1
|
Kenny HA, Hart PC, Kordylewicz K, Lal M, Shen M, Kara B, Chen YJ, Grassl N, Alharbi Y, Pattnaik BR, Watters KM, Patankar MS, Ferrer M, Lengyel E. The Natural Product β-Escin Targets Cancer and Stromal Cells of the Tumor Microenvironment to Inhibit Ovarian Cancer Metastasis. Cancers (Basel) 2021; 13:cancers13163931. [PMID: 34439084 PMCID: PMC8394501 DOI: 10.3390/cancers13163931] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 01/11/2023] Open
Abstract
Simple Summary β-escin, a component of horse chestnut seed extract, was first identified as an inhibitor of ovarian cancer (OvCa) adhesion/invasion in our high-throughput screening program using a three-dimensional organotypic model assembled from primary human cells and extracellular matrix. The goal of the study presented here is to determine if β-escin and structurally-similar compounds have a therapeutic potential against OvCa metastasis. β-escin and cardiac glycosides inhibit ovarian cancer adhesion/invasion to the omental microenvironment in vivo, and β-escin inhibits ovarian cancer metastasis in the prevention and intervention setting. Additionally, β-escin was found to decrease the stemness of ovarian cancer cells, inhibit extracellular matrix production in the tumor microenvironment, and inhibit HIF1α stability in ovarian cancer cells and the tumor microenvironment. This study reveals that the natural compound β-escin has therapeutic potential because of its ability to prevent OvCa dissemination by targeting both cancer and stromal cells in the OvCa tumor microenvironment. Abstract The high mortality of OvCa is caused by the wide dissemination of cancer within the abdominal cavity. OvCa cells metastasize to the peritoneum, which is covered by mesothelial cells, and invade into the underlying stroma, composed of extracellular matrices (ECM) and stromal cells. In a study using a three-dimensional quantitative high-throughput screening platform (3D-qHTS), we found that β-escin, a component of horse chestnut seed extract, inhibited OvCa adhesion/invasion. Here, we determine whether β-escin and structurally similar compounds have a therapeutic potential against OvCa metastasis. Different sources of β-escin and horse chestnut seed extract inhibited OvCa cell adhesion/invasion, both in vitro and in vivo. From a collection of 160 structurally similar compounds to β-escin, we found that cardiac glycosides inhibited OvCa cell adhesion/invasion and proliferation in vitro, and inhibited adhesion/invasion and metastasis in vivo. Mechanistically, β-escin and the cardiac glycosides inhibited ECM production in mesothelial cells and fibroblasts. The oral administration of β-escin inhibited metastasis in both OvCa prevention and intervention mouse models. Specifically, β-escin inhibited ECM production in the omental tumors. Additionally, the production of HIF1α-targeted proteins, lactate dehydrogenase A, and hexokinase 2 in omental tumors was blocked by β-escin. This study reveals that the natural compound β-escin has a therapeutic potential because of its ability to prevent OvCa dissemination by targeting both cancer and stromal cells in the OvCa tumor microenvironment.
Collapse
Affiliation(s)
- Hilary A. Kenny
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, University of Chicago, Chicago, IL 60637, USA; (P.C.H.); (K.K.); (B.K.); (Y.-J.C.); (K.M.W.); (E.L.)
- Correspondence:
| | - Peter C. Hart
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, University of Chicago, Chicago, IL 60637, USA; (P.C.H.); (K.K.); (B.K.); (Y.-J.C.); (K.M.W.); (E.L.)
| | - Kasjusz Kordylewicz
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, University of Chicago, Chicago, IL 60637, USA; (P.C.H.); (K.K.); (B.K.); (Y.-J.C.); (K.M.W.); (E.L.)
| | - Madhu Lal
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), NIH, Rockville, MD 20852, USA; (M.L.); (M.S.); (M.F.)
| | - Min Shen
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), NIH, Rockville, MD 20852, USA; (M.L.); (M.S.); (M.F.)
| | - Betul Kara
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, University of Chicago, Chicago, IL 60637, USA; (P.C.H.); (K.K.); (B.K.); (Y.-J.C.); (K.M.W.); (E.L.)
| | - Yen-Ju Chen
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, University of Chicago, Chicago, IL 60637, USA; (P.C.H.); (K.K.); (B.K.); (Y.-J.C.); (K.M.W.); (E.L.)
| | - Niklas Grassl
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany;
| | - Yousef Alharbi
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53792, USA; (Y.A.); (M.S.P.)
| | - Bikash R. Pattnaik
- Department of Pediatrics and Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Karen M. Watters
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, University of Chicago, Chicago, IL 60637, USA; (P.C.H.); (K.K.); (B.K.); (Y.-J.C.); (K.M.W.); (E.L.)
| | - Manish S. Patankar
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53792, USA; (Y.A.); (M.S.P.)
| | - Marc Ferrer
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), NIH, Rockville, MD 20852, USA; (M.L.); (M.S.); (M.F.)
| | - Ernst Lengyel
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, University of Chicago, Chicago, IL 60637, USA; (P.C.H.); (K.K.); (B.K.); (Y.-J.C.); (K.M.W.); (E.L.)
| |
Collapse
|
2
|
Leipziger J, Praetorius H. Renal Autocrine and Paracrine Signaling: A Story of Self-protection. Physiol Rev 2020; 100:1229-1289. [PMID: 31999508 DOI: 10.1152/physrev.00014.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Autocrine and paracrine signaling in the kidney adds an extra level of diversity and complexity to renal physiology. The extensive scientific production on the topic precludes easy understanding of the fundamental purpose of the vast number of molecules and systems that influence the renal function. This systematic review provides the broader pen strokes for a collected image of renal paracrine signaling. First, we recapitulate the essence of each paracrine system one by one. Thereafter the single components are merged into an overarching physiological concept. The presented survey shows that despite the diversity in the web of paracrine factors, the collected effect on renal function may not be complicated after all. In essence, paracrine activation provides an intelligent system that perceives minor perturbations and reacts with a coordinated and integrated tissue response that relieves the work load from the renal epithelia and favors diuresis and natriuresis. We suggest that the overall function of paracrine signaling is reno-protection and argue that renal paracrine signaling and self-regulation are two sides of the same coin. Thus local paracrine signaling is an intrinsic function of the kidney, and the overall renal effect of changes in blood pressure, volume load, and systemic hormones will always be tinted by its paracrine status.
Collapse
Affiliation(s)
- Jens Leipziger
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; and Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark
| | - Helle Praetorius
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; and Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark
| |
Collapse
|
3
|
El Moussawi L, Chakkour M, Kreydiyyeh S. The epinephrine-induced PGE2 reduces Na+/K+ ATPase activity in Caco-2 cells via PKC, NF-κB and NO. PLoS One 2019; 14:e0220987. [PMID: 31393950 PMCID: PMC6687175 DOI: 10.1371/journal.pone.0220987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/26/2019] [Indexed: 12/03/2022] Open
Abstract
We showed previously an epinephrine-induced inhibition of the Na+/K+ ATPase in Caco-2 cells mediated via PGE2. This work is an attempt to further elucidate mediators downstream of PGE2 and involved in the observed inhibitory effect. The activity of the Na+/K+ ATPase was assayed by measuring the amount of inorganic phosphate liberated in presence and absence of ouabain, a specific inhibitor of the enzyme. Changes in the protein expression of the Na+/K+ ATPase were investigated by western blot analysis which revealed a significant decrease in the abundance of the ATPase in plasma membranes. Treating the cells with epinephrine or PGE2 in presence of SC19220, a blocker of EP1 receptors abolished completely the effect of the hormone and the prostaglandin while the effect was maintained unaltered in presence of antagonists to all other receptors. Treatment with calphostin C, PTIO, ODQ or KT5823, respective inhibitors of PKC, NO, soluble guanylate cyclase and PKG, abrogated completely the effect of epinephrine and PGE2, suggesting an involvement of these mediators. A significant inhibition of the ATPase was observed when cells were treated with PMA, an activator of PKC or with 8-Br-cGMP, a cell permeable cGMP analogue. PMA did reduce the protein expression of IκB, as shown by western blot analysis, and its effect on the ATPase was not manifested in presence of an inhibitor of NF-κB while that of SNAP, a nitric oxide donor, was not affected. The results infer that NF-κB is downstream PKC and upstream NO. The data support a pathway in which epinephrine induces the production of PGE2 which binds to EP1 receptors and activates PKC and NF-κB leading to NO synthesis. The latter activates soluble guanylate cyclase resulting in cGMP production and activation of PKG which through direct or indirect phosphorylation inhibits the Na+/K+ ATPase by inducing its internalization.
Collapse
Affiliation(s)
- Layla El Moussawi
- Department of Biology, Faculty of Arts & Sciences, American University of Beirut, Beirut, Lebanon
| | - Mohamed Chakkour
- Department of Biology, Faculty of Arts & Sciences, American University of Beirut, Beirut, Lebanon
| | - Sawsan Kreydiyyeh
- Department of Biology, Faculty of Arts & Sciences, American University of Beirut, Beirut, Lebanon
- * E-mail:
| |
Collapse
|
4
|
Waugh DT. Fluoride Exposure Induces Inhibition of Sodium-and Potassium-Activated Adenosine Triphosphatase (Na +, K +-ATPase) Enzyme Activity: Molecular Mechanisms and Implications for Public Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E1427. [PMID: 31010095 PMCID: PMC6518254 DOI: 10.3390/ijerph16081427] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/02/2019] [Accepted: 04/08/2019] [Indexed: 12/24/2022]
Abstract
In this study, several lines of evidence are provided to show that Na + , K + -ATPase activity exerts vital roles in normal brain development and function and that loss of enzyme activity is implicated in neurodevelopmental, neuropsychiatric and neurodegenerative disorders, as well as increased risk of cancer, metabolic, pulmonary and cardiovascular disease. Evidence is presented to show that fluoride (F) inhibits Na + , K + -ATPase activity by altering biological pathways through modifying the expression of genes and the activity of glycolytic enzymes, metalloenzymes, hormones, proteins, neuropeptides and cytokines, as well as biological interface interactions that rely on the bioavailability of chemical elements magnesium and manganese to modulate ATP and Na + , K + -ATPase enzyme activity. Taken together, the findings of this study provide unprecedented insights into the molecular mechanisms and biological pathways by which F inhibits Na + , K + -ATPase activity and contributes to the etiology and pathophysiology of diseases associated with impairment of this essential enzyme. Moreover, the findings of this study further suggest that there are windows of susceptibility over the life course where chronic F exposure in pregnancy and early infancy may impair Na + , K + -ATPase activity with both short- and long-term implications for disease and inequalities in health. These findings would warrant considerable attention and potential intervention, not to mention additional research on the potential effects of F intake in contributing to chronic disease.
Collapse
Affiliation(s)
- Declan Timothy Waugh
- EnviroManagement Services, 11 Riverview, Doherty's Rd, P72 YF10 Bandon, Co. Cork, Ireland.
| |
Collapse
|
5
|
Rida R, Kreydiyyeh S. FTY720P inhibits the Na +/K + ATPase in Caco-2 cells via S1PR2: PGE2 and NO are along the signaling pathway. Life Sci 2018; 215:198-206. [PMID: 30439376 DOI: 10.1016/j.lfs.2018.11.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/10/2018] [Accepted: 11/11/2018] [Indexed: 01/08/2023]
Abstract
AIMS Sphingosine-1-phosphate (S1P) has been implicated lately in inflammatory bowel disease which has diarrhea as one of its symptoms. Diarrhea is due to altered water movements as a result of altered electrolyte transport, and in particular sodium. Sodium movements are geared by the sodium gradient established by the Na+/K+ ATPase. The aim of this work was to investigate if S1P can modulate the activity of the ATPase, using Caco-2 cells as a model and the S1P analogue, FTY720P. MATERIALS AND METHODS The activity of the ATPase was assayed by measuring the amount of inorganic phosphate liberated in presence and absence of ouabain. Protein expression of the various S1P receptors was studied by western blot analysis. KEY FINDINGS Caco-2 cells were found to express mainly S1PR2 and S1PR3. FTY720P (7.5 nM) reduced significantly the activity of the Na+/K+ ATPase when applied for 15 min. This inhibitory effect disappeared in presence of JTE-013, a specific blocker of S1PR2, and indomethacin, an inhibitor of cyclooxygenase enzymes, and was mimicked by CYM5520, a S1PR2 agonist and by exogenous PGE2. The inhibitory effect of PGE2 did not appear when EP3 receptors were blocked or when a nitric oxide scavenger was added. RpcAMP, a PKA inhibitor, reduced the activity of the Na+/K+ ATPase, while dbcAMP, a PKA activator was without any effect and when added, abrogated the effect of PGE2. SIGNIFICANCE It was concluded that FTY720P inhibits the Na+/K+ ATPase via activation of S1PR2 and generation of PGE2 nitric oxide.
Collapse
Affiliation(s)
- Reem Rida
- Department of Biology, Faculty of Arts & Sciences, American University of Beirut, Beirut, Lebanon
| | - Sawsan Kreydiyyeh
- Department of Biology, Faculty of Arts & Sciences, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
6
|
Sumayao R, Newsholme P, McMorrow T. Inducible nitric oxide synthase inhibitor 1400W increases Na + ,K + -ATPase levels and activity and ameliorates mitochondrial dysfunction in Ctns null kidney proximal tubular epithelial cells. Clin Exp Pharmacol Physiol 2018; 45:1149-1160. [PMID: 29924417 DOI: 10.1111/1440-1681.12998] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 06/02/2018] [Accepted: 06/11/2018] [Indexed: 02/02/2023]
Abstract
Nitric oxide (NO) has been shown to play an important role in renal physiology and pathophysiology partly through its influence on various transport systems in the kidney proximal tubule. The role of NO in kidney dysfunction associated with lysosomal storage disorder, cystinosis, is largely unknown. In the present study, the effects of inducible nitric oxide synthase (iNOS)-specific inhibitor, 1400W, on Na+ ,K+ -ATPase activity and expression, mitochondrial integrity and function, nutrient metabolism, and apoptosis were investigated in Ctns null proximal tubular epithelial cells (PTECs). Ctns null PTECs exhibited an increase in iNOS expression, augmented NO and nitrite/nitrate production, and reduced Na+ ,K+ -ATPase expression and activity. In addition, these cells displayed depolarized mitochondria, reduced adenosine triphosphate content, altered nutrient metabolism, and elevated apoptosis. Treatment of Ctns null PTECs with 1400W abolished these effects which culminated in the mitigation of apoptosis in these cells. These findings indicate that uncontrolled NO production may constitute the upstream event that leads to the molecular and biochemical alterations observed in Ctns null PTECs and may explain, at least in part, the generalized proximal tubular dysfunction associated with cystinosis. Further studies are needed to realize the potential benefits of anti-nitrosative therapies in improving renal function and/or attenuating renal injury in cystinosis.
Collapse
Affiliation(s)
- Rodolfo Sumayao
- Chemistry Department, De La Salle University, Manila, Philippines
| | - Philip Newsholme
- School of Biomedical Sciences, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, Western Australia, Australia
| | - Tara McMorrow
- Conway Institute, School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
7
|
Effects of Nitric Oxide on Renal Proximal Tubular Na + Transport. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6871081. [PMID: 29181400 PMCID: PMC5664255 DOI: 10.1155/2017/6871081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/14/2017] [Indexed: 12/28/2022]
Abstract
Nitric oxide (NO) has a wide variety of physiological functions in the kidney. Besides the regulatory effects in intrarenal haemodynamics and glomerular microcirculation, in vivo studies reported the diuretic and natriuretic effects of NO. However, opposite results showing the stimulatory effect of NO on Na+ reabsorption in the proximal tubule led to an intense debate on its physiological roles. Animal studies have showed the biphasic effect of angiotensin II (Ang II) and the overall inhibitory effect of NO on the activity of proximal tubular Na+ transporters, the apical Na+/H+ exchanger isoform 3, basolateral Na+/K+ ATPase, and the Na+/HCO3− cotransporter. However, whether these effects could be reproduced in humans remained unclear. Notably, our recent functional analysis of isolated proximal tubules demonstrated that Ang II dose-dependently stimulated human proximal tubular Na+ transport through the NO/guanosine 3′,5′-cyclic monophosphate (cGMP) pathway, confirming the human-specific regulation of proximal tubular transport via NO and Ang II. Of particular importance for this newly identified pathway is its possibility of being a human-specific therapeutic target for hypertension. In this review, we focus on NO-mediated regulation of proximal tubular Na+ transport, with emphasis on the interaction with individual Na+ transporters and the crosstalk with Ang II signalling.
Collapse
|
8
|
Uroguanylin modulates (Na++K+)ATPase in a proximal tubule cell line: Interactions among the cGMP/protein kinase G, cAMP/protein kinase A, and mTOR pathways. Biochim Biophys Acta Gen Subj 2016; 1860:1431-8. [PMID: 27102282 DOI: 10.1016/j.bbagen.2016.04.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/31/2016] [Accepted: 04/15/2016] [Indexed: 11/21/2022]
Abstract
BACKGROUND The natriuretic effect of uroguanylin (UGN) involves reduction of proximal tubule (PT) sodium reabsorption. However, the target sodium transporters as well as the molecular mechanisms involved in these processes remain poorly understood. METHODS To address the effects of UGN on PT (Na(+)+K(+))ATPase and the signal transduction pathways involved in this effect, we used LLC-PK1 cells. The effects of UGN were determined through ouabain-sensitive ATP hydrolysis and immunoblotting assays during different experimental conditions. RESULTS We observed that UGN triggers cGMP/PKG and cAMP/PKA pathways in a sequential way. The activation of PKA leads to the inhibition of mTORC2 activity, PKB phosphorylation at S473, PKB activity and, consequently, a decrease in the mTORC1/S6K pathway. The final effects are decreased expression of the α1 subunit of (Na(+)+K(+))ATPase and inhibition of enzyme activity. CONCLUSIONS These results suggest that the molecular mechanism of action of UGN on sodium reabsorption in PT cells is more complex than previously thought. We propose that PKG-dependent activation of PKA leads to the inhibition of the mTORC2/PKB/mTORC1/S6K pathway, an important signaling pathway involved in the maintenance of the PT sodium pump expression and activity. GENERAL SIGNIFICANCE The current results expand our understanding of the signal transduction pathways involved in the overall effect of UGN on renal sodium excretion.
Collapse
|
9
|
Pavlovic D, Fuller W, Shattock MJ. Novel regulation of cardiac Na pump via phospholemman. J Mol Cell Cardiol 2013; 61:83-93. [PMID: 23672825 DOI: 10.1016/j.yjmcc.2013.05.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 04/30/2013] [Accepted: 05/03/2013] [Indexed: 12/19/2022]
Abstract
As the only quantitatively significant Na efflux pathway from cardiac cells, the Na/K ATPase (Na pump) is the primary regulator of intracellular Na. The transmembrane Na gradient it establishes is essential for normal electrical excitability, numerous coupled-transport processes and, as the driving force for Na/Ca exchange, thus setting cardiac Ca load and contractility. As Na influx varies with electrical excitation, heart rate and pathology, the dynamic regulation of Na efflux is essential. It is now widely recognized that phospholemman, a 72 amino acid accessory protein which forms part of the Na pump complex, is the key nexus linking cellular signaling to pump regulation. Phospholemman is the target of a variety of post-translational modifications (including phosphorylation, palmitoylation and glutathionation) and these can dynamically alter the activity of the Na pump. This review summarizes our current understanding of the multiple regulatory mechanisms that converge on phospholemman and govern NA pump activity in the heart. The corrected Fig. 4 is reproduced below. The publisher would like to apologize for any inconvenience caused. [corrected].
Collapse
Affiliation(s)
- Davor Pavlovic
- Cardiovascular Division, King's College London, The Rayne Institute, St Thomas' Hospital, London, UK.
| | | | | |
Collapse
|
10
|
Nitric oxide regulates cardiac intracellular Na⁺ and Ca²⁺ by modulating Na/K ATPase via PKCε and phospholemman-dependent mechanism. J Mol Cell Cardiol 2013; 61:164-71. [PMID: 23612119 PMCID: PMC3981027 DOI: 10.1016/j.yjmcc.2013.04.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 04/11/2013] [Accepted: 04/12/2013] [Indexed: 12/14/2022]
Abstract
In the heart, Na/K-ATPase regulates intracellular Na+ and Ca2 + (via NCX), thereby preventing Na+ and Ca2 + overload and arrhythmias. Here, we test the hypothesis that nitric oxide (NO) regulates cardiac intracellular Na+ and Ca2 + and investigate mechanisms and physiological consequences involved. Effects of both exogenous NO (via NO-donors) and endogenously synthesized NO (via field-stimulation of ventricular myocytes) were assessed in this study. Field stimulation of rat ventricular myocytes significantly increased endogenous NO (18 ± 2 μM), PKCε activation (82 ± 12%), phospholemman phosphorylation (at Ser-63 and Ser-68) and Na/K-ATPase activity (measured by DAF-FM dye, western-blotting and biochemical assay, respectively; p < 0.05, n = 6) and all were abolished by Ca2 +-chelation (EGTA 10 mM) or NOS inhibition l-NAME (1 mM). Exogenously added NO (spermine-NONO-ate) stimulated Na/K-ATPase (EC50 = 3.8 μM; n = 6/grp), via decrease in Km, in PLMWT but not PLMKO or PLM3SA myocytes (where phospholemman cannot be phosphorylated) as measured by whole-cell perforated-patch clamp. Field-stimulation with l-NAME or PKC-inhibitor (2 μM Bis) resulted in elevated intracellular Na+ (22 ± 1.5 and 24 ± 2 respectively, vs. 14 ± 0.6 mM in controls) in SBFI-AM-loaded rat myocytes. Arrhythmia incidence was significantly increased in rat hearts paced in the presence of l-NAME (and this was reversed by l-arginine), as well as in PLM3SA mouse hearts but not PLMWT and PLMKO. We provide physiological and biochemical evidence for a novel regulatory pathway whereby NO activates Na/K-ATPase via phospholemman phosphorylation and thereby limits Na+ and Ca2 + overload and arrhythmias. This article is part of a Special Issue entitled “Na+ Regulation in Cardiac Myocytes”. We tested whether nitric oxide regulates intracellular Na+ and Ca2 + in the heart. Nitric oxide increased Na/K ATPase activity via PKCε-induced phospholemman phosphorylation. Inhibiting nitric oxide pathway resulted in Na+ and Ca2 + overload and contributed to arrhythmia development in the heart.
Collapse
|
11
|
Mladinov D, Liu Y, Mattson DL, Liang M. MicroRNAs contribute to the maintenance of cell-type-specific physiological characteristics: miR-192 targets Na+/K+-ATPase β1. Nucleic Acids Res 2012; 41:1273-83. [PMID: 23221637 PMCID: PMC3553948 DOI: 10.1093/nar/gks1228] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRNAs) play important roles in biological development and disease. Much less is known about their role in normal adult physiology. The proximal convoluted tubule (PCT) and the medullary thick ascending limb (mTAL) in the kidney consist of epithelial cells with different transport activities. We identified 55 possible miRNA-target pairs of which the miRNAs and their predicted target proteins, many of which are involved in epithelial transport, were inversely enriched in PCT and mTAL. Some miRNAs appeared to have synergistic effects on shared targets. miR-192 and its predicted target the β-1 subunit of Na+/K+-ATPase (Atp1b1), an enzyme providing the driving force for tubular transport, were inversely enriched in kidney regions. In mice, knockdown of miR-192 led to up-regulation of Atp1b1 protein. When mice were fed with a high-salt diet, knockdown of miR-192 blunted the adaptational increase of urine output. Interestingly, miR-192 appeared to target Atp1b1 through the 5′-, rather than 3′-untranslated region. The study suggests a novel physiological mechanism in which miR-192 suppresses Na+/K+-ATPase and contributes to renal handling of fluid balance. It supports an important role of miRNAs in determining cellular characteristics that may appear subtle yet are physiologically critical.
Collapse
Affiliation(s)
- Domagoj Mladinov
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | | | |
Collapse
|
12
|
Fuller W, Tulloch LB, Shattock MJ, Calaghan SC, Howie J, Wypijewski KJ. Regulation of the cardiac sodium pump. Cell Mol Life Sci 2012; 70:1357-80. [PMID: 22955490 PMCID: PMC3607738 DOI: 10.1007/s00018-012-1134-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 07/27/2012] [Accepted: 08/13/2012] [Indexed: 01/24/2023]
Abstract
In cardiac muscle, the sarcolemmal sodium/potassium ATPase is the principal quantitative means of active transport at the myocyte cell surface, and its activity is essential for maintaining the trans-sarcolemmal sodium gradient that drives ion exchange and transport processes that are critical for cardiac function. The 72-residue phosphoprotein phospholemman regulates the sodium pump in the heart: unphosphorylated phospholemman inhibits the pump, and phospholemman phosphorylation increases pump activity. Phospholemman is subject to a remarkable plethora of post-translational modifications for such a small protein: the combination of three phosphorylation sites, two palmitoylation sites, and one glutathionylation site means that phospholemman integrates multiple signaling events to control the cardiac sodium pump. Since misregulation of cytosolic sodium contributes to contractile and metabolic dysfunction during cardiac failure, a complete understanding of the mechanisms that control the cardiac sodium pump is vital. This review explores our current understanding of these mechanisms.
Collapse
Affiliation(s)
- W Fuller
- Division of Cardiovascular and Diabetes Medicine, Medical Research Institute, College of Medicine Dentistry and Nursing, University of Dundee, Dundee, UK.
| | | | | | | | | | | |
Collapse
|
13
|
Althaus M. Gasotransmitters: novel regulators of epithelial na(+) transport? Front Physiol 2012; 3:83. [PMID: 22509167 PMCID: PMC3321473 DOI: 10.3389/fphys.2012.00083] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 03/20/2012] [Indexed: 11/13/2022] Open
Abstract
The vectorial transport of Na(+) across epithelia is crucial for the maintenance of Na(+) and water homeostasis in organs such as the kidneys, lung, or intestine. Dysregulated Na(+) transport processes are associated with various human diseases such as hypertension, the salt-wasting syndrome pseudohypoaldosteronism type 1, pulmonary edema, cystic fibrosis, or intestinal disorders, which indicate that a precise regulation of epithelial Na(+) transport is essential. Novel regulatory signaling molecules are gasotransmitters. There are currently three known gasotransmitters: nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H(2)S). These molecules are endogenously produced in mammalian cells by specific enzymes and have been shown to regulate various physiological processes. There is a growing body of evidence which indicates that gasotransmitters may also regulate Na(+) transport across epithelia. This review will summarize the available data concerning NO, CO, and H(2)S dependent regulation of epithelial Na(+) transport processes and will discuss whether or not these mediators can be considered as true physiological regulators of epithelial Na(+) transport biology.
Collapse
Affiliation(s)
- Mike Althaus
- Institute of Animal Physiology, Justus Liebig University of Giessen Giessen, Germany
| |
Collapse
|
14
|
Different natriuretic responses in obese and lean rats in response to nitric oxide reduction. Am J Hypertens 2011; 24:943-50. [PMID: 21562602 DOI: 10.1038/ajh.2011.79] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Nitric oxide (NO) is an important regulator of renal sodium transport and participates in the control of natriuresis and diuresis. In obesity, the nitric oxide bioavailability was reportedly reduced, which may contribute to the maintenance of hypertension. The aim of this study was to determine the effect of NO depletion on renal sodium handling in a model of diet-induced obesity hypertension. METHODS Obese hypertensive (obesity-prone (OP)) and lean normotensive (obesity-resistant (OR)) Sprague-Dawley rats were treated with 1.2 mg/kg/day N(G)-nitro-L-arginine-methyl ester (L-NAME) for 4 weeks to inhibit NO synthesis. Acute pressure natriuresis and diuresis were measured in response to an increase in perfusion pressure. NHE3 and Na(+), K(+)-ATPase protein expression were measured by Western blot and NHE3 activity was determined as the rate of pH change in brush border membrane vesicles. NHE3 membrane localization was determined by confocal microscopy. RESULTS L-NAME did not significantly attenuate the natriuretic and diuretic responses to increases in renal perfusion pressure (RPP) in OP rats while inducing a significant reduction in OR rats. Following chronic NO inhibition, NHE3 protein expression and activity and Na(+), K(+)-ATPase protein expression were significantly increased in the OR but not in the OP group. Immunofluorescence studies indicated that the increase in NHE3 activity could be, at least in part, due to NHE3 membrane trafficking. CONCLUSIONS Obese hypertensive rats have a weaker natriuretic response in response to NO inhibition compared to lean rats and the mechanism involves different regulation of the apical sodium exchanger NHE3 expression, activity, and trafficking.
Collapse
|
15
|
Garvin JL, Herrera M, Ortiz PA. Regulation of renal NaCl transport by nitric oxide, endothelin, and ATP: clinical implications. Annu Rev Physiol 2011; 73:359-76. [PMID: 20936940 DOI: 10.1146/annurev-physiol-012110-142247] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
NaCl absorption along the nephron is regulated not just by humoral factors but also by factors that do not circulate or act on the cells where they are produced. Generally, nitric oxide (NO) inhibits NaCl absorption along the nephron. However, the effects of NO in the proximal tubule are controversial and may be biphasic. Similarly, the effects of endothelin on proximal tubule transport are biphasic. In more distal segments, endothelin inhibits NaCl absorption and may be mediated by NO. Adenosine triphosphate (ATP) inhibits sodium bicarbonate absorption in the proximal tubule, NaCl absorption in thick ascending limbs via NO, and water reabsorption in collecting ducts. Defects in the effects of NO, endothelin, and ATP increase blood pressure, especially in a NaCl-sensitive manner. In diabetes, disruption of NO-induced inhibition of transport may contribute to increased blood pressure and renal damage. However, our understanding of how NO, endothelin, and ATP work, and of their role in pathology, is rudimentary at best.
Collapse
Affiliation(s)
- Jeffrey L Garvin
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan 48202, USA.
| | | | | |
Collapse
|
16
|
Nascimento NRF, Kemp BA, Howell NL, Gildea JJ, Santos CF, Harris TE, Carey RM. Role of SRC family kinase in extracellular renal cyclic guanosine 3',5'-monophosphate- and pressure-induced natriuresis. Hypertension 2011; 58:107-13. [PMID: 21482955 DOI: 10.1161/hypertensionaha.110.168708] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
cGMP functions as an extracellular (paracrine) messenger acting at the renal proximal tubule and is an important modulator of pressure-natriuresis (P-N). The signaling pathway activated by cGMP in the tubule cell basolateral membrane remains unknown. We hypothesized that renal interstitial microinfusion of cGMP (50 nmol/kg per minute) or P-N would be accompanied by increased renal protein levels of phospho-Src (Tyr 416) and that the natriuresis would be decreased by Src inhibition. Renal interstitial cGMP-induced natriuresis was blocked by Src inhibitor PP2 (2.0±0.4 versus 0.5±0.01 μEq/g per minute; P<0.001). The inactive analog of PP2, PP3, had no effect on cGMP-induced natriuresis. SU6656, another Src inhibitor, also inhibited cGMP-induced natriuresis (2.0±0.4 versus 1.02±0.01 μEq/g per minute; P<0.001). Renal interstitial cGMP infusion increased phospho-Src protein levels 5.6-fold at 15 minutes and 6.8-fold at 30 minutes compared with vehicle infusion but returned toward basal levels after 60 minutes. PP2 also blunted P-N (3.1±0.1 versus 1.1±0.3 μEq/g per minute; P<0.01) despite a similar increase in blood pressure. PP3 had no effect on P-N. Phospho-Src protein levels increased during P-N in vehicle- (1.8-fold) and PP3-treated (2.1-fold) groups compared with the sham-operated group. PP2 blocked the pressure-induced increase in renal phospho-Src protein levels. PP2 had no effect on renal hemodynamics but decreased both fractional excretion of Na(+) and lithium. Both extracellular cGMP and increased renal perfusion pressure increased renal phospho-Src protein levels and induced natriuresis in an Src-dependent manner, demonstrating that Src is an important downstream signaling molecule for extracellular cGMP-induced natriuresis.
Collapse
Affiliation(s)
- Nilberto R F Nascimento
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908-1414, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Lieb DC, Kemp BA, Howell NL, Gildea JJ, Carey RM. Reinforcing feedback loop of renal cyclic guanosine 3' 5' -monophosphate and interstitial hydrostatic pressure in pressure-natriuresis. Hypertension 2009; 54:1278-83. [PMID: 19841292 DOI: 10.1161/hypertensionaha.109.131995] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study addresses the hypothesis that renal interstitial (RI) cGMP, a modulator of pressure-natriuresis, exerts its effect through a relationship with renal interstitial hydrostatic pressure (RIHP). Increasing renal perfusion pressure in Sprague-Dawley rats led to increases in RIHP (5.2+/-0.6 to 10.9+/-1.6 mm Hg; P<0.01), urine sodium excretion (0.062+/-0.009 to 0.420+/-0.068 micromol/min per gram; P<0.01), and RI cGMP (3.5+/-0.8 to 9.5+/-1.7 fmol/min; P<0.01), and these effects were blocked by partial renal decapsulation. Infusion of cGMP into the RI compartment of decapsulated animals restored natriuresis (0.067+/-0.010 to 0.310+/-0.061 micromol/min per gram; P<0.01). These changes were independent of changes in glomerular filtration rate . Artificially increasing RIHP in normotensive animals increased RI cGMP (4.1+/-0.6 to 6.9+/-0.7 fmol/min; P<0.01) and urine sodium excretion (0.071+/-0.013 to 0.179+/-0.039 micromol/min per gram; P<0.05). Coinfusion of organic anion transport-inhibitor probenecid, or soluble guanylyl cyclase inhibitor 1-H(1,2,4) oxadiazolo-(4,2)quinoxalin-1-one, abolished these effects. Infusion of cGMP into the RI compartment of normotensive animals increased RIHP (6.7+/-0.4 to 10.3+/-0.9 mm Hg; P<0.001). Exogenous RI cGMP delivery did not affect total, cortical, or medullary renal blood flow. These studies suggest that extracellular RI cGMP is required for the natriuresis observed after increases in renal perfusion pressure and RIHP and that cGMP acts via a tubule mechanism. The results support an intrarenal positive-feedback loop wherein RI cGMP increases RIHP, which, in turn, increases RI cGMP, contributing to the reinforcement of pressure-natriuresis.
Collapse
Affiliation(s)
- David C Lieb
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA.
| | | | | | | | | |
Collapse
|
18
|
Banday AA, Lokhandwala MF. Inhibition of natriuretic factors increases blood pressure in rats. Am J Physiol Renal Physiol 2009; 297:F397-402. [PMID: 19474184 DOI: 10.1152/ajprenal.90729.2008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Renal dopamine and nitric oxide contribute to natriuresis during high-salt intake which maintains sodium and blood pressure homeostasis. We wanted to determine whether concurrent inhibition of these natriuretic factors increases blood pressure during high-sodium intake. Male Sprague-Dawley rats were divided into the following groups: 1) vehicle (V)-tap water, 2) NaCl-1% NaCl drinking water, 3) 30 mM l-buthionine sulfoximine (BSO), an oxidant, 4) BSO plus NaCl, and 5) BSO plus NaCl with 1 mM tempol (antioxidant). Compared with V, NaCl intake for 10 days doubled sodium intake and increased urinary dopamine level but reduced urinary nitric oxide content. NaCl intake also reduced basal renal proximal tubular Na-K-ATPase activity with no effect on blood pressure. However, NaCl intake in BSO-treated rats failed to reduce basal Na-K-ATPase activity despite higher urinary dopamine levels. Also, dopamine failed to inhibit proximal tubular Na-K-ATPase activity and these rats exhibited reduced urinary nitric oxide levels and high blood pressure. Tempol supplementation in NaCl plus BSO-treated rats reduced blood pressure. BSO treatment alone did not affect the urinary nitric oxide and dopamine levels or blood pressure. However, dopamine failed to inhibit proximal tubular Na-K-ATPase activity in BSO-treated rats. BSO treatment also increased basal protein kinase C activity, D1 receptor serine phosphorylation, and oxidative markers like malondialdehyde and 8-isoprostane. We suggest that NaCl-mediated reduction in nitric oxide does not increase blood pressure due to activation of D1 receptor signaling. Conversely, oxidative stress-provoked inhibition of D1 receptor signaling fails to elevate blood pressure due to presence of normal nitric oxide. However, simultaneously decreasing nitric oxide levels with NaCl and inhibiting D1 receptor signaling with BSO elevated blood pressure.
Collapse
Affiliation(s)
- Anees Ahmad Banday
- Heart and Kidney Institute, College of Pharmacy, Univ. of Houston, 4800 Calhoun Road, Houston, TX 77204, USA.
| | | |
Collapse
|
19
|
Foster JM, Carmines PK, Pollock JS. PP2B-dependent NO production in the medullary thick ascending limb during diabetes. Am J Physiol Renal Physiol 2009; 297:F471-80. [PMID: 19458119 DOI: 10.1152/ajprenal.90760.2008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Calcineurin (PP2B) has recently been shown to be upregulated in the medullary thick ascending limb (mTAL) during diabetes. The mTAL expresses all three isoforms of nitric oxide synthase (NOS), which are subject to phosphoregulation and represent substrates for PP2B. Therefore, we hypothesized that diabetes induces PP2B-dependent upregulation of NOS activity and NO production in the mTAL. Three weeks after injection of streptozotocin (STZ rats) or vehicle (sham rats), mTAL suspensions were prepared for use in functional and biochemical assays. PP2B activity and expression were increased in mTALs from STZ rats compared with sham. Nitrite production was significantly reduced in mTALs from STZ rats compared with sham. However, incubation with the free radical scavenger, tempol, unmasked a significant increase in nitrite production by mTALs from STZ rats. Inhibition of PP2B attenuated the increase in nitrite production and NOS activity evident in mTALs from STZ rats. Analysis of specific NOS isoform activity revealed increased NOS1 and NOS2 activities in mTALs from STZ rats. All three NOS isoform activities were regulated in a PP2B-dependent manner. Western blot analysis detected no differences in NOS isoform expression, although phosphorylation of pThr(495)-NOS3 was significantly reduced in mTALs from STZ rats. Phosphorylation of pSer(852)-NOS1, pSer(633)-NOS3, and pSer(1177)-NOS3 was similar in mTALs from STZ and sham rats. Inhibition of PP2B did not alter the phosphorylation of NOS1 or NOS3 at known sites. In conclusion, while NO bioavailability in mTALs is reduced during diabetes, free radical scavenging with tempol unmasks increased NO production that involves PP2B-dependent activation of NOS1 and NOS2.
Collapse
Affiliation(s)
- Jan M Foster
- Vascular Biology Center, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | |
Collapse
|
20
|
Abstract
Loss of redox homeostasis and formation of excessive free radicals play an important role in the pathogenesis of kidney disease and hypertension. Free radicals such as reactive oxygen species (ROS) are necessary in physiologic processes. However, loss of redox homeostasis contributes to proinflammatory and profibrotic pathways in the kidney, which in turn lead to reduced vascular compliance and proteinuria. The kidney is susceptible to the influence of various extracellular and intracellular cues, including the renin-angiotensin-aldosterone system (RAAS), hyperglycemia, lipid peroxidation, inflammatory cytokines, and growth factors. Redox control of kidney function is a dynamic process with reversible pro- and anti-free radical processes. The imbalance of redox homeostasis within the kidney is integral in hypertension and the progression of kidney disease. An emerging paradigm exists for renal redox contribution to hypertension.
Collapse
Affiliation(s)
- Ravi Nistala
- University of Missouri-Columbia School of Medicine, Department of Internal Medicine, Columbia, Missouri 65212, USA.
| | | | | |
Collapse
|
21
|
Kawamoto EM, Munhoz CD, Lepsch LB, de Sá Lima L, Glezer I, Markus RP, de Silva CLM, Camarini R, Marcourakis T, Scavone C. Age-related changes in cerebellar phosphatase-1 reduce Na,K-ATPase activity. Neurobiol Aging 2008; 29:1712-20. [PMID: 17537548 DOI: 10.1016/j.neurobiolaging.2007.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Revised: 04/05/2007] [Accepted: 04/16/2007] [Indexed: 11/16/2022]
Abstract
We evaluated whether changes in protein content and activity of PP-1 and PP-2A were the mechanism underneath the basal age-related reduction in alpha(2/3)-Na,K-ATPase activity in rats cerebella and whether this occurred through the cyclic GMP-PKG pathway. PP1 activity, but not its expression, increased with age, whereas PP-2 was not changed. The activity of alpha(2/3)-Na,K-ATPase varied with age, and there was a negative association between the PP-1 and alpha(2/3)-Na,K-ATPase activities. In young rats, the inhibition of PP-1 and PP-2A by okadaic acid (OA) increased in a dose-dependent manner alpha(1)- and alpha(2/3)-Na,K-ATPase, but had no effect on Mg-ATPase activity. A direct stimulation of PKG with 8-Br-cyclic GMP did not surmount the effect of OA. This analogue of cyclic GMP inhibited PP-1 activity only, indicating that at least part of the increase in alpha(1)- and alpha(2/3)-Na,K-ATPase activity induced by OA was mediated by the cyclic GMP-PKG-PP-1 cascade. Taking into account that PP1 inhibition increased alpha(2/3)-Na,K-ATPase activity, we propose that an age-related increase in PP-1 activity due to a decrease in cyclic GMP-PKG modulation plays a role for the age-related reduction of alpha(2/3)-Na,K-ATPase activity in rat cerebellum.
Collapse
Affiliation(s)
- Elisa Mitiko Kawamoto
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, Avenida Lineu Prestes, 1524, 05508-900 São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Banday AA, Lokhandwala MF. Loss of biphasic effect on Na/K-ATPase activity by angiotensin II involves defective angiotensin type 1 receptor-nitric oxide signaling. Hypertension 2008; 52:1099-105. [PMID: 18955661 DOI: 10.1161/hypertensionaha.108.117911] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Oxidative stress causes changes in angiotensin (Ang) type 1 receptor (AT1R) function, which contributes to hypertension. Ang II affects blood pressure via maintenance of sodium homeostasis by regulating renal Na(+) absorption through its effects on Na/K-ATPase (NKA). At low concentrations, Ang II stimulates NKA; higher concentrations inhibit the enzyme. We examined the effect of oxidative stress on renal AT1R function involved in biphasic regulation of NKA. Male Sprague-Dawley rats received tap water (control) and 30 mmol/L of L-buthionine sulfoximine (BSO), an oxidant, with and without 1 mmol/L of Tempol (antioxidant) for 2 weeks. BSO-treated rats exhibited increased oxidative stress, AT1R upregulation, and hypertension. In proximal tubules from control rats, Ang II exerted a biphasic effect on NKA activity, causing stimulation of the enzyme at picomolar and inhibition at micromolar concentrations. However, in BSO-treated rats, Ang II caused stimulation of NKA at both of the concentrations. The effect of Ang II was abolished by the AT1R antagonist candesartan and the mitogen-activated protein kinase inhibitor UO126, whereas the Ang type 2 receptor antagonist PD-123319 and NO synthase inhibitor N(G)-nitro-L-arginine methyl ester had no effect. The inhibitory effect of Ang II was sensitive to candesartan and N(G)-nitro-L-arginine methyl ester, whereas PD-123319 and UO126 had no effect. In BSO-treated rats, Ang II showed exaggerated stimulation of NKA, mitogen-activated protein kinase, proline-rich-tyrosine kinase 2, and NADPH oxidase but failed to activate NO signaling. Tempol reduced oxidative stress, normalized AT1R signaling, unmasked the biphasic effect on NKA, and reduced blood pressure in BSO-treated rats. In conclusion, oxidative stress-mediated AT1R upregulation caused a loss of NKA biphasic response and hypertension. Tempol normalized AT1R signaling and blood pressure.
Collapse
Affiliation(s)
- Anees Ahmad Banday
- Heart and Kidney Institute, College of Pharmacy, University of Houston, Houston, Texas 77204, USA.
| | | |
Collapse
|
23
|
Afkir S, Nguelefack TB, Aziz M, Zoheir J, Cuisinaud G, Bnouham M, Mekhfi H, Legssyer A, Lahlou S, Ziyyat A. Arbutus unedo prevents cardiovascular and morphological alterations in L-NAME-induced hypertensive rats Part I: cardiovascular and renal hemodynamic effects of Arbutus unedo in L-NAME-induced hypertensive rats. JOURNAL OF ETHNOPHARMACOLOGY 2008; 116:288-295. [PMID: 18191352 DOI: 10.1016/j.jep.2007.11.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 11/14/2007] [Accepted: 11/20/2007] [Indexed: 05/25/2023]
Abstract
Hypertension induced by nitric oxide synthase inhibition is associated with functional abnormalities of the heart and kidney. The aim of the present study was to investigate whether chronic treatment with Arbutus unedo leaf (AuL) or root (AuR) aqueous extracts can prevent these alterations. Six groups of rats were used: control group received tap water; N(G)-nitro-l-arginine methyl-ester (L-NAME) group treated with L-NAME at 40 mg/kg/day; AuL and AuR groups received simultaneously L-NAME (40 mg/kg/day) and Au leaves or roots extract at the same concentration 250 mg/kg/day; l-arginine and enalapril groups received simultaneously L-NAME (40 mg/kg/day) and l-arginine at 50mg/kg/day or enalapril at 15 mg/kg/day. Treatment of rats during 4 weeks with L-NAME caused an increase of the systolic blood pressure (SBP) accompanied by a ventricular hypertrophy, an impairment of endothelium-dependent vasorelaxation, an increase of the cardiac baroreflex sensitivity and a decrease of water, sodium and potassium excretion. The co-administration of AuL or AuR extracts with L-NAME reduces the development of increased SBP, ameliorates the vascular reactivity as well as the baroreflex sensitivity and normalizes the renal function. AuR reduces the ventricular hypertrophy but AuL do not. Enalapril associated with L-NAME reverses the majority of alterations induced by L-NAME while l-arginine only lightly ameliorates the vascular reactivity. These results show that chronic treatment with Arbutus extract regress the development of hypertension and ameliorate cardiovascular and renal functions in NO deficient hypertension.
Collapse
Affiliation(s)
- Saida Afkir
- UFR Physiologie et Pharmacologie, Laboratoire de Physiologie et Ethnopharmacologie, Département de Biologie, Faculté des Sciences, Université Mohamed Premier, BP 717, Bd Mohamed VI, 60000 Oujda, Morocco
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Cavanal MDF, Gomes GN, Forti AL, Rocha SO, Franco MDCP, Fortes ZB, Gil FZ. The influence of L-arginine on blood pressure, vascular nitric oxide and renal morphometry in the offspring from diabetic mothers. Pediatr Res 2007; 62:145-50. [PMID: 17597655 DOI: 10.1203/pdr.0b013e318098722e] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The present study was designed to evaluate the effects of L-arginine (L-arg) supplementation on blood pressure, vascular nitric oxide content, and renal morphometry in the adult offspring from diabetic mothers. Diabetes mellitus was induced in female rats with a single dose of streptozotocin (50 mg/kg), before mating. The offspring was divided into four groups: group C (controls); group DO (diabetic offspring); group CA (controls receiving 2% L-arg solution dissolved in 2% sucrose in the drinking water) and group DA (DO receiving the L-arg solution). Oral supplementation began after weaning and continued until the end of the experiments. In DO, hypertension was observed, from 3 mo on. In DA, pressure levels were not different from C and CA. In 6-mo-old animals, basal NO production (assessed by DAF-2) was significantly depressed in DO in comparison to controls. The NO production was significantly increased after stimulation with Ach or BK in all groups, the increase being greater in control than in DO rats. L-arg was able to improve the NO production and to prevent the glomerular hypertrophy in the DO. Our data suggest that the bioavailability of NO is reduced in the DO, because L-arg corrected both the hypertension and glomerular hypertrophy.
Collapse
Affiliation(s)
- Maria de Fatima Cavanal
- Department of Physiology, Federal University of São Paulo - Unifesp/EPM, CEP 04023-900, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
25
|
Yamazawa K, Kodo K, Maeda J, Omori S, Hida M, Mori T, Awazu M. Hyponatremia, hypophosphatemia, and hypouricemia in a girl with macrophage activation syndrome. Pediatrics 2006; 118:2557-60. [PMID: 17142545 DOI: 10.1542/peds.2006-1127] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Macrophage activation syndrome, a life-threatening complication of rheumatic disorders, is accompanied by the overproduction of cytokines. We describe a girl with macrophage activation syndrome complicating systemic-onset juvenile arthritis who developed hyponatremia, hypophosphatemia, and hypouricemia associated with a high level of serum tumor necrosis factor alpha. Renal proximal tubule dysfunction was considered to be the cause, which may be attributable to tumor necrosis factor alpha.
Collapse
Affiliation(s)
- Kazuki Yamazawa
- Department of Pediatrics, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Liang M, Pietrusz JL. Thiol-related genes in diabetic complications: a novel protective role for endogenous thioredoxin 2. Arterioscler Thromb Vasc Biol 2006; 27:77-83. [PMID: 17068286 DOI: 10.1161/01.atv.0000251006.54632.bb] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Our laboratory and others have found that deficiencies in cellular thiols may be importantly involved in the development of diabetic complications. However, the role for specific thiol-related genes in diabetic complications is unclear. METHODS AND RESULTS We began the present study by systematically determining the expression level of 11 thiol-related genes in three tissues from rats with streptozotocin-induced diabetes. Several thiol-related genes were found to exhibit diabetes-associated, time-dependent differential expression. Thioredoxin 2, a mitochondrion-specific thioredoxin whose role in diabetes was unknown, was suppressed in the aorta from rats with two weeks of diabetes. When thioredoxin 2 expression in human umbilical vein endothelial cells was knocked-down by small interfering RNA, high-ambient glucose-elicited substantial injurious effects (n=5 to 9, P<0.05), including increases in cytosolic cytochrome c (by 2.2+/-0.6-fold), lipid peroxidation (by 40+/-8%), fibronectin expression (by 35+/-7%), and oxidized glutathione, and decreases in endothelial nitric oxide synthase expression (by 79+/-15%), basal accumulation of nitrite/nitrate (by 68+/-16%), total free thiols (by 42+/-8%), and glutathione (by 6+/-1%). In the absence of thioredoxin 2 knockdown, high-ambient glucose did not have significant effects on any of these measurements. The effect of thioredoxin 2 knockdown appeared to be associated with increases in glucose consumption and glucose transporter 1 expression. CONCLUSIONS These results provided the first expression profile of thiol-related genes in a model of diabetes and demonstrated a novel role for endogenous thioredoxin 2 in protecting cells against high ambient glucose.
Collapse
Affiliation(s)
- Mingyu Liang
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | | |
Collapse
|
27
|
Abstract
In the kidney nitric oxide (NO) has numerous important functions including the regulation of renal haemodynamics, maintenance of medullary perfusion, mediation of pressure-natriuresis, blunting of tubuloglomerular feedback, inhibition of tubular sodium reabsorption and modulation of renal sympathetic neural activity. The net effect of NO in the kidney is to promote natriuresis and diuresis. Significantly, deficient renal NO synthesis has been implicated in the pathogenesis of hypertension. All three isoforms of nitric oxide synthase (NOS), namely neuronal NOS (nNOS or NOS1), inducible NOS (iNOS or NOS2) and endothelial NOS (eNOS or NOS3) are reported to contribute to NO synthesis in the kidney. The regulation of NO synthesis in the kidney by NOSs is complex and incompletely understood. Historically, many studies of NOS regulation in the kidney have emphasized the role of variations in gene transcription and translation. It is increasingly appreciated, however, that the constitutive NOS isoforms (nNOS and eNOS) are also subject to rapid regulation by post-translational mechanisms such as Ca(2+) flux, serine/threonine phosphorylation and protein-protein interactions. Recent studies have emphasized the role of post-translational regulation of nNOS and eNOS in the regulation of NO synthesis in the kidney. In particular, a role for phosphorylation of nNOS and eNOS at both activating and inhibitory sites is emerging in the regulation of NO synthesis in the kidney. This review summarizes the roles of NO in renal physiology and discusses recent advances in the regulation of eNOS and nNOS in the kidney by post-translational mechanisms such as serine/threonine phosphorylation.
Collapse
Affiliation(s)
- P F Mount
- The Austin Research Institute, Austin Hospital, Victoria, Australia.
| | | |
Collapse
|
28
|
Dobrian AD. The complex role of PPARgamma in renal dysfunction in obesity: managing a Janus-faced receptor. Vascul Pharmacol 2006; 45:36-45. [PMID: 16716756 DOI: 10.1016/j.vph.2006.01.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2006] [Revised: 01/01/2006] [Accepted: 01/01/2006] [Indexed: 01/11/2023]
Abstract
Obesity is frequently accompanied by insulin resistance, type II diabetes, hypertension and atherosclerosis, a cluster of pathologies that are the major components of the metabolic syndrome. Obesity is a known cause for renal dysfunction that leads to two major renal pathologies: hypertension and glomerular and tubulointerstitial injury. Peroxizome proliferator activated receptors (PPARs) are transcription factors belonging to the nuclear hormone receptor superfamily with important functions in the regulation of metabolism. The role of PPARgamma isoforms in adipogenesis and vascular inflammation associated to obesity has been vastly studied and is well recognized, albeit not completely mechanistically understood. Also, the effect of various PPARgamma agonists on blood pressure reduction in different forms of hypertension, including obesity related hypertension has been reported, but the mechanisms involved are only beginning to be studied. Even less clear is the concurrent beneficial effect of PPARgamma agonists thiazolinendiones (TZD) on blood pressure reduction in different forms of hypertension and, at the same time, in some cases, the significant water retention leading to edema and heart failure. The occurrence of both these apparently opposite effects on the renal water and sodium handling suggests a complex role of PPARgamma in the kidney that is likely related to the metabolic state. Also, PPARgamma activation leads to a reduction in mesangial cell proliferation while stimulating apoptosis. TZD treatment reduces albuminuria in obese and diabetic humans and rodent models suggesting protective effects against renal tubuloglomerular injury. The focus of this review is to present and critically discuss the recent findings on the roles of PPARgamma in the kidney in direct relation to renal function and renal injury in obesity and obesity-initiated diabetes.
Collapse
Affiliation(s)
- Anca Dana Dobrian
- Department of Physiological Sciences, Eastern Virginia Medical School, 700W Olney Road, Lewis Hall, Room 2027, Norfolk, VA 23507, USA.
| |
Collapse
|
29
|
Scavone C, Munhoz CD, Kawamoto EM, Glezer I, de Sá Lima L, Marcourakis T, Markus RP. Age-related changes in cyclic GMP and PKG-stimulated cerebellar Na,K-ATPase activity. Neurobiol Aging 2005; 26:907-16. [PMID: 15718050 DOI: 10.1016/j.neurobiolaging.2004.08.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2004] [Revised: 06/08/2004] [Accepted: 08/04/2004] [Indexed: 10/26/2022]
Abstract
Energy deficiency and dysfunction of the Na,K-ATPase are common consequences of many pathological insults. Glutamate through cyclic GMP and cyclic GMP-dependent protein kinase (PKG) has been shown to stimulate alpha(2/3)-Na,K-ATPase activity in the central nervous system. Thus, a slight impairment of this pathway may amplify the disruption of ion homeostasis in the presence of a non-lethal insult. We investigate the effect of aging (4, 12 and 24 months) on the glutamate-cyclic GMP-PKG modulation of alpha1, alpha(2/3)-Na,K-ATPase activity in rat cerebellum and the stimulation of the glutamate-cyclic GMP-PKG pathway at different levels. Cyclic GMP levels and alpha(2/3)-Na,K-ATPase activity were progressively decreased from 4 and 24 month-old animals. However, PKG basal activity was reduced between 4 and 12 months, and no additional change was observed at 24 months. The ability of 8-Br-cyclic GMP to stimulate PKG activity was only reduced between 12 and 24 months. Moreover, glutamate or 8-Br-cyclic GMP promoted a smaller increase of alpha(2/3)-Na,K-ATPase activity at 24 months, when compared to 4 and 12 months. In spite of the age-related reduced basal levels of cyclic GMP, the production induced by CO or NO was not age-related. Finally, inhibition of PKG activation by KT5823 revealed a lower sensitivity of the enzyme at the older age. Taken together, these data show that basal age-related decline in sodium pump activity is a consequence of changes in different steps of the cyclic GMP-PKG pathway. On the other hand, age-related reduction in glutamate positive modulation of cerebellar alpha(2/3)-Na,K-ATPase is linked to a defective PKG signaling pathway.
Collapse
Affiliation(s)
- Cristoforo Scavone
- Department of Pharmacology, Institute of Biomedical Science University of São Paulo Avenida Lineu Prestes, São Paulo 152405508-900, Brazil.
| | | | | | | | | | | | | |
Collapse
|
30
|
Knoll KE, Pietrusz JL, Liang M. Tissue-specific transcriptome responses in rats with early streptozotocin-induced diabetes. Physiol Genomics 2005; 21:222-9. [PMID: 15713786 DOI: 10.1152/physiolgenomics.00231.2004] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The understanding of common and tissue-specific molecular alterations in diabetes, particularly at early stages, is limited and fragmental. In the present study, we systematically compared transcriptome responses in four important diabetic target tissues in rats with 2 wk of streptozotocin (STZ)-induced diabetes. At this stage of diabetes, the skeletal muscle exhibited the highest transcriptome sensitivity to the STZ treatment with nearly 17% of the transcriptome being altered (false discovery rate, 1.6%) compared with approximately 3% in the cardiac left ventricle, renal cortex, and retina. Similarity in transcriptome response among tissues was low, with the highest similarity being 2.2% between skeletal muscle and the left ventricle. Several biological processes or cellular components, such as lipid metabolism in the left ventricle and collagen in the renal cortex, were significantly overrepresented in the responsive genes than in the entire array. Particularly interesting cases of common or tissue-specific regulation included decorin and CD36, which were upregulated in several tissues, and serum/glucocorticoid-regulated kinase and four and a half LIM domains 2, which were upregulated only in the renal cortex. Further biochemical analyses indicated that the thiol and oxidative stress pathway was altered in a tissue-specific manner at several levels including transcript abundance, content of reduced thiols, and lipid peroxidation, providing an example of the potential biological relevance of tissue-specific transcript regulation. These results provided a transcriptome-wide view of the molecular alterations across several key tissues in early diabetes. It appears that both common pathways and, perhaps more importantly, tissue-specific mechanisms are involved in the adaptation to diabetes or the initiation of diabetic complications.
Collapse
Affiliation(s)
- Kristen E Knoll
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | |
Collapse
|
31
|
Tenhunen J. Can we distinguish between different types of local perfusion/metabolic derangement by regional venous concentrations of intermediary energy substrates? Shock 2004; 22:191-2. [PMID: 15257097 DOI: 10.1097/01.shk.0000133597.80869.87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Morrison J, Knoll K, Hessner MJ, Liang M. Effect of high glucose on gene expression in mesangial cells: upregulation of the thiol pathway is an adaptational response. Physiol Genomics 2004; 17:271-82. [PMID: 15039483 DOI: 10.1152/physiolgenomics.00031.2004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pathological alterations in glomerular mesangial cells play a critical role in the development of diabetic nephropathy, the leading cause of end-stage renal disease. Molecular mechanisms mediating such alterations, however, remain to be fully understood. The present study first examined the effect of high glucose on the mRNA expression profile in rat mesangial cells using cDNA microarray. Based on variation-weighted criteria and with a false discovery rate of 4.3%, 459 of 17,664 cDNA elements examined were found to be upregulated and 151 downregulated by exposure to 25 mM d-glucose for 5 days. A large number of differentially expressed genes belonged to several functional categories, indicating high glucose had a profound effect on mesangial cell proliferation, protein synthesis, energy metabolism, and, somewhat unexpectedly, protein sorting and the cytoskeleton. Interestingly, several thiol antioxidative genes (glutathione peroxidase 1, peroxiredoxin 6, and thioredoxin 2) were found by microarray and confirmed by real-time PCR to be upregulated by high glucose. These changes suggested that the oxidative stress known to be induced in mesangial cells by high glucose might be buffered by upregulation of the thiol antioxidative pathway. Upregulation of thiol antioxidative genes also occurred in high-glucose-treated human mesangial cells and in glomeruli isolated from rats after 1 wk of streptozotocin-induced diabetes, but not in human proximal tubule cells. High glucose slightly increased lipid peroxidation and decreased the amount of reduced thiols in rat and human mesangial cells. Disruption of the thiol antioxidative pathway by two different thiol-oxidizing agents resulted in a three- to fivefold increase in high-glucose-induced lipid peroxidation. In summary, the present study provided a global view of the short-term effect of high glucose on mesangial cells at the level of mRNA expression and identified the upregulation of the thiol antioxidative pathway as an adaptational response of mesangial cells to high glucose.
Collapse
|
33
|
Varela M, Herrera M, Garvin JL. Inhibition of Na-K-ATPase in thick ascending limbs by NO depends on O2- and is diminished by a high-salt diet. Am J Physiol Renal Physiol 2004; 287:F224-30. [PMID: 15113751 DOI: 10.1152/ajprenal.00427.2003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A high-salt diet enhances nitric oxide (NO)-induced inhibition of transport in the thick ascending limb (THAL). Long exposures to NO inhibit Na-K-ATPase in cultured cells. We hypothesized that NO inhibits THAL Na-K-ATPase after long exposures and a high-salt diet would augment this effect. Rats drank either tap water or 1% NaCl for 7-10 days. Na-K-ATPase activity was assessed by measuring ouabain-sensitive ATP hydrolysis by THAL suspensions. After 2 h, spermine NONOate (SPM; 5 microM) reduced Na-K-ATPase activity from 0.44 +/- 0.03 to 0.30 +/- 0.04 nmol P(i).microg protein(-1).min(-1) in THALs from rats on a normal diet (P < 0.03). Nitroglycerin also reduced Na-K-ATPase activity (P < 0.04). After 20 min, SPM had no effect (change -0.07 +/- 0.05 nmol P(i).microg protein(-1).min(-1)). When rats were fed high salt, SPM did not inhibit Na-K-ATPase after 120 min. To investigate whether ONOO(-) formed by NO reacting with O(2)(-) was involved, we measured O(2)(-) production. THALs from rats on normal and high salt produced 35.8 +/- 0.3 and 23.7 +/- 0.8 nmol O(2)(-).min(-1).mg protein(-1), respectively (P < 0.01). Because O(2)(-) production differed, we studied the effects of the O(2)(-) scavenger tempol. In the presence of 50 microM tempol, SPM did not inhibit Na-K-ATPase after 120 min (0.50 +/- 0.05 vs. 0.52 +/- 0.07 nmol P(i).microg protein(-1).min(-1)). Propyl gallate, another O(2)(-) scavenger, also prevented SPM-induced inhibition of Na-K-ATPase activity. SPM inhibited pump activity in tubules from rats on high salt when O(2)(-) levels were increased with xanthine oxidase and hypoxanthine. We concluded that NO inhibits Na-K-ATPase after long exposures when rats are on a normal diet and this inhibition depends on O(2)(-). NO donors do not inhibit Na-K-ATPase in THALs from rats on high salt due to decreased O(2)(-) production.
Collapse
Affiliation(s)
- Marisela Varela
- Division of Nephrology, Henry Ford Hospital, Detroit, Michigan 48202, USA
| | | | | |
Collapse
|
34
|
Jin XH, McGrath HE, Gildea JJ, Siragy HM, Felder RA, Carey RM. Renal interstitial guanosine cyclic 3', 5'-monophosphate mediates pressure-natriuresis via protein kinase G. Hypertension 2004; 43:1133-9. [PMID: 15007031 DOI: 10.1161/01.hyp.0000123574.60586.7d] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pressure-natriuresis is the physiological protective mechanism whereby elevation of blood pressure induces a rapid increase in renal sodium (Na+) excretion. Pressure-natriuresis abnormalities are common to all forms of hypertension. We tested the hypothesis that pressure-natriuresis is mediated by renal interstitial (RI) cGMP and protein kinase G (PKG). We used anesthetized, uninephrectomized Sprague-Dawley rats and a standard pressure-natriuresis model in which bilateral adrenalectomy and renal denervation was done on rats. Renal perfusion pressure (RPP) was adjusted by manipulating clamps above and below the renal artery, and RI cGMP was quantified by microdialysis. RI cGMP increased from 3.1+/-0.5 to 5.5+/-0.4 fmol/min (P<0.05) when RPP was raised from 100 to 140 mm Hg. This increase in RI cGMP was eliminated by RI infusion of soluble guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,2-alpha]quinoxalin-1-one (ODQ). Raising RPP from 100 to 140 mm Hg increased urinary sodium excretion from 0.2+/-0.1 to 0.8+/-0.1 micromol/min, fractional sodium excretion from 0.2+/-0.1% to 0.8+/-0.1%, and fractional lithium excretion from 20.1+/-3.0% to 62.7+/-3.7% (all P<0.05). These responses were eliminated by RI infusion of nitric oxide synthase inhibitor N-nitro-l-arginine methyl ester, ODQ, and PKG inhibitors Rp-8-pCPT-cGMP and Rp-8-Br-cGMP. Increasing RPP from 100 to 140 mm Hg decreased fractional proximal sodium reabsorption without influencing fractional distal Na+ reabsorption or glomerular filtration rate. In conclusion, pressure-natriuresis is mediated by RI cGMP and a PKG signaling pathway in target renal proximal tubule cells.
Collapse
Affiliation(s)
- Xiao-Hong Jin
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908-1414, USA
| | | | | | | | | | | |
Collapse
|
35
|
Garvin JL, Ortiz PA. The role of reactive oxygen species in the regulation of tubular function. ACTA ACUST UNITED AC 2004; 179:225-32. [PMID: 14616238 DOI: 10.1046/j.0001-6772.2003.01203.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
UNLABELLED The phrase reactive oxygen species covers a number of molecules and atoms, including the quintessential member of the group, O2-; singlet oxygen; H2O2; organic peroxides; and OONO-. While nitric oxide (NO) is also technically a member of the reactive oxygen species family, it is generally considered with a different class of compounds and will not be considered here. To our knowledge, there are currently no published data reporting the effects of reactive oxygen species on net transepithelial flux in the proximal nephron. However, there is evidence that OONO- regulates Na+/K+ adenosine triphosphatase (ATPase) activity as well as paracellular permeability. While it is easy to speculate that such an effect on the pump would decrease net transepithelial solute and water reabsorption, one cannot do so without knowing how other transporters are affected. O2- stimulates NaCl absorption by the thick ascending limb by activating protein kinase C and blunting the effects of NO. The effects of O2- on thick ascending limb NaCl absorption may be important for the initiation of salt-sensitive hypertension. To our knowledge, there are no published data concerning the role of reactive oxygen species in the regulation of solute absorption in either the distal convoluted tubule or the collecting duct. However, OONO- inhibits basolateral K+ channels in the cortical collecting duct, although the net effect of such inhibition is unknown. CONCLUSION While the regulation of tubular transport by reactive oxygen species is important to overall salt and water balance, we know very little about where and how these regulators act along the nephron.
Collapse
Affiliation(s)
- J L Garvin
- Division of Hypertension and Vascular Research, Henry Ford Hospital, Detroit, MI, USA
| | | |
Collapse
|
36
|
Zimpelmann J, Li N, Burns KD. Nitric oxide inhibits superoxide-stimulated urea permeability in the rat inner medullary collecting duct. Am J Physiol Renal Physiol 2003; 285:F1160-7. [PMID: 12965888 DOI: 10.1152/ajprenal.00077.2003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The inner medullary collecting duct (IMCD) contains relatively high nitric oxide (NO) synthetic capacity, but the effect of NO on IMCD transport remains unclear. We determined the effect of NO on basal and vasopressin (AVP)-stimulated urea (Purea) and water (Pf) permeabilities in isolated, perfused rat IMCD. The NO donor S-nitroso-N-acetylpenicillamine (SNAP) increased cGMP production in IMCD, but neither SNAP (10(-4) M) nor 8-BrcGMP (10(-4) M), the cell-permeable analog of cGMP, affected basal or AVP-stimulated Purea. The free radical superoxide is produced by oxidases in the kidney and can interact with NO. To determine the effect of superoxide generation on transport, IMCDs were incubated with diethyldithiocarbamate (DETC; 10(-3) M), the inhibitor of superoxide dismutase (SOD). DETC significantly increased basal and AVP-stimulated Purea (control: 28.7 +/- 4.5 vs. DETC: 40.9 +/- 6.2 x 10(-5) cm/s; P < 0.001; n = 9). Preincubation of IMCD with SNAP or the SOD mimetic tempol completely inhibited DETC-stimulated Purea. DETC caused a significant increase in superoxide generation by IMCD, and this was blocked by SNAP. Incubation of IMCD with the NO synthase (NOS) substrate l-arginine blocked the stimulatory effect of DETC on Purea, and this was reversed by the neuronal NOS inhibitor 7-nitroindazole. In contrast, neither basal nor AVP-stimulated Pf was affected by NO donors or DETC. In summary, exogenous or endogenously produced NO does not affect basal urea transport in the IMCD but inhibits superoxide-stimulated Purea. In the inner medulla, superoxide generation by local oxidases may stimulate urea transport, and the role of endogenous NO may be to dampen this effect by decreasing superoxide levels.
Collapse
Affiliation(s)
- Joseph Zimpelmann
- Division of Nephrology, The Ottawa Hospital and University of Ottawa, 1967 Riverside Drive, Ottawa, Ontario, Canada K1H 7W9
| | | | | |
Collapse
|
37
|
Broderick KE, MacPherson MR, Regulski M, Tully T, Dow JAT, Davies SA. Interactions between epithelial nitric oxide signaling and phosphodiesterase activity in Drosophila. Am J Physiol Cell Physiol 2003; 285:C1207-18. [PMID: 12853288 DOI: 10.1152/ajpcell.00123.2003] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Signaling by nitric oxide (NO) and guanosine 3',5'-cyclic monophosphate (cGMP) modulates fluid transport in Drosophila melanogaster. Expression of an inducible transgene encoding Drosophila NO synthase (dNOS) increases both NOS activity in Malpighian (renal) tubules and DNOS protein in both type I (principal) and type II (stellate) cells. However, cGMP content is increased only in principal cells. DNOS overexpression results in elevated basal rates of fluid transport in the presence of the phosphodiesterase (PDE) inhibitor, Zaprinast. Direct assay of tubule cGMP-hydrolyzing phosphodiesterase (cG-PDE) activity in wild-type and dNOS transgenic lines shows that cG-PDE activity is Zaprinast sensitive and is elevated upon dNOS induction. Zaprinast treatment increases cGMP content in tubules, particularly at the apical regions of principal cells, suggesting localization of Zaprinast-sensitive cG-PDE to these areas. Potential cross talk between activated NO/cGMP and calcium signaling was assessed in vivo with a targeted aequorin transgene. Activated DNOS signaling alone does not modify either neuropeptide (CAP2b)- or cGMP-induced increases in cytosolic calcium levels. However, in the presence of Zaprinast, both CAP2b-and cGMP-stimulated calcium levels are potentiated upon DNOS overexpression. Use of the calcium channel blocker, verapamil, abolishes the Zaprinast-induced transport phenotype in dNOS-overexpressing tubules. Molecular genetic intervention in the NO/cGMP signaling pathway has uncovered a pivotal role for cell-specific cG-PDE in regulating the poise of the fluid transporting Malpighian tubule via direct effects on intracellular cGMP concentration and localization and via interactions with calcium signaling mechanisms.
Collapse
Affiliation(s)
- Kate E Broderick
- Institute of Biomedical and Life Sciences, Division of Molecular Genetics, University of Glasgow, Glasgow G11 6NU, Scotland, UK
| | | | | | | | | | | |
Collapse
|
38
|
Guzmán DC, Ruiz NL, Mejía GB, García EH, Vázquez IRE, Del Angel DS, Ramírez AM, Olguín HJ. Antioxidant effects of selenium in rat brain and the stimulating role of nitric oxide. Nutr Neurosci 2003; 6:177-82. [PMID: 12793522 DOI: 10.1080/1028415031000104181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE To evaluate the antioxidant effect of selenium on Na+, K(+)-ATPase in rat brain in the presence of nitric oxide. METHODS Male Wistar rats (70 g) were treated as follows: group 1 received 1 microg of i.p. sodium nitroprus-side per kg (SNP), group 2 received 5 microg sodium selenite during 20 days, group 3 received sodium selenite 5 microg + SNP 1 microg and the control group received vehicle 50 microl (0.9% NaCl), same period and route. At the end of treatment, animals were sacrificed and their brain dissected into cortex, hemispheres, cerebellum and brain stem in order to determine lipid peroxidation (TBARS), Na+, K+ ATPase and total ATPase in each section. Blood hemoglobin concentration (Hb) and prostate weight were also assessed. RESULTS A significant increase of Hb in blood and of proteins in cortex and hemisphere was detected, but TBARS values fell due to the effect of sodium selenite in all examined regions, except for cerebellum. ATPase activity declined in all groups and regions with and without NTP. We conclude that diet supplementary selenium to inhibit NO generation can be a useful treatment in chronic inflammatory diseases.
Collapse
Affiliation(s)
- David Calderón Guzmán
- Laboratorio de Neuroquímica, Instituto Nacional de Pediatría, Avenida Imán No. 1, 3er piso Col Cuicuilco CP 04530, México, DF, Mexico.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Ortiz P, Stoos BA, Hong NJ, Boesch DM, Plato CF, Garvin JL. High-salt diet increases sensitivity to NO and eNOS expression but not NO production in THALs. Hypertension 2003; 41:682-7. [PMID: 12623979 DOI: 10.1161/01.hyp.0000047872.07864.20] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
L-Arginine inhibits thick ascending limb (THAL) NaCl absorption by activating endothelial NO synthase (eNOS) and increasing NO production. Inhibition of renal NO production combined with a high-salt diet produces hypertension, and the THAL has been implicated in salt-sensitive hypertension. We hypothesized that a high-salt diet enhances the inhibitory action of L-arginine on NaCl absorption by THALs because of increased eNOS expression and NO production. To test this, we used isolated THALs from rats on a normal-salt (NS) or high-salt diet (HS) for 7 to 10 days. L-Arginine (1 mmol/L) decreased chloride absorption by 56+/-10% in THALs from rats on a HS diet, but only 29+/-3% in THALs from rats on a NS diet. eNOS expression in isolated THALs from rats on a HS diet was increased by 3.9-fold compared with NS (P<0.03). However, L-arginine increased NO levels to the same extent in THALs from both groups, as measured with DAF-2 DA or a NO-sensitive electrode. To determine whether a HS diet increases the sensitivity of the THAL to NO, we tested the effects of the NO donor spermine NONOate on chloride absorption. In THALs from rats on a HS diet, 1 and 5 micromol/L spermine NONOate reduced chloride absorption by 35+/-5% and 58+/-6%, respectively. In contrast, these same concentrations of spermine NONOate reduced chloride absorption by 4+/-4% (P<0.03 versus HS diet) and 43+/-9% in THALs from rats on a NS diet. We conclude that a HS diet enhances the effect of NO in the THAL. L-Arginine-stimulated NO production was not enhanced by a HS diet, despite increased eNOS protein.
Collapse
Affiliation(s)
- Pablo Ortiz
- Division of Hypertension and Vascular Research, Henry Ford Hospital, Detroit, MI 48202, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Song IS, Lee IK, Chung SJ, Kim SG, Lee MG, Shim CK. Effect of nitric oxide on the sinusoidal uptake of organic cations and anions by isolated hepatocytes. Arch Pharm Res 2002; 25:984-8. [PMID: 12510858 DOI: 10.1007/bf02977024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The issue of whether or not the presence NOx (NO and oxidized metabolites) in the hepatocytes at pathological levels affects the functional activity of transport systems within the sinusoidal membrane was investigated. For this purpose, the effect of the pretreatment of isolated hepatocytes with sodium nitroprusside (SNP), a spontaneous NO donor, on the sinusoidal uptake of tributylmethylammonium (TBuMA) and triethylmethyl ammonium (TEMA), representative substrates of the organic cation transporter (OCT), and taurocholate, a representative substrate of the Na+/taurocholate cotransporting polypeptide (NTCP), was measured. The uptake of TBuMA and TEMA was not affected by the pretreatment, as demonstrated by the nearly identical kinetic parameters for the uptake (i.e., Vmax, Km and CL(linear)). The uptake of mannitol into hepatocytes was not affected, demonstrating that the membrane integrity remained constant, irregardless of the SNP pretreatment. On the contrary, the uptake of taurocholate was significantly inhibited by the pretreatment, resulting in a significant decrease in Vmax, thus providing a clear demonstration that NOx preferentially affects the function of NTCP rather than OCT on the sinusoidal membrane. A direct interaction between NOx and NTCP or a decrease in Na+/K+ ATPase activity as the result of SNP pretreatment might be responsible for this selective effect of NOx.
Collapse
Affiliation(s)
- Im-Sook Song
- Department of Pharmaceutics and 2Department of Pharmacology, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | |
Collapse
|
41
|
Zhang C, Imam SZ, Ali SF, Mayeux PR. Peroxynitrite and the regulation of Na(+),K(+)-ATPase activity by angiotensin II in the rat proximal tubule. Nitric Oxide 2002; 7:30-5. [PMID: 12175817 DOI: 10.1016/s1089-8603(02)00003-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
NO reacts spontaneously with superoxide to produce the potent oxidant peroxynitrite. Studies were designed to examine the role of NO-derived oxidants and peroxynitrite on the regulation of Na(+),K(+)-ATPase activity by angiotensin II (ANG II) freshly isolated rat proximal tubules. At picomolar concentrations ANG II stimulates Na(+),K(+)-ATPase activity, but at nanomolar concentrations stimulation is lost. Superoxide dismutase (SOD) was used to examine the role of superoxide and deferoxamine (DFO) and uric acid (UA) were used to examine the role of peroxynitrite. SOD (200 U/mL, 5-min preincubation) restored the stimulatory effect of ANG II (1.31 +/- 0.08-fold; n = 4; P < 0.05 compared to 10(-7) M alone), suggesting a role for superoxide. DFO (100 microm, 5-min preincubation) also restored the stimulatory effect of ANG II (1.40 +/- 0.08-fold; n = 4; P < 0.05, compared to 10(-7) M alone), as did UA (1.22 +/- 0.07-fold; n = 5; P < 0.05, compared to 10(-7) M alone). The NO synthesis inhibitor, N-monomethyl-L-arginine (L-NMMA, 2 mM; 5-min preincubation), also unmasked a stimulatory effect of ANG II at 10(-7) M (1.4 +/- 0.1-fold; n = 7; P < 0.05, compared to 10(-7) M alone). The generation of peroxynitrite was further evidenced by the formation of 3-nitrotyrosine (3-NT). 3-NT increased 3.5-fold in tubules exposed to ANG II (10(-7) M) (0.0054 +/- 0.0019 3-NT/100 tyrosines for control and 0.019 +/- 0.0058 3-NT/100 tyrosines for ANG II, P < .05; n = 4) and L-NMMA prevented the increase. These data suggest that peroxynitrite signaling participates in the regulation of renal of Na(+),K(+)-ATPase activity.
Collapse
Affiliation(s)
- Chaojie Zhang
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Mail Slot 611, 4301 W. Markham Street, Little Rock, AR 72205, USA
| | | | | | | |
Collapse
|
42
|
Adler S, Huang H. Impaired regulation of renal oxygen consumption in spontaneously hypertensive rats. J Am Soc Nephrol 2002; 13:1788-94. [PMID: 12089374 DOI: 10.1097/01.asn.0000019781.90630.0f] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Abnormalities of nitric oxide (NO) and oxygen radical synthesis and of oxygen consumption have been described in the spontaneously hypertensive rat (SHR) and may contribute to the pathogenesis of hypertension. NO plays a role in the regulation of renal oxygen consumption in normal kidney, so the response of renal cortical oxygen consumption to stimulators of NO production before and after the addition of the superoxide scavenging agent tempol (4-hydroxy-2,2,6,6-tetramethyl piperidine-1-oxyl) was studied. Baseline cortical oxygen consumption was similar in SHR and Wistar-Kyoto (WKY) rats (SHR: 600 +/- 55 nmol O(2)/min per g, WKY: 611 +/- 51 nmol O(2)/min per g, P > 0.05). Addition of bradykinin, enalaprilat, and amlodipine decreased oxygen consumption significantly less in SHR than WKY (SHR: bradykinin -13.9 +/- 1.9%, enalaprilat -15.3 +/- 1.6%, amlodipine -11.9 +/- 0.7%; WKY: bradykinin -22.8 +/- 1.0%, enalaprilat -24.1 +/- 2.0%, amlodipine -20.7 +/- 2.3%; P < 0.05), consistent with less NO effect in SHR. Addition of tempol reversed the defects in responsiveness to enalaprilat and amlodipine, suggesting that inactivation of NO by superoxide contributes to decreased NO availability. The response to an NO donor was similar in both groups and was unaffected by the addition of tempol. These results demonstrate that NO availability in the kidney is decreased in SHR, resulting in increased oxygen consumption. This effect is due to enhanced production of superoxide in SHR. By lowering intrarenal oxygen levels, reduced NO may contribute to susceptibility to injury and renal fibrosis. Increasing NO production, decreasing oxidant stress, or both might prevent these changes by improving renal oxygenation.
Collapse
Affiliation(s)
- Stephen Adler
- Department of Medicine, Division of Nephrology, New York Medical College, 19 Bradhurst Avenue, Suite 0100, Hawthorne, NY 10532, USA.
| | | |
Collapse
|
43
|
Abstract
Nitric oxide (NO) plays an important role in various physiological processes in the kidney. In vivo experiments first suggested that the natriuretic and diuretic effects caused by NO may be due to decreased NaCl and fluid absorption by the nephron. In the last 10 years, several reports have directly demonstrated a role for NO in modulating transport in different tubule segments. The effects of NO on proximal tubule transport are still controversial. Both stimulation and inhibition of net fluid and bicarbonate have been reported in this segment, whereas only inhibitory effects of NO have been found in Na/H exchanger and Na/K-ATPase activity. The effects of NO in the thick ascending limb are more homogeneous than in the proximal tubule. In this segment, NO decreases net Cl and bicarbonate absorption. A direct inhibitory effect of NO on the Na-K-2Cl cotransporter and the Na/H exchanger has been reported, while NO was found to stimulate apical K channels in this segment. In the collecting duct, NO inhibits Na absorption and vasopressin-stimulated osmotic water permeability. An inhibitory effect of NO on H-ATPase has also been reported in intercalated cells of the collecting duct. Overall, the reported effects of NO in the different nephron segments mostly agree with the natriuretic and diuretic effects observed in vivo. However, the net effect of NO on transport is still controversial in some segments, and in cases like the distal tubule, it has not been studied.
Collapse
Affiliation(s)
- Pablo A Ortiz
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan 48202, USA
| | | |
Collapse
|
44
|
Abstract
Brain, or type I, nitric oxide synthase is expressed strongly in the macula densa of the kidney. Functional studies show that it blunts the tubuloglomerular feedback response that causes vasoconstriction of the renal afferent arteriole in response to sodium chloride reabsorption at this site, and regulates renin release from the juxtaglomerular apparatus. Studies published this year have made great progress in defining the mechanism of action of type I nitric oxide synthase on tubuloglomerular feedback. Macula densa-derived nitric oxide can act via both the autocrine and probably the paracrine routes. Nitric oxide bioactivity in the juxtaglomerular apparatus is strongly curtailed by oxidative stress in hypertensive models. The signalling pathways within macula densa cells have been examined in detail. Nitric oxide synthase type I in the macula densa probably adapts renal hemodynamics and possibly renin secretion to changes in blood pressure and salt intake.
Collapse
Affiliation(s)
- William J Welch
- Center for Hypertension and Renal Diseases Research Center, Georgetown University, Washington, DC 20007, USA.
| | | |
Collapse
|
45
|
Ortiz PA, Hong NJ, Garvin JL. NO decreases thick ascending limb chloride absorption by reducing Na+-K+-2Cl− cotransporter activity. Am J Physiol Renal Physiol 2001. [DOI: 10.1152/ajprenal.0075.2001] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
First published August 9, 2001; 10.1152/ajprenal.0075.2001.—We have reported that nitric oxide (NO) inhibits thick ascending limb (THAL) chloride absorption ( J Cl− ). NaCl transport in the THAL depends on apical Na+-K+-2Cl−cotransporters, apical K+ channels, and basolateral Na+-K+-ATPase. However, the transporter inhibited by NO is unknown. We hypothesized that NO decreases THAL J Cl− by inhibiting the Na+-K+-2Cl− cotransporter. THALs from Sprague-Dawley rats were isolated and perfused. Intracellular sodium ([Na+]i) and chloride concentrations ([Cl−]i) were measured with sodium green and SPQ, respectively. The NO donor spermine NONOate (SPM) decreased [Na+]i from 13.5 ± 1.2 to 9.6 ± 1.6 mM ( P < 0.05) and also decreased [Cl−]i ( P < 0.01). We next tested whether NO decreases Na+-K+-2Cl− cotransporter activity by measuring the initial rate of Na+ transport. In the presence of SPM in the bath, initial rates of Na+ entry were 49.6 ± 6.0% slower compared with control rates ( P < 0.05). To determine whether NO inhibits apical K+ channel activity, we measured the change in membrane potential caused by an increase in luminal K+ from 1 to 25 mM using a potential-sensitive fluorescent dye. In the presence of SPM, increasing luminal K+ concentration depolarized THALs to the same extent as it did in control tubules. We then tested whether a change in apical K+ permeability could affect NO-induced inhibition of THAL J Cl− . In the presence of luminal valinomycin, which increases K+permeability, addition of SPM decreased THAL J Cl− by 41.2 ± 10.4%, not significantly different from the inhibition observed in control tubules. We finally tested whether NO alters the affinity or maximal rate of Na+-K+-ATPase by measuring oxygen consumption rate (Qo 2) in THAL suspensions in the presence of nystatin in varying concentrations of Na+. In the presence of 10.5 mM Na+, nystatin increased Qo 2 to 119.1 ± 19.2 and 125.6 ± 23.4 nmol O2 · mg protein−1 · min−1 in SPM- and furosemide-treated tubules, respectively. In the presence of 145 mM extracellular Na+, nystatin increased Qo 2 by 104 ± 7 and 94 ± 20% in NO- and furosemide-treated tubules, respectively. We concluded that NO decreases THAL J Cl− by inhibiting Na+-K+-2Cl− cotransport rather than inhibiting apical K+ channels or the sodium pump.
Collapse
Affiliation(s)
- Pablo A. Ortiz
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan 48202
| | - Nancy J. Hong
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan 48202
| | - Jeffrey L. Garvin
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan 48202
| |
Collapse
|
46
|
Ortiz PA, Hong NJ, Garvin JL. NO decreases thick ascending limb chloride absorption by reducing Na(+)-K(+)-2Cl(-) cotransporter activity. Am J Physiol Renal Physiol 2001; 281:F819-25. [PMID: 11592939 DOI: 10.1152/ajprenal.2001.281.5.f819] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
We have reported that nitric oxide (NO) inhibits thick ascending limb (THAL) chloride absorption (J(Cl(-))). NaCl transport in the THAL depends on apical Na(+)-K(+)-2Cl(-) cotransporters, apical K(+) channels, and basolateral Na(+)-K(+)-ATPase. However, the transporter inhibited by NO is unknown. We hypothesized that NO decreases THAL J(Cl(-)) by inhibiting the Na(+)-K(+)-2Cl(-) cotransporter. THALs from Sprague-Dawley rats were isolated and perfused. Intracellular sodium ([Na(+)](i)) and chloride concentrations ([Cl(-)](i)) were measured with sodium green and SPQ, respectively. The NO donor spermine NONOate (SPM) decreased [Na(+)](i) from 13.5 +/- 1.2 to 9.6 +/- 1.6 mM (P < 0.05) and also decreased [Cl(-)](i) (P < 0.01). We next tested whether NO decreases Na(+)-K(+)-2Cl(-) cotransporter activity by measuring the initial rate of Na(+) transport. In the presence of SPM in the bath, initial rates of Na(+) entry were 49.6 +/- 6.0% slower compared with control rates (P < 0.05). To determine whether NO inhibits apical K(+) channel activity, we measured the change in membrane potential caused by an increase in luminal K(+) from 1 to 25 mM using a potential-sensitive fluorescent dye. In the presence of SPM, increasing luminal K(+) concentration depolarized THALs to the same extent as it did in control tubules. We then tested whether a change in apical K(+) permeability could affect NO-induced inhibition of THAL J(Cl(-)). In the presence of luminal valinomycin, which increases K(+) permeability, addition of SPM decreased THAL J(Cl(-)) by 41.2 +/- 10.4%, not significantly different from the inhibition observed in control tubules. We finally tested whether NO alters the affinity or maximal rate of Na(+)-K(+)-ATPase by measuring oxygen consumption rate (QO(2)) in THAL suspensions in the presence of nystatin in varying concentrations of Na(+). In the presence of 10.5 mM Na(+), nystatin increased QO(2) to 119.1 +/- 19.2 and 125.6 +/- 23.4 nmol O(2). mg protein(-1). min(-1) in SPM- and furosemide-treated tubules, respectively. In the presence of 145 mM extracellular Na(+), nystatin increased QO(2) by 104 +/- 7 and 94 +/- 20% in NO- and furosemide-treated tubules, respectively. We concluded that NO decreases THAL J(Cl(-)) by inhibiting Na(+)-K(+)-2Cl(-) cotransport rather than inhibiting apical K(+) channels or the sodium pump.
Collapse
Affiliation(s)
- P A Ortiz
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan 48202, USA
| | | | | |
Collapse
|
47
|
Liang M, Berndt TJ, Knox FG. Mechanism underlying diuretic effect of L-NAME at a subpressor dose. Am J Physiol Renal Physiol 2001; 281:F414-9. [PMID: 11502590 DOI: 10.1152/ajprenal.2001.281.3.f414] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The diuretic effects of nitric oxide (NO) synthase inhibitors administered at subpressor dose in rats are controversial, and the tubular segments involved are not known. In the present study, we examined the effect of N(omega)-nitro-L-arginine methyl ester (L-NAME) at a subpressor dose on renal interstitial NO and cGMP activity and on renal tubular segmental reabsorption of fluid in the rat. Intravenous infusion of L-NAME at 1 microg. kg(-1). min(-1) in Sprague-Dawley rats (N = 8), which did not alter mean arterial pressure or glomerular filtration rate, significantly increased urine flow rate (U(v); from 78.2 +/- 12.7 to 117.1 +/- 14.9 microl/min, P < 0.05). Paradoxically, this effect of L-NAME was concomitant with significant increases in nitrite/nitrate (from 10.79 +/- 1.20 to 16.50 +/- 2.60 microM, P < 0.05) and cGMP (from 0.65 +/- 0.09 to 0.98 +/- 0.18 nM, P < 0.05) concentrations in renal cortical microdialysate as well as the nitrite/nitrate concentration in the medullary microdialysate. Micropuncture studies in the superficial nephron revealed that L-NAME significantly increased the flow rate (from 8.3 +/- 0.9 to 12.2 +/- 1.2 nl/min, P < 0.05) and fractional delivery of fluid to the distal tubule, but not those in the late proximal tubule. In conclusion, L-NAME, at the subpressor dose used in this study, increased renal nitrate/nitrite and cGMP and inhibited fluid reabsorption in tubular segments between the late proximal tubule and the distal tubule of superficial nephrons.
Collapse
Affiliation(s)
- M Liang
- Department of Medicine, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
48
|
Adler S, Huang H, Loke KE, Xu X, Tada H, Laumas A, Hintze TH. Endothelial nitric oxide synthase plays an essential role in regulation of renal oxygen consumption by NO. Am J Physiol Renal Physiol 2001; 280:F838-43. [PMID: 11292626 DOI: 10.1152/ajprenal.2001.280.5.f838] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nitric oxide (NO) regulates renal O2 consumption, but the source of NO mediating this effect is unclear. We explored the effects of renal NO production on O2 consumption using renal cortex from mice deficient (-/-) in endothelial (e) nitric oxide synthase (NOS). O2 consumption was determined polarographically in slices of cortex from control and eNOS-/- mice. NO production was stimulated by bradykinin (BK) or ramiprilat (Ram) in the presence or absence of an NOS inhibitor. Basal O2 consumption was higher in eNOS-/- mice than in heterozygous controls (919 +/- 46 vs. 1,211 +/- 133 nmol O(2). min(-1). g(-1); P < 0.05). BK and Ram decreased O2 consumption significantly less in eNOS-/- mice [eNOS-/-: BK -19.0 +/- 2.8%, Ram -20.5 +/- 3.3% at 10(-4) M; control: BK -29.5 +/- 2.5%, Ram -34 +/- 1.6% at 10(-4) M]. The NO synthesis inhibitor nitro-L-arginine methyl ester (L-NAME) attenuated this decrease in control but not eNOS-/- mice. An NO donor inhibited O2 consumption similarly in both groups independent of the presence of L-NAME. These results demonstrate that NO production by eNOS is responsible for regulation of renal O2 consumption in mouse kidney.
Collapse
Affiliation(s)
- S Adler
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Adler S, Huang H, Loke K, Xu X, Laumas A, Hintze TH. Modulation of renal oxygen consumption by nitric oxide is impaired after development of congestive heart failure in dogs. J Cardiovasc Pharmacol 2001; 37:301-9. [PMID: 11243420 DOI: 10.1097/00005344-200103000-00008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We investigated the role of nitric oxide (NO) in the modulation of renal O2 consumption in dogs with pacing-induced congestive heart failure (CHF). O2 consumption in the renal cortex (C) and medulla (M) of normal dogs and dogs with CHF was measured under control conditions and in the presence of increasing concentrations of three stimulators of NO production, bradykinin, ramiprilat, and amlodipine, or the NO donor S-nitroso-N-acetylpenicillamine (SNAP). Baseline O2 consumption (nmol O2/min per gram) was similar in the CHF group (C: 637+/-65; M: 618+/-83) and the control group (C: 601+/-58, M: 534+/-55). In normal dogs, bradykinin (10(-4) M), ramiprilat (10(-4) M), amlodipine (10(-5) M) and SNAP (10(-4) M) all significantly reduced O2 consumption in the cortex (-31.5+/-3.5%, -33+/-2.5%, -28.4+/-4.9%, -49.3+/-3.1%) and medulla (-26.9+/-2.2%, -31.4+/-2.2%, -23.1+/-1.3%, -48.3+/-4%), respectively. The responses to bradykinin, ramiprilat and amlodipine were significantly attenuated in dogs with CHF (C: -22.2+/-1.8%, -20.1+/-2.6%, -14.2+/-2.5%; M: -20.8+/-1.7%, -17.8+/-1.9%, -15.6+/-2.6%, respectively; p < 0.05). The responses in dogs with CHF were not altered by NO synthase blockade with L-NAME (10(-4) M). In contrast, in normal kidneys treatment with L-NAME significantly attenuated the response to all three stimuli of NO production. Responses to SNAP were not affected either by CHF or L-NAME. These data indicate that the role of NO production in the modulation of tissue O2 consumption in the kidney is impaired after the development of pacing-induced heart failure in dogs.
Collapse
Affiliation(s)
- S Adler
- Department of Medicine, New York Medical College, Valhalla, New York, USA
| | | | | | | | | | | |
Collapse
|
50
|
Zhang C, Mayeux PR. NO/cGMP signaling modulates regulation of Na+-K+-ATPase activity by angiotensin II in rat proximal tubules. Am J Physiol Renal Physiol 2001; 280:F474-9. [PMID: 11181409 DOI: 10.1152/ajprenal.2001.280.3.f474] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ANG II exerts a biphasic effect on Na+ transport in the kidney through its effects on Na+-K+-ATPase activity. Beginning at 10(-13) M, ANG II increased Na+-K+-ATPase in freshly isolated rat proximal tubules to a maximum stimulation at 10(-11) M of 1.43 +/- 0.08-fold above control. Stimulation decreased progressively at concentrations >10(-10) M to a value of 0.96 +/- 0.1-fold at 10(-7) M. In the presence of additional L-arginine, the substrate for NO synthesis, the stimulatory effect of ANG II (10(-11) M) was lost. Conversely, N-monomethyl-L-arginine (L-NMMA), the nitric oxide (NO) synthase inhibitor, unmasked the stimulatory effect of ANG II at 10(-7) M (1.40 +/- 0.1-fold). 1H-[1,2,4]oxadiazole-[4,3-a]quinoxalin-1-one, the soluble guanylyl cyclase inhibitor, like L-NMMA, unmasked the stimulatory effect of ANG II at 10(-7) M (1.30 +/- 0.1-fold). The intracellular cGMP concentration was increased 1.58 +/- 0.28-fold at 10(-7) M ANG II. The ANG II AT(1) receptor antagonist SK&F 108566 blocked the stimulatory effect of ANG II at 10(-11) M. These data suggest that the NO/cGMP signaling pathway serves as a negative component in the regulation of Na+-K+-ATPase activity by ANG II.
Collapse
Affiliation(s)
- C Zhang
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, 4301 West Markham St. slot 611, Little Rock, AR 72205, USA
| | | |
Collapse
|