1
|
Bi F, Gao C, Guo H. Epigenetic regulation of cardiovascular diseases induced by behavioral and environmental risk factors: Mechanistic, diagnostic, and therapeutic insights. FASEB Bioadv 2024; 6:477-502. [PMID: 39512842 PMCID: PMC11539034 DOI: 10.1096/fba.2024-00080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 11/15/2024] Open
Abstract
Behavioral and environmental risk factors are critical in the development and progression of cardiovascular disease (CVD). Understanding the molecular mechanisms underlying these risk factors will offer valuable insights for targeted preventive and therapeutic strategies. Epigenetic modifications, including DNA methylation, histone modifications, chromatin remodeling, noncoding RNA (ncRNA) expression, and epitranscriptomic modifications, have emerged as key mediators connecting behavioral and environmental risk factors to CVD risk and progression. These epigenetic alterations can profoundly impact on cardiovascular health and susceptibility to CVD by influencing cellular processes, development, and disease risk over an individual's lifetime and potentially across generations. This review examines how behavioral and environmental risk factors affect CVD risk and health outcomes through epigenetic regulation. We review the epigenetic effects of major behavioral risk factors (such as smoking, alcohol consumption, physical inactivity, unhealthy diet, and obesity) and environmental risk factors (including air and noise pollution) in the context of CVD pathogenesis. Additionally, we explore epigenetic biomarkers, considering their role as causal or surrogate indicators, and discuss epigenetic therapeutics targeting the mechanisms through which these risk factors contribute to CVD. We also address future research directions and challenges in leveraging epigenetic insights to reduce the burden of CVD related to behavioral and environmental factors and improve public health outcomes. This review aims to provide a comprehensive understanding of behavioral and environmental epigenetics in CVD and offer valuable strategies for therapeutic intervention.
Collapse
Affiliation(s)
- Feifei Bi
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of UtahSalt Lake CityUtahUSA
- Division of Cardiothoracic Surgery, Department of SurgerySchool of Medicine, University of UtahSalt Lake CityUtahUSA
| | - Chen Gao
- Department of Pharmacology and Systems PhysiologyUniversity of CincinnatiCincinnatiOhioUSA
| | - Hongchao Guo
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of UtahSalt Lake CityUtahUSA
- Division of Cardiothoracic Surgery, Department of SurgerySchool of Medicine, University of UtahSalt Lake CityUtahUSA
| |
Collapse
|
2
|
Gwak E, Shin JW, Kim SY, Lee JT, Jeon OH, Choe SA. Exposure to ambient air pollution mixture and senescence-associated secretory phenotype proteins among middle-aged and older women. ENVIRONMENTAL RESEARCH 2024; 260:119642. [PMID: 39029725 DOI: 10.1016/j.envres.2024.119642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/30/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024]
Abstract
Our study aimed to investigate the impact of environmental exposures, such as ambient air pollutants, on systemic inflammation and cellular senescence in middle-aged and older women. We utilized epidemiological data linked with exposure data of six air pollutants (particulate matters [PM10, PM2.5], sulphur dioxide [SO2], nitrogen dioxide [NO2], carbon monoxide [CO], and ozone [O3]) and blood samples of 380 peri- and postmenopausal women participants of the Korean Genome and Epidemiology Study. We measured blood high-sensitivity C-reactive protein (hsCRP) and age-related 27 circulatory senescence-associated secretory phenotypes (SASP) produced by senescent cells. We employed single exposure models to explore the general pattern of association between air pollution exposure and proteomic markers. Using quantile g-computation models, we assessed the association of six air pollutant mixtures with hsCRP and SASP proteins. In single-exposure, single-period models, nine out of the 27 SASP proteins including IFN-γ (β = 0.04, 95% CI: 0.01, 0.07 per interquartile range-increase), IL-8 (0.15, 95% CI: 0.09, 0.20), and MIP1α (0.11, 95% CI: 0.04, 0.18) were positively associated with the average level of O3 over one week. Among the age-related SASP proteins, IFN-γ (0.11, 95% CI: 0.03, 0.20) and IL-8 (0.22, 95% CI: 0.05, 0.39) were positively associated with exposure to air pollutant mixture over one week. The MIP1β was higher with an increasing one-month average concentration of the air pollutant mixture (0.11, 95% CI: 0.00, 0.21). The IL-8 showed consistently positive association with the ambient air pollutant mixture for the exposure periods ranging from one week to one year. O3 predominantly showed positive weights in the associations between air pollutant mixtures and IL-8. These findings underscore the potential of proteomic indicators as markers for biological aging attributed to short-term air pollution exposure.
Collapse
Affiliation(s)
- Eunseon Gwak
- Department of Preventive Medicine, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Ji-Won Shin
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Sun-Young Kim
- Department of Cancer Control and Population Health, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Jong Tae Lee
- School of Health Policy and Management, College of Health Sciences, Korea University, Seoul, 02841, Republic of Korea; Research and Management Center for Health Risk of Particulate Matter, Korea University, Seoul, 02841, Republic of Korea
| | - Ok Hee Jeon
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea.
| | - Seung-Ah Choe
- Department of Preventive Medicine, Korea University College of Medicine, Seoul, 02841, Republic of Korea; Research and Management Center for Health Risk of Particulate Matter, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
3
|
Afthab M, Hambo S, Kim H, Alhamad A, Harb H. Particulate matter-induced epigenetic modifications and lung complications. Eur Respir Rev 2024; 33:240129. [PMID: 39537244 PMCID: PMC11558539 DOI: 10.1183/16000617.0129-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/27/2024] [Indexed: 11/16/2024] Open
Abstract
Air pollution is one of the leading causes of early deaths worldwide, with particulate matter (PM) as an emerging factor contributing to this trend. PM is classified based on its physical size, which ranges from PM10 (diameter ≤10 μm) to PM2.5 (≤2.5 μm) and PM0.5 (≤0.5 μm). Smaller-sized PM can move freely through the air and readily infiltrate deep into the lungs, intensifying existing health issues and exacerbating complications. Lung complications are the most common issues arising from PM exposure due to the primary site of deposition in the respiratory system. Conditions such as asthma, COPD, idiopathic pulmonary fibrosis, lung cancer and various lung infections are all susceptible to worsening due to PM exposure. PM can epigenetically modify specific target sites, further complicating its impact on these conditions. Understanding these epigenetic mechanisms holds promise for addressing these complications in cases of PM exposure. This involves studying the effect of PM on different gene expressions and regulation through epigenetic modifications, including DNA methylation, histone modifications and microRNAs. Targeting and manipulating these epigenetic modifications and their mechanisms could be promising strategies for future treatments of lung complications. This review mainly focuses on different epigenetic modifications due to PM2.5 exposure in the various lung complications mentioned above.
Collapse
Affiliation(s)
- Muhammed Afthab
- Institute for Medical Microbiology and Virology, University Hospital Dresden, TU Dresden, Dresden, Germany
| | - Shadi Hambo
- Institute for Medical Microbiology and Virology, University Hospital Dresden, TU Dresden, Dresden, Germany
| | - Hyunji Kim
- Institute for Medical Microbiology and Virology, University Hospital Dresden, TU Dresden, Dresden, Germany
| | - Ali Alhamad
- Institute for Medical Microbiology and Virology, University Hospital Dresden, TU Dresden, Dresden, Germany
| | - Hani Harb
- Institute for Medical Microbiology and Virology, University Hospital Dresden, TU Dresden, Dresden, Germany
| |
Collapse
|
4
|
Meldrum K, Evans SJ, Burgum MJ, Doak SH, Clift MJD. Determining the toxicological effects of indoor air pollution on both a healthy and an inflammatory-comprised model of the alveolar epithelial barrier in vitro. Part Fibre Toxicol 2024; 21:25. [PMID: 38760786 PMCID: PMC11100169 DOI: 10.1186/s12989-024-00584-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/20/2024] [Indexed: 05/19/2024] Open
Abstract
Exposure to indoor air pollutants (IAP) has increased recently, with people spending more time indoors (i.e. homes, offices, schools and transportation). Increased exposures of IAP on a healthy population are poorly understood, and those with allergic respiratory conditions even less so. The objective of this study, therefore, was to implement a well-characterised in vitro model of the human alveolar epithelial barrier (A549 + PMA differentiated THP-1 incubated with and without IL-13, IL-5 and IL-4) to determine the effects of a standardised indoor particulate (NIST 2583) on both a healthy lung model and one modelling a type-II (stimulated with IL-13, IL-5 and IL-4) inflammatory response (such as asthma).Using concentrations from the literature, and an environmentally appropriate exposure we investigated 232, 464 and 608ng/cm2 of NIST 2583 respectively. Membrane integrity (blue dextran), viability (trypan blue), genotoxicity (micronucleus (Mn) assay) and (pro-)/(anti-)inflammatory effects (IL-6, IL-8, IL-33, IL-10) were then assessed 24 h post exposure to both models. Models were exposed using a physiologically relevant aerosolisation method (VitroCell Cloud 12 exposure system).No changes in Mn frequency or membrane integrity in either model were noted when exposed to any of the tested concentrations of NIST 2583. A significant decrease (p < 0.05) in cell viability at the highest concentration was observed in the healthy model. Whilst cell viability in the "inflamed" model was decreased at the lower concentrations (significantly (p < 0.05) after 464ng/cm2). A significant reduction (p < 0.05) in IL-10 and a significant increase in IL-33 was seen after 24 h exposure to NIST 2583 (464, 608ng/cm2) in the "inflamed" model.Collectively, the results indicate the potential for IAP to cause the onset of a type II response as well as exacerbating pre-existing allergic conditions. Furthermore, the data imposes the importance of considering unhealthy individuals when investigating the potential health effects of IAP. It also highlights that even in a healthy population these particles have the potential to induce this type II response and initiate an immune response following exposure to IAP.
Collapse
Affiliation(s)
- Kirsty Meldrum
- In Vitro Toxicology Group, Swansea University Medical School, Swansea University, Singleton Park Campus, Swansea, Wales, SA2 8PP, UK.
| | - Stephen J Evans
- In Vitro Toxicology Group, Swansea University Medical School, Swansea University, Singleton Park Campus, Swansea, Wales, SA2 8PP, UK
| | - Michael J Burgum
- In Vitro Toxicology Group, Swansea University Medical School, Swansea University, Singleton Park Campus, Swansea, Wales, SA2 8PP, UK
| | - Shareen H Doak
- In Vitro Toxicology Group, Swansea University Medical School, Swansea University, Singleton Park Campus, Swansea, Wales, SA2 8PP, UK
| | - Martin J D Clift
- In Vitro Toxicology Group, Swansea University Medical School, Swansea University, Singleton Park Campus, Swansea, Wales, SA2 8PP, UK.
| |
Collapse
|
5
|
Jin H, Lin Z, Pang T, Wu J, Zhao C, Zhang Y, Lei Y, Li Q, Yao X, Zhao M, Lu Q. Effects and mechanisms of polycyclic aromatic hydrocarbons in inflammatory skin diseases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171492. [PMID: 38458465 DOI: 10.1016/j.scitotenv.2024.171492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/03/2024] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are hydrocarbons characterized by the presence of multiple benzene rings. They are ubiquitously found in the natural environment, especially in environmental pollutants, including atmospheric particulate matter, cigarette smoke, barbecue smoke, among others. PAHs can influence human health through several mechanisms, including the aryl hydrocarbon receptor (AhR) pathway, oxidative stress pathway, and epigenetic pathway. In recent years, the impact of PAHs on inflammatory skin diseases has garnered significant attention, yet many of their underlying mechanisms remain poorly understood. We conducted a comprehensive review of articles focusing on the link between PAHs and several inflammatory skin diseases, including psoriasis, atopic dermatitis, lupus erythematosus, and acne. This review summarizes the effects and mechanisms of PAHs in these diseases and discusses the prospects and potential therapeutic implications of PAHs for inflammatory skin diseases.
Collapse
Affiliation(s)
- Hui Jin
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China
| | - Ziyuan Lin
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China
| | - Tianyi Pang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jingwen Wu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Cheng Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China; Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ying Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China; Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yu Lei
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China; Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qilin Li
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China; Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xu Yao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
| | - Ming Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China.
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China.
| |
Collapse
|
6
|
Chen H, Zhang K, Wei D, Zhu J, Tian W, Mo J, Peng H, Luo X, Liang Y, Pan Y, Jiang L, Xu Y, Liu A, Ning C. Associations of ambient ozone exposure and CD4 + T cell levels with mortality among people living with HIV: An eight-year longitudinal study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171544. [PMID: 38453062 DOI: 10.1016/j.scitotenv.2024.171544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/16/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
There has been a consistent upward trend in ground-level ozone (O3) concentration in China. People living with HIV (PLWH) may be more vulnerable to the health impacts of O3 exposure due to their immunosuppressed state. This study aims to investigate the association between ambient O3 exposure and mortality among PLWH, as well as the potential exacerbating effects of a decreased CD4+ T cell level. Daily maximum 8-hour O3 concentrations were assigned to 7270 PLWH at a county level in Guangxi, China. Every 10-unit increase in ambient O3 concentration was associated with a significant rise in all-cause mortality ranging from 7.3 % to 28.7 % and a significant rise in AIDS-related mortality ranging from 8.4 % to 14.5 %. When PLWH had a higher CD4+ count (≥350 cells/μL), elevated O3 concentration was associated with increased blood CD4+ count at lag0 [percent change with 95 % confidence interval, 0.20(0.00, 0.40)], lag1 [0.26(0.06, 0.47)], and lag2 [0.23(0.03, 0.44)]; however, an opposite association was observed when CD4+ count was <350 cells/μL for half-year average [-2.45(-4.71, -0.14)] and yearly average [-3.42(-5.51, -1.29)] of O3 exposure. The association of O3 exposure with all-cause and AIDS-related mortality was more prominent among those with higher CD4+ count. Exploratory analysis revealed possible associations between O3 exposure and respiratory infections and clinical symptoms. These findings suggest potential synergistic effects between a compromised immune status and elevated O3 exposure levels on mortality risk among PLWH. Ambient O3 exposure should be considered as an emerging mortality risk factor for PLWH in the era of antiretroviral therapy, requiring further attention from researchers and healthcare professionals.
Collapse
Affiliation(s)
- Hao Chen
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, Guangxi 530021, China
| | - Kai Zhang
- Chest Hospital of Guangxi, No. 8 Yangjiaoshan Road, Liuzhou, Guangxi 545005, China
| | - Dongying Wei
- Chest Hospital of Guangxi, No. 8 Yangjiaoshan Road, Liuzhou, Guangxi 545005, China
| | - Jiawen Zhu
- Nursing College, Guangxi Medical University, No. 8 Shuangyong Road, Nanning, Guangxi 530021, China
| | - Weiyi Tian
- Nursing College, Guangxi Medical University, No. 8 Shuangyong Road, Nanning, Guangxi 530021, China
| | - Jinli Mo
- Nursing College, Guangxi Medical University, No. 8 Shuangyong Road, Nanning, Guangxi 530021, China
| | - Hongbin Peng
- Nursing College, Guangxi Medical University, No. 8 Shuangyong Road, Nanning, Guangxi 530021, China
| | - Xia Luo
- Nursing College, Guangxi Medical University, No. 8 Shuangyong Road, Nanning, Guangxi 530021, China
| | - Yinxia Liang
- Nursing College, Guangxi Medical University, No. 8 Shuangyong Road, Nanning, Guangxi 530021, China
| | - Yanna Pan
- Chest Hospital of Guangxi, No. 8 Yangjiaoshan Road, Liuzhou, Guangxi 545005, China
| | - Li Jiang
- Nursing College, Guangxi Medical University, No. 8 Shuangyong Road, Nanning, Guangxi 530021, China
| | - Yunan Xu
- Department of Medical Research, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi 530023, China.
| | - Aimei Liu
- Chest Hospital of Guangxi, No. 8 Yangjiaoshan Road, Liuzhou, Guangxi 545005, China.
| | - Chuanyi Ning
- Nursing College, Guangxi Medical University, No. 8 Shuangyong Road, Nanning, Guangxi 530021, China.
| |
Collapse
|
7
|
Skevaki C, Nadeau KC, Rothenberg ME, Alahmad B, Mmbaga BT, Masenga GG, Sampath V, Christiani DC, Haahtela T, Renz H. Impact of climate change on immune responses and barrier defense. J Allergy Clin Immunol 2024; 153:1194-1205. [PMID: 38309598 DOI: 10.1016/j.jaci.2024.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/05/2024]
Abstract
Climate change is not just jeopardizing the health of our planet but is also increasingly affecting our immune health. There is an expanding body of evidence that climate-related exposures such as air pollution, heat, wildfires, extreme weather events, and biodiversity loss significantly disrupt the functioning of the human immune system. These exposures manifest in a broad range of stimuli, including antigens, allergens, heat stress, pollutants, microbiota changes, and other toxic substances. Such exposures pose a direct and indirect threat to our body's primary line of defense, the epithelial barrier, affecting its physical integrity and functional efficacy. Furthermore, these climate-related environmental stressors can hyperstimulate the innate immune system and influence adaptive immunity-notably, in terms of developing and preserving immune tolerance. The loss or failure of immune tolerance can instigate a wide spectrum of noncommunicable diseases such as autoimmune conditions, allergy, respiratory illnesses, metabolic diseases, obesity, and others. As new evidence unfolds, there is a need for additional research in climate change and immunology that covers diverse environments in different global settings and uses modern biologic and epidemiologic tools.
Collapse
Affiliation(s)
- Chrysanthi Skevaki
- Institute of Laboratory Medicine, member of the German Center for Lung Research and the Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Marburg, Germany
| | - Kari C Nadeau
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Mass
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Barrak Alahmad
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Mass; Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Blandina T Mmbaga
- Kilimanjaro Christian Medical University College, Moshi, Tanzania; Kilimanjaro Clinical Research Institute, Moshi, Tanzania
| | - Gileard G Masenga
- Kilimanjaro Christian Medical University College, Moshi, Tanzania; Department of Obstetrics and Gynecology, Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | - Vanitha Sampath
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Mass
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Mass; Pulmonary and Critical Care Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Mass
| | - Tari Haahtela
- Skin and Allergy Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Harald Renz
- Institute of Laboratory Medicine, member of the German Center for Lung Research and the Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Marburg, Germany; Kilimanjaro Christian Medical University College, Moshi, Tanzania; Department of Clinical Immunology and Allergology, Laboratory of Immunopathology, Sechenov University, Moscow, Russia.
| |
Collapse
|
8
|
Jin X, Chen Y, Xu B, Tian H. Exercise-Mediated Protection against Air Pollution-Induced Immune Damage: Mechanisms, Challenges, and Future Directions. BIOLOGY 2024; 13:247. [PMID: 38666859 PMCID: PMC11047937 DOI: 10.3390/biology13040247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024]
Abstract
Air pollution, a serious risk factor for human health, can lead to immune damage and various diseases. Long-term exposure to air pollutants can trigger oxidative stress and inflammatory responses (the main sources of immune impairment) in the body. Exercise has been shown to modulate anti-inflammatory and antioxidant statuses, enhance immune cell activity, as well as protect against immune damage caused by air pollution. However, the underlying mechanisms involved in the protective effects of exercise on pollutant-induced damage and the safe threshold for exercise in polluted environments remain elusive. In contrast to the extensive research on the pathogenesis of air pollution and the preventive role of exercise in enhancing fitness, investigations into exercise resistance to injury caused by air pollution are still in their infancy. In this review, we analyze evidence from humans, animals, and cell experiments on the combined effects of exercise and air pollution on immune health outcomes, with an emphasis on oxidative stress, inflammatory responses, and immune cells. We also propose possible mechanisms and directions for future research on exercise resistance to pollutant-induced damage in the body. Furthermore, we suggest strengthening epidemiological studies at different population levels and investigations on immune cells to guide how to determine the safety thresholds for exercise in polluted environments.
Collapse
Affiliation(s)
| | | | - Bingxiang Xu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (X.J.); (Y.C.)
| | - Haili Tian
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (X.J.); (Y.C.)
| |
Collapse
|
9
|
Martín-Cruz L, Benito-Villalvilla C, Sirvent S, Angelina A, Palomares O. The Role of Regulatory T Cells in Allergic Diseases: Collegium Internationale Allergologicum (CIA) Update 2024. Int Arch Allergy Immunol 2024; 185:503-518. [PMID: 38408438 DOI: 10.1159/000536335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 01/16/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Allergy represents a major health problem of increasing prevalence worldwide with a high socioeconomic impact. Our knowledge on the molecular mechanisms underlying allergic diseases and their treatments has significantly improved over the last years. The generation of allergen-specific regulatory T cells (Tregs) is crucial in the induction of healthy immune responses to allergens, preventing the development and worsening of allergic diseases. SUMMARY In the last decades, intensive research has focused on the study of the molecular mechanisms involved in Treg development and Treg-mediated suppression. These mechanisms are essential for the induction of sustained tolerance by allergen-specific immunotherapy (AIT) after treatment discontinuation. Compelling experimental evidence demonstrated altered suppressive capacity of Tregs in patients suffering from allergic rhinitis, allergic asthma, food allergy, or atopic dermatitis, as well as the restoration of their numbers and functionality after successful AIT. KEY MESSAGE The better understanding of the molecular mechanisms involved in Treg generation during allergen tolerance induction might well contribute to the development of novel strategies for the prevention and treatment of allergic diseases.
Collapse
Affiliation(s)
- Leticia Martín-Cruz
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain
- Department of Biochemistry and Molecular Biology, School of Pharmacy, Complutense University, Madrid, Spain
| | - Cristina Benito-Villalvilla
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain
- Department of Biochemistry and Molecular Biology, School of Medicine, Complutense University, Madrid, Spain
| | - Sofía Sirvent
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain
| | - Alba Angelina
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain
| |
Collapse
|
10
|
Yang T, Wan R, Tu W, Avvaru SN, Gao P. Aryl hydrocarbon receptor: Linking environment to aging process in elderly patients with asthma. Chin Med J (Engl) 2024; 137:382-393. [PMID: 38238253 PMCID: PMC10876263 DOI: 10.1097/cm9.0000000000002960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Indexed: 02/12/2024] Open
Abstract
ABSTRACT Aging is a significant risk factor for various diseases, including asthma, and it often leads to poorer clinical outcomes, particularly in elderly individuals. It is recognized that age-related diseases are due to a time-dependent accumulation of cellular damage, resulting in a progressive decline in cellular and physiological functions and an increased susceptibility to chronic diseases. The effects of aging affect not only the elderly but also those of younger ages, posing significant challenges to global healthcare. Thus, understanding the molecular mechanisms associated with aging in different diseases is essential. One intriguing factor is the aryl hydrocarbon receptor (AhR), which serves as a cytoplasmic receptor and ligand-activated transcription factor and has been linked to the aging process. Here, we review the literature on several major hallmarks of aging, including mitochondrial dysfunction, cellular senescence, autophagy, mitophagy, epigenetic alterations, and microbiome disturbances. Moreover, we provide an overview of the impact of AhR on these hallmarks by mediating responses to environmental exposures, particularly in relation to the immune system. Furthermore, we explore how aging hallmarks affect clinical characteristics, inflammatory features, exacerbations, and the treatment of asthma. It is suggested that AhR signaling may potentially play a role in regulating asthma phenotypes in elderly populations as part of the aging process.
Collapse
Affiliation(s)
- Tianrui Yang
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
- Department of Geriatric Medicine, The First People’s Hospital of Yunnan Province, Kunming, Yunnan 650032, China
| | - Rongjun Wan
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wei Tu
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
- The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518055, China
| | - Sai Nithin Avvaru
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Peisong Gao
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| |
Collapse
|
11
|
Vilcins D, Christofferson RC, Yoon JH, Nazli SN, Sly PD, Cormier SA, Shen G. Updates in Air Pollution: Current Research and Future Challenges. Ann Glob Health 2024; 90:9. [PMID: 38312715 PMCID: PMC10836163 DOI: 10.5334/aogh.4363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/20/2023] [Indexed: 02/06/2024] Open
Abstract
Background The United Nations has declared that humans have a right to clean air. Despite this, many deaths and disability-adjusted life years are attributed to air pollution exposure each year. We face both challenges to air quality and opportunities to improve, but several areas need to be addressed with urgency. Objective This paper summarises the recent research presented at the Pacific Basin Consortium for Environment and Health Symposium and focuses on three key areas of air pollution that are important to human health and require more research. Findings and conclusion Indoor spaces are commonly places of exposure to poor air quality and are difficult to monitor and regulate. Global climate change risks worsening air quality in a bi-directional fashion. The rising use of electric vehicles may offer opportunities to improve air quality, but it also presents new challenges. Government policies and initiatives could lead to improved air and environmental justice. Several populations, such as older people and children, face increased harm from air pollution and should become priority groups for action.
Collapse
Affiliation(s)
- Dwan Vilcins
- The University of Queensland, Child Health Research Centre, South Brisbane, QLD, Australia
| | - Rebecca C. Christofferson
- Louisiana State University, School of Veterinary Medicine, Department of Pathobiological Sciences, Baton Rouge, Louisiana, USA
| | - Jin-Ho Yoon
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
| | - Siti Nurshahida Nazli
- The University of Queensland, Child Health Research Centre, South Brisbane, QLD, Australia
- Faculty of Health Sciences, Universiti Teknologi MARA Cawangan Pulau Pinang, Kampus Bertam, 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - Peter D. Sly
- The University of Queensland, Child Health Research Centre, South Brisbane, QLD, Australia
| | - Stephania A. Cormier
- Department of Biological Sciences, Louisiana State University A&M College and the Pennington Biomedical Research Institute, Baton Rouge, Louisiana, 70803, USA
| | - Guofeng Shen
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
12
|
Gavito-Covarrubias D, Ramírez-Díaz I, Guzmán-Linares J, Limón ID, Manuel-Sánchez DM, Molina-Herrera A, Coral-García MÁ, Anastasio E, Anaya-Hernández A, López-Salazar P, Juárez-Díaz G, Martínez-Juárez J, Torres-Jácome J, Albarado-Ibáñez A, Martínez-Laguna Y, Morán C, Rubio K. Epigenetic mechanisms of particulate matter exposure: air pollution and hazards on human health. Front Genet 2024; 14:1306600. [PMID: 38299096 PMCID: PMC10829887 DOI: 10.3389/fgene.2023.1306600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/20/2023] [Indexed: 02/02/2024] Open
Abstract
Environmental pollution nowadays has not only a direct correlation with human health changes but a direct social impact. Epidemiological studies have evidenced the increased damage to human health on a daily basis because of damage to the ecological niche. Rapid urban growth and industrialized societies importantly compromise air quality, which can be assessed by a notable accumulation of air pollutants in both the gas and the particle phases. Of them, particulate matter (PM) represents a highly complex mixture of organic and inorganic compounds of the most variable size, composition, and origin. PM being one of the most complex environmental pollutants, its accumulation also varies in a temporal and spatial manner, which challenges current analytical techniques used to investigate PM interactions. Nevertheless, the characterization of the chemical composition of PM is a reliable indicator of the composition of the atmosphere, the quality of breathed air in urbanized societies, industrial zones and consequently gives support for pertinent measures to avoid serious health damage. Epigenomic damage is one of the most promising biological mechanisms of air pollution-derived carcinogenesis. Therefore, this review aims to highlight the implication of PM exposure in diverse molecular mechanisms driving human diseases by altered epigenetic regulation. The presented findings in the context of pan-organic cancer, fibrosis, neurodegeneration and metabolic diseases may provide valuable insights into the toxicity effects of PM components at the epigenomic level and may serve as biomarkers of early detection for novel targeted therapies.
Collapse
Affiliation(s)
- Dulcemaría Gavito-Covarrubias
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, Mexico
| | - Ivonne Ramírez-Díaz
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, Mexico
- Universidad Popular Autónoma del Estado de Puebla (UPAEP), Puebla, Mexico
| | - Josué Guzmán-Linares
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, Mexico
| | - Ilhuicamina Daniel Limón
- Laboratory of Neuropharmacology, Faculty of Chemical Sciences, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Dulce María Manuel-Sánchez
- Laboratory of Neuropharmacology, Faculty of Chemical Sciences, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Alejandro Molina-Herrera
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, Mexico
| | - Miguel Ángel Coral-García
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, Mexico
| | - Estela Anastasio
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, Mexico
| | - Arely Anaya-Hernández
- Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Primavera López-Salazar
- Centro de Investigaciones en Dispositivos Semiconductores (CIDS), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Gabriel Juárez-Díaz
- Centro de Investigaciones en Dispositivos Semiconductores (CIDS), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Javier Martínez-Juárez
- Centro de Investigaciones en Dispositivos Semiconductores (CIDS), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Julián Torres-Jácome
- Laboratorio de Fisiopatología Cardiovascular, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Alondra Albarado-Ibáñez
- Laboratorio de Fisiopatología Cardiovascular, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Ygnacio Martínez-Laguna
- Vicerrectoría de Investigación y Estudios de Posgrado, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Carolina Morán
- Centro de Investigación en Fisicoquímica de Materiales, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Karla Rubio
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, Mexico
| |
Collapse
|
13
|
Liu Q, Ji Y, Wang L, Li Z, Tao B, Zhu L, Lu W, Martinez L, Zeng Y, Wang J. Air pollutants in bronchoalveolar lavage fluid and pulmonary tuberculosis: A mediation analysis of gene-specific methylation. iScience 2023; 26:108391. [PMID: 38047067 PMCID: PMC10690542 DOI: 10.1016/j.isci.2023.108391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/18/2023] [Accepted: 11/01/2023] [Indexed: 12/05/2023] Open
Abstract
Particulate matter (PM) exposure could alter the risk of tuberculosis, but the underlying mechanism is still unclear. We enrolled 132 pulmonary tuberculosis (PTB) patients and 30 controls. Bronchoalveolar lavage fluid samples were collected from all participants to detect organochlorine pesticides, polycyclic aromatic hydrocarbons, metal elements, and DNA methylation of immunity-related genes. We observed that γ-HCH, Bap, Sr, Ag, and Sn were related to an increased risk of PTB, while Cu and Ba had a negative effect. IFN-γ, IL-17A, IL-2, and IL-23 had a higher level in the PTB group, while IL-4 was lower. The methylation of 18 CpG sites was statistically associated with PTB risk. The methylation at the IL-4_06_121 site showed a significant mediating role on γ-HCH, Sr, and Sn. Our study suggests that PM exposure can increase the risk of tuberculosis by affecting DNA methylation and cytokine expression.
Collapse
Affiliation(s)
- Qiao Liu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, P.R. China
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing 210009, P.R. China
| | - Ye Ji
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, P.R. China
- Department of Non-Communicable Disease, Center for Disease Control and Prevention of Jiangyin City, Wuxi 214434, P.R. China
| | - Li Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, P.R. China
| | - Zhongqi Li
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, P.R. China
| | - Bilin Tao
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, P.R. China
| | - Limei Zhu
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing 210009, P.R. China
| | - Wei Lu
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing 210009, P.R. China
| | - Leonardo Martinez
- Department of Epidemiology, School of Public Health, Boston University, Boston, MA, USA
| | - Yi Zeng
- Department of Tuberculosis, Nanjing Public Health Medical Center, Nanjing Second Hospital, Nanjing Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Nanjing 211113, P.R. China
| | - Jianming Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, P.R. China
| |
Collapse
|
14
|
Yu W, Drzymalla E, Gyorfy MF, Khoury MJ, Sun YV, Gwinn M. Navigating epigenetic epidemiology publications. EPIGENETICS COMMUNICATIONS 2023; 3:8. [PMID: 38414576 PMCID: PMC10895989 DOI: 10.1186/s43682-023-00023-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/25/2023] [Indexed: 02/29/2024]
Affiliation(s)
- Wei Yu
- Office of Genomics and Precision Public Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Emily Drzymalla
- Office of Genomics and Precision Public Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Muin J Khoury
- Office of Genomics and Precision Public Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Yan V Sun
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | | |
Collapse
|
15
|
Kreitsberg R, Nääb L, Meitern R, Carbillet J, Fort J, Giraudeau M, Sepp T. The effect of environmental pollution on gene expression of seabirds: A review. MARINE ENVIRONMENTAL RESEARCH 2023; 189:106067. [PMID: 37393763 DOI: 10.1016/j.marenvres.2023.106067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/04/2023]
Abstract
One of the biggest challenges for ecotoxicologists is to detect harmful effects of contaminants on individual organisms before they have caused significant harm to natural populations. One possible approach for discovering sub-lethal, negative health effects of pollutants is to study gene expression, to identify metabolic pathways and physiological processes affected by contaminants. Seabirds are essential components of ecosystems but highly threatened by environmental changes. Being at the top of the food chain and exhibiting a slow pace of life, they are highly exposed to contaminants and to their ultimate impacts on populations. Here we provide an overview of the currently available seabird-related gene expression studies in the context of environmental pollution. We show that studies conducted, so far, mainly focus on a small selection of xenobiotic metabolism genes, often using lethal sampling protocols, while the greater promise of gene expression studies for wild species may lie in non-invasive procedures focusing on a wider range of physiological processes. However, as whole genome approaches might still be too expensive for large-scale assessments, we also bring out the most promising candidate biomarker genes for future studies. Based on the biased geographical representativeness of the current literature, we suggest expanding studies to temperate and tropical latitudes and urban environments. Also, as links with fitness traits are very rare in the current literature, but would be highly relevant for regulatory purposes, we point to an urgent need for establishing long-term monitoring programs in seabirds that would link pollutant exposure and gene expression to fitness traits.
Collapse
Affiliation(s)
- Randel Kreitsberg
- Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51003, Tartu, Estonia.
| | - Lisanne Nääb
- Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51003, Tartu, Estonia
| | - Richard Meitern
- Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51003, Tartu, Estonia
| | - Jeffrey Carbillet
- Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51003, Tartu, Estonia
| | - Jérôme Fort
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266, CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France
| | - Mathieu Giraudeau
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266, CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France
| | - Tuul Sepp
- Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51003, Tartu, Estonia
| |
Collapse
|
16
|
Odo DB, Yang IA, Dey S, Hammer MS, van Donkelaar A, Martin RV, Dong GH, Yang BY, Hystad P, Knibbs LD. A cross-sectional analysis of ambient fine particulate matter (PM 2.5) exposure and haemoglobin levels in children aged under 5 years living in 36 countries. ENVIRONMENTAL RESEARCH 2023; 227:115734. [PMID: 36963710 DOI: 10.1016/j.envres.2023.115734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/23/2023] [Accepted: 03/20/2023] [Indexed: 05/08/2023]
Abstract
Low haemoglobin (Hb) concentrations and anaemia in children have adverse effects on development and functioning, some of which may have consequences in later life. Exposure to ambient air pollution is reported to be associated with anaemia, but there is little evidence specific to low- and middle-income countries (LMICs), where childhood anaemia prevalence is greatest. We aimed to determine if long-term ambient fine particulate matter (≤2.5 μm in aerodynamic diameter [PM2.5]) exposure was associated with Hb levels and the prevalence of anaemia in children aged <5 years living in 36 LMICs. We used Demographic and Health Survey data, collected between 2010 and 2019, which included blood Hb measurements. Satellite-derived estimates of annual average PM2.5 was the main exposure variable, which was linked to children's area of residence. Anaemia was defined according to standard World Health Organization guidelines (Hb < 11 g/dL). The association of PM2.5 with Hb levels and anaemia prevalence was examined using multivariable linear and logistic regression models, respectively. We examined whether the effects of ambient PM2.5 were modified by a child's sex and age, household wealth index, and urban/rural place of residence. Models were adjusted for relevant covariates, including other outdoor pollutants and household cooking fuel. The study included 154,443 children, of which 89,904 (58.2%) were anaemic. The country-level prevalence of anaemia ranged from 15.8% to 87.9%. Mean PM2.5 exposure was 33.0 (±21.6) μg/m3. The adjusted model showed that a 10 μg/m3 increase in annual PM2.5 concentration was associated with greater odds of anaemia (OR = 1.098 95% CI: 1.087, 1.109). The same increase in PM2.5 was associated with a decrease in average Hb levels of 0.075 g/dL (95% CI: 0.081, 0.068). There was evidence of effect modification by household wealth index and place of residence, with greater adverse effects in children from lower wealth quintiles and children in rural areas. Exposure to annual PM2.5 was cross-sectionally associated with decreased blood Hb levels, and greater risk of anaemia, in children aged <5 years living in 36 LMICs.
Collapse
Affiliation(s)
- Daniel B Odo
- School of Public Health, The University of Queensland, Herston, QLD 4006, Australia; College of Health Sciences, Arsi University, Asela, Ethiopia.
| | - Ian A Yang
- Thoracic Program, The Prince Charles Hospital, Metro North Hospital and Health Service, Brisbane, Australia; UQ Thoracic Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Sagnik Dey
- Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, New Delhi, India; Arun Duggal Centre of Excellence for Research in Climate Change and Air Pollution, Indian Institute of Technology Delhi, New Delhi, India
| | - Melanie S Hammer
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Aaron van Donkelaar
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Randall V Martin
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Perry Hystad
- College of Public Health and Human Sciences, Oregon State University, USA
| | - Luke D Knibbs
- School of Public Health, The University of Sydney, Camperdown, NSW 2006, Australia; Public Health Research Analytics and Methods for Evidence, Public Health Unit, Sydney Local Health District, Camperdown, NSW, 2050, Australia
| |
Collapse
|
17
|
Morin A, Thompson EE, Helling BA, Shorey-Kendrick LE, Faber P, Gebretsadik T, Bacharier LB, Kattan M, O'Connor GT, Rivera-Spoljaric K, Wood RA, Barnes KC, Mathias RA, Altman MC, Hansen K, McEvoy CT, Spindel ER, Hartert T, Jackson DJ, Gern JE, McKennan CG, Ober C. A functional genomics pipeline to identify high-value asthma and allergy CpGs in the human methylome. J Allergy Clin Immunol 2023; 151:1609-1621. [PMID: 36754293 PMCID: PMC10859971 DOI: 10.1016/j.jaci.2022.12.828] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/24/2022] [Accepted: 12/20/2022] [Indexed: 02/09/2023]
Abstract
BACKGROUND DNA methylation of cytosines at cytosine-phosphate-guanine (CpG) dinucleotides (CpGs) is a widespread epigenetic mark, but genome-wide variation has been relatively unexplored due to the limited representation of variable CpGs on commercial high-throughput arrays. OBJECTIVES To explore this hidden portion of the epigenome, this study combined whole-genome bisulfite sequencing with in silico evidence of gene regulatory regions to design a custom array of high-value CpGs. This study focused on airway epithelial cells from children with and without allergic asthma because these cells mediate the effects of inhaled microbes, pollution, and allergens on asthma and allergic disease risk. METHODS This study identified differentially methylated regions from whole-genome bisulfite sequencing in nasal epithelial cell DNA from a total of 39 children with and without allergic asthma of both European and African ancestries. This study selected CpGs from differentially methylated regions, previous allergy or asthma epigenome-wide association studies (EWAS), or genome-wide association study loci, and overlapped them with functional annotations for inclusion on a custom Asthma&Allergy array. This study used both the custom and EPIC arrays to perform EWAS of allergic sensitization (AS) in nasal epithelial cell DNA from children in the URECA (Urban Environment and Childhood Asthma) birth cohort and using the custom array in the INSPIRE [Infant Susceptibility to Pulmonary Infections and Asthma Following RSV Exposure] birth cohort. Each CpG on the arrays was assigned to its nearest gene and its promotor capture Hi-C interacting gene and performed expression quantitative trait methylation (eQTM) studies for both sets of genes. RESULTS Custom array CpGs were enriched for intermediate methylation levels compared to EPIC CpGs. Intermediate methylation CpGs were further enriched among those associated with AS and for eQTMs on both arrays. CONCLUSIONS This study revealed signature features of high-value CpGs and evidence for epigenetic regulation of genes at AS EWAS loci that are robust to race/ethnicity, ascertainment, age, and geography.
Collapse
Affiliation(s)
- Andréanne Morin
- Department of Human Genetics, University of Chicago, Chicago, Ill
| | - Emma E Thompson
- Department of Human Genetics, University of Chicago, Chicago, Ill
| | | | - Lyndsey E Shorey-Kendrick
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Ore
| | - Pieter Faber
- Genomics Core, University of Chicago, Chicago, Ill
| | - Tebeb Gebretsadik
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tenn
| | - Leonard B Bacharier
- Department of Pediatrics, Monroe Carell Jr Children's Hospital at Vanderbilt University Medical Center, Nashville, Tenn
| | - Meyer Kattan
- Department of Pediatrics, Columbia University Medical Center, New York, NY
| | - George T O'Connor
- Pulmonary Center, Boston University School of Medicine, Boston, Mass
| | | | - Robert A Wood
- Department of Pediatrics, Johns Hopkins University, Baltimore, Md
| | | | | | - Matthew C Altman
- Systems Immunology Division, Benaroya Research Institute Systems, Seattle, Wash; Department of Medicine, University of Washington, Seattle, Wash
| | - Kasper Hansen
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Md
| | - Cindy T McEvoy
- Department of Pediatrics, Oregon Health and Science University, Portland, Ore
| | - Eliot R Spindel
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Ore
| | - Tina Hartert
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tenn
| | - Daniel J Jackson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - James E Gern
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Chris G McKennan
- Department of Statistics, University of Pittsburgh, Pittsburgh, Pa.
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, Ill.
| |
Collapse
|
18
|
Pan Y, Fang Y, Chen Y, Chen C, Zhang RD, Fang X, Zhao Y, Jiang LQ, Ni J, Wang P, Pan HF. Associations between particulate matter air pollutants and hospitalization risk for systemic lupus erythematosus: a time-series study from Xi'an, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:3317-3330. [PMID: 36287357 DOI: 10.1007/s10653-022-01409-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/25/2022] [Indexed: 06/01/2023]
Abstract
Air pollution exposure is an important environmental risk factor involved in the development of systemic lupus erythematosus (SLE). This study was conducted to investigate the relationships between particulate matter (PM) air pollutants exposure and the risk of SLE admission in Xi'an, China. The records of SLE admission, air pollutants and meteorological data were retrieved from the First Affiliated Hospital of Xi'an Jiaotong University, the Xi'an Environmental Monitoring Station and China Meteorological Data Network, respectively. A distributed lagged nonlinear model combined with Poisson generalized linear regression was used to evaluate the effect of air pollution on SLE admission. Exposure-response curves showed positive associations of PM ≤ 2.5 (PM2.5) and 10 microns (PM10) in aerodynamic diameter exposures with the risk of SLE admission. Subgroup analyses showed that PM2.5 exposure was associated with the increased risk of SLE admission in women, age over 65 years old, and during the cold season, and PM10 exposure showed an increased risk of SLE in women and during the cold season, but additional tests did not observe the significant associations of PM2.5 and PM10 exposure with SLE admission between subgroups. In addition, null associations of carbon monoxide (CO), nitrogen dioxide (NO2), ozone (O3), and sulfur dioxide (SO2) with the risk of SLE admission were found. Our study indicates that PM2.5 and PM10 exposures have significant effects on the risk of SLE admission, and early measures should be taken for high PM2.5 and PM10 exposure to protect vulnerable populations, rational use of limited health care resources.
Collapse
Affiliation(s)
- Ying Pan
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Xi'an Jiaotong University, Yanta West Road No. 277, Xi'an, 710061, Shaanxi, China
| | - Yang Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yue Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Cong Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Ruo-Di Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xi Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yan Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Ling-Qiong Jiang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jing Ni
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Peng Wang
- Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
19
|
Austin W, Carattini S, Gomez-Mahecha J, Pesko MF. The effects of contemporaneous air pollution on COVID-19 morbidity and mortality. JOURNAL OF ENVIRONMENTAL ECONOMICS AND MANAGEMENT 2023; 119:102815. [PMID: 37063946 PMCID: PMC10073864 DOI: 10.1016/j.jeem.2023.102815] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Indexed: 05/03/2023]
Abstract
We examine the relationship between contemporaneous fine particulate matter exposure and COVID-19 morbidity and mortality using an instrumental variable approach. Harnessing daily changes in county-level wind direction, we show that arguably exogenous fluctuations in local air quality impact the incidence of confirmed COVID-19 cases and deaths. We find that a one μ g/m3 increase in PM 2.5, or 15% of the average PM 2.5 concentration in a county, increases the number of same-day confirmed cases by 1.8% from the mean case incidence in a county. A one μ g/m3 increase in PM 2.5 increases the same-day death rate by just over 4% from the mean. These effects tend to increase in magnitude over longer time horizons and are robust to a host of sensitivity tests. When analyzing potential mechanisms, we also demonstrate that an additional unit of PM 2.5 increases COVID-19-related hospitalizations by 0.8% and use of intensive care units by 0.5% on the same day. Using individual case records, we also show that higher PM 2.5 exposure at the time of case confirmation increases risk of later mechanical ventilation and mortality. These results suggest that air pollution plays an important role in mediating the severity of respiratory syndromes such as COVID-19.
Collapse
Affiliation(s)
- Wes Austin
- U.S. Environmental Protection Agency, United States
| | - Stefano Carattini
- Georgia State University, United States
- CESifo, Germany
- LSE, United Kingdom
- University of St. Gallen, Switzerland
| | | | - Michael F Pesko
- Georgia State University, United States
- Institute of Labor Economics (IZA), Germany
| |
Collapse
|
20
|
Movassagh H, Prunicki M, Kaushik A, Zhou X, Dunham D, Smith EM, He Z, Aleman Muench GR, Shi M, Weimer AK, Cao S, Andorf S, Feizi A, Snyder MP, Soroosh P, Mellins ED, Nadeau KC. Proinflammatory polarization of monocytes by particulate air pollutants is mediated by induction of trained immunity in pediatric asthma. Allergy 2023. [PMID: 36929161 DOI: 10.1111/all.15692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/10/2023] [Accepted: 01/24/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND The impact of exposure to air pollutants, such as fine particulate matter (PM), on the immune system and its consequences on pediatric asthma, are not well understood. We investigated whether ambient levels of fine PM with aerodynamic diameter ≤2.5 microns (PM2.5 ) are associated with alterations in circulating monocytes in children with or without asthma. METHODS Monocyte phenotyping was performed by cytometry time-of-flight (CyTOF). Cytokines were measured using cytometric bead array and Luminex assay. ChIP-Seq was utilized to address histone modifications in monocytes. RESULTS Increased exposure to ambient PM2.5 was linked to specific monocyte subtypes, particularly in children with asthma. Mechanistically, we hypothesized that innate trained immunity is evoked by a primary exposure to fine PM and accounts for an enhanced inflammatory response after secondary stimulation in vitro. We determined that the trained immunity was induced in circulating monocytes by fine particulate pollutants, and it was characterized by the upregulation of proinflammatory mediators, such as TNF, IL-6, and IL-8, upon stimulation with house dust mite or lipopolysaccharide. This phenotype was epigenetically controlled by enhanced H3K27ac marks in circulating monocytes. CONCLUSION The specific alterations of monocytes after ambient pollution exposure suggest a possible prognostic immune signature for pediatric asthma, and pollution-induced trained immunity may provide a potential therapeutic target for asthmatic children living in areas with increased air pollution.
Collapse
Affiliation(s)
- Hesam Movassagh
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Palo Alto, California, USA
| | - Mary Prunicki
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Palo Alto, California, USA
| | - Abhinav Kaushik
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Palo Alto, California, USA
| | - Xiaoying Zhou
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Palo Alto, California, USA
| | - Diane Dunham
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Palo Alto, California, USA
| | - Eric M Smith
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Palo Alto, California, USA
| | - Ziyuan He
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Palo Alto, California, USA
| | | | - Minyi Shi
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
- Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Annika K Weimer
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
- Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Shu Cao
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Palo Alto, California, USA
| | - Sandra Andorf
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Palo Alto, California, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Divisions of Biomedical Informatics and Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | | | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
- Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Pejman Soroosh
- Janssen Research & Development, LLC, San Diego, California, USA
| | - Elizabeth D Mellins
- Department of Pediatrics, Stanford Program in Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Kari C Nadeau
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Palo Alto, California, USA
| |
Collapse
|
21
|
Peterson R, Keswani A. The Impact of Social Determinants and Air Pollution on Healthcare Disparities in Chronic Rhinosinusitis With Nasal Polyps. Am J Rhinol Allergy 2023; 37:147-152. [PMID: 36848276 DOI: 10.1177/19458924231153483] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
BACKGROUND/OBJECTIVE Multiple factors affect healthcare disparities in chronic rhinosinusitis (CRS) with and without nasal polyps. These factors include access to care, economic burdens to treatment, and differences in air pollution and air quality. In this paper, we will discuss how socioeconomic status, race, and air pollution burden influence healthcare disparities in the diagnosis and treatment outcomes of chronic rhinosinusitis with nasal polyps (CRSwNP). METHODS A literature search was performed via PubMed for articles related to CRSwNP, healthcare disparities, race, socioeconomic status, and air pollution in September 2022. Original studies from 2016 to 2022, landmark articles, and systematic reviews were included. We summarized these articles to cohesively discuss factors contributing to healthcare disparities in CRSwNP. RESULTS Literary search produced 35 articles. Individual factors such as socioeconomic status, race, and air pollution influence CRSwNP severity and treatment outcomes. Correlations were noted with socioeconomic status, race, and air pollution exposure and CRS severity and post-surgical outcomes. Air pollution exposure was also associated with histopathologic changes in CRSwNP. Lack of access to care was a notable contributor to healthcare disparities in CRS. CONCLUSION Healthcare disparities in the diagnosis and treatment of CRSwNP differentially affect racial minorities and individuals of lower socioeconomic status. Increased air pollution exposure in areas of lower socioeconomic status is a compounding factor. Clinician advocacy for greater healthcare access and reductions in environmental exposures for patients, among other societal changes, may help improve disparities.
Collapse
Affiliation(s)
- Rachel Peterson
- Department of Medicine, 12230Georgetown University School of Medicine, Washington, District of Columbia
| | - Anjeni Keswani
- Division of Allergy/Immunology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| |
Collapse
|
22
|
Fernández-Carrión R, Sorlí JV, Asensio EM, Pascual EC, Portolés O, Alvarez-Sala A, Francès F, Ramírez-Sabio JB, Pérez-Fidalgo A, Villamil LV, Tinahones FJ, Estruch R, Ordovas JM, Coltell O, Corella D. DNA-Methylation Signatures of Tobacco Smoking in a High Cardiovascular Risk Population: Modulation by the Mediterranean Diet. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3635. [PMID: 36834337 PMCID: PMC9964856 DOI: 10.3390/ijerph20043635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Biomarkers based on DNA methylation are relevant in the field of environmental health for precision health. Although tobacco smoking is one of the factors with a strong and consistent impact on DNA methylation, there are very few studies analyzing its methylation signature in southern European populations and none examining its modulation by the Mediterranean diet at the epigenome-wide level. We examined blood methylation smoking signatures on the EPIC 850 K array in this population (n = 414 high cardiovascular risk subjects). Epigenome-wide methylation studies (EWASs) were performed analyzing differential methylation CpG sites by smoking status (never, former, and current smokers) and the modulation by adherence to a Mediterranean diet score was explored. Gene-set enrichment analysis was performed for biological and functional interpretation. The predictive value of the top differentially methylated CpGs was analyzed using receiver operative curves. We characterized the DNA methylation signature of smoking in this Mediterranean population by identifying 46 differentially methylated CpGs at the EWAS level in the whole population. The strongest association was observed at the cg21566642 (p = 2.2 × 10-32) in the 2q37.1 region. We also detected other CpGs that have been consistently reported in prior research and discovered some novel differentially methylated CpG sites in subgroup analyses. In addition, we found distinct methylation profiles based on the adherence to the Mediterranean diet. Particularly, we obtained a significant interaction between smoking and diet modulating the cg5575921 methylation in the AHRR gene. In conclusion, we have characterized biomarkers of the methylation signature of tobacco smoking in this population, and suggest that the Mediterranean diet can increase methylation of certain hypomethylated sites.
Collapse
Affiliation(s)
- Rebeca Fernández-Carrión
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José V. Sorlí
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Eva M. Asensio
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Eva C. Pascual
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Olga Portolés
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Andrea Alvarez-Sala
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Francesc Francès
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | - Alejandro Pérez-Fidalgo
- Department of Medical Oncology, University Clinic Hospital of Valencia, 46010 Valencia, Spain
- Biomedical Research Networking Centre on Cancer (CIBERONC), Health Institute Carlos III, 28029 Madrid, Spain
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - Laura V. Villamil
- Department of Physiology, School of Medicine, University Antonio Nariño, Bogotá 111511, Colombia
| | - Francisco J. Tinahones
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Instituto de Investigación Biomédica de Málaga (IBIMA), University of Málaga, 29590 Málaga, Spain
| | - Ramon Estruch
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Internal Medicine, Institut d’Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
| | - Jose M. Ordovas
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
- Nutritional Control of the Epigenome Group, Precision Nutrition and Obesity Program, IMDEA Food, UAM + CSIC, 28049 Madrid, Spain
| | - Oscar Coltell
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Computer Languages and Systems, Universitat Jaume I, 12071 Castellón, Spain
| | - Dolores Corella
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
23
|
Munnia A, Bollati V, Russo V, Ferrari L, Ceppi M, Bruzzone M, Dugheri S, Arcangeli G, Merlo F, Peluso M. Traffic-Related Air Pollution and Ground-Level Ozone Associated Global DNA Hypomethylation and Bulky DNA Adduct Formation. Int J Mol Sci 2023; 24:ijms24032041. [PMID: 36768368 PMCID: PMC9916664 DOI: 10.3390/ijms24032041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
Studies have indicated that air pollution, including surface-level ozone (O3), can significantly influence the risk of chronic diseases. To better understand the carcinogenic mechanisms of air pollutants and identify predictive disease biomarkers, we examined the association between traffic-related pollutants with DNA methylation alterations and bulky DNA adducts, two biomarkers of carcinogen exposure and cancer risk, in the peripheral blood of 140 volunteers-95 traffic police officers, and 45 unexposed subjects. The DNA methylation and adduct measurements were performed by bisulfite-PCR and pyrosequencing and 32P-postlabeling assay. Airborne levels of benzo(a)pyrene [B(a)P], carbon monoxide, and tropospheric O3 were determined by personal exposure biomonitoring or by fixed monitoring stations. Overall, air pollution exposure was associated with a significant reduction (1.41 units) in global DNA methylation (95% C.I. -2.65-0.04, p = 0.026). The decrement in ALU repetitive elements was greatest in the policemen working downtown (95% C.I. -3.23--0.49, p = 0.008). The DNA adducts were found to be significantly increased (0.45 units) in the municipal officers with respect to unexposed subjects (95% C.I. 0.02-0.88, p = 0.039), mainly in those who were controlling traffic in downtown areas (95% C.I. 0.39-1.29, p < 0.001). Regression models indicated an increment of ALU methylation at higher B(a)P concentrations (95% C.I. 0.03-0.60, p = 0.032). Moreover, statistical models showed a decrement in ALU methylation and an increment of DNA damage only above the cut-off value of 30 µg/m3 O3. A significant increment of 0.73 units of IL-6 gene methylation was also found in smokers with respect to non-smokers. Our results highlighted the role of air pollution on epigenetic alterations and genotoxic effects, especially above the target value of 30 µg/m3 surface-level O3, supporting the necessity for developing public health strategies aimed to reduce traffic-related air pollution molecular alterations.
Collapse
Affiliation(s)
- Armelle Munnia
- Research Branch, Regional Cancer Prevention Laboratory, ISPRO-Study, Prevention and Oncology Network Institute, 50139 Florence, Italy
| | - Valentina Bollati
- EPIGET Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, 20122 Milan, Italy
- Occupational Health Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Valentina Russo
- Research Branch, Regional Cancer Prevention Laboratory, ISPRO-Study, Prevention and Oncology Network Institute, 50139 Florence, Italy
| | - Luca Ferrari
- EPIGET Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, 20122 Milan, Italy
- Occupational Health Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Marcello Ceppi
- Clinical Epidemiology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Marco Bruzzone
- Clinical Epidemiology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Stefano Dugheri
- Laboratorio di Igiene e Tossicologia Industriale, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy
| | - Giulio Arcangeli
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi di Firenze, 50121 Florence, Italy
| | - Franco Merlo
- Research and Statistics Infrastructure, Azienda Unità Sanitaria Locale, IRCCS, 42121 Reggio Emilie, Italy
| | - Marco Peluso
- Research Branch, Regional Cancer Prevention Laboratory, ISPRO-Study, Prevention and Oncology Network Institute, 50139 Florence, Italy
- Correspondence:
| |
Collapse
|
24
|
Tingskov Pedersen CE, Eliasen AU, Ketzel M, Brandt J, Loft S, Frohn LM, Khan J, Brix S, Rasmussen MA, Stokholm J, Chawes B, Morin A, Ober C, Bisgaard H, Pedersen M, Bønnelykke K. Prenatal exposure to ambient air pollution is associated with early life immune perturbations. J Allergy Clin Immunol 2023; 151:212-221. [PMID: 36075322 DOI: 10.1016/j.jaci.2022.08.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Exposure to ambient air pollution has been linked to asthma, allergic rhinitis, and other inflammatory disorders, but little is known about the underlying mechanisms. OBJECTIVE We studied the potential mechanisms leading from prenatal ambient air pollution exposure to asthma and allergy in childhood. METHODS Long-term exposure to nitrogen dioxide (NO2) as well as to particulate matter with a diameter of ≤2.5 and ≤10 μm (PM2.5 and PM10) were modeled at the residence level from conception to 6 years of age in 700 Danish children followed clinically for development of asthma and allergy. Nasal mucosal immune mediators were assessed at age 4 weeks and 6 years, inflammatory markers in blood at 6 months, and nasal epithelial DNA methylation and gene expression at age 6 years. RESULTS Higher prenatal air pollution exposure with NO2, PM2.5, and PM10 was associated with an altered nasal mucosal immune profile at 4 weeks, conferring an increased odds ratio [95% confidence interval] of 2.68 [1.58, 4.62] for allergic sensitization and 2.63 [1.18, 5.81] for allergic rhinitis at age 6 years, and with an altered immune profile in blood at age 6 months conferring increased risk of asthma at age 6 years (1.80 [1.18, 2.76]). Prenatal exposure to ambient air pollution was not robustly associated with immune mediator, epithelial DNA methylation, or gene expression changes in nasal cells at age 6 years. CONCLUSION Prenatal exposure to ambient air pollution was associated with early life immune perturbations conferring risk of allergic rhinitis and asthma. These findings suggest potential mechanisms of prenatal exposure to ambient air pollution on the developing immune system.
Collapse
Affiliation(s)
- Casper-Emil Tingskov Pedersen
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Anders Ulrik Eliasen
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark; Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Matthias Ketzel
- Department of Environmental Science, Aarhus University of Copenhagen, Roskilde, Denmark
| | - Jørgen Brandt
- Department of Environmental Science, Aarhus University of Copenhagen, Roskilde, Denmark
| | - Steffen Loft
- Department of Public Health, Section of Environment and Health, University of Copenhagen, Copenhagen, Denmark; Department of Public Health, Section of Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University of Copenhagen, Roskilde, Denmark
| | - Lise Marie Frohn
- Department of Environmental Science, Aarhus University of Copenhagen, Roskilde, Denmark
| | - Jibran Khan
- Department of Environmental Science, Aarhus University of Copenhagen, Roskilde, Denmark; Department of Public Health, Section of Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University of Copenhagen, Roskilde, Denmark
| | - Susanne Brix
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Morten A Rasmussen
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark; Department of Food Science, Roskilde, Denmark
| | - Jakob Stokholm
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark; Department of Food Science, Roskilde, Denmark
| | - Bo Chawes
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Andreanne Morin
- Department of Human Genetics, University of Copenhagen, Copenhagen, Denmark
| | - Carole Ober
- Department of Human Genetics, University of Copenhagen, Copenhagen, Denmark
| | - Hans Bisgaard
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Marie Pedersen
- Department of Public Health, Section of Epidemiology, University of Copenhagen, Copenhagen, Denmark
| | - Klaus Bønnelykke
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
25
|
Feng S, Huang F, Zhang Y, Feng Y, Zhang Y, Cao Y, Wang X. The pathophysiological and molecular mechanisms of atmospheric PM 2.5 affecting cardiovascular health: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114444. [PMID: 38321663 DOI: 10.1016/j.ecoenv.2022.114444] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 02/08/2024]
Abstract
BACKGROUND Exposure to ambient fine particulate matter (PM2.5, with aerodynamic diameter less than 2.5 µm) is a leading environmental risk factor for global cardiovascular health concern. OBJECTIVE To provide a roadmap for those new to this field, we reviewed the new insights into the pathophysiological and cellular/molecular mechanisms of PM2.5 responsible for cardiovascular health. MAIN FINDINGS PM2.5 is able to disrupt multiple physiological barriers integrity and translocate into the systemic circulation and get access to a range of secondary target organs. An ever-growing body of epidemiological and controlled exposure studies has evidenced a causal relationship between PM2.5 exposure and cardiovascular morbidity and mortality. A variety of cellular and molecular biology mechanisms responsible for the detrimental cardiovascular outcomes attributable to PM2.5 exposure have been described, including metabolic activation, oxidative stress, genotoxicity, inflammation, dysregulation of Ca2+ signaling, disturbance of autophagy, and induction of apoptosis, by which PM2.5 exposure impacts the functions and fates of multiple target cells in cardiovascular system or related organs and further alters a series of pathophysiological processes, such as cardiac autonomic nervous system imbalance, increasing blood pressure, metabolic disorder, accelerated atherosclerosis and plaque vulnerability, platelet aggregation and thrombosis, and disruption in cardiac structure and function, ultimately leading to cardiovascular events and death. Therein, oxidative stress and inflammation were suggested to play pivotal roles in those pathophysiological processes. CONCLUSION Those biology mechanisms have deepen insights into the etiology, course, prevention and treatment of this public health concern, although the underlying mechanisms have not yet been entirely clarified.
Collapse
Affiliation(s)
- Shaolong Feng
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China; Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China; The State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Fangfang Huang
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Yuqi Zhang
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Yashi Feng
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Ying Zhang
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Yunchang Cao
- The Department of Molecular Biology, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, China
| | - Xinming Wang
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China; The State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
26
|
Schrott R, Song A, Ladd-Acosta C. Epigenetics as a Biomarker for Early-Life Environmental Exposure. Curr Environ Health Rep 2022; 9:604-624. [PMID: 35907133 DOI: 10.1007/s40572-022-00373-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW There is interest in evaluating the developmental origins of health and disease (DOHaD) which emphasizes the role of prenatal and early-life environments on non-communicable health outcomes throughout the life course. The ability to rigorously assess and identify early-life risk factors for later health outcomes, including those with childhood onset, in large population samples is often limited due to measurement challenges such as impractical costs associated with prospective studies with a long follow-up duration, short half-lives for some environmental toxicants, and lack of biomarkers that capture inter-individual differences in biologic response to external environments. RECENT FINDINGS Epigenomic patterns, and DNA methylation in particular, have emerged as a potential objective biomarker to address some of these study design and exposure measurement challenges. In this article, we summarize the literature to date on epigenetic changes associated with specific prenatal and early-life exposure domains as well as exposure mixtures in human observational studies and their biomarker potential. Additionally, we highlight evidence for other types of epigenetic patterns to serve as exposure biomarkers. Evidence strongly supports epigenomic biomarkers of exposure that are detectable across the lifespan and across a range of exposure domains. Current and future areas of research in this field seek to expand these lines of evidence to other environmental exposures, to determine their specificity, and to develop predictive algorithms and methylation scores that can be used to evaluate early-life risk factors for health outcomes across the life span.
Collapse
Affiliation(s)
- Rose Schrott
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ashley Song
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Christine Ladd-Acosta
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
27
|
Fang J, Gao Y, Zhang M, Jiang Q, Chen C, Gao X, Liu Y, Dong H, Tang S, Li T, Shi X. Personal PM 2.5 Elemental Components, Decline of Lung Function, and the Role of DNA Methylation on Inflammation-Related Genes in Older Adults: Results and Implications of the BAPE Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15990-16000. [PMID: 36214782 DOI: 10.1021/acs.est.2c04972] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Epidemiological evidence of the effects of PM2.5 elements on lung function and DNA methylation is limited. We conducted a longitudinal panel study of 76 healthy older adults aged 60-69 years in Jinan, China, from September 2018 to January 2019. We periodically measured individual 72 h PM2.5 and element concentrations, lung function, and DNA methylation levels of eight inflammation-related genes. We used linear mixed-effect models to investigate the effects of exposure to personal PM2.5 elements on the lung function and DNA methylation. Mediation analysis was used to investigate the underlying effect mechanism. Negative changes in the ratio of forced expiratory volume in 1 s to forced vital capacity, ranging from -1.23% [95% confidence interval (CI): -2.11%, -0.35%] to -0.77% (95% CI: -1.49%, -0.04%), were significantly associated with interquartile range (IQR) increases in personal PM2.5 at different lag periods (7-12, 13-24, 25-48, 0-24, 0-48, and 0-72 h). Arsenic (As), nickel, rubidium (Rb), selenium, and vanadium were significantly associated with at least three lung function parameters, and IQR increases in these elements led to 0.12-5.66% reductions in these parameters. PM2.5 elements were significantly associated with DNA methylation levels. DNA methylation mediated 7.28-13.02% of the As- and Rb-related reduced lung function. The findings indicate that exposure to elements in personal PM2.5 contributes to reduced lung function through DNA methylation.
Collapse
Affiliation(s)
- Jianlong Fang
- China CDC Key Laboratory of Environment and Human Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Ying Gao
- China CDC Key Laboratory of Environment and Human Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Meiyun Zhang
- Chaoyang District Center for Disease Control and Prevention, Beijing 100021, China
| | - Qizheng Jiang
- China CDC Key Laboratory of Environment and Human Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Chen Chen
- China CDC Key Laboratory of Environment and Human Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xu Gao
- School of Public Health, Peking University, Beijing 100191, China
| | - Yuanyuan Liu
- China CDC Key Laboratory of Environment and Human Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Haoran Dong
- China CDC Key Laboratory of Environment and Human Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Song Tang
- China CDC Key Laboratory of Environment and Human Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Tiantian Li
- China CDC Key Laboratory of Environment and Human Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Human Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
28
|
DeFlorio-Barker S, Zelasky S, Park K, Lobdell DT, Stone SL, Rappazzo KM. Are the adverse health effects of air pollution modified among active children and adolescents? A review of the literature. Prev Med 2022; 164:107306. [PMID: 36244521 PMCID: PMC10116489 DOI: 10.1016/j.ypmed.2022.107306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2022]
Abstract
Air pollution exposure is associated with negative health consequences among children and adolescents. Physical activity is recommended for all children/adolescents due to benefits to health and development. However, it is unclear if physically active children have additional protective benefits when exposed to higher levels of air pollution, compared to less active children. This systematic review evaluates all available literature since 2000 and examines if effect measure modification (EMM) exists between air pollution exposure and health outcomes among children/adolescents partaking in regular physical activity. PubMed, Science Direct, Scopus, Web of Science, and ProQuest Agricultural & Environmental Science databases were queried, identifying 2686 articles. Title/abstract screening and full-text review eliminated 2620 articles, and 56 articles were removed for evaluating individuals >21, leaving 10 articles for review. Of the included articles, half were conducted in China, three in the United States, and one each in Indonesia and Germany. Seven articles identified EMM between active children and air-pollution related health outcomes. Five of these indicated that children/adolescents do not experience any additional benefits from being physically active in higher levels of air pollution, with some studies implying active children may experience additional detriments, compared to less active children. However, the remaining two EMM studies highlighted modest benefits of having a higher activity level, even in polluted air. Overall, active children/adolescents may be at greater risk from air pollution exposure, but results were not consistent across all studies. Future studies assessing the intersection between air pollution and regular physical activity among children would be useful.
Collapse
Affiliation(s)
- Stephanie DeFlorio-Barker
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA.
| | - Sarah Zelasky
- Oak Ridge Associated Universities (ORAU), Oak Ridge, TN, USA
| | - Kevin Park
- Oak Ridge Associated Universities (ORAU), Oak Ridge, TN, USA
| | - Danelle T Lobdell
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Susan L Stone
- Office of Air Quality Planning and Standards, Office of Air and Radiation, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Kristen M Rappazzo
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
29
|
Stapelberg NJC, Branjerdporn G, Adhikary S, Johnson S, Ashton K, Headrick J. Environmental Stressors and the PINE Network: Can Physical Environmental Stressors Drive Long-Term Physical and Mental Health Risks? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13226. [PMID: 36293807 PMCID: PMC9603079 DOI: 10.3390/ijerph192013226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Both psychosocial and physical environmental stressors have been linked to chronic mental health and chronic medical conditions. The psycho-immune-neuroendocrine (PINE) network details metabolomic pathways which are responsive to varied stressors and link chronic medical conditions with mental disorders, such as major depressive disorder via a network of pathophysiological pathways. The primary objective of this review is to explore evidence of relationships between airborne particulate matter (PM, as a concrete example of a physical environmental stressor), the PINE network and chronic non-communicable diseases (NCDs), including mental health sequelae, with a view to supporting the assertion that physical environmental stressors (not only psychosocial stressors) disrupt the PINE network, leading to NCDs. Biological links have been established between PM exposure, key sub-networks of the PINE model and mental health sequelae, suggesting that in theory, long-term mental health impacts of PM exposure may exist, driven by the disruption of these biological networks. This disruption could trans-generationally influence health; however, long-term studies and information on chronic outcomes following acute exposure event are still lacking, limiting what is currently known beyond the acute exposure and all-cause mortality. More empirical evidence is needed, especially to link long-term mental health sequelae to PM exposure, arising from PINE pathophysiology. Relationships between physical and psychosocial stressors, and especially the concept of such stressors acting together to impact on PINE network function, leading to linked NCDs, evokes the concept of syndemics, and these are discussed in the context of the PINE network.
Collapse
Affiliation(s)
- Nicolas J. C. Stapelberg
- Gold Coast Hospital and Health Service, Gold Coast, QLD 4215, Australia
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD 4226, Australia
| | - Grace Branjerdporn
- Gold Coast Hospital and Health Service, Gold Coast, QLD 4215, Australia
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD 4226, Australia
| | - Sam Adhikary
- Mater Young Adult Health Centre, Mater Hospital, Brisbane, QID 4101, Australia
| | - Susannah Johnson
- Gold Coast Hospital and Health Service, Gold Coast, QLD 4215, Australia
| | - Kevin Ashton
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD 4226, Australia
| | - John Headrick
- School of Medical Science, Griffith University, Gold Coast, QID 4215, Australia
| |
Collapse
|
30
|
Parikh MN, Brokamp C, Rasnick E, Ding L, Mersha TB, Bowers K, Folger AT. Epigenome-wide association of neonatal methylation and trimester-specific prenatal PM 2.5 exposure. Environ Epidemiol 2022; 6:e227. [PMID: 36249271 PMCID: PMC9556110 DOI: 10.1097/ee9.0000000000000227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/26/2022] [Indexed: 11/07/2022] Open
Abstract
Exposure to particulate matter with an aerodynamic diameter smaller than 2.5 microns (PM2.5) can affect birth outcomes through physiological pathways such as inflammation. One potential way PM2.5 affects physiology could be through altering DNA methylation (DNAm). Considering that exposures during specific windows of gestation may have unique effects on DNAm, we hypothesized a timing-specific association between PM2.5 exposure during pregnancy and DNAm in the neonatal epithelial-cell epigenome. Methods After collecting salivary samples from a cohort of 91 neonates, DNAm was assessed at over 850,000 cytosine-guanine dinucleotide (CpG) methylation sites on the epigenome using the MethylationEPIC array. Daily ambient PM2.5 concentrations were estimated based on the mother's address of primary residence during pregnancy. PM2.5 was averaged over the first two trimesters, separately and combined, and tested for association with DNAm through an epigenome-wide association (EWA) analysis. For each EWA, false discovery rate (FDR)-corrected P < 0.05 constituted a significant finding and every CpG site with uncorrected P < 0.0001 was selected to undergo pathway and network analysis to identify molecular functions enriched by them. Results Our analysis showed that cg18705808 was associated with the combined average of PM2.5. Pathway and network analysis revealed little similarity between the first two trimesters. Previous studies reported that TMEM184A, the gene regulated by cg18705808, has a putative role in inflammatory pathways. Conclusions The differences in pathway and network analyses could potentially indicate trimester-specific effects of PM2.5 on DNAm. Further analysis with greater temporal resolution would be valuable to fully characterize the effect of PM2.5 on DNAm and child development.
Collapse
Affiliation(s)
- Milan N. Parikh
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Cole Brokamp
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Erika Rasnick
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Lili Ding
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Tesfaye B. Mersha
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Katherine Bowers
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Alonzo T. Folger
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
31
|
Tuazon JA, Kilburg-Basnyat B, Oldfield LM, Wiscovitch-Russo R, Dunigan-Russell K, Fedulov AV, Oestreich KJ, Gowdy KM. Emerging Insights into the Impact of Air Pollution on Immune-Mediated Asthma Pathogenesis. Curr Allergy Asthma Rep 2022; 22:77-92. [PMID: 35394608 PMCID: PMC9246904 DOI: 10.1007/s11882-022-01034-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Increases in ambient levels of air pollutants have been linked to lung inflammation and remodeling, processes that lead to the development and exacerbation of allergic asthma. Conventional research has focused on the role of CD4+ T helper 2 (TH2) cells in the pathogenesis of air pollution-induced asthma. However, much work in the past decade has uncovered an array of air pollution-induced non-TH2 immune mechanisms that contribute to allergic airway inflammation and disease. RECENT FINDINGS In this article, we review current research demonstrating the connection between common air pollutants and their downstream effects on non-TH2 immune responses emerging as key players in asthma, including PRRs, ILCs, and non-TH2 T cell subsets. We also discuss the proposed mechanisms by which air pollution increases immune-mediated asthma risk, including pre-existing genetic risk, epigenetic alterations in immune cells, and perturbation of the composition and function of the lung and gut microbiomes. Together, these studies reveal the multifaceted impacts of various air pollutants on innate and adaptive immune functions via genetic, epigenetic, and microbiome-based mechanisms that facilitate the induction and worsening of asthma.
Collapse
Affiliation(s)
- J A Tuazon
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Medical Scientist Training Program, The Ohio State University, Columbus, OH, 43210, USA
| | - B Kilburg-Basnyat
- Department of Pharmacology and Toxicology, East Carolina University, Greenville, NC, 27858, USA
| | - L M Oldfield
- Department of Synthetic Biology and Bioenergy, J. Craig Venter Institute, Rockville, MD, 20850, USA
- Department of Synthetic Genomics, Replay Holdings LLC, San Diego, 92121, USA
| | - R Wiscovitch-Russo
- Department of Synthetic Biology and Bioenergy, J. Craig Venter Institute, Rockville, MD, 20850, USA
| | - K Dunigan-Russell
- Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH, 43210, USA
| | - A V Fedulov
- Division of Surgical Research, Department of Surgery, Alpert Medical School, Brown University, Rhode Island Hospital, Providence, RI, 02903, USA
| | - K J Oestreich
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University, The James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - K M Gowdy
- Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH, 43210, USA.
| |
Collapse
|
32
|
Keswani A, Akselrod H, Anenberg SC. Health and Clinical Impacts of Air Pollution and Linkages with Climate Change. NEJM EVIDENCE 2022; 1:EVIDra2200068. [PMID: 38319260 DOI: 10.1056/evidra2200068] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Air Pollution Impacts and Climate Change LinksAs part of the NEJM Group series on climate change, Keswani and colleagues review the linkages between climate change and air pollution and suggest strategies that clinicians may use to mitigate the adverse health impacts of air pollution.
Collapse
Affiliation(s)
- Anjeni Keswani
- Division of Allergy/Immunology, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Hana Akselrod
- Division of Infectious Diseases, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Susan C Anenberg
- George Washington University Milken Institute School of Public Health, Washington, DC
| |
Collapse
|
33
|
Affiliation(s)
- Frederica Perera
- From the Department of Environmental Health Sciences and Columbia Center for Children's Environmental Health, Columbia University, New York (F.P.); and the Departments of Medicine, Pediatrics, Otolaryngology, and Epidemiology and Population Health, Stanford University, Stanford, CA (K.N.)
| | - Kari Nadeau
- From the Department of Environmental Health Sciences and Columbia Center for Children's Environmental Health, Columbia University, New York (F.P.); and the Departments of Medicine, Pediatrics, Otolaryngology, and Epidemiology and Population Health, Stanford University, Stanford, CA (K.N.)
| |
Collapse
|
34
|
Chin WS, Pan SC, Huang CC, Chen YC, Hsu CY, Lin P, Chen PC, Guo YL. Proximity to petrochemical industrial parks and risk of chronic glomerulonephritis. ENVIRONMENTAL RESEARCH 2022; 208:112700. [PMID: 35016869 DOI: 10.1016/j.envres.2022.112700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/13/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
This study determined whether individuals residing near petrochemical industrial parks (PIPs) have a higher risk of chronic glomerulonephritis (CGN). We performed population-based 1:4 case-control study by using Taiwan's National Health Insurance Research Database from 2000 to 2016. The subjects were aged 20-65 years, residing in western Taiwan, and did not have a history of any renal or urinary system disease in 2000. The case cohort included those who had at least three outpatient visits or one hospitalization between 2001 and 2016 with codes for CGN as per International Classification of Diseases (ICD)-Ninth and Tenth Revisions. Controls were randomly sampled age-, sex-, and urbanization-matched individuals without renal and urinary system diseases. Petrochemical exposure was evaluated by the distance to the nearest PIP of the residential township, and petrochemical exposure probability was examined considering the monthly prevailing wind direction. Conditional logistic regression was used to determine the association between petrochemical exposure and CGN risk. A total of 320,935 subjects were included in the final analysis (64,187 cases and 256,748 controls). After adjustment for potential confounders, living in townships within a 3-km radius of PIPs was associated with a higher risk of CGN (adjusted odds ratio [aOR] = 1.32, 95% confidence interval [CI] = 1.28-1.37). Compared with townships more than 20 km away from PIPs, those within 10 km of PIPs were associated with significantly increased risks of CGN in a dose-dependent manner. When prevailing wind was considered, townships with high exposure probability were associated with a significantly increased risk of CGN. We found that those residing near PIPs or with high petrochemical exposure probability had a higher risk of CGN. These findings highlight the need for monitoring environmental nephrotoxic substances and the renal health of residents living near PIPs.
Collapse
Affiliation(s)
- Wei-Shan Chin
- School of Nursing, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shih-Chun Pan
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Ching-Chun Huang
- Environmental and Occupational Medicine, College of Medicine, National Taiwan University and National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Cheng Chen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Chin-Yu Hsu
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City, Taiwan; Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Pinpin Lin
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Pau-Chung Chen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taiwan
| | - Yue Leon Guo
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Environmental and Occupational Medicine, College of Medicine, National Taiwan University and National Taiwan University Hospital, Taipei, Taiwan; Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taiwan.
| |
Collapse
|
35
|
Shivanna KR. Climate change and its impact on biodiversity and human welfare. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2022. [PMCID: PMC9058818 DOI: 10.1007/s43538-022-00073-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- K. R. Shivanna
- Ashoka Trust for Research in Ecology and the Environment, Srirampura, Jakkur Post, Bengaluru, 560064 India
| |
Collapse
|
36
|
Toe S, Nagy M, Albar Z, Yu J, Sattar A, Nazzinda R, Musiime V, Etajak S, Walyawula F, McComsey GA, Atuyambe LM, Dirajlal-Fargo S. Ambient air pollution is associated with vascular disease in Ugandan HIV-positive adolescents. AIDS 2022; 36:863-870. [PMID: 35131961 PMCID: PMC9081159 DOI: 10.1097/qad.0000000000003186] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE In this study, we aim to investigate the relationship between particulate matter, a common proxy indicator for air pollution, and markers of inflammation, monocyte activation, and subclinical vascular disease. DESIGN A cross-sectional study. METHODS Adolescents with perinatally acquired HIV (PHIV) and HIV-uninfected adolescents between 10 and 18years living near Kampala, Uganda were included. Daily ambient concentrations of particulate matter (PM2.5) were measured from the Eastern Arica GEOHealth Hub. Outcome variables measured were carotid intima-media thickness (IMT), as well as plasma markers of systemic inflammation, oxidized lipids, and gut integrity. Multivariable quantile regression models were used to explore the relationship between PM2.5 and IMT. RESULTS One hundred and nineteen participants (69 PHIV, 50 HIV-uninfected) were included. The median (Q1, Q3) age was 12.7 (11.4,14.2) years, 55% were girls. Median daily PM2.5 exposure was 29.08 μg/m3 (23.40, 41.70). There was no significant difference in exposure of PM2.5 between groups (P = 0.073). PM2.5 significantly correlated with intestinal permeability (zonulin; r = 0.43, P < 0.001), monocyte activation (soluble CD163: r = 0.25, P = 0.053), and IMT (r = 0.35, P = 0.004) in PHIV but not in HIV-uninfected (P ≥ 0.05). In multivariable quantile regression, after adjusting for age, sex, poverty level, soluble CD163, and zonulin, daily PM2.5 concentrations remained associated with IMT [β = 0.005, 95% CI (0.0003-0.010), P = 0.037] in adolescents with PHIV. CONCLUSION Adolescents in urban Uganda are exposed to high levels of air pollution. Both PM2.5 and HIV have independently been observed to contribute to atherosclerotic disease, and our findings suggest the combined effects of HIV and air pollution may amplify the development of cardiovascular disease.
Collapse
Affiliation(s)
- Sophia Toe
- Case Western Reserve University, Cleveland, Ohio, USA
| | - Matthew Nagy
- Case Western Reserve University, Cleveland, Ohio, USA
| | - Zainab Albar
- Case Western Reserve University, Cleveland, Ohio, USA
| | - Jiao Yu
- Case Western Reserve University, Cleveland, Ohio, USA
| | - Abdus Sattar
- Case Western Reserve University, Cleveland, Ohio, USA
| | | | - Victor Musiime
- Joint Clinical Research Center
- Department of Paediatrics and Child Health, Makerere University, School of Medicine
| | - Samuel Etajak
- Department of Disease Control and Environmental Health
- The Eastern Africa GEOHealth Hub-Uganda, Makerere University School of Public Health Kampala, Uganda
| | - Felix Walyawula
- Department of Disease Control and Environmental Health
- The Eastern Africa GEOHealth Hub-Uganda, Makerere University School of Public Health Kampala, Uganda
| | - Grace A McComsey
- Case Western Reserve University, Cleveland, Ohio, USA
- University Hospitals, Cleveland Medical Center
- Rainbow Babies and Children's Hospitals, Cleveland, Ohio, USA
| | - Lynn M Atuyambe
- Department of Community Health and Behavioural Sciences
- The Eastern Africa GEOHealth Hub-Uganda, Makerere University School of Public Health Kampala, Uganda
| | - Sahera Dirajlal-Fargo
- Case Western Reserve University, Cleveland, Ohio, USA
- University Hospitals, Cleveland Medical Center
- Rainbow Babies and Children's Hospitals, Cleveland, Ohio, USA
| |
Collapse
|
37
|
Agache I, Sampath V, Aguilera J, Akdis CA, Akdis M, Barry M, Bouagnon A, Chinthrajah S, Collins W, Dulitzki C, Erny B, Gomez J, Goshua A, Jutel M, Kizer KW, Kline O, LaBeaud AD, Pali-Schöll I, Perrett KP, Peters RL, Plaza MP, Prunicki M, Sack T, Salas RN, Sindher SB, Sokolow SH, Thiel C, Veidis E, Wray BD, Traidl-Hoffmann C, Witt C, Nadeau KC. Climate change and global health: A call to more research and more action. Allergy 2022; 77:1389-1407. [PMID: 35073410 DOI: 10.1111/all.15229] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 12/15/2022]
Abstract
There is increasing understanding, globally, that climate change and increased pollution will have a profound and mostly harmful effect on human health. This review brings together international experts to describe both the direct (such as heat waves) and indirect (such as vector-borne disease incidence) health impacts of climate change. These impacts vary depending on vulnerability (i.e., existing diseases) and the international, economic, political, and environmental context. This unique review also expands on these issues to address a third category of potential longer-term impacts on global health: famine, population dislocation, and environmental justice and education. This scholarly resource explores these issues fully, linking them to global health in urban and rural settings in developed and developing countries. The review finishes with a practical discussion of action that health professionals around the world in our field can yet take.
Collapse
Affiliation(s)
- Ioana Agache
- Faculty of Medicine, Transylvania University, Brasov, Romania
| | - Vanitha Sampath
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Stanford, California, USA
| | - Juan Aguilera
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Stanford, California, USA
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University Zurich, Davos, Switzerland
| | - Mubeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University Zurich, Davos, Switzerland
| | - Michele Barry
- Center for Innovation in Global Health, Stanford University, Stanford, California, USA
| | - Aude Bouagnon
- Department of Physiology, University of California San Francisco, San Francisco, California, USA
| | - Sharon Chinthrajah
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Stanford, California, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - William Collins
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Stanford, California, USA
- Division of Hospital Medicine, Stanford University, Stanford, California, USA
| | - Coby Dulitzki
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Stanford, California, USA
| | - Barbara Erny
- Department of Internal Medicine, Division of Med/Pulmonary and Critical Care Medicine, Stanford University, Stanford, California, USA
| | - Jason Gomez
- Stanford School of Medicine, Stanford, California, USA
- Stanford Graduate School of Business, Stanford, California, USA
| | - Anna Goshua
- Stanford School of Medicine, Stanford, California, USA
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
- "ALL-MED" Medical Research Institute, Wroclaw, Poland
| | | | - Olivia Kline
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Stanford, California, USA
| | - A Desiree LaBeaud
- Department of Pediatrics, Division of Infectious Disease, Stanford University, Stanford, California, USA
| | - Isabella Pali-Schöll
- Comparative Medicine, Interuniversity Messerli Research Institute, University of Veterinary Medicine/Medical University/University Vienna, Vienna, Austria
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Immunology and Infectiology, Medical University of Vienna, Vienna, Austria
| | - Kirsten P Perrett
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Pediatrics, University of Melbourne, Parkville, Victoria, Australia
- Royal Children's Hospital, Parkville, Victoria, Australia
| | - Rachel L Peters
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Pediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Maria Pilar Plaza
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
- Institute of Environmental Medicine, Helmholtz Center Munich, German Research Center for Environmental Health, Augsburg, Germany
| | - Mary Prunicki
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Stanford, California, USA
| | - Todd Sack
- My Green Doctor Foundation, Jacksonville, Florida, USA
| | - Renee N Salas
- Harvard Global Health Institute, Cambridge, Massachusetts, USA
- Center for Climate, Health, and the Global Environment, Harvard T H Chan School of Public Health, Boston, Massachusetts, USA
| | - Sayantani B Sindher
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Stanford, California, USA
| | - Susanne H Sokolow
- Woods Institute for the Environment, Stanford University, Stanford, California, USA
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, California, USA
| | - Cassandra Thiel
- Department of Population Health, NYU Grossman School of Medicine, NY, USA
| | - Erika Veidis
- Center for Innovation in Global Health, Stanford University, Stanford, California, USA
| | - Brittany Delmoro Wray
- Center for Innovation in Global Health, Stanford University, Stanford, California, USA
- Woods Institute for the Environment, Stanford University, Stanford, California, USA
- London School of Hygiene and Tropical Medicine Centre on Climate Change and Planetary Health, London, UK
| | - Claudia Traidl-Hoffmann
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
- Institute of Environmental Medicine, Helmholtz Center Munich, German Research Center for Environmental Health, Augsburg, Germany
- Christine Kühne Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Christian Witt
- Institute of Physiology, Division of Pneumology, Charité-Universitätsmedizin, Berlin, Germany
| | - Kari C Nadeau
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Stanford, California, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
38
|
Aguilera J, Han X, Cao S, Balmes J, Lurmann F, Tyner T, Lutzker L, Noth E, Hammond SK, Sampath V, Burt T, Utz PJ, Khatri P, Aghaeepour N, Maecker H, Prunicki M, Nadeau K. Increases in ambient air pollutants during pregnancy are linked to increases in methylation of IL4, IL10, and IFNγ. Clin Epigenetics 2022; 14:40. [PMID: 35287715 PMCID: PMC8919561 DOI: 10.1186/s13148-022-01254-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ambient air pollutant (AAP) exposure is associated with adverse pregnancy outcomes, such as preeclampsia, preterm labor, and low birth weight. Previous studies have shown methylation of immune genes associate with exposure to air pollutants in pregnant women, but the cell-mediated response in the context of typical pregnancy cell alterations has not been investigated. Pregnancy causes attenuation in cell-mediated immunity with alterations in the Th1/Th2/Th17/Treg environment, contributing to maternal susceptibility. We recruited women (n = 186) who were 20 weeks pregnant from Fresno, CA, an area with chronically elevated AAP levels. Associations of average pollution concentration estimates for 1 week, 1 month, 3 months, and 6 months prior to blood draw were associated with Th cell subset (Th1, Th2, Th17, and Treg) percentages and methylation of CpG sites (IL4, IL10, IFNγ, and FoxP3). Linear regression models were adjusted for weight, age, season, race, and asthma, using a Q value as the false-discovery-rate-adjusted p-value across all genes. RESULTS Short-term and mid-term AAP exposures to fine particulate matter (PM2.5), nitrogen dioxide (NO2) carbon monoxide (CO), and polycyclic aromatic hydrocarbons (PAH456) were associated with percentages of immune cells. A decrease in Th1 cell percentage was negatively associated with PM2.5 (1 mo/3 mo: Q < 0.05), NO2 (1 mo/3 mo/6 mo: Q < 0.05), and PAH456 (1 week/1 mo/3 mo: Q < 0.05). Th2 cell percentages were negatively associated with PM2.5 (1 week/1 mo/3 mo/6 mo: Q < 0.06), and NO2 (1 week/1 mo/3 mo/6 mo: Q < 0.06). Th17 cell percentage was negatively associated with NO2 (3 mo/6 mo: Q < 0.01), CO (1 week/1 mo: Q < 0.1), PM2.5 (3 mo/6 mo: Q < 0.05), and PAH456 (1 mo/3 mo/6 mo: Q < 0.08). Methylation of the IL10 gene was positively associated with CO (1 week/1 mo/3 mo: Q < 0.01), NO2 (1 mo/3 mo/6 mo: Q < 0.08), PAH456 (1 week/1 mo/3 mo: Q < 0.01), and PM2.5 (3 mo: Q = 0.06) while IL4 gene methylation was positively associated with concentrations of CO (1 week/1 mo/3 mo/6 mo: Q < 0.09). Also, IFNγ gene methylation was positively associated with CO (1 week/1 mo/3 mo: Q < 0.05) and PAH456 (1 week/1 mo/3 mo: Q < 0.06). CONCLUSION Exposure to several AAPs was negatively associated with T-helper subsets involved in pro-inflammatory and anti-inflammatory responses during pregnancy. Methylation of IL4, IL10, and IFNγ genes with pollution exposure confirms previous research. These results offer insights into the detrimental effects of air pollution during pregnancy, the demand for more epigenetic studies, and mitigation strategies to decrease pollution exposure during pregnancy.
Collapse
Affiliation(s)
- Juan Aguilera
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, 240 Pasteur, Stanford, CA, 94305, USA
| | - Xiaorui Han
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, 240 Pasteur, Stanford, CA, 94305, USA
| | - Shu Cao
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, 240 Pasteur, Stanford, CA, 94305, USA
| | - John Balmes
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | | | - Tim Tyner
- University of California, San Francisco-Fresno, Fresno, CA, USA
- Central California Asthma Collaborative, Fresno, USA
| | - Liza Lutzker
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Elizabeth Noth
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - S Katharine Hammond
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Vanitha Sampath
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, 240 Pasteur, Stanford, CA, 94305, USA
| | - Trevor Burt
- Department of Pediatrics, Division of Neonatology and the Translating Duke Health Children's Health and Discovery Initiative, Duke University School of Medicine, 701 W Main St., Chesterfield Building, Suite 510, Durham, NC, 27701, USA
| | - P J Utz
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford University, 291 Campus Drive, Stanford, CA, 94305, USA
| | - Purvesh Khatri
- Center for Biomedical Informatics, Department of Medicine, Stanford University School of Medicine, Stanford University, 291 Campus Drive, Stanford, CA, 94305, USA
| | - Nima Aghaeepour
- Departments of Biomedical Data Sciences, Stanford University, 291 Campus Drive, Stanford, CA, 94305, USA
| | - Holden Maecker
- Institute for Immunity, Transplantation and Infection, Stanford University, 291 Campus Drive, Stanford, CA, 94305, USA
| | - Mary Prunicki
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, 240 Pasteur, Stanford, CA, 94305, USA
| | - Kari Nadeau
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, 240 Pasteur, Stanford, CA, 94305, USA.
| |
Collapse
|
39
|
Urrutia-Pereira M, Guidos-Fogelbach G, Solé D. Climate changes, air pollution and allergic diseases in childhood and adolescence. J Pediatr (Rio J) 2022; 98 Suppl 1:S47-S54. [PMID: 34896064 PMCID: PMC9510908 DOI: 10.1016/j.jped.2021.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE To analyze the impacts of climate change on the development of immature respiratory and immune systems in children. SOURCE OF DATA The authors of the present study performed a non-systematic review of English, Spanish, and Portuguese articles published in the last five years in databases such as PubMed, EMBASE, and SciELO. The terms used were air pollution OR climate changes OR smoke, AND children OR health. SYNTHESIS OF DATA The increase in the prevalence of some diseases, such as allergic ones, is attributed to the interactions between genetic potential and the environment. However, disordered growth combined with inadequate waste management has caused problems for the planet, such as heatwaves, droughts, forest fires, increased storms and floods, interference in food crops and their nutritional values, changes in the infectious disease pattern, and air pollution resulting from the continuous use of fossil fuels. Children, beings still in the development stage with immature respiratory and immune systems, are the primary victims of the climate crisis. CONCLUSIONS The authors documented that prenatal and postnatal exposure to ambient air pollutants will accelerate or worsen the morbidity and mortality of many health conditions, including allergic diseases. Ambient air pollutants change the microbiota, interfere with the immune response, and take direct action on the skin and respiratory epithelium, which facilitates the penetration of allergens. Understanding how the children and adolescent health and well-being are affected by climate change is an urgent matter.
Collapse
Affiliation(s)
| | - Guillermo Guidos-Fogelbach
- Instituto Politécnico Nacional, Escuela Nacional de Medicina y Homeopatía, Postgraduate Department, Mexico City, Mexico
| | - Dirceu Solé
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Pediatria, Divisão de Alergia, Imunologia Clínica e Reumatologia, São Paulo, SP, Brazil.
| |
Collapse
|
40
|
The Micro-Immunotherapy Medicine 2LEID Exhibits an Immunostimulant Effect by Boosting Both Innate and Adaptive Immune Responses. Int J Mol Sci 2021; 23:ijms23010110. [PMID: 35008536 PMCID: PMC8744989 DOI: 10.3390/ijms23010110] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/20/2022] Open
Abstract
This study aimed at evaluating the effects of the micro-immunotherapy medicine (MIM) 2LEID, both in vitro and in vivo, on several components of the innate and adaptive immune system. MIM increased the phagocytic activity of macrophages, and it augmented the expression of the activation markers CD69 and HLA-DR in NK cells and monocytes/macrophages, respectively. The effect of MIM was evaluated in a model of respiratory infection induced by influenza A virus administration to immunocompetent mice in which it was able to improve neutrophil recruitment within the lungs (p = 0.1051) and slightly increased the circulating levels of IgM (p = 0.1655). Furthermore, MIM stimulated the proliferation of CD3-primed T lymphocytes and decreased the secretion of the immunosuppressive cytokine IL-10 in CD14+-derived macrophages. Human umbilical vein endothelial cells were finally used to explore the effect of MIM on endothelial cells, in which it slightly increased the expression of immune-related markers such as HLA-I, CD137L, GITRL, PD-L1 and ICAM-1. In conclusion, the present study suggests that MIM might be a promising nonspecific (without antigen specificity) immunostimulant drug in preventing and early treating respiratory infections, but not only exclusively, as it would gently support several facets of the immune system and host defenses.
Collapse
|
41
|
Geographic Location Determines Differentially Methylated Gene Expressions in Autoimmune Diseases. IMMUNO 2021. [DOI: 10.3390/immuno1040037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Further observations support the role of environmental factors in autoimmune diseases via the alteration of the epigenetic machinery. In this context, ultraviolet light, smoking, chemicals, and psychological stress have been described as likely examples of this phenomenon. For this study, we took advantage of the PRECISESADS IMI project, which gathered joint data from 2500 individuals with systemic autoimmune diseases, including systemic lupus erythematosus (SLE), systemic sclerosis (SSc), primary Sjögren’s syndrome (pSS), rheumatoid arthritis (RA), primary antiphospholipid syndrome (PAPS), and mixed connective tissue disease (MCTD), and aimed to determine such epigenetic modifications in SLE, SSc, pSS, and RA patients. Here, we performed a set of measures in several countries from the north and south of Europe. We observed that autoimmune patients from the north of Europe presented a higher hypomethylated profile associated with an increased gene expression than patients from the south. These genes were associated with interferon (IFN) pathways, immunity, and the pathways associated with cellular metabolism. Since the IFN scores were increased in this population, these patients presented a more inflammatory profile. To conclude, the geographical location of patients with autoimmune diseases has an impact on DNA methylation, RNA expression, and immunological profiles.
Collapse
|
42
|
Pacheco SE, Guidos G, Annesi-Maesano I, Pawankar R, Amato GD, Latour-Staffeld P, Urrutia-Pereira M, Kesic MJ, Hernandez ML. Climate Change and Global Issues in Allergy and Immunology. J Allergy Clin Immunol 2021; 148:1366-1377. [PMID: 34688774 DOI: 10.1016/j.jaci.2021.10.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 11/17/2022]
Abstract
The steady increase in global temperatures, resulting from the combustion of fossil fuels and the accumulation of greenhouse gases (GHG), continues to destabilize all ecosystems worldwide. Although annual emissions must halve by 2030 and reach net-zero by 2050 to limit some of the most catastrophic impacts associated with a warming planet, the world's efforts to curb GHG emissions fall short of the commitments made in the 2015 Paris Agreement (1). To this effect, July 2021 was recently declared the hottest month ever recorded in 142 years (2). The ramifications of these changes on global temperatures are complex and further promote outdoor air pollution, pollen exposure, and extreme weather events. Besides worsening respiratory health, air pollution, promotes atopy and susceptibility to infections. The GHG effects on pollen affect the frequency and severity of asthma and allergic rhinitis. Changes in temperature, air pollution, and extreme weather events exert adverse multisystemic health effects and disproportionally affect disadvantaged and vulnerable populations. This article is an update for allergists and immunologists about the health impacts of climate change, already evident in our daily practices. It is also a call to action and advocacy, including integrating climate change-related mitigation, education, and adaptation measures to protect our patients and avert further injury to our planet.
Collapse
Affiliation(s)
- Susan E Pacheco
- Professor of Pediatrics, University of Texas McGovern Medical School, MSB3.228, Houston, Texas 77030.
| | - Guillermo Guidos
- Professor of Immunology, School of Medicine, ENMH, Instituto Politecnico Nacional, Mexico City
| | - Isabella Annesi-Maesano
- Deputy Director of Institute Desbrest of Epiddemioloy and Public Health, INSERM and Montpellier University, Montpellier, France
| | - Ruby Pawankar
- Professor, Division of Allergy, Dept. of Pediatrics, Nippon Medical School, Tokyo, Japan
| | - Gennaro D' Amato
- Fellow and Honorary member of EAACI, FAAAAI, FERS. , Chairman Committee World Allergy Organization on "Aerobiology, Climate change, Biodiversity and Allergy"; Division of Respiratory Diseases and Allergy, High Specialty Hospital A. Cardarelli, Naples
| | - Patricia Latour-Staffeld
- Allergy and Clinical Immunology, Distinguished Graduate Universidad Nacional Pedro Henriquez Ureña, Medical director of Centro Avanzado De Alergia y Asma Santo Domingo, President Latin American Society of Allergy, Asthma and Immunology, Associate Professor School of Medicine Universidad Nacional Pedro Henriquez Ureña, Dominican Republic
| | | | - Matthew J Kesic
- Campbell University, Physician Assistant Program, College of Pharmacy and Health Sciences, 4150 US HWY 421 South, Lillington, NC 27546
| | - Michelle L Hernandez
- Professor of Pediatrics Division of Allergy & Immunology Director, Clinical Research Unit, Children's Research Institute, UNC School of Medicine, 5008C Mary Ellen Jones Building, 116 Manning Drive, CB #7231 Chapel Hill, NC 27599-7231
| | | |
Collapse
|
43
|
Mukherjee S, Dasgupta S, Mishra PK, Chaudhury K. Air pollution-induced epigenetic changes: disease development and a possible link with hypersensitivity pneumonitis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:55981-56002. [PMID: 34498177 PMCID: PMC8425320 DOI: 10.1007/s11356-021-16056-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/16/2021] [Indexed: 05/16/2023]
Abstract
Air pollution is a serious threat to our health and has become one of the major causes of many diseases including cardiovascular disease, respiratory disease, and cancer. The association between air pollution and various diseases has long been a topic of research interest. However, it remains unclear how air pollution actually impacts health by modulating several important cellular functions. Recently, some evidence has emerged about air pollution-induced epigenetic changes, which are linked with the etiology of various human diseases. Among several epigenetic modifications, DNA methylation represents the most prominent epigenetic alteration underlying the air pollution-induced pathogenic mechanism. Several other types of epigenetic changes, such as histone modifications, miRNA, and non-coding RNA expression, have also been found to have been linked with air pollution. Hypersensitivity pneumonitis (HP), one of the most prevalent forms of interstitial lung diseases (ILDs), is triggered by the inhalation of certain organic and inorganic substances. HP is characterized by inflammation in the tissues around the lungs' airways and may lead to irreversible lung scarring over time. This review, in addition to other diseases, attempts to understand whether certain pollutants influence HP development through such epigenetic modifications.
Collapse
Affiliation(s)
- Suranjana Mukherjee
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| | - Sanjukta Dasgupta
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Pradyumna K Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, 462030, India
| | - Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| |
Collapse
|
44
|
Abstract
The impacts of wildfires on the health of children are becoming a more urgent matter as wildfires become more frequent, intense and affecting, not only forested areas, but also urban locations. It is important that medical professionals be prepared to provide information to patients and families on how to minimize the adverse health effects on children of wildfire smoke and ash from wildfires.
Collapse
|
45
|
Huntsinger L, Barry S. Grazing in California's Mediterranean Multi-Firescapes. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.715366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The California landscape is layered and multifunctional, both historically and spatially. Currently, wildfire size, frequency, and intensity are without precedent, at great cost to human health, property, and lives. We review the contemporary firescape, the indigenous landscape that shaped pre-contact California's vegetation, the post-contact landscape that led us to our current situation, and the re-imagined grazing-scape that offers potential relief. Vegetation has been profoundly altered by the loss of Indigenous management, introduction of non-native species, implantation of inappropriate, militarized, forest management from western Europe, and climate change, creating novel ecosystems almost always more susceptible to wildfire than before. Vegetation flourishes during the mild wet winters of a Mediterranean climate and dries to a crisp in hot, completely dry, summers. Livestock grazing can break up continuous fuels, reduce rangeland fuels annually, and suppress brush encroachment, yet it is not promoted by federal or state forestry and fire-fighting agencies. Agencies, especially when it comes to fire, operate largely under a command and control model, while ranchers are a diverse group not generally subject to agency regulations, with a culture of autonomy in decision-making and a unit of production that is mobile. Concerns about potential loss of control have limited prescribed burning despite landowner and manager enthusiasm. Agriculture and active management in general are much neglected as an approach to developing fire-resistant landscape configurations, yet such interventions are essential. Prescribed burning facilitates grazing; grazing facilitates prescribed burning; both can reduce fuels. Leaving nature “to itself” absent recognizing that California's ecosystems have been irrecoverably altered has become a disaster of enormous proportions. We recommend the development of a database of the effects and uses of prescribed fire and grazing in different vegetation types and regions throughout the state, and suggest linking to existing databases when possible. At present, livestock grazing is California's most widespread vegetation management activity, and if purposefully applied to fuel management has great potential to do more.
Collapse
|