1
|
Kamandulis S, Dudėnienė L, Snieckus A, Kniubaite A, Mickevicius M, Lukonaitiene I, Venckunas T, Stasiule L, Stasiulis A. Impact of Anaerobic Exercise Integrated Into Regular Training on Experienced Judo Athletes: Running Vs. Repetitive Throws. J Strength Cond Res 2024; 38:e489-e495. [PMID: 38838240 DOI: 10.1519/jsc.0000000000004829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
ABSTRACT Kamandulis, S, Dudėnienė, L, Snieckus, A, Kniubaite, A, Mickevicius, M, Lukonaitiene, I, Venckunas, T, Stasiule, L, and Stasiulis, A. Impact of anaerobic exercise integrated into regular training on experienced judo athletes: running vs. repetitive throws. J Strength Cond Res 38(9): e489-e495, 2024-Anaerobic training in high-level athletes is of considerable interest to practitioners aiming to optimize performance. This study compared the impact of interval anaerobic training (IAT) sessions consisting of either high-intensity running or throwing that were performed twice a week together with regular judo training on the anaerobic and aerobic performance of experienced judo athletes. Employing a repeated-measures, counterbalancing, research design, 12 national team judo athletes (7 women and 5 men; mean age, 20.4 ± 0.95 years; mean judo training experience, 13.4 ± 1.4 years; competitive level, black belt first and second Dan) performed each IAT modality for 6 weeks, for a full training cycle of 12 weeks. Assessments of their anaerobic fitness (Cunningham and Faulkner Anaerobic Treadmill Test), sport-specific anaerobic fitness (Special Judo Fitness Test [SJFT]), and aerobic capacity (maximal incremental treadmill running test) were performed before, after 6 weeks, and after 12 weeks of training. The uphill running performance improved by 13.1% over the 12-week period ( p = 0.047). Simultaneously, there was a 9.0% improvement in the SJFT index and a 6.9% increase in the number of throws ( p = 0.011 and p = 0.017, respectively). Although a trend for throwing drills being more effective than interval sprint running was observed, the interaction effect lacked statistical significance ( p = 0.074). Moreover, no substantial changes were noted in aerobic endurance markers. In conclusion, this study suggests that incorporating specific and nonspecific high-intensity drills into a routine training regimen may enhance anaerobic capacity among well-trained judo athletes, potentially leading to favorable competitive outcomes.
Collapse
Affiliation(s)
- Sigitas Kamandulis
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Lolita Dudėnienė
- Department of Coaching Science, Lithuanian Sports University, Kaunas, Lithuania ; and
| | - Audrius Snieckus
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Audinga Kniubaite
- Department of Coaching Science, Lithuanian Sports University, Kaunas, Lithuania ; and
| | - Mantas Mickevicius
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Inga Lukonaitiene
- Department of Coaching Science, Lithuanian Sports University, Kaunas, Lithuania ; and
| | - Tomas Venckunas
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Loreta Stasiule
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Kaunas, Lithuania
| | - Arvydas Stasiulis
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Kaunas, Lithuania
| |
Collapse
|
2
|
Araujo Bonetti DE Poli R, Murias JM, Antunes BM, Marinari G, Dutra YM, Milioni F, Zagatto AM. Five Weeks of Sprint Interval Training Improve Muscle Glycolytic Content and Activity But Not Time to Task Failure in Severe-Intensity Exercise. Med Sci Sports Exerc 2024; 56:1355-1367. [PMID: 38537252 DOI: 10.1249/mss.0000000000003425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
PURPOSE This study examined the impact of a 5-wk sprint interval training (SIT) intervention on time to task failure (TTF) during severe-intensity constant work rate (CWR) exercise, as well as in glycolytic enzymatic content and activity, and glycogen content. METHODS Fourteen active males were randomized into either a SIT group ( n = 8) composed of 15 SIT sessions over 5 wk, or a control group ( n = 6). At pretraining period, participants performed i) ramp incremental test to measure the cardiorespiratory function; ii) CWR cycling TTF at 150% of the power output (PO) at the respiratory compensation point (RCP-PO) with muscle biopsies at rest and immediately following task failure. After 5 wk, the same evaluations were repeated (i.e., exercise intensities matched to current training status), and an additional cycling CWR matched to pretraining 150% RCP-PO was performed only for TTF evaluation. The content and enzymatic activity of glycogen phosphorylase (GPhos), hexokinase (HK), phosphofructokinase (PFK), and lactate dehydrogenase (LDH), as well as the glycogen content, were analyzed. Content of monocarboxylate transporter isoform 4 (MCT4) and muscle buffering capacity were also measured. RESULTS Despite improvements in total work performed at CWR posttraining, no differences were observed for TTF. The GPhos, HK, PFK, and LDH content and activity, and glycogen content also improved after training only in the SIT group. Furthermore, the MCT4 concentrations and muscle buffering capacity were also improved only for the SIT group. However, no difference in glycogen depletion was observed between groups and time. CONCLUSIONS Five weeks of SIT improved the glycolytic pathway parameters and total work performed; however, glycogen depletion was not altered during CWR severe-intensity exercise, and TTF remained similar.
Collapse
Affiliation(s)
- Rodrigo Araujo Bonetti DE Poli
- Laboratory of Physiology and Sport Performance (LAFIDE), Graduate Program in Movement Sciences, São Paulo State University (UNESP), School of Sciences. Bauru, BRAZIL
| | - Juan Manuel Murias
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, QATAR
| | - Barbara Moura Antunes
- Laboratory of Physiology and Sport Performance (LAFIDE), Graduate Program in Movement Sciences, São Paulo State University (UNESP), School of Sciences. Bauru, BRAZIL
| | - Gabriele Marinari
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, CANADA
| | - Yago Medeiros Dutra
- Laboratory of Physiology and Sport Performance (LAFIDE), Graduate Program in Movement Sciences, São Paulo State University (UNESP), School of Sciences. Bauru, BRAZIL
| | - Fabio Milioni
- Centro Universitário Nossa Senhora do Patrocínio, Itu, BRAZIL
| | - Alessandro Moura Zagatto
- Laboratory of Physiology and Sport Performance (LAFIDE), Graduate Program in Movement Sciences, São Paulo State University (UNESP), School of Sciences. Bauru, BRAZIL
| |
Collapse
|
3
|
Wang T, Zhong Y, Wei X. Early excellence and future performance advantage. PLoS One 2024; 19:e0306134. [PMID: 38917179 PMCID: PMC11198806 DOI: 10.1371/journal.pone.0306134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
OBJECTIVES The objective of this study was to examine the impact of athletes achieving excellence at different ages (excellent age) on their subsequent performance development. The aim was to deepen understanding of the interplay among talent, training, and athletes' performance development. Additionally, the study aimed to provide insights for athletics coaches to better identify talent and devise more effective personalized long-term training plans. DESIGN This was a cross-sectional study. METHOD A hierarchical linear model was employed to analyze the correlation between excellent age and subsequent performance development in a cohort of 775 elite track and field athletes. This analysis was expanded upon by the application of a general linear regression model, which was used to explore the relationship between excellent age and peak age, peak performance, as well as the growth in performance during adulthood. RESULTS As athletes reached excellence at later ages, their peak performance exhibited a U-shaped pattern(p <0.001), initially decreasing and then rising. Simultaneously, their peak age became increasingly advanced(p <0.001), with a progressively larger performance improvement during adulthood(p <0.001). In various disciplines, excellent age is negatively correlated with peak performance for speed athletes(p = 0.025), exhibiting a U-shaped pattern for endurance athletes(p = 0.024), and showing no significant correlation for fast-power athletes(p = 0.916). CONCLUSIONS Athletes who achieve excellence either early or later often show more remarkable future developments. However, there are significant distinctions in the age at which these athletes reach their peak performance and the pace of improvement leading up to it. Those who excel early may possess greater innate athletic talent, whereas those who excel later may exhibit superior training adaptability. Consequently, an athlete's early performance can predict his/her future performance trajectory, offering support for individualized long-term training plans. In summary, the age at which athletes achieve excellence may bring different advantages to their future athletic performance and development. This implies that we should harness these differences to uncover each athlete's maximum potential.
Collapse
Affiliation(s)
- Tiantian Wang
- School of Physical Education, Hubei University of Technology, Wuhan, Hubei, China
| | - Yaping Zhong
- Sports Big-data Research Center, Wuhan Sports University, Wuhan, Hubei, China
| | - Xin Wei
- School of Physical Education, Hubei University of Technology, Wuhan, Hubei, China
| |
Collapse
|
4
|
Lanfranchi C, Willis SJ, Laramée L, Conde Alonso S, Pialoux V, Kayser B, Place N, Millet GP, Zanou N. Repeated sprint training in hypoxia induces specific skeletal muscle adaptations through S100A protein signaling. FASEB J 2024; 38:e23615. [PMID: 38651657 DOI: 10.1096/fj.202302084rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/22/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
Athletes increasingly engage in repeated sprint training consisting in repeated short all-out efforts interspersed by short recoveries. When performed in hypoxia (RSH), it may lead to greater training effects than in normoxia (RSN); however, the underlying molecular mechanisms remain unclear. This study aimed at elucidating the effects of RSH on skeletal muscle metabolic adaptations as compared to RSN. Sixteen healthy young men performed nine repeated sprint training sessions in either normoxia (FIO2 = 0.209, RSN, n = 7) or normobaric hypoxia (FIO2 = 0.136, RSH, n = 9). Before and after the training period, exercise performance was assessed by using repeated sprint ability (RSA) and Wingate tests. Vastus lateralis muscle biopsies were performed to investigate muscle metabolic adaptations using proteomics combined with western blot analysis. Similar improvements were observed in RSA and Wingate tests in both RSN and RSH groups. At the muscle level, RSN and RSH reduced oxidative phosphorylation protein content but triggered an increase in mitochondrial biogenesis proteins. Proteomics showed an increase in several S100A family proteins in the RSH group, among which S100A13 most strongly. We confirmed a significant increase in S100A13 protein by western blot in RSH, which was associated with increased Akt phosphorylation and its downstream targets regulating protein synthesis. Altogether our data indicate that RSH may activate an S100A/Akt pathway to trigger specific adaptations as compared to RSN.
Collapse
Affiliation(s)
- Clément Lanfranchi
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Sarah J Willis
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
- Department of Biological Sciences, University of Denver, Denver, Colorado, USA
| | - Louis Laramée
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Sonia Conde Alonso
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Vincent Pialoux
- Inter-University Laboratory of Human Movement Biology UR7424, University Claude Bernard Lyon 1, Lyon, France
| | - Bengt Kayser
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Place
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Nadège Zanou
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Shirai T, Uemichi K, Takemasa T. Effects of the order of endurance and high-intensity interval exercise in combined training on mouse skeletal muscle metabolism. Am J Physiol Regul Integr Comp Physiol 2023; 325:R593-R603. [PMID: 37746708 DOI: 10.1152/ajpregu.00077.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/26/2023]
Abstract
Endurance exercise (EE) mainly improves oxidative capacity, whereas high-intensity interval exercise (HIIE) also improves glycolytic capacity. There is growing evidence that suggests that combining EE with HIIE can lead to improved athletic performance and fitness outcomes compared with either form of exercise alone. This study aimed to elucidate whether the order in which EE and HIIE are performed in combined training affects oxidative metabolism and glycolysis in mouse skeletal muscle. Male ICR mice at 7 wk of age were divided into three groups: control (CON), EE-HIIE, and HIIE-EE. The total training period was 3 wk (3 times/week). Mice performed running on a treadmill as endurance exercise and swimming with a weight load of 10% of body weight as high-intensity interval exercise. EE before HIIE (EE-HIIE) improved running performance in the maximal EE capacity test (all-out test) and partly enhanced the expression levels of molecular signals involved in glycolysis compared with HIIE before EE (HIIE-EE). The order of exercise did not, however, impact the expression of proteins related to mitochondrial dynamics, including those involved in the morphological changes of mitochondria through repeated fusion and fission, as well as oxidative energy metabolism. The findings suggest that the order of exercise has no significant impact on the expression of proteins associated with glycolytic and oxidative energy metabolism. Nevertheless, our results indicate that the order of EE-HIIE may enhance running performance.
Collapse
Affiliation(s)
- Takanaga Shirai
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Japan Society for Promotion Science, Chiyoda-ku, Tokyo, Japan
| | - Kazuki Uemichi
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Japan Society for Promotion Science, Chiyoda-ku, Tokyo, Japan
| | - Tohru Takemasa
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
6
|
Hall AJ, Aspe RR, Craig TP, Kavaliauskas M, Babraj J, Swinton PA. The Effects of Sprint Interval Training on Physical Performance: A Systematic Review and Meta-Analysis. J Strength Cond Res 2023; 37:457-481. [PMID: 36165995 DOI: 10.1519/jsc.0000000000004257] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
ABSTRACT Hall, AJ, Aspe, RR, Craig, TP, Kavaliauskas, M, Babraj, J, and Swinton, PA. The effects of sprint interval training on physical performance: a systematic review and meta-analysis. J Strength Cond Res 37(2): 457-481, 2023-The present study aimed to synthesize findings from published research and through meta-analysis quantify the effect of sprint interval training (SIT) and potential moderators on physical performance outcomes (categorized as aerobic, anaerobic, mixed aerobic-anaerobic, or muscular force) with healthy adults, in addition to assessing the methodological quality of included studies and the existence of small study effects. Fifty-five studies were included (50% moderate methodological quality, 42% low methodological quality), with 58% comprising an intervention duration of ≤4 weeks and an array of different training protocols. Bayesian's meta-analysis of standardized mean differences (SMD) identified a medium effect of improved physical performance with SIT (ES 0.5 = 0.52; 95% credible intervals [CrI]: 0.42-0.62). Moderator analyses identified overlap between outcome types with the largest effects estimated for anaerobic outcomes (ES 0.5 = 0.61; 95% CrI: 0.48-0.75). Moderator effects were identified for intervention duration, sprint length, and number of sprints performed per session, with larger effects obtained for greater values of each moderator. A substantive number of very large effect sizes (41 SMDs > 2) were identified with additional evidence of extensive small study effects. This meta-analysis demonstrates that short-term SIT interventions are effective for developing moderate improvements in physical performance outcomes. However, extensive small study effects, likely influenced by researchers analyzing many outcomes, suggest potential overestimation of reported effects. Future research should analyze fewer a priori selected outcomes and investigate models to progress SIT interventions for longer-term performance improvements.
Collapse
Affiliation(s)
- Andy J Hall
- Department of Sport and Exercise, School of Health Sciences, Robert Gordon University, Aberdeen, United Kingdom
| | - Rodrigo R Aspe
- Department of Sport and Exercise, School of Health Sciences, Robert Gordon University, Aberdeen, United Kingdom
| | - Thomas P Craig
- Department of Sport and Exercise, School of Health Sciences, Robert Gordon University, Aberdeen, United Kingdom
| | - Mykolas Kavaliauskas
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom ; and
| | - John Babraj
- Division of Sport and Exercise Science, Abertay University, Dundee, United Kingdom
| | - Paul A Swinton
- Department of Sport and Exercise, School of Health Sciences, Robert Gordon University, Aberdeen, United Kingdom
| |
Collapse
|
7
|
Effects and Causes of Detraining in Athletes Due to COVID-19: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095400. [PMID: 35564795 PMCID: PMC9102934 DOI: 10.3390/ijerph19095400] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/23/2022]
Abstract
Several aspects of systemic alterations caused by the SARS-CoV-2 virus and the resultant COVID-19 disease have been currently explored in the general population. However, very little is known about these particular aspects in sportsmen and sportswomen. We believe that the most important element to take into account is the neuromuscular aspect, due to the implications that this system entails in motion execution and coordination. In this context, deficient neuromuscular control when performing dynamic actions can be an important risk factor for injury. Therefore, data in this review refer mainly to problems derived in the short term from athletes who have suffered this pathology, taking into account that COVID-19 is a very new disease and the presented data are still not conclusive. The review addresses two key aspects: performance alteration and the return to regular professional physical activity. COVID-19 causes metabolic-respiratory, muscular, cardiac, and neurological alterations that are accompanied by a situation of stress. All of these have a clear influence on performance but at the same time in the strategy of returning to optimal conditions to train and compete again after infection. From the clinical evidence, the resumption of physical training and sports activity should be carried out progressively, both in terms of time and intensity.
Collapse
|
8
|
McKetney J, Jenkins CC, Minogue C, Mach PM, Hussey EK, Glaros TG, Coon J, Dhummakupt ES. Proteomic and metabolomic profiling of acute and chronic stress events associated with military exercises. Mol Omics 2021; 18:279-295. [PMID: 34860218 DOI: 10.1039/d1mo00271f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By characterizing physiological changes that occur in warfighters during simulated combat, we can start to unravel the key biomolecular components that are linked to physical and cognitive performance. Viable field-based sensors for the warfighter must be rapid and noninvasive. In an effort to facilitate this, we applied a multiomics pipeline to characterize the stress response in the saliva of warfighters to correlate biomolecular changes with overall performance and health. In this study, two different stress models were observed - one of chronic stress and one of acute stress. In both models, significant perturbations in the immune, metabolic, and protein manufacturing/processing systems were observed. However, when differentiating between stress models, specific metabolites associated with the "fight or flight" response and protein folding were seen to be discriminate of the acute stress model.
Collapse
Affiliation(s)
- Justin McKetney
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, 53706, USA. .,National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA
| | - Conor C Jenkins
- DEVCOM Chemical Biological Center, Aberdeen Proving Grounds, MD 21010, USA.
| | - Catie Minogue
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, 53706, USA. .,National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA
| | - Phillip M Mach
- DEVCOM Chemical Biological Center, Aberdeen Proving Grounds, MD 21010, USA.
| | - Erika K Hussey
- DEVCOM Soldier Center, Natick, MA 01760, USA.,Defense Innovation Unit, Mountain View, CA 94043, USA
| | - Trevor G Glaros
- DEVCOM Chemical Biological Center, Aberdeen Proving Grounds, MD 21010, USA. .,Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Joshua Coon
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, 53706, USA. .,National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA.,Morgridge Institute for Research, Madison, WI 53515, USA.,Department of Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|
9
|
Shirai T, Hanakita H, Uemichi K, Takemasa T. Effect of the order of concurrent training combined with resistance and high-intensity interval exercise on mTOR signaling and glycolytic metabolism in mouse skeletal muscle. Physiol Rep 2021; 9:e14770. [PMID: 33650809 PMCID: PMC7923557 DOI: 10.14814/phy2.14770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023] Open
Abstract
Athletes train to improve strength and endurance to demonstrate maximum performance during competitions. Training methods vary but most focus on strength, endurance, or both. Concurrent training is a combination of two different modes of training. In this study, we combined resistance exercise (RE) and high-intensity interval exercise (HIIE) to investigate the influence of the order of the concurrent training on signal molecules on hypertrophy and glycolysis in the skeletal muscle. The phosphorylation levels of mechanistic target of rapamycin (mTOR) signals, p70 S6 kinase (p70S6 K), ribosomal protein S6 (S6), and glycogen synthase kinase beta (GSK-3β) were significantly increased in the HIIE first group compared with the control group. The combined training course did not affect the glycogen content and expression levels of proteins concerning glycolytic and metabolic capacity, suggesting that a combination of HIIE and RE on the same day, with HIIE prior to RE, improves hypertrophy response and glycolysis enhancement.
Collapse
Affiliation(s)
- Takanaga Shirai
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Research Fellow of Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, Japan
| | - Hideto Hanakita
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kazuki Uemichi
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Tohru Takemasa
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
10
|
Thom G, Kavaliauskas M, Babraj J. Changes in lactate kinetics underpin soccer performance adaptations to cycling-based sprint interval training. Eur J Sport Sci 2020; 20:486-494. [PMID: 31232639 DOI: 10.1080/17461391.2019.1635650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In adolescent soccer, 23% of the distance covers happens at speeds above onset of blood lactate accumulation which suggests that lactate kinetics may be important for soccer performance. We sought to determine the effectiveness of sprint interval training (SIT) on changing performance and lactate kinetics in adolescent soccer players. Thirteen elite soccer academy players (age 15 ± 0.5y) underwent baseline testing (0-10 m and 10-20 m sprint performance, Wingate anaerobic Test (WaNT) with blood lactate measurements and incremental VO2 peak test) before being allocated to control or SIT group. The control group maintained training whilst the HIT group carried out twice-weekly all-out effort cycle sprints consisting of 6 × 10 s sprint with 80 s recovery. There were significant time x group interactions for 10-20 m sprint time (Control pre: 1.32 ± 0.07 s post: 1.35 ± 0.08 s; SIT pre: 1.29 ± 0.04 s post: 1.25 ± 0.04 s; p = 0.01), Peak Power (Control pre: 13.1 ± 1.3 W.kg-1 post: 13.2 ± 1.47 W.kg-1; SIT pre: 12.4 ± 1.3 W.kg-1 post: 15.3 ± 0.7 W.kg-1; p = 0.01) and time to exhaustion (Control pre: 596 ± 62 s post: 562 ± 85 s; SIT pre: 655 ± 54 s post: 688 ± 55 s; p = 0.001). The changes in performance were significantly correlated to changes in lactate kinetics (power: r = 0.55; 10-20 m speed: r = -0.54; time to exhaustion: r = 0.55). Therefore, cycle based SIT is an effective training paradigm for elite adolescent soccer players and the improvements in performance are associated with changes in lactate kinetics.
Collapse
Affiliation(s)
- Graham Thom
- Division of Sport and Exercise Science, Abertay University, Dundee, Scotland
| | - Mykolas Kavaliauskas
- School of Applied Sciences, Sport, Exercise and Health Sciences, Edinburgh Napier University, Edinburgh, Scotland
| | - John Babraj
- Division of Sport and Exercise Science, Abertay University, Dundee, Scotland
| |
Collapse
|
11
|
Morales‐Alamo D, Martinez‐Canton M, Gelabert‐Rebato M, Martin‐Rincon M, Pablos‐Velasco P, Holmberg H, Calbet JAL. Sarcolipin expression in human skeletal muscle: Influence of energy balance and exercise. Scand J Med Sci Sports 2019; 30:408-420. [DOI: 10.1111/sms.13594] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 10/08/2019] [Accepted: 10/29/2019] [Indexed: 12/18/2022]
Affiliation(s)
- David Morales‐Alamo
- Department of Physical Education University of Las Palmas de Gran Canaria Campus Universitario de Tafira s/n Las Palmas de Gran Canaria Spain
- IUIBS Instituto de Investigaciones Biomédicas y Sanitarias de Las Palmas de Gran Canaria Canary Islands Spain
| | - Miriam Martinez‐Canton
- IUIBS Instituto de Investigaciones Biomédicas y Sanitarias de Las Palmas de Gran Canaria Canary Islands Spain
| | - Miriam Gelabert‐Rebato
- Department of Physical Education University of Las Palmas de Gran Canaria Campus Universitario de Tafira s/n Las Palmas de Gran Canaria Spain
- IUIBS Instituto de Investigaciones Biomédicas y Sanitarias de Las Palmas de Gran Canaria Canary Islands Spain
- Nektium Pharma Las Palmas de Gran Canaria Spain
| | - Marcos Martin‐Rincon
- Department of Physical Education University of Las Palmas de Gran Canaria Campus Universitario de Tafira s/n Las Palmas de Gran Canaria Spain
- IUIBS Instituto de Investigaciones Biomédicas y Sanitarias de Las Palmas de Gran Canaria Canary Islands Spain
| | - Pedro Pablos‐Velasco
- IUIBS Instituto de Investigaciones Biomédicas y Sanitarias de Las Palmas de Gran Canaria Canary Islands Spain
- Service of Endocrinology and Nutrition Hospital Universitario de Gran Canaria Doctor Negrín Las Palmas de Gran Canaria Spain
| | - Hans‐Christer Holmberg
- Department of Health Sciences Swedish Winter Sports Research Centre Mid Sweden University Östersund Sweden
| | - Jose A. L. Calbet
- Department of Physical Education University of Las Palmas de Gran Canaria Campus Universitario de Tafira s/n Las Palmas de Gran Canaria Spain
- IUIBS Instituto de Investigaciones Biomédicas y Sanitarias de Las Palmas de Gran Canaria Canary Islands Spain
- Department of Physical Performance Norwegian School of Sport Sciences Oslo Norway
| |
Collapse
|
12
|
The impact of acute and chronic exercise on Nrf2 expression in relation to markers of mitochondrial biogenesis in human skeletal muscle. Eur J Appl Physiol 2019; 120:149-160. [PMID: 31707475 DOI: 10.1007/s00421-019-04259-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/01/2019] [Indexed: 10/25/2022]
Abstract
PURPOSE To examine the relationship between changes in nuclear factor erythroid 2-related factor 2 (Nrf2) expression and markers of mitochondrial biogenesis in acutely and chronically exercised human skeletal muscle. METHODS The impact of acute submaximal endurance (END) and supramaximal interval (Tabata) cycling on the upregulation of Nrf2 (and its downstream targets), nuclear respiratory factor-1 (NRF-1) and mitochondrial transcription factor A (TFAM) mRNA expression was examined in healthy young males (n = 10). The relationship between changes in citrate synthase (CS) maximal activity and the protein content of Nrf2, heme oxygenase 1 (HO-1), NRF-1, and TFAM was also investigated following 4 weeks of Tabata in a separate group of males (n = 21). RESULTS Nrf2, NRF-1, and HO-1 mRNA expression increased after acute exercise (p < 0.05), whereas the increase in superoxide dismutase 2 (SOD2) mRNA expression approached significance (p = 0.08). Four weeks of Tabata increased CS activity and Nrf2, NRF-1, and TFAM protein content (p < 0.05), but decreased HO-1 protein content (p < 0.05). Training-induced changes in Nrf2 protein were strongly correlated with NRF-1 (r = 0.63, p < 0.01). When comparing protein content changes between individuals with the largest (HI: + 23%) and smallest (LO: - 1%) observed changes in CS activity (n = 8 each), increases in Nrf2 and TFAM protein content were apparent in the HI group only (p < 0.02) with medium-to-large effect sizes for between-group differences in changes in Nrf2 (ηp2=0.15) and TFAM (ηp2 = 0.12) protein content. CONCLUSION Altogether, our findings support a potential role for Nrf2 in exercise-induced mitochondrial biogenesis in human skeletal muscle.
Collapse
|
13
|
Kristoffersen M, Sandbakk Ø, Rønnestad BR, Gundersen H. Comparison of Short-Sprint and Heavy Strength Training on Cycling Performance. Front Physiol 2019; 10:1132. [PMID: 31555153 PMCID: PMC6724228 DOI: 10.3389/fphys.2019.01132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/16/2019] [Indexed: 11/13/2022] Open
Abstract
Purpose To compare the effects of short-sprint training (SST) and heavy-strength training (HST) following a 4-week strength-training period on sprint and endurance capacities in well-trained cyclists. Methods Twenty-eight competitive cyclists (age 29 ± 6 years) with maximal oxygen uptake () of 61.1 ± 5.9 mL⋅min-1⋅kg-1 participated. After a 4-weeks preparation strength-training period, the participants were randomized to add either HST or SST to their usual endurance training for the subsequent 6 weeks. Body composition, and power output at blood lactate concentration ([La-]) of 4 mmol⋅L-1, as well as a 100 min cycling test including 6 and 30-s sprints, 60 min cycling at [La-] of 2 mmol⋅L-1 and 5-min all-out cycling were performed before the 4-week preparation strength-training period, and before and after the 6-week intervention period. In addition, 1 repetition maximum (RM) in half-squat and 55-m maximal sprints on the cyclists' own bikes were measured before and after the 6-week intervention. Results SST was superior to HST in 6-s sprint performance, both in a fresh state (4.7 ± 2.6% vs. 1.1 ± 3.5%) and after prolong cycling (6.1 ± 1.8% vs. 1.8 ± 4.2%), in 30-s sprint (3.7 ± 2.8% vs. 1.3 ± 2.5%) and in 55-m seated sprint on own bike (4.3 ± 2.1% vs. 0.2 ± 1.8%) (all p < 0.002). HST induced a larger 1RM improvement in the half-squat test than SST (9.3 ± 3.6% vs. -3.9 ± 3.8%; p < 0.001). No group differences were revealed in the 5-min all-out test, , power output at 4 mmol⋅L-1 [La-], or in gross efficiency. Conclusion SST led to a greater increase in average and peak power output on all sprint tests compared to HST, whereas HST led to a greater increase in maximal strength. No group differences were found in relative changes in endurance capacities. Altogether, our results show a high degree of specificity in the adaptations of both SST and HST.
Collapse
Affiliation(s)
- Morten Kristoffersen
- Department of Sport, Food and Natural Sciences, Western Norway University of Applied Sciences, Bergen, Norway.,Centre for Elite Sports Research, Department of Neuroscience and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Øyvind Sandbakk
- Centre for Elite Sports Research, Department of Neuroscience and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bent R Rønnestad
- Section for Sport Science, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Hilde Gundersen
- Department of Sport, Food and Natural Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| |
Collapse
|
14
|
Kristoffersen M, Sandbakk Ø, Rønnestad BR, Gundersen H. Comparison of Short-Sprint and Heavy Strength Training on Cycling Performance. Front Physiol 2019. [PMID: 31555153 PMCID: PMC6724228 DOI: 10.3389/fpls.2019.01132,+10.3389/fphys.2019.01132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PURPOSE To compare the effects of short-sprint training (SST) and heavy-strength training (HST) following a 4-week strength-training period on sprint and endurance capacities in well-trained cyclists. METHODS Twenty-eight competitive cyclists (age 29 ± 6 years) with maximal oxygen uptake () of 61.1 ± 5.9 mL⋅min-1⋅kg-1 participated. After a 4-weeks preparation strength-training period, the participants were randomized to add either HST or SST to their usual endurance training for the subsequent 6 weeks. Body composition, and power output at blood lactate concentration ([La-]) of 4 mmol⋅L-1, as well as a 100 min cycling test including 6 and 30-s sprints, 60 min cycling at [La-] of 2 mmol⋅L-1 and 5-min all-out cycling were performed before the 4-week preparation strength-training period, and before and after the 6-week intervention period. In addition, 1 repetition maximum (RM) in half-squat and 55-m maximal sprints on the cyclists' own bikes were measured before and after the 6-week intervention. RESULTS SST was superior to HST in 6-s sprint performance, both in a fresh state (4.7 ± 2.6% vs. 1.1 ± 3.5%) and after prolong cycling (6.1 ± 1.8% vs. 1.8 ± 4.2%), in 30-s sprint (3.7 ± 2.8% vs. 1.3 ± 2.5%) and in 55-m seated sprint on own bike (4.3 ± 2.1% vs. 0.2 ± 1.8%) (all p < 0.002). HST induced a larger 1RM improvement in the half-squat test than SST (9.3 ± 3.6% vs. -3.9 ± 3.8%; p < 0.001). No group differences were revealed in the 5-min all-out test, , power output at 4 mmol⋅L-1 [La-], or in gross efficiency. CONCLUSION SST led to a greater increase in average and peak power output on all sprint tests compared to HST, whereas HST led to a greater increase in maximal strength. No group differences were found in relative changes in endurance capacities. Altogether, our results show a high degree of specificity in the adaptations of both SST and HST.
Collapse
Affiliation(s)
- Morten Kristoffersen
- Department of Sport, Food and Natural Sciences, Western Norway University of Applied Sciences, Bergen, Norway,Centre for Elite Sports Research, Department of Neuroscience and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway,*Correspondence: Morten Kristoffersen, ;
| | - Øyvind Sandbakk
- Centre for Elite Sports Research, Department of Neuroscience and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bent R. Rønnestad
- Section for Sport Science, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Hilde Gundersen
- Department of Sport, Food and Natural Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| |
Collapse
|
15
|
Cloning, expression, characterization, and immunological properties of citrate synthase from Echinococcus granulosus. Parasitol Res 2019; 118:1811-1820. [PMID: 31049696 DOI: 10.1007/s00436-019-06334-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 04/18/2019] [Indexed: 12/15/2022]
Abstract
The larval stages of the tapeworm Echinococcus granulosus (Cestoda: Taeniidae) are the causative agent of cystic echinococcosis, one of the most important parasitic zoonoses worldwide. E. granulosus has a complete pathway for the tricarboxylic acid cycle (TCA), in which citrate synthase (CS) is the key enzyme. Here, we cloned and expressed CS from E. granulosus (Eg-CS) and report its molecular characterization. The localization of this protein during different developmental stages and mRNA expression patterns during H2O2 treatment were determined. We found that Eg-CS is a highly conserved protein, consisting of 466 amino acids. In western blotting assays, recombinant Eg-CS (rEg-CS) reacted with E. granulosus-positive sheep sera and anti-rEg-CS rabbit sera, indicating that Eg-CS has good antigenicity and immunoreactivity. Localization studies, performed using immunohistochemistry, showed that Eg-CS is ubiquitously expressed in the larva, germinal layer, and adult worm sections of E. granulosus. Eg-CS mRNA expression levels increased following H2O2 exposure. In conclusion, citrate synthase might be involved in the metabolic process in E. granulosus. An assessment of the serodiagnostic potential of rEg-CS based on indirect ELISA showed that, although sensitivity (93.55%) and specificity (80.49%) are high, cross-reactivity with other parasites precludes its use as a diagnostic antigen.
Collapse
|
16
|
Training-Induced Changes in Mitochondrial Content and Respiratory Function in Human Skeletal Muscle. Sports Med 2018; 48:1809-1828. [PMID: 29934848 DOI: 10.1007/s40279-018-0936-y] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A sedentary lifestyle has been linked to a number of metabolic disorders that have been associated with sub-optimal mitochondrial characteristics and an increased risk of premature death. Endurance training can induce an increase in mitochondrial content and/or mitochondrial functional qualities, which are associated with improved health and well-being and longer life expectancy. It is therefore important to better define how manipulating key parameters of an endurance training intervention can influence the content and functionality of the mitochondrial pool. This review focuses on mitochondrial changes taking place following a series of exercise sessions (training-induced mitochondrial adaptations), providing an in-depth analysis of the effects of exercise intensity and training volume on changes in mitochondrial protein synthesis, mitochondrial content and mitochondrial respiratory function. We provide evidence that manipulation of different exercise training variables promotes specific and diverse mitochondrial adaptations. Specifically, we report that training volume may be a critical factor affecting changes in mitochondrial content, whereas relative exercise intensity is an important determinant of changes in mitochondrial respiratory function. As a consequence, a dissociation between training-induced changes in mitochondrial content and mitochondrial respiratory function is often observed. We also provide evidence that exercise-induced changes are not necessarily predictive of training-induced adaptations, we propose possible explanations for the above discrepancies and suggestions for future research.
Collapse
|
17
|
Dohlmann TL, Hindsø M, Dela F, Helge JW, Larsen S. High-intensity interval training changes mitochondrial respiratory capacity differently in adipose tissue and skeletal muscle. Physiol Rep 2018; 6:e13857. [PMID: 30221839 PMCID: PMC6139713 DOI: 10.14814/phy2.13857] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 08/15/2018] [Accepted: 08/16/2018] [Indexed: 02/04/2023] Open
Abstract
The effect of high-intensity training (HIT) on mitochondrial ADP sensitivity and respiratory capacity was investigated in human skeletal muscle and subcutaneous adipose tissue (SAT). Twelve men and women underwent 6 weeks of HIT (7 × 1 min at app. 100% of maximal oxygen uptake (VO2max )). Mitochondrial respiration was measured in permeabilized muscle fibers and in abdominal SAT. Mitochondrial ADP sensitivity was determined using Michaelis Menten enzyme kinetics. VO2max , body composition and citrate synthase (CS) activity (skeletal muscle) and mtDNA (SAT) were measured before and after training. VO2max increased from 2.6 ± 0.2 to 2.8 ± 0.2 L O2 /min (P = 0.011) accompanied by a decreased mitochondrial ADP sensitivity in skeletal muscle (Km : 0.14 ± 0.02 to 0.29 ± 0.03 mmol/L ADP (P = 0.002)), with no changes in SAT (Km : 0.12 ± 0.02 to 0.16 ± 0.05 mmol/L ADP; P = 0.186), following training. Mitochondrial respiratory capacity increased in skeletal muscle from 57 ± 4 to 67 ± 4 pmol O2 ·mg-1 ·sec-1 (P < 0.001), but decreased with training in SAT from 1.3 ± 0.1 to 1.0 ± 0.1 pmol O2 ·mg-1 ·sec-1 (P < 0.001). CS activity increased (P = 0.027) and mtDNA was unchanged following training. Intrinsic mitochondrial respiratory capacity was unchanged in skeletal muscle, but increased in SAT after HIT. In summary, our results demonstrate that mitochondrial adaptations to HIT in skeletal muscle are comparable to adaptations to endurance training, with an increased mitochondrial respiratory capacity and CS activity. However, mitochondria in SAT adapts differently compared to skeletal muscle mitochondria, where mitochondrial respiratory capacity decreased and mtDNA remained unchanged after HIT.
Collapse
Affiliation(s)
- Tine L. Dohlmann
- XlabCenter for Healthy AgingDepartment of Biomedical SciencesFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Morten Hindsø
- XlabCenter for Healthy AgingDepartment of Biomedical SciencesFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Flemming Dela
- XlabCenter for Healthy AgingDepartment of Biomedical SciencesFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of GeriatricsBispebjerg University HospitalCopenhagenDenmark
| | - Jørn W. Helge
- XlabCenter for Healthy AgingDepartment of Biomedical SciencesFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Steen Larsen
- XlabCenter for Healthy AgingDepartment of Biomedical SciencesFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
- Clinical Research CentreMedical University of BialystokBialystokPoland
| |
Collapse
|
18
|
Proteome analysis in dystrophic mdx mouse muscle reveals a drastic alteration of key metabolic and contractile proteins after chronic exercise and the potential modulation by anti-oxidant compounds. J Proteomics 2017; 170:43-58. [PMID: 28966053 DOI: 10.1016/j.jprot.2017.09.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/05/2017] [Accepted: 09/15/2017] [Indexed: 11/21/2022]
Abstract
Weakness and fatigability are typical features of Duchenne muscular dystrophy patients and are aggravated in dystrophic mdx mice by chronic treadmill exercise. In the present study, we describe, the pattern of differentially abundant spots that is associated to the worsening of dystrophy phenotype induced by chronic exercise. Our proteomic analysis pointed out 34 protein spots with different abundance between sedentary and exercised mdx mice. These proteins belong mostly to glucose metabolism, energy production and sarcomere structure categories. Interestingly exercise induced an increase of typical fast twitch fiber proteins (Troponin T fast skeletal muscle, Troponin I fast skeletal muscle and Myozenin-1) combined with an increase of several glycolytic enzymes. Concerning energy transfer, Adenylate kinase, showed a marked decrease when compared with non-exercised mdx. The decline of this enzyme correlates with increased Creatin kinase enzyme, suggesting that a compensatory energy metabolism mechanism could be activated in mdx mouse skeletal muscle following exercise. In addition, we analysed muscles from exercised mdx mice treated with two natural anti-oxidant compounds, apocynin and taurine, that in our previous study, were proved to be beneficial on some pathology related parameters, and we showed that these compounds can counteract exercise-induced changes in the abundance of several proteins. SIGNIFICANCE Mdx mouse model of Duchenne muscular dystrophy shows a phenotype of the disorder milder than in human sufferers. This phenotype can be worsened by a different protocols of chronic exercise. These protocols can mimic the muscle progressive damage observed in humans, can allow studying the effects of inadequate training on dystrophic muscles and have been largely used to assess the ability of a drug to reduce the damage induced by exercise. In this study, we describe for the first time, the pattern of protein variation associated with the worsening of dystrophy phenotype induced by chronic exercise. Our proteomic analysis pointed out 34 protein spots with different amount between sedentary and exercised mdx mice. These proteins belong mostly to glucose metabolism, energy production and sarcomere structure categories and their variation indicates that mdx exercised muscle are not able to carry out the metabolic changes associated to fast-to-slow transition typically observed in aerobically trained muscle.
Collapse
|
19
|
Yamagishi T, Babraj J. Effects of reduced-volume of sprint interval training and the time course of physiological and performance adaptations. Scand J Med Sci Sports 2017; 27:1662-1672. [PMID: 28124388 DOI: 10.1111/sms.12831] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2016] [Indexed: 12/31/2022]
Abstract
This study sought to determine the time course of training adaptations to two different sprint interval training programmes with the same sprint: rest ratio (1:8) but different sprint duration. Nine participants (M: 7; F: 2) were assigned to 15-second training group (15TG) consisting of 4-6 × 15-second sprints interspersed with 2-minute recovery, whereas eight participants (M: 5; F: 3) were assigned to 30-second training group (30TG) consisting of 4-6 × 30 second sprints interspersed with 4-minute recovery. Both groups performed their respective training twice per week over 9 weeks and changes in peak oxygen uptake (V˙O2peak) and time to exhaustion (TTE) were assessed every 3 weeks. Additional eight healthy active adults (M: 6; F: 2) completed the performance assessments 9 weeks apart without performing training (control group, CON). Following 9 weeks of training, both groups improved V˙O2peak (15TG: 12.1%; 30TG: 12.8%, P<.05) and TTE (15TG: 16.2%; 30TG: 12.8%, P<.01) to a similar extent. However, while both groups showed the greatest gains in V˙O2peak at 3 weeks (15TG: 16.6%; 30TG: 17.0%, P<.001), those in TTE were greatest at 9 weeks. CON did not change any of performance variables following 9 weeks. This study demonstrated that while the changes in cardiorespiratory function plateau within several weeks with sprint interval training, endurance capacity (TTE) is more sensitive to such training over a longer time frame in moderately-trained individuals. Furthermore, a 50% reduction in sprint duration does not diminish overall training adaptations over 9 weeks.
Collapse
Affiliation(s)
- T Yamagishi
- Division of Sport and Exercise Sciences, Abertay University, Dundee, Scotland.,Faculty of Sport Sciences, Waseda University, Saitama, Japan
| | - J Babraj
- Division of Sport and Exercise Sciences, Abertay University, Dundee, Scotland
| |
Collapse
|
20
|
Franchini E, Julio UF, Panissa VLG, Lira FS, Gerosa-Neto J, Branco BHM. High-Intensity Intermittent Training Positively Affects Aerobic and Anaerobic Performance in Judo Athletes Independently of Exercise Mode. Front Physiol 2016; 7:268. [PMID: 27445856 PMCID: PMC4923181 DOI: 10.3389/fphys.2016.00268] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/16/2016] [Indexed: 12/26/2022] Open
Abstract
Purpose: The present study investigated the effects of high-intensity intermittent training (HIIT) on lower- and upper-body graded exercise and high-intensity intermittent exercise (HIIE, four Wingate bouts) performance, and on physiological and muscle damage markers responses in judo athletes. Methods: Thirty-five subjects were randomly allocated to a control group (n = 8) or to one of the following HIIT groups (n = 9 for each) and tested pre- and post-four weeks (2 training d·wk−1): (1) lower-body cycle-ergometer; (2) upper-body cycle-ergometer; (3) uchi-komi (judo technique entrance). All HIIT were constituted by two blocks of 10 sets of 20 s of all out effort interspersed by 10 s set intervals and 5-min between blocks. Results: For the upper-body group there was an increase in maximal aerobic power in graded upper-body exercise test (12.3%). The lower-body group increased power at onset blood lactate in graded upper-body exercise test (22.1%). The uchi-komi group increased peak power in upper- (16.7%) and lower-body (8.5%), while the lower-body group increased lower-body mean power (14.2%) during the HIIE. There was a decrease in the delta blood lactate for the uchi-komi training group and in the third and fourth bouts for the upper-body training group. Training induced testosterone-cortisol ratio increased in the lower-body HIIE for the lower-body (14.9%) and uchi-komi (61.4%) training groups. Conclusion: Thus, short-duration low-volume HIIT added to regular judo training was able to increase upper-body aerobic power, lower- and upper-body HIIE performance.
Collapse
Affiliation(s)
- Emerson Franchini
- Department of Sport, School of Physical Education and Sport, University of São Paulo São Paulo, Brazil
| | - Ursula F Julio
- Department of Sport, School of Physical Education and Sport, University of São Paulo São Paulo, Brazil
| | - Valéria L G Panissa
- Department of Sport, School of Physical Education and Sport, University of São Paulo São Paulo, Brazil
| | - Fábio S Lira
- Exercise and Immunometabolism Research Group, Department of Physical Education, Paulista State University Presidente Prudente, Brazil
| | - José Gerosa-Neto
- Exercise and Immunometabolism Research Group, Department of Physical Education, Paulista State University Presidente Prudente, Brazil
| | - Braulio H M Branco
- Department of Sport, School of Physical Education and Sport, University of São Paulo São Paulo, Brazil
| |
Collapse
|
21
|
Kavaliauskas M, Aspe RR, Babraj J. High-Intensity Cycling Training: The Effect of Work-to-Rest Intervals on Running Performance Measures. J Strength Cond Res 2016. [PMID: 26203737 DOI: 10.1519/jsc.0000000000000868] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The work-to-rest ratio during cycling-based high-intensity interval training (HIT) could be important in regulating physiological and performance adaptations. We sought to determine the effectiveness of cycling-based HIT with different work-to-rest ratios for long-distance running. Thirty-two long-distance runners (age: 39 ± 8 years; sex: 14 men, 18 women; average weekly running training volume: 25 miles) underwent baseline testing (3-km time-trial, V[Combining Dot Above]O2peak and time to exhaustion, and Wingate test) before a 2-week matched-work cycling HIT of 6 × 10-second sprints with different rest periods (30 seconds [R30], 80 seconds [R80], 120 seconds [R120], or control). Three-kilometer time trial was significantly improved in the R30 group only (3.1 ± 4.0%, p = 0.04), whereas time to exhaustion was significantly increased in the 2 groups with a lower work-to-rest ratio (R30 group 6.4 ± 6.3%, p = 0.003 vs. R80 group 4.4 ± 2.7%, p = 0.03 vs. R120 group 1.9 ± 5.0%, p = 0.2). However, improvements in average power production were significantly greater with a higher work-to-rest ratio (R30 group 0.3 ± 4.1%, p = 0.8 vs. R80 group 4.6 ± 4.2%, p = 0.03 vs. R120 group 5.3 ± 5.9%, p = 0.02), whereas peak power significantly increased only in the R80 group (8.5 ± 8.2%, p = 0.04) but not in the R30 group (4.3 ± 6.1%, p = 0.3) or in the R120 group (7.1 ± 7.9%, p = 0.09). Therefore, cycling-based HIT is an effective way to improve running performance, and the type and magnitude of adaptation is dependent on the work-to-rest ratio.
Collapse
Affiliation(s)
- Mykolas Kavaliauskas
- 1Division of Sport and Exercise Sciences, Abertay University, Dundee, United Kingdom; and 2School of Sport and Exercise, University of Gloucestershire, Gloucester, United Kingdom
| | | | | |
Collapse
|
22
|
Proliferation of Human Primary Myoblasts Is Associated with Altered Energy Metabolism in Dependence on Ageing In Vivo and In Vitro. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8296150. [PMID: 26881042 PMCID: PMC4736420 DOI: 10.1155/2016/8296150] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/08/2015] [Indexed: 12/17/2022]
Abstract
Background. Ageing is associated with suppressed regenerative potential of muscle precursor cells due to decrease of satellite cells and suppressive intramuscular milieu on their activation, associated with ageing-related low-grade inflammation. The aim of the study was to characterize the function of oxidative phosphorylation (OXPHOS), glycolysis, adenylate kinase (AK), and creatine kinase (CK) mediated systems in young and older individuals. Materials and Methods. Myoblasts were cultivated from biopsies taken by transcutaneous conchotomy from vastus lateralis muscle in young (20–29 yrs, n = 7) and older (70–79 yrs, n = 7) subjects. Energy metabolism was assessed in passages 2 to 6 by oxygraphy and enzyme analysis. Results. In myoblasts of young and older subjects the rate of OXPHOS decreased during proliferation from passages 2 to 6. The total activities of CK and AK decreased. Myoblasts of passage 2 cultivated from young muscle showed higher rate of OXPHOS and activities of CK and AK compared to myoblasts from older subjects while hexokinase and pyruvate kinase were not affected by ageing. Conclusions. Proliferation of myoblasts in vitro is associated with downregulation of OXPHOS and energy storage and transfer systems. Ageing in vivo exerts an impact on satellite cells which results in altered metabolic profile in favour of the prevalence of glycolytic pathways over mitochondrial OXPHOS of myoblasts.
Collapse
|
23
|
Abe T, Kitaoka Y, Kikuchi DM, Takeda K, Numata O, Takemasa T. High-intensity interval training-induced metabolic adaptation coupled with an increase in Hif-1α and glycolytic protein expression. J Appl Physiol (1985) 2015; 119:1297-302. [DOI: 10.1152/japplphysiol.00499.2015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/14/2015] [Indexed: 11/22/2022] Open
Abstract
It is known that repeated bouts of high-intensity interval training (HIIT) lead to enhanced levels of glycolysis, glycogenesis, and lactate transport proteins in skeletal muscle; however, little is known about the molecular mechanisms underlying these adaptations. To decipher the mechanism leading to improvement of skeletal muscle glycolytic capacity associated with HIIT, we examined the role of hypoxia-inducible factor-1α (Hif-1α), the major transcription factor regulating the expression of genes related to anaerobic metabolism, in the adaptation to HIIT. First, we induced Hif-1α accumulation using ethyl 3,4-dihydroxybenzoate (EDHB) to assess the potential role of Hif-1α in skeletal muscle. Treatment with EDHB significantly increased the protein levels of Hif-1α in gastrocnemius muscles, accompanied by elevated expression of genes related to glycolysis, glycogenesis, and lactate transport. Daily administration of EDHB for 1 wk resulted in elevated glycolytic enzyme activity in gastrocnemius muscles. Second, we examined whether a single bout of HIIT could induce Hif-1α protein accumulation and subsequent increase in the expression of genes related to anaerobic metabolism in skeletal muscle. We observed that the protein levels of Hif-1α and expression of the target genes were elevated 3 h after an acute bout of HIIT in gastrocnemius muscles. Last, we examined the effects of long-term HIIT. We found that long-term HIIT increased the basal levels of Hif-1α as well as the glycolytic capacity in gastrocnemius muscles. Our results suggest that Hif-1α is a key regulator in the metabolic adaptation to high-intensity training.
Collapse
Affiliation(s)
- Takaaki Abe
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yu Kitaoka
- Department of Sports Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Dale Manjiro Kikuchi
- Department of Polar Science, Graduate University for Advanced Studies, Tachikawa, Tokyo, Japan
| | - Kohei Takeda
- Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Ibaraki, Japan; and
| | - Osamu Numata
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Tohru Takemasa
- Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Ibaraki, Japan; and
| |
Collapse
|
24
|
Nordsborg NB, Connolly L, Weihe P, Iuliano E, Krustrup P, Saltin B, Mohr M. Oxidative capacity and glycogen content increase more in arm than leg muscle in sedentary women after intense training. J Appl Physiol (1985) 2015; 119:116-23. [PMID: 26023221 DOI: 10.1152/japplphysiol.00101.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 05/18/2015] [Indexed: 11/22/2022] Open
Abstract
The hypothesis that the adaptive capacity is higher in human upper- than lower-body skeletal muscle was tested. Furthermore, the hypothesis that more pronounced adaptations in upper-body musculature can be achieved by "low-volume high-intensity" compared with "high-volume low-intensity" exercise training was evaluated. A group of sedentary premenopausal women aged 45 ± 6 yr (± SD) with expected high adaptive potential in both upper- and lower-extremity muscle groups participated. After random allocation to high-intensity swimming (HIS, n = 21), moderate-intensity swimming (MOS, n = 21), soccer (SOC, n = 21) or a nontraining control group (CON, n = 20), the training groups completed three workouts per week for 15 wk. Resting muscle biopsies were obtained from the vastus lateralis muscle and deltoideus muscle before and after the intervention. After the training intervention, a larger (P < 0.05) increase existed in deltoideus muscle of the HIS group compared with vastus lateralis muscle of the SOC group for citrate synthase maximal activity (95 ± 89 vs. 27 ± 34%), citrate synthase protein expression (100 ± 29 vs. 31 ± 44%), 3-hydroxyacyl-CoA dehydrogenase maximal activity (35 ± 43 vs. 3 ± 25%), muscle glycogen content (63 ± 76 vs. 20 ± 51%), and expression of mitochondrial complex II, III, and IV. Additionally, HIS caused higher (P < 0.05) increases than MOS in deltoideus muscle citrate synthase maximal activity, citrate synthase protein expression, and muscle glycogen content. In conclusion, the deltoideus muscle has a higher adaptive potential than the vastus lateralis muscle in sedentary women, and "high-intensity low-volume" training is a more efficient regime than "low-intensity high-volume" training for increasing the aerobic capacity of the deltoideus muscle.
Collapse
Affiliation(s)
- Nikolai B Nordsborg
- Department of Nutrition, Exercise and Sports, Section of Human Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Luke Connolly
- Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Pál Weihe
- Department of Occupational Medicine and Public Health, The Faroese Hospital System, Tórshavn, Faroe Islands
| | - Enzo Iuliano
- Department of Medicine and Health Sciences, University of Molise, Molise, Italy
| | - Peter Krustrup
- Department of Nutrition, Exercise and Sports, Section of Human Physiology, University of Copenhagen, Copenhagen, Denmark; Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Bengt Saltin
- Copenhagen Muscle Research Centre, Rigshopsitalet and University of Copenhagen, Copenhagen, Denmark
| | - Magni Mohr
- Faculty of Natural and Health Sciences, University of the Faroe Islands, Tórshavn, Faroe Islands; and Center of Health and Human Performance, Department of Food and Nutrition, and Sport Science, University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
25
|
Fachina R, da Silva A, Falcão W, Montagner P, Borin J, Minozzo F, Falcão D, Vancini R, Poston B, de Lira C. The influence of whole-body vibration on creatine kinase activity and jumping performance in young basketball players. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2013; 84:503-511. [PMID: 24592780 DOI: 10.1080/02701367.2013.843399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
PURPOSE To quantify creatine kinase (CK) activity changes across time following an acute bout of whole-body vibration (WBV) and determine the association between changes in CK activity and jumping performance. METHOD Twenty-six elite young basketball players were assigned to 3 groups: 36-Hz and 46-Hz vibration groups (G36 and G46, respectively) and a control group. The study quantified CK activity and jumping performance following an acute bout of WBV at 2 vibration frequencies. Both WBV groups performed a protocol that consisted of 10 sets of 60 s of WBV while standing on a vibration plate in a quarter-squat position. CK activity, countermovement jumps (CMJ), and squat jumps (SJ) were measured immediately before and 24 hr and 48 hr after WBV. In addition, CMJ and SJ were also measured 5 min after WBV. RESULTS CK activity was statistically significantly increased 24 hr following WBV in G36 and G46. At 48 hr after WBV, CK activity was similar to baseline levels in G36 but remained statistically significantly above baseline levels in G46. The CMJ and SJ heights were statistically significantly decreased at 5 min following the protocol for both WBV groups. Overall, the changes in CK activity did not present a strong relationship with the changes in jump heights for any of the comparisons. CONCLUSIONS These findings suggest that WBV protocols with such characteristics may not cause excessive muscle damage and may partly explain why many WBV training studies have failed to elicit increases in strength performance.
Collapse
Affiliation(s)
| | | | | | | | - João Borin
- Universidade Estadual de Campinas, Brazil
| | | | - Diego Falcão
- Universidade Federal de São Paulo, Confederação Brasileira de Basketball, Brazil
| | | | | | | |
Collapse
|
26
|
Jakeman J, Adamson S, Babraj J. Extremely short duration high-intensity training substantially improves endurance performance in triathletes. Appl Physiol Nutr Metab 2012; 37:976-81. [PMID: 22857018 DOI: 10.1139/h2012-083] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
High-intensity training (HIT) involving 30-s sprints is an effective training regimen to improve aerobic performance. We tested whether 6-s HITs can improve aerobic performance in triathletes. Six subelite triathletes (age, 40 ± 9 years; weight, 86 ± 11 kg; body mass index, 26 ± 3 kg·m⁻²) took part in cycle HIT and 6 endurance-trained subelite athletes (age, 36 ± 9 years; weight, 82 ± 11 kg; BMI, 26 ± 3 kg·m⁻²) maintained their normal training routine. Before and after 2 weeks of HIT, involving 10 × 6-s sprints or normal activity, participants performed a self-paced 10-km time trial and a time to exhaustion test on a cycle ergometer. Finger prick blood samples were taken throughout the time to exhaustion test to determine blood lactate concentration. Two weeks of HIT resulted in a 10% decrease in self-paced 10-km time trial (p = 0.03) but no significant change in time to exhaustion. The time taken to reach onset of blood lactate accumulation (OBLA, defined as the point where blood lactate reaches 4 mmol·L⁻¹) was significantly increased following 2 weeks of HIT (p = 0.003). The change in time trial performance was correlated to the change in time taken to reach OBLA (R² = 0.63; p = 0.001). We concluded that a very short duration HIT is a very effective training regimen to improve aerobic performance in subelite triathletes and this is associated with a delay in blood lactate build-up.
Collapse
Affiliation(s)
- John Jakeman
- Department of Sport and Health Sciences, Oxford Brookes University, Oxford OX3 0BP, England
| | | | | |
Collapse
|
27
|
Bogdanis GC. Effects of physical activity and inactivity on muscle fatigue. Front Physiol 2012; 3:142. [PMID: 22629249 PMCID: PMC3355468 DOI: 10.3389/fphys.2012.00142] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 04/27/2012] [Indexed: 12/22/2022] Open
Abstract
The aim of this review was to examine the mechanisms by which physical activity and inactivity modify muscle fatigue. It is well known that acute or chronic increases in physical activity result in structural, metabolic, hormonal, neural, and molecular adaptations that increase the level of force or power that can be sustained by a muscle. These adaptations depend on the type, intensity, and volume of the exercise stimulus, but recent studies have highlighted the role of high intensity, short-duration exercise as a time-efficient method to achieve both anaerobic and aerobic/endurance type adaptations. The factors that determine the fatigue profile of a muscle during intense exercise include muscle fiber composition, neuromuscular characteristics, high energy metabolite stores, buffering capacity, ionic regulation, capillarization, and mitochondrial density. Muscle fiber-type transformation during exercise training is usually toward the intermediate type IIA at the expense of both type I and IIx myosin heavy-chain isoforms. High-intensity training results in increases of both glycolytic and oxidative enzymes, muscle capillarization, improved phosphocreatine resynthesis and regulation of K+, H+, and lactate ions. Decreases of the habitual activity level due to injury or sedentary lifestyle result in partial or even compete reversal of the adaptations due to previous training, manifested by reductions in fiber cross-sectional area, decreased oxidative capacity, and capillarization. Complete immobilization due to injury results in markedly decreased force output and fatigue resistance. Muscle unloading reduces electromyographic activity and causes muscle atrophy and significant decreases in capillarization and oxidative enzymes activity. The last part of the review discusses the beneficial effects of intermittent high-intensity exercise training in patients with different health conditions to demonstrate the powerful effect of exercise on health and well being.
Collapse
Affiliation(s)
- Gregory C Bogdanis
- Department of Physical Education and Sports Science, University of Athens Athens, Greece
| |
Collapse
|
28
|
Bishop D, Girard O, Mendez-Villanueva A. Repeated-sprint ability - part II: recommendations for training. Sports Med 2011; 41:741-56. [PMID: 21846163 DOI: 10.2165/11590560-000000000-00000] [Citation(s) in RCA: 316] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Short-duration sprints, interspersed with brief recoveries, are common during most team sports. The ability to produce the best possible average sprint performance over a series of sprints (≤10 seconds), separated by short (≤60 seconds) recovery periods has been termed repeated-sprint ability (RSA). RSA is therefore an important fitness requirement of team-sport athletes, and it is important to better understand training strategies that can improve this fitness component. Surprisingly, however, there has been little research about the best training methods to improve RSA. In the absence of strong scientific evidence, two principal training theories have emerged. One is based on the concept of training specificity and maintains that the best way to train RSA is to perform repeated sprints. The second proposes that training interventions that target the main factors limiting RSA may be a more effective approach. The aim of this review (Part II) is to critically analyse training strategies to improve both RSA and the underlying factors responsible for fatigue during repeated sprints (see Part I of the preceding companion article). This review has highlighted that there is not one type of training that can be recommended to best improve RSA and all of the factors believed to be responsible for performance decrements during repeated-sprint tasks. This is not surprising, as RSA is a complex fitness component that depends on both metabolic (e.g. oxidative capacity, phosphocreatine recovery and H+ buffering) and neural factors (e.g. muscle activation and recruitment strategies) among others. While different training strategies can be used in order to improve each of these potential limiting factors, and in turn RSA, two key recommendations emerge from this review; it is important to include (i) some training to improve single-sprint performance (e.g. 'traditional' sprint training and strength/power training); and (ii) some high-intensity (80-90% maximal oxygen consumption) interval training to best improve the ability to recover between sprints. Further research is required to establish whether it is best to develop these qualities separately, or whether they can be developed concurrently (without interference effects). While research has identified a correlation between RSA and total sprint distance during soccer, future studies need to address whether training-induced changes in RSA also produce changes in match physical performance.
Collapse
Affiliation(s)
- David Bishop
- Institute of Sport, Exercise and Active Living (ISEAL), School of Sport and Exercise Science, Victoria University, Melbourne, VIC, Australia.
| | | | | |
Collapse
|
29
|
Baldwin KM, Joanisse DR, Haddad F, Goldsmith RL, Gallagher D, Pavlovich KH, Shamoon EL, Leibel RL, Rosenbaum M. Effects of weight loss and leptin on skeletal muscle in human subjects. Am J Physiol Regul Integr Comp Physiol 2011; 301:R1259-66. [PMID: 21917907 PMCID: PMC3213951 DOI: 10.1152/ajpregu.00397.2011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 09/06/2011] [Indexed: 01/12/2023]
Abstract
Maintenance of a 10% or greater reduced body weight results in decreases in the energy cost of low levels of physical activity beyond those attributable to the altered body weight. These changes in nonresting energy expenditure are due mainly to increased skeletal muscle work efficiency following weight loss and are reversed by the administration of the adipocyte-derived hormone leptin. We have also shown previously that the maintenance of a reduced weight is accompanied by a decrease in ratio of glycolytic (phosphofructokinase) to oxidative (cytochrome c oxidase) activity in vastus lateralis muscle that would suggest an increase in the relative expression of the myosin heavy chain I (MHC I) isoform. We performed analyses of vastus lateralis muscle needle biopsy samples to determine whether maintenance of an altered body weight was associated with changes in skeletal muscle metabolic properties as well as mRNA expression of different isoforms of the MHC and sarcoplasmic endoplasmic reticular Ca(2+)-dependent ATPase (SERCA) in subjects studied before weight loss and then again after losing 10% of their initial weight and receiving twice daily injections of either placebo or replacement leptin in a single blind crossover design. We found that the maintenance of a reduced body weight was associated with significant increases in the relative gene expression of MHC I mRNA that was reversed by the administration of leptin as well as an increase in the expression of SERCA2 that was not significantly affected by leptin. Leptin administration also resulted in a significant increase in the expression of the less MHC IIx isoform compared with subjects receiving placebo. These findings are consistent with the leptin-reversible increase in skeletal muscle chemomechanical work efficiency and decrease in the ratio of glycolytic/oxidative enzyme activities observed in subjects following dietary weight loss.
Collapse
Affiliation(s)
- Kenneth M. Baldwin
- Department of Physiology and Biophysics, School of Medicine, University of California at Irvine, Irvine, California
| | | | - Fadia Haddad
- Department of Physiology and Biophysics, School of Medicine, University of California at Irvine, Irvine, California
| | - Rochelle L. Goldsmith
- Division of Exercise Physiology; Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, New York
| | - Dympna Gallagher
- Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, New York; and
| | - Katherine H. Pavlovich
- Division of Molecular Genetics, Departments of Pediatrics and Medicine, Columbia University, New York, New York
| | - Elisabeth L. Shamoon
- Division of Molecular Genetics, Departments of Pediatrics and Medicine, Columbia University, New York, New York
| | - Rudolph L. Leibel
- Division of Molecular Genetics, Departments of Pediatrics and Medicine, Columbia University, New York, New York
| | - Michael Rosenbaum
- Division of Molecular Genetics, Departments of Pediatrics and Medicine, Columbia University, New York, New York
| |
Collapse
|
30
|
Saraslanidis P, Petridou A, Bogdanis GC, Galanis N, Tsalis G, Kellis S, Mougios V. Muscle metabolism and performance improvement after two training programmes of sprint running differing in rest interval duration. J Sports Sci 2011; 29:1167-74. [PMID: 21777153 DOI: 10.1080/02640414.2011.583672] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Repeated-sprint training often involves short sprints separated by inadequate recovery intervals. The effects of interval duration on metabolic and performance parameters are unclear. We compared the effects of two training programmes, differing in rest interval duration, on muscle (vastus lateralis) metabolism and sprint performance. Sixteen men trained three times a week for 8 weeks, each training session comprising 2-3 sets of two 80-m sprints. Sprints were separated by 10 s (n = 8) or 1 min (n = 8). Both training programmes improved performance in the 100-, 200-, and 300-m sprints, but the improvement was greater in the 10-s group during the final 100 m of the 200- and 300-m runs. Independent of interval duration, training mitigated the drop of muscle ATP after two 80-m sprints. The drop in phosphocreatine and the increases in glucose-6-phosphate and fructose-6-phosphate after two 80-m sprints were greater in the 10-s group. In conclusion, training with a limited number of repeated short sprints (≤10 s) may be more effective in improving speed maintenance in 200- and 300-m runs when performed with a 1:1 rather than a 1:6 exercise-to-rest ratio. This may be due to a greater activation of glycolysis caused, in part, by the limited resynthesis of phosphocreatine during the very short rest interval.
Collapse
Affiliation(s)
- Ploutarchos Saraslanidis
- Department of Physical Education and Sport Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | | | | | | | | |
Collapse
|
31
|
Iaia FM, Bangsbo J. Speed endurance training is a powerful stimulus for physiological adaptations and performance improvements of athletes. Scand J Med Sci Sports 2011; 20 Suppl 2:11-23. [PMID: 20840558 DOI: 10.1111/j.1600-0838.2010.01193.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The present article reviews the physiological and performance effects of speed endurance training consisting of exercise bouts at near maximal intensities in already trained subjects. Despite a reduction in training volume, speed endurance training of endurance-trained athletes can maintain the oxidative capacity and improve intense short-duration/repeated high-intensity exercise performance lasting 30 s to 4 min, as it occurs in a number of sports. When combined with a basic volume of training including some aerobic high-intensity sessions, speed endurance training is also useful in enhancing performance during longer events, e.g. 40 K cycling and 10 K running. Athletes in team sports involving intense exercise actions and endurance aspects can also benefit from performing speed endurance training. These improvements don't appear to depend on changes in maximum oxygen uptake (VO2max), muscle substrate levels, glycolytic and oxidative enzymes activity, and membrane transport proteins involved in pH regulation. Instead they appear to be related to a reduced energy expenditure during submaximal exercise and a higher expression of muscle Na(+) ,K(+) pump α-subunits, which via a higher Na(+) ,K(+) pump activity during exercise may delay fatigue development during intense exercise. In conclusion, athletes from disciplines involving periods of intense exercise can benefit from the inclusion of speed endurance sessions in their training programs.
Collapse
Affiliation(s)
- F M Iaia
- Department of Exercise and Sport Sciences, Section of Human Physiology, Copenhagen Muscle Research Centre, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
32
|
McPhee JS, Perez-Schindler J, Degens H, Tomlinson D, Hennis P, Baar K, Williams AG. HIF1A P582S gene association with endurance training responses in young women. Eur J Appl Physiol 2011; 111:2339-47. [PMID: 21344271 DOI: 10.1007/s00421-011-1869-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 02/07/2011] [Indexed: 01/25/2023]
Abstract
Sequence variations in the gene encoding the hypoxia-inducible factor-1alpha, HIF1A, have been associated with physiologic function and could be associated with exercise responses. In the HIF1A P582S gene polymorphism (C1772T; rs 11549465 C/T), a single nucleotide transition from C → T alters the codon sequence from the usual amino acid; proline (C-allele), to serine (T-allele). This polymorphism was examined for association with endurance training responses in 58 untrained young women who completed a 6-week laboratory-based endurance training programme. Participant groups were defined as CC homozygotes versus carriers of a T-allele (CC vs. CT genotypes). Adaptations were examined at the systemic-level, by measuring [Formula: see text] and the molecular-level by measuring enzymes determined from vastus lateralis (n = 20): 3-hydroacyl-CoA-dehydrogenase (HAD), which regulates mitochondrial fatty acid oxidation; cytochrome C oxidase (COX-1), a marker of mitochondrial density; and phosphofructokinase (PFK), a marker of glycolytic capacity. CT genotypes showed 45% higher training-induced gains in [Formula: see text] compared with CC genotypes (P < 0.05). At the molecular level, CT increased the ratios PFK/HAD and PFK/COX-1 (47 and 3%, respectively), while in the CC genotypes these ratios were decreased (-26 and -54%, respectively). In conclusion, the T-allele of HIF1A P582S was associated with greater gains in [Formula: see text] following endurance training in young women. In a sub-group we also provide preliminary evidence of differential muscle metabolic adaptations between genotypes.
Collapse
Affiliation(s)
- J S McPhee
- Institute for Biomedical Research into Human Movement and Health, Manchester Metropolitan University, John Dalton Building (room 216), Oxford Road, Manchester, M1 5GD, UK.
| | | | | | | | | | | | | |
Collapse
|
33
|
Vincent L, Féasson L, Oyono-Enguéllé S, Banimbek V, Monchanin G, Dohbobga M, Wouassi D, Martin C, Gozal D, Geyssant A, Thiriet P, Denis C, Messonnier L. Skeletal muscle structural and energetic characteristics in subjects with sickle cell trait, α-thalassemia, or dual hemoglobinopathy. J Appl Physiol (1985) 2010; 109:728-34. [DOI: 10.1152/japplphysiol.00349.2010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies have shown that subjects with sickle cell trait (SCT), α-thalassemia (α-t), and the dual hemoglobinopathy (SCT/α-t) manifest subtle, albeit significant, differences during exercise. To better understand such differences, we assessed skeletal muscle histomorphological and energetic characteristics in 10 control HbAA subjects (C), 5 subjects with α-t (α-t), 6 SCT carriers (SCT) and 9 SCT carriers with α-t (SCT/α-t). Subjects underwent a muscle biopsy and also performed an incremental maximal exercise and a time to exhaustion test. There were no observable differences in daily energy expenditure, maximal power output (Pmax), or time to exhaustion at 110% Pmax ( Tex) among the groups. Blood lactate concentrations measured at the end of the Tex, muscle fiber type distribution, and mean phosphofructokinase (PFK), lactate dehydrogenase (LDH), β-hydroxyacyl-CoA-dehydrogenase (HAD), and citrate synthase (CS) activities were all similar among the four groups. However, SCT was associated with a lower cytochrome- c oxidase (COx) activity in type IIa fibers ( P < 0.05), and similar trends were observed in fiber types I and IIx. Trends toward lower creatine kinase (CK) activity ( P = 0.0702) and higher surface area of type IIx fibers were observed in SCT ( P = 0.0925). In summary, these findings support most of the previous observations in SCT, such as 1) similar maximal power output and associated maximal oxygen consumption (V̇o2max) values and 2) lower exercise performances during prolonged submaximal exercise. Furthermore, performances during short supramaximal exercise were not different in SCT. Finally, the dual hemoglobinopathy condition does not seem to affect muscle characteristics.
Collapse
Affiliation(s)
- Lucile Vincent
- Laboratoire de Physiologie de l'Exercice EA4338, Université de Savoie, Chambéry and
| | - Léonard Féasson
- Laboratoire de Physiologie de l'Exercice EA4338, Université Jean Monnet and
- Unité de Myologie, Centre Hospitalier Universitaire (CHU) de Saint-Etienne, Saint-Etienne, France
| | - Samuel Oyono-Enguéllé
- Laboratory of Physiology, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Viviane Banimbek
- Laboratory of Physiology, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Géraldine Monchanin
- Centre de Recherche et d'Innovation sur le Sport (CRIS) EA647, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Macias Dohbobga
- Institut National de la Jeunesse et des Sports, Yaoundé, Cameroon; and
| | - Dieudonné Wouassi
- Institut National de la Jeunesse et des Sports, Yaoundé, Cameroon; and
| | - Cyril Martin
- Centre de Recherche et d'Innovation sur le Sport (CRIS) EA647, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - David Gozal
- Department of Pediatrics, Pritzker School of Medicine, University of Chicago, Chicago, Illinois
| | - André Geyssant
- Laboratoire de Physiologie de l'Exercice EA4338, Université Jean Monnet and
| | - Patrice Thiriet
- Centre de Recherche et d'Innovation sur le Sport (CRIS) EA647, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Christian Denis
- Laboratoire de Physiologie de l'Exercice EA4338, Université Jean Monnet and
- Unité de Myologie, Centre Hospitalier Universitaire (CHU) de Saint-Etienne, Saint-Etienne, France
| | - Laurent Messonnier
- Laboratoire de Physiologie de l'Exercice EA4338, Université de Savoie, Chambéry and
| |
Collapse
|
34
|
Kohn TA, Essén-Gustavsson B, Myburgh KH. Specific muscle adaptations in type II fibers after high-intensity interval training of well-trained runners. Scand J Med Sci Sports 2010; 21:765-72. [DOI: 10.1111/j.1600-0838.2010.01136.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Goldsmith R, Joanisse DR, Gallagher D, Pavlovich K, Shamoon E, Leibel RL, Rosenbaum M. Effects of experimental weight perturbation on skeletal muscle work efficiency, fuel utilization, and biochemistry in human subjects. Am J Physiol Regul Integr Comp Physiol 2010; 298:R79-88. [PMID: 19889869 PMCID: PMC2806213 DOI: 10.1152/ajpregu.00053.2009] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Accepted: 11/02/2009] [Indexed: 11/22/2022]
Abstract
Maintenance of a body weight 10% above or below that "customary" for lean or obese individuals results in respective increases or decreases in the energy expended in low levels of physical activity (nonresting energy expenditure, NREE). These changes are greater than can be accounted for by the altered body weight or composition and are due mainly to altered skeletal muscle work efficiency at low levels of power generation. We performed biochemical analysis of vastus lateralis muscle needle biopsy samples to determine whether maintenance of an altered body weight was associated with changes in skeletal muscle histomorphology. We found that the maintenance of a 10% reduced body weight was associated with significant declines in glycolytic (phosphofructokinase, PFK) enzyme activity and, in particular, in the ratio of glycolytic to oxidative (cytochrome c oxidase, COX) enzyme activity without significant changes in the activities of enzymes relevant to mitochondrial density, respiratory chain activity, or fuel transport; or in skeletal muscle fiber type or glycogen stores. The fractional change in the ratio of PFK/COX activity in subjects following weight loss was significantly correlated with changes in the systemic respiratory exchange ratio (RER) and measures of mechanical efficiency of skeletal muscle at low workloads (pedaling a bicycle to generate 10 or 25 W of power). Thus, predictable changes in systemic skeletal muscle biochemistry accompany the maintenance of an altered body weight and account for a significant portion of the variance in skeletal muscle work efficiency and fuel utilization at reduced body weight.
Collapse
Affiliation(s)
- Rochelle Goldsmith
- Department of Medicine, Division of Exercise Physiology, New York, New York, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Kim SS, Kim JR, Moon JK, Choi BH, Kim TH, Kim KS, Kim JJ, Lee CK. Transcriptional alteration of p53 related processes as a key factor for skeletal muscle characteristics in Sus scrofa. Mol Cells 2009; 28:565-73. [PMID: 19937136 DOI: 10.1007/s10059-009-0159-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 09/22/2009] [Indexed: 12/14/2022] Open
Abstract
The pig could be a useful model to characterize molecular aspects determining several delicate phenotypes because they have been bred for those characteristics. The Korean native pig (KNP) is a regional breed in Korea that was characterized by relatively high intramuscular fat content and reddish meat color compared to other western breeds such as Yorkshire (YS). YS grew faster and contained more lean muscle than KNP. We compared the KNP to Yorksire to find molecular clues determining muscle characteristics. The comparison of skeletal gene expression profiles between these two breeds showed molecular differences in muscle. We found 82 differentially expressed genes (DEGs) defined by fold change (more than 1.5 fold difference) and statistical significance (within 5% of false discovery rate). Functional analyses of these DEGs indicated up-regulation of most genes involved in cell cycle arrest, down-regulation of most genes involved in cellular differentiation and its inhibition, down-regulation of most genes encoding component of muscular-structural system, and up-regulation of most genes involved in diverse metabolism in KNP. Especially, DEGs in above-mentioned categories included a large number of genes encoding proteins directly or indirectly involved in p53 pathway. Our results indicated a possible role of p53 to determine muscle characteristics between these two breeds.
Collapse
Affiliation(s)
- Seung-Soo Kim
- College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Dzeja P, Terzic A. Adenylate kinase and AMP signaling networks: metabolic monitoring, signal communication and body energy sensing. Int J Mol Sci 2009; 10:1729-1772. [PMID: 19468337 PMCID: PMC2680645 DOI: 10.3390/ijms10041729] [Citation(s) in RCA: 302] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 03/26/2009] [Accepted: 04/02/2009] [Indexed: 12/20/2022] Open
Abstract
Adenylate kinase and downstream AMP signaling is an integrated metabolic monitoring system which reads the cellular energy state in order to tune and report signals to metabolic sensors. A network of adenylate kinase isoforms (AK1-AK7) are distributed throughout intracellular compartments, interstitial space and body fluids to regulate energetic and metabolic signaling circuits, securing efficient cell energy economy, signal communication and stress response. The dynamics of adenylate kinase-catalyzed phosphotransfer regulates multiple intracellular and extracellular energy-dependent and nucleotide signaling processes, including excitation-contraction coupling, hormone secretion, cell and ciliary motility, nuclear transport, energetics of cell cycle, DNA synthesis and repair, and developmental programming. Metabolomic analyses indicate that cellular, interstitial and blood AMP levels are potential metabolic signals associated with vital functions including body energy sensing, sleep, hibernation and food intake. Either low or excess AMP signaling has been linked to human disease such as diabetes, obesity and hypertrophic cardiomyopathy. Recent studies indicate that derangements in adenylate kinase-mediated energetic signaling due to mutations in AK1, AK2 or AK7 isoforms are associated with hemolytic anemia, reticular dysgenesis and ciliary dyskinesia. Moreover, hormonal, food and antidiabetic drug actions are frequently coupled to alterations of cellular AMP levels and associated signaling. Thus, by monitoring energy state and generating and distributing AMP metabolic signals adenylate kinase represents a unique hub within the cellular homeostatic network.
Collapse
Affiliation(s)
- Petras Dzeja
- Author to whom correspondence should be addressed; E-mail:
(P.D.)
| | | |
Collapse
|
38
|
Dubé JJ, Amati F, Stefanovic-Racic M, Toledo FGS, Sauers SE, Goodpaster BH. Exercise-induced alterations in intramyocellular lipids and insulin resistance: the athlete's paradox revisited. Am J Physiol Endocrinol Metab 2008; 294:E882-8. [PMID: 18319352 PMCID: PMC3804891 DOI: 10.1152/ajpendo.00769.2007] [Citation(s) in RCA: 270] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We previously reported an "athlete's paradox" in which endurance-trained athletes, who possess a high oxidative capacity and enhanced insulin sensitivity, also have higher intramyocellular lipid (IMCL) content. The purpose of this study was to determine whether moderate exercise training would increase IMCL, oxidative capacity of muscle, and insulin sensitivity in previously sedentary overweight to obese, insulin-resistant, older subjects. Twenty-five older (66.4 +/- 0.8 yr) obese (BMI = 30.3 +/- 0.7 kg/m2) men (n = 9) and women (n = 16) completed a 16-wk moderate but progressive exercise training program. Body weight and fat mass modestly but significantly (P < 0.01) decreased. Insulin sensitivity, measured using the euglycemic hyperinsulinemic clamp, was increased (21%, P = 0.02), with modest improvements (7%, P = 0.04) in aerobic fitness (Vo2peak). Histochemical analyses of IMCL (Oil Red O staining), oxidative capacity [succinate dehydrogenase activity (SDH)], glycogen content, capillary density, and fiber type were performed on skeletal muscle biopsies. Exercise training increased IMCL by 21%. In contrast, diacylglycerol and ceramide, measured by mass spectroscopy, were decreased (n = 13; -29% and -24%, respectively, P < 0.05) with exercise training. SDH (19%), glycogen content (15%), capillary density (7%), and the percentage of type I slow oxidative fibers (from 50.8 to 55.7%), all P < or = 0.05, were increased after exercise. In summary, these results extend the athlete's paradox by demonstrating that chronic exercise in overweight to obese older adults improves insulin sensitivity in conjunction with favorable alterations in lipid partitioning and an enhanced oxidative capacity within muscle. Therefore, several key deleterious effects of aging and/or obesity on the metabolic profile of skeletal muscle can be reversed with only moderate increases in physical activity.
Collapse
Affiliation(s)
- John J Dubé
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | | | | | | |
Collapse
|
39
|
Effect of training with different intensities and volumes on muscle fibre enzyme activity and cross sectional area in the m. triceps brachii. Eur J Appl Physiol 2008; 103:399-409. [DOI: 10.1007/s00421-008-0725-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2008] [Indexed: 11/25/2022]
|
40
|
Brancaccio P, Maffulli N, Buonauro R, Limongelli FM. Serum Enzyme Monitoring in Sports Medicine. Clin Sports Med 2008; 27:1-18, vii. [DOI: 10.1016/j.csm.2007.09.005] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Burgomaster KA, Cermak NM, Phillips SM, Benton CR, Bonen A, Gibala MJ. Divergent response of metabolite transport proteins in human skeletal muscle after sprint interval training and detraining. Am J Physiol Regul Integr Comp Physiol 2007; 292:R1970-6. [PMID: 17303684 DOI: 10.1152/ajpregu.00503.2006] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Skeletal muscle primarily relies on carbohydrate (CHO) for energy provision during high-intensity exercise. We hypothesized that sprint interval training (SIT), or repeated sessions of high-intensity exercise, would induce rapid changes in transport proteins associated with CHO metabolism, whereas changes in skeletal muscle fatty acid transporters would occur more slowly. Eight active men (22 +/- 1 yr; peak oxygen uptake = 50 +/- 2 ml.kg(-1).min(-1)) performed 4-6 x 30 s all-out cycling efforts with 4-min recovery, 3 days/wk for 6 wk. Needle muscle biopsy samples (vastus lateralis) were obtained before training (Pre), after 1 and 6 wk of SIT, and after 1 and 6 wk of detraining. Muscle oxidative capacity, as reflected by the protein content of cytochrome c oxidase subunit 4 (COX4), increased by approximately 35% after 1 wk of SIT and remained higher compared with Pre, even after 6 wk of detraining (P < 0.05). Muscle GLUT4 content increased after 1 wk of SIT and remained approximately 20% higher compared with baseline during detraining (P < 0.05). The monocarboxylate tranporter (MCT) 4 was higher after 1 and 6 wk of SIT compared with Pre, whereas MCT1 increased after 6 wk of training and remained higher after 1 wk of detraining (P < 0.05). There was no effect of training or detraining on the muscle content of fatty acid translocase (FAT/CD36) or plasma membrane associated fatty acid binding protein (FABPpm) (P > 0.05). We conclude that short-term SIT induces rapid increases in skeletal muscle oxidative capacity but has divergent effects on proteins associated with glucose, lactate, and fatty acid transport.
Collapse
Affiliation(s)
- Kirsten A Burgomaster
- Exercise Metabolism Research Group, Dept of Kinesiology, McMaster Univ, Hamilton, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
42
|
Botcazou M, Zouhal H, Jacob C, Gratas-Delamarche A, Berthon PM, Bentué-Ferrer D, Delamarche P. Effect of training and detraining on catecholamine responses to sprint exercise in adolescent girls. Eur J Appl Physiol 2006; 97:68-75. [PMID: 16477445 DOI: 10.1007/s00421-006-0131-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2005] [Indexed: 10/25/2022]
Abstract
Training is well known to influence catecholamine responses to exercise. In women, this training effect is still not well characterized and has been studied mostly in adults. Hence, we investigated in this longitudinal study, the effects of a 6-month sprint training program followed by 5 months of detraining on plasma catecholamine responses to a sprint exercise in young female subjects. Twelve healthy adolescent girls [training group (TG), n=6; control group (CG), n=6] took part in our study. TG participated in 6 months of supervised sprint training program (3 days/week) and has no training past whereas, CG continued with it's normal activity. A 6s-sprint test was performed on a cycle ergometer before training (P1) and after training (P2) in both the groups. TG only realized a 6s-sprint test after 5 months of detraining (P3). Blood lactate concentrations (La) as well as plasma adrenaline (A) and noradrenaline (NA) concentrations were measured at rest, immediately after the warm-up and the 6s-sprint and during recovery. Peak power W peak), expressed both in absolute and relative values, were significantly increased in TG in P2 (P<0.01) but did not change in CG. After the sprint-training period, the warm-up and the 6s-sprint induced plasma A increase and the maximal A concentrations were significantly higher than in P1 and P3 for TG only (P<0.05). Plasma A did not change in CG after 6 months. In P3, W peak and maximal lactate concentrations ([La]max) were significantly greater compared to P1 and P2 in TG (P<0.05). In CG, [La]max were significantly increased in P2 (P<0.05). The present study demonstrates that 6 months of sprint training in adolescent girls induce both an increase in performances and in A responses to sprint exercise. This adrenergic adaptation disappears after 5 months of detraining whereas the gain in performance is maintained. These new data may lead to practical considerations.
Collapse
Affiliation(s)
- M Botcazou
- Laboratoire de Physiologie et de Biomécanique de l'Exercice Musculaire, UFRAPS, Université Rennes 2-ENS Cachan, Av. Charles Tillon, 35044, Rennes cedex, France.
| | | | | | | | | | | | | |
Collapse
|
43
|
Barnett C, Carey M, Proietto J, Cerin E, Febbraio MA, Jenkins D. Muscle metabolism during sprint exercise in man: influence of sprint training. J Sci Med Sport 2005; 7:314-22. [PMID: 15518296 DOI: 10.1016/s1440-2440(04)80026-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In order to examine the influence of sprint training on metabolism and exercise performance during sprint exercise, 16 recreationally-active, untrained, men (VO2peak= 3.8+/-0.1 l.min(-1)) were randomly assigned to either a training (n= 8) or control group (n= 8). Each subject performed a 30-sec cycle sprint and a test to measure VO2peak before and after eight weeks of sprint training. The training group completed a series of sprints three times per week which progressed from three 30-sec cycle sprints in weeks 1 and 2, to six 30-sec sprints in weeks 7 and 8. Three mins of passive recovery separated each sprint throughout the training period. Muscle samples were obtained at rest and immediately following the pre- and post-training sprints and analysed for high energy phosphagens, glycogen and lactate; the activities of both phosphofructokinase (PFK) and citrate synthase (CS) were also measured and muscle fibre types were quantified. Training resulted in a 7.1% increase in mean power output (p<0.05), an 8% increase in VO2peak (p< 0.001), a 42% increase (p< 0.01) in CS activity and a 17% increase (p< 0.05) in resting intramuscular glycogen content. In contrast, neither PFK activity nor fibre type distribution changed with training. An increase (p< 0.05) in mean power output and attenuated (p< 0.01) ATP degradation were observed during sprint exercise following training. Glycogen degradation during sprint exercise was unaffected by sprint training. These data demonstrate that sprint training may have enhanced muscle oxidative but not glycolytic capacity.
Collapse
Affiliation(s)
- C Barnett
- School of Human Movement Studies, The University of Queensland, Queensland, Australia
| | | | | | | | | | | |
Collapse
|
44
|
Hochachka PW, Burelle Y. Control of maximum metabolic rate in humans: dependence on performance phenotypes. Mol Cell Biochem 2004; 256-257:95-103. [PMID: 14977173 DOI: 10.1023/b:mcbi.0000009861.45692.ed] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Borrowing from metabolic control analysis the concept of control coefficients or ci values, defined as fractional change in MMR/fractional change in the capacity of any given step in ATP turnover, we used four performance phenotypes to compare mechanisms of control of aerobic maximum metabolic rate (MMR): (i) untrained sedentary (US) subjects, as a reference group against which to compare (ii) power trained (PT), (iii) endurance trained (ET), and (iv) high altitude adapted native (HA) subject groups. Sprinters represented the PT group; long distance runners illustrated the ET group; and Andean natives represented the HA group. Numerous recent studies have identified contributors to control on both the adenosine triphosphate (ATP) supply side and the ATP demand side of ATP turnover. From the best available evidence it appears that at MMR all five of the major steps in energy delivery (namely, ventilation, pulmonary diffusion, cardiac output, tissue capillary--mitochondrial O2 transfer, and aerobic cell metabolism per se) approach an upper functional ceiling, with control strength being distributed amongst the various O2 flux steps. On the energy demand side, the situation is somewhat simplified since at MMR approximately 90% of O2-based ATP synthesis is used for actomyosin (AM) and Ca2+ ATPases; at MMR these two ATP demand rates also appear to be near an upper functional ceiling. In consequence, at MMR the control contributions or ci values are distributed amongst all seven major steps in ATP supply and ATP demand pathways right to the point of fatigue. Relative to US (the reference group), in PT subjects at MMR control strength shifts towards O2 delivery steps (ventilation, pulmonary diffusion, and cardiac output); here physiological regulation clearly dominates MMR control. In contrast in ET and HA subjects at MMR control shifts towards the energy demand steps (AM and Ca2+ ATPases), and more control strength is focussed on tissue level ATP supply and ATP demand. One obvious advantage of the ET and HA biochemical-level control is improved metabolite homeostasis. Additionally, with some reserve capacity in the O2 delivery steps, the focussing of control on ATP turnover at the tissue level has allowed nature to improve on an 'endurance machine' design.
Collapse
Affiliation(s)
- Peter W Hochachka
- Department of Zoology and Radiology, and Sports Medicine Division, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
45
|
Eto D, Yamano S, Mukai K, Sugiura T, Nasu T, Tokuriki M, Miyata H. Effect of high intensity training on anaerobic capacity of middle gluteal muscle in Thoroughbred horses. Res Vet Sci 2004; 76:139-44. [PMID: 14672857 DOI: 10.1016/j.rvsc.2003.08.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We hypothesize that high intensity training for Thoroughbred horses that have been subjected to conventional training could further improve the metabolic properties of the middle gluteal muscle. Nine well-trained horses were subjected to high intensity (80-100% Vdot;O(2)max, 5 minx2) training for 12 weeks. Biopsy samples were obtained from the muscle before and after 4 and 12 weeks of training. Three of the 9 horses did not complete the training programme. In the remaining 6 horses, activities of succinic dehydrogenase (SDH), phosphofructokinase (PFK) and 3-hydroxy acyl CoA dehydrogenase (HAD), and the composition of myosin heavy chain isoforms were analyzed by biochemical techniques. After 12 weeks of training, a significant increase was found in PFK activity but not in the SDH and HAD activities. There were no significant changes in the composition of myosin heavy chain isoforms. The high intensity training in this study was effective at increasing glycolytic enzyme activity, indicating the possibility to improve anaerobic capacity, which potentially could contribute greatly to performance in Thoroughbred horses. This study also highlighted a fact that high intensity training should be given with the great care to prevent the skeletal muscle injuries.
Collapse
Affiliation(s)
- D Eto
- Equine Research Institute, Japan Racing Association, 321-4 Tokami-cho, Utsunomiya, 320-0856, Tochigi, Japan
| | | | | | | | | | | | | |
Collapse
|
46
|
Nordsborg N, Bangsbo J, Pilegaard H. Effect of high-intensity training on exercise-induced gene expression specific to ion homeostasis and metabolism. J Appl Physiol (1985) 2003; 95:1201-6. [PMID: 12766179 DOI: 10.1152/japplphysiol.00257.2003] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Changes in gene expression during recovery from high-intensity, intermittent, one-legged exercise were studied before and after 5.5 wk of training. Genes related to metabolism, as well as Na+, K+, and pH homeostasis, were selected for analyses. After the same work was performed before and after the training period, several muscle biopsies were obtained from vastus lateralis muscle. In the untrained state, the Na+-K+-ATPase alpha1-subunit mRNA level was approximately threefold higher (P < 0.01) at 0, 1, and 3 h after exercise, relative to the preexercise resting level. After 3-5 h of recovery in the untrained state, pyruvate dehydrogenase kinase 4 and hexokinase II mRNA levels were elevated 13-fold (P < 0.001) and 6-fold (P < 0.01), respectively. However, after the training period, only pyruvate dehydrogenase kinase 4 mRNA levels were elevated (P < 0.05) during the recovery period. No changes in resting mRNA levels were observed as a result of training. In conclusion, cellular adaptations to high-intensity exercise training may, in part, be induced by transcriptional regulation. After training, the transcriptional response to an exercise bout at a given workload is diminished.
Collapse
Affiliation(s)
- Nikolai Nordsborg
- Institute of Exercise and Sports Sciences, August Krogh Institute, 2100 Copenhagen, Denmark
| | | | | |
Collapse
|
47
|
Hochachka PW, Beatty CL. Patterns of control of maximum metabolic rate in humans. Comp Biochem Physiol A Mol Integr Physiol 2003; 136:215-25. [PMID: 14527642 DOI: 10.1016/s1095-6433(03)00195-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this analysis, four performance phenotypes were used to compare mechanisms of control of aerobic maximum metabolic rate (MMR): (i) untrained sedentary (US) subjects, as a reference group against which to compare (ii) power trained (PT), (iii) endurance trained (ET) and (iv) high altitude adapted native (HA) subject groups. Sprinters represented the PT group; long distance runners illustrated the ET group; and Quechuas represented the HA group. Numerous recent studies have identified contributors to control on both the adenosine triphosphate (ATP) supply side and the ATP demand side of ATP turnover. Control coefficients or c(i) values were defined as fractional change in MMR/fractional change in the capacity of any given step in ATP turnover. From the best available evidence it appears that at MMR all five of the major steps in energy delivery (namely, ventilation, pulmonary diffusion, cardiac output, tissue capillary - mitochondrial O(2) transfer, and aerobic cell metabolism per se) approach an upper functional ceiling, with control strength being distributed amongst the various O(2) flux steps. On the energy demand side, the situation is somewhat simplified since at MMR approximately 90% of O(2)-based ATP synthesis is used for actomyosin (AM) and Ca(2+) ATPases; at MMR these two ATP demand rates also appear to be near an upper functional ceiling. In consequence, at MMR the control contributions or c(i) values are rather evenly divided amongst all seven major steps in ATP supply and ATP demand pathways right to the point of fatigue. Relative to US (the reference group), in PT subjects at MMR control strength shifts towards O(2) delivery steps (ventilation, pulmonary diffusion and cardiac output). In contrast in ET and HA subjects at MMR control shifts towards the energy demand steps (AM and Ca(2+) ATPases), and more control strength is focussed on tissue level ATP supply and ATP demand. One obvious advantage of the ET and HA control pattern is improved metabolite homeostasis. Another possibility is that, with some reserve capacity in the O(2) delivery steps and control focussed on ATP turnover at the tissue level, nature has designed the ideal 'endurance machine'.
Collapse
Affiliation(s)
- Peter W Hochachka
- Department of Zoology, University of British Columbia, 6270 University Blvd., V6T 1Z4, Vancouver, BC, Canada
| | | |
Collapse
|
48
|
Flück M, Hoppeler H. Molecular basis of skeletal muscle plasticity--from gene to form and function. Rev Physiol Biochem Pharmacol 2003; 146:159-216. [PMID: 12605307 DOI: 10.1007/s10254-002-0004-7] [Citation(s) in RCA: 292] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Skeletal muscle shows an enormous plasticity to adapt to stimuli such as contractile activity (endurance exercise, electrical stimulation, denervation), loading conditions (resistance training, microgravity), substrate supply (nutritional interventions) or environmental factors (hypoxia). The presented data show that adaptive structural events occur in both muscle fibres (myofibrils, mitochondria) and associated structures (motoneurons and capillaries). Functional adaptations appear to involve alterations in regulatory mechanisms (neuronal, endocrine and intracellular signalling), contractile properties and metabolic capacities. With the appropriate molecular techniques it has been demonstrated over the past 10 years that rapid changes in skeletal muscle mRNA expression occur with exercise in human and rodent species. Recently, gene expression profiling analysis has demonstrated that transcriptional adaptations in skeletal muscle due to changes in loading involve a broad range of genes and that mRNA changes often run parallel for genes in the same functional categories. These changes can be matched to the structural/functional adaptations known to occur with corresponding stimuli. Several signalling pathways involving cytoplasmic protein kinases and nuclear-encoded transcription factors are recognized as potential master regulators that transduce physiological stress into transcriptional adaptations of batteries of metabolic and contractile genes. Nuclear reprogramming is recognized as an important event in muscle plasticity and may be related to the adaptations in the myosin type, protein turnover, and the cytoplasma-to-myonucleus ratio. The accessibility of muscle tissue to biopsies in conjunction with the advent of high-throughput gene expression analysis technology points to skeletal muscle plasticity as a particularly useful paradigm for studying gene regulatory phenomena in humans.
Collapse
Affiliation(s)
- M Flück
- Institute of Anatomy, University of Bern, Bühlstrasse 26, 3000, Bern 9, Switzerland.
| | | |
Collapse
|
49
|
Helge JW, Lundby C, Christensen DL, Langfort J, Messonnier L, Zacho M, Andersen JL, Saltin B. Skiing across the Greenland icecap: divergent effects on limb muscle adaptations and substrate oxidation. J Exp Biol 2003; 206:1075-83. [PMID: 12582149 DOI: 10.1242/jeb.00218] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This study investigates the adaptive response of the lower limb muscles and substrate oxidation during submaximal arm or leg exercise after a crossing of the Greenland icecap on cross-country skies. Before and after the 42-day expedition, four male subjects performed cycle ergometer and arm-cranking exercise on two separate days. On each occasion, the subjects exercised at two submaximal loads (arm exercise, 45 W and 100 W; leg exercise, 100 W and 200 W). In addition, peak oxygen uptake ((VO(2max))) was determined for both leg and arm exercise. Before and after the crossing, a muscle biopsy was obtained from the vastus lateralis and the triceps brachii muscles prior to exercise (N=3). After the crossing, body mass decreased by 5.7+/-0.5 kg (in four of four subjects), whereas (VO(2max)) was unchanged in the arm (3.1+/-0.2 l min(-1)) and leg (4.0+/-0.1 l min(-1)). Before the crossing, respiratory exchange ratio (RER) values were 0.84+/-0.02 and 0.96+/-0.02 during submaximal arm exercise and 0.82+/-0.02 and 0.91+/-0.01 during submaximal leg exercise at the low and high workloads, respectively. After the crossing, RER was lower (in three of four subjects) during arm exercise (0.74+/-0.02 and 0.81+/-0.01) but was higher (in three of four subjects) during leg exercise (0.92+/-0.02 and 0.96+/-0.01) at the low and high workloads, respectively. Citrate synthase and beta-hydroxy-acyl-CoA-dehydrogenase activity was decreased by approximately 29% in vastus lateralis muscle and was unchanged in triceps brachii muscle. Fat oxidation during submaximal arm exercise was enhanced without a concomitant increase in the oxidative capacity of the triceps brachii muscle after the crossing. This contrasted with decreased fat oxidation during leg exercise, which occurred parallel to a decreased oxidative capacity in vastus lateralis muscle. Although the number of subjects is limited, these results imply that the adaptation pattern after long-term, prolonged, low-intensity, whole body exercise may vary dramatically among muscles.
Collapse
Affiliation(s)
- Jørn W Helge
- Copenhagen Muscle Research Centre, National University Hospital, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Schumacher YO, Mueller P. The 4000-m team pursuit cycling world record: theoretical and practical aspects. Med Sci Sports Exerc 2002; 34:1029-36. [PMID: 12048333 DOI: 10.1097/00005768-200206000-00020] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Due to constant competition conditions, track cycling can be accurately modeled through physiological and biomechanical means. Mathematical modeling predicts an average workload of 520 W for every team member for a new team pursuit world record. Performance in team pursuit racing is highly dependent on aerobic capacity, anaerobic skills, and aerodynamic factors. The training concept of the 2000 record-breaking team pursuit team was based on unspecific training of these qualities and periodical, short-term recall of previously acquired track specific skills. Aerobic performance was trained through high overall training mileage (29,000-35,000 km.yr-1) with workload peaks during road stage races. Before major track events, anaerobic performance, and track-specific technical and motor skills were improved through discipline-specific track training. Training intensities were monitored through heart rate and lactate field tests during defined track-training bouts, based on previously performed laboratory exercise tests. During pursuit competition, analysis of half-lap split times allowed an estimation of the individual contribution of each rider to the team's performance and thereby facilitated modifications in team composition to optimize race speed. The theoretically predicted performance necessary for a new world record was achieved through careful planning of training and competition schedules based on a concise theoretical concept and the high physiological capacities of the participating athletes.
Collapse
Affiliation(s)
- Yorck Olaf Schumacher
- Medizinische Universitätsklinik, Abteilung Rehabilitative und Präventive Sportmedizin, Freiburg, Germany.
| | | |
Collapse
|