1
|
Bruxel EM, Rovaris DL, Belangero SI, Chavarría-Soley G, Cuellar-Barboza AB, Martínez-Magaña JJ, Nagamatsu ST, Nievergelt CM, Núñez-Ríos DL, Ota VK, Peterson RE, Sloofman LG, Adams AM, Albino E, Alvarado AT, Andrade-Brito D, Arguello-Pascualli PY, Bandeira CE, Bau CHD, Bulik CM, Buxbaum JD, Cappi C, Corral-Frias NS, Corrales A, Corsi-Zuelli F, Crowley JJ, Cupertino RB, da Silva BS, De Almeida SS, De la Hoz JF, Forero DA, Fries GR, Gelernter J, González-Giraldo Y, Grevet EH, Grice DE, Hernández-Garayua A, Hettema JM, Ibáñez A, Ionita-Laza I, Lattig MC, Lima YC, Lin YS, López-León S, Loureiro CM, Martínez-Cerdeño V, Martínez-Levy GA, Melin K, Moreno-De-Luca D, Muniz Carvalho C, Olivares AM, Oliveira VF, Ormond R, Palmer AA, Panzenhagen AC, Passos-Bueno MR, Peng Q, Pérez-Palma E, Prieto ML, Roussos P, Sanchez-Roige S, Santamaría-García H, Shansis FM, Sharp RR, Storch EA, Tavares MEA, Tietz GE, Torres-Hernández BA, Tovo-Rodrigues L, Trelles P, Trujillo-ChiVacuan EM, Velásquez MM, Vera-Urbina F, Voloudakis G, Wegman-Ostrosky T, Zhen-Duan J, Zhou H, Santoro ML, Nicolini H, Atkinson EG, Giusti-Rodríguez P, Montalvo-Ortiz JL. Psychiatric genetics in the diverse landscape of Latin American populations. Nat Genet 2025:10.1038/s41588-025-02127-z. [PMID: 40175716 DOI: 10.1038/s41588-025-02127-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 02/14/2025] [Indexed: 04/04/2025]
Abstract
Psychiatric disorders are highly heritable and polygenic, influenced by environmental factors and often comorbid. Large-scale genome-wide association studies (GWASs) through consortium efforts have identified genetic risk loci and revealed the underlying biology of psychiatric disorders and traits. However, over 85% of psychiatric GWAS participants are of European ancestry, limiting the applicability of these findings to non-European populations. Latin America and the Caribbean, regions marked by diverse genetic admixture, distinct environments and healthcare disparities, remain critically understudied in psychiatric genomics. This threatens access to precision psychiatry, where diversity is crucial for innovation and equity. This Review evaluates the current state and advancements in psychiatric genomics within Latin America and the Caribbean, discusses the prevalence and burden of psychiatric disorders, explores contributions to psychiatric GWASs from these regions and highlights methods that account for genetic diversity. We also identify existing gaps and challenges and propose recommendations to promote equity in psychiatric genomics.
Collapse
Affiliation(s)
- Estela M Bruxel
- Department of Translational Medicine, School of Medical Sciences, University of Campinas, Campinas, Brazil
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Diego L Rovaris
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Sintia I Belangero
- Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
- Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Gabriela Chavarría-Soley
- Escuela de Biología y Centro de Investigación en Biología Celular y Molecular, Universidad de Costa Rica, San Pedro, Costa Rica
| | - Alfredo B Cuellar-Barboza
- Department of Psychiatry, School of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, México
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - José J Martínez-Magaña
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Psychiatry Division, VA Connecticut Healthcare Center, West Haven, CT, USA
| | - Sheila T Nagamatsu
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Psychiatry Division, VA Connecticut Healthcare Center, West Haven, CT, USA
| | - Caroline M Nievergelt
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Diana L Núñez-Ríos
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Psychiatry Division, VA Connecticut Healthcare Center, West Haven, CT, USA
| | - Vanessa K Ota
- Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
- Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Roseann E Peterson
- Department of Psychiatry and Behavioral Sciences, Institute for Genomics in Health, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - Laura G Sloofman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amy M Adams
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, College Station, TX, USA
| | - Elinette Albino
- School of Health Professions, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Angel T Alvarado
- Research Unit in Molecular Pharmacology and Genomic Medicine, VRI, San Ignacio de Loyola University, La Molina, Perú
| | | | - Paola Y Arguello-Pascualli
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Cibele E Bandeira
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Claiton H D Bau
- Department of Genetics, Institute of Biosciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratory of Developmental Psychiatry, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Cynthia M Bulik
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Joseph D Buxbaum
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carolina Cappi
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Alejo Corrales
- Departamento de Psiquiatría, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | - Fabiana Corsi-Zuelli
- Department of Neuroscience, Ribeirão Preto Medical School, Universidade de São Paulo, São Paulo, Brazil
| | - James J Crowley
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Renata B Cupertino
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Bruna S da Silva
- Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Suzannah S De Almeida
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Disease Neurogenomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Juan F De la Hoz
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Diego A Forero
- School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá, Colombia
| | - Gabriel R Fries
- Faillace Department of Psychiatry and Behavioral Sciences, the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Joel Gelernter
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Psychiatry Division, VA Connecticut Healthcare Center, West Haven, CT, USA
| | - Yeimy González-Giraldo
- Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| | - Eugenio H Grevet
- Department of Psychiatry and Legal Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Dorothy E Grice
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adriana Hernández-Garayua
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Psychiatry Division, VA Connecticut Healthcare Center, West Haven, CT, USA
| | - John M Hettema
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, College Station, TX, USA
| | - Agustín Ibáñez
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Iuliana Ionita-Laza
- Department of Biostatistics, Columbia University, New York, NY, USA
- Department of Statistics, Lund University, Lund, Sweden
| | | | - Yago C Lima
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Yi-Sian Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Sandra López-León
- Quantitative Safety Epidemiology, Novartis Pharma, East Hanover, NJ, USA
- Rutgers Center for Pharmacoepidemiology and Treatment Science, Rutgers University, New Brunswick, NJ, USA
| | - Camila M Loureiro
- Department of Neuroscience, Ribeirão Preto Medical School, Universidade de São Paulo, São Paulo, Brazil
| | | | - Gabriela A Martínez-Levy
- Department of Genetics, Subdirectorate of Clinical Research, National Institute of Psychiatry, México City, México
- Department of Cell and Tissular Biology, Medicine Faculty, National Autonomous University of Mexico, México City, México
| | - Kyle Melin
- School of Pharmacy, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Daniel Moreno-De-Luca
- Precision Medicine in Autism Group, Division of Child and Adolescent Psychiatry, Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Alberta Health Services, CASA Mental Health, Edmonton, Alberta, Canada
| | | | - Ana Maria Olivares
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Boston, MA, USA
| | - Victor F Oliveira
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Rafaella Ormond
- Disciplina de Biologia Molecular, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Alana C Panzenhagen
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
- Laboratório de Pesquisa Translacional em Comportamento Suicida, Universidade do Vale do Taquari, Lajeado, Brazil
| | - Maria Rita Passos-Bueno
- Departmento de Genetica e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Qian Peng
- Department of Neuroscience, the Scripps Research Institute, La Jolla, CA, USA
| | - Eduardo Pérez-Palma
- Facultad de Medicina Clínica Alemana, Centro de Genética y Genómica, Universidad del Desarrollo, Santiago, Chile
| | - Miguel L Prieto
- Mental Health Service, Clínica Universidad de los Andes, Santiago, Chile
- Department of Psychiatry, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Panos Roussos
- Center for Disease Neurogenomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sandra Sanchez-Roige
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hernando Santamaría-García
- PhD Program of Neuroscience, Pontificia Universidad Javeriana, Hospital San Ignacio, Center for Memory and Cognition, Intellectus, Bogotá, Colombia
| | - Flávio M Shansis
- Graduate Program of Medical Sciences, Universidade do Vale do Taquari, Lajeado, Brazil
- Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Rachel R Sharp
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Eric A Storch
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Maria Eduarda A Tavares
- Department of Genetics, Institute of Biosciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Grace E Tietz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | | | - Pilar Trelles
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Eva M Trujillo-ChiVacuan
- Research Department, Comenzar de Nuevo Eating Disorders Treatment Center, Monterrey, México
- Escuela de Medicina y Ciencias de la Salud Tecnológico de Monterrey, Monterrey, México
| | - Maria M Velásquez
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Fernando Vera-Urbina
- School of Pharmacy, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Georgios Voloudakis
- Center for Disease Neurogenomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Jenny Zhen-Duan
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Hang Zhou
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Psychiatry Division, VA Connecticut Healthcare Center, West Haven, CT, USA
| | - Marcos L Santoro
- Disciplina de Biologia Molecular, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Humberto Nicolini
- Laboratorio de Enfermedades Psiquiátricas, Neurodegenerativas y Adicciones, Instituto Nacional de Medicina Genómica, Mexico City, México
| | - Elizabeth G Atkinson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Center, Texas Children's Hospital, Houston, TX, USA.
| | - Paola Giusti-Rodríguez
- Department of Psychiatry, University of Florida College of Medicine, Gainesville, FL, USA.
| | - Janitza L Montalvo-Ortiz
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
- Psychiatry Division, VA Connecticut Healthcare Center, West Haven, CT, USA.
- Department of Biomedical Informatics and Data Science, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
2
|
Zhang YD, Shi DD, Wang Z. Neurobiology of Obsessive-Compulsive Disorder from Genes to Circuits: Insights from Animal Models. Neurosci Bull 2024; 40:1975-1994. [PMID: 38982026 PMCID: PMC11625044 DOI: 10.1007/s12264-024-01252-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/27/2024] [Indexed: 07/11/2024] Open
Abstract
Obsessive-compulsive disorder (OCD) is a chronic, severe psychiatric disorder that has been ranked by the World Health Organization as one of the leading causes of illness-related disability, and first-line interventions are limited in efficacy and have side-effect issues. However, the exact pathophysiology underlying this complex, heterogeneous disorder remains unknown. This scenario is now rapidly changing due to the advancement of powerful technologies that can be used to verify the function of the specific gene and dissect the neural circuits underlying the neurobiology of OCD in rodents. Genetic and circuit-specific manipulation in rodents has provided important insights into the neurobiology of OCD by identifying the molecular, cellular, and circuit events that induce OCD-like behaviors. This review will highlight recent progress specifically toward classic genetic animal models and advanced neural circuit findings, which provide theoretical evidence for targeted intervention on specific molecular, cellular, and neural circuit events.
Collapse
Affiliation(s)
- Ying-Dan Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Dong-Dong Shi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 201108, China.
| | - Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 201108, China.
- Shanghai Intelligent Psychological Evaluation and Intervention Engineering Technology Research Center, Shanghai, 200030, China.
| |
Collapse
|
3
|
Reid M, Lin A, Farhat LC, Fernandez TV, Olfson E. The genetics of trichotillomania and excoriation disorder: A systematic review. Compr Psychiatry 2024; 133:152506. [PMID: 38833896 PMCID: PMC11513794 DOI: 10.1016/j.comppsych.2024.152506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/09/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Trichotillomania (TTM) and excoriation disorder (ED) are impairing obsessive-compulsive related disorders that are common in the general population and for which there are no clear first-line medications, highlighting the need to better understand the underlying biology of these disorders to inform treatments. Given the importance of genetics in obsessive-compulsive disorder (OCD), evaluating genetic factors underlying TTM and ED may advance knowledge about the pathophysiology of these body-focused repetitive behaviors. AIM In this systematic review, we summarize the available evidence on the genetics of TTM and ED and highlight gaps in the field warranting further research. METHOD We systematically searched Embase, PsycInfo, PubMed, Medline, Scopus, and Web of Science for original studies in genetic epidemiology (family or twin studies) and molecular genetics (candidate gene and genome-wide) published up to June 2023. RESULTS Of the 3536 records identified, 109 studies were included in this review. These studies indicated that genetic factors play an important role in the development of TTM and ED, some of which may be shared across the OCD spectrum, but there are no known high-confidence specific genetic risk factors for either TTM or ED. CONCLUSIONS Our review underscores the need for additional genome-wide research conducted on the genetics of TTM and ED, for instance, genome-wide association and whole-genome/whole-exome DNA sequencing studies. Recent advances in genomics have led to the discovery of risk genes in several psychiatric disorders, including related conditions such as OCD, but to date, TTM and ED have remained understudied.
Collapse
Affiliation(s)
- Madison Reid
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA; The University of the South, USA
| | - Ashley Lin
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| | - Luis C Farhat
- Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Thomas V Fernandez
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Emily Olfson
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA; Wu Tsai Institute, Yale University, New Haven, CT, USA.
| |
Collapse
|
4
|
Nassan M. Proposal for a Mechanistic Disease Conceptualization in Clinical Neurosciences: The Neural Network Components (NNC) Model. Harv Rev Psychiatry 2024; 32:150-159. [PMID: 38990903 DOI: 10.1097/hrp.0000000000000399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
ABSTRACT Clinical neurosciences, and psychiatry specifically, have been challenged by the lack of a comprehensive and practical framework that explains the core mechanistic processes of variable psychiatric presentations. Current conceptualization and classification of psychiatric presentations are primarily centered on a non-biologically based clinical descriptive approach. Despite various attempts, advances in neuroscience research have not led to an improved conceptualization or mechanistic classification of psychiatric disorders. This perspective article proposes a new-work-in-progress-framework for conceptualizing psychiatric presentations based on neural network components (NNC). This framework could guide the development of mechanistic disease classification, improve understanding of underpinning pathology, and provide specific intervention targets. This model also has the potential to dissolve artificial barriers between the fields of psychiatry and neurology.
Collapse
Affiliation(s)
- Malik Nassan
- From Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University, Chicago, IL; Department of Neurology and Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine (Dr. Nassan)
| |
Collapse
|
5
|
Nashabat M, Nabavizadeh N, Saraçoğlu HP, Sarıbaş B, Avcı Ş, Börklü E, Beillard E, Yılmaz E, Uygur SE, Kayhan CK, Bosco L, Eren ZB, Steindl K, Richter MF, Bademci G, Rauch A, Fattahi Z, Valentino ML, Connolly AM, Bahr A, Viola L, Bergmann AK, Rocha ME, Peart L, Castro-Rojas DL, Bültmann E, Khan S, Giarrana ML, Teleanu RI, Gonzalez JM, Pini A, Schädlich IS, Vill K, Brugger M, Zuchner S, Pinto A, Donkervoort S, Bivona SA, Riza A, Streata I, Gläser D, Baquero-Montoya C, Garcia-Restrepo N, Kotzaeridou U, Brunet T, Epure DA, Bertoli-Avella A, Kariminejad A, Tekin M, von Hardenberg S, Bönnemann CG, Stettner GM, Zanni G, Kayserili H, Oflazer ZP, Escande-Beillard N. SNUPN deficiency causes a recessive muscular dystrophy due to RNA mis-splicing and ECM dysregulation. Nat Commun 2024; 15:1758. [PMID: 38413582 PMCID: PMC10899626 DOI: 10.1038/s41467-024-45933-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 02/08/2024] [Indexed: 02/29/2024] Open
Abstract
SNURPORTIN-1, encoded by SNUPN, plays a central role in the nuclear import of spliceosomal small nuclear ribonucleoproteins. However, its physiological function remains unexplored. In this study, we investigate 18 children from 15 unrelated families who present with atypical muscular dystrophy and neurological defects. Nine hypomorphic SNUPN biallelic variants, predominantly clustered in the last coding exon, are ascertained to segregate with the disease. We demonstrate that mutant SPN1 failed to oligomerize leading to cytoplasmic aggregation in patients' primary fibroblasts and CRISPR/Cas9-mediated mutant cell lines. Additionally, mutant nuclei exhibit defective spliceosomal maturation and breakdown of Cajal bodies. Transcriptome analyses reveal splicing and mRNA expression dysregulation, particularly in sarcolemmal components, causing disruption of cytoskeletal organization in mutant cells and patient muscle tissues. Our findings establish SNUPN deficiency as the genetic etiology of a previously unrecognized subtype of muscular dystrophy and provide robust evidence of the role of SPN1 for muscle homeostasis.
Collapse
Affiliation(s)
- Marwan Nashabat
- Laboratory of Functional Genomics, Department of Medical Genetics, Koç University, School of Medicine (KUSoM), Istanbul, Turkey
| | - Nasrinsadat Nabavizadeh
- Laboratory of Functional Genomics, Department of Medical Genetics, Koç University, School of Medicine (KUSoM), Istanbul, Turkey
| | - Hilal Pırıl Saraçoğlu
- Laboratory of Functional Genomics, Department of Medical Genetics, Koç University, School of Medicine (KUSoM), Istanbul, Turkey
| | - Burak Sarıbaş
- Laboratory of Functional Genomics, Department of Medical Genetics, Koç University, School of Medicine (KUSoM), Istanbul, Turkey
| | - Şahin Avcı
- Diagnostic Center for Genetic Diseases, Department of Medical Genetics, Koç University Hospital, Istanbul, Turkey
| | - Esra Börklü
- Diagnostic Center for Genetic Diseases, Department of Medical Genetics, Koç University Hospital, Istanbul, Turkey
| | | | - Elanur Yılmaz
- Laboratory of Functional Genomics, Department of Medical Genetics, Koç University, School of Medicine (KUSoM), Istanbul, Turkey
| | - Seyide Ecesu Uygur
- Laboratory of Functional Genomics, Department of Medical Genetics, Koç University, School of Medicine (KUSoM), Istanbul, Turkey
| | - Cavit Kerem Kayhan
- Pathology Laboratory, Acıbadem Maslak Hospital, Istanbul, Turkey
- Department of Biotechnology, Nişantaşı University, Istanbul, Turkey
| | - Luca Bosco
- Unit of Muscular and Neurodegenerative Disorders and Developmental Neurology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Science, University "Roma Tre", Rome, Italy
| | - Zeynep Bengi Eren
- Laboratory of Functional Genomics, Department of Medical Genetics, Koç University, School of Medicine (KUSoM), Istanbul, Turkey
| | - Katharina Steindl
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland
| | | | - Guney Bademci
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland
- Research Priority Program (URPP) ITINERARE: Innovative Therapies in Rare Diseases, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Zohreh Fattahi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
- Kariminejad-Najmabadi Pathology & Genetics Centre, Tehran, Iran
| | - Maria Lucia Valentino
- IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Anne M Connolly
- Division of Neurology, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Angela Bahr
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland
| | - Laura Viola
- Unit of Clinical Pediatrics, State Hospital, San Marino Republic, Italy
| | | | | | - LeShon Peart
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Derly Liseth Castro-Rojas
- Genomics Laboratory, Center of Immunology and Genetics (CIGE), SURA Ayudas Diagnosticas, Medellín, Colombia
| | - Eva Bültmann
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
| | | | | | - Raluca Ioana Teleanu
- Dr Victor Gomoiu Children's Hospital, Bucharest, Romania
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Joanna Michelle Gonzalez
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Antonella Pini
- Neuromuscular Pediatric Unit, IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy
| | - Ines Sophie Schädlich
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg-Eppendorf, Germany
| | - Katharina Vill
- Department of Pediatric Neurology and Developmental Medicine and LMU Center for Children with Medical Complexity, Dr. von Hauner Children's Hospital, LMU Hospital, Ludwig-Maximilians-University, Munich, Germany
- Department of Human Genetics, Technical University of Munich, School of Medicine, Munich, Germany
| | - Melanie Brugger
- Department of Human Genetics, Technical University of Munich, School of Medicine, Munich, Germany
| | - Stephan Zuchner
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
- John P. Hussmann Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Stephanie Ann Bivona
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Anca Riza
- Human Genomics Laboratory, University of Medicine and Pharmacy, Craiova, Romania
- Regional Centre of Medical Genetics Dolj, County Clinical Emergency Hospital, Craiova, Romania
| | - Ioana Streata
- Human Genomics Laboratory, University of Medicine and Pharmacy, Craiova, Romania
- Regional Centre of Medical Genetics Dolj, County Clinical Emergency Hospital, Craiova, Romania
| | | | | | | | - Urania Kotzaeridou
- Division of Child Neurology and Inherited Metabolic Diseases, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Theresa Brunet
- Department of Pediatric Neurology and Developmental Medicine and LMU Center for Children with Medical Complexity, Dr. von Hauner Children's Hospital, LMU Hospital, Ludwig-Maximilians-University, Munich, Germany
- Department of Human Genetics, Technical University of Munich, School of Medicine, Munich, Germany
| | | | | | | | - Mustafa Tekin
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
- John P. Hussmann Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Georg M Stettner
- Neuromuscular Center Zurich and Department of Pediatric Neurology, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ginevra Zanni
- Unit of Muscular and Neurodegenerative Disorders and Developmental Neurology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Hülya Kayserili
- Diagnostic Center for Genetic Diseases, Department of Medical Genetics, Koç University Hospital, Istanbul, Turkey
- Department of Medical Genetics, Koç University School of Medicine (KUSoM), Istanbul, Turkey
| | - Zehra Piraye Oflazer
- Department of Neurology, Koç University Hospital Muscle Center, Istanbul, Turkey
| | - Nathalie Escande-Beillard
- Laboratory of Functional Genomics, Department of Medical Genetics, Koç University, School of Medicine (KUSoM), Istanbul, Turkey.
- Research Center for Translational Medicine (KUTTAM), Koç University School of Medicine (KUSoM), Istanbul, Turkey.
| |
Collapse
|
6
|
Kamble SR, Dandekar MP. Implication of microbiota gut-brain axis in the manifestation of obsessive-compulsive disorder: Preclinical and clinical evidence. Eur J Pharmacol 2023; 957:176014. [PMID: 37619786 DOI: 10.1016/j.ejphar.2023.176014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 08/26/2023]
Abstract
Recent research has highlighted the key role of gut microbiota in the development of psychiatric disorders. The adverse impact of stress, anxiety, and depression has been well documented on the commensal gut microflora. Thus, therapeutic benefits of gut microbiota-based interventions may not be avoided in central nervous system (CNS) disorders. In this review, we outline the current state of knowledge of gut microbiota with respect to obsessive-compulsive disorder (OCD). We discuss how OCD-generated changes corresponding to the key neurotransmitters, hypothalamic-pituitary-adrenal axis, and immunological and inflammatory pathways are connected with the modifications of the microbiota-gut-brain axis. Notably, administration of few probiotics such as Lactobacillus rhamnosus (ATCC 53103), Lactobacillus helveticus R0052, Bifidobacterium longum R0175, Saccharomyces boulardii, and Lactobacillus casei Shirota imparted positive effects in the management of OCD symptoms. Taken together, we suggest that the gut microbiota-directed therapeutics may open new treatment approaches for the management of OCD.
Collapse
Affiliation(s)
- Sonali R Kamble
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Manoj P Dandekar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
7
|
Wilson C, Gattuso JJ, Hannan AJ, Renoir T. Mechanisms of pathogenesis and environmental moderators in preclinical models of compulsive-like behaviours. Neurobiol Dis 2023; 185:106223. [PMID: 37423502 DOI: 10.1016/j.nbd.2023.106223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023] Open
Abstract
Obsessive-compulsive and related disorders (OCRD) is an emergent class of psychiatric illnesses that contributes substantially to the global mental health disease burden. In particular, the prototypical illness, obsessive-compulsive disorder (OCD), has a profoundly deleterious effect on the quality of life of those with lived experience. Both clinical and preclinical studies have investigated the genetic and environmental influences contributing to the pathogenesis of obsessive-compulsive and related disorders. Significant progress has been made in recent years in our understanding of the genetics of OCD, along with the critical role of common environmental triggers (e.g., stress). Some of this progress can be attributed to the sophistication of rodent models used in the field, particularly genetic mutant models, which demonstrate promising construct, face, and predictive validity. However, there is a paucity of studies investigating how these genetic and environmental influences interact to precipitate the behavioural, cellular, and molecular changes that occur in OCD. In this review, we assert that preclinical studies offer a unique opportunity to carefully manipulate environmental and genetic factors, and in turn to interrogate gene-environment interactions and relevant downstream sequelae. Such studies may serve to provide a mechanistic framework to build our understanding of the pathogenesis of complex neuropsychiatric disorders such as OCD. Furthermore, understanding gene-environment interactions and pathogenic mechanisms will facilitate precision medicine and other future approaches to enhance treatment, reduce side-effects of therapeutic interventions, and improve the lives of those suffering from these devastating disorders.
Collapse
Affiliation(s)
- Carey Wilson
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia
| | - James J Gattuso
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
| | - Thibault Renoir
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia.
| |
Collapse
|
8
|
Wang L, Chen Y, Wang M, Zhao C, Qiao D. Relationship between gene-environment interaction and obsessive-compulsive disorder: A systematic review. J Psychiatr Res 2023; 164:281-290. [PMID: 37390623 DOI: 10.1016/j.jpsychires.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/29/2023] [Accepted: 06/15/2023] [Indexed: 07/02/2023]
Abstract
BACKGROUND Gene-environment interaction (G × E) refers to the change of genetic effects under the participation of environmental factors resulting in differences in genetic expression. G × E has been studied in the occurrence and development of many neuropsychiatric disorders, including obsessive-compulsive disorder (OCD). AIM A systematic review was conducted to investigate the role of G × E plays in OCD. This review explored the relationship between G × E and the susceptibility to OCD occurrence, disease progression, and treatment response. METHODS This systematic literature search was performed using Web of Science, PubMed, Cochrane Library, and CNKI. Seven studies were selected, which included seven genes (BDNF, COMT, MAO, 5-HTT, SMAD4, PGRN, and SLC1A1) polymorphisms, polygenic risk score (PRS), and two environmental factors (childhood trauma and stressful life events). RESULTS Information from this systematic review indicated that G × E increased the susceptibility to OCD, played a crucial role in the clinical characteristics, and had an inconsistent impact on treatment response of OCD. FUTURE DIRECTIONS The multi-omics studies and the inclusion of G × E in future GWAS studies of OCD should be drawn more attention, which may contribute to a deeper understanding of the etiology of OCD as well as guide therapeutic interventions for the disease.
Collapse
Affiliation(s)
- Lina Wang
- Department of Psychology, Shandong Normal University, Jinan, Shandong, 250358, China; Department of Psychiatry, Shandong Mental Health Center, Shandong University, Jinan, Shandong, 250014, China
| | - Yu Chen
- Jining Medical University, Jining, Shandong, 272000, China
| | - Miao Wang
- Jining Medical University, Jining, Shandong, 272000, China
| | - Chaoben Zhao
- Jining Medical University, Jining, Shandong, 272000, China
| | - Dongdong Qiao
- Department of Psychiatry, Shandong Mental Health Center, Shandong University, Jinan, Shandong, 250014, China.
| |
Collapse
|
9
|
The phenotypic spectrum and genotype-phenotype correlations in 106 patients with variants in major autism gene CHD8. Transl Psychiatry 2022; 12:421. [PMID: 36182950 PMCID: PMC9526704 DOI: 10.1038/s41398-022-02189-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/07/2022] [Accepted: 09/15/2022] [Indexed: 12/08/2022] Open
Abstract
CHD8, a major autism gene, functions in chromatin remodelling and has various roles involving several biological pathways. Therefore, unsurprisingly, previous studies have shown that intellectual developmental disorder with autism and macrocephaly (IDDAM), the syndrome caused by pathogenic variants in CHD8, consists of a broad range of phenotypic abnormalities. We collected and reviewed 106 individuals with IDDAM, including 36 individuals not previously published, thus enabling thorough genotype-phenotype analyses, involving the CHD8 mutation spectrum, characterization of the CHD8 DNA methylation episignature, and the systematic analysis of phenotypes collected in Human Phenotype Ontology (HPO). We identified 29 unique nonsense, 25 frameshift, 24 missense, and 12 splice site variants. Furthermore, two unique inframe deletions, one larger deletion (exons 26-28), and one translocation were observed. Methylation analysis was performed for 13 patients, 11 of which showed the previously established episignature for IDDAM (85%) associated with CHD8 haploinsufficiency, one analysis was inconclusive, and one showing a possible gain-of-function signature instead of the expected haploinsufficiency signature was observed. Consistent with previous studies, phenotypical abnormalities affected multiple organ systems. Many neurological abnormalities, like intellectual disability (68%) and hypotonia (29%) were observed, as well as a wide variety of behavioural abnormalities (88%). Most frequently observed behavioural problems included autism spectrum disorder (76%), short attention span (32%), abnormal social behaviour (31%), sleep disturbance (29%) and impaired social interactions (28%). Furthermore, abnormalities in the digestive (53%), musculoskeletal (79%) and genitourinary systems (18%) were noted. Although no significant difference in severity was observed between males and females, individuals with a missense variant were less severely affected. Our study provides an extensive review of all phenotypic abnormalities in patients with IDDAM and provides clinical recommendations, which will be of significant value to individuals with a pathogenic variant in CHD8, their families, and clinicians as it gives a more refined insight into the clinical and molecular spectrum of IDDAM, which is essential for accurate care and counselling.
Collapse
|
10
|
Baratta AM, Brandner AJ, Plasil SL, Rice RC, Farris SP. Advancements in Genomic and Behavioral Neuroscience Analysis for the Study of Normal and Pathological Brain Function. Front Mol Neurosci 2022; 15:905328. [PMID: 35813067 PMCID: PMC9259865 DOI: 10.3389/fnmol.2022.905328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
Psychiatric and neurological disorders are influenced by an undetermined number of genes and molecular pathways that may differ among afflicted individuals. Functionally testing and characterizing biological systems is essential to discovering the interrelationship among candidate genes and understanding the neurobiology of behavior. Recent advancements in genetic, genomic, and behavioral approaches are revolutionizing modern neuroscience. Although these tools are often used separately for independent experiments, combining these areas of research will provide a viable avenue for multidimensional studies on the brain. Herein we will briefly review some of the available tools that have been developed for characterizing novel cellular and animal models of human disease. A major challenge will be openly sharing resources and datasets to effectively integrate seemingly disparate types of information and how these systems impact human disorders. However, as these emerging technologies continue to be developed and adopted by the scientific community, they will bring about unprecedented opportunities in our understanding of molecular neuroscience and behavior.
Collapse
Affiliation(s)
- Annalisa M. Baratta
- Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Adam J. Brandner
- Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sonja L. Plasil
- Department of Pharmacology & Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Rachel C. Rice
- Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sean P. Farris
- Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
11
|
Gene expression study in monocytes: evidence of inflammatory dysregulation in early-onset obsessive-compulsive disorder. Transl Psychiatry 2022; 12:134. [PMID: 35361798 PMCID: PMC8971392 DOI: 10.1038/s41398-022-01905-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 11/08/2022] Open
Abstract
Obsessive-compulsive disorder (OCD) has a complex etiology that seems to include immune dysfunction and alterations in circulating monocytes. To investigate the immune basis and the functional dysregulation of monocytes in this disease, we analyzed gene expression in the peripheral monocytes of pediatric patients with OCD (N = 102) compared to controls (N = 47). We examined gene expression in primary cultures of peripheral monocytes from participants, under basal conditions and under exposure to lipopolysaccharide (LPS) to stimulate immune response. Whole-genome expression was assessed in 8 patients and 8 controls. Differentially expressed genes were identified followed by protein-protein interaction network construction and functional annotation analysis to identify the genes and biological processes that are altered in the monocytes of OCD patients. We also explored the expression levels of selected genes in monocytes from the other participants using qPCR. Several changes in gene expression were observed in the monocytes of OCD patients, with several immune processes involved under basal conditions (antigen processing and presentation, regulation of immune system and leukocyte cell adhesion) and after LPS stimulation (immune and inflammatory response, cytokine production and leukocyte activation). Despite the qPCR analysis provided no significant differences between patients and controls, high correlations were observed between the expression levels of some of the genes and inflammatory markers (i.e., T helper 17 and regulatory T cell levels, total monocyte and proinflammatory monocyte subset levels, and the cytokine production by resting and stimulated monocytes) of the study participants. Our findings provide more evidence of the involvement of monocyte dysregulation in early-onset OCD, indicating a proinflammatory predisposition and an enhanced immune response to environmental triggers.
Collapse
|
12
|
Mahjani B, Klei L, Mattheisen M, Halvorsen MW, Reichenberg A, Roeder K, Pedersen NL, Boberg J, de Schipper E, Bulik CM, Landén M, Fundín B, Mataix-Cols D, Sandin S, Hultman CM, Crowley JJ, Buxbaum JD, Rück C, Devlin B, Grice DE. The Genetic Architecture of Obsessive-Compulsive Disorder: Contribution of Liability to OCD From Alleles Across the Frequency Spectrum. Am J Psychiatry 2022; 179:216-225. [PMID: 34789012 PMCID: PMC8897260 DOI: 10.1176/appi.ajp.2021.21010101] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Obsessive-compulsive disorder (OCD) is known to be substantially heritable; however, the contribution of genetic variation across the allele frequency spectrum to this heritability remains uncertain. The authors used two new homogeneous cohorts to estimate the heritability of OCD from inherited genetic variation and contrasted the results with those of previous studies. METHODS The sample consisted of 2,090 Swedish-born individuals diagnosed with OCD and 4,567 control subjects, all genotyped for common genetic variants, specifically >400,000 single-nucleotide polymorphisms (SNPs) with minor allele frequency (MAF) ≥0.01. Using genotypes of these SNPs to estimate distant familial relationships among individuals, the authors estimated the heritability of OCD, both overall and partitioned according to MAF bins. RESULTS Narrow-sense heritability of OCD was estimated at 29% (SE=4%). The estimate was robust, varying only modestly under different models. Contrary to an earlier study, however, SNPs with MAF between 0.01 and 0.05 accounted for 10% of heritability, and estimated heritability per MAF bin roughly followed expectations based on a simple model for SNP-based heritability. CONCLUSIONS These results indicate that common inherited risk variation (MAF ≥0.01) accounts for most of the heritable variation in OCD. SNPs with low MAF contribute meaningfully to the heritability of OCD, and the results are consistent with expectation under the "infinitesimal model" (also referred to as the "polygenic model"), where risk is influenced by a large number of loci across the genome and across MAF bins.
Collapse
Affiliation(s)
- Behrang Mahjani
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Division of Tics, Obsessive-Compulsive Disorder (OCD) and Related Disorders, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Lambertus Klei
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Manuel Mattheisen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Matthew W. Halvorsen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Department of Genetics, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Abraham Reichenberg
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kathryn Roeder
- Department of Statistics, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.,Computational Biology Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Nancy L. Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Julia Boberg
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Elles de Schipper
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Cynthia M. Bulik
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mikael Landén
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Bengt Fundín
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - David Mataix-Cols
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Sven Sandin
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Christina M. Hultman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - James J. Crowley
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Department of Genetics, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Joseph D. Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christian Rück
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Bernie Devlin
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Dorothy E. Grice
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Division of Tics, Obsessive-Compulsive Disorder (OCD) and Related Disorders, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
13
|
Akingbuwa WA, Hammerschlag AR, Bartels M, Middeldorp CM. Systematic Review: Molecular Studies of Common Genetic Variation in Child and Adolescent Psychiatric Disorders. J Am Acad Child Adolesc Psychiatry 2022; 61:227-242. [PMID: 33932494 DOI: 10.1016/j.jaac.2021.03.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 03/08/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVE A systematic review of studies using molecular genetics and statistical approaches to investigate the role of common genetic variation in the development, persistence, and comorbidity of childhood psychiatric traits was conducted. METHOD A literature review was performed using the PubMed database, following PRISMA guidelines. There were 131 studies meeting inclusion criteria, having investigated at least one type of childhood-onset or childhood-measured psychiatric disorder or trait with the aim of identifying trait-associated common genetic variants, estimating the contribution of single nucleotide polymorphisms (SNPs) to the amount of variance explained (SNP-based heritability), investigating genetic overlap between psychiatric traits, or investigating whether the stability in traits or the association with adult traits is explained by genetic factors. RESULTS The first robustly associated genetic variants have started to be identified for childhood psychiatric traits. There were substantial contributions of common genetic variants to many traits, with variation in single nucleotide polymorphism heritability estimates depending on age and raters. Moreover, genetic variants also appeared to explain comorbidity as well as stability across a range of psychiatric traits in childhood and across the life span. CONCLUSION Common genetic variation plays a substantial role in childhood psychiatric traits. Increased sample sizes will lead to increased power to identify genetic variants and to understand genetic architecture, which will ultimately be beneficial to targeted and prevention strategies. This can be achieved by harmonizing phenotype measurements, as is already proposed by large international consortia and by including the collection of genetic material in every study.
Collapse
Affiliation(s)
- Wonuola A Akingbuwa
- Ms. Akingbuwa, Dr. Hammerschlag, and Profs. Bartels and Middeldorp are with Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Ms. Akingbuwa, Dr. Hammerschlag, and Prof. Bartels are also with Amsterdam Public Health Research Institute, Amsterdam University Medical Centres, Amsterdam, The Netherlands.
| | - Anke R Hammerschlag
- Ms. Akingbuwa, Dr. Hammerschlag, and Profs. Bartels and Middeldorp are with Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Ms. Akingbuwa, Dr. Hammerschlag, and Prof. Bartels are also with Amsterdam Public Health Research Institute, Amsterdam University Medical Centres, Amsterdam, The Netherlands; Dr. Hammerschlag and Prof. Middeldorp are also with the Child Health Research Centre, the University of Queensland, Brisbane, Queensland, Australia
| | - Meike Bartels
- Ms. Akingbuwa, Dr. Hammerschlag, and Profs. Bartels and Middeldorp are with Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Ms. Akingbuwa, Dr. Hammerschlag, and Prof. Bartels are also with Amsterdam Public Health Research Institute, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Christel M Middeldorp
- Ms. Akingbuwa, Dr. Hammerschlag, and Profs. Bartels and Middeldorp are with Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Dr. Hammerschlag and Prof. Middeldorp are also with the Child Health Research Centre, the University of Queensland, Brisbane, Queensland, Australia; Prof. Middeldorp is also with the Child and Youth Mental Health Service, Children's Health Queensland Hospital and Health Services, Brisbane, Queensland, Australia
| |
Collapse
|
14
|
Lin GN, Song W, Wang W, Wang P, Yu H, Cai W, Jiang X, Huang W, Qian W, Chen Y, Chen M, Yu S, Xu T, Jiao Y, Liu Q, Zhang C, Yi Z, Fan Q, Chen J, Wang Z. De novo mutations identified by whole-genome sequencing implicate chromatin modifications in obsessive-compulsive disorder. SCIENCE ADVANCES 2022; 8:eabi6180. [PMID: 35020433 PMCID: PMC8754407 DOI: 10.1126/sciadv.abi6180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Obsessive-compulsive disorder (OCD) is a chronic anxiety disorder with a substantial genetic basis and a broadly undiscovered etiology. Recent studies of de novo mutation (DNM) exome-sequencing studies for OCD have reinforced the hypothesis that rare variation contributes to the risk. We performed, to our knowledge, the first whole-genome sequencing on 53 parent-offspring families with offspring affected with OCD to investigate all rare de novo variants and insertions/deletions. We observed higher mutation rates in promoter-anchored chromatin loops (empirical P = 0.0015) and regions with high frequencies of histone marks (empirical P = 0.0001). Mutations affecting coding regions were significantly enriched within coexpression modules of genes involved in chromatin modification during human brain development. Four genes—SETD5, KDM3B, ASXL3, and FBL—had strong aggregated evidence and functionally converged on transcription’s epigenetic regulation, suggesting an important OCD risk mechanism. Our data characterized different genome-wide DNMs and highlighted the contribution of chromatin modification in the etiology of OCD.
Collapse
Affiliation(s)
- Guan Ning Lin
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
- Corresponding author. (G.N.L.); (Z.W.)
| | - Weichen Song
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Weidi Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Pei Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Institute of Psychological and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
| | - Huan Yu
- Novogene Bioinformatics Institute, Beijing, China
| | - Wenxiang Cai
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - Xue Jiang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wu Huang
- Novogene Bioinformatics Institute, Beijing, China
| | - Wei Qian
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yucan Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Miao Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Shunying Yu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - Tingting Xu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Institute of Psychological and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
| | - Yumei Jiao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Liu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chen Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenghui Yi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Fan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - Jue Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
- Institute of Psychological and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
- Corresponding author. (G.N.L.); (Z.W.)
| |
Collapse
|
15
|
Endres D, Pollak TA, Bechter K, Denzel D, Pitsch K, Nickel K, Runge K, Pankratz B, Klatzmann D, Tamouza R, Mallet L, Leboyer M, Prüss H, Voderholzer U, Cunningham JL, Domschke K, Tebartz van Elst L, Schiele MA. Immunological causes of obsessive-compulsive disorder: is it time for the concept of an "autoimmune OCD" subtype? Transl Psychiatry 2022; 12:5. [PMID: 35013105 PMCID: PMC8744027 DOI: 10.1038/s41398-021-01700-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 10/09/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022] Open
Abstract
Obsessive-compulsive disorder (OCD) is a highly disabling mental illness that can be divided into frequent primary and rarer organic secondary forms. Its association with secondary autoimmune triggers was introduced through the discovery of Pediatric Autoimmune Neuropsychiatric Disorder Associated with Streptococcal infection (PANDAS) and Pediatric Acute onset Neuropsychiatric Syndrome (PANS). Autoimmune encephalitis and systemic autoimmune diseases or other autoimmune brain diseases, such as multiple sclerosis, have also been reported to sometimes present with obsessive-compulsive symptoms (OCS). Subgroups of patients with OCD show elevated proinflammatory cytokines and autoantibodies against targets that include the basal ganglia. In this conceptual review paper, the clinical manifestations, pathophysiological considerations, diagnostic investigations, and treatment approaches of immune-related secondary OCD are summarized. The novel concept of "autoimmune OCD" is proposed for a small subgroup of OCD patients, and clinical signs based on the PANDAS/PANS criteria and from recent experience with autoimmune encephalitis and autoimmune psychosis are suggested. Red flag signs for "autoimmune OCD" could include (sub)acute onset, unusual age of onset, atypical presentation of OCS with neuropsychiatric features (e.g., disproportionate cognitive deficits) or accompanying neurological symptoms (e.g., movement disorders), autonomic dysfunction, treatment resistance, associations of symptom onset with infections such as group A streptococcus, comorbid autoimmune diseases or malignancies. Clinical investigations may also reveal alterations such as increased levels of anti-basal ganglia or dopamine receptor antibodies or inflammatory changes in the basal ganglia in neuroimaging. Based on these red flag signs, the criteria for a possible, probable, and definite autoimmune OCD subtype are proposed.
Collapse
Affiliation(s)
- Dominique Endres
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Thomas A Pollak
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Karl Bechter
- Department for Psychiatry and Psychotherapy II, Ulm University, Bezirkskrankenhaus Günzburg, Günzburg, Germany
| | - Dominik Denzel
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Karoline Pitsch
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kathrin Nickel
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kimon Runge
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Benjamin Pankratz
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - David Klatzmann
- AP-HP, Hôpital Pitié-Salpêtrière, Biotherapy (CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department (i2B), Paris, France
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), Paris, France
| | - Ryad Tamouza
- Univ Paris Est Créteil, INSERM, IMRB, Translational Neuropsychiatry, AP-HP, DMU IMPACT, FHU ADAPT, Fondation FondaMental, Créteil, France
| | - Luc Mallet
- Univ Paris Est Créteil, INSERM, IMRB, Translational Neuropsychiatry, AP-HP, DMU IMPACT, FHU ADAPT, Fondation FondaMental, Créteil, France
| | - Marion Leboyer
- Univ Paris Est Créteil, INSERM, IMRB, Translational Neuropsychiatry, AP-HP, DMU IMPACT, FHU ADAPT, Fondation FondaMental, Créteil, France
| | - Harald Prüss
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
| | - Ulrich Voderholzer
- Schoen Clinic Roseneck, Prien am Chiemsee, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Munich, Munich, Germany
| | - Janet L Cunningham
- Department of Neuroscience, Psychiatry, Uppsala University, Uppsala, Sweden
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ludger Tebartz van Elst
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Miriam A Schiele
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
16
|
de Oliveira KC, Camilo C, Gastaldi VD, Sant'Anna Feltrin A, Lisboa BCG, de Jesus Rodrigues de Paula V, Moretto AC, Lafer B, Hoexter MQ, Miguel EC, Maschietto M, Brentani H. Brain areas involved with obsessive-compulsive disorder present different DNA methylation modulation. BMC Genom Data 2021; 22:45. [PMID: 34717534 PMCID: PMC8557022 DOI: 10.1186/s12863-021-00993-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/29/2021] [Indexed: 12/13/2022] Open
Abstract
Background Obsessive-compulsive disorder (OCD) is characterized by intrusive thoughts and repetitive actions, that presents the involvement of the cortico-striatal areas. The contribution of environmental risk factors to OCD development suggests that epigenetic mechanisms may contribute to its pathophysiology. DNA methylation changes and gene expression were evaluated in post-mortem brain tissues of the cortical (anterior cingulate gyrus and orbitofrontal cortex) and ventral striatum (nucleus accumbens, caudate nucleus and putamen) areas from eight OCD patients and eight matched controls. Results There were no differentially methylated CpG (cytosine-phosphate-guanine) sites (DMSs) in any brain area, nevertheless gene modules generated from CpG sites and protein-protein-interaction (PPI) showed enriched gene modules for all brain areas between OCD cases and controls. All brain areas but nucleus accumbens presented a predominantly hypomethylation pattern for the differentially methylated regions (DMRs). Although there were common transcriptional factors that targeted these DMRs, their targeted differentially expressed genes were different among all brain areas. The protein-protein interaction network based on methylation and gene expression data reported that all brain areas were enriched for G-protein signaling pathway, immune response, apoptosis and synapse biological processes but each brain area also presented enrichment of specific signaling pathways. Finally, OCD patients and controls did not present significant DNA methylation age differences. Conclusions DNA methylation changes in brain areas involved with OCD, especially those involved with genes related to synaptic plasticity and the immune system could mediate the action of genetic and environmental factors associated with OCD. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-021-00993-0.
Collapse
Affiliation(s)
- Kátia Cristina de Oliveira
- Departamento & Instituto de Psiquiatria, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Rua Dr. Ovídio Pires de Campos, 785 - LIM23 (Térreo), São Paulo, 05403-010, Brazil.,Center of Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo, Brazil.,Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Caroline Camilo
- Departamento & Instituto de Psiquiatria, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Rua Dr. Ovídio Pires de Campos, 785 - LIM23 (Térreo), São Paulo, 05403-010, Brazil.
| | - Vinícius Daguano Gastaldi
- Departamento & Instituto de Psiquiatria, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Rua Dr. Ovídio Pires de Campos, 785 - LIM23 (Térreo), São Paulo, 05403-010, Brazil
| | - Arthur Sant'Anna Feltrin
- Center of Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo, Brazil
| | - Bianca Cristina Garcia Lisboa
- Departamento & Instituto de Psiquiatria, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Rua Dr. Ovídio Pires de Campos, 785 - LIM23 (Térreo), São Paulo, 05403-010, Brazil
| | - Vanessa de Jesus Rodrigues de Paula
- Departamento & Instituto de Psiquiatria, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Rua Dr. Ovídio Pires de Campos, 785 - LIM23 (Térreo), São Paulo, 05403-010, Brazil
| | | | - Beny Lafer
- Departamento & Instituto de Psiquiatria, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Rua Dr. Ovídio Pires de Campos, 785 - LIM23 (Térreo), São Paulo, 05403-010, Brazil
| | - Marcelo Queiroz Hoexter
- Departamento & Instituto de Psiquiatria, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Rua Dr. Ovídio Pires de Campos, 785 - LIM23 (Térreo), São Paulo, 05403-010, Brazil.,Laboratório de Psicopatologia e Terapêutica Psiquiátrica (LIM23), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Euripedes Constantino Miguel
- Departamento & Instituto de Psiquiatria, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Rua Dr. Ovídio Pires de Campos, 785 - LIM23 (Térreo), São Paulo, 05403-010, Brazil.,Laboratório de Psicopatologia e Terapêutica Psiquiátrica (LIM23), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | | | | | - Helena Brentani
- Departamento & Instituto de Psiquiatria, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Rua Dr. Ovídio Pires de Campos, 785 - LIM23 (Térreo), São Paulo, 05403-010, Brazil.,Laboratório de Psicopatologia e Terapêutica Psiquiátrica (LIM23), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
17
|
Strom NI, Soda T, Mathews CA, Davis LK. A dimensional perspective on the genetics of obsessive-compulsive disorder. Transl Psychiatry 2021; 11:401. [PMID: 34290223 PMCID: PMC8295308 DOI: 10.1038/s41398-021-01519-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/04/2021] [Accepted: 06/16/2021] [Indexed: 12/21/2022] Open
Abstract
This review covers recent findings in the genomics of obsessive-compulsive disorder (OCD), obsessive-compulsive symptoms, and related traits from a dimensional perspective. We focus on discoveries stemming from technical and methodological advances of the past five years and present a synthesis of human genomics research on OCD. On balance, reviewed studies demonstrate that OCD is a dimensional trait with a highly polygenic architecture and genetic correlations to multiple, often comorbid psychiatric phenotypes. We discuss the phenotypic and genetic findings of these studies in the context of the dimensional framework, relying on a continuous phenotype definition, and contrast these observations with discoveries based on a categorical diagnostic framework, relying on a dichotomous case/control definition. Finally, we highlight gaps in knowledge and new directions for OCD genetics research.
Collapse
Affiliation(s)
- Nora I Strom
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Psychology, Humboldt Universität zu Berlin, Berlin, Germany
| | - Takahiro Soda
- Department of Psychiatry, Duke University, Durham, NC, USA
| | - Carol A Mathews
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | - Lea K Davis
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
18
|
Maternal autoimmunity and inflammation are associated with childhood tics and obsessive-compulsive disorder: Transcriptomic data show common enriched innate immune pathways. Brain Behav Immun 2021; 94:308-317. [PMID: 33422639 DOI: 10.1016/j.bbi.2020.12.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/12/2020] [Accepted: 12/31/2020] [Indexed: 02/06/2023] Open
Abstract
Although genetic variation is a major risk factor of neurodevelopmental disorders, environmental factors during pregnancy and early life are also important in disease expression. Animal models demonstrate that maternal inflammation causes fetal neuroinflammation and neurodevelopmental deficits, and brain transcriptomics of neurodevelopmental disorders in humans show upregulated differentially expressed genes are enriched in immune pathways. We prospectively recruited 200 sequentially referred children with tic disorders/obsessive-compulsive disorder (OCD), 100 autoimmune neurological controls, and 100 age-matched healthy controls. A structured interview captured the maternal and family history of autoimmune disease and other pro-inflammatory states. Maternal blood and published Tourette brain transcriptomes were analysed for overlapping enriched pathways. Mothers of children with tics/OCD had a higher rate of autoimmune disease compared with mothers of children with autoimmune neurological conditions (p = 0.054), and mothers of healthy controls (p = 0.0004). Autoimmunity was similarly elevated in first- and second-degree maternal relatives of children with tics/OCD (p < 0.0001 and p = 0.014 respectively). Other pro-inflammatory states were also more common in mothers of children with tics/OCD than controls (p < 0.0001). Upregulated differentially expressed genes in maternal autoimmune disease and Tourette brain transcriptomes were commonly enriched in innate immune processes. Pro-inflammatory states, including autoimmune disease, are more common in the mothers and families of children with tics/OCD. Exploratory transcriptome analysis indicates innate immune signalling may link maternal inflammation and childhood tics/OCD. Targeting inflammation may represent preventative strategies in pregnancy and treatment opportunities for children with neurodevelopmental disorders.
Collapse
|
19
|
Serotonin 5-HT 1B receptor-mediated behavior and binding in mice with the overactive and dysregulated serotonin transporter Ala56 variant. Psychopharmacology (Berl) 2021; 238:1111-1120. [PMID: 33511450 PMCID: PMC8728944 DOI: 10.1007/s00213-020-05758-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/28/2020] [Indexed: 10/22/2022]
Abstract
RATIONALE Elevated whole-blood serotonin (5-HT) is a robust biomarker in ~ 30% of patients with autism spectrum disorders, in which repetitive behavior is a core symptom. Furthermore, elevated whole-blood 5-HT has also been described in patients with pediatric obsessive-compulsive disorder. The 5-HT1B receptor is associated with repetitive behaviors seen in both disorders. Chronic blockade of serotonin transporter (SERT) reduces 5-HT1B receptor levels in the orbitofrontal cortex (OFC) and attenuates the sensorimotor deficits and hyperactivity seen with the 5-HT1B agonist RU24969. We hypothesized that enhanced SERT function would increase 5-HT1B receptor levels in OFC and enhance sensorimotor deficits and hyperactivity induced by RU24969. OBJECTIVES We examined the impact of the SERT Ala56 mutation, which leads to enhanced SERT function, on 5-HT1B receptor binding and 5-HT1B-mediated sensorimotor deficits. METHODS Specific binding to 5-HT1B receptors was measured in OFC and striatum of naïve SERT Ala56 or wild-type mice. The impact of the 5-HT1A/1B receptor agonist RU24969 on prepulse inhibition (PPI) of startle, hyperactivity, and expression of cFos was examined. RESULTS While enhanced SERT function increased 5-HT1B receptor levels in OFC of Ala56 mice, RU24969-induced PPI deficits and hyperlocomotion were not different between genotypes. Baseline levels of cFos expression were not different between groups. RU24969 increased cFos expression in OFC of wild-types and decreased cFos in the striatum. CONCLUSIONS While reducing 5-HT1B receptors may attenuate sensorimotor gating deficits, increased 5-HT1B levels in SERT Ala56 mice do not necessarily exacerbate these deficits, potentially due to compensations during neural circuit development in this model system.
Collapse
|
20
|
Song W, Wang W, Yu S, Lin GN. Dissection of the Genetic Association between Anorexia Nervosa and Obsessive-Compulsive Disorder at the Network and Cellular Levels. Genes (Basel) 2021; 12:491. [PMID: 33801746 PMCID: PMC8065602 DOI: 10.3390/genes12040491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/15/2022] Open
Abstract
Anorexia nervosa (AN) and obsessive-compulsive disorder (OCD) exhibit a high co-morbidity rate, similar symptoms, and a shared genetic basis. However, an understanding of the specific underlying mechanisms of these commonalities is currently limited. Here, we collected Genome-Wide Association Analysis results for AN and OCD, and obtained genes hit by the top SNPs as the risk genes. We then carried out an integrative coexpression network analysis to explore the convergence and divergence of AN and OCD risk genes. At first, we observed that the AN risk genes were enriched in coexpression modules that involved extracellular matrix functions and highly are expressed in the postnatal brain, limbic system, and non-neuronal cell types, while the OCD risk genes were enriched in modules of synapse function, the prenatal brain, cortex layers, and neurons. Next, by comparing the expressions from the eating disorder and OCD postmortem patient brain tissues, we observed both disorders have similar prefrontal cortex expression alterations influencing the synapse transmission, suggesting that the two diseases could have similar functional pathways. We found that the AN and OCD risk genes had distinct functional and spatiotemporal enrichment patterns but carried similar expression alterations as a disease mechanism, which may be one of the key reasons they had similar but not identical clinical phenotypes.
Collapse
Affiliation(s)
| | | | | | - Guan Ning Lin
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; (W.S.); (W.W.); (S.Y.)
| |
Collapse
|
21
|
Troyer EA, Kohn JN, Ecklu-Mensah G, Aleti G, Rosenberg DR, Hong S. Searching for host immune-microbiome mechanisms in obsessive-compulsive disorder: A narrative literature review and future directions. Neurosci Biobehav Rev 2021; 125:517-534. [PMID: 33639178 DOI: 10.1016/j.neubiorev.2021.02.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 02/09/2021] [Accepted: 02/22/2021] [Indexed: 12/20/2022]
Abstract
Obsessive-compulsive disorder (OCD) is disabling and often treatment-refractory. Host immunity and gut microbiota have bidirectional communication with each other and with the brain. Perturbations to this axis have been implicated in neuropsychiatric disorders, but immune-microbiome signaling in OCD is relatively underexplored. We review support for further pursuing such investigations in OCD, including: 1) gut microbiota has been associated with OCD, but causal pathogenic mechanisms remain unclear; 2) early environmental risk factors for OCD overlap with critical periods of immune-microbiome development; 3) OCD is associated with increased risk of immune-mediated disorders and changes in immune parameters, which are separately associated with the microbiome; and 4) gut microbiome manipulations in animal models are associated with changes in immunity and some obsessive-compulsive symptoms. Theoretical pathogenic mechanisms could include microbiota programming of cytokine production, promotion of expansion and trafficking of peripheral immune cells to the CNS, and regulation of microglial function. Immune-microbiome signaling in OCD requires further exploration, and may offer novel insights into pathogenic mechanisms and potential treatment targets for this disabling disorder.
Collapse
Affiliation(s)
- Emily A Troyer
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States.
| | - Jordan N Kohn
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States
| | - Gertrude Ecklu-Mensah
- Department of Medicine and Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States
| | - Gajender Aleti
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States
| | - David R Rosenberg
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan, United States
| | - Suzi Hong
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States; Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, California, United States
| |
Collapse
|
22
|
Maia A, Barahona-Corrêa B, Oliveira-Maia AJ, Oliveira J. Immune Dysfunction in Obsessive-Compulsive Disorder: From Risk Factors to Multisystem Involvement. IMMUNO-PSYCHIATRY 2021:289-307. [DOI: 10.1007/978-3-030-71229-7_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
23
|
Saraiva LC, Cappi C, Simpson HB, Stein DJ, Viswanath B, van den Heuvel OA, Reddy YCJ, Miguel EC, Shavitt RG. Cutting-edge genetics in obsessive-compulsive disorder. Fac Rev 2020; 9:30. [PMID: 33659962 PMCID: PMC7886082 DOI: 10.12703/r/9-30] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This article reviews recent advances in the genetics of obsessive-compulsive disorder (OCD). We cover work on the following: genome-wide association studies, whole-exome sequencing studies, copy number variation studies, gene expression, polygenic risk scores, gene–environment interaction, experimental animal systems, human cell models, imaging genetics, pharmacogenetics, and studies of endophenotypes. Findings from this work underscore the notion that the genetic architecture of OCD is highly complex and shared with other neuropsychiatric disorders. Also, the latest evidence points to the participation of gene networks involved in synaptic transmission, neurodevelopment, and the immune and inflammatory systems in this disorder. We conclude by highlighting that further study of the genetic architecture of OCD, a great part of which remains to be elucidated, could benefit the development of diagnostic and therapeutic approaches based on the biological basis of the disorder. Studies to date revealed that OCD is not a simple homogeneous entity, but rather that the underlying biological pathways are variable and heterogenous. We can expect that translation from bench to bedside, through continuous effort and collaborative work, will ultimately transform our understanding of what causes OCD and thus how best to treat it.
Collapse
Affiliation(s)
- Leonardo Cardoso Saraiva
- Department & Institute of Psychiatry, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Carolina Cappi
- Department & Institute of Psychiatry, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Helen Blair Simpson
- Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
- The New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Dan J Stein
- SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry & Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Biju Viswanath
- Molecular Genetics Laboratory, National Institute of Mental Health & Neurosciences (NIMHANS); Accelerator Program for Discovery in Brain disorders using Stem cells (ADBS) Laboratory, NIMHANS, Bangalore, India
| | - Odile A van den Heuvel
- Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Department of Psychiatry, Department of Anatomy & Neuroscience, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - YC Janardhan Reddy
- Obsessive-Compulsive Disorder (OCD) Clinic, Department of Psychiatry, NIMHANS, Bangalore, India
| | - Euripedes C Miguel
- Department & Institute of Psychiatry, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Roseli G Shavitt
- Department & Institute of Psychiatry, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
24
|
Bey K, Weinhold L, Grützmann R, Heinzel S, Kaufmann C, Klawohn J, Riesel A, Lennertz L, Schmid M, Ramirez A, Kathmann N, Wagner M. The polygenic risk for obsessive-compulsive disorder is associated with the personality trait harm avoidance. Acta Psychiatr Scand 2020; 142:326-336. [PMID: 32786038 DOI: 10.1111/acps.13226] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/09/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Obsessive-compulsive disorder (OCD) is a complex psychiatric disorder with a substantial genetic contribution. While the specific variants underlying OCD's heritability are still unknown, findings from genome-wide association studies (GWAS) corroborate the importance of common SNPs explaining the phenotypic variance in OCD. Investigating associations between the genetic liability for OCD, as reflected by a polygenic risk score (PRS), and potential endophenotypes of the disorder, such as the personality trait harm avoidance, may aid the understanding of functional pathways from genes to diagnostic phenotypes. METHODS We derived PRS for OCD at several P-value thresholds based on the latest Psychiatric Genomics Consortium OCD GWAS (2688 cases, 7037 controls) in an independent sample of OCD patients (n = 180), their unaffected first-degree relatives (n = 108) and healthy controls (n = 200). Using linear regression, we tested whether these PRS are associated with the personality trait harm avoidance. RESULTS Results showed that OCD PRS significantly predicted OCD status, with patients having the highest scores and relatives having intermediate scores. Furthermore, the genetic risk for OCD was associated with harm avoidance across the entire sample, and among OCD patients. As indicated by mediation analyses, harm avoidance mediated the association between the OCD PRS and OCD caseness. These results were observed at multiple P-value thresholds and persisted after the exclusion of patients with a current comorbid major depressive or anxiety disorder. CONCLUSION Our findings support the polygenic nature of OCD and further validate harm avoidance as a candidate endophenotype and diathesis of OCD.
Collapse
Affiliation(s)
- K Bey
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - L Weinhold
- Department of Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Bonn, Germany
| | - R Grützmann
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - S Heinzel
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany.,Clinical Psychology and Psychotherapy, Freie Universität Berlin, Berlin, Germany
| | - C Kaufmann
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - J Klawohn
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - A Riesel
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Psychology, University of Hamburg, Hamburg, Germany
| | - L Lennertz
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - M Schmid
- Department of Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Bonn, Germany
| | - A Ramirez
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany.,Institute of Human Genetics, University Hospital Bonn, Bonn, Germany.,Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - N Kathmann
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - M Wagner
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
25
|
Martino D, Johnson I, Leckman JF. What Does Immunology Have to Do With Normal Brain Development and the Pathophysiology Underlying Tourette Syndrome and Related Neuropsychiatric Disorders? Front Neurol 2020; 11:567407. [PMID: 33041996 PMCID: PMC7525089 DOI: 10.3389/fneur.2020.567407] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/20/2020] [Indexed: 12/20/2022] Open
Abstract
Objective: The goal of this article is to review the past decade's literature and provide a critical commentary on the involvement of immunological mechanisms in normal brain development, as well as its role in the pathophysiology of Tourette syndrome, other Chronic tic disorders (CTD), and related neuropsychiatric disorders including Obsessive-compulsive disorder (OCD) and Attention deficit hyperactivity disorder (ADHD). Methods: We conducted a literature search using the Medline/PubMed and EMBASE electronic databases to locate relevant articles and abstracts published between 2009 and 2020, using a comprehensive list of search terms related to immune mechanisms and the diseases of interest, including both clinical and animal model studies. Results: The cellular and molecular processes that constitute our "immune system" are crucial to normal brain development and the formation and maintenance of neural circuits. It is also increasingly evident that innate and adaptive systemic immune pathways, as well as neuroinflammatory mechanisms, play an important role in the pathobiology of at least a subset of individuals with Tourette syndrome and related neuropsychiatric disorders In the conceptual framework of the holobiont theory, emerging evidence points also to the importance of the "microbiota-gut-brain axis" in the pathobiology of these neurodevelopmental disorders. Conclusions: Neural development is an enormously complex and dynamic process. Immunological pathways are implicated in several early neurodevelopmental processes including the formation and refinement of neural circuits. Hyper-reactivity of systemic immune pathways and neuroinflammation may contribute to the natural fluctuations of the core behavioral features of CTD, OCD, and ADHD. There is still limited knowledge of the efficacy of direct and indirect (i.e., through environmental modifications) immune-modulatory interventions in the treatment of these disorders. Future research also needs to focus on the key molecular pathways through which dysbiosis of different tissue microbiota influence neuroimmune interactions in these disorders, and how microbiota modification could modify their natural history. It is also possible that valid biomarkers will emerge that will guide a more personalized approach to the treatment of these disorders.
Collapse
Affiliation(s)
- Davide Martino
- Department of Clinical Neurosciences & Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Isaac Johnson
- Child Study Center, Yale University, New Haven, CT, United States
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - James F. Leckman
- Child Study Center, Yale University, New Haven, CT, United States
- Departments of Psychiatry, Pediatrics and Psychology, Yale University, New Haven, CT, United States
| |
Collapse
|
26
|
De Novo Damaging DNA Coding Mutations Are Associated With Obsessive-Compulsive Disorder and Overlap With Tourette's Disorder and Autism. Biol Psychiatry 2020; 87:1035-1044. [PMID: 31771860 PMCID: PMC7160031 DOI: 10.1016/j.biopsych.2019.09.029] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 08/01/2019] [Accepted: 09/22/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) is a debilitating neuropsychiatric disorder with a genetic risk component, yet identification of high-confidence risk genes has been challenging. In recent years, risk gene discovery in other complex psychiatric disorders has been achieved by studying rare de novo (DN) coding variants. METHODS We performed whole-exome sequencing in 222 OCD parent-child trios (184 trios after quality control), comparing DN variant frequencies with 777 previously sequenced unaffected trios. We estimated the contribution of DN mutations to OCD risk and the number of genes involved. Finally, we looked for gene enrichment in other datasets and canonical pathways. RESULTS DN likely gene disrupting and predicted damaging missense variants are enriched in OCD probands (rate ratio, 1.52; p = .0005) and contribute to risk. We identified 2 high-confidence risk genes, each containing 2 DN damaging variants in unrelated probands: CHD8 and SCUBE1. We estimate that 34% of DN damaging variants in OCD contribute to risk and that DN damaging variants in approximately 335 genes contribute to risk in 22% of OCD cases. Furthermore, genes harboring DN damaging variants in OCD are enriched for those reported in neurodevelopmental disorders, particularly Tourette's disorder and autism spectrum disorder. An exploratory network analysis reveals significant functional connectivity and enrichment in canonical pathways, biological processes, and disease networks. CONCLUSIONS Our findings show a pathway toward systematic gene discovery in OCD via identification of DN damaging variants. Sequencing larger cohorts of OCD parent-child trios will reveal more OCD risk genes and will provide needed insights into underlying disease biology.
Collapse
|
27
|
Mahjani B, Klei L, Hultman CM, Larsson H, Devlin B, Buxbaum JD, Sandin S, Grice DE. Maternal Effects as Causes of Risk for Obsessive-Compulsive Disorder. Biol Psychiatry 2020; 87:1045-1051. [PMID: 32199606 PMCID: PMC8023336 DOI: 10.1016/j.biopsych.2020.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND While genetic variation has a known impact on the risk for obsessive-compulsive disorder (OCD), there is also evidence that there are maternal components to this risk. Here, we partitioned sources of variation, including direct genetic and maternal effects, on risk for OCD. METHODS The study population consisted of 822,843 individuals from the Swedish Medical Birth Register, born in Sweden between January 1, 1982, and December 31, 1990, and followed for a diagnosis of OCD through December 31, 2013. Diagnostic information about OCD was obtained using the Swedish National Patient Register. RESULTS A total of 7184 individuals in the birth cohort (0.87%) were diagnosed with OCD. After exploring various generalized linear mixed models to fit the diagnostic data, genetic maternal effects accounted for 7.6% (95% credible interval: 6.9%-8.3%) of the total variance in risk for OCD for the best model, and direct additive genetics accounted for 35% (95% credible interval: 32.3%-36.9%). These findings were robust under alternative models. CONCLUSIONS Our results establish genetic maternal effects as influencing risk for OCD in offspring. We also show that additive genetic effects in OCD are overestimated when maternal effects are not modeled.
Collapse
Affiliation(s)
- Behrang Mahjani
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Lambertus Klei
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Christina M Hultman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Larsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Bernie Devlin
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sven Sandin
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Dorothy E Grice
- Division of Tics, OCD, and Related Disorders, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
28
|
Interaction between PGRN gene and the early trauma on clinical characteristics in patients with obsessive-compulsive disorder. J Affect Disord 2020; 263:134-140. [PMID: 31818769 DOI: 10.1016/j.jad.2019.11.111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/17/2019] [Accepted: 11/22/2019] [Indexed: 11/21/2022]
Abstract
BACKGROUND Emerging evidence suggests that obsessive-compulsive disorder (OCD) is caused by a combination of genetic predisposition and environmental factors. In this regard, abnormity of progranulin (PGRN, a key regulator of brain inflammation) and a history of childhood trauma have both been linked to an increased risk of developing OCD. This study is aimed to investigate the association between PGRN and childhood trauma in the development of OCD. METHODS We genotyped four single nucleotide polymorphisms (SNPs) covering PGRN in 484 OCD patients and 368 healthy controls. Among the OCD patients, 335 of them accepted clinical assessments in details. Generalized multifactor dimensionality reduction (GDMR) analysis and a general linear model were used to identify gene-environment interactions. The Braineac expression Quantitative Trait Loci (eQTL) dataset was used to analyze the differences in PGRN expression in various brain regions among different genotypes. RESULTS Our linkage disequilibrium analysis revealed that rs3859268-rs2879096-rs3785817 combined OCD and control groups constructed one haplotype block. The haplotype analysis suggested that TCA haplotype frequency was associated with the risk of developing OCD (Padj=0.03). The Braineac eQTL database revealed that rs2879096 and rs3785817 might be associated with PGRN expression in the hippocampus (Padj=0.00085, Padj=0.007). Emotional abuse was positively correlated with the obsession subscale and Y-BOCS total scores. Except for common trauma, physical abuse, emotional abuse and sexual trauma were all positively correlated with the BAI and BDI-II scores of OCD patients (all P<0.05). The interaction between emotional abuse and PGRN haplotype was associated with the development of depression symptoms in OCD patients corrected by age (Padj=0.043). CONCLUSIONS The PGRN gene and childhood trauma may be closely related to the incidence of OCD, and OCD patients who have experienced more childhood trauma may exhibit a more severe clinical symptom. The interaction between PGRN and the early trauma may play a critical role in the development of depression symptom in OCD patients.
Collapse
|
29
|
Del Casale A, Sorice S, Padovano A, Simmaco M, Ferracuti S, Lamis DA, Rapinesi C, Sani G, Girardi P, Kotzalidis GD, Pompili M. Psychopharmacological Treatment of Obsessive-Compulsive Disorder (OCD). Curr Neuropharmacol 2020; 17:710-736. [PMID: 30101713 PMCID: PMC7059159 DOI: 10.2174/1570159x16666180813155017] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/06/2018] [Accepted: 08/12/2018] [Indexed: 02/07/2023] Open
Abstract
Background: Obsessive-compulsive disorder (OCD) is associated with affective and cognitive symptoms causing personal distress and reduced global functioning. These have considerable societal costs due to healthcare service utilization. Objective: Our aim was to assess the efficacy of pharmacological interventions in OCD and clinical guidelines, providing a comprehensive overview of this field. Methods: We searched the PubMed database for papers dealing with drug treatment of OCD, with a specific focus on clinical guidelines, treatments with antidepressants, antipsychotics, mood stabilizers, off-label medications, and pharmacogenomics. Results: Prolonged administration of selective serotonin reuptake inhibitors (SSRIs) is most effective. Better results can be obtained with a SSRI combined with cognitive behavioral therapy (CBT) or the similarly oriented exposure and response prevention (ERP). Refractory OCD could be treated with different strategies, including a switch to another SSRI or clomipramine, or augmentation with an atypical antipsychotic. The addition of medications other than antipsychotics or intravenous antidepressant administration needs further investigation, as the evidence is inconsistent. Pharmacogenomics and personalization of therapy could reduce treatment resistance. Conclusions: SSRI/clomipramine in combination with CBT/ERP is associated with the optimal response compared to each treatment alone or to other treatments. New strategies for refractory OCD are needed. The role of pharmacogenomics could become preponderant in the coming years.
Collapse
Affiliation(s)
- Antonio Del Casale
- Department of Neuroscience, Mental Health, and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University, Unit of Psychiatry, Sant'Andrea University Hospital, Rome, Italy
| | - Serena Sorice
- Residency School in Psychiatry, Faculty of Medicine and Psychology, Sapienza University, Unit of Psychiatry, Sant'Andrea University Hospital, Rome, Italy
| | - Alessio Padovano
- Residency School in Psychiatry, Faculty of Medicine and Psychology, Sapienza University, Unit of Psychiatry, Sant'Andrea University Hospital, Rome, Italy
| | - Maurizio Simmaco
- Department of Neuroscience, Mental Health, and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University, Unit of Psychiatry, Sant'Andrea University Hospital, Rome, Italy
| | | | - Dorian A Lamis
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Chiara Rapinesi
- Department of Neuroscience, Mental Health, and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University, Unit of Psychiatry, Sant'Andrea University Hospital, Rome, Italy
| | - Gabriele Sani
- Department of Neuroscience, Mental Health, and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University, Unit of Psychiatry, Sant'Andrea University Hospital, Rome, Italy
| | - Paolo Girardi
- Department of Neuroscience, Mental Health, and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University, Unit of Psychiatry, Sant'Andrea University Hospital, Rome, Italy
| | - Georgios D Kotzalidis
- Department of Neuroscience, Mental Health, and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University, Unit of Psychiatry, Sant'Andrea University Hospital, Rome, Italy
| | - Maurizio Pompili
- Department of Neuroscience, Mental Health, and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University, Unit of Psychiatry, Sant'Andrea University Hospital, Rome, Italy
| |
Collapse
|
30
|
Mataix-Cols D, Hansen B, Mattheisen M, Karlsson EK, Addington AM, Boberg J, Djurfeldt DR, Halvorsen M, Lichtenstein P, Solem S, Lindblad-Toh K, Haavik J, Kvale G, Rück C, Crowley JJ. Nordic OCD & Related Disorders Consortium: Rationale, design, and methods. Am J Med Genet B Neuropsychiatr Genet 2020; 183:38-50. [PMID: 31424634 PMCID: PMC6898732 DOI: 10.1002/ajmg.b.32756] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 07/19/2019] [Accepted: 07/29/2019] [Indexed: 12/23/2022]
Abstract
Obsessive-compulsive disorder (OCD) is a debilitating psychiatric disorder, yet its etiology is unknown and treatment outcomes could be improved if biological targets could be identified. Unfortunately, genetic findings for OCD are lagging behind other psychiatric disorders. Thus, there is a pressing need to understand the causal mechanisms implicated in OCD in order to improve clinical outcomes and to reduce morbidity and societal costs. Specifically, there is a need for a large-scale, etiologically informative genetic study integrating genetic and environmental factors that presumably interact to cause the condition. The Nordic countries provide fertile ground for such a study, given their detailed population registers, national healthcare systems and active specialist clinics for OCD. We thus formed the Nordic OCD and Related Disorders Consortium (NORDiC, www.crowleylab.org/nordic), and with the support of NIMH and the Swedish Research Council, have begun to collect a large, richly phenotyped and genotyped sample of OCD cases. Our specific aims are geared toward answering a number of key questions regarding the biology, etiology, and treatment of OCD. This article describes and discusses the rationale, design, and methodology of NORDiC, including details on clinical measures and planned genomic analyses.
Collapse
Affiliation(s)
- David Mataix-Cols
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden,Stockholm Health Care Services, Stockholm, Sweden
| | - Bjarne Hansen
- Haukeland University Hospital, OCD-team, Bergen, Norway,Department of Clinical Psychology, University of Bergen, Bergen, Norway
| | - Manuel Mattheisen
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany,Institute of Human Genetics, University of Bonn, Bonn, Germany,Center for Integrative Sequencing, iSEQ, Department of Biomedicine, Aarhus University, Denmark,Department of Psychiatry, Psychosomatics, and Psychotherapy, University of Würzburg, Germany
| | - Elinor K. Karlsson
- Broad Institute of MIT and Harvard, Cambridge, MA, USA,Program in Bioinformatics & Integrative Biology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Anjené M. Addington
- Genomics Research Branch, National Institute of Mental Health in Bethesda, Bethesda, Maryland, USA
| | - Julia Boberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden,Stockholm Health Care Services, Stockholm, Sweden
| | - Diana R. Djurfeldt
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden,Stockholm Health Care Services, Stockholm, Sweden
| | - Matthew Halvorsen
- Department of Genetics, University of North Carolina at Chapel Hill, NC, USA
| | - Paul Lichtenstein
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Stian Solem
- Haukeland University Hospital, OCD-team, Bergen, Norway,Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kerstin Lindblad-Toh
- Broad Institute of MIT and Harvard, Cambridge, MA, USA,Science for Life Laboratory, IMBIM, Uppsala University, Uppsala, Sweden
| | | | - Jan Haavik
- Department of Biomedicine, University of Bergen, Bergen, Norway,Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Gerd Kvale
- Haukeland University Hospital, OCD-team, Bergen, Norway,Department of Clinical Psychology, University of Bergen, Bergen, Norway
| | - Christian Rück
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden,Stockholm Health Care Services, Stockholm, Sweden
| | - James J. Crowley
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden,Department of Genetics, University of North Carolina at Chapel Hill, NC, USA,Department of Psychiatry, University of North Carolina at Chapel Hill, NC, USA
| |
Collapse
|
31
|
Rodríguez N, Morer A, González-Navarro EA, Serra-Pages C, Boloc D, Torres T, Martinez-Pinteño A, Mas S, Lafuente A, Gassó P, Lázaro L. Altered frequencies of Th17 and Treg cells in children and adolescents with obsessive-compulsive disorder. Brain Behav Immun 2019; 81:608-616. [PMID: 31344493 DOI: 10.1016/j.bbi.2019.07.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/01/2019] [Accepted: 07/20/2019] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Obsessive-compulsive disorder (OCD) is a debilitating neuropsychiatric disorder with an etiopathophysiology that seems to include immune alterations. Previous studies have suggested that variations in the levels of circulating T cell subpopulations may be involved in psychiatric diseases. However, the role of these cells in OCD remains unexplored. Hence, the present study aimed to examine the levels of T helper 1 (Th1), Th2, Th17 and regulatory T (Treg) cells in patients with early-onset OCD and healthy controls. METHODS The assessment was performed in 99 children and adolescents with OCD and 46 control subjects. The percentages of circulating Th1, Th2, Th17 and Treg cells were evaluated using flow cytometry. RESULTS OCD patients had significantly higher levels of Th17 cells and lower percentages of Treg cells than healthy controls (p = 0.001 and p = 0.005, respectively). Furthermore, levels of Th17 cells progressively increased with the duration (p = 0.005) and severity of OCD (p = 0.008), whereas the percentages of Treg cells significantly declined with the duration of the disorder (p = 1.8 × 10-5). CONCLUSIONS These results provide more evidence of the involvement of immune dysregulation, specifically an imbalance in the levels of circulating T helper and regulatory T cells, in the pathophysiology of early-onset OCD.
Collapse
Affiliation(s)
| | - Astrid Morer
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neurosciences, Hospital Clinic de Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain.
| | - E Azucena González-Navarro
- Immunology Service, Hospital Clinic de Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | - Carles Serra-Pages
- Immunology Service, Hospital Clinic de Barcelona, Spain; Department of Biomedicine, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | - Daniel Boloc
- Department of Medicine, University of Barcelona, Spain.
| | - Teresa Torres
- Department of Basic Clinical Practice, University of Barcelona, Spain.
| | | | - Sergi Mas
- Department of Basic Clinical Practice, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain.
| | - Amalia Lafuente
- Department of Basic Clinical Practice, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain.
| | - Patricia Gassó
- Department of Basic Clinical Practice, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | - Luisa Lázaro
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neurosciences, Hospital Clinic de Barcelona, Spain; Department of Medicine, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain.
| |
Collapse
|
32
|
Khramtsova EA, Heldman R, Derks EM, Yu D, Davis LK, Stranger BE. Sex differences in the genetic architecture of obsessive-compulsive disorder. Am J Med Genet B Neuropsychiatr Genet 2019; 180:351-364. [PMID: 30456828 PMCID: PMC6527502 DOI: 10.1002/ajmg.b.32687] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 12/31/2022]
Abstract
Obsessive-compulsive disorder (OCD) is a highly heritable complex phenotype that demonstrates sex differences in age of onset and clinical presentation, suggesting a possible sex difference in underlying genetic architecture. We present the first genome-wide characterization of the sex-specific genetic architecture of OCD, utilizing the largest set of OCD cases and controls available from the Psychiatric Genomics Consortium. We assessed evidence for several mechanisms that may contribute to sex differences including a sex-dependent liability threshold, the presence of individual sex-specific risk variants on the autosomes and the X chromosome, and sex-specific pleiotropic effects. Furthermore, we tested the hypothesis that genetic heterogeneity between the sexes may obscure associations in a sex-combined genome-wide association study. We observed a strong genetic correlation between male and female OCD and no evidence for a sex-dependent liability threshold model, suggesting that sex-combined analysis does not suffer from widespread loss of power because of genetic heterogeneity between the sexes. While we did not detect any significant sex-specific genome-wide single nucleotide polymorphisms (SNP) associations, we did identify two significant gene-based associations in females: GRID2 and GRP135, which showed no association in males. We observed that the SNPs with sexually differentiated effects showed an enrichment of regulatory variants influencing expression of genes in brain and immune tissues. These findings suggest that future studies with larger sample sizes hold great promise for the identification of sex-specific genetic risk factors for OCD.
Collapse
Affiliation(s)
- Ekaterina A Khramtsova
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, Illinois
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, Illinois
| | | | - Eske M Derks
- Queensland Institute of Medical Research, Brisbane, Australia
| | - Dongmei Yu
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts
| | - Lea K Davis
- Vanderbilt Genetics Institute; Vanderbilt University Medical Center, Nashville, Tennessee
- Division of Medical Genetics, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Barbara E Stranger
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, Illinois
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, Illinois
- Center for Data Intensive Science, University of Chicago, Chicago, Illinois
| |
Collapse
|
33
|
Rodriguez N, Morer A, González-Navarro EA, Gassó P, Boloc D, Serra-Pagès C, Lafuente A, Lazaro L, Mas S. Human-leukocyte antigen class II genes in early-onset obsessive-compulsive disorder. World J Biol Psychiatry 2019; 20:352-358. [PMID: 28562177 DOI: 10.1080/15622975.2017.1327669] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Objective: The exact aetiology of obsessive-compulsive disorder (OCD) is unknown, although there is evidence to suggest a gene-environment interaction model. Several lines of evidence support a possible role of the immune system in this model. Methods: The present study explores the allele variability in HLA genes of class II (HLA-DRB1, HLA-DQB1) in a sample of 144 early-onset OCD compared with reference samples of general population in the same geographical area. Results: None of the 39 alleles identified (allele frequency >1%) showed significant differences between OCD and reference populations. Pooling the different alleles that comprised HLA-DR4 (including DRB1*04:01, DRB1*04:04 and DRB1*04:05 alleles) we observed a significantly higher frequency (X21 = 5.53, P = 0.018; OR = 1.64, 95% CI 1.08-2.48) of these alleles in the early-onset OCD sample (10.8%) than in the reference population (6.8%). Conclusions: Taking into account the role of HLA class II genes in the central nervous system, the results presented here support a role of the immune system in the pathophysiological model of OCD.
Collapse
Affiliation(s)
- Natalia Rodriguez
- a Dept. Anatomic Pathology, Pharmacology and Microbiology , University of Barcelona , Barcelona , Spain.,b Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) , Barcelona , Spain.,c Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) , Barcelona , Spain
| | - Astrid Morer
- b Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) , Barcelona , Spain.,c Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) , Barcelona , Spain.,d Department of Child and Adolescent Psychiatry and Psychology, Institute of Neurosciences , Hospital Clinic de Barcelona , Barcelona , Spain
| | - E Azucena González-Navarro
- c Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) , Barcelona , Spain.,e Immunology Service , Centre de Diagnostic Biomèdic, Hospital Clínic Dept , Barcelona , Spain
| | - Patricia Gassó
- a Dept. Anatomic Pathology, Pharmacology and Microbiology , University of Barcelona , Barcelona , Spain.,c Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) , Barcelona , Spain
| | - Daniel Boloc
- a Dept. Anatomic Pathology, Pharmacology and Microbiology , University of Barcelona , Barcelona , Spain
| | - Carles Serra-Pagès
- c Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) , Barcelona , Spain.,e Immunology Service , Centre de Diagnostic Biomèdic, Hospital Clínic Dept , Barcelona , Spain.,f Dept. Biomedicine , University of Barcelona , Barcelona , Spain
| | - Amalia Lafuente
- a Dept. Anatomic Pathology, Pharmacology and Microbiology , University of Barcelona , Barcelona , Spain.,b Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) , Barcelona , Spain.,c Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) , Barcelona , Spain
| | - Luisa Lazaro
- b Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) , Barcelona , Spain.,c Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) , Barcelona , Spain.,d Department of Child and Adolescent Psychiatry and Psychology, Institute of Neurosciences , Hospital Clinic de Barcelona , Barcelona , Spain.,g Psychiatry and Clinical Psychobiology , University of Barcelona , Barcelona , Spain
| | - Sergi Mas
- a Dept. Anatomic Pathology, Pharmacology and Microbiology , University of Barcelona , Barcelona , Spain.,b Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) , Barcelona , Spain.,c Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) , Barcelona , Spain
| |
Collapse
|
34
|
Wang W, Corominas R, Lin GN. De novo Mutations From Whole Exome Sequencing in Neurodevelopmental and Psychiatric Disorders: From Discovery to Application. Front Genet 2019; 10:258. [PMID: 31001316 PMCID: PMC6456656 DOI: 10.3389/fgene.2019.00258] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 03/08/2019] [Indexed: 12/13/2022] Open
Abstract
Neurodevelopmental and psychiatric disorders are a highly disabling and heterogeneous group of developmental and mental disorders, resulting from complex interactions of genetic and environmental risk factors. The nature of multifactorial traits and the presence of comorbidity and polygenicity in these disorders present challenges in both disease risk identification and clinical diagnoses. The genetic component has been firmly established, but the identification of all the causative variants remains elusive. The development of next-generation sequencing, especially whole exome sequencing (WES), has greatly enriched our knowledge of the precise genetic alterations of human diseases, including brain-related disorders. In particular, the extensive usage of WES in research studies has uncovered the important contribution of de novo mutations (DNMs) to these disorders. Trio and quad familial WES are a particularly useful approach to discover DNMs. Here, we review the major WES studies in neurodevelopmental and psychiatric disorders and summarize how genes hit by discovered DNMs are shared among different disorders. Next, we discuss different integrative approaches utilized to interrogate DNMs and to identify biological pathways that may disrupt brain development and shed light on our understanding of the genetic architecture underlying these disorders. Lastly, we discuss the current state of the transition from WES research to its routine clinical application. This review will assist researchers and clinicians in the interpretation of variants obtained from WES studies, and highlights the need to develop consensus analytical protocols and validated lists of genes appropriate for clinical laboratory analysis, in order to reach the growing demands.
Collapse
Affiliation(s)
- Weidi Wang
- Shanghai Mental Health Center, School of Biomedical Engineering, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai, China
- Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Roser Corominas
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Valencia, Spain
- Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Guan Ning Lin
- Shanghai Mental Health Center, School of Biomedical Engineering, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai, China
- Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
35
|
Melo-Felippe FB, Fontenelle LF, Kohlrausch FB. Gene variations in PBX1, LMX1A and SLITRK1 are associated with obsessive-compulsive disorder and its clinical features. J Clin Neurosci 2019; 61:180-185. [PMID: 30377043 DOI: 10.1016/j.jocn.2018.10.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 10/07/2018] [Indexed: 12/19/2022]
Abstract
Genetic factors probably influence OCD development and a current hypothesis proposes that genes involved in the development of the central nervous system (CNS) are related to OCD. The aim of this study was to analyze six Single Nucleotide Polymorphisms (SNPs) in five genes with functions related to neurodevelopment in OCD. A total of 203 patient and 203 control samples were genotyped using the TaqMan® methodology. Statistically significant associations between OCD and PBX1 (rs2275558) in total sample (P = 0.002) and in males (P = 0.0003) were observed. Concerning symptom dimensions, the expression of neutralization showed a statistical significant association with LMX1A (rs4657411, P = 0.004) in total sample. We also observed significant association between LMX1A (rs4657411) and washing dimension in females (P = 0.01). Additionally, SLITRK1 (rs9593835) was significantly associated with checking dimension in male patients (P = 0.04). Our results indicate an important influence of neurodevelopment genes in the OCD susceptibility. Additional studies with larger samples are needed to confirm these results.
Collapse
Affiliation(s)
- Fernanda B Melo-Felippe
- Departamento de Biologia Geral, Instituto de Biologia, Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Leonardo F Fontenelle
- Programa de Transtornos Obsessivo-Compulsivos e de Ansiedade, Instituto de Psiquiatria, Universidade Federal do Rio de Janeiro (UFRJ), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; Instituto D'Or de Pesquisa e Ensino (IDOR), Rio de Janeiro, Brazil; School of Psychological Sciences, MONASH University, Melbourne, Australia
| | - Fabiana B Kohlrausch
- Departamento de Biologia Geral, Instituto de Biologia, Universidade Federal Fluminense (UFF), Niterói, Brazil.
| |
Collapse
|
36
|
Initial findings of striatum tripartite model in OCD brain samples based on transcriptome analysis. Sci Rep 2019; 9:3086. [PMID: 30816141 PMCID: PMC6395771 DOI: 10.1038/s41598-019-38965-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 12/17/2018] [Indexed: 11/22/2022] Open
Abstract
Obsessive-compulsive disorder (OCD) is a psychiatric disorder characterized by obsessions and/or compulsions. Different striatal subregions belonging to the cortico-striato-thalamic circuitry (CSTC) play an important role in the pathophysiology of OCD. The transcriptomes of 3 separate striatal areas (putamen (PT), caudate nucleus (CN) and accumbens nucleus (NAC)) from postmortem brain tissue were compared between 6 OCD and 8 control cases. In addition to network connectivity deregulation, different biological processes are specific to each striatum region according to the tripartite model of the striatum and contribute in various ways to OCD pathophysiology. Specifically, regulation of neurotransmitter levels and presynaptic processes involved in chemical synaptic transmission were shared between NAC and PT. The Gene Ontology terms cellular response to chemical stimulus, response to external stimulus, response to organic substance, regulation of synaptic plasticity, and modulation of synaptic transmission were shared between CN and PT. Most genes harboring common and/or rare variants previously associated with OCD that were differentially expressed or part of a least preserved coexpression module in our study also suggest striatum subregion specificity. At the transcriptional level, our study supports differences in the 3 circuit CSTC model associated with OCD.
Collapse
|
37
|
Rustad SR, Papale LA, Alisch RS. DNA Methylation and Hydroxymethylation and Behavior. Curr Top Behav Neurosci 2019; 42:51-82. [PMID: 31392630 DOI: 10.1007/7854_2019_104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Environmentally sensitive molecular mechanisms in the brain, such as DNA methylation, have become a significant focus of neuroscience research because of mounting evidence indicating that they are critical in response to social situations, stress, threats, and behavior. The recent identification of 5-hydroxymethylcytosine (5hmC), which is enriched in the brain (tenfold over peripheral tissues), raises new questions as to the role of this base in mediating epigenetic effects in the brain. The development of genome-wide methods capable of distinguishing 5-methylcytosine (5mC) from 5hmC has revealed that a growing number of behaviors are linked to independent disruptions of 5mC and 5hmC levels, further emphasizing the unique importance of both of these modifications in the brain. Here, we review the recent links that indicate DNA methylation (both 5mC and 5hmC) is highly dynamic and that perturbations in this modification may contribute to behaviors related to psychiatric disorders and hold clinical relevance.
Collapse
Affiliation(s)
| | - Ligia A Papale
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Reid S Alisch
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA. .,Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
38
|
Abstract
Obsessive-compulsive disorder (OCD) has been seen to run in families and genetics help to understand its heritability. In this review, we summarize older studies which focused on establishing the familial nature of OCD, including its various dimensions of symptoms, and we focus on recent findings from studies using both the candidate gene approach and genome-wide association study (GWAS) approach. The family studies and twin studies establish the heritability of OCD. Candidate gene approaches have implicated genes in the serotonergic, glutamatergic, and dopaminergic pathways. GWAS has not produced significant results possibly due to the small sample size. Newer techniques such as gene expression studies in brain tissue, stem cell technology, and epigenetic studies may shed more light on the complex genetic basis of OCD.
Collapse
Affiliation(s)
- Abhishek Purty
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Gerald Nestadt
- Department of Behavioral Science and Psychiatry, Johns Hopkins University, Baltimore, MD, USA
| | - Jack F. Samuels
- Department of Behavioral Science and Psychiatry, Johns Hopkins University, Baltimore, MD, USA
| | - Biju Viswanath
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| |
Collapse
|
39
|
Fontenelle LF, Yücel M. A Clinical Staging Model for Obsessive-Compulsive Disorder: Is It Ready for Prime Time? EClinicalMedicine 2019; 7:65-72. [PMID: 31193644 PMCID: PMC6537549 DOI: 10.1016/j.eclinm.2019.01.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 01/02/2023] Open
Abstract
Recent changes to the diagnostic classification of obsessive-compulsive disorder (OCD), including its removal from the anxiety/neurotic, stress-related and somatoform disorders chapters of the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) and International Classification of Diseases 11th Revision (ICD-11), are based on growing evidence of unique pathogenic signatures and linked diagnostic and treatment approaches. In this review, we build on these recent developments and propose a 'clinical staging model' of OCD that integrates the severity of symptoms and phase of illness for personalised case management. A clinical staging model is especially relevant for the early identification and management of subthreshold OCD - a substantial and largely neglected portion of the population who, despite having milder symptoms, experience harms that may impact personal relationships, work-related functioning and productivity. Research on the pathogenesis, classification and management of such cases is needed, including the development of new outcomes measures that prove sensitive to changes in future clinical trials. Early intervention strategies in OCD are likely to yield better long-term outcomes.
Collapse
Affiliation(s)
- Leonardo F. Fontenelle
- Obsessive, Compulsive, and Anxiety Spectrum Research Program, Institute of Psychiatry, Federal University of Rio de Janeiro, Brazil
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil
- Brain & Mental Health Research Hub, Turner Institute for Brain and Mental Health, Monash University, Victoria, Australia
- Corresponding author at: Rua Visconde de Pirajá, 547, 617, Ipanema, Rio de Janeiro-RJ, CEP: 22410-003, Brazil.
| | - Murat Yücel
- Brain & Mental Health Research Hub, Turner Institute for Brain and Mental Health, Monash University, Victoria, Australia
| |
Collapse
|
40
|
Abstract
Tourette syndrome (TS) is a complex disorder characterized by repetitive, sudden, and involuntary movements or vocalizations, called tics. Tics usually appear in childhood, and their severity varies over time. In addition to frequent tics, people with TS are at risk for associated problems including attention deficit hyperactivity disorder (ADHD), obsessive-compulsive disorder (OCD), anxiety, depression, and problems with sleep. TS occurs in most populations and ethnic groups worldwide, and it is more common in males than in females. Previous family and twin studies have shown that the majority of cases of TS are inherited. TS was previously thought to have an autosomal dominant pattern of inheritance. However, several decades of research have shown that this is unlikely the case. Instead, TS most likely results from a variety of genetic and environmental factors, not changes in a single gene. In the past decade, there has been a rapid development of innovative genetic technologies and methodologies, as well as significant progress in genetic studies of psychiatric disorders. In this review, we will briefly summarize previous genetic epidemiological studies of TS and related disorders. We will also review previous genetic studies based on genome-wide linkage analyses and candidate gene association studies to comment on problems of previous methodological and strategic issues. Our main purpose for this review will be to summarize the new genetic discoveries of TS based on novel genetic methods and strategies, such as genome-wide association studies (GWASs), whole exome sequencing (WES), and whole genome sequencing (WGS). We will also compare the new genetic discoveries of TS with other major psychiatric disorders in order to understand the current status of TS genetics and its relationship with other psychiatric disorders.
Collapse
|
41
|
Wang J, Liu J, Gao Y, Wang K, Jiang K. Autism spectrum disorder early in development associated with CHD8 mutations among two Chinese children. BMC Pediatr 2018; 18:338. [PMID: 30376831 PMCID: PMC6208010 DOI: 10.1186/s12887-018-1307-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 10/10/2018] [Indexed: 12/02/2022] Open
Abstract
Background Autism spectrum disorder (ASD) is a heterogeneous group of neurodevelopmental disorders. Genetically based subtype identification may prove more beneficial not only in illuminating the course and prognosis, but also for individualized treatment targets of an ASD sub-group. Increasing evidence has shown that de novo loss-of-function mutations in the chromodomain helicase DNA-binding protein 8 (CHD8) gene are associated with an ASD sub-group. Case presentation Here we describe two ASD cases in children with mild intellectual disability, early motor deficits, and speech delay, without distinct structural or EEG brain anomalies. Exome sequencing revealed a novel heterozygous nonsense/missense mutations(c.2647C > A/p.E883X and c.1677C > A/p.M559I respectively) in CHD8 gene. Conclusions There were few cases in the literature reporting de novo mutation of CHD8 in ASD. As demonstrated in our patients, along with other previously reported studies support that disruption of the CHD8 gene represents a specific genetic sub-type of ASD.
Collapse
Affiliation(s)
- Jiangping Wang
- Department of Rehabilitation, The Children's Hospital Zhejiang University School of Medicine, 3333 Binsheng Road, Hangzhou, 310051, China
| | - Jinling Liu
- Department of Respiration, The Children's Hospital Zhejiang University School of Medicine, 3333 Binsheng Road, Hangzhou, 310051, China
| | - Yi Gao
- Department of Neurology, The Children's Hospital Zhejiang University School of Medicine, 3333 Binsheng Road, Hangzhou, 310051, China
| | - Kaixuan Wang
- Department of Pediatrics, Jinhua Central Hospital, Jinhua, 321000, Zhejiang Province, China
| | - Kewen Jiang
- Department of Neurology, The Children's Hospital Zhejiang University School of Medicine, 3333 Binsheng Road, Hangzhou, 310051, China. .,Department of Laboratory, The Children's Hospital Zhejiang University School of Medicine, 3333 Binsheng Road, Hangzhou, 310051, China.
| |
Collapse
|
42
|
Fernandez TV, Leckman JF, Pittenger C. Genetic susceptibility in obsessive-compulsive disorder. HANDBOOK OF CLINICAL NEUROLOGY 2018; 148:767-781. [PMID: 29478613 DOI: 10.1016/b978-0-444-64076-5.00049-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Obsessive-compulsive disorder (OCD) is present in 1.5-2.5% of the population and can result in substantial lifelong disability. It is characterized by intrusive thoughts, sensations, and urges and by repetitive behaviors that are difficult to control despite, in most cases, preserved insight as to their excessive or irrational nature. The causes and underlying pathophysiology of OCD are not well understood, which has limited the development of new treatments and interventions. Despite evidence for a substantial genetic contribution to disease risk, identification and replication of genetic variants associated with OCD have been challenging. Decades of candidate gene association studies have provided little insight. They are now being supplanted by modern genomewide approaches to discover both common and rare sequence and structural variants. Studies to date suggest potential novel therapeutic avenues such as modulators of glutamatergic and immune pathways; however, individual genetic findings are not yet statistically robust or replicated. Further efforts are clearly needed to identify specific risk variants and to confirm vulnerable pathways by studying much larger cohorts of patients with comprehensive variant discovery approaches. Mouse knockout models have already made notable inroads into our understanding of OCD pathology; their utility will only increase as specific risk alleles are identified.
Collapse
Affiliation(s)
- Thomas V Fernandez
- Child Study Center, Yale University School of Medicine, New Haven, CT, United States; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States.
| | - James F Leckman
- Child Study Center, Yale University School of Medicine, New Haven, CT, United States; Department of Psychology, Yale University School of Medicine, New Haven, CT, United States
| | - Christopher Pittenger
- Child Study Center, Yale University School of Medicine, New Haven, CT, United States; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States; Department of Psychology, Yale University School of Medicine, New Haven, CT, United States; Integrated Neuroscience Research Program, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
43
|
Lamothe H, Baleyte JM, Smith P, Pelissolo A, Mallet L. Individualized Immunological Data for Precise Classification of OCD Patients. Brain Sci 2018; 8:E149. [PMID: 30096863 PMCID: PMC6119917 DOI: 10.3390/brainsci8080149] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 12/11/2022] Open
Abstract
Obsessive⁻compulsive disorder (OCD) affects about 2% of the general population, for which several etiological factors were identified. Important among these is immunological dysfunction. This review aims to show how immunology can inform specific etiological factors, and how distinguishing between these etiologies is important from a personalized treatment perspective. We found discrepancies concerning cytokines, raising the hypothesis of specific immunological etiological factors. Antibody studies support the existence of a potential autoimmune etiological factor. Infections may also provoke OCD symptoms, and therefore, could be considered as specific etiological factors with specific immunological impairments. Finally, we underline the importance of distinguishing between different etiological factors since some specific treatments already exist in the context of immunological factors for the improvement of classic treatments.
Collapse
Affiliation(s)
- Hugues Lamothe
- Centre Hospitalier Intercommunal de Créteil, 94000 Créteil, France.
- Institut du Cerveau et de la Moelle Epinière, Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, 75013 Paris, France.
- Fondation FondaMental, 94000 Créteil, France.
| | - Jean-Marc Baleyte
- Centre Hospitalier Intercommunal de Créteil, 94000 Créteil, France.
- Fondation FondaMental, 94000 Créteil, France.
| | - Pauline Smith
- Institut du Cerveau et de la Moelle Epinière, Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, 75013 Paris, France.
| | - Antoine Pelissolo
- Fondation FondaMental, 94000 Créteil, France.
- Assistance Publique-Hôpitaux de Paris, Pôle de Psychiatrie, Hôpitaux Universitaires Henri Mondor-Albert Chenevier, Université Paris-Est Créteil, 94000 Créteil, France.
- INSERM, U955, Team 15, 94000 Créteil, France.
| | - Luc Mallet
- Institut du Cerveau et de la Moelle Epinière, Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, 75013 Paris, France.
- Fondation FondaMental, 94000 Créteil, France.
- Assistance Publique-Hôpitaux de Paris, Pôle de Psychiatrie, Hôpitaux Universitaires Henri Mondor-Albert Chenevier, Université Paris-Est Créteil, 94000 Créteil, France.
- Department of Mental Health and Psychiatry, Global Health Institute, University of Geneva, 1202 Geneva, Switzerland.
| |
Collapse
|
44
|
Qi Y, Zheng Y, Li Z, Xiong L. Progress in Genetic Studies of Tourette's Syndrome. Brain Sci 2017; 7:E134. [PMID: 29053637 PMCID: PMC5664061 DOI: 10.3390/brainsci7100134] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/03/2017] [Accepted: 10/17/2017] [Indexed: 12/23/2022] Open
Abstract
Tourette's Syndrome (TS) is a complex disorder characterized by repetitive, sudden, and involuntary movements or vocalizations, called tics. Tics usually appear in childhood, and their severity varies over time. In addition to frequent tics, people with TS are at risk for associated problems including attention deficit hyperactivity disorder (ADHD), obsessive-compulsive disorder (OCD), anxiety, depression, and problems with sleep. TS occurs in most populations and ethnic groups worldwide, and it is more common in males than in females. Previous family and twin studies have shown that the majority of cases of TS are inherited. TS was previously thought to have an autosomal dominant pattern of inheritance. However, several decades of research have shown that this is unlikely the case. Instead TS most likely results from a variety of genetic and environmental factors, not changes in a single gene. In the past decade, there has been a rapid development of innovative genetic technologies and methodologies, as well as significant progresses in genetic studies of psychiatric disorders. In this review, we will briefly summarize previous genetic epidemiological studies of TS and related disorders. We will also review previous genetic studies based on genome-wide linkage analyses and candidate gene association studies to comment on problems of previous methodological and strategic issues. Our main purpose for this review will be to summarize the new genetic discoveries of TS based on novel genetic methods and strategies, such as genome-wide association studies (GWASs), whole exome sequencing (WES) and whole genome sequencing (WGS). We will also compare the new genetic discoveries of TS with other major psychiatric disorders in order to understand the current status of TS genetics and its relationship with other psychiatric disorders.
Collapse
Affiliation(s)
- Yanjie Qi
- Laboratoire de Neurogénétique, Centre de Recherche, Institut Universitaire en Santé Mentale de Montréal, Montreal, QC H1N 3V2, Canada.
- Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China.
| | - Yi Zheng
- Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China.
- Center of Schizophrenia, Beijing Institute for Brain Disorders, Beijing 100088, China.
| | - Zhanjiang Li
- Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China.
- Center of Schizophrenia, Beijing Institute for Brain Disorders, Beijing 100088, China.
| | - Lan Xiong
- Laboratoire de Neurogénétique, Centre de Recherche, Institut Universitaire en Santé Mentale de Montréal, Montreal, QC H1N 3V2, Canada.
- Département de Psychiatrie, Faculté de Médecine, Université de Montréal, Montreal, QC H3C 3J7, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
45
|
Shavitt RG, Requena G, Alonso P, Zai G, Costa DLC, de Bragança Pereira CA, do Rosário MC, Morais I, Fontenelle L, Cappi C, Kennedy J, Menchon JM, Miguel E, Richter PMA. Quantifying dimensional severity of obsessive-compulsive disorder for neurobiological research. Prog Neuropsychopharmacol Biol Psychiatry 2017; 79:206-212. [PMID: 28673486 DOI: 10.1016/j.pnpbp.2017.06.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 06/27/2017] [Accepted: 06/29/2017] [Indexed: 10/19/2022]
Abstract
Current research to explore genetic susceptibility factors in obsessive-compulsive disorder (OCD) has resulted in the tentative identification of a small number of genes. However, findings have not been readily replicated. It is now broadly accepted that a major limitation to this work is the heterogeneous nature of this disorder, and that an approach incorporating OCD symptom dimensions in a quantitative manner may be more successful in identifying both common as well as dimension-specific vulnerability genetic factors. As most existing genetic datasets did not collect specific dimensional severity ratings, a specific method to reliably extract dimensional ratings from the most widely used severity rating scale, the Yale-Brown Obsessive Compulsive Scale (YBOCS), for OCD is needed. This project aims to develop and validate a novel algorithm to extrapolate specific dimensional symptom severity ratings in OCD from the existing YBOCS for use in genetics and other neurobiological research. To accomplish this goal, we used a large data set comprising adult subjects from three independent sites: the Brazilian OCD Consortium, the Sunnybrook Health Sciences Centre in Toronto, Canada and the Hospital of Bellvitge, in Barcelona, Spain. A multinomial logistic regression was proposed to model and predict the quantitative phenotype [i.e., the severity of each of the five homogeneous symptom dimensions of the Dimensional YBOCS (DYBOCS)] in subjects who have only YBOCS (categorical) data. YBOCS and DYBOCS data obtained from 1183 subjects were used to build the model, which was tested with the leave-one-out cross-validation method. The model's goodness of fit, accepting a deviation of up to three points in the predicted DYBOCS score, varied from 78% (symmetry/order) to 84% (cleaning/contamination and hoarding dimensions). These results suggest that this algorithm may be a valuable tool for extracting dimensional phenotypic data for neurobiological studies in OCD.
Collapse
Affiliation(s)
- Roseli G Shavitt
- Department of Psychiatry, University of São Paulo, School of Medicine, Rua Dr. Ovídio Pires de Campo, 785/3(o). andar-sala 7. CEP 01060-970 São Paulo, Brazil.
| | - Guaraci Requena
- Institute of Mathematics and Statistics, University of Sao Paulo, R. do Matão, 1010 - Vila Universitaria, São Paulo, SP CEP 05508-090, Brazil
| | - Pino Alonso
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona, Spain; Bellvitge Biomedical Research Institute (IDIBELL), Centro de Investigación en Red de Salud Mental, Carlos III Health Institute, Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Feixa Llarga, s/n, 08907 L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Gwyneth Zai
- Sunnybrook Health Sciences Centre, Centre for Addiction and Mental Health, 2075 Bayview Avenue, Suite FG42, Toronto, ON M4N 3M5, Canada.
| | - Daniel L C Costa
- Department of Psychiatry, University of São Paulo, School of Medicine, Rua Dr. Ovídio Pires de Campo, 785/3(o). andar-sala 7. CEP 01060-970 São Paulo, Brazil
| | - Carlos Alberto de Bragança Pereira
- Institute of Mathematics and Statistics, University of Sao Paulo, R. do Matão, 1010 - Vila Universitaria, São Paulo, SP CEP 05508-090, Brazil
| | - Maria Conceição do Rosário
- Child and Adolescent Psychiatry Unit (UPIA), Department of Psychiatry, Federal University of São Paulo (UNIFESP), Rua Borges Lagoa 570, CEP04038-020 São Paulo, Brazil
| | - Ivanil Morais
- Department of Psychiatry, University of São Paulo, School of Medicine, Rua Dr. Ovídio Pires de Campo, 785/3(o). andar-sala 7. CEP 01060-970 São Paulo, Brazil
| | - Leonardo Fontenelle
- Instituto de Psiquiatria, Universidade Federal do Rio de Janeiro (UFRJ), Instituto D'Or de Pesquisa e Ensino (IDOR), Rio de Janeiro, Brazil. Av. Venceslau Braz, 71 fundos. Botafogo, Rio de Janeiro, RJ, 22290-140, Brazil
| | - Carolina Cappi
- Department of Psychiatry, University of São Paulo, School of Medicine, Rua Dr. Ovídio Pires de Campo, 785/3(o). andar-sala 7. CEP 01060-970 São Paulo, Brazil
| | - James Kennedy
- Sunnybrook Health Sciences Centre, Centre for Addiction and Mental Health, 2075 Bayview Avenue, Suite FG42, Toronto, ON M4N 3M5, Canada.
| | - Jose M Menchon
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona, Spain; Bellvitge Biomedical Research Institute (IDIBELL), Centro de Investigación en Red de Salud Mental, Carlos III Health Institute, Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Feixa Llarga, s/n, 08907 L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Euripedes Miguel
- Department of Psychiatry, University of São Paulo, School of Medicine, Rua Dr. Ovídio Pires de Campo, 785/3(o). andar-sala 7. CEP 01060-970 São Paulo, Brazil
| | - Peggy M A Richter
- Sunnybrook Health Sciences Centre, Centre for Addiction and Mental Health, 2075 Bayview Avenue, Suite FG42, Toronto, ON M4N 3M5, Canada.
| |
Collapse
|
46
|
Need AC, Goldstein DB. Neuropsychiatric genomics in precision medicine: diagnostics, gene discovery, and translation. DIALOGUES IN CLINICAL NEUROSCIENCE 2017. [PMID: 27757059 PMCID: PMC5067142 DOI: 10.31887/dcns.2016.18.3/aneed] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Only a few years after its development, next-generation sequencing is rapidly becoming an essential part of clinical care for patients with serious neurological conditions, especially in the diagnosis of early-onset and severe presentations. Beyond this diagnostic role, there has been an explosion in definitive gene discovery in a range of neuropsychiatric diseases. This is providing new pointers to underlying disease biology and is beginning to outline a new framework for genetic stratification of neuropsychiatric disease, with clear relevance to both individual treatment optimization and clinical trial design. Here, we outline these developments and chart the expected impact on the treatment of neurological, neurodevelopmental, and psychiatric disease.
Collapse
Affiliation(s)
- Anna C Need
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, W12 ONN, UK
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University, New York, NY, 10032, USA
| |
Collapse
|
47
|
Fernandez TV, Leckman JF. Prenatal and Perinatal Risk Factors and the Promise of Birth Cohort Studies: Origins of Obsessive-Compulsive Disorder. JAMA Psychiatry 2016; 73:1117-1118. [PMID: 27706471 PMCID: PMC5180419 DOI: 10.1001/jamapsychiatry.2016.2092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Thomas V Fernandez
- Child Study Center, Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - James F Leckman
- Child Study Center, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
48
|
Need AC. Neuropsychiatric genomics in precision medicine: diagnostics, gene discovery, and translation. DIALOGUES IN CLINICAL NEUROSCIENCE 2016; 18:237-252. [PMID: 27757059 PMCID: PMC5067142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Only a few years after its development, next-generation sequencing is rapidly becoming an essential part of clinical care for patients with serious neurological conditions, especially in the diagnosis of early-onset and severe presentations. Beyond this diagnostic role, there has been an explosion in definitive gene discovery in a range of neuropsychiatric diseases. This is providing new pointers to underlying disease biology and is beginning to outline a new framework for genetic stratification of neuropsychiatric disease, with clear relevance to both individual treatment optimization and clinical trial design. Here, we outline these developments and chart the expected impact on the treatment of neurological, neurodevelopmental, and psychiatric disease.
Collapse
Affiliation(s)
- Anna C. Need
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, W12 ONN, UK
| |
Collapse
|
49
|
Gonçalves ÓF, Carvalho S, Leite J, Fernandes-Gonçalves A, Carracedo A, Sampaio A. Cognitive and emotional impairments in obsessive-compulsive disorder: Evidence from functional brain alterations. Porto Biomed J 2016; 1:92-105. [PMID: 32258557 DOI: 10.1016/j.pbj.2016.07.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
There is a common agreement on the existence of dysfunctional cortico-striatal-thalamus-cortical pathways in OCD. Despite this consensus, recent studies showed that brain regions other than the CSTC loops are needed to understand the complexity and diversity of cognitive and emotional deficits in OCD. This review presents examples of research using functional neuroimaging, reporting abnormal brain processes in OCD that may underlie specific cognitive/executive (inhibitory control, cognitive flexibility, working memory), and emotional impairments (fear/defensive, disgust, guilt, shame). Studies during resting state conditions show that OCD patients have alterations in connectivity not only within the CSTC pathways but also in more extended resting state networks, particularly the default mode network and the fronto-parietal network. Additionally, abnormalities in brain functioning have been found in several cognitive and emotionally task conditions, namely: inhibitory control (e.g., CSTC loops, fronto-parietal networks, anterior cingulate); cognitive flexibility (e.g., CSTC loops, extended temporal, parietal, and occipital regions); working memory (e.g., CSTC loops, frontal parietal networks, dorsal anterior cingulate); fear/defensive (e.g., amygdala, additional brain regions associated with perceptual - parietal, occipital - and higher level cognitive processing - prefrontal, temporal); disgust (e.g., insula); shame (e.g., decrease activity in middle frontal gyrus and increase in frontal, limbic, temporal regions); and guilt (e.g., decrease activity anterior cingulate and increase in frontal, limbic, temporal regions). These findings may contribute to the understanding of OCD as both an emotional (i.e., anxiety) and cognitive (i.e., executive control) disorder.
Collapse
Affiliation(s)
- Óscar F Gonçalves
- Neuropsychophysiology Lab, CIPsi, School of Psychology, University of Minho, Braga, Portugal.,Spaulding Center of Neuromodulation, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Applied Psychology, Bouvé College of Health Sciences, Northeastern University, Boston, USA
| | - Sandra Carvalho
- Neuropsychophysiology Lab, CIPsi, School of Psychology, University of Minho, Braga, Portugal.,Spaulding Center of Neuromodulation, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jorge Leite
- Neuropsychophysiology Lab, CIPsi, School of Psychology, University of Minho, Braga, Portugal.,Spaulding Center of Neuromodulation, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Angel Carracedo
- Forensic Genetics Unit, Institute of Legal Medicine, Faculty of Medicine, University of Santiago de Compostela, Galicia, Spain
| | - Adriana Sampaio
- Neuropsychophysiology Lab, CIPsi, School of Psychology, University of Minho, Braga, Portugal
| |
Collapse
|