1
|
Brito Rodrigues P, de Rezende Rodovalho V, Sencio V, Benech N, Creskey M, Silva Angulo F, Delval L, Robil C, Gosset P, Machelart A, Haas J, Descat A, Goosens JF, Beury D, Maurier F, Hot D, Wolowczuk I, Sokol H, Zhang X, Ramirez Vinolo MA, Trottein F. Integrative metagenomics and metabolomics reveal age-associated gut microbiota and metabolite alterations in a hamster model of COVID-19. Gut Microbes 2025; 17:2486511. [PMID: 40172215 PMCID: PMC11970752 DOI: 10.1080/19490976.2025.2486511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/08/2025] [Accepted: 03/24/2025] [Indexed: 04/04/2025] Open
Abstract
Aging is a key contributor of morbidity and mortality during acute viral pneumonia. The potential role of age-associated dysbiosis on disease outcomes is still elusive. In the current study, we used high-resolution shotgun metagenomics and targeted metabolomics to characterize SARS-CoV-2-associated changes in the gut microbiota from young (2-month-old) and aged (22-month-old) hamsters, a valuable model of COVID-19. We show that age-related dysfunctions in the gut microbiota are linked to disease severity and long-term sequelae in older hamsters. Our data also reveal age-specific changes in the composition and metabolic activity of the gut microbiota during both the acute phase (day 7 post-infection, D7) and the recovery phase (D22) of infection. Aged hamsters exhibited the most notable shifts in gut microbiota composition and plasma metabolic profiles. Through an integrative analysis of metagenomics, metabolomics, and clinical data, we identified significant associations between bacterial taxa, metabolites and disease markers in the aged group. On D7 (high viral load and lung epithelial damage) and D22 (body weight loss and fibrosis), numerous amino acids, amino acid-related molecules, and indole derivatives were found to correlate with disease markers. In particular, a persistent decrease in phenylalanine, tryptophan, glutamic acid, and indoleacetic acid in aged animals positively correlated with poor recovery of body weight and/or lung fibrosis by D22. In younger hamsters, several bacterial taxa (Eubacterium, Oscillospiraceae, Lawsonibacter) and plasma metabolites (carnosine and cis-aconitic acid) were associated with mild disease outcomes. These findings support the need for age-specific microbiome-targeting strategies to more effectively manage acute viral pneumonia and long-term disease outcomes.
Collapse
Affiliation(s)
- Patrícia Brito Rodrigues
- U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | | | - Valentin Sencio
- U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Nicolas Benech
- Gastroenterology Department, Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Paris, France
- Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, Paris, France
- Hospices Civils de Lyon, Lyon GEM Microbiota Study Group, Lyon, France
| | - Marybeth Creskey
- Regulatory Research Division, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, University of Ottawa, Ottawa, Canada
| | - Fabiola Silva Angulo
- U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Lou Delval
- U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Cyril Robil
- U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Philippe Gosset
- U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Arnaud Machelart
- U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Joel Haas
- U1011-EGID, University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Amandine Descat
- EA 7365 - GRITA - Groupe de Recherche sur les formes Injectables et les Technologies Associées, University of Lille, CHU Lille, Lille, France
| | - Jean François Goosens
- EA 7365 - GRITA - Groupe de Recherche sur les formes Injectables et les Technologies Associées, University of Lille, CHU Lille, Lille, France
| | - Delphine Beury
- US 41 - UAR 2014 - PLBS, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Florence Maurier
- US 41 - UAR 2014 - PLBS, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - David Hot
- US 41 - UAR 2014 - PLBS, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Isabelle Wolowczuk
- U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Harry Sokol
- Gastroenterology Department, Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Paris, France
- Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, Paris, France
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
| | - Xu Zhang
- Regulatory Research Division, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, University of Ottawa, Ottawa, Canada
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | | | - François Trottein
- U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| |
Collapse
|
2
|
Zhang F, Luan J, Suo L, Wang H, Zhao Y, Sun T, Ni Y, Cao H, Zou X, Liu B. Altered gut microbiota and metabolite profiles in community-acquired pneumonia: a metagenomic and metabolomic study. Microbiol Spectr 2025; 13:e0263924. [PMID: 40062854 PMCID: PMC11960049 DOI: 10.1128/spectrum.02639-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 02/08/2025] [Indexed: 04/03/2025] Open
Abstract
Emerging evidence suggests that altered gut microbiota is linked to community-acquired pneumonia (CAP), but the potential mechanisms by which gut microbiota and its metabolites contribute to the development of CAP remain unclear. Fecal samples from 32 CAP patients and 36 healthy controls were analyzed through metagenomic sequencing and metabolomic profiling. The gut microbiota composition in CAP patients showed significant differences and lower diversity compared to healthy controls. Genera involved in short-chain fatty acid (SCFA) production, such as Faecalibacterium, Ruminococcus, and Eubacterium, as well as species like Faecalibacterium prausnitzii, Bifidobacterium adolescentis, Eubacterium rectale, Prevotella copri, and Ruminococcus bromii, were significantly depleted in CAP patients. Bacterial co-occurrence network analysis revealed an over-representation of pro-inflammatory bacteria, which contributed to the core gut microbiome in CAP patients. Metabolomic analysis of fecal samples identified a distinct metabolic profile, with a notable increase in arachidonic acid, but a decrease in secondary bile acids, such as deoxycholic acid, lithocholic acid, and ursodeoxycholic acid, compared to healthy controls. Spearman correlation analysis between differential microbiota and bile acids showed that Faecalibacterium prausnitzii, Bifidobacterium adolescentis, Eubacterium rectale, and Prevotella copri were positively correlated with ursocholic acid, lithocholic acid, and ursodeoxycholic acid, respectively. Our results suggest that the reduction in secondary bile acids, insufficient production of SCFAs, and an overabundance of pro-inflammatory bacteria may contribute to metabolic inflammation in the body. These factors could play a key role in the pathogenesis of CAP, driven by gut microbiota alterations. IMPORTANCE This study presents a comprehensive metagenomic and metabolomic analysis of fecal samples from community-acquired pneumonia (CAP) patients, identifying key characteristics, such as decreased secondary bile acids, imbalanced short-chain fatty acid production, and increased pro-inflammatory bacteria. These findings provide valuable insights into the mechanisms linking gut microbiota alterations to CAP pathogenesis and suggest that targeting the gut microbiota could be a promising strategy for intervening in CAP.
Collapse
Affiliation(s)
- Fuxin Zhang
- Department of Clinical Microbiology, Zibo City Key Laboratory of Respiratory Infection and Clinical Microbiology, Zibo City Engineering Technology Research Center of Etiology Molecular Diagnosis, Zibo Municipal Hospital, Zibo, China
| | - Jiahui Luan
- Department of Clinical Microbiology, Zibo City Key Laboratory of Respiratory Infection and Clinical Microbiology, Zibo City Engineering Technology Research Center of Etiology Molecular Diagnosis, Zibo Municipal Hospital, Zibo, China
| | - Lijun Suo
- Department of Pulmonary and Critical Care Medicine, Zibo Municipal Hospital, Zibo, China
| | - Haiyan Wang
- Department of Clinical Microbiology, Zibo City Key Laboratory of Respiratory Infection and Clinical Microbiology, Zibo City Engineering Technology Research Center of Etiology Molecular Diagnosis, Zibo Municipal Hospital, Zibo, China
| | - Yi Zhao
- Department of Clinical Microbiology, Zibo City Key Laboratory of Respiratory Infection and Clinical Microbiology, Zibo City Engineering Technology Research Center of Etiology Molecular Diagnosis, Zibo Municipal Hospital, Zibo, China
| | - Tianyu Sun
- Department of Clinical Microbiology, Zibo City Key Laboratory of Respiratory Infection and Clinical Microbiology, Zibo City Engineering Technology Research Center of Etiology Molecular Diagnosis, Zibo Municipal Hospital, Zibo, China
| | - Yawen Ni
- National Center for Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Chinese Academy of Medical Sciences, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Chinese Academy of Medical Sciences, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Changping Laboratory, Beijing, China
| | - Hongyun Cao
- Department of Clinical Microbiology, Zibo City Key Laboratory of Respiratory Infection and Clinical Microbiology, Zibo City Engineering Technology Research Center of Etiology Molecular Diagnosis, Zibo Municipal Hospital, Zibo, China
| | - Xiaohui Zou
- National Center for Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Chinese Academy of Medical Sciences, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Chinese Academy of Medical Sciences, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Bo Liu
- Department of Clinical Microbiology, Zibo City Key Laboratory of Respiratory Infection and Clinical Microbiology, Zibo City Engineering Technology Research Center of Etiology Molecular Diagnosis, Zibo Municipal Hospital, Zibo, China
- Department of Pulmonary and Critical Care Medicine, Zibo Municipal Hospital, Zibo, China
- Department of Weifang People’s Hospital, Shandong Second Medical University, Weifang, China
- Department of Pulmonary and Critical Care Medicine, Shandong Institute of Respiratory Diseases, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| |
Collapse
|
3
|
Jena PK, Arditi M, Noval Rivas M. Gut Microbiota Alterations in Patients With Kawasaki Disease. Arterioscler Thromb Vasc Biol 2025; 45:345-358. [PMID: 39846163 DOI: 10.1161/atvbaha.124.321201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/09/2024] [Accepted: 01/09/2025] [Indexed: 01/24/2025]
Abstract
The intestinal microbiota influences many host biological processes, including metabolism, intestinal barrier functions, and immune responses in the gut and distant organs. Alterations in its composition have been associated with the development of inflammatory disorders and cardiovascular diseases, including Kawasaki disease (KD). KD is an acute pediatric vasculitis of unknown etiology and the leading cause of acquired heart disease in children in the United States. The presence of gastrointestinal symptoms in the acute phase of KD has been associated with an increased risk of treatment resistance and the development of coronary artery aneurysms. Studies report alterations in fecal bacterial communities of patients with KD, characterized by the blooming of pathogenic bacteria and decreased relative abundance of short-chain fatty acid-producing bacteria. However, causality and functionality cannot be established from these observational patient cohorts of KD. This highlights the need for more advanced and rigorous studies to establish causality and functionality in both experimental models of KD vasculitis and patient cohorts. Here, we review the evidence linking an altered gut microbiota composition to the development of KD, assess the potential mechanisms involved in this process, and discuss the potential therapeutic value of these observations.
Collapse
Affiliation(s)
- Prasant K Jena
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Guerin Children's (P.K.J., M.A., M.N.R.), Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Biomedical Sciences, Infectious and Immunologic Diseases Research Center (P.K.J., M.A., M.N.R.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Moshe Arditi
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Guerin Children's (P.K.J., M.A., M.N.R.), Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Biomedical Sciences, Infectious and Immunologic Diseases Research Center (P.K.J., M.A., M.N.R.), Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Cardiology, Smidt Heart Institute (M.A.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Magali Noval Rivas
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Guerin Children's (P.K.J., M.A., M.N.R.), Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Biomedical Sciences, Infectious and Immunologic Diseases Research Center (P.K.J., M.A., M.N.R.), Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
4
|
Koceva H, Amiratashani M, Akbarimoghaddam P, Hoffmann B, Zhurgenbayeva G, Gresnigt MS, Marcelino VR, Eggeling C, Figge MT, Amorim MJ, Mosig AS. Deciphering respiratory viral infections by harnessing organ-on-chip technology to explore the gut-lung axis. Open Biol 2025; 15:240231. [PMID: 40037530 PMCID: PMC11879621 DOI: 10.1098/rsob.240231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/23/2025] [Indexed: 03/06/2025] Open
Abstract
The lung microbiome has recently gained attention for potentially affecting respiratory viral infections, including influenza A virus, respiratory syncytial virus (RSV) and SARS-CoV-2. We will discuss the complexities of the lung microenvironment in the context of viral infections and the use of organ-on-chip (OoC) models in replicating the respiratory tract milieu to aid in understanding the role of temporary microbial colonization. Leveraging the innovative capabilities of OoC, particularly through integrating gut and lung models, opens new avenues to understand the mechanisms linking inter-organ crosstalk and respiratory infections. We will discuss technical aspects of OoC lung models, ranging from the selection of cell substrates for extracellular matrix mimicry, mechanical strain, breathing mechanisms and air-liquid interface to the integration of immune cells and use of microscopy tools for algorithm-based image analysis and systems biology to study viral infection in vitro. OoC offers exciting new options to study viral infections across host species and to investigate human cellular physiology at a personalized level. This review bridges the gap between complex biological phenomena and the technical prowess of OoC models, providing a comprehensive roadmap for researchers in the field.
Collapse
Affiliation(s)
- Hristina Koceva
- Institute of Biochemistry II, Jena University Hospital, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
| | - Mona Amiratashani
- Institute of Biochemistry II, Jena University Hospital, Jena, Germany
| | - Parastoo Akbarimoghaddam
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| | - Bianca Hoffmann
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| | - Gaukhar Zhurgenbayeva
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
- Leibniz Institute of Photonic Technologies e.V., Member of the Leibniz Centre for Photonics in Infection Research (LPI), Jena, Germany
| | - Mark S. Gresnigt
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| | - Vanessa Rossetto Marcelino
- Melbourne Integrative Genomics, School of BioSciences, University of Melbourne, Parkville, Australia
- Department of Microbiology and Immunology, The Peter Doherty Institute, University of Melbourne, Parkville, Australia
| | - Christian Eggeling
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
- Leibniz Institute of Photonic Technologies e.V., Member of the Leibniz Centre for Photonics in Infection Research (LPI), Jena, Germany
- Institute of Applied Optics and Biophysics, Friedrich-Schiller-University Jena, Jena, Germany
- Jena Center for Soft Matter, Jena, Germany
| | - Marc Thilo Figge
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| | - Maria-João Amorim
- Católica Biomédical Research Centre, Católica Medical School, Universidade Católica Portuguesa, Lisbon, Portugal
| | - Alexander S. Mosig
- Institute of Biochemistry II, Jena University Hospital, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
- Jena Center for Soft Matter, Jena, Germany
- Center of Sepsis Control and Care, Jena University Hospital, Jena, Germany
| |
Collapse
|
5
|
Tsui Y, Wu X, Zhang X, Peng Y, Mok CKP, Chan FKL, Ng SC, Tun HM. Short-chain fatty acids in viral infection: the underlying mechanisms, opportunities, and challenges. Trends Microbiol 2025; 33:302-320. [PMID: 39505671 DOI: 10.1016/j.tim.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024]
Abstract
Viral infections can cause cellular pathway derangements, cell death, and immunopathological responses, leading to host inflammation. Short-chain fatty acids (SCFAs), produced by the microbiota, have emerged as a potential therapeutic for viral infections due to their ability to modulate these processes. However, SCFAs have been reported to have both beneficial and detrimental effects, necessitating a comprehensive understanding of the underlying mechanisms. This review highlights the complex mechanisms underlying SCFAs' effects on viral infection outcomes. We also emphasize the importance of considering how SCFAs' activities may differ under diverse contexts, including but not limited to target cells with different metabolic wiring, different viral causes of infection, the target organism/cell's nutrient availability and/or energy balance, and hosts with varying microbiome compositions.
Collapse
Affiliation(s)
- Yee Tsui
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xueqi Wu
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xi Zhang
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ye Peng
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Microbiota I-Center (MagIC), Hong Kong, China
| | - Chris Ka Pun Mok
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; S.H. Ho Research Centre for Infectious Diseases, The Chinese University of Hong Kong, Hong Kong, China
| | - Francis K L Chan
- Microbiota I-Center (MagIC), Hong Kong, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China; Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
| | - Siew C Ng
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Microbiota I-Center (MagIC), Hong Kong, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Hein Min Tun
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Microbiota I-Center (MagIC), Hong Kong, China.
| |
Collapse
|
6
|
Weitzman CL, Brown GP, Day K, Shilton CM, Gibb K, Christian K. Protection against anuran lungworm infection may be mediated by innate defenses rather than their microbiome. Int J Parasitol 2025:S0020-7519(25)00021-9. [PMID: 39909191 DOI: 10.1016/j.ijpara.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 12/22/2024] [Accepted: 01/31/2025] [Indexed: 02/07/2025]
Abstract
Host-associated microbiomes provide protection against disease in diverse systems, through both direct and indirect interactions with invaders, although these interactions are less understood in the context of non-gut helminth infections in wildlife. Here, we used a widespread, invasive host-parasite system to better understand helminth-amphibian-microbiome dynamics. We focus on cane toads and their lungworm parasites, which invade the host through the skin, to study the interactions between lungworm infection abundance and skin and gut (colon) bacterial microbiomes. Through two experiments, first reducing skin bacterial loads, and second reducing bacterial diversity, we found no evidence of protection by skin bacteria against infection. We also did not find divergent gut communities dependent on lungworm infection, signifying little to no immune modulation from infection causing changes to gut communities, at least in the first month after initial parasite exposure. In light of previous work in the system, these results underscore the contribution of toads' innate susceptibility (including possible protection provided by skin secretions) rather than skin microbes in determining the chance of infection by these macroparasites.
Collapse
Affiliation(s)
- Chava L Weitzman
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Brinkin, NT 0909, Australia.
| | - Gregory P Brown
- Department of Biological Sciences, Macquarie University, New South Wales 2109, Australia
| | - Kimberley Day
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Brinkin, NT 0909, Australia
| | - Catherine M Shilton
- Berrimah Veterinary Laboratories, Northern Territory Department of Primary Industries and Fisheries, Berrimah, NT 0828, Australia
| | - Karen Gibb
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Brinkin, NT 0909, Australia
| | - Keith Christian
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Brinkin, NT 0909, Australia
| |
Collapse
|
7
|
Pulia MS, Griffin M, Schwei RJ, Pop-Vicas A, Schulz L, Shieh MS, Pekow P, Lindenauer PK. National Trends in Antibiotic Prescribing for Adults Hospitalized With Coronavirus Disease 2019 and Other Viral Respiratory Infections. Open Forum Infect Dis 2025; 12:ofaf045. [PMID: 39963703 PMCID: PMC11832046 DOI: 10.1093/ofid/ofaf045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/24/2025] [Indexed: 02/20/2025] Open
Abstract
Background Significant concerns have been raised regarding the overuse of antibiotics among patients hospitalized for coronavirus disease 2019 (COVID-19) and the broad impact of the pandemic on antimicrobial stewardship in acute care. We sought to compare potentially unnecessary antibiotic prescribing over time among patients admitted with symptomatic COVID-19 and non-COVID-19 viral acute respiratory tract infections (ARTIs). Methods We conducted a repeated cross-sectional analysis of the monthly antibiotic prescribing rate from March 2020 to December 2023 for COVID-19 admissions and from January 2019 to December 2023 for other viral ARTI admissions to 803 acute care hospitals in the United States that contributed data to the Premier Healthcare Database. Our primary outcome was the receipt of ≥1 dose of an antibiotic during the first 5 days of the admission. Secondary outcomes included days and duration of antibiotic therapy. Results This study included 513 698 COVID-19 and 106 932 non-COVID-19 viral ARTI admissions from March 2020 to December 2023. At the onset of the pandemic, >80% of patients admitted for COVID-19 received antibiotics, and antibiotic prescribing for other viral ARTIs increased to nearly 70%. Antibiotic prescribing for these viral infections declined over time, with prescribing for COVID-19 stabilizing around 35% in 2022-2023 and prescribing for other viral ARTIs returning to 2019 seasonal patterns in 2023, with average monthly prescribing around 50%. Conclusions Despite improvements since the early part of the COVID-19 pandemic, potentially unnecessary antibiotic prescribing for inpatients with COVID-19 and non-COVID-19 viral ARTIs remains an important antibiotic stewardship target.
Collapse
Affiliation(s)
- Michael S Pulia
- BerbeeWalsh Department of Emergency Medicine, University of Wisconsin–Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Meggie Griffin
- BerbeeWalsh Department of Emergency Medicine, University of Wisconsin–Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Rebecca J Schwei
- BerbeeWalsh Department of Emergency Medicine, University of Wisconsin–Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Aurora Pop-Vicas
- Division of Infectious Diseases, Department of Medicine, University of Wisconsin–Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Lucas Schulz
- University of Wisconsin-Madison School of Pharmacy, Madison, Wisconsin, USA
| | - Meng-Shiou Shieh
- Department Healthcare Delivery and Population Sciences, University of Massachusetts Chan Medical School-Baystate, Springfield, Massachusetts, USA
| | - Penelope Pekow
- Department Healthcare Delivery and Population Sciences, University of Massachusetts Chan Medical School-Baystate, Springfield, Massachusetts, USA
| | - Peter K Lindenauer
- Department Healthcare Delivery and Population Sciences, University of Massachusetts Chan Medical School-Baystate, Springfield, Massachusetts, USA
- Department of Medicine, University of Massachusetts Chan Medical School-Baystate, Springfield, Massachusetts, USA
| |
Collapse
|
8
|
Zhao M, Zhou L, Wang S. Immune crosstalk between respiratory and intestinal mucosal tissues in respiratory infections. Mucosal Immunol 2025:S1933-0219(24)00136-3. [PMID: 39755173 DOI: 10.1016/j.mucimm.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/11/2024] [Accepted: 12/26/2024] [Indexed: 01/06/2025]
Abstract
Mucosal tissues, including those in the respiratory and gastrointestinal tracts, are critical barrier surfaces for pathogen invasion. Infections at these sites not only trigger local immune response, but also recruit immune cells from other tissues. Emerging evidence in the mouse models and human samples indicates that the immune crosstalk between the lung and gut critically impacts and determines the course of respiratory disease. Here we summarize the current knowledge of the immune crosstalk between the respiratory and gastrointestinal tracts, and discuss how immune cells are recruited and migrate between these tissues during respiratory infections. We also discuss how commensal bacteria contribute to these processes.
Collapse
Affiliation(s)
- Min Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Zhou
- Shanghai Immune Therapy Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuo Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 101408, China.
| |
Collapse
|
9
|
Kaur Sardarni U, Ambikan AT, Acharya A, Johnson SD, Avedissian SN, Végvári Á, Neogi U, Byrareddy SN. SARS-CoV-2 variants mediated tissue-specific metabolic reprogramming determines the disease pathophysiology in a hamster model. Brain Behav Immun 2025; 123:914-927. [PMID: 39481495 DOI: 10.1016/j.bbi.2024.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 09/28/2024] [Accepted: 10/26/2024] [Indexed: 11/02/2024] Open
Abstract
Despite significant effort, a clear understanding of host tissue-specific responses and their implications for immunopathogenicity against the severe acute respiratory syndrome coronavirus2 (SARS-CoV-2) variant infection has remained poorly defined. To shed light on the interaction between tissues and SARS-CoV-2 variants, we sought to characterize the complex relationship among acute multisystem manifestations, dysbiosis of the gut microbiota, and the resulting implications for SARS-CoV-2 variant-specific immunopathogenesis in the Golden Syrian Hamster (GSH) model using multi-omics approaches. Our investigation revealed the presence of increased SARS-CoV-2 genomic RNA in diverse tissues of delta-infected GSH compared to the omicron variant. Multi-omics analyses uncovered distinctive metabolic responses between the delta and omicron variants, with the former demonstrating dysregulation in synaptic transmission proteins associated with neurocognitive disorders. Additionally, delta-infected GSH exhibited an altered fecal microbiota composition, marked by increased inflammation-associated taxa and reduced commensal bacteria compared to the omicron variant. These findings underscore the SARS-CoV-2-mediated tissue insult, characterized by modified host metabolites, neurological protein dysregulation, and gut dysbiosis, highlighting the compromised gut-lung-brain axis during acute infection.
Collapse
Affiliation(s)
- Urvinder Kaur Sardarni
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Anoop T Ambikan
- The Systems Virology Laboratory, Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, Stockholm, Sweden
| | - Arpan Acharya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Samuel D Johnson
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sean N Avedissian
- Antiviral Pharmacology Laboratory, Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ákos Végvári
- Division of Chemistry I, Department of Medical Biochemistry & Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ujjwal Neogi
- The Systems Virology Laboratory, Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, Stockholm, Sweden.
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
10
|
Mauliasari IR, Lee HJ, Koo SY, Hitayezu E, Kieu ANT, Lee SM, Cha KH. Benzo(a)pyrene and Gut Microbiome Crosstalk: Health Risk Implications. TOXICS 2024; 12:938. [PMID: 39771153 PMCID: PMC11840287 DOI: 10.3390/toxics12120938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 02/23/2025]
Abstract
This review delves into the impact of benzo(a)pyrene (B(a)P), which is a toxic and pervasive polycyclic aromatic hydrocarbon (PAH) and known carcinogen, on the human health risk from a gut microbiome perspective. We retrieved the relevant articles on each PAH and summarized the reporting to date, with a particular focus on benzo(a)pyrene, which has been reported to have a high risk of gut microbiome-related harm. B(a)P exposure can compromise the homeostasis of the gut microbiota, leading to dysbiosis, a state of microbial imbalance. The consequences of B(a)P-induced gut dysbiosis can be far-reaching, potentially contributing to inflammation, metabolic disorders, and an increased risk of various diseases. Additionally, due to the strong coupling between B(a)P and microparticles, the toxicity of B(a)P may be further compounded by its reaction with strong gut disruptors such as micro-/nanoplastics, which have recently become a serious environmental concern. This review summarizes current research on the impact of B(a)P on the gut microbiome, highlighting the intricate relationship between environmental exposure, gut health, and human disease. Further research is necessary to elucidate the underlying mechanisms and develop effective strategies to mitigate the adverse health effects of B(a)P exposure.
Collapse
Affiliation(s)
- Intan Rizki Mauliasari
- Center for Natural Product Systems Biology, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (I.R.M.); (H.J.L.); (S.Y.K.); (E.H.); (A.N.T.K.)
- Department of Aquatic Life Medicine, College of Life Sciences, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea;
| | - Hee Ju Lee
- Center for Natural Product Systems Biology, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (I.R.M.); (H.J.L.); (S.Y.K.); (E.H.); (A.N.T.K.)
| | - Song Yi Koo
- Center for Natural Product Systems Biology, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (I.R.M.); (H.J.L.); (S.Y.K.); (E.H.); (A.N.T.K.)
| | - Emmanuel Hitayezu
- Center for Natural Product Systems Biology, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (I.R.M.); (H.J.L.); (S.Y.K.); (E.H.); (A.N.T.K.)
- Department of Food Science, College of Life Sciences, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Anh Nguyen Thi Kieu
- Center for Natural Product Systems Biology, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (I.R.M.); (H.J.L.); (S.Y.K.); (E.H.); (A.N.T.K.)
- Natural Products Applied Science, KIST School, University of Science and Technology, Gangneung 25451, Republic of Korea
| | - Sang-Min Lee
- Department of Aquatic Life Medicine, College of Life Sciences, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea;
| | - Kwang Hyun Cha
- Center for Natural Product Systems Biology, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (I.R.M.); (H.J.L.); (S.Y.K.); (E.H.); (A.N.T.K.)
- Natural Products Applied Science, KIST School, University of Science and Technology, Gangneung 25451, Republic of Korea
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, 20, Ilsan-ro, Wonju 26493, Republic of Korea
| |
Collapse
|
11
|
Dora D, Revisnyei P, Mihucz A, Kiraly P, Szklenarik G, Dulka E, Galffy G, Lohinai Z. Metabolic pathways from the gut metatranscriptome are associated with COPD and respiratory function in lung cancer patients. Front Cell Infect Microbiol 2024; 14:1381170. [PMID: 39635041 PMCID: PMC11616033 DOI: 10.3389/fcimb.2024.1381170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 10/22/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction Changes in the human gut microbiome have been linked to various chronic diseases, including chronic obstructive pulmonary disease (COPD). While substantial knowledge is available on the genomic features of fecal communities, little is known about the microbiome's transcriptional activity. Here, we analyzed the metatranscriptomic (MTR) abundance of MetaCyc pathways, SuperPathways, and protein domain families (PFAM) represented by the gut microbiome in a cohort of non-small cell lung cancer (NSCLC) patients with- or without COPD comorbidity. Methods Fecal samples of 40 NSCLC patients with- or without COPD comorbidity were collected at the time of diagnosis. Data was preprocessed using the Metaphlan3/Humann3 pipeline and BioCyc© to identify metabolic SuperPathways. LEfSe analysis was conducted on Pathway- and PFAM abundance data to determine COPD- and non-COPD-related clusters. Results Key genera Streptococcus, Escherichia, Gemella, and Lactobacillus were significantly more active transcriptionally compared to their metagenomic presence. LEfSe analysis identified 11 MetaCyc pathways that were significantly overrepresented in patients with- and without COPD comorbidity. According to Spearman's rank correlation, Smoking PY showed a significant negative correlation with Glycolysis IV, Purine Ribonucleoside Degradation and Glycogen Biosynthesis I, and a significant positive correlation with Superpathway of Ac-CoA Biosynthesis and Glyoxylate cycle, whereas forced expiratory volume in the first second (FEV1) showed a significant negative correlation with Glycolysis IV and a significant positive correlation with Glycogen Biosynthesis I. Furthermore, COPD patients showed a significantly increased MTR abundance in ~60% of SuperPathways, indicating a universally increased MTR activity in this condition. FEV1 showed a significant correlation with SuperPathways Carbohydrate degradation, Glycan biosynthesis, and Glycolysis. Taxonomic analysis suggested a more prominent MTR activity from multiple Streptococcus species, Enterococcus (E.) faecalis, E. faecium and Escherichia (E.) coli than expected from their metagenomic abundance. Multiple protein domain families (PFAMs) were identified as more associated with COPD, E. faecium, E.coli, and Streptococcus salivarius, contributing the most to these PFAMs. Conclusion Metatranscriptome analysis identified COPD-related subsets of lung cancer with potential therapeutic relevance.
Collapse
Affiliation(s)
- David Dora
- Department of Anatomy, Histology, and Embryology, Semmelweis University, Budapest, Hungary
| | - Peter Revisnyei
- Department of Telecommunications and Media Informatics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Anna Mihucz
- Department of Anatomy, Histology, and Embryology, Semmelweis University, Budapest, Hungary
| | - Peter Kiraly
- County Hospital of Torokbalint, Torokbalint, Hungary
| | - György Szklenarik
- Translational Medicine Institute, Semmelweis University, Budapest, Hungary
| | - Edit Dulka
- County Hospital of Torokbalint, Torokbalint, Hungary
| | | | - Zoltan Lohinai
- Translational Medicine Institute, Semmelweis University, Budapest, Hungary
| |
Collapse
|
12
|
Druszczynska M, Sadowska B, Kulesza J, Gąsienica-Gliwa N, Kulesza E, Fol M. The Intriguing Connection Between the Gut and Lung Microbiomes. Pathogens 2024; 13:1005. [PMID: 39599558 PMCID: PMC11597816 DOI: 10.3390/pathogens13111005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/07/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Recent advances in microbiome research have uncovered a dynamic and complex connection between the gut and lungs, known as the gut-lung axis. This bidirectional communication network plays a critical role in modulating immune responses and maintaining respiratory health. Mediated by immune interactions, metabolic byproducts, and microbial communities in both organs, this axis demonstrates how gut-derived signals, such as metabolites and immune modulators, can reach the lung tissue via systemic circulation, influencing respiratory function and disease susceptibility. To explore the implications of this connection, we conducted a systematic review of studies published between 2001 and 2024 (with as much as nearly 60% covering the period 2020-2024), using keywords such as "gut-lung axis", "microbiome", "respiratory disease", and "immune signaling". Studies were selected based on their relevance to gut-lung communication mechanisms, the impact of dysbiosis, and the role of the gut microbiota in respiratory diseases. This review provides a comprehensive overview of the gut-lung microbiome axis, emphasizing its importance in regulating inflammatory and immune responses linked to respiratory health. Understanding this intricate pathway opens new avenues for microbiota-targeted therapeutic strategies, which could offer promising interventions for respiratory diseases like asthma, chronic obstructive pulmonary disease, and even infections. The insights gained through this research underscore the potential of the gut-lung axis as a novel target for preventative and therapeutic approaches in respiratory medicine, with implications for enhancing both gut and lung health.
Collapse
Affiliation(s)
- Magdalena Druszczynska
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, Institute of Microbiology, Biotechnology and Immunology, University of Lodz, 90-237 Lodz, Poland; (B.S.); (N.G.-G.); (M.F.)
| | - Beata Sadowska
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, Institute of Microbiology, Biotechnology and Immunology, University of Lodz, 90-237 Lodz, Poland; (B.S.); (N.G.-G.); (M.F.)
| | - Jakub Kulesza
- Department of Internal Diseases and Clinical Pharmacology, Medical University of Lodz, 91-347 Lodz, Poland;
| | - Nikodem Gąsienica-Gliwa
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, Institute of Microbiology, Biotechnology and Immunology, University of Lodz, 90-237 Lodz, Poland; (B.S.); (N.G.-G.); (M.F.)
| | - Ewelina Kulesza
- Department of Rheumatology and Internal Diseases, Medical University of Lodz, 90-549 Lodz, Poland;
| | - Marek Fol
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, Institute of Microbiology, Biotechnology and Immunology, University of Lodz, 90-237 Lodz, Poland; (B.S.); (N.G.-G.); (M.F.)
| |
Collapse
|
13
|
Yagi K, Ethridge AD, Falkowski NR, Huang YJ, Elesela S, Huffnagle GB, Lukacs NW, Fonseca W, Asai N. Microbiome modifications by steroids during viral exacerbation of asthma and in healthy mice. Am J Physiol Lung Cell Mol Physiol 2024; 327:L646-L660. [PMID: 39159427 PMCID: PMC11560076 DOI: 10.1152/ajplung.00040.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 08/21/2024] Open
Abstract
In the present studies, the assessment of how viral exacerbation of asthmatic responses with and without pulmonary steroid treatment alters the microbiome in conjunction with immune responses presents striking data. The overall findings identify that although steroid treatment of allergic animals diminished the severity of the respiratory syncytial virus (RSV)-induced exacerbation of airway function and mucus hypersecretion, there were local increases in IL-17 expression. Analysis of the lung and gut microbiome suggested that there are differences in RSV exacerbation that are further altered by fluticasone (FLUT) treatment. Using metagenomic inference software, PICRUSt2, we were able to predict that the metabolite profile produced by the changed gut microbiome was significantly different with multiple metabolic pathways and associated with specific treatments with or without FLUT. Importantly, measuring plasma metabolites in an unbiased manner, our data indicate that there are significant changes associated with chronic allergen exposure, RSV exacerbation, and FLUT treatment that are reflective of responses to the disease and treatment. In addition, the changes in metabolites appeared to have contributions from both host and microbial pathways. To understand if airway steroids on their own altered lung and gut microbiome along with host responses to RSV infection, naïve animals were treated with lung FLUT before RSV infection. The naïve animals treated with FLUT before RSV infection demonstrated enhanced disease that corresponded to an altered microbiome and the related PICRUSt2 metagenomic inference analysis. Altogether, these findings set the foundation for identifying important correlations of severe viral exacerbated allergic disease with microbiome changes and the relationship of host metabolome with a potential for early life pulmonary steroid influence on subsequent viral-induced disease.NEW & NOTEWORTHY These studies outline a novel finding that airway treatment with fluticasone, a commonly used inhaled steroid, has significant effects on not only the local lung environment but also on the mucosal microbiome, which may have significant disease implications. The findings further provide data to support that pulmonary viral exacerbations of asthma with or without steroid treatment alter the lung and gut microbiome, which have an impact on the circulating metabolome that likely alters the trajectory of disease progression.
Collapse
Affiliation(s)
- Kazuma Yagi
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States
| | - Alexander D Ethridge
- Immunology Graduate Program, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States
| | - Nicole R Falkowski
- Mary H. Weiser Food Allergy Center, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States
- Department of Molecular, Cellular, and Developmental Biology , University of Michigan, Ann Arbor, Michigan, United States
| | - Yvonne J Huang
- Division of Pulmonary and Critical Medicine, Department of Medicine, University of Michigan, Ann Arbor, United States
| | - Srikanth Elesela
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States
| | - Gary B Huffnagle
- Immunology Graduate Program, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States
- Mary H. Weiser Food Allergy Center, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States
- Division of Pulmonary and Critical Medicine, Department of Medicine, University of Michigan, Ann Arbor, United States
- Department of Molecular, Cellular, and Developmental Biology , University of Michigan, Ann Arbor, Michigan, United States
| | - Nicholas W Lukacs
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States
- Immunology Graduate Program, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States
- Mary H. Weiser Food Allergy Center, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States
| | - Wendy Fonseca
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States
| | - Nobuhiro Asai
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
14
|
Liong S, Liong F, Mohsenipour M, Hill-Yardin EL, Miles MA, Selemidis S. Early-Life Respiratory Syncytial Virus (RSV) Infection Triggers Immunological Changes in Gut-Associated Lymphoid Tissues in a Sex-Dependent Manner in Adulthood. Cells 2024; 13:1728. [PMID: 39451246 PMCID: PMC11506009 DOI: 10.3390/cells13201728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
Severe respiratory syncytial virus (RSV) infection during early life has been linked to gut dysbiosis, which correlates with increased disease severity and a higher risk of developing asthma later in life. However, the impact of such early-life RSV infections on intestinal immunity in adulthood remains unclear. Herein, we show that RSV infection in 3-week-old mice induced persistent differential natural killer (NK) and T cell profiles within the lungs and gastrointestinal (GI) lymphoid tissues (GALT) in adulthood. Notably, male mice exhibited more pronounced RSV-induced changes in immune cell populations in both the lungs and GALT, while female mice displayed greater resilience. Importantly, early-life RSV infection was associated with the chronic downregulation of CD69-expressing T lymphocytes, particularly T regulatory cells in Peyer's patches, which could have a significant impact on T cell functionality and immune tolerance. We propose that RSV infection in early life is a trigger for the breakdown in immune tolerance at mucosal surfaces, with potential implications for airways allergic disease, food allergies, and other GI inflammatory diseases.
Collapse
Affiliation(s)
- Stella Liong
- Centre for Respiratory Science and Health, Royal Melbourne Institute of Technology (RMIT) University, Bundoora, VIC 3082, Australia; (F.L.); (M.A.M.)
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT) University, Bundoora, VIC 3082, Australia; (M.M.); (E.L.H.-Y.)
| | - Felicia Liong
- Centre for Respiratory Science and Health, Royal Melbourne Institute of Technology (RMIT) University, Bundoora, VIC 3082, Australia; (F.L.); (M.A.M.)
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT) University, Bundoora, VIC 3082, Australia; (M.M.); (E.L.H.-Y.)
| | - Mitra Mohsenipour
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT) University, Bundoora, VIC 3082, Australia; (M.M.); (E.L.H.-Y.)
| | - Elisa L. Hill-Yardin
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT) University, Bundoora, VIC 3082, Australia; (M.M.); (E.L.H.-Y.)
| | - Mark A. Miles
- Centre for Respiratory Science and Health, Royal Melbourne Institute of Technology (RMIT) University, Bundoora, VIC 3082, Australia; (F.L.); (M.A.M.)
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT) University, Bundoora, VIC 3082, Australia; (M.M.); (E.L.H.-Y.)
| | - Stavros Selemidis
- Centre for Respiratory Science and Health, Royal Melbourne Institute of Technology (RMIT) University, Bundoora, VIC 3082, Australia; (F.L.); (M.A.M.)
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT) University, Bundoora, VIC 3082, Australia; (M.M.); (E.L.H.-Y.)
| |
Collapse
|
15
|
de Andrade ACMM, Oliveira NL, Nolasco E Silva AE, Vaz LG, Martins FRB, de Moura Lopes ME, Torres L, Queiroz CM, Russo RC, Dos Santos LM, Vieira LQ, Soriani FM. Oral administration of Lactobacillus delbrueckii UFV-H2b20 protects mice against Aspergillus fumigatus lung infection. Inflamm Res 2024; 73:1601-1614. [PMID: 39198294 DOI: 10.1007/s00011-024-01895-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/29/2024] [Accepted: 05/22/2024] [Indexed: 09/01/2024] Open
Abstract
INTRODUCTION Probiotics provide therapeutic benefits not only in the gut but also other mucosal organs, including the lungs. OBJECTIVE AND DESIGN To evaluate the effects of the probiotic strain L. delbrueckii UFV-H2b20 oral administration in an experimental murine model of A. fumigatus pulmonary infection. BALB/c mice were associated with L. delbrueckii and infected with Aspergillus fumigatus and compared with non-associated group. METHODS We investigated survival, respiratory mechanics, histopathology, colony forming units, cytokines in bronchoalveolar lavage, IgA in feces, efferocytosis, production of reactive oxygen species and the cell population in the mesenteric lymph nodes. RESULTS L. delbrueckii induces tolerogenic dendritic cells, IL-10+macrophages and FoxP3+regulatory T cells in mesenteric lymph nodes and increased IgA levels in feces; after infection with A. fumigatus, increased survival and decreased fungal burden. There was decreased lung vascular permeability without changes in the leukocyte profile. There was enhanced neutrophilic response and increased macrophage efferocytosis. L. delbrueckii-treated mice displayed more of FoxP3+Treg cells, TGF-β and IL-10 levels in lungs, and concomitant decreased IL-1β, IL-17 A, and CXCL1 production. CONCLUSION Uur results indicate that L. delbrueckii UFV H2b20 ingestion improves immune responses, controlling pulmonary A. fumigatus infection. L. delbrueckii seems to play a role in pathogenesis control by promoting immune regulation.
Collapse
Affiliation(s)
| | - Nathalia Luisa Oliveira
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Elisa Nolasco E Silva
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Leonardo Gomes Vaz
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Flávia Rayssa Braga Martins
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mateus Eustáquio de Moura Lopes
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lícia Torres
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Celso Martins Queiroz
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Remo Castro Russo
- Departamento de Fisiologia e Biofisica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Liliane Martins Dos Santos
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Leda Quercia Vieira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Frederico Marianetti Soriani
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
16
|
Dora D, Szőcs E, Soós Á, Halasy V, Somodi C, Mihucz A, Rostás M, Mógor F, Lohinai Z, Nagy N. From bench to bedside: an interdisciplinary journey through the gut-lung axis with insights into lung cancer and immunotherapy. Front Immunol 2024; 15:1434804. [PMID: 39301033 PMCID: PMC11410641 DOI: 10.3389/fimmu.2024.1434804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024] Open
Abstract
This comprehensive review undertakes a multidisciplinary exploration of the gut-lung axis, from the foundational aspects of anatomy, embryology, and histology, through the functional dynamics of pathophysiology, to implications for clinical science. The gut-lung axis, a bidirectional communication pathway, is central to understanding the interconnectedness of the gastrointestinal- and respiratory systems, both of which share embryological origins and engage in a continuous immunological crosstalk to maintain homeostasis and defend against external noxa. An essential component of this axis is the mucosa-associated lymphoid tissue system (MALT), which orchestrates immune responses across these distant sites. The review delves into the role of the gut microbiome in modulating these interactions, highlighting how microbial dysbiosis and increased gut permeability ("leaky gut") can precipitate systemic inflammation and exacerbate respiratory conditions. Moreover, we thoroughly present the implication of the axis in oncological practice, particularly in lung cancer development and response to cancer immunotherapies. Our work seeks not only to synthesize current knowledge across the spectrum of science related to the gut-lung axis but also to inspire future interdisciplinary research that bridges gaps between basic science and clinical application. Our ultimate goal was to underscore the importance of a holistic understanding of the gut-lung axis, advocating for an integrated approach to unravel its complexities in human health and disease.
Collapse
Affiliation(s)
- David Dora
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Emőke Szőcs
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Ádám Soós
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Viktória Halasy
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Csenge Somodi
- Translational Medicine Institute, Semmelweis University, Budapest, Hungary
| | - Anna Mihucz
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Melinda Rostás
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Fruzsina Mógor
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Zoltan Lohinai
- Translational Medicine Institute, Semmelweis University, Budapest, Hungary
| | - Nándor Nagy
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
17
|
Park YC, Choi SY, Cha Y, Yoon HW, Son YM. Microbiome-Mucosal Immunity Nexus: Driving Forces in Respiratory Disease Progression. J Microbiol 2024; 62:709-725. [PMID: 39240507 DOI: 10.1007/s12275-024-00167-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/08/2024] [Accepted: 08/11/2024] [Indexed: 09/07/2024]
Abstract
The importance of the complex interplay between the microbiome and mucosal immunity, particularly within the respiratory tract, has gained significant attention due to its potential implications for the severity and progression of lung diseases. Therefore, this review summarizes the specific interactions through which the respiratory tract-specific microbiome influences mucosal immunity and ultimately impacts respiratory health. Furthermore, we discuss how the microbiome affects mucosal immunity, considering tissue-specific variations, and its capacity in respiratory diseases containing asthma, chronic obstructive pulmonary disease, and lung cancer. Additionally, we investigate the external factors which affect the relationship between respiratory microbiome and mucosal immune responses. By exploring these intricate interactions, this review provides valuable insights into the potential for microbiome-based interventions to modulate mucosal immunity and alleviate the severity of respiratory diseases.
Collapse
Affiliation(s)
- Young Chae Park
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Soo Yeon Choi
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Yunah Cha
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Hyeong Won Yoon
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Young Min Son
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
18
|
Kane AS, Godfrey M, Noval Rivas M, Arditi M, Fasano A, Yonker LM. The Spectrum of Postacute Sequelae of COVID-19 in Children: From MIS-C to Long COVID. Annu Rev Virol 2024; 11:327-341. [PMID: 38631806 DOI: 10.1146/annurev-virology-093022-011839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
The effects of SARS-CoV-2 infection on children continue to evolve following the onset of the COVID-19 pandemic. Although life-threatening multisystem inflammatory syndrome in children (MIS-C) has become rare, long-standing symptoms stemming from persistent immune activation beyond the resolution of acute SARS-CoV-2 infection contribute to major health sequelae and continue to pose an economic burden. Shared pathophysiologic mechanisms place MIS-C and long COVID within a vast spectrum of postinfectious conditions characterized by intestinal dysbiosis, increased gut permeability, and varying degrees of immune dysregulation. Insights obtained from MIS-C will help shape our understanding of the more indolent and prevalent postacute sequelae of COVID and ultimately guide efforts to improve diagnosis and management of postinfectious complications of SARS-CoV-2 infection in children.
Collapse
Affiliation(s)
- Abigail S Kane
- Children's Hospital of Los Angeles, Los Angeles, California, USA
| | - Madeleine Godfrey
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA;
| | - Magali Noval Rivas
- Infectious and Immunologic Diseases Research Center and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children's, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Moshe Arditi
- Infectious and Immunologic Diseases Research Center and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children's, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Alessio Fasano
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA;
| | - Lael M Yonker
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA;
| |
Collapse
|
19
|
Özçam M, Lynch SV. The gut-airway microbiome axis in health and respiratory diseases. Nat Rev Microbiol 2024; 22:492-506. [PMID: 38778224 DOI: 10.1038/s41579-024-01048-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2024] [Indexed: 05/25/2024]
Abstract
Communication between the gut and remote organs, such as the brain or the cardiovascular system, has been well established and recent studies provide evidence for a potential bidirectional gut-airway axis. Observations from animal and human studies indicate that respiratory insults influence the activity of the gut microbiome and that microbial ligands and metabolic products generated by the gut microbiome shape respiratory immunity. Information exchange between these two large mucosal surface areas regulates microorganism-immune interactions, with significant implications for the clinical and treatment outcomes of a range of respiratory conditions, including asthma, chronic obstructive pulmonary disease and lung cancer. In this Review, we summarize the most recent data in this field, offering insights into mechanisms of gut-airway crosstalk across spatial and temporal gradients and their relevance for respiratory health.
Collapse
Affiliation(s)
- Mustafa Özçam
- Benioff Center for Microbiome Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Susan V Lynch
- Benioff Center for Microbiome Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
20
|
Yu T, Wu B, Zhang D, Deng G, Luo Y, Tang N, Shi Q, Hu F, Zhang G. A novel Bacillus aerolatus CX253 attenuates inflammation induced by Streptococcus pneumoniae in childhood and pregnant rats by regulating gut microbiome. Cell Mol Life Sci 2024; 81:319. [PMID: 39078497 PMCID: PMC11335247 DOI: 10.1007/s00018-024-05232-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/20/2024] [Accepted: 04/05/2024] [Indexed: 07/31/2024]
Abstract
Streptococcus pneumoniae (Spn) is the predominant pathogen responsible for community-acquired pneumonia (CAP) in children under five years old, and it can induce over 17% of pregnant women. However, no more effective measures exist to prevent infection induced by Spn in these two special populations. The beneficial microbes can antagonize Spn and provide new targets for preventing pneumococcal infections. This study used 16S rRNA gene sequencing and targeted metabolomics to evaluate the role of the Bacillus aerolatus CX253 (CX253) in alleviating Spn infection. Additionally, the colonization of CX253 was observed in nose, trachea, and lung by using confocal laser scanning microscopy and fluorescent labeling techniques. Compared with the model group, the expression level of interleukin-1β was dropped 1.81-fold and 2.22-fold, and interleukin-6 was decreased 2.39-fold and 1.84-fold. The express of tumor necrosis factor-α was down 2.30-fold and 3.84-fold in prevention group of childhood and pregnant rats, respectively. The 16S rRNA sequencing results showed that CX253 administration alone significantly increased the abundance of Lactobacillus, Limosilactobacillus, and Prevotella in the gut of childhood and pregnant rats. Furthermore, the CX253 increased propionate in the gut of childhood rats and increased propionate and butyrate in the gut of pregnant rats to inhibit pulmonary inflammation. In summary, CX253 attenuated Spn-induced inflammation by regulating the gut microbiota and SCFAs. The research provides valuable information for the prevention of pneumonia.
Collapse
Affiliation(s)
- Ting Yu
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Biru Wu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Dimei Zhang
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Guanhua Deng
- Key Laboratory of Occupational Environment and Health, Guangzhou Twelfth People's Hospital, 1Tianqiang St., Huangpu West Ave, Guangzhou, 510620, Guangdong, China.
| | - Yi Luo
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Ningqianzi Tang
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Qiankun Shi
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Fang Hu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China.
| | - Guoxia Zhang
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
21
|
Cai H, Luo S, Cai X, Lai T, Zhao S, Zhang W, Zhuang J, Li Z, Chen L, Chen B, Ye Y. Effect of Fu Zheng Jie Du Formula on outcomes in patients with severe pneumonia receiving prone ventilation: a retrospective cohort study. Front Pharmacol 2024; 15:1428817. [PMID: 39114366 PMCID: PMC11303160 DOI: 10.3389/fphar.2024.1428817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
Background The effect of combining prone ventilation with traditional Chinese medicine on severe pneumonia remains unclear. Objective To evaluate the effect of Fu Zheng Jie Du Formula (FZJDF) combined with prone ventilation on clinical outcomes in patients with severe pneumonia. Methods This single-center retrospective cohort study included 188 severe pneumonia patients admitted to the ICU from January 2022 to December 2023. Patients were divided into an FZJD group (receiving FZJDF for 7 days plus prone ventilation) and a non-FZJD group (prone ventilation only). Propensity score matching (PSM) was performed to balance baseline characteristics. The primary outcome was the change in PaO2/FiO2 ratio after treatment. Secondary outcomes included 28-day mortality, duration of mechanical ventilation, length of ICU stay, PaCO2, lactic acid levels, APACHE II score, SOFA score, Chinese Medicine Score, inflammatory markers, and time to symptom resolution. Results After PSM, 32 patients were included in each group. Compared to the non-FZJD group, the FZJD group showed significantly higher PaO2/FiO2 ratios, lower PaCO2, and lower lactic acid levels after treatment (p < 0.05 for all). The FZJD group also had significantly lower APACHE II scores, SOFA scores, Chinese Medicine Scores, and levels of WBC, PCT, hs-CRP, and IL-6 (p < 0.05 for all). Time to symptom resolution, including duration of mechanical ventilation, length of ICU stay, time to fever resolution, time to cough resolution, and time to resolution of pulmonary rales, was significantly shorter in the FZJD group (p < 0.05 for all). There was no significant difference in 28-day mortality between the two groups. Conclusion FZJDF as an adjuvant therapy to prone ventilation can improve oxygenation and other clinical outcomes in severe pneumonia patients. Prospective studies are warranted to validate these findings.
Collapse
Affiliation(s)
- Hairong Cai
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Sicong Luo
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xingui Cai
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ting Lai
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuai Zhao
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Guangzhou, China
| | - Weizhang Zhang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jieqin Zhuang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhishang Li
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Chen
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bojun Chen
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Guangzhou, China
- Clinical Research Team of Prevention and Treatment of Cardiac Emergencies with Traditional Chinese Medicine, Guangzhou, China
| | - Ye Ye
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Guangzhou, China
- Clinical Research Team of Prevention and Treatment of Cardiac Emergencies with Traditional Chinese Medicine, Guangzhou, China
| |
Collapse
|
22
|
Hawryłkowicz V, Stasiewicz B, Maciejewska D, Sołek-Pastuszka J, Komorniak N, Skonieczna-Żydecka K, Martynova-Van Kley A, Stachowska E. The Link between Inflammation, Lipid Derivatives, and Microbiota Metabolites in COVID-19 Patients: Implications on Eating Behaviors and Nutritional Status. Int J Mol Sci 2024; 25:7899. [PMID: 39063142 PMCID: PMC11276903 DOI: 10.3390/ijms25147899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Extreme inflammation that continues even after infections can lead to a cytokine storm. In recent times, one of the most common causes of cytokine storm activation has been SARS-CoV-2 infection. A cytokine storm leads to dysregulation and excessive stimulation of the immune system, producing symptoms typical of post-COVID syndrome, including chronic fatigue, shortness of breath, joint pain, trouble concentrating (known as "brain fog"), and even direct organ damage in the heart, lungs, kidneys, and brain. This work summarizes the current knowledge regarding inflammation and the cytokine storm related to SARS-CoV-2 infection. Additionally, changes in lipid metabolism and microbiota composition under the influence of inflammation in COVID-19, along with the possible underlying mechanisms, are described. Finally, this text explores potential health implications related to changes in eating behaviors and nutritional status in COVID-19 patients. Although research on the cytokine storm is still ongoing, there is convincing evidence suggesting that severe immune and inflammatory responses during the acute phase of COVID-19 may lead to long-term health consequences. Understanding these links is key to developing treatment strategies and supporting patients after infection.
Collapse
Affiliation(s)
- Viktoria Hawryłkowicz
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland; (V.H.); (D.M.); (N.K.)
| | - Beata Stasiewicz
- Department of Human Nutrition, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Sloneczna 45f, 10-718 Olsztyn, Poland
| | - Dominika Maciejewska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland; (V.H.); (D.M.); (N.K.)
| | - Joanna Sołek-Pastuszka
- Department of Anesthesiology and Intensive Care, Pomeranian Medical University, 71-242 Szczecin, Poland;
| | - Natalia Komorniak
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland; (V.H.); (D.M.); (N.K.)
| | | | | | - Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland; (V.H.); (D.M.); (N.K.)
| |
Collapse
|
23
|
Sun M, Lu F, Yu D, Wang Y, Chen P, Liu S. Respiratory diseases and gut microbiota: relevance, pathogenesis, and treatment. Front Microbiol 2024; 15:1358597. [PMID: 39081882 PMCID: PMC11286581 DOI: 10.3389/fmicb.2024.1358597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/26/2024] [Indexed: 08/02/2024] Open
Abstract
Preclinical evidence has firmly established a bidirectional interaction among the lung, gut, and gut microbiome. There are many complex communication pathways between the lung and intestine, which affect each other's balance. Some metabolites produced by intestinal microorganisms, intestinal immune cells, and immune factors enter lung tissue through blood circulation and participate in lung immune function. Altered gut-lung-microbiome interactions have been identified in rodent models and humans of several lung diseases such as pulmonary fibrosis, chronic obstructive pulmonary disease, lung cancer, asthma, etc. Emerging evidence suggests that microbial therapies can prevent and treat respiratory diseases, but it is unclear whether this association is a simple correlation with the pathological mechanisms of the disease or the result of causation. In this review, we summarize the complex and critical link between the gut microbiota and the lung, as well as the influence and mechanism of the gut microbiota on respiratory diseases, and discuss the role of interventions such as prebiotics and fecal bacteria transplantation on respiratory diseases. To provide a reference for the rational design of large-scale clinical studies, the direct application of microbial therapy to respiratory-related diseases can reduce the incidence and severity of diseases and accompanying complications.
Collapse
Affiliation(s)
- Mengdi Sun
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fang Lu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Donghua Yu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yu Wang
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Pingping Chen
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shumin Liu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
24
|
Li Y, Wang Y, Li Y, Yan S, Gao X, Li P, Zheng X, Gu Q. Dress me an outfit: advanced probiotics hybrid systems for intelligent IBD therapy. Crit Rev Food Sci Nutr 2024:1-24. [PMID: 39007752 DOI: 10.1080/10408398.2024.2359135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Inflammation bowel disease (IBD) has emerged as a public health challenge worldwide; with high incidence and rapid prevalence, it has troubled billions of people and further induced multitudinous systemic complications. Recent decade has witnessed the vigorous application of food-borne probiotics for IBD therapy; however, the complicated and changeable environments of digestive tract have forced probiotics to face multiple in vivo pressures, consequently causing unsatisfied prophylactic or therapeutic efficacy attributed to off-targeted arrival, damaged viability, insufficient colonization efficiency, etc. Fortunately, arisen hybrid technology has provided versatile breakthroughs for the targeted transplantation of probiotics. By ingeniously modifying probiotics to form probiotics hybrid systems (PHS), the biological behaviors of probiotics in vivo could be mediated, the interactions between probiotics with intestinal components can be facilitated, and diverse advanced probiotic-based therapies for IBD challenge can be developed, which attribute to the intelligent response to microenvironment of PHS, and intelligent design of PHS for multiple functions combination. In this review, various PHS were categorized and their intestinal behaviors were elucidated systematically, their therapeutic effects and intrinsic mechanism were further analyzed. Besides, shortages of present PHS and the corresponding solutions have been discussed, based on which the future perspectives of this field have also been proposed. The undeniable fact is that PHS show an incomparable future to bring the next generation of advanced food science.
Collapse
Affiliation(s)
- Yonglu Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Yadi Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Yapeng Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Shihai Yan
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Xin Gao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Ping Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition; Zhejiang Key Laboratory for Agro-food Processing; Fuli Institute of Food Science; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, People's Republic of China
| | - Qing Gu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
25
|
Hu L, Sun L, Yang C, Zhang DW, Wei YY, Yang MM, Wu HM, Fei GH. Gut microbiota-derived acetate attenuates lung injury induced by influenza infection via protecting airway tight junctions. J Transl Med 2024; 22:570. [PMID: 38879538 PMCID: PMC11179378 DOI: 10.1186/s12967-024-05376-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/06/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND Gut microbiota (GM) have been implicated as important regulators of gastrointestinal symptom which is commonly occurred along with respiratory influenza A virus (IAV) infection, suggesting the involvement of the gut-to-lung axis in a host's response to IAV. IAV primarily destroys airway epithelium tight junctions (TJs) and consequently causes acute respiratory disease syndrome. It is known that GM and their metabolism produce an anti-influenza effect, but their role in IAV-induced airway epithelial integrity remains unknown. METHODS A mouse model of IAV infection was established. GM were analyzed using 16S rRNA gene sequencing, and short-chain fatty acids (SCFAs) levels were measured. GM depletion and fecal microbiota transplantation (FMT) were conducted to validate the role of GM in IAV infection. A pair-feeding experiment was conducted to reveal whether IAV-induced GM dysbiosis is attributed to impaired food intake. Furthermore, human bronchial epithelial (HBE) cells were cocultured with IAV in the presence or absence of acetate. TJs function was analyzed by paracellular permeability and transepithelial electronic resistance (TEER). The mechanism of how acetate affects TJs integrity was evaluated in HBE cells transfected with G protein-coupled receptor 43 (GPR43) short hairpin RNA (shRNA). RESULTS IAV-infected mice exhibited lower relative abundance of acetate-producing bacteria (Bacteroides, Bifidobacterium, and Akkermansia) and decreased acetate levels in gut and serum. These changes were partly caused by a decrease in food consumption (due to anorexia). GM depletion exacerbated and FMT restored IAV-induced lung inflammatory injury. IAV infection suppressed expressions of TJs (occludin, ZO-1) leading to disrupted airway epithelial barrier function as evidenced by decreased TEER and increased permeability. Acetate pretreatment activated GPR43, partially restored IAV-induced airway epithelial barrier function, and reduced inflammatory cytokines levels (TNF-α, IL-6, and IL-1β). Such protective effects of acetate were absent in HBE cells transfected with GPR43 shRNA. Acetate and GPR43 improved TJs in an AMP-activated protein kinase (AMPK)-dependent manner. CONCLUSION Collectively, our results demonstrated that GM protected airway TJs by modulating GPR43-AMPK signaling in IAV-induced lung injury. Therefore, improving GM dysbiosis may be a potential therapeutic target for patients with IAV infection.
Collapse
Affiliation(s)
- Lei Hu
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, China
| | - Li Sun
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, China
| | - Chun Yang
- Department of Emergency Intensive Care Unit, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Da-Wei Zhang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, China
| | - Yuan-Yuan Wei
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, China
| | - Ming-Ming Yang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, China
| | - Hui-Mei Wu
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, China
- Department of Geriatric Respiratory and Critical Care Medicine, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Guang-He Fei
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, China.
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, China.
| |
Collapse
|
26
|
Tonon KM, Chutipongtanate S, Morrow AL, Newburg DS. Human Milk Oligosaccharides and Respiratory Syncytial Virus Infection in Infants. Adv Nutr 2024; 15:100218. [PMID: 38583862 PMCID: PMC11107461 DOI: 10.1016/j.advnut.2024.100218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/09/2024] Open
Abstract
In infants worldwide, respiratory syncytial virus (RSV) is the leading cause of lower respiratory infections, including bronchiolitis, which is a major source of infant mortality. Bronchiolitis is the most common lower respiratory infection and the major cause of hospitalization in the first 6 mo of life. Infant responses to RSV infection are highly diverse, with symptoms varying from asymptomatic or mild to so severe as to require mechanical ventilation. Breastfed infants present a lower incidence and less severe forms of RSV lower respiratory infections. Among the multitude of human milk bioactive compounds, human milk oligosaccharides (hMOSs) are strong candidates for having a protective effect against RSV. hMOS reduces the viral load and the inflammatory signaling in cultured RSV-infected respiratory human cells. In addition to this direct effect, indirect mechanisms, notably gut microbiota composition and metabolism, have been proposed to mediate the protective effect of hMOS. Intake of infant formula containing synthetic hMOS has been shown to increase Bifidobacterium abundance and that of its metabolites, especially acetate, in infant feces and to reduce lower respiratory tract infections during the first year of life. Breastfeeding and the use of hMOS are promising approaches to protect against and treat RSV disease. Here, we review current evidence on the role of hMOS with regard to RSV infection and disease, attending to knowledge gaps and future research directions.
Collapse
Affiliation(s)
- Karina M Tonon
- Department of Environmental Health and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Somchai Chutipongtanate
- Department of Environmental Health and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Ardythe L Morrow
- Department of Environmental Health and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - David S Newburg
- Department of Environmental Health and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
27
|
Hoisington AJ, Stearns-Yoder KA, Kovacs EJ, Postolache TT, Brenner LA. Airborne Exposure to Pollutants and Mental Health: A Review with Implications for United States Veterans. Curr Environ Health Rep 2024; 11:168-183. [PMID: 38457036 DOI: 10.1007/s40572-024-00437-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2024] [Indexed: 03/09/2024]
Abstract
PURPOSE OF REVIEW Inhalation of airborne pollutants in the natural and built environment is ubiquitous; yet, exposures are different across a lifespan and unique to individuals. Here, we reviewed the connections between mental health outcomes from airborne pollutant exposures, the biological inflammatory mechanisms, and provide future directions for researchers and policy makers. The current state of knowledge is discussed on associations between mental health outcomes and Clean Air Act criteria pollutants, traffic-related air pollutants, pesticides, heavy metals, jet fuel, and burn pits. RECENT FINDINGS Although associations between airborne pollutants and negative physical health outcomes have been a topic of previous investigations, work highlighting associations between exposures and psychological health is only starting to emerge. Research on criteria pollutants and mental health outcomes has the most robust results to date, followed by traffic-related air pollutants, and then pesticides. In contrast, scarce mental health research has been conducted on exposure to heavy metals, jet fuel, and burn pits. Specific cohorts of individuals, such as United States military members and in-turn, Veterans, often have unique histories of exposures, including service-related exposures to aircraft (e.g. jet fuels) and burn pits. Research focused on Veterans and other individuals with an increased likelihood of exposure and higher vulnerability to negative mental health outcomes is needed. Future research will facilitate knowledge aimed at both prevention and intervention to improve physical and mental health among military personnel, Veterans, and other at-risk individuals.
Collapse
Affiliation(s)
- Andrew J Hoisington
- Veterans Affairs Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMR VAMC), Aurora, CO, 80045, USA.
- Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, 80045, USA.
- Department of Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
- Department of Systems Engineering and Management, Air Force Institute of Technology, Wright-Patterson AFB, Dayton, OH, 45333, USA.
| | - Kelly A Stearns-Yoder
- Veterans Affairs Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMR VAMC), Aurora, CO, 80045, USA
- Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, 80045, USA
- Department of Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Elizabeth J Kovacs
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, and Burn Research Program, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Veterans Affairs Research Service, RMR VAMC, Aurora, CO, 80045, USA
| | - Teodor T Postolache
- Veterans Affairs Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMR VAMC), Aurora, CO, 80045, USA
- Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, 80045, USA
- Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Veterans Affairs, VISN 5 MIRECC, Baltimore, MD, 21201, USA
| | - Lisa A Brenner
- Veterans Affairs Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMR VAMC), Aurora, CO, 80045, USA
- Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, 80045, USA
- Department of Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Departments of Psychiatry & Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
28
|
Boncheva I, Poudrier J, Falcone EL. Role of the intestinal microbiota in host defense against respiratory viral infections. Curr Opin Virol 2024; 66:101410. [PMID: 38718575 DOI: 10.1016/j.coviro.2024.101410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 06/07/2024]
Abstract
Viral infections, including those affecting the respiratory tract, can alter the composition of the intestinal microbiota, which, in turn, can significantly influence both innate and adaptive immune responses, resulting in either enhanced pathogen clearance or exacerbation of the infection, possibly leading to inflammatory complications. A deeper understanding of the interplay between the intestinal microbiota and host immune responses in the context of respiratory viral infections (i.e. the gut-lung axis) is necessary to develop new treatments. This review highlights key mechanisms by which the intestinal microbiota, including its metabolites, can act locally or at distant organs to combat respiratory viruses. Therapeutics aimed at harnessing the microbiota to prevent and/or help treat respiratory viral infections represent a promising avenue for future investigation.
Collapse
Affiliation(s)
- Idia Boncheva
- Center for Immunity, Inflammation and Infectious Diseases, Montreal Clinical Research Institute/Institut de recherches cliniques de Montréal (IRCM), Montreal, QC, Canada
| | - Johanne Poudrier
- Center for Immunity, Inflammation and Infectious Diseases, Montreal Clinical Research Institute/Institut de recherches cliniques de Montréal (IRCM), Montreal, QC, Canada; Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, Canada
| | - Emilia L Falcone
- Center for Immunity, Inflammation and Infectious Diseases, Montreal Clinical Research Institute/Institut de recherches cliniques de Montréal (IRCM), Montreal, QC, Canada; Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, Canada; Department of Medicine, Université de Montréal, Montreal, QC, Canada; Department of Microbiology and Infectious Diseases, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada.
| |
Collapse
|
29
|
Park H, Lee CH. The Impact of Pulmonary Disorders on Neurological Health (Lung-Brain Axis). Immune Netw 2024; 24:e20. [PMID: 38974208 PMCID: PMC11224666 DOI: 10.4110/in.2024.24.e20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/30/2024] [Accepted: 05/23/2024] [Indexed: 07/09/2024] Open
Abstract
The brain and lungs, vital organs in the body, play essential roles in maintaining overall well-being and survival. These organs interact through complex and sophisticated bi-directional pathways known as the 'lung-brain axis', facilitated by their close proximity and neural connections. Numerous studies have underscored the mediation of the lung-brain axis by inflammatory responses and hypoxia-induced damage, which are pivotal to the progression of both pulmonary and neurological diseases. This review aims to delve into how pulmonary diseases, including acute/chronic airway diseases and pulmonary conditions, can instigate neurological disorders such as stroke, Alzheimer's disease, and Parkinson's disease. Additionally, we highlight the emerging research on the lung microbiome which, drawing parallels between the gut and lungs in terms of microbiome contents, may play a significant role in modulating brain health. Ultimately, this review paves the way for exciting avenues of future research and therapeutics in addressing respiratory and neurological diseases.
Collapse
Affiliation(s)
- Hongryeol Park
- Department of Tissue Morphogenesis, Max-Planck Institute for Molecular Biomedicine, Muenster 48149, Germany
| | - Chan Hee Lee
- Department of Biomedical Science, Hallym University, Chuncheon 24252, Korea
- Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
30
|
Pusadkar V, Mazumder A, Azad A, Patil D, Azad RK. Deciphering Microbial Shifts in the Gut and Lung Microbiomes of COVID-19 Patients. Microorganisms 2024; 12:1058. [PMID: 38930440 PMCID: PMC11205787 DOI: 10.3390/microorganisms12061058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
COVID-19, caused by SARS-CoV-2, results in respiratory and cardiopulmonary infections. There is an urgent need to understand not just the pathogenic mechanisms of this disease but also its impact on the physiology of different organs and microbiomes. Multiple studies have reported the effects of COVID-19 on the gastrointestinal microbiota, such as promoting dysbiosis (imbalances in the microbiome) following the disease's progression. Deconstructing the dynamic changes in microbiome composition that are specifically correlated with COVID-19 patients remains a challenge. Motivated by this problem, we implemented a biomarker discovery pipeline to identify candidate microbes specific to COVID-19. This involved a meta-analysis of large-scale COVID-19 metagenomic data to decipher the impact of COVID-19 on the human gut and respiratory microbiomes. Metagenomic studies of the gut and respiratory microbiomes of COVID-19 patients and of microbiomes from other respiratory diseases with symptoms similar to or overlapping with COVID-19 revealed 1169 and 131 differentially abundant microbes in the human gut and respiratory microbiomes, respectively, that uniquely associate with COVID-19. Furthermore, by utilizing machine learning models (LASSO and XGBoost), we demonstrated the power of microbial features in separating COVID-19 samples from metagenomic samples representing other respiratory diseases and controls (healthy individuals), achieving an overall accuracy of over 80%. Overall, our study provides insights into the microbiome shifts occurring in COVID-19 patients, shining a new light on the compositional changes.
Collapse
Affiliation(s)
- Vaidehi Pusadkar
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX 76203, USA;
| | - Anirudh Mazumder
- Texas Academy of Mathematics and Science, University of North Texas, Denton, TX 76203, USA
| | - Abhijay Azad
- Texas Academy of Mathematics and Science, University of North Texas, Denton, TX 76203, USA
| | - Deepti Patil
- Texas Academy of Mathematics and Science, University of North Texas, Denton, TX 76203, USA
| | - Rajeev K. Azad
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX 76203, USA;
| |
Collapse
|
31
|
Dai S, Wang Z, Cai M, Guo T, Mao S, Yang Y. A multi-omics investigation of the lung injury induced by PM 2.5 at environmental levels via the lung-gut axis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172027. [PMID: 38552982 DOI: 10.1016/j.scitotenv.2024.172027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/25/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
Long-term exposure to fine particulate matter (PM2.5) posed injury for gastrointestinal and respiratory systems, ascribing with the lung-gut axis. However, the cross-talk mechanisms remain unclear. Here, we attempted to establish the response networks of lung-gut axis in mice exposed to PM2.5 at environmental levels. Male Balb/c mice were exposed to PM2.5 (dose of 0.1, 0.5, and 1.0 mg/kg) collected from Chengdu, China for 10 weeks, through intratracheally instillation, and examined the effect of PM2.5 on lung functions of mice. The changes of lung and gut microbiota and metabolic profiles of mice in different groups were determined. Furthermore, the results of multi-omics were conjointly analyzed to elucidate the primary microbes and the associated metabolites in lung and gut responsible for PM2.5 exposure. Accordingly, the cross-talk network and key pathways between lung-gut axis were established. The results indicated that exposed to PM2.5 0.1 mg/kg induced obvious inflammations in mice lung, while emphysema was observed at 1.0 mg/kg. The levels of metabolites guanosine, hypoxanthine, and hepoxilin B3 increased in the lung might contribute to lung inflammations in exposure groups. For microbiotas in lung, PM2.5 exposure significantly declined the proportions of Halomonas and Lactobacillus. Meanwhile, the metabolites in gut including L-tryptophan, serotonin, and spermidine were up-regulated in exposure groups, which were linked to the decreasing of Oscillospira and Helicobacter in gut. Via lung-gut axis, the activations of pathways including Tryptophan metabolism, ABC transporters, Serotonergic synapse, and Linoleic acid metabolism contributed to the cross-talk between lung and gut tissues of mice mediated by PM2.5. In summary, the microbes including Lactobacillus, Oscillospira, and Parabacteroides, and metabolites including hepoxilin B3, guanosine, hypoxanthine, L-tryptophan, and spermidine were the main drivers. In this lung-gut axis study, we elucidated some pro- and pre-biotics in lung and gut microenvironments contributed to the adverse effects on lung functions induced by PM2.5 exposure.
Collapse
Affiliation(s)
- Shuiping Dai
- National Center for Geriatrics Clinical Medicine Research, Department of Geriatrics and Gerontology, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Zhenglu Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Min Cai
- Eco-environmental Protection Institute, Shanghai Academy of Agricultural Science, Shanghai 201403, PR China
| | - Tingting Guo
- Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Shengqiang Mao
- Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Ying Yang
- Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu 610041, PR China
| |
Collapse
|
32
|
Zhang L, Zhou E, Liu C, Tian X, Xue B, Zhang K, Luo B. Avian influenza and gut microbiome in poultry and humans: A "One Health" perspective. FUNDAMENTAL RESEARCH 2024; 4:455-462. [PMID: 38933214 PMCID: PMC11197557 DOI: 10.1016/j.fmre.2023.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 09/20/2023] [Accepted: 10/10/2023] [Indexed: 06/28/2024] Open
Abstract
A gradual increase in avian influenza outbreaks has been found in recent years. It is highly possible to trigger the next human pandemic due to the characteristics of antigenic drift and antigenic shift in avian influenza virus (AIV). Although great improvements in understanding influenza viruses and the associated diseases have been unraveled, our knowledge of how these viruses impact the gut microbiome of both poultry and humans, as well as the underlying mechanisms, is still improving. The "One Health" approach shows better vitality in monitoring and mitigating the risk of avian influenza, which requires a multi-sectoral effort and highlights the interconnection of human health with environmental sustainability and animal health. Therefore, monitoring the gut microbiome may serve as a sentinel for protecting the common health of the environment, animals, and humans. This review summarizes the interactions between AIV infection and the gut microbiome of poultry and humans and their potential mechanisms. With the presented suggestions, we hope to address the current major challenges in the surveillance and prevention of microbiome-related avian influenza with the "One Health" approach.
Collapse
Affiliation(s)
- Ling Zhang
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Erkai Zhou
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ce Liu
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xiaoyu Tian
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Baode Xue
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Kai Zhang
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer, NY 12144, USA
| | - Bin Luo
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
- Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Bureau, Shanghai 200030, China
- Shanghai Typhoon Institute, China Meteorological Administration, Shanghai 200030, China
| |
Collapse
|
33
|
Labetoulle M, Baudouin C, Benitez Del Castillo JM, Rolando M, Rescigno M, Messmer EM, Aragona P. How gut microbiota may impact ocular surface homeostasis and related disorders. Prog Retin Eye Res 2024; 100:101250. [PMID: 38460758 DOI: 10.1016/j.preteyeres.2024.101250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
Changes in the bacterial flora in the gut, also described as gut microbiota, are readily acknowledged to be associated with several systemic diseases, especially those with an inflammatory, neuronal, psychological or hormonal factor involved in the pathogenesis and/or the perception of the disease. Maintaining ocular surface homeostasis is also based on all these four factors, and there is accumulating evidence in the literature on the relationship between gut microbiota and ocular surface diseases. The mechanisms involved are mostly interconnected due to the interaction of central and peripheral neuronal networks, inflammatory effectors and the hormonal system. A better understanding of the influence of the gut microbiota on the maintenance of ocular surface homeostasis, and on the onset or persistence of ocular surface disorders could bring new insights and help elucidate the epidemiology and pathology of ocular surface dynamics in health and disease. Revealing the exact nature of these associations could be of paramount importance for developing a holistic approach using highly promising new therapeutic strategies targeting ocular surface diseases.
Collapse
Affiliation(s)
- Marc Labetoulle
- Ophthalmology Départment, Hopital Bicetre, APHP, Université Paris-Saclay, IDMIT Infrastructure, Fontenay-aux-Roses Cedex, France; Hôpital National de la Vision des Quinze, Vingts, IHU ForeSight, Paris Saclay University, Paris, France.
| | - Christophe Baudouin
- Hôpital National de la Vision des Quinze, Vingts, IHU ForeSight, Paris Saclay University, Paris, France
| | - Jose M Benitez Del Castillo
- Departamento de Oftalmología, Hospital Clínico San Carlos, Clínica Rementeria, Instituto Investigaciones Oftalmologicas Ramon Castroviejo, Universidad Complutense, Madrid, Spain
| | - Maurizio Rolando
- Ocular Surface and Dry Eye Center, ISPRE Ophthalmics, Genoa, Italy
| | - Maria Rescigno
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele, 20090, MI, Italy
| | | | - Pasquale Aragona
- Department of Biomedical Sciences, Ophthalmology Clinic, University of Messina, Messina, Italy
| |
Collapse
|
34
|
Jiao T, Huang Y, Sun H, Yang L. Research progress of post-acute sequelae after SARS-CoV-2 infection. Cell Death Dis 2024; 15:257. [PMID: 38605011 PMCID: PMC11009241 DOI: 10.1038/s41419-024-06642-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
SARS-CoV-2 has spread rapidly worldwide and infected hundreds of millions of people worldwide. With the increasing number of COVID-19 patients discharged from hospitals, the emergence of its associated complications, sequelae, has become a new global health crisis secondary to acute infection. For the time being, such complications and sequelae are collectively called "Post-acute sequelae after SARS-CoV-2 infection (PASC)", also referred to as "long COVID" syndrome. Similar to the acute infection period of COVID-19, there is also heterogeneity in PASC. This article reviews the various long-term complications and sequelae observed in multiple organ systems caused by COVID-19, pathophysiological mechanisms, diagnosis, and treatment of PASC, aiming to raise awareness of PASC and optimize management strategies.
Collapse
Affiliation(s)
- Taiwei Jiao
- Department of Gastroenterology and Endoscopy, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, P.R. China
| | - Yuling Huang
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, P.R. China
| | - Haiyan Sun
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, Liaoning, 110001, P.R. China.
| | - Lina Yang
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, P.R. China.
- Department of International Physical Examination Center, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, P.R. China.
| |
Collapse
|
35
|
Chai Y, Liu X, Bai G, Zhou N, Liu D, Zhang X, Li M, Li K, Lei H. Gut microbiome, T cell subsets, and cytokine analysis identify differential biomarkers in tuberculosis. Front Immunol 2024; 15:1323723. [PMID: 38650928 PMCID: PMC11033455 DOI: 10.3389/fimmu.2024.1323723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/21/2024] [Indexed: 04/25/2024] Open
Abstract
Introduction The gut microbiota, T cell subsets, and cytokines participate in tuberculosis (TB) pathogenesis. To date, the mechanisms by which these factors interactively promote TB development at different time points remain largely unclear. In the context of this study, We looked into the microorganisms in the digestive tract, T cell types, and cytokines related to tuberculosis. Methods According to QIIME2, we analyzed 16SrDNA sequencing of the gut microbiome on the Illumina MiSeq. Enzyme-linked immunosorbent assay was used to measure the concentrations of cytokines. Results We showed the presence of 26 identifiable differential microbiomes in the gut and 44 metabolic pathways between healthy controls and the different time points in the development of TB in patients. Five bacterial genera (Bacteroides, Bifidobacterium, Faecalibacterium, Collinsella, and Clostridium) were most closely associated with CD4/CD8, whereas three bacterial taxa (Faecalibacterium, Collinsella, and Clostridium) were most closely associated with CD4. Three bacterial taxa (Faecalibacterium, Ruminococcus, and Dorea) were most closely associated with IL-4. Ruminococcus was most closely associated with IL-2 and IL-10. Conclusion Diverse microorganisms, subsets of T cells, and cytokines, exhibiting varying relative abundances and structural compositions, were observed in both healthy controls and patients throughout distinct phases of tuberculosis. Gaining insight into the function of the gut microbiome, T cell subsets, and cytokines may help modulate therapeutic strategies for TB.
Collapse
Affiliation(s)
- Yinghui Chai
- Department of Clinical Laboratory, the 8th Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Xin Liu
- Department of Clinical Laboratory, the 8th Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Guangliang Bai
- Department of Clinical Laboratory, the 8th Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Nannan Zhou
- Department of Clinical Laboratory, the 8th Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Danfeng Liu
- Department of Clinical Laboratory, the 8th Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Xiaomeng Zhang
- First Clinical Medical College, Hebei North University, Zhangjiakou, China
| | - Min Li
- First Clinical Medical College, Hebei North University, Zhangjiakou, China
| | - Kang Li
- Department of Clinical Laboratory, the 8th Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Hong Lei
- Department of Clinical Laboratory, the 8th Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
36
|
Marrella V, Nicchiotti F, Cassani B. Microbiota and Immunity during Respiratory Infections: Lung and Gut Affair. Int J Mol Sci 2024; 25:4051. [PMID: 38612860 PMCID: PMC11012346 DOI: 10.3390/ijms25074051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Bacterial and viral respiratory tract infections are the most common infectious diseases, leading to worldwide morbidity and mortality. In the past 10 years, the importance of lung microbiota emerged in the context of pulmonary diseases, although the mechanisms by which it impacts the intestinal environment have not yet been fully identified. On the contrary, gut microbial dysbiosis is associated with disease etiology or/and development in the lung. In this review, we present an overview of the lung microbiome modifications occurring during respiratory infections, namely, reduced community diversity and increased microbial burden, and of the downstream consequences on host-pathogen interaction, inflammatory signals, and cytokines production, in turn affecting the disease progression and outcome. Particularly, we focus on the role of the gut-lung bidirectional communication in shaping inflammation and immunity in this context, resuming both animal and human studies. Moreover, we discuss the challenges and possibilities related to novel microbial-based (probiotics and dietary supplementation) and microbial-targeted therapies (antibacterial monoclonal antibodies and bacteriophages), aimed to remodel the composition of resident microbial communities and restore health. Finally, we propose an outlook of some relevant questions in the field to be answered with future research, which may have translational relevance for the prevention and control of respiratory infections.
Collapse
Affiliation(s)
- Veronica Marrella
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, 20138 Milan, Italy;
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| | - Federico Nicchiotti
- Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, 20089 Milan, Italy;
| | - Barbara Cassani
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, 20089 Milan, Italy;
| |
Collapse
|
37
|
Wang T, Wang Y, Yao Y. Gut microbe guides alveolar macrophages to fight flu. Cell Host Microbe 2024; 32:296-298. [PMID: 38484707 DOI: 10.1016/j.chom.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 03/19/2024]
Abstract
The intestinal microbiota is associated with defense against respiratory viral infections. In this issue of Cell Host & Microbe, Ngo and colleagues1 show that intestinal commensal segmented filamentous bacteria reprogram alveolar macrophages with improved influenza-viral-neutralizing and phagocytic functions while maintaining inflammatory anergy to better protect the lung.
Collapse
Affiliation(s)
- Tao Wang
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yanling Wang
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yushi Yao
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Liangzhu Laboratory, Hangzhou, Zhejiang 310023, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China.
| |
Collapse
|
38
|
Chollet L, Heumel S, Deruyter L, Bouilloux F, Delval L, Robert V, Gevaert MH, Pichavant M, Sencio V, Robil C, Wolowczuk I, Sokol H, Auger S, Douablin A, Langella P, Chatel JM, Grangette C, Trottein F. Faecalibacterium duncaniae as a novel next generation probiotic against influenza. Front Immunol 2024; 15:1347676. [PMID: 38590519 PMCID: PMC11000806 DOI: 10.3389/fimmu.2024.1347676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/27/2024] [Indexed: 04/10/2024] Open
Abstract
The gut-lung axis is critical during viral respiratory infections such as influenza. Gut dysbiosis during infection translates into a massive drop of microbially produced short-chain fatty acids (SCFAs). Among them, butyrate is important during influenza suggesting that microbiome-based therapeutics targeting butyrate might hold promises. The butyrate-producing bacterium Faecalibacterium duncaniae (formerly referred to as F. prausnitzii) is an emerging probiotic with several health-promoting characteristics. To investigate the potential effects of F. duncaniae on influenza outcomes, mice were gavaged with live F. duncaniae (A2-165 or I-4574 strains) five days before infection. Supplementation of F. duncaniae was associated with less severe disease, a lower pulmonary viral load, and lower levels of lung inflammation. F. duncaniae supplementation impacted on gut dysbiosis induced by infection, as assessed by 16S rRNA sequencing. Interestingly, F. duncaniae administration was associated with a recovery in levels of SCFAs (including butyrate) in infected animals. The live form of F. duncaniae was more potent that the pasteurized form in improving influenza outcomes. Lastly, F. duncaniae partially protected against secondary (systemic) bacterial infection. We conclude that F. duncaniae might serve as a novel next generation probiotic against acute viral respiratory diseases.
Collapse
Affiliation(s)
- Loïc Chollet
- Univ. Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Centre Hospitalier Universitaire (CHU) Lille, Institut Pasteur de Lille, U1019-Unité Mixte de Recherche (UMR) 9017 - CIIL – Centre d′Infection et d′Immunité de Lille, Lille, France
| | - Séverine Heumel
- Univ. Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Centre Hospitalier Universitaire (CHU) Lille, Institut Pasteur de Lille, U1019-Unité Mixte de Recherche (UMR) 9017 - CIIL – Centre d′Infection et d′Immunité de Lille, Lille, France
| | - Lucie Deruyter
- Univ. Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Centre Hospitalier Universitaire (CHU) Lille, Institut Pasteur de Lille, U1019-Unité Mixte de Recherche (UMR) 9017 - CIIL – Centre d′Infection et d′Immunité de Lille, Lille, France
| | | | - Lou Delval
- Univ. Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Centre Hospitalier Universitaire (CHU) Lille, Institut Pasteur de Lille, U1019-Unité Mixte de Recherche (UMR) 9017 - CIIL – Centre d′Infection et d′Immunité de Lille, Lille, France
| | - Véronique Robert
- Unité Mixte de Recherche 1319 (UMR1319) Micalis, Université Paris-Saclay, Institut National de Recherche Pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), AgroParisTech, Jouy-en-Josas, France
| | - Marie-Hélène Gevaert
- Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Centre Hospitalier Universitaire (CHU) Lille, Univ. Lille, Institut Pasteur de Lille, US 41-UAR 2014-PLBS, Lille, France
| | - Muriel Pichavant
- Univ. Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Centre Hospitalier Universitaire (CHU) Lille, Institut Pasteur de Lille, U1019-Unité Mixte de Recherche (UMR) 9017 - CIIL – Centre d′Infection et d′Immunité de Lille, Lille, France
| | - Valentin Sencio
- Univ. Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Centre Hospitalier Universitaire (CHU) Lille, Institut Pasteur de Lille, U1019-Unité Mixte de Recherche (UMR) 9017 - CIIL – Centre d′Infection et d′Immunité de Lille, Lille, France
| | - Cyril Robil
- Univ. Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Centre Hospitalier Universitaire (CHU) Lille, Institut Pasteur de Lille, U1019-Unité Mixte de Recherche (UMR) 9017 - CIIL – Centre d′Infection et d′Immunité de Lille, Lille, France
| | - Isabelle Wolowczuk
- Univ. Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Centre Hospitalier Universitaire (CHU) Lille, Institut Pasteur de Lille, U1019-Unité Mixte de Recherche (UMR) 9017 - CIIL – Centre d′Infection et d′Immunité de Lille, Lille, France
| | - Harry Sokol
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre de Recherche Saint-Antoine, Centre de Recherche scientifique Saint-Antoine (CRSA), Assistance Public – Hôpitaux de Paris (AP-HP), Saint-Antoine Hospital, Gastroenterology Department, Paris, France
- Paris Center for Microbiome Medicine (PaCeMM) Fédérations Hospitalo-Universitaires (FHU), Paris, France
| | - Sandrine Auger
- Unité Mixte de Recherche 1319 (UMR1319) Micalis, Université Paris-Saclay, Institut National de Recherche Pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), AgroParisTech, Jouy-en-Josas, France
| | | | - Philippe Langella
- Unité Mixte de Recherche 1319 (UMR1319) Micalis, Université Paris-Saclay, Institut National de Recherche Pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), AgroParisTech, Jouy-en-Josas, France
| | - Jean-Marc Chatel
- Unité Mixte de Recherche 1319 (UMR1319) Micalis, Université Paris-Saclay, Institut National de Recherche Pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), AgroParisTech, Jouy-en-Josas, France
| | - Corinne Grangette
- Univ. Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Centre Hospitalier Universitaire (CHU) Lille, Institut Pasteur de Lille, U1019-Unité Mixte de Recherche (UMR) 9017 - CIIL – Centre d′Infection et d′Immunité de Lille, Lille, France
| | - François Trottein
- Univ. Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Centre Hospitalier Universitaire (CHU) Lille, Institut Pasteur de Lille, U1019-Unité Mixte de Recherche (UMR) 9017 - CIIL – Centre d′Infection et d′Immunité de Lille, Lille, France
| |
Collapse
|
39
|
Jiao Y, Zhou L, Li H, Zhu H, Chen D, Lu Y. A novel flavonol-polysaccharide from Tamarix chinensis alleviates influenza A virus-induced acute lung injury. Evidences for its mechanism of action. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 125:155364. [PMID: 38241919 DOI: 10.1016/j.phymed.2024.155364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/27/2023] [Accepted: 01/14/2024] [Indexed: 01/21/2024]
Abstract
BACKGROUND Tamarix chinensis Lour. is a Chinese medicine used for treating inflammation-related diseases and its crude polysaccharides (MBAP90) exhibited significant anticomplement activities in vitro. PURPOSE To obtain anticomplement homogenous polysaccharides from MBAP90 and explore its therapeutic effects and potential mechanism on influenza A virus (IAV)-induced acute lung injury (ALI). METHODS Anticomplement activity-guided fractionation of the water-soluble crude polysaccharides from the leaves and twigs of T. chinensis were performed by diethylaminoethyl-52 (DEAE-52) cellulose and gel permeation columns to yield a homogeneous polysaccharide MBAP-5, which was further characterized using ultra-high-performance liquid chromatography-ion trap tandem mass spectrometry (UPLC-IT-MS) and nuclear magnetic resonance (NMR) analysis. In vitro, the anticomplement activity of MBAP-5 through classical pathway was measured using a hemolytic test. The therapeutic effects of MBAP-5 on ALI were evaluated in H1N1-infected mice. H&E staining, enzyme linked immunosorbent assay (ELISA), immunohistochemistry, and western blot were used to systematically access lung histomorphology, inflammatory cytokines, degree of complement component 3c, 5aR, and 5b-9 (C3c, C5aR, and C5b-9) deposition, and inflammasome signaling pathway protein expressions in lung tissues. RESULTS MBAP-5 was a novel flavonol-polysaccharide with the molecular weight (Mw) of 153.6 kDa. Its structure was characterized to process a backbone of →4)-α-D-GlcpA-(1→, →6)-α-D-Glcp-(1→, →3,4)-α-D-Glcp-(1→, →3,4,6)-α-D-Glcp-(1→, and →4,6)-β-D-Glcp-(1→, as well as branches of α-L-Araf-(1→ and β-D-Galp-(1→. Particularly, O-3 of →3,4,6)-α-D-Glcp-(1→ was substituted by quercetin. In vitro assay showed that MBAP-5 had a potent anticomplement activity with a CH50 value of 102 ± 4 µg/ml. Oral administration of MBAP-5 (50 and 100 mg/kg) effectively attenuated the H1N1-induced pulmonary injury in vivo by reducing pulmonary edema, virus replication, and inflammatory responses. Mechanistically, MBAP-5 inhibited the striking deposition and contents of complement activation products (C3c, C5aR, and C5b-9) in the lung. Toll-like receptor 4 (TLR4) /transcription factor nuclear factor κB (NF-κB) signaling pathway was constrained by MBAP-5 treatment. In addition, MBAP-5 could suppress activation of the inflammasome pathways, including Nod-like receptor pyrin domain 3 (NLRP3), cysteinyl aspartate specific proteinase-1/12 (caspase-1/12), apoptosis‑associated speck‑like protein (ASC), gasdermin D (GSDMD), interleukin (IL)-1β, and IL-18 expressions. CONCLUSIONS A novel flavonol-polysaccharide MBAP-5 isolated from T. chinensis demonstrated a therapeutic effect against ALI induced by IAV attack. The mechanism might be associated with inhibition of complement system and inflammasome pathways activation.
Collapse
Affiliation(s)
- Yukun Jiao
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China
| | - Lishuang Zhou
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China
| | - Hong Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Haiyan Zhu
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunoTherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Daofeng Chen
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China; Institutes of Integrative Medicine, School of Pharmacy, Fudan University, Shanghai, China.
| | - Yan Lu
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
40
|
Bohmwald K, Diethelm-Varela B, Rodríguez-Guilarte L, Rivera T, Riedel CA, González PA, Kalergis AM. Pathophysiological, immunological, and inflammatory features of long COVID. Front Immunol 2024; 15:1341600. [PMID: 38482000 PMCID: PMC10932978 DOI: 10.3389/fimmu.2024.1341600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/09/2024] [Indexed: 04/12/2024] Open
Abstract
The COVID-19 pandemic continues to cause severe global disruption, resulting in significant excess mortality, overwhelming healthcare systems, and imposing substantial social and economic burdens on nations. While most of the attention and therapeutic efforts have concentrated on the acute phase of the disease, a notable proportion of survivors experience persistent symptoms post-infection clearance. This diverse set of symptoms, loosely categorized as long COVID, presents a potential additional public health crisis. It is estimated that 1 in 5 COVID-19 survivors exhibit clinical manifestations consistent with long COVID. Despite this prevalence, the mechanisms and pathophysiology of long COVID remain poorly understood. Alarmingly, evidence suggests that a significant proportion of cases within this clinical condition develop debilitating or disabling symptoms. Hence, urgent priority should be given to further studies on this condition to equip global public health systems for its management. This review provides an overview of available information on this emerging clinical condition, focusing on the affected individuals' epidemiology, pathophysiological mechanisms, and immunological and inflammatory profiles.
Collapse
Affiliation(s)
- Karen Bohmwald
- Millennium Institute on Immunology and Immunotherapy. Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Benjamín Diethelm-Varela
- Millennium Institute on Immunology and Immunotherapy. Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Linmar Rodríguez-Guilarte
- Millennium Institute on Immunology and Immunotherapy. Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Thomas Rivera
- Millennium Institute on Immunology and Immunotherapy. Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy. Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy. Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
41
|
Zhang DW, Lu JL, Dong BY, Fang MY, Xiong X, Qin XJ, Fan XM. Gut microbiota and its metabolic products in acute respiratory distress syndrome. Front Immunol 2024; 15:1330021. [PMID: 38433840 PMCID: PMC10904571 DOI: 10.3389/fimmu.2024.1330021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024] Open
Abstract
The prevalence rate of acute respiratory distress syndrome (ARDS) is estimated at approximately 10% in critically ill patients worldwide, with the mortality rate ranging from 17% to 39%. Currently, ARDS mortality is usually higher in patients with COVID-19, giving another challenge for ARDS treatment. However, the treatment efficacy for ARDS is far from satisfactory. The relationship between the gut microbiota and ARDS has been substantiated by relevant scientific studies. ARDS not only changes the distribution of gut microbiota, but also influences intestinal mucosal barrier through the alteration of gut microbiota. The modulation of gut microbiota can impact the onset and progression of ARDS by triggering dysfunctions in inflammatory response and immune cells, oxidative stress, cell apoptosis, autophagy, pyroptosis, and ferroptosis mechanisms. Meanwhile, ARDS may also influence the distribution of metabolic products of gut microbiota. In this review, we focus on the impact of ARDS on gut microbiota and how the alteration of gut microbiota further influences the immune function, cellular functions and related signaling pathways during ARDS. The roles of gut microbiota-derived metabolites in the development and occurrence of ARDS are also discussed.
Collapse
Affiliation(s)
- Dong-Wei Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Respiratory and Critical Care Medicine, Liuzhou People’s Hospital, Guangxi Medical University, Liuzhou, Guangxi, China
- Key Laboratory of Diagnosis, Treatment and Research of Asthma and Chronic Obstructive Pulmonary Disease, Liuzhou, Guangxi, China
| | - Jia-Li Lu
- Department of Respiratory and Critical Care Medicine, Liuzhou People’s Hospital, Guangxi Medical University, Liuzhou, Guangxi, China
- Key Laboratory of Diagnosis, Treatment and Research of Asthma and Chronic Obstructive Pulmonary Disease, Liuzhou, Guangxi, China
| | - Bi-Ying Dong
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Respiratory and Critical Care Medicine, Liuzhou People’s Hospital, Guangxi Medical University, Liuzhou, Guangxi, China
- Key Laboratory of Diagnosis, Treatment and Research of Asthma and Chronic Obstructive Pulmonary Disease, Liuzhou, Guangxi, China
| | - Meng-Ying Fang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xia Xiong
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Xue-Jun Qin
- Department of Respiratory and Critical Care Medicine, Liuzhou People’s Hospital, Guangxi Medical University, Liuzhou, Guangxi, China
- Key Laboratory of Diagnosis, Treatment and Research of Asthma and Chronic Obstructive Pulmonary Disease, Liuzhou, Guangxi, China
| | - Xian-Ming Fan
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
42
|
Oh DS, Kim E, Lu G, Normand R, Shook LL, Lyall A, Jasset O, Demidkin S, Gilbert E, Kim J, Akinwunmi B, Tantivit J, Tirard A, Arnold BY, Slowikowski K, Goldberg MB, Filbin MR, Hacohen N, Nguyen LH, Chan AT, Yu XG, Li JZ, Yonker L, Fasano A, Perlis RH, Pasternak O, Gray KJ, Choi GB, Drew DA, Sen P, Villani AC, Edlow AG, Huh JR. SARS-CoV-2 infection elucidates unique features of pregnancy-specific immunity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.05.24301794. [PMID: 38370801 PMCID: PMC10871456 DOI: 10.1101/2024.02.05.24301794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Pregnancy is a risk factor for increased severity of SARS-CoV-2 and other respiratory infections. The mechanisms underlying this risk have not been well-established, partly due to a limited understanding of how pregnancy shapes immune responses. To gain insight into the role of pregnancy in modulating immune responses at steady state and upon perturbation, we collected peripheral blood mononuclear cells (PBMC), plasma, and stool from 226 women, including 152 pregnant individuals (n = 96 with SARS-CoV-2 infection and n = 56 healthy controls) and 74 non-pregnant women (n = 55 with SARS-CoV-2 and n = 19 healthy controls). We found that SARS-CoV-2 infection was associated with altered T cell responses in pregnant compared to non-pregnant women. Differences included a lower percentage of memory T cells, a distinct clonal expansion of CD4-expressing CD8 + T cells, and the enhanced expression of T cell exhaustion markers, such as programmed cell death-1 (PD-1) and T cell immunoglobulin and mucin domain-3 (Tim-3), in pregnant women. We identified additional evidence of immune dysfunction in severely and critically ill pregnant women, including a lack of expected elevation in regulatory T cell (Treg) levels, diminished interferon responses, and profound suppression of monocyte function. Consistent with earlier data, we found maternal obesity was also associated with altered immune responses to SARS-CoV-2 infection, including enhanced production of inflammatory cytokines by T cells. Certain gut bacterial species were altered in pregnancy and upon SARS-CoV-2 infection in pregnant individuals compared to non-pregnant women. Shifts in cytokine and chemokine levels were also identified in the sera of pregnant individuals, most notably a robust increase of interleukin-27 (IL-27), a cytokine known to drive T cell exhaustion, in the pregnant uninfected control group compared to all non-pregnant groups. IL-27 levels were also significantly higher in uninfected pregnant controls compared to pregnant SARS-CoV-2-infected individuals. Using two different preclinical mouse models of inflammation-induced fetal demise and respiratory influenza viral infection, we found that enhanced IL-27 protects developing fetuses from maternal inflammation but renders adult female mice vulnerable to viral infection. These combined findings from human and murine studies reveal nuanced pregnancy-associated immune responses, suggesting mechanisms underlying the increased susceptibility of pregnant individuals to viral respiratory infections.
Collapse
|
43
|
Fowora MA, Aiyedogbon A, Omolopo I, Tajudeen AO, Olanlege AL, Abioye A, Akintunde GB, Salako BL. Effect of nasal carriage of Bacillus species on COVID-19 severity: a cross-sectional study. Microbiol Spectr 2024; 12:e0184323. [PMID: 38193730 PMCID: PMC10846055 DOI: 10.1128/spectrum.01843-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024] Open
Abstract
Intranasal sprays containing Bacillus species are being researched for treating viral respiratory tract infections. The aim of this study was to assess the relationship between the nasal carriage of Bacillus and COVID-19 severity. This was a cross-sectional study that collected nasopharyngeal samples from adults 18 years and above visiting two COVID-19 testing centers in Lagos, Nigeria, between September 2020 and September 2021. Bacillus species were cultured from the samples and confirmed using 16 s rRNA gene sequencing. The dependent variable was COVID-19 status classified as negative, asymptomatic, mild, or severe. The independent variable was the nasal carriage of Bacillus species. Multinomial regression analysis was done to determine the association between nasal carriage of Bacillus and COVID-19 severity after adjusting for age, sex, and co-morbidity status. A total of 388 participants were included in the study with mean (standard deviation) age of 40.05 (13.563) years. Sixty-one percent of the participants were male, 100 (25.8%) had severe COVID-19, 130 (33.5%) had pre-existing comorbidity, and 76 (19.6%) had Bacillus cultured from their nasopharyngeal specimen. Bacillus species presence was significantly associated with higher odds of severe COVID-19 compared to having a negative COVID-19 status (AOR = 3.347, 95% CI: 1.359, 8.243). However, the presence of Bacillus species was significantly associated with lower odds of severe COVID-19 compared to having a mild COVID-19 status. The study suggests that nasal carriage of Bacillus species is associated with the clinical course of COVID-19 and supports the exploration of Bacillus species in the management of viral respiratory tract infections.IMPORTANCEWith the introduction of intranasal spray containing Bacillus species for the treatment of viral respiratory tract infections, such as COVID-19 and respiratory syncytial virus, identifying the association between the nasal carriage of Bacillus species and COVID-19 susceptibility and severity will help further substantiate the investigation of these bacteria for COVID-19 prevention and treatment. This study evaluated the association between the carriage of Bacillus species in the nasopharyngeal tract and COVID-19 severity and found that the presence of Bacillus species in the nasopharynx may significantly impact the clinical course of COVID-19.
Collapse
Affiliation(s)
- Muinah A. Fowora
- Molecular Biology and Biotechnology Department, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria
| | - Adenike Aiyedogbon
- Molecular Biology and Biotechnology Department, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria
| | - Ibilola Omolopo
- Molecular Biology and Biotechnology Department, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria
| | - Ahmed O. Tajudeen
- Molecular Biology and Biotechnology Department, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria
| | - Abdul-Lateef Olanlege
- Department of Science Laboratory Technology, Faculty of Science., Lagos State University, Ojo, Lagos, Nigeria
| | | | - Grace B. Akintunde
- Molecular Biology and Biotechnology Department, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria
| | - Babatunde L. Salako
- Molecular Biology and Biotechnology Department, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria
| |
Collapse
|
44
|
Sepúlveda-Alfaro J, Catalán EA, Vallejos OP, Ramos-Tapia I, Madrid-Muñoz C, Mendoza-León MJ, Suazo ID, Rivera-Asin E, Silva PH, Alvarez-Mardones O, Castillo-Godoy DP, Riedel CA, Schinnerling K, Ugalde JA, Soto JA, Bueno SM, Kalergis AM, Melo-Gonzalez F. Human metapneumovirus respiratory infection affects both innate and adaptive intestinal immunity. Front Immunol 2024; 15:1330209. [PMID: 38404579 PMCID: PMC10884822 DOI: 10.3389/fimmu.2024.1330209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/15/2024] [Indexed: 02/27/2024] Open
Abstract
Introduction Respiratory infections are one of the leading causes of morbidity and mortality worldwide, mainly in children, immunocompromised people, and the elderly. Several respiratory viruses can induce intestinal inflammation and alterations in intestinal microbiota composition. Human metapneumovirus (HMPV) is one of the major respiratory viruses contributing to infant mortality in children under 5 years of age worldwide, and the effect of this infection at the gut level has not been studied. Methods Here, we evaluated the distal effects of HMPV infection on intestinal microbiota and inflammation in a murine model, analyzing several post-infection times (days 1, 3, and 5). Six to eight-week-old C57BL/6 mice were infected intranasally with HMPV, and mice inoculated with a non-infectious supernatant (Mock) were used as a control group. Results We did not detect HMPV viral load in the intestine, but we observed significant changes in the transcription of IFN-γ in the colon, analyzed by qPCR, at day 1 post-infection as compared to the control group. Furthermore, we analyzed the frequencies of different innate and adaptive immune cells in the colonic lamina propria, using flow cytometry. The frequency of monocyte populations was altered in the colon of HMPV -infected mice at days 1 and 3, with no significant difference from control mice at day 5 post-infection. Moreover, colonic CD8+ T cells and memory precursor effector CD8+ T cells were significantly increased in HMPV-infected mice at day 5, suggesting that HMPV may also alter intestinal adaptive immunity. Additionally, we did not find alterations in antimicrobial peptide expression, the frequency of colonic IgA+ plasma cells, and levels of fecal IgA. Some minor alterations in the fecal microbiota composition of HMPV -infected mice were detected using 16s rRNA sequencing. However, no significant differences were found in β-diversity and relative abundance at the genus level. Discussion To our knowledge, this is the first report describing the alterations in intestinal immunity following respiratory infection with HMPV infection. These effects do not seem to be mediated by direct viral infection in the intestinal tract. Our results indicate that HMPV can affect colonic innate and adaptive immunity but does not significantly alter the microbiota composition, and further research is required to understand the mechanisms inducing these distal effects in the intestine.
Collapse
Affiliation(s)
- Javiera Sepúlveda-Alfaro
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eduardo A. Catalán
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Omar P. Vallejos
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ignacio Ramos-Tapia
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | | | - María J. Mendoza-León
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Isidora D. Suazo
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Elizabeth Rivera-Asin
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Pedro H. Silva
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Oscar Alvarez-Mardones
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | | | - Claudia A. Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | | | - Juan A. Ugalde
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Jorge A. Soto
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe Melo-Gonzalez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| |
Collapse
|
45
|
Paduchová Z, Nagyová Z, Wang D, Muchová J. The impact of probiotics and vitamin C on the prevention of upper respiratory tract symptoms in two preschool children cohorts. Nutr Res Pract 2024; 18:98-109. [PMID: 38352209 PMCID: PMC10861338 DOI: 10.4162/nrp.2024.18.1.98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/16/2023] [Accepted: 11/16/2023] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES The efficacy of Lab4 probiotic and vitamin C combination on the prevention of upper respiratory tract infections (URTIs) was investigated in two studies with children. Our objective was to pool dataset of 57 preschool children from the PROCHILD study (ISRCTN28722693) and the dataset of 50 preschool matched cohort from the PROCHILD-2 study (ISRCTN26587549) to evaluate the impact of probiotic/vitamin C combination on the prevention of upper respiratory tract symptoms and provide a more robust assessment of effect using detailed individual level data. SUBJECTS/METHODS The children were supplemented daily for 6 months with either the multistrain probiotic (1.25×1010 cfu/tablet consisting of two strains of Lactobacillus acidophilus CUL21 and CUL60, Bifidobacterium bifidum CUL20 and Bifidobacterium animalis subsp. lactis CUL34) plus 50 mg vitamin C or a placebo. RESULTS In the pooled analysis of the individual participant data (per protocol population), significant reductions were observed for the incidence (-25%; 95% confidence interval [CI], 0.66, 0.85; P < 0.0001) and duration (-14.9 days; 95% CI, -24.8, -5.1; P = 0.0030) of typical URTI symptoms in the active group compared with the placebo. The incidence rates of absenteeism from preschool (IR ratio, 0.75; 95% CI, 0.66, 0.86; P < 0.0001), paediatric visits (IR ratio, 0.56; 95% CI, 0.47; 0.68; P < 0.0001) and antibiotic usage (IR ratio, 0.53; 95% CI, 0.39, 0.71; P < 0.0001) were also significantly reduced. CONCLUSION The pooled analysis findings of comparable preschool cohorts from two studies indicate that the supplementation with probiotic and vitamin C combination is beneficial in the prevention and management of URTI symptoms.
Collapse
Affiliation(s)
- Zuzana Paduchová
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, 813 72 Bratislava, Slovakia
| | - Zuzana Nagyová
- JuvenaliaA Paediatric Centre, 929 01 Dunajská Streda, Slovakia
| | - Duolao Wang
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, United Kingdom
| | - Jana Muchová
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, 813 72 Bratislava, Slovakia
| |
Collapse
|
46
|
Yagi K, Lukacs NW, Huffnagle GB, Kato H, Asai N. Respiratory and Gut Microbiome Modification during Respiratory Syncytial Virus Infection: A Systematic Review. Viruses 2024; 16:220. [PMID: 38399997 PMCID: PMC10893256 DOI: 10.3390/v16020220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Respiratory syncytial virus (RSV) infection is a major cause of lower respiratory tract infection, especially in infants, and increases the risk of recurrent wheezing and asthma. Recently, researchers have proposed a possible association between respiratory diseases and microbiome alterations. However, this connection has not been fully established. Herein, we conducted a systematic literature review to evaluate the reported evidence of microbiome alterations in patients with RSV infection. METHODS The systematic literature review on the association between RSV and microbiome in humans was conducted by searching PubMed, EMBASE, Scopus, and CINAHL from 2012 until February 2022. The results were analyzed qualitatively, focusing on the relationship between microbiome and RSV infection with available key microbiome-related parameters. RESULTS In the 405 articles identified by searching databases, 12 (Respiratory tract: 9, Gut: 2, Both: 1) articles in line with the research aims were eligible for this qualitative review. The types of samples for the respiratory tract microbiome and the sequencing methods utilized varied from study to study. This review revealed that the overall microbial composition in both the respiratory tract and gut in RSV-infected patients was different from that in healthy controls. Our generated results demonstrated an increase in the abundance of Haemophilus and Streptococcus, which could contribute to the distinctive separation based on the beta diversity in the respiratory tract. CONCLUSIONS The respiratory tract and gut microbiome changed in patients with RSV infection. Further research with a well-organized longitudinal design is warranted to clarify the impact of microbiome alterations on disease pathogenesis.
Collapse
Affiliation(s)
- Kazuma Yagi
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (K.Y.); (N.W.L.)
| | - Nicholas W. Lukacs
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (K.Y.); (N.W.L.)
- Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
| | - Gary B. Huffnagle
- Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
- Department of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Hideo Kato
- Department of Pharmacy, Mie University Hospital, Tsu 514-8507, Japan;
- Department of Clinical Pharmaceutics, Division of Clinical Medical Science, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Nobuhiro Asai
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (K.Y.); (N.W.L.)
| |
Collapse
|
47
|
Kemnitz N, Fuchs P, Remy R, Ruehrmund L, Bartels J, Klemenz AC, Trefz P, Miekisch W, Schubert JK, Sukul P. Effects of Contagious Respiratory Pathogens on Breath Biomarkers. Antioxidants (Basel) 2024; 13:172. [PMID: 38397770 PMCID: PMC10886173 DOI: 10.3390/antiox13020172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Due to their immediate exhalation after generation at the cellular/microbiome levels, exhaled volatile organic compounds (VOCs) may provide real-time information on pathophysiological mechanisms and the host response to infection. In recent years, the metabolic profiling of the most frequent respiratory infections has gained interest as it holds potential for the early, non-invasive detection of pathogens and the monitoring of disease progression and the response to therapy. Using previously unpublished data, randomly selected individuals from a COVID-19 test center were included in the study. Based on multiplex PCR results (non-SARS-CoV-2 respiratory pathogens), the breath profiles of 479 subjects with the presence or absence of flu-like symptoms were obtained using proton-transfer-reaction time-of-flight mass spectrometry. Among 223 individuals, one respiratory pathogen was detected in 171 cases, and more than one pathogen in 52 cases. A total of 256 subjects had negative PCR test results and had no symptoms. The exhaled VOC profiles were affected by the presence of Haemophilus influenzae, Streptococcus pneumoniae, and Rhinovirus. The endogenous ketone, short-chain fatty acid, organosulfur, aldehyde, and terpene concentrations changed, but only a few compounds exhibited concentration changes above inter-individual physiological variations. Based on the VOC origins, the observed concentration changes may be attributed to oxidative stress and antioxidative defense, energy metabolism, systemic microbial immune homeostasis, and inflammation. In contrast to previous studies with pre-selected patient groups, the results of this study demonstrate the broad inter-individual variations in VOC profiles in real-life screening conditions. As no unique infection markers exist, only concentration changes clearly above the mentioned variations can be regarded as indicative of infection or colonization.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Pritam Sukul
- Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Medicine Rostock, 18057 Rostock, Germany
| |
Collapse
|
48
|
Nguyen M, Ahn P, Dawi J, Gargaloyan A, Kiriaki A, Shou T, Wu K, Yazdan K, Venketaraman V. The Interplay between Mycobacterium tuberculosis and Human Microbiome. Clin Pract 2024; 14:198-213. [PMID: 38391403 PMCID: PMC10887847 DOI: 10.3390/clinpract14010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/24/2024] Open
Abstract
Tuberculosis (TB), a respiratory disease caused by Mycobacterium tuberculosis (Mtb), is a significant cause of mortality worldwide. The lung, a breeding ground for Mtb, was once thought to be a sterile environment, but has now been found to host its own profile of microbes. These microbes are critical in the development of the host immune system and can produce metabolites that aid in host defense against various pathogens. Mtb infection as well as antibiotics can shift the microbial profile, causing dysbiosis and dampening the host immune response. Additionally, increasing cases of drug resistant TB have impacted the success rates of the traditional therapies of isoniazid, rifampin, pyrazinamide, and ethambutol. Recent years have produced tremendous research into the human microbiome and its role in contributing to or attenuating disease processes. Potential treatments aimed at altering the gut-lung bacterial axis may offer promising results against drug resistant TB and help mitigate the effects of TB.
Collapse
Affiliation(s)
- Michelle Nguyen
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Phillip Ahn
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - John Dawi
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Areg Gargaloyan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Anthony Kiriaki
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Tiffany Shou
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Kevin Wu
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Kian Yazdan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
49
|
Anand G, Clark-Dinovo C, Perry AM, Goodwin VM, St. Raymond E, Sakleshpur S, Steed AL. Aromatic amino acid metabolites alter interferon signaling and influenza pathogenesis. Front Mol Biosci 2024; 10:1232573. [PMID: 38322710 PMCID: PMC10844567 DOI: 10.3389/fmolb.2023.1232573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 12/15/2023] [Indexed: 02/08/2024] Open
Abstract
The ability of gut microbial metabolites to influence the host is increasingly recognized. The microbiota extensively metabolizes the three aromatic amino acids, tryptophan, tyrosine, and phenylalanine. Previously we have found that a metabolite of tyrosine, 4-OH-phenylpropionic acid, can enhance type I interferon (IFN) signaling and protect from influenza pathogenesis in a murine model. Herein we screened 17 related aromatic amino acid metabolites for effects on IFN signaling in human lung epithelial cells and monocytes alone and in the presence of IFN-β, influenza, and LPS. While the tryptophan family metabolites reduced IFN signaling in both cell types, the tyrosine and phenylalanine metabolites had varied effects, which were cell-type dependent. Pooled treatment of all these metabolites reduced IFN signaling in both cell types and suggested a tryptophan metabolite effect dominance. Strikingly, when all the metabolites were pooled together, we found reduced influenza recovery in both cell types. RNA sequencing further validated reduced viral loads and decreased IFN signaling. Single gene silencing of significantly upregulated genes identified by RNA sequencing (EGR2, ATP6VD02, SPOCK1, and IL31RA) did not completely abrogate the metabolite induced decrease in IFN signaling. However, these upregulated targets suggested a mechanistic link to TGF-beta signaling. Treatment with a TGF-beta inhibitor and combined targeted gene silencing led to a significant reversal of metabolite induced IFN signaling suppression. Finally, we demonstrated that intranasal administration of these metabolites prior to influenza infection led to reduced animal morbidity, viral titers, and inflammation. Our work implies that microbial metabolites can alter IFN signaling mechanistically through TGF-beta and promote beneficial outcomes during influenza infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ashley L. Steed
- Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
50
|
Wang H, Wang Y. What Makes the Gut-Lung Axis Working? From the Perspective of Microbiota and Traditional Chinese Medicine. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2024; 2024:8640014. [PMID: 38274122 PMCID: PMC10810697 DOI: 10.1155/2024/8640014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 01/27/2024]
Abstract
Background An increasing number of studies have proved that gut microbiota is involved in the occurrence and development of various lung diseases and can interact with the diseased lung. The concept of the gut-lung axis (GLA) provides a new idea for the subsequent clinical treatment of lung diseases through human microbiota. This review aims to summarize the microbiota in the lung and gut and the interaction between them from the perspectives of traditional Chinese medicine and modern medicine. Method We conducted a literature search by using the search terms "GLA," "gut microbiota," "spleen," and "Chinese medicine" in the databases PubMed, Web of Science, and CNKI. We then explored the mechanism of action of the gut-lung axis from traditional Chinese medicine and modern medicine. Results The lung and gut microbiota enable the GLA to function through immune regulation, while metabolites of the gut microbiota also play an important role. The spleen can improve the gut microbiota to achieve the regulation of the GLA. Conclusion Improving the gut microbiota through qi supplementation and spleen fortification provides a new approach to the clinical treatment of lung diseases by regulating the GLA. Currently, our understanding of the GLA is limited, and more research is needed to explain its working principle.
Collapse
Affiliation(s)
- Hui Wang
- Zhejiang Chinese Medical University, Hangzhou 310000, China
| | - Ying Wang
- Zhejiang Chinese Medical University, Hangzhou 310000, China
| |
Collapse
|