1
|
Zhou K, Zisiadis GA, Havermans M, Fragkopoulou A, Dominguez C, Ohshima M, Osman AM, Rodrigues CFD, Blomgren K. Microglia depletion and repopulation do not alter the effects of cranial irradiation on hippocampal neurogenesis. Brain Behav Immun 2025; 123:57-63. [PMID: 39218233 DOI: 10.1016/j.bbi.2024.08.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/03/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Cranial radiotherapy can cause lifelong cognitive complications in childhood brain tumor survivors, and reduced hippocampal neurogenesis is hypothesized to contribute to this. Following irradiation (IR), microglia clear dead neural progenitors and give rise to a neuroinflammatory microenvironment, which promotes a switch in surviving progenitors from neuronal to glial differentiation. Recently, depletion and repopulation of microglia were shown to promote neurogenesis and ameliorate cognitive deficits in various brain injury models. In this study, we utilized the Cx3cr1CreERt2-YFP/+Rosa26DTA/+ transgenic mouse model to deplete microglia in the juvenile mouse brain before subjecting them to whole-brain IR and investigated the short- and long-term effects on hippocampal neurogenesis. Within the initial 24 h after IR, the absence of microglia led to an accumulation of dead cells in the subgranular zone, and 50-fold higher levels of the chemokine C-C motif ligand 2 (CCL2) in sham brains and 7-fold higher levels after IR. The absence of microglia, and the subsequent repopulation within 10 days, did neither affect the loss of proliferating or doublecortin-positive cells, nor the reduced growth of the granule cell layer. Our results argue against a role for a pro-inflammatory microenvironment in the dysregulation of hippocampal neurogenesis and suggest that the observed reduction of neurogenesis was solely due to IR.
Collapse
Affiliation(s)
- Kai Zhou
- Henan Neurodevelopment Engineering Research Center for Children, Zhengzhou Key Laboratory of Pediatric Neurobehavior, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China; Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | | | - Monique Havermans
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | | | - Cecilia Dominguez
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Makiko Ohshima
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Ahmed M Osman
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Carlos F D Rodrigues
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Klas Blomgren
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden; Pediatric Oncology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
2
|
Jin K, Yao Z, van Velthoven CTJ, Kaplan ES, Glattfelder K, Barlow ST, Boyer G, Carey D, Casper T, Chakka AB, Chakrabarty R, Clark M, Departee M, Desierto M, Gary A, Gloe J, Goldy J, Guilford N, Guzman J, Hirschstein D, Lee C, Liang E, Pham T, Reding M, Ronellenfitch K, Ruiz A, Sevigny J, Shapovalova N, Shulga L, Sulc J, Torkelson A, Tung H, Levi B, Sunkin SM, Dee N, Esposito L, Smith KA, Tasic B, Zeng H. Brain-wide cell-type-specific transcriptomic signatures of healthy ageing in mice. Nature 2025:10.1038/s41586-024-08350-8. [PMID: 39743592 DOI: 10.1038/s41586-024-08350-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/06/2024] [Indexed: 01/04/2025]
Abstract
Biological ageing can be defined as a gradual loss of homeostasis across various aspects of molecular and cellular function1,2. Mammalian brains consist of thousands of cell types3, which may be differentially susceptible or resilient to ageing. Here we present a comprehensive single-cell RNA sequencing dataset containing roughly 1.2 million high-quality single-cell transcriptomes of brain cells from young adult and aged mice of both sexes, from regions spanning the forebrain, midbrain and hindbrain. High-resolution clustering of all cells results in 847 cell clusters and reveals at least 14 age-biased clusters that are mostly glial types. At the broader cell subclass and supertype levels, we find age-associated gene expression signatures and provide a list of 2,449 unique differentially expressed genes (age-DE genes) for many neuronal and non-neuronal cell types. Whereas most age-DE genes are unique to specific cell types, we observe common signatures with ageing across cell types, including a decrease in expression of genes related to neuronal structure and function in many neuron types, major astrocyte types and mature oligodendrocytes, and an increase in expression of genes related to immune function, antigen presentation, inflammation, and cell motility in immune cell types and some vascular cell types. Finally, we observe that some of the cell types that demonstrate the greatest sensitivity to ageing are concentrated around the third ventricle in the hypothalamus, including tanycytes, ependymal cells, and certain neuron types in the arcuate nucleus, dorsomedial nucleus and paraventricular nucleus that express genes canonically related to energy homeostasis. Many of these types demonstrate both a decrease in neuronal function and an increase in immune response. These findings suggest that the third ventricle in the hypothalamus may be a hub for ageing in the mouse brain. Overall, this study systematically delineates a dynamic landscape of cell-type-specific transcriptomic changes in the brain associated with normal ageing that will serve as a foundation for the investigation of functional changes in ageing and the interaction of ageing and disease.
Collapse
Affiliation(s)
- Kelly Jin
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Zizhen Yao
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | | | - Daniel Carey
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | - Max Departee
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Amanda Gary
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Jessica Gloe
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Jeff Goldy
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Changkyu Lee
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | | | - Josh Sevigny
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Josef Sulc
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Herman Tung
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Boaz Levi
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Nick Dee
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA.
| |
Collapse
|
3
|
Kouba BR, Rodrigues ALS. Neuroplasticity-related effects of vitamin D relevant to its neuroprotective effects: A narrative review. Pharmacol Biochem Behav 2024; 245:173899. [PMID: 39447683 DOI: 10.1016/j.pbb.2024.173899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
The pathophysiology of a wide range of central nervous system (CNS) disorders, such as neurodegenerative and psychiatric diseases, has been associated with impairment of neurogenic and synaptogenic processes. Therefore, pharmacological and/or nutritional strategies based on the stimulation and/or restoration of these processes may have beneficial effects against diseases in which these processes are impaired. In this context, vitamin D has emerged as a promising neuroprotective compound. Due to its pleiotropic properties, it can interact with multiple molecular targets and thereby affect different cell types, including neurons and glial cells. This neurosteroid contributes to CNS homeostasis by non-genomic and genomic mechanisms through its interaction with vitamin D receptors (VDRs). Among several properties of this vitamin, its role in neuronal proliferation and differentiation as well as in synaptic plasticity has received attention. Considering this background, this narrative review aims to highlight the neuroplasticity-related mechanisms of vitamin D that may be associated with its neuroprotective effects.
Collapse
Affiliation(s)
- Bruna R Kouba
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil.
| |
Collapse
|
4
|
Hussein Z, Michel HE, El-Naga RN, El-Demerdash E, Mantawy EM. Coenzyme Q10 ameliorates cyclophosphamide-induced chemobrain by repressing neuronal apoptosis and preserving hippocampal neurogenesis: Mechanistic roles of Wnt/ β-catenin signaling pathway. Neurotoxicology 2024; 105:21-33. [PMID: 39209270 DOI: 10.1016/j.neuro.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Deterioration in the neurocognitive function of cancer patients referred to as "Chemobrain" is a devastating obstacle associated with cyclophosphamide (CYP). CYP is an alkylating agent, clinically utilized as an efficient anticancer and immunosuppressant. Coenzyme Q10 (CoQ10) is a worthwhile micronutrient with diverse biological activities embracing antioxidant, anti-apoptotic, and neuroprotective effects. The current experiment was designed for investigating the neuroprotective capability of CoQ10 versus CYP-elicited chemobrain in rats besides elucidating the causal molecular mechanisms. Male Sprague Dawley rats received CoQ10 (10 mg/kg, orally, once daily, for 10 days) and/or a single dose of CYP (200 mg/kg i.p. on day 7). CoQ10 counteracted CYP-induced cognitive and motor dysfunction as demonstrated by the findings of neurobehavioral tests (passive avoidance, Y maze, locomotion, and rotarod tests). Histopathological analysis further affirmed the neuroprotective abilities of CoQ10. CoQ10 effectually diminished CYP-provoked oxidative injury by restoring the antioxidant activity of catalase (CAT) enzyme while reducing malondialdehyde (MDA) levels. Besides, CoQ10 efficiently repressed CYP-induced neuronal apoptosis by downregulating the expression of Bax and caspase-3 while upregulating the Bcl-2 expression. Moreover, CoQ10 hampered CYP-provoked upregulation in acetylcholinesterase (AChE) activity. Furthermore, CoQ10 considerably augmented hippocampal neurogenesis by elevating the expressions of brain-derived neurotrophic factor (BDNF) and Ki-67. These promising neuroprotective effects can be credited to upregulating Wnt/β-catenin pathway as evidenced by the elevated expressions of Wnt-3a, β-catenin, and Phoshpo-glycogen synthase kinase-3 β (p-GSK-3β). Collectively, these findings proved the neuroprotective capabilities of CoQ10 against CYP-induced chemobrain through combating oxidative injury, repressing intrinsic apoptosis, boosting neurogenesis, and eventually upregulating the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Zeina Hussein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Haidy E Michel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Reem N El-Naga
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ebtehal El-Demerdash
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt; Preclinical and Translational Research Center, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Eman M Mantawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt; Preclinical and Translational Research Center, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
5
|
Liu D, Guo P, Wang Y, Li W. Regulation of adult neurogenesis: the crucial role of astrocytic mitochondria. Front Mol Neurosci 2024; 17:1516119. [PMID: 39649104 PMCID: PMC11621070 DOI: 10.3389/fnmol.2024.1516119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/08/2024] [Indexed: 12/10/2024] Open
Abstract
Neurogenesis has emerged as a promising therapeutic approach for central nervous system disorders. The role of neuronal mitochondria in neurogenesis is well-studied, however, recent evidence underscores the critical role of astrocytic mitochondrial function in regulating neurogenesis and the underlying mechanisms remain incompletely understood. This review highlights the regulatory effects of astrocyte mitochondria on neurogenesis, focusing on metabolic support, calcium homeostasis, and the secretion of neurotrophic factors. The effect of astrocytic mitochondrial dysfunction in the pathophysiology and treatment strategies of Alzheimer's disease and depression is discussed. Greater attention is needed to investigate the mitochondrial autophagy, dynamics, biogenesis, and energy metabolism in neurogenesis. Targeting astrocyte mitochondria presents a potential therapeutic strategy for enhancing neural regeneration.
Collapse
Affiliation(s)
| | | | | | - Weihong Li
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Shibasaki K. TRPV4 activation by core body temperature has multimodal functions in the central nervous system. J Physiol Sci 2024; 74:55. [PMID: 39578735 PMCID: PMC11583650 DOI: 10.1186/s12576-024-00948-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/01/2024] [Indexed: 11/24/2024]
Abstract
Brain temperature is strictly regulated by various endogenous mechanisms and significantly contributes to brain function in homeothermic animals, making it an important factor for health. Thermosensitive transient receptor potential (TRP) channels convert temperature information into electrical signals through cation influx. In particular, TRPV4 is involved in the regulation of brain function. TRPV4, constitutively active in neurons through its activation by brain temperature, increases neuronal firing. TRPV4KO mice have electroencephalogram abnormalities, resulting in depression-like and social behavioral abnormalities. This basic function of TRPV4, as a translator of brain temperature information, has been implicated in several diseases, including epilepsy and stress-induced depression. In addition to its neuronal functions, TRPV4 has many key functions in glia and vasculature that depend on brain temperature and contribute to brain activity. In this review, I summarize the importance of TRPV4 activities in relation to brain temperature and focus on how hyperthermia-induced TRPV4 dysfunction exacerbates brain diseases.
Collapse
Affiliation(s)
- Koji Shibasaki
- Laboratory of Neurochemistry, Department of Nutrition Science, University of Nagasaki, Nagasaki, 851-2195, Japan.
| |
Collapse
|
7
|
Dong Y, Fu C, Zhang T, Dong F, Zhu X, Jiang Y, Hu L, Pan L, Li J, Zhang X. Abnormal hippocampal neurogenesis and impaired social recognition memory in two neurodevelopmental models of schizophrenia. FASEB J 2024; 38:e70138. [PMID: 39485229 DOI: 10.1096/fj.202401258rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 11/03/2024]
Abstract
Schizophrenia is a mental disorder characterized by cognitive impairments, specifically deficits in social recognition memory (SRM). Abnormal hippocampal neurogenesis has been implicated in these deficits. Due to the pathogenetic heterogeneity of schizophrenia, studying the hippocampal neurogenesis and SRM in two models with prenatal and postnatal defects could enhance our understanding of the developmental aspects of the biological susceptibility to schizophrenia. Here, we examined SRM and hippocampal neurogenesis in two developmental models of schizophrenia: gestational exposure to methylazoxymethanol acetate (MAM) and postweaning social isolation (SI). Our findings revealed that gestational MAM exposure induced a decay of social memory while postweaning SI led to impaired social memory formation and decay. In both models, we observed a correlation between impaired SRM and reduced number, and abnormal differentiation and less complex morphology of hippocampal neurons. These results indicate that aberrant hippocampal neurogenesis may contribute to the deficits of SRM in both models, and these abnormalities may be a shared underlying pathogenic factor in developmental models of schizophrenia, regardless of prenatal and postnatal pathogenesis.
Collapse
Affiliation(s)
- Yibei Dong
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Chuxian Fu
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Ting Zhang
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Feiyuan Dong
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Xinyi Zhu
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Yingke Jiang
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Linbo Hu
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Luhui Pan
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Jiawen Li
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Xiaoqin Zhang
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
8
|
Sun C, Zhao Y, Guo L, Qiu J, Peng Q. The interplay between histone modifications and nuclear lamina in genome regulation. J Genet Genomics 2024:S1673-8527(24)00277-7. [PMID: 39426590 DOI: 10.1016/j.jgg.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
Gene expression is regulated by chromatin architecture and epigenetic remodeling in cell homeostasis and pathologies. Histone modifications act as the key factors to modulate the chromatin accessibility. Different histone modifications are strongly associated with the localization of chromatin. Heterochromatin primarily localizes at the nuclear periphery, where it interacts with lamina proteins to suppress gene expression. In this review, we summarize the potential bridges that have regulatory functions of histone modifications in chromatin organization and transcriptional regulation at the nuclear periphery. We use lamina-associated domains (LADs) as examples to elucidate the biological roles of the interactions between histone modifications and nuclear lamina in cell differentiation and development. In the end, we highlight the technologies that are currently used to identify and visualize histone modifications and LADs, which could provide spatiotemporal information for understanding their regulatory functions in gene expression and discovering new targets for diseases.
Collapse
Affiliation(s)
- Chang Sun
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China; Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Barcelona University, Barcelona, Spain
| | - Yanjing Zhao
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China; Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Liping Guo
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, 400030, China.
| | - Qin Peng
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| |
Collapse
|
9
|
Barrantes FJ. Cognitive synaptopathy: synaptic and dendritic spine dysfunction in age-related cognitive disorders. Front Aging Neurosci 2024; 16:1476909. [PMID: 39420927 PMCID: PMC11484076 DOI: 10.3389/fnagi.2024.1476909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Cognitive impairment is a leading component of several neurodegenerative and neurodevelopmental diseases, profoundly impacting on the individual, the family, and society at large. Cognitive pathologies are driven by a multiplicity of factors, from genetic mutations and genetic risk factors, neurotransmitter-associated dysfunction, abnormal connectomics at the level of local neuronal circuits and broader brain networks, to environmental influences able to modulate some of the endogenous factors. Otherwise healthy older adults can be expected to experience some degree of mild cognitive impairment, some of which fall into the category of subjective cognitive deficits in clinical practice, while many neurodevelopmental and neurodegenerative diseases course with more profound alterations of cognition, particularly within the spectrum of the dementias. Our knowledge of the underlying neuropathological mechanisms at the root of this ample palette of clinical entities is far from complete. This review looks at current knowledge on synaptic modifications in the context of cognitive function along healthy ageing and cognitive dysfunction in disease, providing insight into differential diagnostic elements in the wide range of synapse alterations, from those associated with the mild cognitive changes of physiological senescence to the more profound abnormalities occurring at advanced clinical stages of dementia. I propose the term "cognitive synaptopathy" to encompass the wide spectrum of synaptic pathologies associated with higher brain function disorders.
Collapse
Affiliation(s)
- Francisco J. Barrantes
- Laboratory of Molecular Neurobiology, Biomedical Research Institute, Pontifical Catholic University of Argentina (UCA), Argentine Scientific and Technological Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
10
|
Zhang Y, Zhu Z, Li Z, Feng J, Long J, Deng Y, Ahmed W, Khan AA, Huang S, Fu Q, Chen L. Sbno1 mediates cell-cell communication between neural stem cells and microglia through small extracellular vesicles. Cell Biosci 2024; 14:125. [PMID: 39343943 PMCID: PMC11441009 DOI: 10.1186/s13578-024-01296-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 08/21/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Neural stem cells (NSCs) play a crucial role in the progress of ischemic stroke. Research on zebrafish embryonic demonstrates an association between Strawberry Notch 1 (Sbno1) and central nervous system development. However, the regulation and underlying mechanism of Sbno1 in NSCs have not been studied yet. Here, we investigated the role and the mechanism of Sbno1 in NSCs development and the potential therapeutic value of Sbno1 in ischemic stroke. METHODS Adeno-associated virus (AAV) was used for overexpression or knockdown of Sbno1 in vitro or in vivo. A mouse model of MCAO was established to evaluate the neuroprotective effects of AAV-Sbno1, including balance beam test, rotarod test, and strength evaluation. H&E and immunofluorescence assessed neuronal impairment. Western blot and RT-qPCR were used to detect the expression of Sbno1 and its downstream target genes. RNA-seq and western blot were performed to explore further molecular mechanisms by which Sbno1 promoted endogenous repair of NSCs and macrophages M2 polarization. CCK8 was conducted to assess the effects of Sbno1 on NSCs proliferation. The impact of Sbno1 on NSCs apoptosis was evaluated by flow cytometry. NSCs derived from small extracellular vesicles (sEV) were obtained using ultracentrifugation and identified through nanoparticle tracking analysis (NTA) and western blot analysis. RESULTS Our results showed that Sbno1 is highly expressed in the central nervous system, which plays a crucial role in regulating the proliferation of NSCs through the PI3k-Akt-GSK3β-Wnt/β-catenin signaling pathway. In addition, with overexpression of Sbno1 in the hippocampus, post-stroke behavioral scores were superior to the wild-type mice, and immunofluorescence staining revealed an increased number of newly generated neurons. sEV released by NSCs overexpressing Sbno1 inhibited neuroinflammation, which mechanistically impaired the activation of the microglial NF-κB and MAPK signaling pathways. CONCLUSIONS Our studies indicate that sbno1 promotes the proliferation of NSCs and enhances endogenous repairing through the PI3k-Akt-GSK3β-Wnt/β-catenin signaling pathway. Additionally, NSCs overexpressing sbno1 improve ischemic stroke recovery and inhibit neuroinflammation after ischemia by sEV through the MAPK and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, China
| | - Zhihan Zhu
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, China
| | - Zhinuo Li
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, China
| | - Jia Feng
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, China
| | - Jun Long
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, China
| | - Yushu Deng
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, China
| | - Waqas Ahmed
- Department of Neurology, Zhongda Hospital Southeast University, Nanjing, China
| | - Ahsan Ali Khan
- Department of Neurosurgery, The Aga Khan University, Karachi, Pakistan
| | - Shiying Huang
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, China
| | - Qingling Fu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lukui Chen
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
11
|
Bonzano S, Dallorto E, Bovetti S, Studer M, De Marchis S. Mitochondrial regulation of adult hippocampal neurogenesis: Insights into neurological function and neurodevelopmental disorders. Neurobiol Dis 2024; 199:106604. [PMID: 39002810 DOI: 10.1016/j.nbd.2024.106604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024] Open
Abstract
Mitochondria are essential regulators of cellular energy metabolism and play a crucial role in the maintenance and function of neuronal cells. Studies in the last decade have highlighted the importance of mitochondrial dynamics and bioenergetics in adult neurogenesis, a process that significantly influences cognitive function and brain plasticity. In this review, we examine the mechanisms by which mitochondria regulate adult neurogenesis, focusing on the impact of mitochondrial function on the behavior of neural stem/progenitor cells and the maturation and plasticity of newborn neurons in the adult mouse hippocampus. In addition, we explore the link between mitochondrial dysfunction, adult hippocampal neurogenesis and genes associated with cognitive deficits in neurodevelopmental disorders. In particular, we provide insights into how alterations in the transcriptional regulator NR2F1 affect mitochondrial dynamics and may contribute to the pathophysiology of the emerging neurodevelopmental disorder Bosch-Boonstra-Schaaf optic atrophy syndrome (BBSOAS). Understanding how genes involved in embryonic and adult neurogenesis affect mitochondrial function in neurological diseases might open new directions for therapeutic interventions aimed at boosting mitochondrial function during postnatal life.
Collapse
Affiliation(s)
- Sara Bonzano
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, Via Accademia Albertina 13, Turin 10123, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano 10043, Italy
| | - Eleonora Dallorto
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, Via Accademia Albertina 13, Turin 10123, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano 10043, Italy; Institute de Biologie Valrose (iBV), Université Cote d'Azur (UCA), CNRS 7277, Inserm 1091, Avenue Valrose 28, Nice 06108, France
| | - Serena Bovetti
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, Via Accademia Albertina 13, Turin 10123, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano 10043, Italy
| | - Michèle Studer
- Institute de Biologie Valrose (iBV), Université Cote d'Azur (UCA), CNRS 7277, Inserm 1091, Avenue Valrose 28, Nice 06108, France
| | - Silvia De Marchis
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, Via Accademia Albertina 13, Turin 10123, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano 10043, Italy.
| |
Collapse
|
12
|
Hasanabadi AJ, Beirami E, Kamaei M, Esfahani DE. Effect of imipramine on memory, adult neurogenesis, neuroinflammation, and mitochondrial biogenesis in a rat model of alzheimer's disease. Exp Gerontol 2024; 194:112517. [PMID: 38986856 DOI: 10.1016/j.exger.2024.112517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by cognitive decline and memory loss. Imipramine, a tricyclic antidepressant, has potent anti-inflammatory and antioxidant properties in the central nervous system. The aim of this study was to investigate the neuroprotective effects of imipramine on streptozotocin (STZ)-induced memory impairment. Male Wistar rats received an intracerebroventricular injection of STZ (3 mg/kg, 3 μl/ventricle) using the stereotaxic apparatus. The Morris water maze and passive avoidance tests were used to evaluate cognitive functions. 24 h after the STZ injection, imipramine was administered intraperitoneally at doses of 10 or 20 mg/kg for 14 consecutive days. The mRNA and protein levels of neurotrophic factors (BDNF and GDNF) and pro-inflammatory cytokines (IL-6, IL-1β, and TNF-α) were measured in the hippocampus using real-time PCR and ELISA techniques, respectively. In addition, real-time PCR was used to evaluate the mRNA levels of markers associated with neurogenesis (Nestin, DCX, and Ki67) and mitochondrial biogenesis (PGC-1α, NRF-1, and TFAM). The results showed that imipramine, especially at a dose of 20 mg/kg, effectively improved STZ-induced memory impairment. This improvement was associated with an increase in neurogenesis and neurotrophic factors and a decrease in neuroinflammation and mitochondrial biogenesis dysfunction. Based on these results, imipramine appears to be a promising therapeutic option for improving cognitive functions in neurodegenerative diseases such as AD.
Collapse
Affiliation(s)
| | - Elmira Beirami
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Mehdi Kamaei
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Delaram Eslimi Esfahani
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| |
Collapse
|
13
|
Zhu F, He P, Jiang W, Afridi SK, Xu H, Alahmad M, Alvin Huang YW, Qiu W, Wang G, Tang C. Astrocyte-secreted C3 signaling impairs neuronal development and cognition in autoimmune diseases. Prog Neurobiol 2024; 240:102654. [PMID: 38945516 DOI: 10.1016/j.pneurobio.2024.102654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 05/05/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
Neuromyelitis optica (NMO) arises from primary astrocytopathy induced by autoantibodies targeting the astroglial protein aquaporin 4 (AQP4), leading to severe neurological sequelae such as vision loss, motor deficits, and cognitive decline. Mounting evidence has shown that dysregulated activation of complement components contributes to NMO pathogenesis. Complement C3 deficiency has been shown to protect against hippocampal neurodegeneration and cognitive decline in neurodegenerative disorders (e.g., Alzheimer's disease, AD) and autoimmune diseases (e.g., multiple sclerosis, MS). However, whether inhibiting the C3 signaling can ameliorate cognitive dysfunctions in NMO remains unclear. In this study, we found that the levels of C3a, a split product of C3, significantly correlate with cognitive impairment in our patient cohort. In response to the stimulation of AQP4 autoantibodies, astrocytes were activated to secrete complement C3, which inhibited the development of cultured neuronal dendritic arborization. NMO mouse models exhibited reduced adult hippocampal newborn neuronal dendritic and spine development, as well as impaired learning and memory functions, which could be rescued by decreasing C3 levels in astrocytes. Mechanistically, we found that C3a engaged with C3aR to impair neuronal development by dampening β-catenin signalling. Additionally, inhibition of the C3-C3aR-GSK3β/β-catenin cascade restored neuronal development and ameliorated cognitive impairments. Collectively, our results suggest a pivotal role of the activation of the C3-C3aR network in neuronal development and cognition through mediating astrocyte and adult-born neuron communication, which represents a potential therapeutic target for autoimmune-related cognitive impairment diseases.
Collapse
Affiliation(s)
- Fan Zhu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Pengyan He
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Wei Jiang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Shabbir Khan Afridi
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; China Graduate School, University of Chinese Academy of Sciences, Beijing, China
| | - Huiming Xu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Maali Alahmad
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Yu-Wen Alvin Huang
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02903, United States
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Guangyou Wang
- Department of Neurology, First Affiliated Clinical Hospital of Harbin Medical University, and Department of Neurobiology, Harbin Medical University, Harbin 150081, China.
| | - Changyong Tang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China.
| |
Collapse
|
14
|
Tarmoun K, Lachance V, Le Corvec V, Bélanger SM, Beaucaire G, Kourrich S. Comprehensive Analysis of Age- and Sex-Related Expression of the Chaperone Protein Sigma-1R in the Mouse Brain. Brain Sci 2024; 14:881. [PMID: 39335377 PMCID: PMC11430507 DOI: 10.3390/brainsci14090881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Sigma-1R (S1R) is a ubiquitously distributed protein highly expressed in the brain and liver. It acts as a ligand-inducible chaperone protein localized at the endoplasmic reticulum. S1R participates in several signaling pathways that oversee diverse cellular and neurological functions, such as calcium and proteome homeostasis, neuronal activity, memory, and emotional regulation. Despite its crucial functions, S1R expression profile in the brain with respect to age and sex remains elusive. To shed light on this matter, we assessed S1R distribution in the mouse brain across different developmental stages, including juvenile, early adult, and middle-aged mice. Using immunohistochemistry, we found that S1R is predominantly expressed in the hippocampus in juvenile mice, particularly in CA1 and CA3 regions. Notably, S1R is not expressed in the subgranular layer of the dentate gyrus of juvenile mice. We observed dynamic changes in S1R levels during development, with most brain regions showing either an abrupt or gradual decline as mice transition from juveniles to adults. Sexual dimorphism is observed before puberty in the hippocampus and hypothalamus and during adulthood in the hippocampus and cortex.
Collapse
Affiliation(s)
- Khadija Tarmoun
- Department of Biological Sciences, Faculty of Sciences, University of Quebec at Montreal, 141 President-Kennedy Street, Montreal, QC H2X 1Y4, Canada
- Center of Excellence for Research on Orphan Diseases, Courtois Foundation (CERMO-FC), Montreal, QC H2X 3Y7, Canada
| | - Véronik Lachance
- Department of Biological Sciences, Faculty of Sciences, University of Quebec at Montreal, 141 President-Kennedy Street, Montreal, QC H2X 1Y4, Canada
- Center of Excellence for Research on Orphan Diseases, Courtois Foundation (CERMO-FC), Montreal, QC H2X 3Y7, Canada
| | - Victoria Le Corvec
- Department of Biological Sciences, Faculty of Sciences, University of Quebec at Montreal, 141 President-Kennedy Street, Montreal, QC H2X 1Y4, Canada
- Center of Excellence for Research on Orphan Diseases, Courtois Foundation (CERMO-FC), Montreal, QC H2X 3Y7, Canada
| | - Sara-Maude Bélanger
- Department of Biological Sciences, Faculty of Sciences, University of Quebec at Montreal, 141 President-Kennedy Street, Montreal, QC H2X 1Y4, Canada
- Center of Excellence for Research on Orphan Diseases, Courtois Foundation (CERMO-FC), Montreal, QC H2X 3Y7, Canada
| | - Guillaume Beaucaire
- Department of Biological Sciences, Faculty of Sciences, University of Quebec at Montreal, 141 President-Kennedy Street, Montreal, QC H2X 1Y4, Canada
- Center of Excellence for Research on Orphan Diseases, Courtois Foundation (CERMO-FC), Montreal, QC H2X 3Y7, Canada
| | - Saïd Kourrich
- Department of Biological Sciences, Faculty of Sciences, University of Quebec at Montreal, 141 President-Kennedy Street, Montreal, QC H2X 1Y4, Canada
- Center of Excellence for Research on Orphan Diseases, Courtois Foundation (CERMO-FC), Montreal, QC H2X 3Y7, Canada
- Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, QC H4B 1R6, Canada
| |
Collapse
|
15
|
Wang L, Du J, Liu Q, Wang D, Wang W, Lei M, Li K, Li Y, Hao A, Sang Y, Yi F, Zhou W, Liu H, Mao C, Qiu J. Wrapping stem cells with wireless electrical nanopatches for traumatic brain injury therapy. Nat Commun 2024; 15:7223. [PMID: 39174514 PMCID: PMC11341554 DOI: 10.1038/s41467-024-51098-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
Electrical stimulation holds promise for enhancing neuronal differentiation of neural stem cells to treat traumatic brain injury. However, once the stem cells leave the stimulating material and migrate post transplantation, electrical stimulation on them is diminished. Here, we wrap the stem cells with wireless electrical nanopatches, the conductive graphene nanosheets. Under electromagnetic induction, electrical stimulation can thus be applied in-situ to individual nanopatch-wrapped stem cells on demand, stimulating their neuronal differentiation through a MAPK/ERK signaling pathway. Consequently, 41% of the nanopatch-wrapped stem cells differentiate into functional neurons in 5 days, as opposed to only 16.3% of the unwrapped ones. The brain injury male mice implanted with the nanopatch-wrapped stem cells and exposed to a rotating magnetic field 30 min/day exhibit significant recovery of brain tissues, behaviors, and cognitions, within 28 days. This study opens up an avenue to individualized electrical stimulation of transplanted stem cells for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Liang Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Jingyi Du
- Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Qilu Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Dongshuang Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Wenhan Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Ming Lei
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Keyi Li
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Yiwei Li
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Aijun Hao
- Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Yuanhua Sang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Fan Yi
- The Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Wenjuan Zhou
- Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China.
- Shandong Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China.
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China.
| | - Chuanbin Mao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China.
| | - Jichuan Qiu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China.
| |
Collapse
|
16
|
Thor S. Indirect neurogenesis in space and time. Nat Rev Neurosci 2024; 25:519-534. [PMID: 38951687 DOI: 10.1038/s41583-024-00833-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2024] [Indexed: 07/03/2024]
Abstract
During central nervous system (CNS) development, neural progenitor cells (NPCs) generate neurons and glia in two different ways. In direct neurogenesis, daughter cells differentiate directly into neurons or glia, whereas in indirect neurogenesis, neurons or glia are generated after one or more daughter cell divisions. Intriguingly, indirect neurogenesis is not stochastically deployed and plays instructive roles during CNS development: increased generation of cells from specific lineages; increased generation of early or late-born cell types within a lineage; and increased cell diversification. Increased indirect neurogenesis might contribute to the anterior CNS expansion evident throughout the Bilateria and help to modify brain-region size without requiring increased NPC numbers or extended neurogenesis. Increased indirect neurogenesis could be an evolutionary driver of the gyrencephalic (that is, folded) cortex that emerged during mammalian evolution and might even have increased during hominid evolution. Thus, selection of indirect versus direct neurogenesis provides a powerful developmental and evolutionary instrument that drives not only the evolution of CNS complexity but also brain expansion and modulation of brain-region size, and thereby the evolution of increasingly advanced cognitive abilities. This Review describes indirect neurogenesis in several model species and humans, and highlights some of the molecular genetic mechanisms that control this important process.
Collapse
Affiliation(s)
- Stefan Thor
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, Australia.
| |
Collapse
|
17
|
Zehtabian A, Fuchs J, Eickholt BJ, Ewers H. Automated Analysis of Neuronal Morphology in 2D Fluorescence Micrographs through an Unsupervised Semantic Segmentation of Neurons. Neuroscience 2024; 551:333-344. [PMID: 38838980 DOI: 10.1016/j.neuroscience.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/07/2024]
Abstract
Brain function emerges from a highly complex network of specialized cells that are interlinked by billions of synapses. The synaptic connectivity between neurons is established between the elongated processes of their axons and dendrites or, together, neurites. To establish these connections, cellular neurites have to grow in highly specialized, cell-type dependent patterns covering extensive distances and connecting with thousands of other neurons. The outgrowth and branching of neurites are tightly controlled during development and are a commonly used functional readout of imaging in the neurosciences. Manual analysis of neuronal morphology from microscopy images, however, is very time intensive and prone to bias. Most automated analyses of neurons rely on reconstruction of the neuron as a whole without a semantic analysis of each neurite. A fully-automated classification of all neurites still remains unavailable in open-source software. Here we present a standalone, GUI-based software for batch-quantification of neuronal morphology in two-dimensional fluorescence micrographs of cultured neurons with minimal requirements for user interaction. Single neurons are first reconstructed into binarized images using a Hessian-based segmentation algorithm to detect thin neurite structures combined with intensity- and shape-based reconstruction of the cell body. Neurites are then classified into axon, dendrites and their branches of increasing order using a geodesic distance transform of the cell skeleton. The software was benchmarked against a published dataset and reproduced the phenotype observed after manual annotation. Our tool promises accelerated and improved morphometric studies of neuronal morphology by allowing for consistent and automated analysis of large datasets.
Collapse
Affiliation(s)
- Amin Zehtabian
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany.
| | - Joachim Fuchs
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Molecular Biology and Biochemistry, Virchowweg 6, 10117 Berlin, Germany
| | - Britta J Eickholt
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Molecular Biology and Biochemistry, Virchowweg 6, 10117 Berlin, Germany
| | - Helge Ewers
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| |
Collapse
|
18
|
Zhao T, Hong Y, Yan B, Huang S, Ming GL, Song H. Epigenetic maintenance of adult neural stem cell quiescence in the mouse hippocampus via Setd1a. Nat Commun 2024; 15:5674. [PMID: 38971831 PMCID: PMC11227589 DOI: 10.1038/s41467-024-50010-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/25/2024] [Indexed: 07/08/2024] Open
Abstract
Quiescence, a hallmark of adult neural stem cells (NSCs), is required for maintaining the NSC pool to support life-long continuous neurogenesis in the adult dentate gyrus (DG). Whether long-lasting epigenetic modifications maintain NSC quiescence over the long term in the adult DG is not well-understood. Here we show that mice with haploinsufficiency of Setd1a, a schizophrenia risk gene encoding a histone H3K4 methyltransferase, develop an enlarged DG with more dentate granule cells after young adulthood. Deletion of Setd1a specifically in quiescent NSCs in the adult DG promotes their activation and neurogenesis, which is countered by inhibition of the histone demethylase LSD1. Mechanistically, RNA-sequencing and CUT & RUN analyses of cultured quiescent adult NSCs reveal Setd1a deletion-induced transcriptional changes and many Setd1a targets, among which down-regulation of Bhlhe40 promotes quiescent NSC activation in the adult DG in vivo. Together, our study reveals a Setd1a-dependent epigenetic mechanism that sustains NSC quiescence in the adult DG.
Collapse
Affiliation(s)
- Ting Zhao
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philedaphia, PA, 19104, USA
| | - Yan Hong
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philedaphia, PA, 19104, USA
| | - Bowen Yan
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Suming Huang
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philedaphia, PA, 19104, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philedaphia, PA, 19104, USA.
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philedaphia, PA, 19104, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philedaphia, PA, 19104, USA.
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philedaphia, PA, 19104, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philedaphia, PA, 19104, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philedaphia, PA, 19104, USA.
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philedaphia, PA, 19104, USA.
- The Epigenetics Institute, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
19
|
Idotta C, Pagano MA, Tibaldi E, Cadamuro M, Saetti R, Silvestrini M, Pigato G, Leanza L, Peruzzo R, Meneghetti L, Piazza S, Meneguzzo P, Favaro A, Grassi L, Toffanin T, Brunati AM. Neural stem/progenitor cells from olfactory neuroepithelium collected by nasal brushing as a cell model reflecting molecular and cellular dysfunctions in schizophrenia. World J Biol Psychiatry 2024; 25:317-329. [PMID: 38869228 DOI: 10.1080/15622975.2024.2357096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/15/2024] [Indexed: 06/14/2024]
Abstract
OBJECTIVES Neural stem/progenitor cells derived from olfactory neuroepithelium (hereafter olfactory neural stem/progenitor cells, ONSPCs) are emerging as a potential tool in the exploration of psychiatric disorders. The present study intended to assess whether ONSPCs could help discern individuals with schizophrenia (SZ) from non-schizophrenic (NS) subjects by exploring specific cellular and molecular features. METHODS ONSPCs were collected from 19 in-patients diagnosed with SZ and 31 NS individuals and propagated in basal medium. Mitochondrial ATP production, expression of β-catenin and cell proliferation, which are described to be altered in SZ, were examined in freshly isolated or newly thawed ONSPCs after a few culture passages. RESULTS SZ-ONSPCs exhibited a lower mitochondrial ATP production and insensitivity to agents capable of positively or negatively affecting β-catenin expression with respect to NS-ONSPCs. As to proliferation, it declined in SZ-ONSPCs as the number of culture passages increased compared to a steady level of growth shown by NS-ONSPCs. CONCLUSIONS The ease and safety of sample collection as well as the differences observed between NS- and SZ-ONSPCs, may lay the groundwork for a new approach to obtain biological material from a large number of living individuals and gain a better understanding of the mechanisms underlying SZ pathophysiology.
Collapse
Affiliation(s)
- Carlo Idotta
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Mario Angelo Pagano
- Department of Molecular Medicine, University of Padua, Padua, Italy
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, Ferrara, Italy
| | - Elena Tibaldi
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | | | - Roberto Saetti
- Department of Otolaryngology, San Bortolo Hospital, ULSS 8 Berica, Vicenza, Italy
| | - Marina Silvestrini
- Department of Otolaryngology, San Bortolo Hospital, ULSS 8 Berica, Vicenza, Italy
| | | | - Luigi Leanza
- Department of Biology, University of Padua, Padua, Italy
| | - Roberta Peruzzo
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | | | - Stefano Piazza
- Department of Mental Health, ULSS 8 Berica, Vicenza, Italy
| | - Paolo Meneguzzo
- Department of Neuroscience, University of Padua, Padua, Italy
- Padova Neuroscience Center, University of Padua, Padua, Italy
| | - Angela Favaro
- Department of Neuroscience, University of Padua, Padua, Italy
- Padova Neuroscience Center, University of Padua, Padua, Italy
| | - Luigi Grassi
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, Ferrara, Italy
| | - Tommaso Toffanin
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, Ferrara, Italy
| | | |
Collapse
|
20
|
Luo Y, Wang Y, Qiu F, Hou G, Liu J, Yang H, Wu M, Dong X, Guo D, Zhong Z, Zhang X, Ge J, Meng P. Ablated Sonic Hedgehog Signaling in the Dentate Gyrus of the Dorsal and Ventral Hippocampus Impairs Hippocampal-Dependent Memory Tasks and Emotion in a Rat Model of Depression. Mol Neurobiol 2024; 61:4352-4368. [PMID: 38087166 DOI: 10.1007/s12035-023-03796-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/08/2023] [Indexed: 07/11/2024]
Abstract
Specific memory processes and emotional aberrations in depression can be attributed to the different dorsal-ventral regions of the hippocampus. However, the molecular mechanisms underlying the differential functions of the dorsal hippocampus (dHip) and ventral hippocampus (vHip) remain unclear. As Sonic Hedgehog (Shh) is involved in the dorsal-ventral patterning of the neural tube and its signaling is dysregulated by chronic unpredictable mild stress (CUMS), we investigated its role in influencing the differential functions of the dHip and vHip. Here, CUMS downregulated the expression of Shh signaling markers, including Shh and its downstream effectors GLI family zinc finger 12 (Gli1/2), Patched (Ptch), and smoothened (Smo), in both the dHip and vHip of rats, though more so in the vHip. Additionally, Shh knockdown in the dorsal or ventral dentate gyrus (DG) resulted in restrained neurogenic activity in newborn neurons, especially in immature neurons through decreased expression of Shh signaling markers. Furthermore, Shh knockdown in the DG of the dHip led to memory impairment by inhibiting experience-dependent activation of immature neurons, whereas its knockdown in the DG of the vHip led to an emotional handicap by delaying the maturation of immature neurons. Finally, Shh knockdown in either the dDG or vDG of hippocampus abolished the corresponding cognitive enhancement and emotional recovery of fluoxetine. In conclusion, Shh is essential to maintain the functional heterogeneity of dHip and vHip in depressed rat, which was mainly mediating by local changes of dependent activation and maturity of immature neurons, respectively.
Collapse
Affiliation(s)
- Yan Luo
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Yan Wang
- Yiyang Central Hospital, Yiyang, 413000, Hunan, China
| | - Feng Qiu
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Guanghan Hou
- Fourth Hospital of Changsha, Hunan, 410000, China
| | - Jian Liu
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
- First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China
| | - Hui Yang
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
- First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China
| | - Mei Wu
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Xuanqi Dong
- The Second People's Hospital of Hunan Province, Changsha, 410000, Hunan, China
| | - Dongwei Guo
- The Second People's Hospital of Hunan Province, Changsha, 410000, Hunan, China
| | - Ziyan Zhong
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Xi Zhang
- The Second People's Hospital of Hunan Province, Changsha, 410000, Hunan, China.
| | - Jinwen Ge
- Hunan Academy of Chinese Medicine, Changsha, 410300, Hunan, China.
| | - Pan Meng
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| |
Collapse
|
21
|
Madsen S, Delgado AC, Cadilhac C, Maillard V, Battiston F, Igelbüscher CM, De Neck S, Magrinelli E, Jabaudon D, Telley L, Doetsch F, Knobloch M. A fluorescent perilipin 2 knock-in mouse model reveals a high abundance of lipid droplets in the developing and adult brain. Nat Commun 2024; 15:5489. [PMID: 38942786 PMCID: PMC11213871 DOI: 10.1038/s41467-024-49449-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 06/03/2024] [Indexed: 06/30/2024] Open
Abstract
Lipid droplets (LDs) are dynamic lipid storage organelles. They are tightly linked to metabolism and can exert protective functions, making them important players in health and disease. Most LD studies in vivo rely on staining methods, providing only a snapshot. We therefore developed a LD-reporter mouse by labelling the endogenous LD coat protein perilipin 2 (PLIN2) with tdTomato, enabling staining-free fluorescent LD visualisation in living and fixed tissues and cells. Here we validate this model under standard and high-fat diet conditions and demonstrate that LDs are highly abundant in various cell types in the healthy brain, including neurons, astrocytes, ependymal cells, neural stem/progenitor cells and microglia. Furthermore, we also show that LDs are abundant during brain development and can be visualized using live imaging of embryonic slices. Taken together, our tdTom-Plin2 mouse serves as a novel tool to study LDs and their dynamics under both physiological and diseased conditions in all tissues expressing Plin2.
Collapse
Affiliation(s)
- Sofia Madsen
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | | | - Christelle Cadilhac
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Vanille Maillard
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Fabrice Battiston
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | | | - Simon De Neck
- Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| | - Elia Magrinelli
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Denis Jabaudon
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Ludovic Telley
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | | | - Marlen Knobloch
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
22
|
Agarwal K, Lamprecht R. EphB2 activation in neural stem cells in the basolateral amygdala facilitates neurogenesis and enhances long-term memory. Cell Mol Life Sci 2024; 81:277. [PMID: 38913115 PMCID: PMC11335201 DOI: 10.1007/s00018-024-05317-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/28/2024] [Accepted: 06/12/2024] [Indexed: 06/25/2024]
Abstract
Many brain diseases lead to a reduction in the number of functional neurons and it would be of value to be able to increase the number of neurons in the affected brain areas. In this study, we examined whether we can promote neural stem cells to produce mature neurons and whether an increase in the mature neurons can affect cognitive performance. We detected that the EphB2 receptor is localized in immature basolateral amygdala (BLA) neurons. We therefore aimed to increase the level of EphB2 activity in neural stem cells (NSCs) in the BLA and examine the effects on the production of mature neurons and cognition. Toward that end, we utilized a photoactivatable EphB2 construct (optoEphB2) to increase EphB2 forward signaling in NSCs in the BLA. We revealed that the activation of optoEphB2 in NSCs in the BLA increased the level of immature and mature neurons in the BLA. We further found that activation of optoEphB2 in BLA NSCs enhanced auditory, but not contextual, long-term fear memory formation. Impairing EphB2 forward signaling did not affect the level of immature and mature neurons in the BLA. This study provides evidence that NSCs can be promoted to produce mature neurons by activating EphB2 to enhance specific brain functions.
Collapse
Affiliation(s)
- Karishma Agarwal
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Raphael Lamprecht
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.
| |
Collapse
|
23
|
Wang L, Gu Y. Fuse mitochondria to win peer competition. Neuron 2024; 112:1897-1899. [PMID: 38901399 DOI: 10.1016/j.neuron.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 06/22/2024]
Abstract
In this issue of Neuron, Kochan et al.1 report that enhanced mitochondrial fusion is essential for the heightened synaptic plasticity in adult-born neurons during the critical period, thus supporting their competition with neurons of similar age for survival.
Collapse
Affiliation(s)
- Lang Wang
- Department of Neurology of the First Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou 310027, China; School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yan Gu
- Center of Stem Cell and Regenerative Medicine, and Department of Neurology of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China; MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
24
|
Liu Y, Zhang J, Gu X, Jia S. Mapping the current trends and hotspots of adult hippocampal neurogenesis from 2004-2023: a bibliometric analysis. Front Neurosci 2024; 18:1416738. [PMID: 38957185 PMCID: PMC11217541 DOI: 10.3389/fnins.2024.1416738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/06/2024] [Indexed: 07/04/2024] Open
Abstract
Objective We utilized bibliometric and data visualization techniques to discern the primary research domains and emerging frontiers in the field of adult hippocampal neurogenesis (AHN). Methods We systematically searched the Web of Science database for AHN-related articles published between 2004 and 2023. The retrieved articles were filtered based on publication types (articles and reviews) and language (English). We employed CiteSpace, VOSviewer, and the online bibliometric platform (bibliometric.com) to visualize and analyze the collected data. Results In total, 1,590 AHN-related publications were discovered, exhibiting a steady increase in yearly publications over time. The United States emerged as the leading contributor in AHN research in terms of both publication quantity and national influence. Among all research institutions in the field of AHN, the University of California System exhibited the highest impact. Kempermann, Gerd was the most active author. The publications of the top three active authors primarily focused on the functions of AHN, and reversing hippocampal damage and cognitive impairment by improving AHN. An analysis of reference co-citation clustering revealed 8 distinct research clusters, and the notable ones included "adult hippocampal neurogenesis," "neurogenesis," "hippocampus," "dentate gyrus," "neural stem cell," and "depression." Additionally, a burst keyword detection indicated that 'anxiety' is a current research hotspot in the field of AHN. Conclusion This in-depth bibliographic assessment of AHN offers a deeper insight into the present research hotspots in the field. The association between AHN and cognitive diseases, such as Alzheimer's disease (AD) and anxiety, has emerged as a prominent research hotspot.
Collapse
Affiliation(s)
- Ye Liu
- The Second School of Clinical Medicine of Binzhou Medical University, Yantai, Shandong Province, China
- Department of Anesthesiology, Department of Radiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Jian Zhang
- Department of Anesthesiology, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiyao Gu
- The Second School of Clinical Medicine of Binzhou Medical University, Yantai, Shandong Province, China
- Department of Anesthesiology, Department of Radiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Shushan Jia
- The Second School of Clinical Medicine of Binzhou Medical University, Yantai, Shandong Province, China
| |
Collapse
|
25
|
Marin-Rodero M, Reyes EC, Walker AJ, Jayewickreme T, Pinho-Ribeiro FA, Richardson Q, Jackson R, Chiu IM, Benoist C, Stevens B, Trejo JL, Mathis D. The meninges host a unique compartment of regulatory T cells that bulwarks adult hippocampal neurogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599387. [PMID: 38948783 PMCID: PMC11212874 DOI: 10.1101/2024.06.17.599387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Our knowledge about the meningeal immune system has recently burgeoned, particularly our understanding of how innate and adaptive effector cells are mobilized to meet brain challenges. However, information on how meningeal immunocytes guard brain homeostasis in healthy individuals remains sparse. This study highlights the heterogeneous and polyfunctional regulatory-T (Treg) cell compartment in the meninges. A Treg subtype specialized in controlling Th1-cell responses and another known to control responses in B-cell follicles were substantial components of this compartment, foretelling that punctual Treg-cell ablation rapidly unleashed interferon-gamma production by meningeal lymphocytes, unlocked their access to the brain parenchyma, and altered meningeal B-cell profiles. Distally, the hippocampus assumed a reactive state, with morphological and transcriptional changes in multiple glial-cell types; within the dentate gyrus, neural stem cells showed exacerbated death and desisted from further differentiation, associated with inhibition of spatial-reference memory. Thus, meningeal Treg cells are a multifaceted bulwark to brain homeostasis at steady-state. One sentence summary A distinct population of regulatory T cells in the murine meninges safeguards homeostasis by keeping local interferon-γ-producing lymphocytes in check, thereby preventing their invasion of the parenchyma, activation of hippocampal glial cells, death of neural stem cells, and memory decay.
Collapse
|
26
|
Kunoh S, Nakashima H, Nakashima K. Epigenetic Regulation of Neural Stem Cells in Developmental and Adult Stages. EPIGENOMES 2024; 8:22. [PMID: 38920623 PMCID: PMC11203245 DOI: 10.3390/epigenomes8020022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/18/2024] [Accepted: 05/31/2024] [Indexed: 06/27/2024] Open
Abstract
The development of the nervous system is regulated by numerous intracellular molecules and cellular signals that interact temporally and spatially with the extracellular microenvironment. The three major cell types in the brain, i.e., neurons and two types of glial cells (astrocytes and oligodendrocytes), are generated from common multipotent neural stem cells (NSCs) throughout life. However, NSCs do not have this multipotentiality from the beginning. During cortical development, NSCs sequentially obtain abilities to differentiate into neurons and glial cells in response to combinations of spatiotemporally modulated cell-intrinsic epigenetic alterations and extrinsic factors. After the completion of brain development, a limited population of NSCs remains in the adult brain and continues to produce neurons (adult neurogenesis), thus contributing to learning and memory. Many biological aspects of brain development and adult neurogenesis are regulated by epigenetic changes via behavioral control of NSCs. Epigenetic dysregulation has also been implicated in the pathogenesis of various brain diseases. Here, we present recent advances in the epigenetic regulation of NSC behavior and its dysregulation in brain disorders.
Collapse
Affiliation(s)
| | - Hideyuki Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan;
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan;
| |
Collapse
|
27
|
Saxon D, Alderman PJ, Sorrells SF, Vicini S, Corbin JG. Neuronal Subtypes and Connectivity of the Adult Mouse Paralaminar Amygdala. eNeuro 2024; 11:ENEURO.0119-24.2024. [PMID: 38811163 PMCID: PMC11208988 DOI: 10.1523/eneuro.0119-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/31/2024] Open
Abstract
The paralaminar nucleus of the amygdala (PL) comprises neurons that exhibit delayed maturation. PL neurons are born during gestation but mature during adolescent ages, differentiating into excitatory neurons. These late-maturing PL neurons contribute to the increase in size and cell number of the amygdala between birth and adulthood. However, the function of the PL upon maturation is unknown, as the region has only recently begun to be characterized in detail. In this study, we investigated key defining features of the adult mouse PL; the intrinsic morpho-electric properties of its neurons, and its input and output circuit connectivity. We identify two subtypes of excitatory neurons in the PL based on unsupervised clustering of electrophysiological properties. These subtypes are defined by differential action potential firing properties and dendritic architecture, suggesting divergent functional roles. We further uncover major axonal inputs to the adult PL from the main olfactory network and basolateral amygdala. We also find that axonal outputs from the PL project reciprocally to these inputs and to diverse targets including the amygdala, frontal cortex, hippocampus, hypothalamus, and brainstem. Thus, the adult mouse PL is centrally placed to play a major role in the integration of olfactory sensory information, to coordinate affective and autonomic behavioral responses to salient odor stimuli.
Collapse
Affiliation(s)
- David Saxon
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC 20011
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20007
| | - Pia J Alderman
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Shawn F Sorrells
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Stefano Vicini
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20007
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20007
| | - Joshua G Corbin
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC 20011
| |
Collapse
|
28
|
Gyimesi M, Okolicsanyi RK, Haupt LM. Beyond amyloid and tau: rethinking Alzheimer's disease through less explored avenues. Open Biol 2024; 14:240035. [PMID: 38862019 DOI: 10.1098/rsob.240035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/25/2024] [Indexed: 06/13/2024] Open
Abstract
Neurodegenerative diseases, particularly Alzheimer's disease (AD), pose a significant challenge in ageing populations. Our current understanding indicates that the onset of toxic amyloid and tau protein pathologies initiates disease progression. However, existing treatments targeting these hallmark symptoms offer symptomatic relief without halting disease advancement. This review offers an alternative perspective on AD, centring on impaired adult hippocampal neurogenesis (AHN) as a potential early aetiological factor. By delving into the intricate molecular events during the initial stages of AD (Braak Stages I-III), a novel hypothesis is presented, interweaving the roles of Notch signalling and heparan sulfate proteoglycans (HSPGs) in compromised AHN. While acknowledging the significance of the amyloid and tau hypotheses, it calls for further exploration beyond these paradigms, suggesting the potential of altered HS sulfation patterns in AD initiation. Future directions propose more detailed investigations into early HS aggregation, aberrant sulfation patterns and examination of their temporal relationship with tau hyperphosphorylation. In challenging the conventional 'triggers' of AD and urging their reconsideration as symptoms, this review advocates an alternative approach to understanding this disease, offering new avenues of investigation into the intricacies of AD pathogenesis.
Collapse
Affiliation(s)
- M Gyimesi
- Stem Cell and Neurogenesis Group, Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave , Kelvin Grove, Queensland 4059, Australia
| | - R K Okolicsanyi
- Stem Cell and Neurogenesis Group, Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave , Kelvin Grove, Queensland 4059, Australia
- Max Planck Queensland Centre for the Materials Sciences of Extracellular Matrices , Brisbane, QLD 4059, Australia
| | - L M Haupt
- Stem Cell and Neurogenesis Group, Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave , Kelvin Grove, Queensland 4059, Australia
- Max Planck Queensland Centre for the Materials Sciences of Extracellular Matrices , Brisbane, QLD 4059, Australia
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), 60 Musk Ave , Kelvin Grove, Queensland 4059, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies , Brisbane, QLD 4059, Australia
| |
Collapse
|
29
|
Borikar SP, Sonawane DS, Tapre DN, Jain SP. Exploring the neuropharmacological potential of empagliflozin on nootropic and scopolamine-induced amnesic model of Alzheimer's like conditions in rats. Int J Neurosci 2024:1-13. [PMID: 38626288 DOI: 10.1080/00207454.2024.2342973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/09/2024] [Indexed: 04/18/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is one of the most challenging and prevalent neurodegenerative disorder globally with a rising prevalence, characterized by progressive cognitive decline, memory loss, and behavioural changes. Current research aims to determine the nootropic and anti-amnesic effect of Empagliflozin (EMPA) against scopolamine-induced amnesia in rats, by modulating the cholinergic and N-Methyl D-Aspartate (NMDA) receptors. METHODS Rats were treated once daily with an EMPA (5 and 10 mg/kg) and donepezil (2.5 mg/kg) for successive 26 days. During the final 13 days of treatment, a daily injection of scopolamine (1 mg/kg) was administered to induce cognitive deficits. RESULTS EMPA was found to be significantly reduce escape latency, increase time spent in the target quadrant, and enhanced the number of target zone crossings in the Morris water maze (MWM) test, indicating improved spatial memory. Moreover, EMPA increased the recognition index and the number of spontaneous alternations in the novel object recognition (NOR) and Y-maze tests, respectively, suggesting enhanced memory. DISCUSSION Interestingly doses of EMPA (5 mg/kg, 10 mg/kg) exhibited memory-enhancing effects even in the absence of scopolamine-induced impairment. Biochemical analysis revealed that EMPA elevated the levels of glutathione (GSH), a potent antioxidant, while decreasing lipid peroxidation (LPO) activity and increasing catalase (CAT) levels, indicating its antioxidative properties. Interestingly molecular docking studies revealed that EMPA fit perfectly in the active sites of M1 muscarinic acetylcholine (mACh) and NMDA receptors. These results indicated that the nootropic and antiamnesic effect of EMPA is possibly mediated via M1 and NMDA receptors and might be a remedy for AD.
Collapse
Affiliation(s)
- Sachin P Borikar
- Department of Pharmacology, Rajarshi Shahu College of Pharmacy, Buldana, Maharashtra, India
| | - Dipak S Sonawane
- Department of Pharmacology, Rajarshi Shahu College of Pharmacy, Buldana, Maharashtra, India
| | - Deepali N Tapre
- Department of Pharmaceutical Chemistry, Rajarshi Shahu College of Pharmacy, Buldana, Maharashtra, India
| | - Shirish P Jain
- Department of Pharmacology, Rajarshi Shahu College of Pharmacy, Buldana, Maharashtra, India
| |
Collapse
|
30
|
Lazarov O, Gupta M, Kumar P, Morrissey Z, Phan T. Memory circuits in dementia: The engram, hippocampal neurogenesis and Alzheimer's disease. Prog Neurobiol 2024; 236:102601. [PMID: 38570083 PMCID: PMC11221328 DOI: 10.1016/j.pneurobio.2024.102601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
Here, we provide an in-depth consideration of our current understanding of engrams, spanning from molecular to network levels, and hippocampal neurogenesis, in health and Alzheimer's disease (AD). This review highlights novel findings in these emerging research fields and future research directions for novel therapeutic avenues for memory failure in dementia. Engrams, memory in AD, and hippocampal neurogenesis have each been extensively studied. The integration of these topics, however, has been relatively less deliberated, and is the focus of this review. We primarily focus on the dentate gyrus (DG) of the hippocampus, which is a key area of episodic memory formation. Episodic memory is significantly impaired in AD, and is also the site of adult hippocampal neurogenesis. Advancements in technology, especially opto- and chemogenetics, have made sophisticated manipulations of engram cells possible. Furthermore, innovative methods have emerged for monitoring neurons, even specific neuronal populations, in vivo while animals engage in tasks, such as calcium imaging. In vivo calcium imaging contributes to a more comprehensive understanding of engram cells. Critically, studies of the engram in the DG using these technologies have shown the important contribution of hippocampal neurogenesis for memory in both health and AD. Together, the discussion of these topics provides a holistic perspective that motivates questions for future research.
Collapse
Affiliation(s)
- Orly Lazarov
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Muskan Gupta
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Pavan Kumar
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Zachery Morrissey
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Trongha Phan
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
31
|
Ferreira A, Constantinescu VS, Malvaut S, Saghatelyan A, Hardy SV. Distinct forms of structural plasticity of adult-born interneuron spines in the mouse olfactory bulb induced by different odor learning paradigms. Commun Biol 2024; 7:420. [PMID: 38582915 PMCID: PMC10998910 DOI: 10.1038/s42003-024-06115-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 03/27/2024] [Indexed: 04/08/2024] Open
Abstract
The morpho-functional properties of neural networks constantly adapt in response to environmental stimuli. The olfactory bulb is particularly prone to constant reshaping of neural networks because of ongoing neurogenesis. It remains unclear whether the complexity of distinct odor-induced learning paradigms and sensory stimulation induces different forms of structural plasticity. In the present study, we automatically reconstructed spines in 3D from confocal images and performed unsupervised clustering based on morphometric features. We show that while sensory deprivation decreased the spine density of adult-born neurons without affecting the morphometric properties of these spines, simple and complex odor learning paradigms triggered distinct forms of structural plasticity. A simple odor learning task affected the morphometric properties of the spines, whereas a complex odor learning task induced changes in spine density. Our work reveals distinct forms of structural plasticity in the olfactory bulb tailored to the complexity of odor-learning paradigms and sensory inputs.
Collapse
Affiliation(s)
- Aymeric Ferreira
- CERVO Brain Research Center, Quebec City, QC, G1J 2G3, Canada
- Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Vlad-Stefan Constantinescu
- CERVO Brain Research Center, Quebec City, QC, G1J 2G3, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Sarah Malvaut
- CERVO Brain Research Center, Quebec City, QC, G1J 2G3, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Armen Saghatelyan
- CERVO Brain Research Center, Quebec City, QC, G1J 2G3, Canada.
- Department of Psychiatry and Neuroscience, Université Laval, Quebec City, QC, G1V 0A6, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
| | - Simon V Hardy
- CERVO Brain Research Center, Quebec City, QC, G1J 2G3, Canada.
- Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Quebec City, QC, G1V 0A6, Canada.
- Department of Computer Science and Software Engineering, Université Laval, Quebec City, QC, G1V 0A6, Canada.
| |
Collapse
|
32
|
Yan J, Wu J, Xu M, Wang M, Guo W. Disrupted de novo pyrimidine biosynthesis impairs adult hippocampal neurogenesis and cognition in pyridoxine-dependent epilepsy. SCIENCE ADVANCES 2024; 10:eadl2764. [PMID: 38579001 PMCID: PMC10997211 DOI: 10.1126/sciadv.adl2764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/04/2024] [Indexed: 04/07/2024]
Abstract
Despite seizure control by early high-dose pyridoxine (vitamin B6) treatment, at least 75% of pyridoxine-dependent epilepsy (PDE) patients with ALDH7A1 mutation still suffer from intellectual disability. It points to a need for additional therapeutic interventions for PDE beyond pyridoxine treatment, which provokes us to investigate the mechanisms underlying the impairment of brain hemostasis by ALDH7A1 deficiency. In this study, we show that ALDH7A1-deficient mice with seizure control exhibit altered adult hippocampal neurogenesis and impaired cognitive functions. Mechanistically, ALDH7A1 deficiency leads to the accumulation of toxic lysine catabolism intermediates, α-aminoadipic-δ-semialdehyde and its cyclic form, δ-1-piperideine-6-carboxylate, which in turn impair de novo pyrimidine biosynthesis and inhibit NSC proliferation and differentiation. Notably, supplementation of pyrimidines rescues abnormal neurogenesis and cognitive impairment in ALDH7A1-deficient adult mice. Therefore, our findings not only define the important role of ALDH7A1 in the regulation of adult hippocampal neurogenesis but also provide a potential therapeutic intervention to ameliorate the defective mental capacities in PDE patients with seizure control.
Collapse
Affiliation(s)
- Jianfei Yan
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100093, China
| | - Junjie Wu
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100093, China
| | - Mingyue Xu
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100093, China
| | - Min Wang
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Weixiang Guo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
33
|
Gao M, Dong Q, Yang Z, Zou D, Han Y, Chen Z, Xu R. Long non-coding RNA H19 regulates neurogenesis of induced neural stem cells in a mouse model of closed head injury. Neural Regen Res 2024; 19:872-880. [PMID: 37843223 PMCID: PMC10664125 DOI: 10.4103/1673-5374.382255] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/08/2023] [Accepted: 07/04/2023] [Indexed: 10/17/2023] Open
Abstract
Stem cell-based therapies have been proposed as a potential treatment for neural regeneration following closed head injury. We previously reported that induced neural stem cells exert beneficial effects on neural regeneration via cell replacement. However, the neural regeneration efficiency of induced neural stem cells remains limited. In this study, we explored differentially expressed genes and long non-coding RNAs to clarify the mechanism underlying the neurogenesis of induced neural stem cells. We found that H19 was the most downregulated neurogenesis-associated lncRNA in induced neural stem cells compared with induced pluripotent stem cells. Additionally, we demonstrated that H19 levels in induced neural stem cells were markedly lower than those in induced pluripotent stem cells and were substantially higher than those in induced neural stem cell-derived neurons. We predicted the target genes of H19 and discovered that H19 directly interacts with miR-325-3p, which directly interacts with Ctbp2 in induced pluripotent stem cells and induced neural stem cells. Silencing H19 or Ctbp2 impaired induced neural stem cell proliferation, and miR-325-3p suppression restored the effect of H19 inhibition but not the effect of Ctbp2 inhibition. Furthermore, H19 silencing substantially promoted the neural differentiation of induced neural stem cells and did not induce apoptosis of induced neural stem cells. Notably, silencing H19 in induced neural stem cell grafts markedly accelerated the neurological recovery of closed head injury mice. Our results reveal that H19 regulates the neurogenesis of induced neural stem cells. H19 inhibition may promote the neural differentiation of induced neural stem cells, which is closely associated with neurological recovery following closed head injury.
Collapse
Affiliation(s)
- Mou Gao
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
- Zhongsai Stem Cell Genetic Engineering Co., Ltd., Sanmenxia, Henan Province, China
| | - Qin Dong
- Department of Neurology, Fu Xing Hospital, Capital Medical University, Beijing, China
| | - Zhijun Yang
- Zhongsai Stem Cell Genetic Engineering Co., Ltd., Sanmenxia, Henan Province, China
| | - Dan Zou
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Yajuan Han
- Zhongsai Stem Cell Genetic Engineering Co., Ltd., Sanmenxia, Henan Province, China
| | - Zhanfeng Chen
- Zhongsai Stem Cell Genetic Engineering Co., Ltd., Sanmenxia, Henan Province, China
| | - Ruxiang Xu
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| |
Collapse
|
34
|
Balbim GM, Boa Sorte Silva NC, Ten Brinke L, Falck RS, Hortobágyi T, Granacher U, Erickson KI, Hernández-Gamboa R, Liu-Ambrose T. Aerobic exercise training effects on hippocampal volume in healthy older individuals: a meta-analysis of randomized controlled trials. GeroScience 2024; 46:2755-2764. [PMID: 37943486 PMCID: PMC10828456 DOI: 10.1007/s11357-023-00971-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/04/2023] [Indexed: 11/10/2023] Open
Abstract
We conducted a meta-analysis of randomized controlled trials investigating the effects of aerobic exercise training (AET) lasting ≥ 4 weeks on hippocampal volume and cardiorespiratory fitness (CRF) in cognitively unimpaired, healthy older individuals. Random-effects robust variance estimation models were used to test differences between AET and controls, while meta-regressions tested associations between CRF and hippocampal volume changes. We included eight studies (N = 554) delivering fully supervised AET for 3 to 12 months (M = 7.8, SD = 4.5) with an average AET volume of 129.85 min/week (SD = 45.5) at moderate-to-vigorous intensity. There were no significant effects of AET on hippocampal volume (SMD = 0.10, 95% CI - 0.01 to 0.21, p = 0.073), but AET moderately improved CRF (SMD = 0.30, 95% CI 0.12 to 0.48, p = 0.005). Improvement in CRF was not associated with changes in hippocampal volume (bSE = 0.05, SE = 0.51, p = 0.923). From the limited number of studies, AET does not seem to impact hippocampal volume in cognitively unimpaired, healthy older individuals. Notable methodological limitations across investigations might mask the lack of effects.
Collapse
Affiliation(s)
- Guilherme Moraes Balbim
- Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, Canada
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada
- Centre for Aging SMART at Vancouver Coastal Health, Vancouver Coastal Health Research Institute, Vancouver, Canada
| | - Nárlon Cássio Boa Sorte Silva
- Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, Canada
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada
- Centre for Aging SMART at Vancouver Coastal Health, Vancouver Coastal Health Research Institute, Vancouver, Canada
| | - Lisanne Ten Brinke
- Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, Canada
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada
- Centre for Aging SMART at Vancouver Coastal Health, Vancouver Coastal Health Research Institute, Vancouver, Canada
| | - Ryan S Falck
- Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, Canada
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada
- Centre for Aging SMART at Vancouver Coastal Health, Vancouver Coastal Health Research Institute, Vancouver, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| | - Tibor Hortobágyi
- Center for Human Movement Sciences, University of Groningen Medical Center, Groningen, the Netherlands
- Department of Kinesiology, Hungarian University of Sports Science, Budapest, Hungary
- Department of Sport Biology, Institute of Sport Sciences and Physical Education, University of Pécs, Pécs, Hungary
- Department of Neurology, Somogy County Kaposi Mór Teaching Hospital, Kaposvár, Hungary
| | - Urs Granacher
- Department of Sport and Sport Science, Exercise and Human Movement Science, University of Freiburg, Freiburg, Germany
| | - Kirk I Erickson
- AdventHealth Research Institute, Neuroscience, Orlando, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, USA
| | - Rebeca Hernández-Gamboa
- Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, Canada
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada
- Centre for Aging SMART at Vancouver Coastal Health, Vancouver Coastal Health Research Institute, Vancouver, Canada
| | - Teresa Liu-Ambrose
- Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, Canada.
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada.
- Centre for Aging SMART at Vancouver Coastal Health, Vancouver Coastal Health Research Institute, Vancouver, Canada.
| |
Collapse
|
35
|
Zhou S, Makashova O, Chevillard PM, Josey V, Li B, Prager-Khoutorsky M. Constitutive cell proliferation and neurogenesis in the organum vasculosum lamina terminalis and subfornical organ of adult rats. J Neuroendocrinol 2024; 36:e13377. [PMID: 38418229 DOI: 10.1111/jne.13377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 03/01/2024]
Abstract
Neurogenesis continues throughout adulthood in the subventricular zone, hippocampal subgranular zone, and the hypothalamic median eminence (ME) and the adjacent medio-basal hypothalamus. The ME is one of the circumventricular organs (CVO), which are specialized brain areas characterized by an incomplete blood-brain barrier and, thus, are involved in mediating communication between the central nervous system and the periphery. Additional CVOs include the organum vasculosum laminae terminalis (OVLT) and the subfornical organs (SFO). Previous studies have demonstrated that the ME contains neural stem cells (NSCs) capable of generating new neurons and glia in the adult brain. However, it remains unclear whether the OVLT and SFO also contain proliferating cells, the identity of these cells, and their ability to differentiate into mature neurons. Here we show that glial and mural subtypes exhibit NSC characteristics, expressing the endogenous mitotic maker Ki67, and incorporating the exogenous mitotic marker BrdU in the OVLT and SFO of adult rats. Glial cells constitutively proliferating in the SFO comprise NG2 glia, while in the OVLT, both NG2 glia and tanycytes appear to constitute the NSC pool. Furthermore, pericytes, which are mural cells associated with capillaries, also contribute to the pool of cells constitutively proliferating in the OVLT and SFO of adult rats. In addition to these glial and mural cells, a fraction of NSCs containing proliferation markers Ki67 and BrdU also expresses the early postmitotic neuronal marker doublecortin, suggesting that these CVOs comprise newborn neurons. Notably, these neurons can differentiate and express the mature neuronal marker NeuN. These findings establish the sensory CVOs OVLT and SFO as additional neurogenic niches, where the generation of new neurons and glia persists in the adult brain.
Collapse
Affiliation(s)
- Suijian Zhou
- Department of Physiology, McIntyre Medical Sciences Building, McGill University, Montreal, Québec, Canada
| | - Olena Makashova
- Department of Physiology, McIntyre Medical Sciences Building, McGill University, Montreal, Québec, Canada
| | - Pierre-Marie Chevillard
- Department of Physiology, McIntyre Medical Sciences Building, McGill University, Montreal, Québec, Canada
| | - Vanessa Josey
- Department of Physiology, McIntyre Medical Sciences Building, McGill University, Montreal, Québec, Canada
| | - Banruo Li
- Department of Physiology, McIntyre Medical Sciences Building, McGill University, Montreal, Québec, Canada
| | - Masha Prager-Khoutorsky
- Department of Physiology, McIntyre Medical Sciences Building, McGill University, Montreal, Québec, Canada
| |
Collapse
|
36
|
Han Y, Weng W, Zhang Y, Feng Q, Ma Y, Quan A, Fu X, Zhao X, Skudder-Hill L, Jiang J, Zhou Y, Chen H, Feng J. Intraoperative application of intelligent, responsive, self-assembling hydrogel rectifies oxygen and energy metabolism in traumatically injured brain. Biomaterials 2024; 306:122495. [PMID: 38309053 DOI: 10.1016/j.biomaterials.2024.122495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 01/02/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
In managing severe traumatic brain injury (TBI), emergency surgery involving the removal of damaged brain tissue and intracerebral hemorrhage is a priority. Secondary brain injury caused by oxidative stress and energy metabolic disorders, triggered by both primary mechanical brain damage and surgical insult, is also a determining factor in the prognosis of TBI. Unfortunately, the effectiveness of traditional postoperative intravenous neuroprotective agents therapy is often limited by the lack of targeting, timeliness, and side effects when neuroprotective agents systemically delivered. Here, we have developed injectable, intelligent, self-assembling hydrogels (P-RT/2DG) that can achieve precise treatment through intraoperative application to the target area. P-RT/2DG hydrogels were prepared by integrating a reactive oxygen species (ROS)-responsive thioketal linker (RT) into polyethylene glycol. By scavenging ROS and releasing 2-deoxyglucose (2DG) during degradation, these hydrogels functioned both in antioxidation and energy metabolism to inhibit the vicious cycle of post-TBI ROS-lactate which provoked secondary injury. In vitro and in vivo tests confirmed the absence of systemic side effects and the neuroprotective function of P-RT/2DG hydrogels in reducing edema, nerve cell apoptosis, neuroinflammation, and maintaining the blood-brain barrier. Our study thus provides a potential treatment strategy with novel hydrogels in TBI.
Collapse
Affiliation(s)
- Yuhan Han
- Brain Injury Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Head Trauma, Shanghai, China
| | - Weiji Weng
- Brain Injury Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Head Trauma, Shanghai, China
| | - Yongkang Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
| | - Qiyuan Feng
- Brain Injury Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Head Trauma, Shanghai, China
| | - Yuxiao Ma
- Brain Injury Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Head Trauma, Shanghai, China
| | - Ankang Quan
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
| | - Xianhua Fu
- Department of Neurosurgery, Suqian First People's Hospital, The Suqian Clinical College of Xuzhou Medical University, Suqian, China
| | - Xinxin Zhao
- Radiology Department, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Loren Skudder-Hill
- Department of Neurosurgery, Yuquan Hospital, Tsinghua University School of Clinical Medicine, Beijing, China
| | - Jiyao Jiang
- Brain Injury Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Head Trauma, Shanghai, China
| | - Yan Zhou
- Radiology Department, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Honglin Chen
- Department of Neurosurgery, Suqian First People's Hospital, The Suqian Clinical College of Xuzhou Medical University, Suqian, China.
| | - Junfeng Feng
- Brain Injury Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Head Trauma, Shanghai, China.
| |
Collapse
|
37
|
Aljuraysi S, Platt M, Pulix M, Poptani H, Plagge A. Microcephaly with a disproportionate hippocampal reduction, stem cell loss and neuronal lipid droplet symptoms in Trappc9 KO mice. Neurobiol Dis 2024; 192:106431. [PMID: 38331351 DOI: 10.1016/j.nbd.2024.106431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/23/2024] [Accepted: 02/04/2024] [Indexed: 02/10/2024] Open
Abstract
Mutations of the human TRAFFICKING PROTEIN PARTICLE COMPLEX SUBUNIT 9 (TRAPPC9) cause a neurodevelopmental disorder characterised by microcephaly and intellectual disability. Trappc9 constitutes a subunit specific to the intracellular membrane-associated TrappII complex. The TrappII complex interacts with Rab11 and Rab18, the latter being specifically associated with lipid droplets (LDs). Here we used non-invasive imaging to characterise Trappc9 knock-out (KO) mice as a model of the human hereditary disorder. KOs developed postnatal microcephaly with many grey and white matter regions being affected. In vivo magnetic resonance imaging (MRI) identified a disproportionately stronger volume reduction in the hippocampus, which was associated with a significant loss of Sox2-positive neural stem and progenitor cells. Diffusion tensor imaging indicated a reduced organisation or integrity of white matter areas. Trappc9 KOs displayed behavioural abnormalities in several tests related to exploration, learning and memory. Trappc9-deficient primary hippocampal neurons accumulated a larger LD volume per cell following Oleic Acid stimulation, and the coating of LDs by Perilipin-2 was much reduced. Additionally, Trappc9 KOs developed obesity, which was significantly more severe in females than in males. Our findings indicate that, beyond previously reported Rab11-related vesicle transport defects, dysfunctions in LD homeostasis might contribute to the neurobiological symptoms of Trappc9 deficiency.
Collapse
Affiliation(s)
- Sultan Aljuraysi
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mark Platt
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Michela Pulix
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Harish Poptani
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK.
| | - Antonius Plagge
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK.
| |
Collapse
|
38
|
Norevik CS, Huuha AM, Røsbjørgen RN, Hildegard Bergersen L, Jacobsen K, Miguel-Dos-Santos R, Ryan L, Skender B, Moreira JBN, Kobro-Flatmoen A, Witter MP, Scrimgeour N, Tari AR. Exercised blood plasma promotes hippocampal neurogenesis in the Alzheimer's disease rat brain. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 13:245-255. [PMID: 37500010 PMCID: PMC10980897 DOI: 10.1016/j.jshs.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/27/2023] [Accepted: 06/19/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND Exercise training promotes brain plasticity and is associated with protection against cognitive impairment and Alzheimer's disease (AD). These beneficial effects may be partly mediated by blood-borne factors. Here we used an in vitro model of AD to investigate effects of blood plasma from exercise-trained donors on neuronal viability, and an in vivo rat model of AD to test whether such plasma impacts cognitive function, amyloid pathology, and neurogenesis. METHODS Mouse hippocampal neuronal cells were exposed to AD-like stress using amyloid-β and treated with plasma collected from human male donors 3 h after a single bout of high-intensity exercise. For in vivo studies, blood was collected from exercise-trained young male Wistar rats (high-intensity intervals 5 days/week for 6 weeks). Transgenic AD rats (McGill-R-Thy1-APP) were injected 5 times/fortnight for 6 weeks at 2 months or 5 months of age with either (a) plasma from the exercise-trained rats, (b) plasma from sedentary rats, or (c) saline. Cognitive function, amyloid plaque pathology, and neurogenesis were assessed. The plasma used for the treatment was analyzed for 23 cytokines. RESULTS Plasma from exercised donors enhanced cell viability by 44.1% (p = 0.032) and reduced atrophy by 50.0% (p < 0.001) in amyloid-β-treated cells. In vivo exercised plasma treatment did not alter cognitive function or amyloid plaque pathology but did increase hippocampal neurogenesis by ∼3 fold, regardless of pathological stage, when compared to saline-treated rats. Concentrations of 7 cytokines were significantly reduced in exercised plasma compared to sedentary plasma. CONCLUSION Our proof-of-concept study demonstrates that plasma from exercise-trained donors can protect neuronal cells in culture and promote adult hippocampal neurogenesis in the AD rat brain. This effect may be partly due to reduced pro-inflammatory signaling molecules in exercised plasma.
Collapse
Affiliation(s)
- Cecilie Skarstad Norevik
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, 7491, Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, St. Olavs University Hospital, 7030, Trondheim, Norway
| | - Aleksi M Huuha
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, 7491, Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, St. Olavs University Hospital, 7030, Trondheim, Norway
| | - Ragnhild N Røsbjørgen
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | | | - Kamilla Jacobsen
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Rodrigo Miguel-Dos-Santos
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, 7491, Trondheim, Norway; Department of Physiology, Federal University of Sergipe, São Cristóvão, 49100-000, Sergipe, Brazil
| | - Liv Ryan
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Belma Skender
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, and Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Norwegian University of Science and Technology, 7030, Trondheim, Norway
| | - Jose Bianco N Moreira
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Asgeir Kobro-Flatmoen
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, and Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Norwegian University of Science and Technology, 7030, Trondheim, Norway; K.G. Jebsen Centre for Alzheimer's Disease, Norwegian University of Science and Technology, 7030, Trondheim, Norway
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, and Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Norwegian University of Science and Technology, 7030, Trondheim, Norway; K.G. Jebsen Centre for Alzheimer's Disease, Norwegian University of Science and Technology, 7030, Trondheim, Norway
| | - Nathan Scrimgeour
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Atefe R Tari
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, 7491, Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, St. Olavs University Hospital, 7030, Trondheim, Norway.
| |
Collapse
|
39
|
Zhang Y, Li S, Li L, Huang H, Fu Z, Hua Z. Bilirubin impairs neuritogenesis and synaptogenesis in NSPCs by downregulating NMDAR-CREB-BDNF signaling. In Vitro Cell Dev Biol Anim 2024; 60:161-171. [PMID: 38216855 DOI: 10.1007/s11626-023-00844-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/01/2023] [Indexed: 01/14/2024]
Abstract
Neonatal jaundice is one of the most common disorders in the first 2 wk after birth. Unconjugated bilirubin (UCB) is neurotoxic and can cause neurological dysfunction; however, the underlying mechanisms remain unclear. Neurogenesis, neuronal growth, and synaptogenesis are exuberant in the early postnatal stage. In this study, the impact of UCB on neuritogenesis and synaptogenesis in the early postnatal stage was evaluated both in vitro and in vivo. Primary culture neuronal stem and progenitor cells (NSPCs) were treated with UCB during differentiation, and then the neurite length and synapse puncta were measured. In the bilirubin encephalopathy (BE) animal model, DCX+-marked developing neurons were used to detect apical length and dendritic arborization. According to the data, UCB significantly reduced neurite length and synapse density, as well as decreased the apical dendrite length and dendritic arborization. Furthermore, the NMDAR subunit NR2B was downregulated in NSPCs, while pCREB expression in the hippocampus progressively decreased during disease progression in the BE model. Next, we tested the expression of NR2B, pCREB, mBDNF, and p-mTOR in NSPCs in vitro, and found that UCB treatment reduced the expression of these proteins. In summary, this suggests that UCB causes chronic neurological impairment and is related to the inhibition of NMDAR-CREB-BDNF signaling in NSPCs, which is associated with reduced neuritogenesis and synaptogenesis. This finding may inspire the development of novel pharmaceuticals and treatments.
Collapse
Affiliation(s)
- Yan Zhang
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Siyu Li
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Ling Li
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Hongmei Huang
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Zhou Fu
- Department of Respiratory Diseases, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| | - Ziyu Hua
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|
40
|
Mortessagne P, Cartier E, Balia M, Fèvre M, Corailler F, Herry C, Abrous DN, Battefeld A, Pacary E. Genetic labeling of embryonically-born dentate granule neurons in young mice using the Penk Cre mouse line. Sci Rep 2024; 14:5022. [PMID: 38424161 PMCID: PMC10904803 DOI: 10.1038/s41598-024-55299-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/22/2024] [Indexed: 03/02/2024] Open
Abstract
The dentate gyrus (DG) of the hippocampus is a mosaic of dentate granule neurons (DGNs) accumulated throughout life. While many studies focused on the morpho-functional properties of adult-born DGNs, much less is known about DGNs generated during development, and in particular those born during embryogenesis. One of the main reasons for this gap is the lack of methods available to specifically label and manipulate embryonically-born DGNs. Here, we have assessed the relevance of the PenkCre mouse line as a genetic model to target this embryonically-born population. In young animals, PenkCre expression allows to tag neurons in the DG with positional, morphological and electrophysiological properties characteristic of DGNs born during the embryonic period. In addition, PenkCre+ cells in the DG are distributed in both blades along the entire septo-temporal axis. This model thus offers new possibilities to explore the functions of this underexplored population of embryonically-born DGNs.
Collapse
Affiliation(s)
- Pierre Mortessagne
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France
| | - Estelle Cartier
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France
| | - Maddalena Balia
- Univ. Bordeaux, CNRS, IMN, UMR 5293, 33000, Bordeaux, France
| | - Murielle Fèvre
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France
| | - Fiona Corailler
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France
| | - Cyril Herry
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France
| | - Djoher Nora Abrous
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France.
| | - Arne Battefeld
- Univ. Bordeaux, CNRS, IMN, UMR 5293, 33000, Bordeaux, France
| | - Emilie Pacary
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France.
| |
Collapse
|
41
|
Sharifi KA, Farzad F, Soldozy S, DeWitt MR, Price RJ, Sheehan J, Kalani MYS, Tvrdik P. Exploring the dynamics of adult Axin2 cell lineage integration into dentate gyrus granule neurons. Front Neurosci 2024; 18:1353142. [PMID: 38449734 PMCID: PMC10915230 DOI: 10.3389/fnins.2024.1353142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/31/2024] [Indexed: 03/08/2024] Open
Abstract
The Wnt pathway plays critical roles in neurogenesis. The expression of Axin2 is induced by Wnt/β-catenin signaling, making this gene a reliable indicator of canonical Wnt activity. We employed pulse-chase genetic lineage tracing with the Axin2-CreERT2 allele to follow the fate of Axin2+ lineage in the adult hippocampal formation. We found Axin2 expressed in astrocytes, neurons and endothelial cells, as well as in the choroid plexus epithelia. Simultaneously with the induction of Axin2 fate mapping by tamoxifen, we marked the dividing cells with 5-ethynyl-2'-deoxyuridine (EdU). Tamoxifen induction led to a significant increase in labeled dentate gyrus granule cells three months later. However, none of these neurons showed any EdU signal. Conversely, six months after the pulse-chase labeling with tamoxifen/EdU, we identified granule neurons that were positive for both EdU and tdTomato lineage tracer in each animal. Our data indicates that Axin2 is expressed at multiple stages of adult granule neuron differentiation. Furthermore, these findings suggest that the integration process of adult-born neurons from specific cell lineages may require more time than previously thought.
Collapse
Affiliation(s)
- Khadijeh A Sharifi
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, United States
- Department of Neuroscience, University of Virginia, Charlottesville, VA, United States
| | - Faraz Farzad
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, United States
| | - Sauson Soldozy
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, United States
- Department of Neurosurgery, Westchester Medical Center and New York Medical College, Valhalla, NY, United States
| | - Matthew R DeWitt
- Department of Focused Ultrasound Cancer Immunotherapy Center, University of Virginia, Charlottesville, VA, United States
| | - Richard J Price
- Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Jason Sheehan
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, United States
| | - M Yashar S Kalani
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, United States
- Department of Neuroscience, University of Virginia, Charlottesville, VA, United States
- School of Medicine, St. John's Neuroscience Institute, University of Oklahoma, Tulsa, OK, United States
| | - Petr Tvrdik
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, United States
- Department of Neuroscience, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
42
|
Liu Q, Luo X, Liang Z, Qin D, Xu M, Wang M, Guo W. Coordination between circadian neural circuit and intracellular molecular clock ensures rhythmic activation of adult neural stem cells. Proc Natl Acad Sci U S A 2024; 121:e2318030121. [PMID: 38346182 PMCID: PMC10895264 DOI: 10.1073/pnas.2318030121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
The circadian clock throughout the day organizes the activity of neural stem cells (NSCs) in the dentate gyrus (DG) of adult hippocampus temporally. However, it is still unclear whether and how circadian signals from the niches contribute to daily rhythmic variation of NSC activation. Here, we show that norepinephrinergic (NEergic) projections from the locus coeruleus (LC), a brain arousal system, innervate into adult DG, where daily rhythmic release of norepinephrine (NE) from the LC NEergic neurons controlled circadian variation of NSC activation through β3-adrenoceptors. Disrupted circadian rhythmicity by acute sleep deprivation leads to transient NSC overactivation and NSC pool exhaustion over time, which is effectively ameliorated by the inhibition of the LC NEergic neuronal activity or β3-adrenoceptors-mediated signaling. Finally, we demonstrate that NE/β3-adrenoceptors-mediated signaling regulates NSC activation through molecular clock BMAL1. Therefore, our study unravels that adult NSCs precisely coordinate circadian neural circuit and intrinsic molecular circadian clock to adapt their cellular behavior across the day.
Collapse
Affiliation(s)
- Qiang Liu
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Xing Luo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
- Graduate School, University of Chinese Academy of Sciences, Beijing100093, China
| | - Ziqi Liang
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
- Graduate School, University of Chinese Academy of Sciences, Beijing100093, China
| | - Dezhe Qin
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
- Graduate School, University of Chinese Academy of Sciences, Beijing100093, China
| | - Mingyue Xu
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
- Graduate School, University of Chinese Academy of Sciences, Beijing100093, China
| | - Min Wang
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Weixiang Guo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
- Graduate School, University of Chinese Academy of Sciences, Beijing100093, China
| |
Collapse
|
43
|
Dos Santos B, Piermartiri T, Tasca CI. The impact of purine nucleosides on neuroplasticity in the adult brain. Purinergic Signal 2024:10.1007/s11302-024-09988-9. [PMID: 38367178 DOI: 10.1007/s11302-024-09988-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/23/2024] [Indexed: 02/19/2024] Open
Abstract
Neuroplasticity refers to the nervous system's ability to adapt and reorganize its cell structures and neuronal networks in response to internal and external stimuli. In adults, this process involves neurogenesis, synaptogenesis, and synaptic and neurochemical plasticity. Several studies have reported the significant impact of the purinergic system on neuroplasticity modulation. And, there is considerable evidence supporting the role of purine nucleosides, such as adenosine, inosine, and guanosine, in this process. This review presents extensive research on how these nucleosides enhance the neuroplasticity of the adult central nervous system, particularly in response to damage. The mechanisms through which these nucleosides exert their effects involve complex interactions with various receptors and signaling pathways. Adenosine's influence on neurogenesis involves interactions with adenosine receptors, specifically A1R and A2AR. A1R activation appears to inhibit neuronal differentiation and promote astrogliogenesis, while A2AR activation supports neurogenesis, neuritogenesis, and synaptic plasticity. Inosine and guanosine positively impact cell proliferation, neurogenesis, and neuritogenesis. Inosine seems to modulate extracellular adenosine levels, and guanosine might act through interactions between purinergic and glutamatergic systems. Additionally, the review discusses the potential therapeutic implications of purinergic signaling in neurodegenerative and neuropsychiatric diseases, emphasizing the importance of these nucleosides in the neuroplasticity of brain function and recovery.
Collapse
Affiliation(s)
- Beatriz Dos Santos
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
- Programa de Pós-Graduação Em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Tetsade Piermartiri
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
- Programa de Pós-Graduação Em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| | - Carla I Tasca
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
- Programa de Pós-Graduação Em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
- Programa de Pós-Graduação Em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
44
|
Saxon D, Alderman PJ, Sorrells SF, Vicini S, Corbin JG. Neuronal subtypes and connectivity of the adult mouse paralaminar amygdala. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.11.575250. [PMID: 38260244 PMCID: PMC10802617 DOI: 10.1101/2024.01.11.575250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The paralaminar nucleus of the amygdala (PL) is comprised of neurons which exhibit delayed maturation. PL neurons are born during gestation but mature during adolescent ages, differentiating into excitatory neurons. The PL is prominent in the adult amygdala, contributing to its increased neuron number and relative size compared to childhood. However, the function of the PL is unknown, as the region has only recently begun to be characterized in detail. In this study, we investigated key defining features of the adult PL; the intrinsic morpho-electric properties of its neurons, and its input and output connectivity. We identify two subtypes of excitatory neurons in the PL based on unsupervised clustering of electrophysiological properties. These subtypes are defined by differential action potential firing properties and dendritic architecture, suggesting divergent functional roles. We further uncover major axonal inputs to the adult PL from the main olfactory network and basolateral amygdala. We also find that axonal outputs from the PL project reciprocally to major inputs, and to diverse targets including the amygdala, frontal cortex, hippocampus, hypothalamus, and brainstem. Thus, the adult PL is centrally placed to play a major role in the integration of olfactory sensory information, likely coordinating affective and autonomic behavioral responses to salient odor stimuli. Significance Statement Mammalian amygdala development includes a growth period from childhood to adulthood, believed to support emotional and social learning. This amygdala growth is partly due to the maturation of neurons during adolescence in the paralaminar amygdala. However, the functional properties of these neurons are unknown. In our recent studies, we characterized the paralaminar amygdala in the mouse. Here, we investigate the properties of the adult PL in the mouse, revealing the existence of two neuronal subtypes that may play distinct functional roles in the adult brain. We further reveal the brain-wide input and output connectivity of the PL, indicating that the PL combines olfactory cues for emotional processing and delivers information to regions associated with reward and autonomic states.
Collapse
|
45
|
Jastrzębski MK, Wójcik P, Stępnicki P, Kaczor AA. Effects of small molecules on neurogenesis: Neuronal proliferation and differentiation. Acta Pharm Sin B 2024; 14:20-37. [PMID: 38239239 PMCID: PMC10793103 DOI: 10.1016/j.apsb.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 01/22/2024] Open
Abstract
Neurons are believed to be non-proliferating cells. However, neuronal stem cells are still present in certain areas of the adult brain, although their proliferation diminishes with age. Just as with other cells, their proliferation and differentiation are modulated by various mechanisms. These mechanisms are foundational to the strategies developed to induce neuronal proliferation and differentiation, with potential therapeutic applications for neurodegenerative diseases. The most common among these diseases are Parkinson's disease and Alzheimer's disease, associated with the formation of β -amyloid (Aβ ) aggregates which cause a reduction in the number of neurons. Compounds such as LiCl, 4-aminothiazoles, Pregnenolone, ACEA, harmine, D2AAK1, methyl 3,4-dihydroxybenzoate, and shikonin may induce neuronal proliferation/differentiation through the activation of pathways: MAPK ERK, PI3K/AKT, NFκ B, Wnt, BDNF, and NPAS3. Moreover, combinations of these compounds can potentially transform somatic cells into neurons. This transformation process involves the activation of neuron-specific transcription factors such as NEUROD1, NGN2, ASCL1, and SOX2, which subsequently leads to the transcription of downstream genes, culminating in the transformation of somatic cells into neurons. Neurodegenerative diseases are not the only conditions where inducing neuronal proliferation could be beneficial. Consequently, the impact of pro-proliferative compounds on neurons has also been researched in mouse models of Alzheimer's disease.
Collapse
Affiliation(s)
- Michał K. Jastrzębski
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Medical University of Lublin, Faculty of Pharmacy, Lublin PL-20093, Poland
| | - Piotr Wójcik
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Medical University of Lublin, Faculty of Pharmacy, Lublin PL-20093, Poland
| | - Piotr Stępnicki
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Medical University of Lublin, Faculty of Pharmacy, Lublin PL-20093, Poland
| | - Agnieszka A. Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Medical University of Lublin, Faculty of Pharmacy, Lublin PL-20093, Poland
- School of Pharmacy, University of Eastern Finland, Kuopio FI-70211, Finland
| |
Collapse
|
46
|
Liu K, Qu Y, Li B, Zeng N, Yao G, Wu X, Xu H, Yan C, Wu L. GRP94 in cerebrospinal fluid may contribute to a potential biomarker of depression: Based on proteomics. J Psychiatr Res 2024; 169:328-340. [PMID: 38081093 DOI: 10.1016/j.jpsychires.2023.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 11/03/2023] [Accepted: 11/15/2023] [Indexed: 01/15/2024]
Abstract
The present study was designed to investigate potential biomarkers of depression and targets of antidepressants from the perspective of hippocampal endoplasmic reticulum stress (ERS) based on cerebrospinal fluid (CSF) proteomics. Firstly, a six-week depression model was established and treated with fluoxetine (FLX). We found antidepressant-FLX could ameliorate depression-like behaviors and cognition in depressed rats caused by chronic unpredictable mild stress (CUMS). FLX significantly increased neuronal numbers in dentate gyrus (DG) and CA3 regions of hippocampus. CSF proteome data revealed thirty-seven differentially expressed proteins (DEPs) co-regulated by CUMS and FLX, including GRP94 and EIF2α. Results of Gene Oncology (GO) annotation and KEGG pathway enrichment for DEPs mainly included PERK-mediated unfolded protein response, endoplasmic reticulum, and translational initiation. The expression levels of GRP94, p-PERK, p-EIF2α, CHOP and Caspase-12 were increased in hippocampus of CUMS rats, and FLX worked the opposite way. FLX had strong affinity and binding activity with GRP94 protein, and four key proteins on the PERK pathway (PERK, EIF2α, p-EIF2α, CHOP). We proposed that FLX may exert antidepressant effects and neuroprotective action by alleviating excessive activation of the hippocampal PERK pathway and reducing neuronal deficits in depressed rats. PERK, EIF2α, p-EIF2α, and CHOP may be potential targets for antidepressant-FLX. GRP94 in CSF may be a potential biomarker of depression and the therapeutic effects of antidepressants.
Collapse
Affiliation(s)
- Kaige Liu
- Integrative Medicine Research Center, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yue Qu
- Integrative Medicine Research Center, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Bozhi Li
- Integrative Medicine Research Center, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ningxi Zeng
- Department of Rehabilitation Medicine, The People's Hospital of Longhua District, Shenzhen, 518109, China
| | - Gaolei Yao
- Integrative Medicine Research Center, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xiaofeng Wu
- Integrative Medicine Research Center, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Hanfang Xu
- Integrative Medicine Research Center, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Can Yan
- Integrative Medicine Research Center, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Lili Wu
- Integrative Medicine Research Center, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
47
|
Willinger Y, Friedland Cohen DR, Turgeman G. Exogenous IL-17A Alleviates Social Behavior Deficits and Increases Neurogenesis in a Murine Model of Autism Spectrum Disorders. Int J Mol Sci 2023; 25:432. [PMID: 38203599 PMCID: PMC10779042 DOI: 10.3390/ijms25010432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/17/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Among the proposed mechanisms for autism spectrum disorders (ASD) is immune dysregulation. The proinflammatory cytokine Interleukine-17A (IL-17A) was shown to play a key role in mediating immune-related neurodevelopmental impairment of social behavior. Nevertheless, post-developmental administration of IL-17A was found to increase social behavior. In the present study, we explored the effect of post-developmental administration of IL-17A on ASD-like behaviors induced by developmental exposure to valproic acid (VPA) at postnatal day 4. At the age of seven weeks, VPA-exposed mice were intravenously injected twice with recombinant murine IL-17A (8 μg), and a week later, they were assessed for ASD-like behavior. IL-17A administration increased social behavior and alleviated the ASD-like phenotype. Behavioral changes were associated with increased serum levels of IL-17 and Th17-related cytokines. Exogenous IL-17A also increased neuritogenesis in the dendritic tree of doublecortin-expressing newly formed neurons in the dentate gyrus. Interestingly, the effect of IL-17A on neuritogenesis was more noticeable in females than in males, suggesting a sex-dependent effect of IL-17A. In conclusion, our study suggests a complex role for IL-17A in ASD. While contributing to its pathology at the developmental stage, IL-17 may also promote the alleviation of behavioral deficits post-developmentally by promoting neuritogenesis and synaptogenesis in the dentate gyrus.
Collapse
Affiliation(s)
- Yehoshua Willinger
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel; (Y.W.); (D.R.F.C.)
| | - Daniella R. Friedland Cohen
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel; (Y.W.); (D.R.F.C.)
| | - Gadi Turgeman
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel; (Y.W.); (D.R.F.C.)
- The Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| |
Collapse
|
48
|
Sharifi KA, Farzad F, Soldozy S, Price RJ, Kalani MYS, Tvrdik P. Dynamics of Adult Axin2 Cell Lineage Integration in Granule Neurons of the Dentate Gyrus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.09.570930. [PMID: 38106115 PMCID: PMC10723478 DOI: 10.1101/2023.12.09.570930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The Wnt pathway plays critical roles in neurogenesis. The expression of Axin2 is induced by Wnt/β-catenin signaling, making this gene a sensitive indicator of canonical Wnt activity. We employed pulse-chase genetic lineage tracing with the Axin2-CreERT2 allele to follow the fate of Axin2 -positive cells in the adult hippocampal formation. We found Axin2 expressed in astrocytes, neurons and endothelial cells, as well as in the choroid plexus epithelia. Simultaneously with tamoxifen induction of Axin2 fate mapping, the dividing cells were marked with 5-ethynyl-2'-deoxyuridine (EdU). Tamoxifen induction resulted in significant increase of dentate gyrus granule cells three months later; however, none of these neurons contained EdU signal. Conversely, six months after the tamoxifen/EdU pulse-chase labeling, EdU-positive granule neurons were identified in each animal. Our data imply that Axin2 is expressed at several different stages of adult granule neuron differentiation and suggest that the process of integration of the adult-born neurons from certain cell lineages may take longer than previously thought.
Collapse
|
49
|
Gabarró‐Solanas R, Davaatseren A, Kleifeld J, Kepčija T, Köcher T, Giralt A, Crespo‐Enríquez I, Urbán N. Adult neural stem cells and neurogenesis are resilient to intermittent fasting. EMBO Rep 2023; 24:e57268. [PMID: 37987220 PMCID: PMC10702802 DOI: 10.15252/embr.202357268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/13/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023] Open
Abstract
Intermittent fasting (IF) is a promising strategy to counteract ageing shown to increase the number of adult-born neurons in the dentate gyrus of mice. However, it is unclear which steps of the adult neurogenesis process are regulated by IF. The number of adult neural stem cells (NSCs) decreases with age in an activation-dependent manner and, to counteract this loss, adult NSCs are found in a quiescent state which ensures their long-term maintenance. We aimed to determine if and how IF affects adult NSCs in the hippocampus. To identify the effects of every-other-day IF on NSCs and all following steps in the neurogenic lineage, we combined fasting with lineage tracing and label retention assays. We show here that IF does not affect NSC activation or maintenance and, that contrary to previous reports, IF does not increase neurogenesis. The same results are obtained regardless of strain, sex, diet length, tamoxifen administration or new-born neuron identification method. Our data suggest that NSCs maintain homeostasis upon IF and that this intervention is not a reliable strategy to increase adult neurogenesis.
Collapse
Affiliation(s)
- Rut Gabarró‐Solanas
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna BioCenter (VBC)ViennaAustria
- Vienna BioCenter PhD ProgramDoctoral School of the University of Vienna and Medical University of ViennaViennaAustria
| | - Amarbayasgalan Davaatseren
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna BioCenter (VBC)ViennaAustria
| | - Justus Kleifeld
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna BioCenter (VBC)ViennaAustria
- Vienna BioCenter PhD ProgramDoctoral School of the University of Vienna and Medical University of ViennaViennaAustria
| | - Tatjana Kepčija
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna BioCenter (VBC)ViennaAustria
| | | | - Albert Giralt
- Departament de Biomedicina, Facultat de Medicina, Institut de NeurociènciesUniversitat de BarcelonaBarcelonaSpain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED)BarcelonaSpain
- Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health ScienceUniversity of BarcelonaBarcelonaSpain
| | - Iván Crespo‐Enríquez
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna BioCenter (VBC)ViennaAustria
| | - Noelia Urbán
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna BioCenter (VBC)ViennaAustria
| |
Collapse
|
50
|
Quan H, Zhang R. Microglia dynamic response and phenotype heterogeneity in neural regeneration following hypoxic-ischemic brain injury. Front Immunol 2023; 14:1320271. [PMID: 38094292 PMCID: PMC10716326 DOI: 10.3389/fimmu.2023.1320271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
Hypoxic-ischemic brain injury poses a significant threat to the neural niche within the central nervous system. In response to this pathological process, microglia, as innate immune cells in the central nervous system, undergo rapid morphological, molecular and functional changes. Here, we comprehensively review these dynamic changes in microglial response to hypoxic-ischemic brain injury under pathological conditions, including stroke, chronic intermittent hypoxia and neonatal hypoxic-ischemic brain injury. We focus on the regulation of signaling pathways under hypoxic-ischemic brain injury and further describe the process of microenvironment remodeling and neural tissue regeneration mediated by microglia after hypoxic-ischemic injury.
Collapse
Affiliation(s)
- Hongxin Quan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Runrui Zhang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| |
Collapse
|