo-electron microscopy (cryo-EM), we further examined the detailed structural configuration of α-syn fibrils formed in the presence of these biopolymers. Notably, we found that while polyamines do not change the atomic structure of α-syn fibrils, polyU and polyP induce the formation of distinct amyloid fibrils, exhibiting a range of structural polymorphs. Our work offers valuable insights into how various charged biopolymers affect the aggregation process and the resultant structures of α-syn fibrils, thereby enhancing our understanding of the structural variations in α-syn fibrils across different pathological conditions.
Collapse
Affiliation(s)
- Yuxuan Yao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qinyue Zhao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Youqi Tao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kaien Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Tianyi Cao
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China; School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zipeng Chen
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - WeiDong Le
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, 116021, China
| | - Jing Zhao
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Wenyan Kang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine. Shanghai 200025, China; Department of Neurology, Ruijin Hainan Hospital, Shanghai Jiao Tong University, School of Medicine (Boao Research Hospital). Hainan, 571434, China.
| |
Collapse
|
3
|
Huettemann P, Mahadevan P, Lempart J, Tse E, Dehury B, Edwards BFP, Southworth DR, Sahoo BR, Jakob U. Amyloid accelerator polyphosphate fits as the mystery density in α-synuclein fibrils. PLoS Biol 2024; 22:e3002650. [PMID: 39480879 PMCID: PMC11527176 DOI: 10.1371/journal.pbio.3002650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/23/2024] [Indexed: 11/02/2024] Open
Abstract
Aberrant aggregation of α-Synuclein is the pathological hallmark of a set of neurodegenerative diseases termed synucleinopathies. Recent advances in cryo-electron microscopy have led to the structural determination of the first synucleinopathy-derived α-Synuclein fibrils, which contain a non-proteinaceous, "mystery density" at the core of the protofilaments, hypothesized to be highly negatively charged. Guided by previous studies that demonstrated that polyphosphate (polyP), a universally conserved polyanion, significantly accelerates α-Synuclein fibril formation, we conducted blind docking and molecular dynamics simulation experiments to model the polyP binding site in α-Synuclein fibrils. Here, we demonstrate that our models uniformly place polyP into the lysine-rich pocket, which coordinates the mystery density in patient-derived fibrils. Subsequent in vitro studies and experiments in cells revealed that substitution of the 2 critical lysine residues K43 and K45 with alanine residues leads to a loss of all previously reported effects of polyP binding on α-Synuclein, including stimulation of fibril formation, change in filament conformation and stability as well as alleviation of cytotoxicity. In summary, our study demonstrates that polyP fits the unknown electron density present in in vivo α-Synuclein fibrils and suggests that polyP exerts its functions by neutralizing charge repulsion between neighboring lysine residues.
Collapse
Affiliation(s)
- Philipp Huettemann
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Pavithra Mahadevan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Justine Lempart
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Eric Tse
- Institute for Neurodegenerative Diseases, University of California San Francisco, California, United States of America
| | - Budheswar Dehury
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Brian F. P. Edwards
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, Michigan, United States of America
| | - Daniel R. Southworth
- Institute for Neurodegenerative Diseases, University of California San Francisco, California, United States of America
| | - Bikash R. Sahoo
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ursula Jakob
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
4
|
Vappala S, Smith SA, Kizhakkedathu JN, Morrissey JH. Inhibitors of Polyphosphate and Neutrophil Extracellular Traps. Semin Thromb Hemost 2024; 50:970-977. [PMID: 37192652 PMCID: PMC10651799 DOI: 10.1055/s-0043-1768936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The contact pathway of blood clotting has received intense interest in recent years as studies have linked it to thrombosis, inflammation, and innate immunity. Because the contact pathway plays little to no role in normal hemostasis, it has emerged as a potential target for safer thromboprotection, relative to currently approved antithrombotic drugs which all target the final common pathway of blood clotting. Research since the mid-2000s has identified polyphosphate, DNA, and RNA as important triggers of the contact pathway with roles in thrombosis, although these molecules also modulate blood clotting and inflammation via mechanisms other than the contact pathway of the clotting cascade. The most significant source of extracellular DNA in many disease settings is in the form of neutrophil extracellular traps (NETs), which have been shown to contribute to incidence and severity of thrombosis. This review summarizes known roles of extracellular polyphosphate and nucleic acids in thrombosis, with an emphasis on novel agents under current development that target the prothrombotic activities of polyphosphate and NETs.
Collapse
Affiliation(s)
- Sreeparna Vappala
- Department of Pathology and Laboratory Medicine; and Centre for Blood Research, Life Science Institute; University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephanie A. Smith
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jayachandran N. Kizhakkedathu
- Department of Pathology and Laboratory Medicine; and Centre for Blood Research, Life Science Institute; University of British Columbia, Vancouver, British Columbia, Canada
- Department of Chemistry; and School of Biomedical Engineering; University of British Columbia, Vancouver, British Columbia, Canada
| | - James H. Morrissey
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Kullik GA, Waldmann M, Renné T. Analysis of polyphosphate in mammalian cells and tissues: methods, functions and challenges. Curr Opin Biotechnol 2024; 90:103208. [PMID: 39321579 DOI: 10.1016/j.copbio.2024.103208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024]
Abstract
Polyphosphates play a crucial role in various biological processes, such as blood coagulation, energy homeostasis, and cellular stress response. However, their isolation, detection, and quantification present significant challenges. These difficulties arise primarily from their solubility, low concentration in mammals, and structural similarity to other ubiquitous biopolymers. This review provides an overview of the current understanding of polyphosphates in mammals, including their proposed functions and tissue distribution. It also examines key isolation techniques, such as chromatography and precipitation, alongside detection methods, such as colorimetric assays and enzymatic digestion. The strengths and limitations of these methods are discussed, as well as the challenges in preserving polyphosphate integrity. Recent advancements in isolation and detection are also highlighted, offering a comprehensive perspective essential for advancing polyphosphate research.
Collapse
Affiliation(s)
- Giuliano A Kullik
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Moritz Waldmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, Mainz, Germany; Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland.
| |
Collapse
|
6
|
Schoeppe R, Waldmann M, Jessen HJ, Renné T. An Update on Polyphosphate In Vivo Activities. Biomolecules 2024; 14:937. [PMID: 39199325 PMCID: PMC11352482 DOI: 10.3390/biom14080937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/13/2024] [Accepted: 07/16/2024] [Indexed: 09/01/2024] Open
Abstract
Polyphosphate (polyP) is an evolutionary ancient inorganic molecule widespread in biology, exerting a broad range of biological activities. The intracellular polymer serves as an energy storage pool and phosphate/calcium ion reservoir with implications for basal cellular functions. Metabolisms of the polymer are well understood in procaryotes and unicellular eukaryotic cells. However, functions, regulation, and association with disease states of the polymer in higher eukaryotic species such as mammalians are just beginning to emerge. The review summarises our current understanding of polyP metabolism, the polymer's functions, and methods for polyP analysis. In-depth knowledge of the pathways that control polyP turnover will open future perspectives for selective targeting of the polymer.
Collapse
Affiliation(s)
- Robert Schoeppe
- Institute of Clinical Chemistry and Laboratory Medicine (O26), University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Moritz Waldmann
- Institute of Clinical Chemistry and Laboratory Medicine (O26), University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Henning J. Jessen
- Institute of Organic Chemistry, Albert-Ludwigs-University of Freiburg, D-79105 Freiburg, Germany;
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine (O26), University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
- Center for Thrombosis and Haemostasis (CTH), Johannes Gutenberg University Medical Center, D-55131 Mainz, Germany
| |
Collapse
|
7
|
Guan J, Jakob U. The Protein Scaffolding Functions of Polyphosphate. J Mol Biol 2024; 436:168504. [PMID: 38423453 DOI: 10.1016/j.jmb.2024.168504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/31/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Inorganic polyphosphate (polyP), one of the first high-energy compound on earth, defies its extreme compositional and structural simplicity with an astoundingly wide array of biological activities across all domains of life. However, the underlying mechanism of such functional pleiotropy remains largely elusive. In this review, we will summarize recent studies demonstrating that this simple polyanion stabilizes protein folding intermediates and scaffolds select native proteins. These functions allow polyP to act as molecular chaperone that protects cells against protein aggregation, as pro-amyloidogenic factor that accelerates both physiological and disease-associated amyloid formation, and as a modulator of liquid-liquid phase separation processes. These activities help to explain polyP's known roles in bacterial stress responses and pathogenicity, provide the mechanistic foundation for its potential role in human neurodegenerative diseases, and open a new direction regarding its influence on gene expression through condensate formation. We will highlight critical unanswered questions and point out potential directions that will help to further understand the pleiotropic functions of this ancient and ubiquitous biopolymer.
Collapse
Affiliation(s)
- Jian Guan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Ursula Jakob
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA; Biological Chemistry Department, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Ferrucci V, Miceli M, Pagliuca C, Bianco O, Castaldo L, Izzo L, Cozzolino M, Zannella C, Oglio F, Polcaro A, Randazzo A, Colicchio R, Galdiero M, Berni Canani R, Salvatore P, Zollo M. Modulation of innate immunity related genes resulting in prophylactic antimicrobial and antiviral properties. J Transl Med 2024; 22:574. [PMID: 38886736 PMCID: PMC11184722 DOI: 10.1186/s12967-024-05378-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND The innate immunity acts during the early phases of infection and its failure in response to a multilayer network of co-infections is cause of immune system dysregulation. Epidemiological SARS-CoV-2 infections data, show that Influenza Virus (FLU-A-B-C) and Respiratory Syncytial Virus (RSV) are co-habiting those respiratory traits. These viruses, especially in children (mostly affected by 'multi-system inflammatory syndrome in children' [MIS-C] and the winter pandemic FLU), in the aged population, and in 'fragile' patients are causing alteration in immune response. Then, bacterial and fungal pathogens are also co-habiting the upper respiratory traits (e.g., Staphylococcus aureus and Candida albicans), thus contributing to morbidity in those COVID-19 affected patients. METHODS Liquid chromatography coupled with high-resolution mass spectrometry using the quadrupole orbital ion trap analyser (i.e., UHPLC-Q-Orbitrap HRMS) was adopted to measure the polyphenols content of a new nutraceutical formula (Solution-3). Viral infections with SARS-CoV-2 (EG.5), FLU-A and RSV-A viruses (as performed in BLS3 authorised laboratory) and real time RT-PCR (qPCR) assay were used to test the antiviral action of the nutraceutical formula. Dilution susceptibility tests have been used to estimate the minimum inhibitory and bactericidal concentration (MIC and MBC, respectively) of Solution-3 on a variety of microorganisms belonging to Gram positive/ negative bacteria and fungi. Transcriptomic data analyses and functional genomics (i.e., RNAseq and data mining), coupled to qPCR and ELISA assays have been used to investigate the mechanisms of action of the nutraceutical formula on those processes involved in innate immune response. RESULTS Here, we have tested the combination of natural products containing higher amounts of polyphenols (i.e., propolis, Verbascum thapsus L., and Thymus vulgaris L.), together with the inorganic long chain polyphosphates 'polyPs' with antiviral, antibacterial, and antifungal behaviours, against SARS-CoV-2, FLU-A, RSV-A, Gram positive/ negative bacteria and fungi (i.e., Candida albicans). These components synergistically exert an immunomodulatory action by enhancing those processes involved in innate immune response (e.g., cytokines: IFNγ, TNFα, IL-10, IL-6/12; chemokines: CXCL1; antimicrobial peptides: HBD-2, LL-37; complement system: C3). CONCLUSION The prophylactic antimicrobial success of this nutraceutical formula against SARS-CoV-2, FLU-A and RSV-A viruses, together with the common bacteria and fungi co-infections as present in human oral cavity, is expected to be valuable.
Collapse
Affiliation(s)
- Veronica Ferrucci
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples 'Federico II', Via Sergio Pansini 5, 80131, Naples, Italy.
- CEINGE Biotecnologie Avanzate 'Franco Salvatore', Via Gaetano Salvatore 486, 80145, Naples, Italy.
- Elysium Cell Bio Ita, Via Gaetano Salvatore 486, 80145, Naples, Italy.
| | - Marco Miceli
- CEINGE Biotecnologie Avanzate 'Franco Salvatore', Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Chiara Pagliuca
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples 'Federico II', Via Sergio Pansini 5, 80131, Naples, Italy
| | - Orazio Bianco
- CEINGE Biotecnologie Avanzate 'Franco Salvatore', Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Luigi Castaldo
- Department of Pharmacy, University of Naples 'Federico II', Via Domenico Montesano 49, 80131, Naples, Italy
| | - Luana Izzo
- Department of Pharmacy, University of Naples 'Federico II', Via Domenico Montesano 49, 80131, Naples, Italy
| | - Marica Cozzolino
- CEINGE Biotecnologie Avanzate 'Franco Salvatore', Via Gaetano Salvatore 486, 80145, Naples, Italy
- Dipartimento Di Scienze Mediche Traslazionali, University of Naples Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Franca Oglio
- CEINGE Biotecnologie Avanzate 'Franco Salvatore', Via Gaetano Salvatore 486, 80145, Naples, Italy
- Dipartimento Di Scienze Mediche Traslazionali, University of Naples Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Antonio Polcaro
- Polcaro Fitopreparazioni S.R.L, Via Sant Agnello, 9 D; 80030, Roccarainola, Naples, Italy
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples 'Federico II', Via Domenico Montesano 49, 80131, Naples, Italy
| | - Roberta Colicchio
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples 'Federico II', Via Sergio Pansini 5, 80131, Naples, Italy
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
- UOC of Virology and Microbiology, University Hospital of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Roberto Berni Canani
- CEINGE Biotecnologie Avanzate 'Franco Salvatore', Via Gaetano Salvatore 486, 80145, Naples, Italy
- Dipartimento Di Scienze Mediche Traslazionali, University of Naples Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Paola Salvatore
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples 'Federico II', Via Sergio Pansini 5, 80131, Naples, Italy
- CEINGE Biotecnologie Avanzate 'Franco Salvatore', Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Massimo Zollo
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples 'Federico II', Via Sergio Pansini 5, 80131, Naples, Italy.
- CEINGE Biotecnologie Avanzate 'Franco Salvatore', Via Gaetano Salvatore 486, 80145, Naples, Italy.
- Elysium Cell Bio Ita, Via Gaetano Salvatore 486, 80145, Naples, Italy.
- DAI Medicina di Laboratorio e Trasfusionale, University of Naples Federico II, Via Sergio Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
9
|
Huettemann P, Mahadevan P, Lempart J, Tse E, Dehury B, Edwards BFP, Southworth DR, Sahoo BR, Jakob U. Amyloid Accelerator Polyphosphate Implicated as the Mystery Density in α-Synuclein Fibrils. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.592011. [PMID: 38746133 PMCID: PMC11092616 DOI: 10.1101/2024.05.01.592011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Aberrant aggregation of α-Synuclein is the pathological hallmark of a set of neurodegenerative diseases termed synucleinopathies. Recent advances in cryo-electron microscopy have led to the structural determination of the first synucleinopathy-derived α-Synuclein fibrils, which contain a non-proteinaceous, "mystery density" at the core of the protofilaments, hypothesized to be highly negatively charged. Guided by previous studies that demonstrated that polyphosphate (polyP), a universally conserved polyanion, significantly accelerates α-Synuclein fibril formation, we conducted blind docking and molecular dynamics simulation experiments to model the polyP binding site in α-Synuclein fibrils. Here we demonstrate that our models uniformly place polyP into the lysine-rich pocket, which coordinates the mystery density in patient-derived fibrils. Subsequent in vitro studies and experiments in cells revealed that substitution of the two critical lysine residues K43 and K45 leads to a loss of all previously reported effects of polyP binding on α-Synuclein, including stimulation of fibril formation, change in filament conformation and stability as well as alleviation of cytotoxicity. In summary, our study demonstrates that polyP fits the unknown electron density present in in vivo α-Synuclein fibrils and suggests that polyP exerts its functions by neutralizing charge repulsion between neighboring lysine residues.
Collapse
|
10
|
Akosah Y, Yang J, Pavlov E. Inorganic polyphosphate and ion transport across biological membranes. Biochem Soc Trans 2024; 52:671-679. [PMID: 38630434 DOI: 10.1042/bst20230522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/22/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024]
Abstract
Inorganic polyphosphate (polyP) is widely recognized for playing important roles and processes involved in energy and phosphate storage, regulation of gene expression, and calcium signaling. The less well-known role of polyP is as a direct mediator of ion transport across biological membranes. Here, we will briefly summarize current knowledge of the molecular mechanisms of how polyP can be involved in membrane ion transport. We discuss three types of mechanisms that might involve polyP: (1) formation of non-protein channel complex that includes calcium, polyP, and polyhydroxybutyrate (PHB); (2) modulation of the channel activity of PHBlated protein channels; and (3) direct effects of polyP on the function of the voltage-gated ion channels in the process that do not involve PHB.
Collapse
Affiliation(s)
- Yaw Akosah
- Department of Molecular Pathobiology, New York University, New York, NY, U.S.A
| | - Jingyi Yang
- Department of Molecular Pathobiology, New York University, New York, NY, U.S.A
| | - Evgeny Pavlov
- Department of Molecular Pathobiology, New York University, New York, NY, U.S.A
| |
Collapse
|
11
|
Garcés P, Amaro A, Montecino M, van Zundert B. Inorganic polyphosphate: from basic research to diagnostic and therapeutic opportunities in ALS/FTD. Biochem Soc Trans 2024; 52:123-135. [PMID: 38323662 DOI: 10.1042/bst20230257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/08/2024]
Abstract
Inorganic polyphosphate (polyP) is a simple, negatively charged biopolymer with chain lengths ranging from just a few to over a thousand ortho-phosphate (Pi) residues. polyP is detected in every cell type across all organisms in nature thus far analyzed. Despite its structural simplicity, polyP has been shown to play important roles in a remarkably broad spectrum of biological processes, including blood coagulation, bone mineralization and inflammation. Furthermore, polyP has been implicated in brain function and the neurodegenerative diseases amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), Alzheimer's disease and Parkinson's disease. In this review, we first address the challenges associated with identifying mammalian polyP metabolizing enzymes, such as Nudt3, and quantifying polyP levels in brain tissue, cultured neural cells and cerebrospinal fluid. Subsequently, we focus on recent studies that unveil how the excessive release of polyP by human and mouse ALS/FTD astrocytes contributes to these devastating diseases by inducing hyperexcitability, leading to motoneuron death. Potential implications of elevated polyP levels in ALS/FTD patients for innovative diagnostic and therapeutic approaches are explored. It is emphasized, however, that caution is required in targeting polyP in the brain due to its diverse physiological functions, serving as an energy source, a chelator for divalent cations and a scaffold for amyloidogenic proteins. Reducing polyP levels, especially in neurons, might thus have adverse effects in brain functioning. Finally, we discuss how activated mast cells and platelets also can significantly contribute to ALS progression, as they can massively release polyP.
Collapse
Affiliation(s)
- Polett Garcés
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
| | - Armando Amaro
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
| | - Martin Montecino
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
- Millennium Nucleus of Neuroepigenetics and Plasticity (EpiNeuro), Santiago, Chile
| | - Brigitte van Zundert
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
- Millennium Nucleus of Neuroepigenetics and Plasticity (EpiNeuro), Santiago, Chile
- Department of Neurology, University of Massachusetts Chan Medical School (UMMS), Worcester, MA, U.S.A
| |
Collapse
|
12
|
Nebesnaya KS, Makhmudov AR, Rustamov KR, Rakhmatullina NSH, Rustamova SI, Mirkhodjaev UZ, Charishnikova OS, Sabirov RZ, Baev AY. Inorganic polyphosphate regulates functions of thymocytes via activation of P2X purinoreceptors. Biochim Biophys Acta Gen Subj 2024; 1868:130523. [PMID: 38006987 DOI: 10.1016/j.bbagen.2023.130523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 11/27/2023]
Abstract
Inorganic polyphosphate (polyP) is an ancient polymer, which was proven to be a signalling molecule in the mammalian brain, mediating the communication between astrocytes via activation of P2Y1 purinoreceptors and modulating the activity of neurons. There is very limited information regarding the ability of polyP to transmit the information as an agonist of purinoreceptors in other cells and tissues. Here, we show that application of polyP to the suspension of primary thymocytes increases the concentration of intracellular calcium. PolyP evoked calcium signal was dependent on the presence of P2X inhibitors but not P2Y1 inhibitor. PolyP dependent increase in intracellular calcium concentration caused mild mitochondrial depolarization, which was dependent on inhibitors of purinoreceptors, extracellular calcium and inhibitor of mitochondrial calcium uniporter but wasn't dependent on cyclosporin A. Application of polyP modulated cell volume regulation machinery of thymocytes in calcium dependent manner. Molecular docking experiments revealed that polyP can potentially bind to several types of P2X receptors with binding energy similar to ATP - natural agonist of P2X purinoreceptors. Further molecular dynamics simulations with P2X4 showed that binding of one molecule of polyP dramatically increases permeability of this receptor-channel for water molecules. Thus, in this research we for the first time showed that polyP can interact with P2X receptors in thymocytes and modulate physiological processes.
Collapse
Affiliation(s)
- Kamila S Nebesnaya
- Laboratory of Experimental Biophysics, Centre for Advanced Technologies, Tashkent, Uzbekistan; Department of Biophysics, Faculty of Biology, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Albert R Makhmudov
- Laboratory of Experimental Biophysics, Centre for Advanced Technologies, Tashkent, Uzbekistan
| | - Khondamir R Rustamov
- Laboratory of Experimental Biophysics, Centre for Advanced Technologies, Tashkent, Uzbekistan; Department of Biophysics, Faculty of Biology, National University of Uzbekistan, Tashkent, Uzbekistan
| | | | - Sarvinoz I Rustamova
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Ulugbek Z Mirkhodjaev
- Department of Biophysics, Faculty of Biology, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Oksana S Charishnikova
- Laboratory of Experimental Biophysics, Centre for Advanced Technologies, Tashkent, Uzbekistan
| | - Ravshan Z Sabirov
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Artyom Y Baev
- Laboratory of Experimental Biophysics, Centre for Advanced Technologies, Tashkent, Uzbekistan; Department of Biophysics, Faculty of Biology, National University of Uzbekistan, Tashkent, Uzbekistan.
| |
Collapse
|
13
|
Scorrano G, Battaglia L, Spiaggia R, Basile A, Palmucci S, Foti PV, David E, Marinangeli F, Mascilini I, Corsello A, Comisi F, Vittori A, Salpietro V. Neuroimaging in PRUNE1 syndrome: a mini-review of the literature. Front Neurol 2023; 14:1301147. [PMID: 38178891 PMCID: PMC10764560 DOI: 10.3389/fneur.2023.1301147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/22/2023] [Indexed: 01/06/2024] Open
Abstract
Prune exopolyphosphatase 1 (PRUNE1) is a short-chain phosphatase that is part of the aspartic acid-histidine-histidine (DHH) family of proteins. PRUNE1 is highly expressed in the central nervous system and is crucially involved in neurodevelopment, cytoskeletal rearrangement, cell migration, and proliferation. Recently, biallelic PRUNE1 variants have been identified in patients with neurodevelopmental disorders, hypotonia, microcephaly, variable cerebral anomalies, and other features. PRUNE1 hypomorphic mutations mainly affect the DHH1 domain, leading to an impactful decrease in enzymatic activity with a loss-of-function mechanism. In this review, we explored both the clinical and radiological spectrum related to PRUNE1 pathogenic variants described to date. Specifically, we focused on neuroradiological findings that, together with clinical phenotypes and genetic data, allow us to best characterize affected children with diagnostic and potential prognostic implications.
Collapse
Affiliation(s)
- Giovanna Scorrano
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Laura Battaglia
- Department of Medical Surgical Sciences and Advanced Technologies "GF Ingrassia", University Hospital Policlinic "G. Rodolico-San Marco", Catania, Italy
| | - Rossana Spiaggia
- Department of Medical Surgical Sciences and Advanced Technologies "GF Ingrassia", University Hospital Policlinic "G. Rodolico-San Marco", Catania, Italy
| | - Antonio Basile
- Department of Medical Surgical Sciences and Advanced Technologies "GF Ingrassia", University Hospital Policlinic "G. Rodolico-San Marco", Catania, Italy
| | - Stefano Palmucci
- Department of Medical Surgical Sciences and Advanced Technologies "GF Ingrassia", University Hospital Policlinic "G. Rodolico-San Marco", Catania, Italy
| | - Pietro Valerio Foti
- Department of Medical Surgical Sciences and Advanced Technologies "GF Ingrassia", University Hospital Policlinic "G. Rodolico-San Marco", Catania, Italy
| | - Emanuele David
- Department of Medical Surgical Sciences and Advanced Technologies "GF Ingrassia", University Hospital Policlinic "G. Rodolico-San Marco", Catania, Italy
| | - Franco Marinangeli
- Department of Anesthesia, Critical Care and Pain Therapy, University of L'Aquila, L'Aquila, Italy
| | - Ilaria Mascilini
- Department of Anesthesia and Critical Care, ARCO ROMA, Ospedale Pediatrico Bambino Gesù IRCCS, Rome, Italy
| | | | | | - Alessandro Vittori
- Department of Anesthesia and Critical Care, ARCO ROMA, Ospedale Pediatrico Bambino Gesù IRCCS, Rome, Italy
| | - Vincenzo Salpietro
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
14
|
Da Costa RT, Riggs LM, Solesio ME. Inorganic polyphosphate and the regulation of mitochondrial physiology. Biochem Soc Trans 2023; 51:2153-2161. [PMID: 37955101 PMCID: PMC10842919 DOI: 10.1042/bst20230735] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023]
Abstract
Inorganic polyphosphate (polyP) is an ancient polymer that is well-conserved throughout evolution. It is formed by multiple subunits of orthophosphates linked together by phosphoanhydride bonds. The presence of these bonds, which are structurally similar to those found in ATP, and the high abundance of polyP in mammalian mitochondria, suggest that polyP could be involved in the regulation of the physiology of the organelle, especially in the energy metabolism. In fact, the scientific literature shows an unequivocal role for polyP not only in directly regulating oxidative a phosphorylation; but also in the regulation of reactive oxygen species metabolism, mitochondrial free calcium homeostasis, and the formation and opening of mitochondrial permeability transitions pore. All these processes are closely interconnected with the status of mitochondrial bioenergetics and therefore play a crucial role in maintaining mitochondrial and cell physiology. In this invited review, we discuss the main scientific literature regarding the regulatory role of polyP in mammalian mitochondrial physiology, placing a particular emphasis on its impact on energy metabolism. Although the effects of polyP on the physiology of the organelle are evident; numerous aspects, particularly within mammalian cells, remain unclear and require further investigation. These aspects encompass, for example, advancing the development of more precise analytical methods, unraveling the mechanism responsible for sensing polyP levels, and understanding the exact molecular mechanism that underlies the effects of polyP on mitochondrial physiology. By increasing our understanding of the biology of this ancient and understudied polymer, we could unravel new pharmacological targets in diseases where mitochondrial dysfunction, including energy metabolism dysregulation, has been broadly described.
Collapse
Affiliation(s)
- Renata T Da Costa
- Department of Biology; and Center for Computational and Integrative Biology (CCIB), Rutgers University, Camden, NJ, U.S.A
| | - Lindsey M Riggs
- Department of Biology; and Center for Computational and Integrative Biology (CCIB), Rutgers University, Camden, NJ, U.S.A
| | - Maria E Solesio
- Department of Biology; and Center for Computational and Integrative Biology (CCIB), Rutgers University, Camden, NJ, U.S.A
| |
Collapse
|
15
|
Rahman RJ, Rijal R, Jing S, Chen TA, Ismail I, Gomer RH. Polyphosphate uses mTOR, pyrophosphate, and Rho GTPase components to potentiate bacterial survival in Dictyostelium. mBio 2023; 14:e0193923. [PMID: 37754562 PMCID: PMC10653871 DOI: 10.1128/mbio.01939-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 09/28/2023] Open
Abstract
IMPORTANCE Although most bacteria are quickly killed after phagocytosis by a eukaryotic cell, some pathogenic bacteria escape death after phagocytosis. Pathogenic Mycobacterium species secrete polyP, and the polyP is necessary for the bacteria to prevent their killing after phagocytosis. Conversely, exogenous polyP prevents the killing of ingested bacteria that are normally killed after phagocytosis by human macrophages and the eukaryotic microbe Dictyostelium discoideum. This suggests the possibility that in these cells, a signal transduction pathway is used to sense polyP and prevent killing of ingested bacteria. In this report, we identify key components of the polyP signal transduction pathway in D. discoideum. In cells lacking these components, polyP is unable to inhibit killing of ingested bacteria. The pathway components have orthologs in human cells, and an exciting possibility is that pharmacologically blocking this pathway in human macrophages would cause them to kill ingested pathogens such as Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Ryan J. Rahman
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Ramesh Rijal
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Shiyu Jing
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Te-An Chen
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Issam Ismail
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Richard H. Gomer
- Department of Biology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
16
|
Huang WC, Mailer RK, Renné T. In-vivo functions and regulation of polyphosphate in the vascular system. Curr Opin Hematol 2023; 30:159-166. [PMID: 37459301 DOI: 10.1097/moh.0000000000000771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
PURPOSE OF REVIEW Polyphosphate, an inorganic polymer consisting of linearly linked phosphate subunits, is ubiquitously found in living organisms. Functions and regulation of the polymer have been analyzed in plants, bacteria and yeast; however, the roles of polyphosphate in mammals are still emerging. RECENT FINDINGS In contrast to synthetic polyphosphate that has been extensively utilized in ex-vivo studies, natural polyphosphate is complexed with bivalent cations (mostly Ca 2+ ) and regardless of chain length, forms microparticles that are retained on the surface of procoagulant platelets, platelet-derived microparticles and cancer extracellular vesicles. On cell surfaces, these Ca 2+ /polyphosphate aggregates initiate the factor XII-driven contact system, triggering proinflammatory and procoagulant reactions through the kallikrein kinin system and intrinsic pathway of coagulation, respectively. Polyphosphate inhibitors interfere with thrombosis while sparing hemostasis, replicating the effect of factor XII neutralizing agents. Furthermore, polyphosphate binds to platelet factor 4, which has implications for autoimmune thrombotic diseases, such as heparin-induced thrombocytopenia (HIT) and vaccine-induced thrombotic thrombocytopenia (VITT), potentially contributing to their pathogenesis. The metabolism and organ-specific distribution of the polymer remain incompletely defined and is the topic of ongoing research. SUMMARY Polyphosphate acts as a procoagulant and proinflammatory mediator. Neutralizing polyphosphate provides well tolerated thromboprotection, mimicking the effects of factor XII deficiency.
Collapse
Affiliation(s)
- Wen-Chan Huang
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Reiner K Mailer
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, Mainz, Germany
| |
Collapse
|
17
|
Chen R, Huang M, Xu P. Polyphosphate as an antithrombotic target and hemostatic agent. J Mater Chem B 2023; 11:7855-7872. [PMID: 37534776 DOI: 10.1039/d3tb01152f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Polyphosphate (PolyP) is a polymer comprised of linear phosphate units connected by phosphate anhydride bonds. PolyP exists in a diverse range of eukaryotes and prokaryotes with varied chain lengths ranging from six to thousands of phosphate units. Upon activation, human platelets and neutrophils release short-chain PolyP, along with other components, to initiate the coagulation pathway. Long-chain PolyP derived from cellular or bacterial organelles exhibits higher proinflammatory and procoagulant effects compared to short-chain PolyP. Notably, PolyP has been identified as a low-hemorrhagic antithrombotic target since neutralizing plasma PolyP suppresses the thrombotic process without impairing the hemostatic functions. As an inorganic polymer without uniform steric configuration, PolyP is typically targeted by cationic polymers or recombinant polyphosphatases rather than conventional antibodies, small-molecule compounds, or peptides. Additionally, because of its procoagulant property, PolyP has been incorporated in wound-dressing materials to facilitate blood hemostasis. This review summarizes current studies on PolyP as a low-hemorrhagic antithrombotic target and the development of hemostatic materials based on PolyP.
Collapse
Affiliation(s)
- Ruoyu Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China.
| | - Mingdong Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China.
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Peng Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China.
| |
Collapse
|
18
|
Liu W, Wang J, Comte‐Miserez V, Zhang M, Yu X, Chen Q, Jessen HJ, Mayer A, Wu S, Ye S. Cryo-EM structure of the polyphosphate polymerase VTC reveals coupling of polymer synthesis to membrane transit. EMBO J 2023; 42:e113320. [PMID: 37066886 PMCID: PMC10183816 DOI: 10.15252/embj.2022113320] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/18/2023] [Accepted: 03/27/2023] [Indexed: 04/18/2023] Open
Abstract
The eukaryotic vacuolar transporter chaperone (VTC) complex acts as a polyphosphate (polyP) polymerase that synthesizes polyP from adenosine triphosphate (ATP) and translocates polyP across the vacuolar membrane to maintain an intracellular phosphate (Pi ) homeostasis. To discover how the VTC complex performs its function, we determined a cryo-electron microscopy structure of an endogenous VTC complex (Vtc4/Vtc3/Vtc1) purified from Saccharomyces cerevisiae at 3.1 Å resolution. The structure reveals a heteropentameric architecture of one Vtc4, one Vtc3, and three Vtc1 subunits. The transmembrane region forms a polyP-selective channel, likely adopting a resting state conformation, in which a latch-like, horizontal helix of Vtc4 limits the entrance. The catalytic Vtc4 central domain is located on top of the pseudo-symmetric polyP channel, creating a strongly electropositive pathway for nascent polyP that can couple synthesis to translocation. The SPX domain of the catalytic Vtc4 subunit positively regulates polyP synthesis by the VTC complex. The noncatalytic Vtc3 regulates VTC through a phosphorylatable loop. Our findings, along with the functional data, allow us to propose a mechanism of polyP channel gating and VTC complex activation.
Collapse
Affiliation(s)
- Wei Liu
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life SciencesTianjin UniversityTianjinChina
| | - Jiening Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life SciencesHubei UniversityWuhanChina
| | | | - Mengyu Zhang
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life SciencesTianjin UniversityTianjinChina
| | - Xuejing Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life SciencesHubei UniversityWuhanChina
| | - Qingfeng Chen
- School of Life SciencesYunnan UniversityKunmingChina
| | - Henning Jacob Jessen
- Institute of Organic ChemistryUniversity of FreiburgFreiburgGermany
- CIBSS – Centre for Integrative Biological Signalling StudiesUniversity of FreiburgFreiburgGermany
| | - Andreas Mayer
- Département d'ImmunobiologieUniversité de LausanneEpalingesSwitzerland
| | - Shan Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life SciencesHubei UniversityWuhanChina
| | - Sheng Ye
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life SciencesTianjin UniversityTianjinChina
- Life Sciences Institute, Zhejiang UniversityHangzhouChina
| |
Collapse
|
19
|
Katano D, Kang W, Harada Y, Kawano N, Miyado M, Saito T, Fukuoka M, Yamada M, Miyado K. Sodium Hexametaphosphate Serves as an Inducer of Calcium Signaling. Biomolecules 2023; 13:biom13040577. [PMID: 37189325 DOI: 10.3390/biom13040577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 05/17/2023] Open
Abstract
In bacteria, polymers of inorganic phosphates, particularly linear polyphosphate, are used as alternative phosphate donors for adenosine triphosphate production. A six-chain form of sodium metaphosphate, sodium hexametaphosphate (SHMP), is believed to have no physiological functions in mammalian cells. In this study, we explored the possible effects of SHMP on mammalian cells, using mouse oocytes, which are useful for observing various spatiotemporal intracellular changes. Fertilization-competent oocytes were isolated from the oviducts of superovulated mice and cultured in an SHMP-containing medium. In the absence of co-incubation with sperm, SHMP-treated oocytes frequently formed pronuclei and developed into two-cell embryos owing to the increase in calcium concentration in the cytoplasm. We discovered an intriguing role for SHMP as an initiator of calcium rise in mouse oocytes, presumably in a wide variety of mammalian cells.
Collapse
Affiliation(s)
- Daiki Katano
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Kawasaki 214-8571, Japan
- Department of Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya 157-8535, Japan
| | - Woojin Kang
- Department of Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya 157-8535, Japan
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Yuichirou Harada
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku 192-0397, Japan
| | - Natsuko Kawano
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Kawasaki 214-8571, Japan
| | - Mami Miyado
- Department of Food and Nutrition, Beppu University, 82 Kita-Ishigaki, Beppu 874-8501, Japan
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya 157-8535, Japan
| | - Takako Saito
- Department of Applied Life Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Shizuoka 422-8529, Japan
- Shizuoka Institute for the Study of Marine Biology and Chemistry, Shizuoka University, 836 Ohya, Shizuoka 422-8529, Japan
| | - Mio Fukuoka
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku 160-8582, Japan
| | - Mitsutoshi Yamada
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku 160-8582, Japan
| | - Kenji Miyado
- Department of Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya 157-8535, Japan
- Division of Diversity Research, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya 157-8535, Japan
| |
Collapse
|
20
|
Guan Z, Chen J, Liu R, Chen Y, Xing Q, Du Z, Cheng M, Hu J, Zhang W, Mei W, Wan B, Wang Q, Zhang J, Cheng P, Cai H, Cao J, Zhang D, Yan J, Yin P, Hothorn M, Liu Z. The cytoplasmic synthesis and coupled membrane translocation of eukaryotic polyphosphate by signal-activated VTC complex. Nat Commun 2023; 14:718. [PMID: 36759618 PMCID: PMC9911596 DOI: 10.1038/s41467-023-36466-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
Inorganic polyphosphate (polyP) is an ancient energy metabolite and phosphate store that occurs ubiquitously in all organisms. The vacuolar transporter chaperone (VTC) complex integrates cytosolic polyP synthesis from ATP and polyP membrane translocation into the vacuolar lumen. In yeast and in other eukaryotes, polyP synthesis is regulated by inositol pyrophosphate (PP-InsP) nutrient messengers, directly sensed by the VTC complex. Here, we report the cryo-electron microscopy structure of signal-activated VTC complex at 3.0 Å resolution. Baker's yeast VTC subunits Vtc1, Vtc3, and Vtc4 assemble into a 3:1:1 complex. Fifteen trans-membrane helices form a novel membrane channel enabling the transport of newly synthesized polyP into the vacuolar lumen. PP-InsP binding orients the catalytic polymerase domain at the entrance of the trans-membrane channel, both activating the enzyme and coupling polyP synthesis and membrane translocation. Together with biochemical and cellular studies, our work provides mechanistic insights into the biogenesis of an ancient energy metabolite.
Collapse
Affiliation(s)
- Zeyuan Guan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Juan Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ruiwen Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanke Chen
- Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Qiong Xing
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Zhangmeng Du
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meng Cheng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianjian Hu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenhui Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wencong Mei
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Beijing Wan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiang Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Peng Cheng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huanyu Cai
- College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianbo Cao
- Public Laboratory of Electron Microscopy, Huazhong Agricultural University, Wuhan, 430070, China
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junjie Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Michael Hothorn
- Structural Plant Biology Laboratory, Department of Plant Scienes, University of Geneva, Geneva, 1211, Switzerland
| | - Zhu Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
21
|
Roewe J, Walachowski S, Sharma A, Berthiaume KA, Reinhardt C, Bosmann M. Bacterial polyphosphates induce CXCL4 and synergize with complement anaphylatoxin C5a in lung injury. Front Immunol 2022; 13:980733. [PMID: 36405694 PMCID: PMC9669059 DOI: 10.3389/fimmu.2022.980733] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/18/2022] [Indexed: 08/01/2023] Open
Abstract
Polyphosphates are linear polymers of inorganic phosphates that exist in all living cells and serve pleiotropic functions. Bacteria produce long-chain polyphosphates, which can interfere with host defense to infection. In contrast, short-chain polyphosphates are released from platelet dense granules and bind to the chemokine CXCL4. Here, we report that long-chain polyphosphates induced the release of CXCL4 from mouse bone marrow-derived macrophages and peritoneal macrophages in a dose-/time-dependent fashion resulting from an induction of CXCL4 mRNA. This polyphosphate effect was lost after pre-incubation with recombinant exopolyphosphatase (PPX) Fc fusion protein, demonstrating the potency of long chains over monophosphates and ambient cations. In detail, polyphosphate chains >70 inorganic phosphate residues were required to reliably induce CXCL4. Polyphosphates acted independently of the purinergic P2Y1 receptor and the MyD88/TRIF adaptors of Toll-like receptors. On the other hand, polyphosphates augmented LPS/MyD88-induced CXCL4 release, which was explained by intracellular signaling convergence on PI3K/Akt. Polyphosphates induced Akt phosphorylation at threonine-308. Pharmacologic blockade of PI3K (wortmannin, LY294002) antagonized polyphosphate-induced CXCL4 release from macrophages. Intratracheal polyphosphate administration to C57BL/6J mice caused histologic signs of lung injury, disruption of the endothelial-epithelial barrier, influx of Ly6G+ polymorphonuclear neutrophils, depletion of CD11c+SiglecF+ alveolar macrophages, and release of CXCL4. Long-chain polyphosphates synergized with the complement anaphylatoxin, C5a, which was partly explained by upregulation of C5aR1 on myeloid cells. C5aR1-/- mice were protected from polyphosphate-induced lung injury. C5a generation occurred in the lungs and bronchoalveolar lavage fluid (BALF) of polyphosphate-treated C57BL/6J mice. In conclusion, we demonstrate that polyphosphates govern immunomodulation in macrophages and promote acute lung injury.
Collapse
Affiliation(s)
- Julian Roewe
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Sarah Walachowski
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Arjun Sharma
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Kayleigh A. Berthiaume
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Markus Bosmann
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
22
|
Schröder HC, Neufurth M, Zhou H, Wang S, Wang X, Müller WEG. Inorganic Polyphosphate: Coacervate Formation and Functional Significance in Nanomedical Applications. Int J Nanomedicine 2022; 17:5825-5850. [DOI: 10.2147/ijn.s389819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/03/2022] [Indexed: 12/02/2022] Open
|
23
|
Krenzlin V, Roewe J, Strueve M, Martínez-Negro M, Sharma A, Reinhardt C, Morsbach S, Bosmann M. Bacterial-Type Long-Chain Polyphosphates Bind Human Proteins in the Phosphatidylinositol Signaling Pathway. Thromb Haemost 2022; 122:1943-1947. [PMID: 35909349 PMCID: PMC9798540 DOI: 10.1055/s-0042-1751280] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Viola Krenzlin
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Julian Roewe
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Marcel Strueve
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - María Martínez-Negro
- Department of Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Mainz, Germany
| | - Arjun Sharma
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
- Department of Medicine, Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Svenja Morsbach
- Department of Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Mainz, Germany
| | - Markus Bosmann
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
- Department of Medicine, Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States
| |
Collapse
|
24
|
Wang J, Tao Y, Juan Y, Zhou H, Zhao X, Cheng X, Wang X, Quan X, Li J, Huang K, Wei W, Zhao J. Hierarchical Assembly of Flexible Biopolymer Polyphosphate-Manganese into Nanosheets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203200. [PMID: 36084167 DOI: 10.1002/smll.202203200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Polyphosphate (polyP) is one of the most compact inorganic polyanionic biopolymers that participates in various physiological processes. However, the development of polyP-based nanomaterials is still in its infancy. Here, biocompatible polyphosphate-manganese nanosheets are designed and synthesized by a hierarchical assembly strategy. The thickness and the lateral size of the resulting polyP-Mn nanosheets (PMNSs) are 5 nm and 120-130 nm, respectively. Molecular dynamics simulations suggested that the polyP-hexadecyl trimethyl ammonium bromide flat structure possesses a strong aggregating capacity and serves as the template for the 2D assembly of polyP-Mn. The PMNSs can activate the inflammatory response of macrophages resulting in the recovery of innate immunological functions to inhibit tumor proliferation. This work has initiated a new direction in constructing layered polyP-based nanomaterials and provides guidance for biocompatible and biodegradable biopolymer-based materials in the regulation of innate responses.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210008, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210008, China
| | - Yucheng Tao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210008, China
| | - Yewen Juan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210008, China
| | - Hang Zhou
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210008, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210008, China
| | - Xinyang Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210008, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210008, China
| | - Xiaomei Cheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210008, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210008, China
| | - Xiuxiu Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210008, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210008, China
| | - Xuebo Quan
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518067, China
| | - Junyan Li
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518067, China
| | - Kai Huang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518067, China
| | - Wei Wei
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210008, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210008, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210008, China
- Shenzhen Research Institute, Nanjing University, Shenzhen, 518057, China
| | - Jing Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210008, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210008, China
- Shenzhen Research Institute, Nanjing University, Shenzhen, 518057, China
| |
Collapse
|
25
|
Arredondo C, Cefaliello C, Dyrda A, Jury N, Martinez P, Díaz I, Amaro A, Tran H, Morales D, Pertusa M, Stoica L, Fritz E, Corvalán D, Abarzúa S, Méndez-Ruette M, Fernández P, Rojas F, Kumar MS, Aguilar R, Almeida S, Weiss A, Bustos FJ, González-Nilo F, Otero C, Tevy MF, Bosco DA, Sáez JC, Kähne T, Gao FB, Berry JD, Nicholson K, Sena-Esteves M, Madrid R, Varela D, Montecino M, Brown RH, van Zundert B. Excessive release of inorganic polyphosphate by ALS/FTD astrocytes causes non-cell-autonomous toxicity to motoneurons. Neuron 2022; 110:1656-1670.e12. [PMID: 35276083 PMCID: PMC9119918 DOI: 10.1016/j.neuron.2022.02.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/01/2021] [Accepted: 02/15/2022] [Indexed: 12/13/2022]
Abstract
Non-cell-autonomous mechanisms contribute to neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), in which astrocytes release unidentified factors that are toxic to motoneurons (MNs). We report here that mouse and patient iPSC-derived astrocytes with diverse ALS/FTD-linked mutations (SOD1, TARDBP, and C9ORF72) display elevated levels of intracellular inorganic polyphosphate (polyP), a ubiquitous, negatively charged biopolymer. PolyP levels are also increased in astrocyte-conditioned media (ACM) from ALS/FTD astrocytes. ACM-mediated MN death is prevented by degrading or neutralizing polyP in ALS/FTD astrocytes or ACM. Studies further reveal that postmortem familial and sporadic ALS spinal cord sections display enriched polyP staining signals and that ALS cerebrospinal fluid (CSF) exhibits increased polyP concentrations. Our in vitro results establish excessive astrocyte-derived polyP as a critical factor in non-cell-autonomous MN degeneration and a potential therapeutic target for ALS/FTD. The CSF data indicate that polyP might serve as a new biomarker for ALS/FTD.
Collapse
Affiliation(s)
- Cristian Arredondo
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Carolina Cefaliello
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Agnieszka Dyrda
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Nur Jury
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Pablo Martinez
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Iván Díaz
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Armando Amaro
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Helene Tran
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Danna Morales
- Program of Physiology and Biophysics, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago 9160000, Chile
| | - Maria Pertusa
- Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago 9160000, Chile; Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago 9160000, Chile; Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago 9160000, Chile
| | - Lorelei Stoica
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Elsa Fritz
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Daniela Corvalán
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Sebastián Abarzúa
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; FONDAP Center for Genome Regulation, Santiago 8370146, Chile
| | - Maxs Méndez-Ruette
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Paola Fernández
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Fabiola Rojas
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Meenakshi Sundaram Kumar
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Rodrigo Aguilar
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile
| | - Sandra Almeida
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Alexandra Weiss
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Fernando J Bustos
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile
| | - Fernando González-Nilo
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso 2340000, Chile; Center for Bioinformatics and Integrative Biology (CBIB), Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile
| | - Carolina Otero
- School of Chemistry and Pharmacy, Faculty of Medicine, Universidad Andres Bello, Santiago 8320000, Chile
| | - Maria Florencia Tevy
- Cell Biology Laboratory, INTA, University of Chile and GEDIS Biotech, Santiago 7810000, Chile
| | - Daryl A Bosco
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Juan C Sáez
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Thilo Kähne
- Institute of Experimental Internal Medicine, Medical School, Otto von Guericke University Magdeburg, Magdeburg 39120, Germany
| | - Fen-Biao Gao
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - James D Berry
- Massachusetts General Hospital Neurological Clinical Research Institute and Harvard Medical School, Boston, MA 02114, USA
| | - Katharine Nicholson
- Massachusetts General Hospital Neurological Clinical Research Institute and Harvard Medical School, Boston, MA 02114, USA
| | - Miguel Sena-Esteves
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Rodolfo Madrid
- Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago 9160000, Chile; Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago 9160000, Chile; Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago 9160000, Chile
| | - Diego Varela
- Program of Physiology and Biophysics, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago 9160000, Chile
| | - Martin Montecino
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; FONDAP Center for Genome Regulation, Santiago 8370146, Chile
| | - Robert H Brown
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Brigitte van Zundert
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
26
|
Zheng X, Sun Y, Li H, Li N, Zhang X, Lin JM. Biomimetic multifactor stimulation method for analyzing the synergism of matrix stiffness and inorganic polyphosphates on cellular behaviors. Talanta 2022; 241:123222. [DOI: 10.1016/j.talanta.2022.123222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/04/2022] [Accepted: 01/09/2022] [Indexed: 11/16/2022]
|
27
|
Kus F, Smolenski RT, Tomczyk M. Inorganic Polyphosphate-Regulator of Cellular Metabolism in Homeostasis and Disease. Biomedicines 2022; 10:913. [PMID: 35453663 PMCID: PMC9031883 DOI: 10.3390/biomedicines10040913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/10/2022] [Accepted: 04/14/2022] [Indexed: 12/04/2022] Open
Abstract
Inorganic polyphosphate (polyP), a simple anionic polymer consisting of even hundreds of orthophosphate units, is a universal molecule present in both simple and complex organisms. PolyP controls homeostatic processes in animals, such as blood coagulation, tissue regeneration, and energy metabolism. Furthermore, this polymer is a potent regulator of inflammation and influences host immune response in bacterial and viral infections. Disturbed polyP systems have been related to several pathological conditions, including neurodegeneration, cardiovascular disorders, and cancer, but we lack a full understanding of polyP biogenesis and mechanistic insights into the pathways through which polyP may act. This review summarizes recent studies that describe the role of polyP in cell homeostasis and show how disturbances in polyP levels may lead to disease. Based on the collected findings, we highlight the possible usage of this polymer as a promising therapeutic tool in multiple pathologies.
Collapse
Affiliation(s)
- Filip Kus
- Laboratory of Molecular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Ryszard T Smolenski
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Marta Tomczyk
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland
| |
Collapse
|
28
|
Gawri R, Bielecki R, Salter EW, Zelinka A, Shiba T, Collingridge G, Nagy A, Kandel RA. The anabolic effect of inorganic polyphosphate on chondrocytes is mediated by calcium signalling. J Orthop Res 2022; 40:310-322. [PMID: 33719091 DOI: 10.1002/jor.25032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/08/2021] [Accepted: 03/10/2021] [Indexed: 02/04/2023]
Abstract
Inorganic polyphosphates (polyP) are polymers composed of phosphate residues linked by energy-rich phosphoanhydride bonds. As polyP can bind calcium, the hypothesis of this study is that polyP enters chondrocytes and exerts its anabolic effect by calcium influx through calcium channels. PolyP treatment of cartilage tissue formed in 3D culture by bovine chondrocytes showed an increase in proteoglycan accumulation but only when calcium was also present at a concentration of 1.5 mM. This anabolic effect could be prevented by treatment with either ethylene glycol-bis(β-aminoethyl ether)-N,N,N',N'-tetraacetic acid or the calcium channel inhibitors gadolinium and nifedipine. Calcium and polyP cotreatment of chondrocytes in monolayer culture resulted in calcium oscillations that were polyP chain length specific and were inhibited by gadolinium and nifedipine. The calcium influx resulted in increased gene expression of sox9, collagen type II, and aggrecan which was prevented by treatment with either calphostin, an inhibitor of protein kinase C, and W7, an inhibitor of calmodulin; suggesting activation of the protein kinase C-calmodulin pathway. Tracing studies using 4',6-diamidino-2-phenylindole, Mitotracker Red, and/or Fura-AM staining showed that polyP was detected in the nucleus, mitochondria, and intracellular vacuoles suggesting that polyP may also enter the cell. PolyP colocalizes with calcium in mitochondria. This study demonstrates that polyP requires the influx of calcium to regulate chondrocyte matrix production, likely via activating calcium signaling. These findings identify the mechanism regulating the anabolic effect of polyP in chondrocytes which will help in its clinical translation into a therapeutic agent for cartilage repair.
Collapse
Affiliation(s)
- Rahul Gawri
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Ryszard Bielecki
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Eric W Salter
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Alena Zelinka
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Toshikazu Shiba
- Regenetiss Inc., Kunitachi, Japan.,Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan
| | - Graham Collingridge
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Andras Nagy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Rita A Kandel
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada.,Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
29
|
Müller WEG, Wang X, Neufurth M, Schröder HC. Polyphosphate in Antiviral Protection: A Polyanionic Inorganic Polymer in the Fight Against Coronavirus SARS-CoV-2 Infection. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2022; 61:145-189. [PMID: 35697940 DOI: 10.1007/978-3-031-01237-2_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Polyanions as polymers carrying multiple negative charges have been extensively studied with regard to their potential antiviral activity. Most studies to date focused on organic polyanionic polymers, both natural and synthetic. The inorganic polymer, polyphosphate (polyP), despite the ubiquitous presence of this molecule from bacteria to man, has attracted much less attention. More recently, and accelerated by the search for potential antiviral agents in the fight against the pandemic caused by the coronavirus SARS-CoV-2, it turned out that polyP disrupts the first step of the viral replication cycle, the interaction of the proteins in the virus envelope and in the cell membrane that are involved in the docking process of the virus with the target host cell. Experiments on a molecular level using the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein and the cellular angiotensin converting enzyme 2 (ACE2) receptor revealed that polyP strongly inhibits the binding reaction through an electrostatic interaction between the negatively charged centers of the polyP molecule and a cationic groove, which is formed by positively charged amino acids on the RBD surface. In addition, it was found that polyP, due to its morphogenetic and energy delivering activities, enhances the antiviral host innate immunity defense of the respiratory epithelium. The underlying mechanisms and envisaged application of polyP in the therapy and prevention of COVID-19 are discussed.
Collapse
Affiliation(s)
- Werner E G Müller
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| | - Xiaohong Wang
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Meik Neufurth
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Heinz C Schröder
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
30
|
Neginskaya MA, Pavlov EV. Inorganic Polyphosphate in Mitochondrial Energy Metabolism and Pathology. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2022; 61:15-26. [PMID: 35697935 DOI: 10.1007/978-3-031-01237-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this chapter, the current understanding of the potential roles played by polyphosphate in mitochondrial function with a specific focus on energy metabolism and mitochondrial pathologies caused by stress is summarized. Here we will discuss details of the possible ion transporting mechanisms of mitochondria that might involve polyP and their role in mitochondrial physiology and pathology are discussed.
Collapse
Affiliation(s)
- Maria A Neginskaya
- Department of Molecular Pathobiology, New York University, New York, NY, USA
| | - Evgeny V Pavlov
- Department of Molecular Pathobiology, New York University, New York, NY, USA.
| |
Collapse
|
31
|
Urquiza P, Solesio ME. Inorganic Polyphosphate, Mitochondria, and Neurodegeneration. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2022; 61:27-49. [PMID: 35697936 DOI: 10.1007/978-3-031-01237-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With an aging population, the presence of aging-associated pathologies is expected to increase within the next decades. Regrettably, we still do not have any valid pharmacological or non-pharmacological tools to prevent, revert, or cure these pathologies. The absence of therapeutical approaches against aging-associated pathologies can be at least partially explained by the relatively lack of knowledge that we still have regarding the molecular mechanisms underlying them, as well as by the complexity of their etiopathology. In fact, a complex number of changes in the physiological function of the cell has been described in all these aging-associated pathologies, including neurodegenerative disorders. Based on multiple scientific manuscripts produced by us and others, it seems clear that mitochondria are dysfunctional in many of these aging-associated pathologies. For example, mitochondrial dysfunction is an early event in the etiopathology of all the main neurodegenerative disorders, and it could be a trigger of many of the other deleterious changes which are present at the cellular level in these pathologies. While mitochondria are complex organelles and their regulation is still not yet entirely understood, inorganic polyphosphate (polyP) could play a crucial role in the regulation of some mitochondrial processes, which are dysfunctional in neurodegeneration. PolyP is a well-preserved biopolymer; it has been identified in every organism that has been studied. It is constituted by a series of orthophosphates connected by highly energetic phosphoanhydride bonds, comparable to those found in ATP. The literature suggests that the role of polyP in maintaining mitochondrial physiology might be related, at least partially, to its effects as a key regulator of cellular bioenergetics. However, further research needs to be conducted to fully elucidate the molecular mechanisms underlying the effects of polyP in the regulation of mitochondrial physiology in aging-associated pathologies, including neurodegenerative disorders. With a significant lack of therapeutic options for the prevention and/or treatment of neurodegeneration, the search for new pharmacological tools against these conditions has been continuous in past decades, even though very few therapeutic approaches have shown potential in treating these pathologies. Therefore, increasing our knowledge about the molecular mechanisms underlying the effects of polyP in mitochondrial physiology as well as its metabolism could place this polymer as a promising and innovative pharmacological target not only in neurodegeneration, but also in a wide range of aging-associated pathologies and conditions where mitochondrial dysfunction has been described as a crucial component of its etiopathology, such as diabetes, musculoskeletal disorders, and cardiovascular disorders.
Collapse
Affiliation(s)
- Pedro Urquiza
- Department of Biology, Rutgers University, Camden, NJ, USA
| | | |
Collapse
|
32
|
Bibbò F, Sorice C, Ferrucci V, Zollo M. Functional Genomics of PRUNE1 in Neurodevelopmental Disorders (NDDs) Tied to Medulloblastoma (MB) and Other Tumors. Front Oncol 2021; 11:758146. [PMID: 34745995 PMCID: PMC8569853 DOI: 10.3389/fonc.2021.758146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/28/2021] [Indexed: 12/31/2022] Open
Abstract
We analyze the fundamental functions of Prune_1 in brain pathophysiology. We discuss the importance and maintenance of the function of Prune_1 and how its perturbation influences both brain pathological conditions, neurodevelopmental disorder with microcephaly, hypotonia, and variable brain anomalies (NMIHBA; OMIM: 617481), and tumorigenesis of medulloblastoma (MB) with functional correlations to other tumors. A therapeutic view underlying recent discoveries identified small molecules and cell penetrating peptides to impair the interaction of Prune_1 with protein partners (e.g., Nm23-H1), thus further impairing intracellular and extracellular signaling (i.e., canonical Wnt and TGF-β pathways). Identifying the mechanism of action of Prune_1 as responsible for neurodevelopmental disorders (NDDs), we have recognized other genes which are found overexpressed in brain tumors (e.g., MB) with functional implications in neurodevelopmental processes, as mainly linked to changes in mitotic cell cycle processes. Thus, with Prune_1 being a significant target in NDDs, we discuss how its network of action can be dysregulated during brain development, thus generating cancer and metastatic dissemination.
Collapse
Affiliation(s)
- Francesca Bibbò
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), ‘Federico II’ University of Naples, Naples, Italy
- CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Carmen Sorice
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), ‘Federico II’ University of Naples, Naples, Italy
- CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Veronica Ferrucci
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), ‘Federico II’ University of Naples, Naples, Italy
- CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Massimo Zollo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), ‘Federico II’ University of Naples, Naples, Italy
- CEINGE Biotecnologie Avanzate, Naples, Italy
| |
Collapse
|
33
|
Xenotropic and polytropic retrovirus receptor 1 regulates procoagulant platelet polyphosphate. Blood 2021; 137:1392-1405. [PMID: 32932519 DOI: 10.1182/blood.2019004617] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 08/25/2020] [Indexed: 12/15/2022] Open
Abstract
Polyphosphate is a procoagulant inorganic polymer of linear-linked orthophosphate residues. Multiple investigations have established the importance of platelet polyphosphate in blood coagulation; however, the mechanistic details of polyphosphate homeostasis in mammalian species remain largely undefined. In this study, xenotropic and polytropic retrovirus receptor 1 (XPR1) regulated polyphosphate in platelets and was implicated in thrombosis in vivo. We used bioinformatic analyses of omics data to identify XPR1 as a major phosphate transporter in platelets. XPR1 messenger RNA and protein expression inversely correlated with intracellular polyphosphate content and release. Pharmacological interference with XPR1 activity increased polyphosphate stores, led to enhanced platelet-driven coagulation, and amplified thrombus formation under flow via the polyphosphate/factor XII pathway. Conditional gene deletion of Xpr1 in platelets resulted in polyphosphate accumulation, accelerated arterial thrombosis, and augmented activated platelet-driven pulmonary embolism without increasing bleeding in mice. These data identify platelet XPR1 as an integral regulator of platelet polyphosphate metabolism and reveal a fundamental role for phosphate homeostasis in thrombosis.
Collapse
|
34
|
Ferrucci V, Kong DY, Asadzadeh F, Marrone L, Boccia A, Siciliano R, Criscuolo G, Anastasio C, Quarantelli F, Comegna M, Pisano I, Passariello M, Iacobucci I, Monica RD, Izzo B, Cerino P, Fusco G, Viscardi M, Brandi S, Pierri BM, Borriello G, Tiberio C, Atripaldi L, Bianchi M, Paolella G, Capoluongo E, Castaldo G, Chiariotti L, Monti M, De Lorenzo C, Yun KS, Pascarella S, Cheong JH, Kim HY, Zollo M. Long-chain polyphosphates impair SARS-CoV-2 infection and replication. Sci Signal 2021; 14:14/690/eabe5040. [PMID: 34230209 PMCID: PMC8432949 DOI: 10.1126/scisignal.abe5040] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Long-chain, inorganic polyphosphates (polyPs), which are found in many cells in the blood, have cytoprotective and antiviral activities, particularly against HIV-1 infection. Ferrucci et al. tested the effects of polyPs of various lengths on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in vitro. Molecular docking and binding analyses showed that polyPs bound to the host receptor ACE2, which facilitates viral entry, and a viral RNA polymerase required for replication. Both proteins underwent proteasomal degradation in cells incubated with polyP120, the optimal species tested, resulting in inhibition of SARS-CoV-2 replication and a reduced inflammatory response. Given that polyPs have low toxicity, these results suggest that their potential therapeutic use should be further explored. Inorganic polyphosphates (polyPs) are linear polymers composed of repeated phosphate (PO43−) units linked together by multiple high-energy phosphoanhydride bonds. In addition to being a source of energy, polyPs have cytoprotective and antiviral activities. Here, we investigated the antiviral activities of long-chain polyPs against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In molecular docking analyses, polyPs interacted with several conserved amino acid residues in angiotensin-converting enzyme 2 (ACE2), the host receptor that facilitates virus entry, and in viral RNA-dependent RNA polymerase (RdRp). ELISA and limited proteolysis assays using nano– LC-MS/MS mapped polyP120 binding to ACE2, and site-directed mutagenesis confirmed interactions between ACE2 and SARS-CoV-2 RdRp and identified the specific amino acid residues involved. PolyP120 enhanced the proteasomal degradation of both ACE2 and RdRp, thus impairing replication of the British B.1.1.7 SARS-CoV-2 variant. We thus tested polyPs for functional interactions with the virus in SARS-CoV-2–infected Vero E6 and Caco2 cells and in primary human nasal epithelial cells. Delivery of a nebulized form of polyP120 reduced the amounts of viral positive-sense genomic and subgenomic RNAs, of RNA transcripts encoding proinflammatory cytokines, and of viral structural proteins, thereby presenting SARS-CoV-2 infection in cells in vitro.
Collapse
Affiliation(s)
- Veronica Ferrucci
- CEINGE Biotecnologie Avanzate, Naples 80145, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), "Federico II" University of Naples, Naples 80131, Italy
| | - Dae-Young Kong
- Ginxen Co., Ltd., 2F, Daewoong Building, Seocho-gu, Seoul, South Korea
| | | | - Laura Marrone
- CEINGE Biotecnologie Avanzate, Naples 80145, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), "Federico II" University of Naples, Naples 80131, Italy
| | - Angelo Boccia
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), "Federico II" University of Naples, Naples 80131, Italy
| | | | - Giuseppina Criscuolo
- CEINGE Biotecnologie Avanzate, Naples 80145, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), "Federico II" University of Naples, Naples 80131, Italy
| | | | | | - Marika Comegna
- CEINGE Biotecnologie Avanzate, Naples 80145, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), "Federico II" University of Naples, Naples 80131, Italy
| | - Ida Pisano
- CEINGE Biotecnologie Avanzate, Naples 80145, Italy
| | - Margherita Passariello
- CEINGE Biotecnologie Avanzate, Naples 80145, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), "Federico II" University of Naples, Naples 80131, Italy
| | - Ilaria Iacobucci
- CEINGE Biotecnologie Avanzate, Naples 80145, Italy.,Department of Chemical Sciences, University "Federico II", Via Cinthia 4, Naples 80125, Italy
| | | | - Barbara Izzo
- CEINGE Biotecnologie Avanzate, Naples 80145, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), "Federico II" University of Naples, Naples 80131, Italy
| | - Pellegrino Cerino
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Naples 80055, Italy
| | - Giovanna Fusco
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Naples 80055, Italy
| | - Maurizio Viscardi
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Naples 80055, Italy
| | - Sergio Brandi
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Naples 80055, Italy
| | | | - Giorgia Borriello
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Naples 80055, Italy
| | - Claudia Tiberio
- U.O.C. di Patologia Clinica Ospedale D. Cotugno, Azienda Sanitaria Ospedali dei Colli, Naples 80131, Italy
| | - Luigi Atripaldi
- U.O.C. di Patologia Clinica Ospedale D. Cotugno, Azienda Sanitaria Ospedali dei Colli, Naples 80131, Italy
| | - Martina Bianchi
- Sapienza Università di Roma, Department of Biochemical Sciences "A. Rossi Fanelli", Rome 00185, Italy
| | - Giovanni Paolella
- CEINGE Biotecnologie Avanzate, Naples 80145, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), "Federico II" University of Naples, Naples 80131, Italy
| | - Ettore Capoluongo
- CEINGE Biotecnologie Avanzate, Naples 80145, Italy.,DAI Medicina di Laboratorio e Trasfusionale, AOU Azienda Ospedaliera "Federico II", Naples 80131, Italy
| | - Giuseppe Castaldo
- CEINGE Biotecnologie Avanzate, Naples 80145, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), "Federico II" University of Naples, Naples 80131, Italy
| | - Lorenzo Chiariotti
- CEINGE Biotecnologie Avanzate, Naples 80145, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), "Federico II" University of Naples, Naples 80131, Italy
| | - Maria Monti
- CEINGE Biotecnologie Avanzate, Naples 80145, Italy.,Department of Chemical Sciences, University "Federico II", Via Cinthia 4, Naples 80125, Italy
| | - Claudia De Lorenzo
- CEINGE Biotecnologie Avanzate, Naples 80145, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), "Federico II" University of Naples, Naples 80131, Italy
| | - Kyong-Seop Yun
- HaimBio Co. Ltd, Industrial Park, Korea University, Seongbuk-gu, Seoul, South Korea
| | - Stefano Pascarella
- Sapienza Università di Roma, Department of Biochemical Sciences "A. Rossi Fanelli", Rome 00185, Italy
| | - Jae-Ho Cheong
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea.
| | - Hong-Yeoul Kim
- Ginxen Co., Ltd., 2F, Daewoong Building, Seocho-gu, Seoul, South Korea. .,HaimBio Co. Ltd, Industrial Park, Korea University, Seongbuk-gu, Seoul, South Korea
| | - Massimo Zollo
- CEINGE Biotecnologie Avanzate, Naples 80145, Italy. .,Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), "Federico II" University of Naples, Naples 80131, Italy.,DAI Medicina di Laboratorio e Trasfusionale, AOU Azienda Ospedaliera "Federico II", Naples 80131, Italy
| |
Collapse
|
35
|
Tsunematsu T, Sakata S, Sanagi T, Tanaka KF, Matsui K. Region-Specific and State-Dependent Astrocyte Ca 2+ Dynamics during the Sleep-Wake Cycle in Mice. J Neurosci 2021; 41:5440-5452. [PMID: 34006590 PMCID: PMC8221592 DOI: 10.1523/jneurosci.2912-20.2021] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/06/2021] [Accepted: 05/02/2021] [Indexed: 11/21/2022] Open
Abstract
Neural activity is diverse, and varies depending on brain regions and sleep/wakefulness states. However, whether astrocyte activity differs between sleep/wakefulness states, and whether there are differences in astrocyte activity among brain regions remain poorly understood. Therefore, in this study, we recorded astrocyte intracellular calcium (Ca2+) concentrations of mice during sleep/wakefulness states in the cortex, hippocampus, hypothalamus, cerebellum, and pons using fiber photometry. For this purpose, male transgenic mice expressing the genetically encoded ratiometric Ca2+ sensor YCnano50 specifically in their astrocytes were used. We demonstrated that Ca2+ levels in astrocytes substantially decrease during rapid eye movement (REM) sleep, and increase after the onset of wakefulness. In contrast, differences in Ca2+ levels during non-REM (NREM) sleep were observed among the different brain regions, and no significant decrease was observed in the hypothalamus and pons. Further analyses focusing on the transition between sleep/wakefulness states and correlation analysis with the duration of REM sleep showed that Ca2+ dynamics differs among brain regions, suggesting the existence of several clusters, i.e., the first comprising the cortex and hippocampus, the second comprising the hypothalamus and pons, and the third comprising the cerebellum. Our study thus demonstrated that astrocyte Ca2+ levels change substantially according to sleep/wakefulness states. These changes were consistent in general unlike neural activity. However, we also clarified that Ca2+ dynamics varies depending on the brain region, implying that astrocytes may play various physiological roles in sleep.SIGNIFICANCE STATEMENT Sleep is an instinctive behavior of many organisms. In the previous five decades, the mechanism of the neural circuits controlling sleep/wakefulness states and the neural activities associated with sleep/wakefulness states in various brain regions have been elucidated. However, whether astrocytes, which are a type of glial cell, change their activity during different sleep/wakefulness states was poorly understood. Here, we demonstrated that dynamic changes in astrocyte Ca2+ concentrations occur in the cortex, hippocampus, hypothalamus, cerebellum, and pons of mice during natural sleep. Further analyses demonstrated that Ca2+ dynamics slightly differ among different brain regions, implying that the physiological roles of astrocytes in sleep/wakefulness might vary depending on the brain region.
Collapse
Affiliation(s)
- Tomomi Tsunematsu
- Super-network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
- Advanced Interdisciplinary Research Division, Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
| | - Shuzo Sakata
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, United Kingdom
| | - Tomomi Sanagi
- Advanced Interdisciplinary Research Division, Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Kenji F Tanaka
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Ko Matsui
- Super-network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
36
|
Wang X, Gawri R, Lei C, Lee J, Sowa G, Kandel R, Vo N. Inorganic polyphosphates stimulates matrix production in human annulus fibrosus cells. JOR Spine 2021; 4:e1143. [PMID: 34337332 PMCID: PMC8313173 DOI: 10.1002/jsp2.1143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/20/2021] [Accepted: 02/13/2021] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Ubiquitously found in all life forms, inorganic polyphosphates (polyP) are linear polymers of repeated orthophosphate units. Present in intervertebral disc tissue, polyP was previously shown to increase extracellular matrix production in nucleus pulposus (NP) cells. However, the effects of polyP on human annulus fibrosus (hAF) cell metabolism is not known. METHODS AND RESULTS Here, hAF cells cultured in the presence of 0.5 to 1 mM polyP, chain length 22 (polyP-22), showed an increase in glycosaminoglycan content, proteoglycan and collagen synthesis, and aggrecan and collagen type 1 gene expression. Gene expression level of matrix metalloproteinases 1 was reduced while matrix metalloproteinases 3 level was increased in hAF cells treated with 1 mM polyP. Adenosine triphosphate (ATP) synthesis was also significantly increased in hAF cell culture 72 hours after the exposure to 1 mM polyP-22. CONCLUSIONS PolyP thus has both anabolic and bioenergetic effects in AF cells, similar to that observed in NP cells. Together, these results suggest polyP as a potential energy source and a metabolic regulator of disc cells.
Collapse
Affiliation(s)
- Xiangjiang Wang
- McGowan Institute for Regenerative MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Orthopaedic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Orthopaedic SurgeryThe Sixth Affiliated Hospital of Guangzhou Medical UniversityQingyuanChina
- Department of OrthopedicsThe Third Affiliated Hospital of Southern Medical UniversityGuangzhouChina
| | - Rahul Gawri
- Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoCanada
- Pathology and Laboratory MedicineMount Sinai HospitalTorontoCanada
- Laboratory Medicine and PathobiologyUniversity of TorontoTorontoCanada
- Institute of Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoCanada
| | - Changbin Lei
- Department of Orthopaedic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Orthopaedic SurgeryAffiliated Hospital of Xiangnan UniversityChenzhouChina
- Department of Clinical Medical Research CenterAffiliated Hospital of Xiangnan UniversityChenzhouChina
| | - Joon Lee
- McGowan Institute for Regenerative MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Gwendolyn Sowa
- Department of Orthopaedic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Physical Medicine and RehabilitationUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Rita Kandel
- Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoCanada
- Pathology and Laboratory MedicineMount Sinai HospitalTorontoCanada
- Laboratory Medicine and PathobiologyUniversity of TorontoTorontoCanada
| | - Nam Vo
- McGowan Institute for Regenerative MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of PathologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Orthopaedic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
37
|
Kulakovskaya TV, Andreeva NA, Ledova LA, Ryazanova LP, Trilisenko LV, Eldarov MA. Enzymes of Polyphosphate Metabolism in Yeast: Properties, Functions, Practical Significance. BIOCHEMISTRY (MOSCOW) 2021; 86:S96-S108. [PMID: 33827402 DOI: 10.1134/s0006297921140078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inorganic polyphosphates (polyP) are the linear polymers of orthophosphoric acid varying in the number of phosphate residues linked by the energy-rich phosphoanhydride bonds. PolyP is an essential component in living cells. Knowledge of polyP metabolizing enzymes in eukaryotes is necessary for understanding molecular mechanisms of polyP metabolism in humans and development of new approaches for treating bone and cardiovascular diseases associated with impaired mineral phosphorus metabolism. Yeast cells represent a rational experimental model for this research due to availability of the methods for studying phosphorus metabolism and construction of knockout mutants and strains overexpressing target proteins. Multicomponent system of polyP metabolism in Saccharomyces cerevisiae cells is presented in this review discussing properties, functioning, and practical significance of the enzymes involved in the synthesis and degradation of this important metabolite.
Collapse
Affiliation(s)
- Tatiana V Kulakovskaya
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Research Center for Biology, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - Nadezhda A Andreeva
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Research Center for Biology, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Larisa A Ledova
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Research Center for Biology, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Lubov P Ryazanova
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Research Center for Biology, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Ludmila V Trilisenko
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Research Center for Biology, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Michail A Eldarov
- Institute of Bioengineering, Federal Scientific Center for Biotechnology, Russian Academy of Sciences, Moscow, 117312, Russia
| |
Collapse
|
38
|
Baijal K, Downey M. The promises of lysine polyphosphorylation as a regulatory modification in mammals are tempered by conceptual and technical challenges. Bioessays 2021; 43:e2100058. [PMID: 33998006 DOI: 10.1002/bies.202100058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022]
Abstract
Polyphosphate (polyP) is a ubiquitous biomolecule thought to be present in all cells on Earth. PolyP is deceivingly simple, consisting of repeated units of inorganic phosphates polymerized in long energy-rich chains. PolyP is involved in diverse functions in mammalian systems-from cell signaling to blood clotting. One exciting avenue of research is a new nonenzymatic post-translational modification, termed lysine polyphosphorylation, wherein polyP chains are covalently attached to lysine residues of target proteins. While the modification was first characterized in budding yeast, recent work has now identified the first human targets. There is significant promise in this area of biomedical research, but a number of technical issues and knowledge gaps present challenges to rapid progress. In this review, the current state of the field is summarized and existing roadblocks related to the study of lysine polyphosphorylation in higher eukaryotes are introduced. It is discussed how limited methods to identify targets of polyphosphorylation are further impacted by low concentration, unknown regulatory enzymes, and sequestration of polyP into compartments in mammalian systems. Furthermore, suggestions on how these obstacles could be addressed or what their physiological relevance may be within mammalian cells are presented.
Collapse
Affiliation(s)
- Kanchi Baijal
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Michael Downey
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
39
|
Bird RP, Eskin NAM. The emerging role of phosphorus in human health. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 96:27-88. [PMID: 34112356 DOI: 10.1016/bs.afnr.2021.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Phosphorus, an essential nutrient, performs vital functions in skeletal and non-skeletal tissues and is pivotal for energy production. The last two decades of research on the physiological importance of phosphorus have provided several novel insights about its dynamic nature as a nutrient performing functions as a phosphate ion. Phosphorous also acts as a signaling molecule and induces complex physiological responses. It is recognized that phosphorus homeostasis is critical for health. The intake of phosphorus by the general population world-wide is almost double the amount required to maintain health. This increase is attributed to the incorporation of phosphate containing food additives in processed foods purchased by consumers. Research findings assessed the impact of excessive phosphorus intake on cells' and organs' responses, and highlighted the potential pathogenic consequences. Research also identified a new class of bioactive phosphates composed of polymers of phosphate molecules varying in chain length. These polymers are involved in metabolic responses including hemostasis, brain and bone health, via complex mechanism(s) with positive or negative health effects, depending on their chain length. It is amazing, that phosphorus, a simple element, is capable of exerting multiple and powerful effects. The role of phosphorus and its polymers in the renal and cardiovascular system as well as on brain health appear to be important and promising future research directions.
Collapse
Affiliation(s)
- Ranjana P Bird
- School of Health Sciences, University of Northern British Columbia, Prince George, BC, Canada.
| | - N A Michael Eskin
- Department of Food and Human Nutritional Sciences, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
40
|
Berezhnov AV, Fedotova EI, Sergeev AI, Teplov IY, Abramov AY. Dopamine controls neuronal spontaneous calcium oscillations via astrocytic signal. Cell Calcium 2021; 94:102359. [PMID: 33550209 DOI: 10.1016/j.ceca.2021.102359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 01/10/2023]
Abstract
Dopamine is a neuromodulator and neurotransmitter responsible for a number of physiological processes. Dysfunctions of the dopamine metabolism and signalling are associated with neurological and psychiatric diseases. Here we report that in primary co-culture of neurons and astrocytes dopamine-induces calcium signal in astrocytes and suppress spontaneous synchronous calcium oscillations (SSCO) in neurons. Effect of dopamine on SSCO in neurons was dependent on calcium signal in astrocytes and could be modified by inhibition of dopamine-induced calcium signal or by stimulation of astrocytic calcium rise with ATP. Ability of dopamine to suppress SSCO in neurons was independent on D1- or D2- like receptors but dependent on GABA and alpha-adrenoreceptors. Inhibitor of monoaminoxidase bifemelane blocked effect of dopamine on astrocytes but also inhibited the effect dopamine on SSCO in neurons. These findings suggest that dopamine-induced calcium signal may stimulate release of neuromodulators such as GABA and adrenaline and thus suppress spontaneous calcium oscillations in neurons.
Collapse
Affiliation(s)
- Alexey V Berezhnov
- Institute of Cell Biophysics of the Russian Academy of Sciences, 142290, Pushchino, Russia; Cell Physiology and Pathology Laboratory, Orel State University, 302026, Orel, Russia.
| | - Evgeniya I Fedotova
- Institute of Cell Biophysics of the Russian Academy of Sciences, 142290, Pushchino, Russia; Cell Physiology and Pathology Laboratory, Orel State University, 302026, Orel, Russia
| | - Alexander I Sergeev
- Institute of Cell Biophysics of the Russian Academy of Sciences, 142290, Pushchino, Russia
| | - Ilya Y Teplov
- Institute of Cell Biophysics of the Russian Academy of Sciences, 142290, Pushchino, Russia
| | - Andrey Y Abramov
- Cell Physiology and Pathology Laboratory, Orel State University, 302026, Orel, Russia; Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, WC1N 3BG, London, UK.
| |
Collapse
|
41
|
Nistala H, Dronzek J, Gonzaga-Jauregui C, Chim SM, Rajamani S, Nuwayhid S, Delgado D, Burke E, Karaca E, Franklin MC, Sarangapani P, Podgorski M, Tang Y, Dominguez MG, Withers M, Deckelbaum RA, Scheonherr CJ, Gahl WA, Malicdan MC, Zambrowicz B, Gale NW, Gibbs RA, Chung WK, Lupski JR, Economides AN. NMIHBA results from hypomorphic PRUNE1 variants that lack short-chain exopolyphosphatase activity. Hum Mol Genet 2021; 29:3516-3531. [PMID: 33105479 PMCID: PMC7788287 DOI: 10.1093/hmg/ddaa237] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/24/2020] [Accepted: 10/15/2020] [Indexed: 11/12/2022] Open
Abstract
Neurodevelopmental disorder with microcephaly, hypotonia and variable brain anomalies (NMIHBA) is an autosomal recessive neurodevelopmental and neurodegenerative disorder characterized by global developmental delay and severe intellectual disability. Microcephaly, progressive cortical atrophy, cerebellar hypoplasia and delayed myelination are neurological hallmarks in affected individuals. NMIHBA is caused by biallelic variants in PRUNE1 encoding prune exopolyphosphatase 1. We provide in-depth clinical description of two affected siblings harboring compound heterozygous variant alleles, c.383G > A (p.Arg128Gln), c.520G > T (p.Gly174*) in PRUNE1. To gain insights into disease biology, we biochemically characterized missense variants within the conserved N-terminal aspartic acid-histidine-histidine (DHH) motif and provide evidence that they result in the destabilization of protein structure and/or loss of exopolyphosphatase activity. Genetic ablation of Prune1 results in midgestational lethality in mice, associated with perturbations to embryonic growth and vascular development. Our findings suggest that NMIHBA results from hypomorphic variant alleles in humans and underscore the potential key role of PRUNE1 exopolyphoshatase activity in neurodevelopment.
Collapse
Affiliation(s)
| | - John Dronzek
- Regeneron Genetics Center, Tarrytown, NY 10591, USA
| | | | | | | | - Samer Nuwayhid
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Dennis Delgado
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Elizabeth Burke
- Undiagnosed Diseases Program Translational Laboratory, NHGRI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ender Karaca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | - Yajun Tang
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | | | - Marjorie Withers
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | - William A Gahl
- Undiagnosed Diseases Program Translational Laboratory, NHGRI, National Institutes of Health, Bethesda, MD 20892, USA
| | - May C Malicdan
- Undiagnosed Diseases Program Translational Laboratory, NHGRI, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wendy K Chung
- Columbia University Medical Center, New York, NY 10032, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Hospital, Houston, TX 77030, USA
| | - Aris N Economides
- Regeneron Genetics Center, Tarrytown, NY 10591, USA
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| |
Collapse
|
42
|
Borden EA, Furey M, Gattone NJ, Hambardikar VD, Liang XH, Scoma ER, Abou Samra A, D-Gary LR, Dennis DJ, Fricker D, Garcia C, Jiang Z, Khan SA, Kumarasamy D, Kuppala H, Ringrose S, Rosenheim EJ, Van Exel K, Vudhayagiri HS, Zhang J, Zhang Z, Guitart-Mampel M, Urquiza P, Solesio ME. Is there a link between inorganic polyphosphate (polyP), mitochondria, and neurodegeneration? Pharmacol Res 2021; 163:105211. [PMID: 33010423 PMCID: PMC7855267 DOI: 10.1016/j.phrs.2020.105211] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/08/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022]
Abstract
Mitochondrial dysfunction - including increased apoptosis, calcium and protein dyshomeostasis within the organelle, and dysfunctional bioenergetics and oxidative status - is a common, early feature in all the major neurodegenerative diseases, including Alzheimer's Disease (AD) and Parkinson's Disease (PD). However, the exact molecular mechanisms that drive the organelle to dysfunction and ultimately to failure in these conditions are still not well described. Different authors have shown that inorganic polyphosphate (polyP), an ancient and well-conserved molecule, plays a key role in the regulation of mitochondrial physiology under basal conditions. PolyP, which is present in all studied organisms, is composed of chains of orthophosphates linked together by highly energetic phosphoanhydride bonds, similar to those found in ATP. This polymer shows a ubiquitous distribution, even if a high co-localization with mitochondria has been reported. It has been proposed that polyP might be an alternative to ATP for cellular energy storage in different organisms, as well as the implication of polyP in the regulation of many of the mitochondrial processes affected in AD and PD, including protein and calcium homeostasis. Here, we conduct a comprehensive review and discussion of the bibliography available regarding the role of polyP in the mitochondrial dysfunction present in AD and PD. Taking into account the data presented in this review, we postulate that polyP could be a valid, innovative and, plausible pharmacological target against mitochondrial dysfunction in AD and PD. However, further research should be conducted to better understand the exact role of polyP in neurodegeneration, as well as the metabolism of the polymer, and the effect of different lengths of polyP on cellular and mitochondrial physiology.
Collapse
Affiliation(s)
- Emily A Borden
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | - Matthew Furey
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | - Nicholas J Gattone
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | | | - Xiao Hua Liang
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | - Ernest R Scoma
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | - Antonella Abou Samra
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | - LaKeshia R D-Gary
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | - Dayshaun J Dennis
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | - Daniel Fricker
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | - Cindy Garcia
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | - ZeCheng Jiang
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | - Shariq A Khan
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | | | - Hasmitha Kuppala
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | - Savannah Ringrose
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | - Evan J Rosenheim
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | - Kimberly Van Exel
- Center for Computational and Integrative Biology, Rutgers University, NJ, USA
| | | | - Jiarui Zhang
- Center for Computational and Integrative Biology, Rutgers University, NJ, USA
| | - Zhaowen Zhang
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | | | - Pedro Urquiza
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | - Maria E Solesio
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA; Center for Computational and Integrative Biology, Rutgers University, NJ, USA.
| |
Collapse
|
43
|
Yegutkin GG. Adenosine metabolism in the vascular system. Biochem Pharmacol 2020; 187:114373. [PMID: 33340515 DOI: 10.1016/j.bcp.2020.114373] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022]
Abstract
The concept of extracellular purinergic signaling was first proposed by Geoffrey Burnstock in the early 1970s. Since then, extracellular ATP and its metabolites ADP and adenosine have attracted an enormous amount of attention in terms of their involvement in a wide range of immunomodulatory, thromboregulatory, angiogenic, vasoactive and other pathophysiological activities in different organs and tissues, including the vascular system. In addition to significant progress in understanding the properties of nucleotide- and adenosine-selective receptors, recent studies have begun to uncover the complexity of regulatory mechanisms governing the duration and magnitude of the purinergic signaling cascade. This knowledge has led to the development of new paradigms in understanding the entire purinome by taking into account the multitude of signaling and metabolic pathways involved in biological effects of ATP and adenosine and compartmentalization of the adenosine system. Along with the "canonical route" of ATP breakdown to adenosine via sequential ecto-nucleoside triphosphate diphosphohydrolase-1 (NTPDase1/CD39) and ecto-5'-nucleotidase/CD73 activities, it has now become clear that purine metabolism is the result of concerted effort between ATP release, its metabolism through redundant nucleotide-inactivating and counteracting ATP-regenerating ectoenzymatic pathways, as well as cellular nucleoside uptake and phosphorylation of adenosine to ATP through complex phosphotransfer reactions. In this review I provide an overview of key enzymes involved in adenosine metabolic network, with special emphasis on the emerging roles of purine-converting ectoenzymes as novel targets for cancer and vascular therapies.
Collapse
|
44
|
Inorganic polyphosphate is produced and hydrolyzed in F0F1-ATP synthase of mammalian mitochondria. Biochem J 2020; 477:1515-1524. [PMID: 32270854 PMCID: PMC7200627 DOI: 10.1042/bcj20200042] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/25/2020] [Accepted: 04/09/2020] [Indexed: 12/15/2022]
Abstract
Inorganic polyphosphate (polyP) is a polymer present in all living organisms. Although polyP is found to be involved in a variety of functions in cells of higher organisms, the enzyme responsible for polyP production and consumption has not yet been identified. Here, we studied the effect of polyP on mitochondrial respiration, oxidative phosphorylation and activity of F0F1-ATPsynthase. We have found that polyP activates mitochondrial respiration which does not coupled with ATP production (V2) but inhibits ADP-dependent respiration (V3). Moreover, PolyP can stimulate F0F1-ATPase activity in the presence of ATP and, importantly, can be hydrolyzed in this enzyme instead of ATP. Furthermore, PolyP can be produced in mitochondria in the presence of substrates for respiration and phosphate by the F0F1-ATPsynthase. Thus, polyP is an energy molecule in mammalian cells which can be produced and hydrolyzed in the mitochondrial F0F1-ATPsynthase.
Collapse
|
45
|
Zhou J, Jangili P, Son S, Ji MS, Won M, Kim JS. Fluorescent Diagnostic Probes in Neurodegenerative Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001945. [PMID: 32902000 DOI: 10.1002/adma.202001945] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/19/2020] [Indexed: 05/22/2023]
Abstract
Neurodegenerative diseases are debilitating disorders that feature progressive and selective loss of function or structure of anatomically or physiologically associated neuronal systems. Both chronic and acute neurodegenerative diseases are associated with high morbidity and mortality along with the death of neurons in different areas of the brain; moreover, there are few or no effective curative therapy options for treating these disorders. There is an urgent need to diagnose neurodegenerative disease as early as possible, and to distinguish between different disorders with overlapping symptoms that will help to decide the best clinical treatment. Recently, in neurodegenerative disease research, fluorescent-probe-mediated biomarker visualization techniques have been gaining increasing attention for the early diagnosis of neurodegenerative diseases. A survey of fluorescent probes for sensing and imaging biomarkers of neurodegenerative diseases is provided. These imaging probes are categorized based on the different potential biomarkers of various neurodegenerative diseases, and their advantages and disadvantages are discussed. Guides to develop new sensing strategies, recognition mechanisms, as well as the ideal features to further improve neurodegenerative disease fluorescence imaging are also explored.
Collapse
Affiliation(s)
- Jin Zhou
- College of Pharmacy, Weifang Medical University, Weifang, 261053, China
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Paramesh Jangili
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Subin Son
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Myung Sun Ji
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Miae Won
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| |
Collapse
|
46
|
Smedlund KB, Hill JW. The role of non-neuronal cells in hypogonadotropic hypogonadism. Mol Cell Endocrinol 2020; 518:110996. [PMID: 32860862 DOI: 10.1016/j.mce.2020.110996] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/01/2020] [Accepted: 08/16/2020] [Indexed: 12/18/2022]
Abstract
The hypothalamic-pituitary-gonadal axis is controlled by gonadotropin-releasing hormone (GnRH) released by the hypothalamus. Disruption of this system leads to impaired reproductive maturation and function, a condition known as hypogonadotropic hypogonadism (HH). Most studies to date have focused on genetic causes of HH that impact neuronal development and function. However, variants may also impact the functioning of non-neuronal cells known as glia. Glial cells make up 50% of brain cells of humans, primates, and rodents. They include radial glial cells, microglia, astrocytes, tanycytes, oligodendrocytes, and oligodendrocyte precursor cells. Many of these cells influence the hypothalamic neuroendocrine system controlling fertility. Indeed, glia regulate GnRH neuronal activity and secretion, acting both at their cell bodies and their nerve endings. Recent work has also made clear that these interactions are an essential aspect of how the HPG axis integrates endocrine, metabolic, and environmental signals to control fertility. Recognition of the clinical importance of interactions between glia and the GnRH network may pave the way for the development of new treatment strategies for dysfunctions of puberty and adult fertility.
Collapse
Affiliation(s)
- Kathryn B Smedlund
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA; Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Jennifer W Hill
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA; Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA.
| |
Collapse
|
47
|
Suess PM, Smith SA, Morrissey JH. Platelet polyphosphate induces fibroblast chemotaxis and myofibroblast differentiation. J Thromb Haemost 2020; 18:3043-3052. [PMID: 32808449 PMCID: PMC7719587 DOI: 10.1111/jth.15066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Platelets secrete many pro-wound healing molecules such as growth factors and cytokines. We found that releasates from activated human platelets induced the differentiation of cultured murine and human fibroblasts into a myofibroblast phenotype. Surprisingly, most of this differentiation-inducing activity was heat-stable, suggesting it was not due to the protein component of the releasates. Inorganic polyphosphate is a major constituent of platelet-dense granules and promotes blood coagulation and inflammation. OBJECTIVES We aim to investigate the contribution of polyphosphate on myofibroblast differentiating activity of platelet releasates. METHODS Using NIH-3T3 cells and primary human fibroblasts, we examined the effect of human platelet releasates and chemically synthesized polyphosphate on fibroblast differentiation and migration. RESULTS We found that the myofibroblast-inducing activity of platelet releasates was severely attenuated after incubation with a polyphosphate-degrading enzyme, and that fibroblasts responded to platelet-sized polyphosphate by increased levels of α-smooth muscle actin, stress fibers, and collagen. Furthermore, fibroblasts were chemotactic toward polyphosphate. CONCLUSIONS These findings indicate that platelet-derived polyphosphate acts as a cell signaling molecule by inducing murine and human fibroblasts to differentiate into myofibroblasts, a cell type known to drive both wound healing and fibrosing diseases. Polyphosphate therefore not only promotes early wound responses through enhancing fibrin clot formation, but also may play roles in the later stages of wound healing, and, potentially, progression of fibrotic diseases, by recruiting fibroblasts and inducing their differentiation into myofibroblasts.
Collapse
Affiliation(s)
- Patrick M. Suess
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI
| | - Stephanie A. Smith
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI
| | - James H. Morrissey
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
48
|
Bondy-Chorney E, Abramchuk I, Nasser R, Holinier C, Denoncourt A, Baijal K, McCarthy L, Khacho M, Lavallée-Adam M, Downey M. A Broad Response to Intracellular Long-Chain Polyphosphate in Human Cells. Cell Rep 2020; 33:108318. [PMID: 33113373 DOI: 10.1016/j.celrep.2020.108318] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/27/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022] Open
Abstract
Polyphosphates (polyPs) are long chains of inorganic phosphates linked by phosphoanhydride bonds. They are found in all kingdoms of life, playing roles in cell growth, infection, and blood coagulation. Unlike in bacteria and lower eukaryotes, the mammalian enzymes responsible for polyP metabolism are largely unexplored. We use RNA sequencing (RNA-seq) and mass spectrometry to define a broad impact of polyP produced inside of mammalian cells via ectopic expression of the E. coli polyP synthetase PPK. We find that multiple cellular compartments can support accumulation of polyP to high levels. Overproduction of polyP is associated with reprogramming of both the transcriptome and proteome, including activation of the ERK1/2-EGR1 signaling axis. Finally, fractionation analysis shows that polyP accumulation results in relocalization of nuclear/cytoskeleton proteins, including targets of non-enzymatic lysine polyphosphorylation. Our work demonstrates that internally produced polyP can activate diverse signaling pathways in human cells.
Collapse
Affiliation(s)
- Emma Bondy-Chorney
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| | - Iryna Abramchuk
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Rawan Nasser
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Charlotte Holinier
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Alix Denoncourt
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Kanchi Baijal
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Liam McCarthy
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Mireille Khacho
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Mathieu Lavallée-Adam
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Michael Downey
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
49
|
Roewe J, Stavrides G, Strueve M, Sharma A, Marini F, Mann A, Smith SA, Kaya Z, Strobl B, Mueller M, Reinhardt C, Morrissey JH, Bosmann M. Bacterial polyphosphates interfere with the innate host defense to infection. Nat Commun 2020; 11:4035. [PMID: 32788578 PMCID: PMC7423913 DOI: 10.1038/s41467-020-17639-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/08/2020] [Indexed: 12/14/2022] Open
Abstract
Polyphosphates are linear polymers and ubiquitous metabolites. Bacterial polyphosphates are long chains of hundreds of phosphate units. Here, we report that mouse survival of peritoneal Escherichia coli sepsis is compromised by long-chain polyphosphates, and improves with bacterial polyphosphatekinase deficiency or neutralization using recombinant exopolyphosphatase. Polyphosphate activities are chain-length dependent, impair pathogen clearance, antagonize phagocyte recruitment, diminish phagocytosis and decrease production of iNOS and cytokines. Macrophages bind and internalize polyphosphates, in which their effects are independent of P2Y1 and RAGE receptors. The M1 polarization driven by E. coli derived LPS is misdirected by polyphosphates in favor of an M2 resembling phenotype. Long-chain polyphosphates modulate the expression of more than 1800 LPS/TLR4-regulated genes in macrophages. This interference includes suppression of hundreds of type I interferon-regulated genes due to lower interferon production and responsiveness, blunted STAT1 phosphorylation and reduced MHCII expression. In conclusion, prokaryotic polyphosphates disturb multiple macrophage functions for evading host immunity.
Collapse
Affiliation(s)
- Julian Roewe
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, 55131, Mainz, Germany
| | - Georgios Stavrides
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, 55131, Mainz, Germany
| | - Marcel Strueve
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, 55131, Mainz, Germany
| | - Arjun Sharma
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, 55131, Mainz, Germany
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Federico Marini
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, 55131, Mainz, Germany
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center Mainz, 55131, Mainz, Germany
| | - Amrit Mann
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, 55131, Mainz, Germany
| | - Stephanie A Smith
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48109-1085, USA
| | - Ziya Kaya
- Department of Medicine III, University of Heidelberg, 69120, Heidelberg, Germany
| | - Birgit Strobl
- Institute of Animal Breeding and Genetics, Department of Biomedical Science, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Mathias Mueller
- Institute of Animal Breeding and Genetics, Department of Biomedical Science, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, 55131, Mainz, Germany
| | - James H Morrissey
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48109-1085, USA
| | - Markus Bosmann
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, 55131, Mainz, Germany.
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA.
| |
Collapse
|
50
|
Hasuzawa N, Moriyama S, Moriyama Y, Nomura M. Physiopathological roles of vesicular nucleotide transporter (VNUT), an essential component for vesicular ATP release. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183408. [PMID: 32652056 DOI: 10.1016/j.bbamem.2020.183408] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023]
Abstract
Vesicular nucleotide transporter (VNUT) is the last identified member of the SLC17 organic anion transporter family, which plays a central role in vesicular storage in ATP-secreting cells. The discovery of VNUT demonstrated that, despite having been neglected for a long time, vesicular ATP release represents a major pathway for purinergic chemical transmission, which had been mainly attributed to ATP permeation channels. This article summarizes recent advances in our understanding of the mechanism of VNUT and its physiopathological roles as well as the development of inhibitors. Regulating the activity and/or the expression of VNUT represents a new and promising therapeutic strategy for the treatment of multiple diseases.
Collapse
Affiliation(s)
- Nao Hasuzawa
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan.
| | - Sawako Moriyama
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Yoshinori Moriyama
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Masatoshi Nomura
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan
| |
Collapse
|