1
|
Li X, Jia T, Wu Y, Peng Y, Feng Y, Gong L, Dong S, Tian J, Sun L. Multi-omics integration analysis and association study reveal the potential of ADIPOQ function in gestational diabetes mellitus. Nutr Diabetes 2025; 15:9. [PMID: 40025023 PMCID: PMC11873246 DOI: 10.1038/s41387-025-00356-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/27/2024] [Accepted: 01/10/2025] [Indexed: 03/04/2025] Open
Abstract
AIM To investigate the role of ADIPOQ gene in gestational diabetes mellitus (GDM). METHODS We genotyped single nucleotide polymorphisms (SNPs) rs266729 and rs1501299 within the ADIPOQ gene in a cohort of 1157 pregnant women of north Chinese Han ethnicity. This cohort comprised 560 pregnant women diagnosed with GDM and 597 pregnant women who exhibited normal oral glucose tolerance test at 24-28 weeks' gestation. All participants were recruited from the Department of Obstetrics and Gynecology at the Second Affiliated Hospital of Harbin Medical University. Additionally, we used conventional bioinformatics analysis methods to conduct multi-omics analysis (transcriptome, epigenome, and single-cell level) of ADIPOQ-regulated GDM. RESULTS The systolic blood flow velocity/diastolic blood flow velocity (S/D) ratio of the umbilical artery in GDM patients with CC genotype of rs266729 and GG genotype of rs1501299 was higher than control. Single-cell analysis suggested that ADIPOQ was expressed in extravillous trophoblast (EVT), T cell, monocytes, myelocyte, NK cell and syncytiotrophoblast (SCT). Functional enrichment analysis showed ADIPOQ gene was associated with response to nutrient levels, fat cell differentiation. CONCLUSION The findings of our study indicate a correlation between SNPs of ADIPOQ in GDM patients, and ADIPOQ is involved in the transcriptional regulation of GDM.
Collapse
Affiliation(s)
- Xiaoying Li
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), No.158, Shangtang Road, Gongshu District, Hangzhou, Zhejiang, China
| | - Tianshuang Jia
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), No.158, Shangtang Road, Gongshu District, Hangzhou, Zhejiang, China
| | - Yingnan Wu
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), No.158, Shangtang Road, Gongshu District, Hangzhou, Zhejiang, China
| | - Yanqing Peng
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), No.158, Shangtang Road, Gongshu District, Hangzhou, Zhejiang, China
| | - Yanan Feng
- Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, No.246, Harbin, China
| | - Liping Gong
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), No.158, Shangtang Road, Gongshu District, Hangzhou, Zhejiang, China
| | - Shuang Dong
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), No.158, Shangtang Road, Gongshu District, Hangzhou, Zhejiang, China
| | - Jiawei Tian
- Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, No.246, Harbin, China
| | - Litao Sun
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), No.158, Shangtang Road, Gongshu District, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Li D, Liu Z, Zhang L, Bian X, Wu J, Li L, Chen Y, Luo L, Pan L, Kong L, Xiao Y, Wang J, Zhang X, Wang W, Toma M, Piipponen M, Sommar P, Xu Landén N. The lncRNA SNHG26 drives the inflammatory-to-proliferative state transition of keratinocyte progenitor cells during wound healing. Nat Commun 2024; 15:8637. [PMID: 39366968 PMCID: PMC11452505 DOI: 10.1038/s41467-024-52783-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 09/18/2024] [Indexed: 10/06/2024] Open
Abstract
The cell transition from an inflammatory phase to a subsequent proliferative phase is crucial for wound healing, yet the driving mechanism remains unclear. By profiling lncRNA expression changes during human skin wound healing and screening lncRNA functions, we identify SNHG26 as a pivotal regulator in keratinocyte progenitors underpinning this phase transition. Snhg26-deficient mice exhibit impaired wound repair characterized by delayed re-epithelization accompanied by exacerbated inflammation. Single-cell transcriptome analysis combined with gain-of-function and loss-of-function of SNHG26 in vitro and ex vivo reveals its specific role in facilitating inflammatory-to-proliferative state transition of keratinocyte progenitors. A mechanistic study unravels that SNHG26 interacts with and relocates the transcription factor ILF2 from inflammatory genomic loci, such as JUN, IL6, IL8, and CCL20, to the genomic locus of LAMB3. Collectively, our findings suggest that lncRNAs play cardinal roles in expediting tissue repair and regeneration and may constitute an invaluable reservoir of therapeutic targets in reparative medicine.
Collapse
Affiliation(s)
- Dongqing Li
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China.
| | - Zhuang Liu
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Letian Zhang
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Xiaowei Bian
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Jianmin Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Genomic Medicine, Wenzhou Medical University, 325035, Wenzhou, China
| | - Li Li
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China
| | - Yongjian Chen
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Lihua Luo
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Ling Pan
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China
| | - Lingzhuo Kong
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China
| | - Yunting Xiao
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China
| | - Jiating Wang
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China
| | - Xiya Zhang
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China
| | - Wang Wang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Maria Toma
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Minna Piipponen
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Pehr Sommar
- Department of Plastic and Reconstructive Surgery, Karolinska University Hospital, 17176, Stockholm, Sweden
| | - Ning Xu Landén
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden.
| |
Collapse
|
3
|
Ng GYQ, Loh ZWL, Fann DY, Mallilankaraman K, Arumugam TV, Hande MP. Role of Mitogen-Activated Protein (MAP) Kinase Pathways in Metabolic Diseases. Genome Integr 2024; 15:e20230003. [PMID: 38770527 PMCID: PMC11102075 DOI: 10.14293/genint.14.1.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Physiological processes that govern the normal functioning of mammalian cells are regulated by a myriad of signalling pathways. Mammalian mitogen-activated protein (MAP) kinases constitute one of the major signalling arms and have been broadly classified into four groups that include extracellular signal-regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK), p38, and ERK5. Each signalling cascade is governed by a wide array of external and cellular stimuli, which play a critical part in mammalian cells in the regulation of various key responses, such as mitogenic growth, differentiation, stress responses, as well as inflammation. This evolutionarily conserved MAP kinase signalling arm is also important for metabolic maintenance, which is tightly coordinated via complicated mechanisms that include the intricate interaction of scaffold proteins, recognition through cognate motifs, action of phosphatases, distinct subcellular localisation, and even post-translational modifications. Aberration in the signalling pathway itself or their regulation has been implicated in the disruption of metabolic homeostasis, which provides a pathophysiological foundation in the development of metabolic syndrome. Metabolic syndrome is an umbrella term that usually includes a group of closely associated metabolic diseases such as hyperglycaemia, hyperlipidaemia, and hypertension. These risk factors exacerbate the development of obesity, diabetes, atherosclerosis, cardiovascular diseases, and hepatic diseases, which have accounted for an increase in the worldwide morbidity and mortality rate. This review aims to summarise recent findings that have implicated MAP kinase signalling in the development of metabolic diseases, highlighting the potential therapeutic targets of this pathway to be investigated further for the attenuation of these diseases.
Collapse
Affiliation(s)
- Gavin Yong Quan Ng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Zachary Wai-Loon Loh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - David Y. Fann
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Karthik Mallilankaraman
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Thiruma V. Arumugam
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Physiology, Anatomy & Microbiology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - M. Prakash Hande
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
4
|
Gao S, Zhou XQ, Wu Q, Chen XD, Li P, Qin YM. Effects of Holliday Junction-Recognition Protein-Mediated C-Jun N-Terminal Kinase/ Signal Transducer and Activator of Transcription 3 Signaling Pathway on Cell Proliferation, Cell Cycle and Cell Apoptosis in Bladder Urothelial Carcinoma. TOHOKU J EXP MED 2023; 259:209-219. [PMID: 36543245 DOI: 10.1620/tjem.2022.j113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Holliday Junction-Recognition Protein (HJURP) was upregulated in several tumors, which was associated with poor outcome. This study investigated the effects of the HJURP-mediated c-Jun N-terminal kinase (JNK)/ signal transducer and activator of transcription 3 (STAT3) pathway on bladder urothelial carcinoma (BLUC). Online databases were used to analyze HJURP expression in BLUC and the correlation of HJURP to JNK1 [mitogen-activated protein kinase 8 (MAPK8)], JNK2 (MAPK9), STAT3, marker of proliferation Ki-67 (MKI67), proliferating cell nuclear antigen (PCNA), cyclin dependent kinase 2 (CDK2), CDK4 and CDK6. HJURP expression was detected in BLUC cells and human normal primary bladder epithelial cells (BdECs). BLUC cells were treated with HJURP lentivirus activation /shRNA lentivirus particles or JNK inhibitor SP600125. HJURP was upregulated in BLUC tissues and correlated with poor prognosis of patients (all P < 0.05). HJURP in tumor positively correlated with MAPK8 (R = 0.30), MAPK9 (R = 0.30), STAT3 (R = 0.15), MKI67 (R = 0.60), PCNA (R = 0.46), CDK2 (R = 0.39), CDK4 (R = 0.24) and CDK6 (R = 0.21). The JNK inhibitor SP600125 decreased p-JNK/JNK and p-STAT3/STAT3 in BLUC cells, which was reversed by HJURP overexpression (P < 0.05). The HJURP-mediated JNK/STAT3 pathway promoted BLUC cell proliferation and inhibited cell apoptosis (P < 0.05). HJURP reversed the arrested G0/G1 phase of BLUC cells by SP600125. HJURP acted as an oncogene to regulate BLUC cell proliferation, apoptosis and the cell cycle by mediating the JNK/STAT3 pathway. Therefore, HJURP targeting might be an attractive novel therapeutic target for early diagnosis and treatment in BLUC.
Collapse
Affiliation(s)
- Song Gao
- Department of Urology, Lishui People's Hospital
| | | | - Qi Wu
- Department of Urology, Lishui People's Hospital
| | | | - Peng Li
- Department of Urology, Lishui People's Hospital
| | - Ye-Min Qin
- Department of Urology, Lishui People's Hospital
| |
Collapse
|
5
|
Khorraminezhad L, Rudkowska I. Modulation of gene expression profile following consumption of high-dairy products in subjects with hyperinsulinemia. Nutr Metab Cardiovasc Dis 2023; 33:219-226. [PMID: 36411217 DOI: 10.1016/j.numecd.2022.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 10/03/2022] [Accepted: 10/24/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND AIM Dysregulation of gene expression is associated to a higher risk of type 2 diabetes (T2D). Further, research indicates that dairy consumption may potentially affect gene expression. The aim of this study was to examine if genes and pathways associated with T2D are differentially changed in subjects with hyperinsulinemia after high dairy (HD) diet. METHODS AND RESULTS Ten obese patients with hyperinsulinemia who consumed HD (4 servings/day according to the Canadian Food Guide (2007)) for six weeks participated in this study. Before and after HD consumption, fasting blood samples were collected. Blood was taken in PAX-gene tubes and RNA was extracted and analyzed using Clariom S microarrays. Results indicated that 236 genes (137 up-regulated and 99 down-regulated; fold change (FC) ≥ ±1.2; p < 0.05) were expressed differentially between before and after HD intake. Genes related to pathways associated with insulin signaling and inflammation, such as olfactory receptor activity, G-protein-coupled receptors (GPCR), phosphatidylinositol-3-OHKinase (PI3K)/AKT2 (PI3K-AKT2), Ras signaling, Mitogen-Activated Protein Kinase (MAPK) were altered following HD. CONCLUSION Overall, results suggest a potential protective effect of HD intake in individuals at risk of T2D through modification of gene expression profiles. REGISTRATION NUMBER FOR CLINICAL STUDIES NCT02961179.
Collapse
Affiliation(s)
- Leila Khorraminezhad
- Endocrinology and Nephrology Unit, CHU de Québec-Laval University Research Center, Quebec, Canada.
| | - Iwona Rudkowska
- Endocrinology and Nephrology Unit, CHU de Québec-Laval University Research Center, Quebec, Canada; Department of Kinesiology, Laval University, Québec (QC), Canada.
| |
Collapse
|
6
|
Gehi BR, Gadhave K, Uversky VN, Giri R. Intrinsic disorder in proteins associated with oxidative stress-induced JNK signaling. Cell Mol Life Sci 2022; 79:202. [PMID: 35325330 PMCID: PMC11073203 DOI: 10.1007/s00018-022-04230-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 01/02/2023]
Abstract
The c-Jun N-terminal kinase (JNK) signaling cascade is a mitogen-activated protein kinase (MAPK) signaling pathway that can be activated in response to a wide range of environmental stimuli. Based on the type, degree, and duration of the stimulus, the JNK signaling cascade dictates the fate of the cell by influencing gene expression through its substrate transcription factors. Oxidative stress is a result of a disturbance in the pro-oxidant/antioxidant homeostasis of the cell and is associated with a large number of diseases, such as neurodegenerative disorders, cancer, diabetes, cardiovascular diseases, and disorders of the immune system, where it activates the JNK signaling pathway. Among different biological roles ascribed to the intrinsically disordered proteins (IDPs) and hybrid proteins containing ordered domains and intrinsically disordered protein regions (IDPRs) are signaling hub functions, as intrinsic disorder allows proteins to undertake multiple interactions, each with a different consequence. In order to ensure precise signaling, the cellular abundance of IDPs is highly regulated, and mutations or changes in abundance of IDPs/IDPRs are often associated with disease. In this study, we have used a combination of six disorder predictors to evaluate the presence of intrinsic disorder in proteins of the oxidative stress-induced JNK signaling cascade, and as per our findings, none of the 18 proteins involved in this pathway are ordered. The highest level of intrinsic disorder was observed in the scaffold proteins, JIP1, JIP2, JIP3; dual specificity phosphatases, MKP5, MKP7; 14-3-3ζ and transcription factor c-Jun. The MAP3Ks, MAP2Ks, MAPKs, TRAFs, and thioredoxin were the proteins that were predicted to be moderately disordered. Furthermore, to characterize the predicted IDPs/IDPRs in the proteins of the JNK signaling cascade, we identified the molecular recognition features (MoRFs), posttranslational modification (PTM) sites, and short linear motifs (SLiMs) associated with the disordered regions. These findings will serve as a foundation for experimental characterization of disordered regions in these proteins, which represents a crucial step for a better understanding of the roles of IDPRs in diseases associated with this important pathway.
Collapse
Affiliation(s)
- Bhuvaneshwari R Gehi
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, 175005, India
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru, 560012, India
| | - Kundlik Gadhave
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, 175005, India
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow region, 142290, Russia.
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, 175005, India.
| |
Collapse
|
7
|
Zhang W, Liang F, Li Q, Sun H, Li F, Jiao Z, Lei J. LncRNA MIR205HG accelerates cell proliferation, migration and invasion in hepatoblastoma through the activation of MAPK signaling pathway and PI3K/AKT signaling pathway. Biol Direct 2022; 17:2. [PMID: 34996511 PMCID: PMC8740508 DOI: 10.1186/s13062-021-00309-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/12/2021] [Indexed: 11/10/2022] Open
Abstract
Background Hepatoblastoma (HB) is identified to be the most common liver malignancy which occurs in children. Long non-coding RNAs (lncRNAs) have been implicated in numerous biological processes and diseases, including HB. LncRNA MIR205 host gene (MIR205HG) has been investigated in multiple cancers, however, its role in HB remains to be elucidated. Methods MIR205HG expression was analyzed by RT-qPCR. EdU, colony formation and transwell assays were implemented to measure the biological function of MIR205HG on the progression of HB. Mechanism assays were carried out to probe into the underlying mechanism of MIR205HG in HB cells. Results MIR205HG was significantly overexpressed in HB. Moreover, MIR205HG inhibition suppressed the proliferative, migratory and invasive capacities of HB cells. Furthermore, MIR205HG competitively bound to microRNA-514a-5p (miR-514a-5p) and targeted mitogen-activated protein kinase 9 (MAPK9) to stimulate mitogen activated protein kinase (MAPK) signaling pathway. Besides, MIR205HG also served as a sponge for microRNA-205-5p (miR-205-5p) to activate the PI3K/AKT signaling pathway. Conclusion MIR205HG drives the progression of HB which might provide an efficient marker and new therapeutic target for HB. Supplementary Information The online version contains supplementary material available at 10.1186/s13062-021-00309-3.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pediatric Surgery, the First Affiliated Hospital of Hebei North University, No. 12 Changqing Road, Qiaoxi District, Zhangjiakou, 075000, Hebei, China
| | - Feng Liang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Qingfeng Li
- Department of Pediatric Surgery, the First Affiliated Hospital of Hebei North University, No. 12 Changqing Road, Qiaoxi District, Zhangjiakou, 075000, Hebei, China
| | - Hong Sun
- Department of Pediatric Surgery, the First Affiliated Hospital of Hebei North University, No. 12 Changqing Road, Qiaoxi District, Zhangjiakou, 075000, Hebei, China
| | - Fei Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Zhibo Jiao
- Department of Pediatric Surgery, the First Affiliated Hospital of Hebei North University, No. 12 Changqing Road, Qiaoxi District, Zhangjiakou, 075000, Hebei, China
| | - Jie Lei
- Department of Pediatric Surgery, the First Affiliated Hospital of Hebei North University, No. 12 Changqing Road, Qiaoxi District, Zhangjiakou, 075000, Hebei, China.
| |
Collapse
|
8
|
Novoselova EG, Glushkova OV, Khrenov MO, Lunin SM, Novoselova TV, Parfenuyk SB. Role of Innate Immunity and Oxidative Stress in the Development of Type 1 Diabetes Mellitus. Peroxiredoxin 6 as a New Anti-Diabetic Agent. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1579-1589. [PMID: 34937537 DOI: 10.1134/s0006297921120075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The review discusses information on the development of type 1 diabetes mellitus (T1D) as a systemic autoimmune and inflammatory disease. Focus of the review is on the role of innate immune system, including activation of some signaling cascades, cytokine response, and activity of the Toll-like receptors in the development of T1D. Dysfunction of innate immunity is the cause of the attack of pancreatic beta cells by the host T-lymphocytes, which leads to the death of pancreatic beta cells that produce insulin. Lack of insulin causes hyperglycemia and the need for lifelong injections of insulin in patients with T1D, which, nevertheless, does not exclude damage to many organs and tissues, given particular vulnerability of the blood vessels under conditions of hyperglycemia. The review discusses the role of oxidative stress as a factor that plays a major role in damage of vascular system and pancreatic tissue during the development of T1D. Considering high sensitivity of pancreatic beta cells to the action of reactive oxygen species (ROS), the possibility of using antioxidants for reducing the level of pathological consequences in the course of T1D development is discussed. New information on anti-diabetic activity of the exogenous antioxidant enzyme peroxiredoxin 6, which is capable of penetrating cells, activating insulin production in beta cells, reducing ROS levels, as well as decreasing activation of some signaling cascades, production of pro-inflammatory cytokines, and expression of Toll-like receptors in beta cells and in immune cells during T1D development is discussed.
Collapse
Affiliation(s)
- Elena G Novoselova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - Olga V Glushkova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Maxim O Khrenov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Sergey M Lunin
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Tatyana V Novoselova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Svetlana B Parfenuyk
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
9
|
Novoselova EG, Glushkova OV, Lunin SM, Khrenov MO, Parfenyuk SB, Novoselova TV, Sharapov MG, Gordeeva AE, Novoselov VI, Fesenko EE. Thymulin and peroxiredoxin 6 have protective effects against streptozotocin-induced type 1 diabetes in mice. Int J Immunopathol Pharmacol 2021; 35:20587384211005645. [PMID: 33779346 PMCID: PMC8010817 DOI: 10.1177/20587384211005645] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Protective effects of peroxiredoxin 6 (PRDX6) in RIN-m5F β-cells and of thymulin in mice with alloxan-induced diabetes were recently reported. The present work was aimed at studying the efficiency of thymulin and PRDX6 in a type 1 diabetes mellitus model induced by streptozotocin in mice. Effects of prolonged treatment with PRDX6 or thymic peptide thymulin on diabetes development were evaluated. We assessed the effects of the drugs on the physiological status of diabetic mice by measuring blood glucose, body weight, and cell counts in several organs, as well as effects of thymulin and PRDX6 on the immune status of diabetic mice measuring concentrations of pro-inflammatory cytokines in blood plasma (TNF-α, interleukin-5 and 17, and interferon-γ), activity of NF-κB and JNK pathways, and Hsp90α expression in immune cells. Both thymulin and PRDX6 reduced the physiological impairments in diabetic mice at various levels. Thymulin and PRDX6 provide beneficial effects in the model of diabetes via very different mechanisms. Taken together, the results of our study indicated that the thymic peptide and the antioxidant enzyme have anti-inflammatory functions. As increasing evidences show diabetes mellitus as a distinct comorbidity leading to acute respiratory distress syndrome and increased mortality in patients with COVID-19 having cytokine storm, thymulin, and PRDX6 might serve as a supporting anti-inflammatory treatment in the therapy of COVID 19 in diabetic patients.
Collapse
Affiliation(s)
- Elena G Novoselova
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Pushchino, Moscow Region, Russia
| | - Olga V Glushkova
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Pushchino, Moscow Region, Russia
| | - Sergey M Lunin
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Pushchino, Moscow Region, Russia
| | - Maxim O Khrenov
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Pushchino, Moscow Region, Russia
| | - Svetlana B Parfenyuk
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Pushchino, Moscow Region, Russia
| | - Tatyana V Novoselova
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Pushchino, Moscow Region, Russia
| | - Mars G Sharapov
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Pushchino, Moscow Region, Russia
| | - Alina E Gordeeva
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Pushchino, Moscow Region, Russia
| | - Vladimir I Novoselov
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Pushchino, Moscow Region, Russia
| | - Evgeny E Fesenko
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Pushchino, Moscow Region, Russia
| |
Collapse
|
10
|
Chen J, Teng D, Wu Z, Li W, Feng Y, Tang Y, Liu G. Insights into the Molecular Mechanisms of Liuwei Dihuang Decoction via Network Pharmacology. Chem Res Toxicol 2020; 34:91-102. [PMID: 33332098 DOI: 10.1021/acs.chemrestox.0c00359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The traditional Chinese medicines (TCMs) have been used to treat diseases over a long history, but it is still a great challenge to uncover the underlying mechanisms for their therapeutic effects due to the complexity of their ingredients. Based on a novel network pharmacology-based approach, we explored in this study the potential therapeutic targets of Liuwei Dihuang (LWDH) decoction in its neuroendocrine immunomodulation (NIM) function. We not only collected the known targets of the compounds in LWDH but also predicted the targets for these compounds using the balanced substructure-drug-target network-based inference (bSDTNBI), which is a target prediction method based on network inferring developed by our laboratory. A "target-(pathway)-target" (TPT) network, in which targets of LWDH were connected by relevant pathways, was constructed and divided into several separate modules with strong internal connections. Then the target module that contributes the most to NIM function was determined through a contribution scoring algorithm. Finally, the targets with the highest contribution score to NIM-related diseases in this target module were recommended as potential therapeutic targets of LWDH.
Collapse
Affiliation(s)
- Jianhui Chen
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Dan Teng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zengrui Wu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Weihua Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yuqian Feng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Guixia Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
11
|
Abstract
Obesity is a health condition that has reached pandemic levels and is implicated in the development and progression of type 2 diabetes mellitus, cancer and heart failure. A key characteristic of obesity is the activation of stress-activated protein kinases (SAPKs), such as the p38 and JNK stress kinases, in several organs, including adipose tissue, liver, skeletal muscle, immune organs and the central nervous system. The correct timing, intensity and duration of SAPK activation contributes to cellular metabolic adaptation. By contrast, uncontrolled SAPK activation has been proposed to contribute to the complications of obesity. The stress kinase signalling pathways have therefore been identified as potential targets for the development of novel therapeutic approaches for metabolic syndrome. The past few decades have seen intense research efforts to determine how these kinases are regulated in a cell-specific manner and to define their contribution to the development of obesity and insulin resistance. Several studies have uncovered new and unexpected functions of the non-classical members of both pathways. Here, we provide an overview of the role of SAPKs in metabolic control and highlight important discoveries in the field.
Collapse
Affiliation(s)
- Ivana Nikolic
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Magdalena Leiva
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| |
Collapse
|
12
|
Kassouf T, Sumara G. Impact of Conventional and Atypical MAPKs on the Development of Metabolic Diseases. Biomolecules 2020; 10:biom10091256. [PMID: 32872540 PMCID: PMC7563211 DOI: 10.3390/biom10091256] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
The family of mitogen-activated protein kinases (MAPKs) consists of fourteen members and has been implicated in regulation of virtually all cellular processes. MAPKs are divided into two groups, conventional and atypical MAPKs. Conventional MAPKs are further classified into four sub-families: extracellular signal-regulated kinases 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK1, 2 and 3), p38 (α, β, γ, δ), and extracellular signal-regulated kinase 5 (ERK5). Four kinases, extracellular signal-regulated kinase 3, 4, and 7 (ERK3, 4 and 7) as well as Nemo-like kinase (NLK) build a group of atypical MAPKs, which are activated by different upstream mechanisms than conventional MAPKs. Early studies identified JNK1/2 and ERK1/2 as well as p38α as a central mediators of inflammation-evoked insulin resistance. These kinases have been also implicated in the development of obesity and diabetes. Recently, other members of conventional MAPKs emerged as important mediators of liver, skeletal muscle, adipose tissue, and pancreatic β-cell metabolism. Moreover, latest studies indicate that atypical members of MAPK family play a central role in the regulation of adipose tissue function. In this review, we summarize early studies on conventional MAPKs as well as recent findings implicating previously ignored members of the MAPK family. Finally, we discuss the therapeutic potential of drugs targeting specific members of the MAPK family.
Collapse
|
13
|
Xie XL, Zhou WT, Zhang KK, Yuan Y, Qiu EM, Shen YW, Wang Q. PCB52 induces hepatotoxicity in male offspring through aggravating loss of clearance capacity and activating the apoptosis: Sex-biased effects on rats. CHEMOSPHERE 2019; 227:389-400. [PMID: 31003123 DOI: 10.1016/j.chemosphere.2019.04.077] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
Polychlorinated biphenyls (PCBs), a kind of persistent organic pollutant, can induce hepatotoxicity in mammals. However, PCB-induced hepatotoxicity in offspring and the underlying mechanisms have been rarely studied. In the present study, Wistar rats were administered with corn oil or PCB52 (1 mg/kg body weight/day, by gavage) from gestational day 7 to postnatal day 21. In the PCB52-treated group, birth body lengths and weights were significantly decreased compared with the control group, suggesting developmental toxicity. Cytoplasmic injury in hepatocytes was observed in PCB52-treated male offspring, while no pathologic change was observed in female offspring, suggesting sex-biased hepatotoxicity. Furthermore, using an RNA-Seq method, coincided with the sexual bias, 454 differential expression genes (DEGs) were screened out in liver tissues of PCB52-treated male offspring, while 10 DEGs were screened out in female offspring. By KEGG annotation analysis, 4 in 12 significant pathways in male offspring were metabolism-related. In the present study, together with cytoplasmic injury of hepatocytes, decreased metabolic enzymes both at RNA and protein levels might aggravate loss of clearance capacity of hepatocytes and induce hepatotoxicity. Moreover, over-expressed peroxisome proliferator-activated receptor delta and mitogen-activated protein kinase 9 might activate apoptosis, which was verified by the augments of cleaved poly ADP-ribose polymerase 1 and caspase 3 in PCB52-treated male offspring. Taken together, PCB52 had developmental toxicity and induced sex-biased hepatotoxicity. The hepatotoxicity in male offspring might be attributed to the aggravated loss of clearance capacity and activation of apoptosis.
Collapse
Affiliation(s)
- Xiao-Li Xie
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515, Guangzhou, China.
| | - Wen-Tao Zhou
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515, Guangzhou, China
| | - Kai-Kai Zhang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, No. 1838 North Guangzhou Road, 510515, Guangzhou, China
| | - Yue Yuan
- The 2014 Class, 8-Year Program, The First Clinical Medical School, Southern Medical University, No. 1838 North Guangzhou Road, 510515, Guangzhou, China
| | - En-Ming Qiu
- The 2014 Class, 8-Year Program, The First Clinical Medical School, Southern Medical University, No. 1838 North Guangzhou Road, 510515, Guangzhou, China
| | - Ya-Wen Shen
- The 2015 Class, School of Public Health, Southern Medical University, No. 1838 North Guangzhou Road, 510515, Guangzhou, China
| | - Qi Wang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, No. 1838 North Guangzhou Road, 510515, Guangzhou, China.
| |
Collapse
|
14
|
Zhao M, Zhang Y, Liu Y, Sun G, Tian H, Hong L. Polymorphisms in MAPK9 (rs4147385) and CSF1R (rs17725712) are associated with the development of inhibitors in patients with haemophilia A in North China. Int J Lab Hematol 2019; 41:572-577. [PMID: 31149782 DOI: 10.1111/ijlh.13055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/28/2019] [Accepted: 05/06/2019] [Indexed: 02/03/2023]
Abstract
INTRODUCTION The formation of neutralizing antibodies (FVIII inhibitors) in haemophilia A patients is an immune response to the deficient factor. This process is multifactorial and includes environmental and genetic factors. Some genetic markers that play a decisive role in the immune response have been identified as risk factors for inhibitor development. OBJECTIVE Our aim was to investigate the association between polymorphisms in several genes involved in the regulation of the immune response and inhibitor development in patients with haemophilia A in North China. METHODS We analysed eight SNPs (MAPK9 rs4147385, CSF1R rs17725712, CD44 rs927335, STAT4 rs7574865, IKZF1 rs4917014, ETS1 rs6590330, BANK1 rs17266594 and rs10516487) by Snapshot SNP genotyping assays in 100 haemophilia A patients, including 29 with inhibitors and 71 without inhibitors. RESULTS Our results demonstrated that the rs17725712 A allele and the AA homozygous genotype of CSF1R were more frequent in patients with inhibitors. The rs4147385 G allele in MAPK9 was also more frequent in the inhibitor cohort. CONCLUSION We confirmed an association of CSF1R rs17725712 and MAPK9 rs4147385 with inhibitor development in haemophilia A patients in North China.
Collapse
Affiliation(s)
- Mingming Zhao
- Department of Hematology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yujing Zhang
- Department of Hematology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yanyan Liu
- Department of Hematology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Guoxun Sun
- Department of Hematology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Hong Tian
- Clinical Laboratory Department, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Luojia Hong
- Department of Hematology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
15
|
Stanley WJ, Trivedi PM, Sutherland AP, Thomas HE, Gurzov EN. Differential regulation of pro-inflammatory cytokine signalling by protein tyrosine phosphatases in pancreatic β-cells. J Mol Endocrinol 2017; 59:325-337. [PMID: 28827413 DOI: 10.1530/jme-17-0089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 08/21/2017] [Indexed: 01/19/2023]
Abstract
Type 1 diabetes (T1D) is characterized by the destruction of insulin-producing β-cells by immune cells in the pancreas. Pro-inflammatory including TNF-α, IFN-γ and IL-1β are released in the islet during the autoimmune assault and signal in β-cells through phosphorylation cascades, resulting in pro-apoptotic gene expression and eventually β-cell death. Protein tyrosine phosphatases (PTPs) are a family of enzymes that regulate phosphorylative signalling and are associated with the development of T1D. Here, we observed expression of PTPN6 and PTPN1 in human islets and islets from non-obese diabetic (NOD) mice. To clarify the role of these PTPs in β-cells/islets, we took advantage of CRISPR/Cas9 technology and pharmacological approaches to inactivate both proteins. We identify PTPN6 as a negative regulator of TNF-α-induced β-cell death, through JNK-dependent BCL-2 protein degradation. In contrast, PTPN1 acts as a positive regulator of IFN-γ-induced STAT1-dependent gene expression, which enhanced autoimmune destruction of β-cells. Importantly, PTPN1 inactivation by pharmacological modulation protects β-cells and primary mouse islets from cytokine-mediated cell death. Thus, our data point to a non-redundant effect of PTP regulation of cytokine signalling in β-cells in autoimmune diabetes.
Collapse
Affiliation(s)
- William J Stanley
- St. Vincent's Institute of Medical ResearchMelbourne, Australia
- Department of MedicineSt. Vincent's Hospital, The University of Melbourne, Melbourne, Australia
| | - Prerak M Trivedi
- St. Vincent's Institute of Medical ResearchMelbourne, Australia
- Department of MedicineSt. Vincent's Hospital, The University of Melbourne, Melbourne, Australia
| | | | - Helen E Thomas
- St. Vincent's Institute of Medical ResearchMelbourne, Australia
- Department of MedicineSt. Vincent's Hospital, The University of Melbourne, Melbourne, Australia
| | - Esteban N Gurzov
- St. Vincent's Institute of Medical ResearchMelbourne, Australia
- Department of MedicineSt. Vincent's Hospital, The University of Melbourne, Melbourne, Australia
- ULB Center for Diabetes ResearchUniversite Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
16
|
Copy number variation of bovine MAPK10 modulates the transcriptional activity and affects growth traits. Livest Sci 2016. [DOI: 10.1016/j.livsci.2016.09.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
Nandipati KC, Subramanian S, Agrawal DK. Protein kinases: mechanisms and downstream targets in inflammation-mediated obesity and insulin resistance. Mol Cell Biochem 2016; 426:27-45. [PMID: 27868170 DOI: 10.1007/s11010-016-2878-8] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/07/2016] [Indexed: 12/23/2022]
Abstract
Obesity-induced low-grade inflammation (metaflammation) impairs insulin receptor signaling. This has been implicated in the development of insulin resistance. Insulin signaling in the target tissues is mediated by stress kinases such as p38 mitogen-activated protein kinase, c-Jun NH2-terminal kinase, inhibitor of NF-kB kinase complex β (IKKβ), AMP-activated protein kinase, protein kinase C, Rho-associated coiled-coil containing protein kinase, and RNA-activated protein kinase. Most of these kinases phosphorylate several key regulators in glucose homeostasis. The phosphorylation of serine residues in the insulin receptor and IRS-1 molecule results in diminished enzymatic activity in the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. This has been one of the key mechanisms observed in the tissues that are implicated in insulin resistance especially in type 2 diabetes mellitus (T2-DM). Identifying the specific protein kinases involved in obesity-induced chronic inflammation may help in developing the targeted drug therapies to minimize the insulin resistance. This review is focused on the protein kinases involved in the inflammatory cascade and molecular mechanisms and their downstream targets with special reference to obesity-induced T2-DM.
Collapse
Affiliation(s)
- Kalyana C Nandipati
- Department of Surgery, Creighton University School of Medicine, 601 N. 30th Street, Suite # 3700, Omaha, NE, 68131, USA.
- Department of Clinical & Translational Science, Creighton University School of Medicine, 2500, California Plaza, Room # 510, Criss II, Omaha, NE, 68131, USA.
| | - Saravanan Subramanian
- Department of Clinical & Translational Science, Creighton University School of Medicine, 2500, California Plaza, Room # 510, Criss II, Omaha, NE, 68131, USA
| | - Devendra K Agrawal
- Department of Clinical & Translational Science, Creighton University School of Medicine, 2500, California Plaza, Room # 510, Criss II, Omaha, NE, 68131, USA
| |
Collapse
|
18
|
Proteasome inhibitors, including curcumin, improve pancreatic β-cell function and insulin sensitivity in diabetic mice. Nutr Diabetes 2016; 6:e205. [PMID: 27110686 PMCID: PMC4855258 DOI: 10.1038/nutd.2016.13] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/05/2016] [Accepted: 03/09/2016] [Indexed: 12/22/2022] Open
Abstract
Background: Type 2 diabetes stems from obesity-associated insulin resistance, and in the genetically susceptible, concomitant pancreatic β-cell failure can occur, which further exacerbates hyperglycemia. Recent work by our group and others has shown that the natural polyphenol curcumin attenuates the development of insulin resistance and hyperglycemia in mouse models of hyperinsulinemic or compensated type 2 diabetes. Although several potential downstream molecular targets of curcumin exist, it is now recognized to be a direct inhibitor of proteasome activity. We now show that curcumin also prevents β-cell failure in a mouse model of uncompensated obesity-related insulin resistance (Leprdb/db on the Kaliss background). Results: In this instance, dietary supplementation with curcumin prevented hyperglycemia, increased insulin production and lean body mass, and prolonged lifespan. In addition, we show that short-term in vivo treatment with low dosages of two molecularly distinct proteasome inhibitors celastrol and epoxomicin reverse hyperglycemia in mice with β-cell failure by increasing insulin production and insulin sensitivity. Conclusions: These studies suggest that proteasome inhibitors may prove useful for patients with diabetes by improving both β-cell function and relieving insulin resistance.
Collapse
|
19
|
Cubero FJ, Zoubek ME, Peng J, Hu W, Zhao G, Nevzorova YA, Al Masaoudi M, Bechmann LP, Boekschoten MV, Muller M, Preisinger C, Gassler N, Canbay AE, Luedde T, Davis RJ, Liedtke C, Trautwein C. Combined Activities of JNK1 and JNK2 in Hepatocytes Protect Against Toxic Liver Injury. Gastroenterology 2016; 150:968-81. [PMID: 26708719 PMCID: PMC5285516 DOI: 10.1053/j.gastro.2015.12.019] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/16/2015] [Accepted: 12/12/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS c-Jun N-terminal kinase (JNK) 1 and JNK2 are expressed in hepatocytes and have overlapping and distinct functions. JNK proteins are activated via phosphorylation in response to acetaminophen- or carbon tetrachloride (CCl4)-induced liver damage; the level of activation correlates with the degree of injury. SP600125, a JNK inhibitor, has been reported to block acetaminophen-induced liver injury. We investigated the role of JNK in drug-induced liver injury (DILI) in liver tissue from patients and in mice with genetic deletion of JNK in hepatocytes. METHODS We studied liver sections from patients with DILI (due to acetaminophen, phenprocoumon, nonsteroidal anti-inflammatory drugs, or autoimmune hepatitis) or patients without acute liver failure (controls) collected from a DILI Biobank in Germany. Levels of total and activated (phosphorylated) JNK were measured by immunohistochemistry and Western blotting. Mice with hepatocyte-specific deletion of Jnk1 (Jnk1(Δhepa)) or combination of Jnk1 and Jnk2 (Jnk(Δhepa)), as well as Jnk1-floxed C57BL/6 (control) mice, were given injections of CCl4 (to induce fibrosis) or acetaminophen (to induce toxic liver injury). We performed gene expression microarray and phosphoproteomic analyses to determine mechanisms of JNK activity in hepatocytes. RESULTS Liver samples from DILI patients contained more activated JNK, predominantly in nuclei of hepatocytes and in immune cells, than healthy tissue. Administration of acetaminophen to Jnk(Δhepa) mice produced a greater level of liver injury than that observed in Jnk1(Δhepa) or control mice, based on levels of serum markers and microscopic and histologic analysis of liver tissues. Administration of CCl4 also induced stronger hepatic injury in Jnk(Δhepa) mice, based on increased inflammation, cell proliferation, and fibrosis progression, compared with Jnk1(Δhepa) or control mice. Hepatocytes from Jnk(Δhepa) mice given acetaminophen had an increased oxidative stress response, leading to decreased activation of adenosine monophosphate-activated protein kinase, total protein adenosine monophosphate-activated protein kinase levels, and pJunD and subsequent necrosis. Administration of SP600125 before or with acetaminophen protected Jnk(Δhepa) and control mice from liver injury. CONCLUSIONS In hepatocytes, JNK1 and JNK2 appear to have combined effects in protecting mice from CCl4- and acetaminophen-induced liver injury. It is important to study the tissue-specific functions of both proteins, rather than just JNK1, in the onset of toxic liver injury. JNK inhibition with SP600125 shows off-target effects.
Collapse
Affiliation(s)
| | | | - Jin Peng
- Department of Internal Medicine III, University Hospital, RWTH Aachen, Germany
| | - Wei Hu
- Department of Internal Medicine III, University Hospital, RWTH Aachen, Germany
| | - Gang Zhao
- Department of Internal Medicine III, University Hospital, RWTH Aachen, Germany
| | - Yulia A. Nevzorova
- Department of Internal Medicine III, University Hospital, RWTH Aachen, Germany
| | - Malika Al Masaoudi
- Department of Internal Medicine III, University Hospital, RWTH Aachen, Germany
| | - Lars P. Bechmann
- Department of Gastroenterology and Hepatology, University Hospital Duisburg-Essen, Essen, Germany
| | - Mark V. Boekschoten
- Nutrition, Metabolism & Genomics group, Wageningen University, Division of Human Nutrition, Wageningen, The Netherlands
| | - Michael Muller
- Nutrition, Metabolism & Genomics group, Wageningen University, Division of Human Nutrition, Wageningen, The Netherlands
| | | | - Nikolaus Gassler
- Institute of Pathology, University Hospital, RWTH Aachen, Germany
| | - Ali E. Canbay
- Department of Gastroenterology and Hepatology, University Hospital Duisburg-Essen, Essen, Germany
| | - Tom Luedde
- Department of Internal Medicine III, University Hospital, RWTH Aachen, Germany
| | - Roger J. Davis
- Howard Hughes Medical Institute and University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Christian Liedtke
- Department of Internal Medicine III, University Hospital, RWTH Aachen, Germany
| | - Christian Trautwein
- Department of Internal Medicine III, University Hospital, RWTH Aachen, Germany.
| |
Collapse
|
20
|
Yang TY, Yen CC, Lee KI, Su CC, Yang CY, Wu CC, Hsieh SS, Ueng KC, Huang CF. Molybdenum induces pancreatic β-cell dysfunction and apoptosis via interdependent of JNK and AMPK activation-regulated mitochondria-dependent and ER stress-triggered pathways. Toxicol Appl Pharmacol 2016; 294:54-64. [PMID: 26806093 DOI: 10.1016/j.taap.2016.01.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/29/2015] [Accepted: 01/19/2016] [Indexed: 12/25/2022]
Abstract
Molybdenum (Mo), a well-known toxic environmental and industrial pollutant, causes adverse health effects and diseases in humans and has received attention as a potential risk factor for DM. However, the roles of Mo in the mechanisms of the toxicological effects in pancreatic β-cells are mostly unclear. In this study, the results revealed dysfunction of insulin secretion and apoptosis in the pancreatic β-cell-derived RIN-m5F cells and the isolated mouse islets in response to Mo. These effects were accompanied by a mitochondria-dependent apoptotic signals including a decreased in the MMP, an increase in cytochrome c release, and the activation of caspase cascades and PARP. In addition, ER stress was triggered as indicated by several key molecules of the UPR. Furthermore, exposure to Mo induced the activation of ERK1/2, JNK, AMPKα, and GSK3-α/β. Pretreatment with specific pharmacological inhibitors (in RIN-m5F cells and isolated mouse islets) of JNK (SP600125) and AMPK (Compound C) or transfection with si-RNAs (in RIN-m5F cells) specific to JNK and AMPKα effectively prevented the Mo-induced apoptosis and related signals, but inhibitors of ERK1/2 and GSK3-α/β (PD98059 and LiCl, respectively) did not reverse the Mo-induced effects. Additionally, both the inhibitors and specific si-RNAs could suppress the Mo-induced phosphorylation of JNK and AMPKα each other. Taken together, these results suggest that Mo exerts its cytotoxicity on pancreatic β-cells by inducing dysfunction and apoptosis via interdependent JNK and AMPK activation downstream-regulated mitochondrial-dependent and ER stress-triggered apoptosis pathways.
Collapse
Affiliation(s)
- Tsung-Yuan Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Cheng-Chieh Yen
- Department of Occupational Safety and Health, College of Health Care and Management, Chung Shan Medical University, Taichung 402, Taiwan; Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Kuan-I Lee
- Department of Emergency, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan
| | - Chin-Chuan Su
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua County 500, Taiwan; Graduate Institute of Basic Medical Science, School of Medicine, College of Medicine, China Medical University, Taichung 404, Taiwan
| | - Ching-Yao Yang
- Department of Surgery, National Taiwan University Hospital, Taipei 100, Taiwan; Department of Surgery, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chin-Ching Wu
- Department of Public Health, China Medical University, Taichung 404, Taiwan
| | - Shang-Shu Hsieh
- Department of Emergency, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan.
| | - Kwo-Chang Ueng
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan; School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
| | - Chun-Fa Huang
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
21
|
Messoussi A, Chevé G, Bougrin K, Yasri A. Insight into the selective inhibition of JNK family members through structure-based drug design. MEDCHEMCOMM 2016. [DOI: 10.1039/c5md00562k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The c-Jun N-terminal kinase (JNK) family, which comprises JNK1, JNK2 and JNK3, belongs to the mitogen-activated protein kinase (MAPK) superfamily, whose members regulate myriad biological processes, including those implicated in tumorigenesis and neurodegenerative disorders.
Collapse
Affiliation(s)
- A. Messoussi
- OriBase Pharma
- 34189 Montpellier cedex 4 – France
- Laboratoire de Chimie des Plantes et de Synthèse Organique et Bioorganique
- URAC23
- Université Mohammed V
| | - G. Chevé
- OriBase Pharma
- 34189 Montpellier cedex 4 – France
| | - K. Bougrin
- Laboratoire de Chimie des Plantes et de Synthèse Organique et Bioorganique
- URAC23
- Université Mohammed V
- Faculté des Sciences B.P
- 1014 Rabat
| | - A. Yasri
- OriBase Pharma
- 34189 Montpellier cedex 4 – France
| |
Collapse
|
22
|
Radenković M, Stojanović M, Prostran M. Experimental diabetes induced by alloxan and streptozotocin: The current state of the art. J Pharmacol Toxicol Methods 2015; 78:13-31. [PMID: 26596652 DOI: 10.1016/j.vascn.2015.11.004] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 11/14/2015] [Accepted: 11/15/2015] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus is a chronic metabolic disorder with a high prevalence worldwide. Animal models of diabetes represent an important tool in diabetes investigation that helps us to avoid unnecessary and ethically challenging studies in human subjects, as well as to obtain a comprehensive scientific viewpoint of this disease. Although there are several methods through which diabetes can be induced, chemical methods of alloxan- and streptozotocin-induced diabetes represent the most important and highly preferable experimental models for this pathological condition. Therefore, the aim of this article was to review the current knowledge related to quoted models of diabetes, including to this point available information about mechanism of action, particular time- and dose-dependent protocols, frequent problems, as well as major limitations linked to laboratory application of alloxan and sterptozotocin in inducing diabetes. Given that diabetes is known to be closely associated with serious health consequences it is of fundamental importance that current animal models for induction of diabetes should be continuously upgraded in order to improve overall prevention, diagnosis and treatment of this pathological condition.
Collapse
Affiliation(s)
- Miroslav Radenković
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, PO Box 38, 11129 Belgrade, Serbia.
| | - Marko Stojanović
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, PO Box 38, 11129 Belgrade, Serbia.
| | - Milica Prostran
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, PO Box 38, 11129 Belgrade, Serbia.
| |
Collapse
|
23
|
Seriani R, Junqueira MDS, de Toledo AC, Martins MA, Seckler M, Alencar AM, Negri EM, Silva LFF, Mauad T, Saldiva PHN, Macchione M. Diesel exhaust particulates affect cell signaling, mucin profiles, and apoptosis in trachea explants of Balb/C mice. ENVIRONMENTAL TOXICOLOGY 2015; 30:1297-1308. [PMID: 24777914 DOI: 10.1002/tox.22000] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 01/10/2014] [Accepted: 04/15/2014] [Indexed: 06/03/2023]
Abstract
Particulate matter from diesel exhaust (DEP) has toxic properties and can activate intracellular signaling pathways and induce metabolic changes. This study was conducted to evaluate the activation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) and to analyze the mucin profile (acid (AB(+) ), neutral (PAS(+) ), or mixed (AB/PAS(+) ) mucus) and vacuolization (V) of tracheal explants after treatment with 50 or 100 μg/mL DEP for 30 or 60 min. Western blot analyses showed small increases in ERK1/2 and JNK phosphorylation after 30 min of 100 μg/mL DEP treatment compared with the control. An increase in JNK phosphorylation was observed after 60 min of treatment with 50 μg/mL DEP compared with the control. We did not observe any change in the level of ERK1/2 phosphorylation after treatment with 50 μg/mL DEP. Other groups of tracheas were subjected to histological sectioning and stained with periodic acid-Schiff (PAS) reagent and Alcian Blue (AB). The stained tissue sections were then subjected to morphometric analysis. The results obtained were compared using ANOVA. Treatment with 50 μg/mL DEP for 30 min or 60 min showed a significant increase (p < 0.001) in the amount of acid mucus, a reduction in neutral mucus, a significant reduction in mixed mucus, and greater vacuolization. Our results suggest that compounds found in DEPs are able to activate acid mucus production and enhance vacuolization and cell signaling pathways, which can lead to airway diseases.
Collapse
Affiliation(s)
- Robson Seriani
- Laboratory of Experimental Air Pollution, Department of Pathology, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Mara de Souza Junqueira
- Central Biotery Laboratory, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Alessandra Choqueta de Toledo
- Experimental Therapeutics Laboratory, Department of Medicine, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Milton Arruda Martins
- Experimental Therapeutics Laboratory, Department of Medicine, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Marcelo Seckler
- Department of Chemistry Engineering, Polytechnic School, University of São Paulo, São Paulo, SP, Brazil
| | - Adriano Mesquita Alencar
- Department of General Physics - Institute of Physics, University of São Paulo, São Paulo, SP, Brazil
| | - Elnara Marcia Negri
- Laboratory of Experimental Air Pollution, Department of Pathology, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Luiz Fernando Ferraz Silva
- Laboratory of Experimental Air Pollution, Department of Pathology, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Thaís Mauad
- Laboratory of Experimental Air Pollution, Department of Pathology, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Paulo Hilário Nascimento Saldiva
- Laboratory of Experimental Air Pollution, Department of Pathology, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Mariangela Macchione
- Laboratory of Experimental Air Pollution, Department of Pathology, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
24
|
Abstract
Obesity is a new global pandemic, with growing incidence and prevalence. This disease is associated with increased risk of several pathologies, including diabetes, cardiovascular diseases, and cancer. The mechanisms underlying obesity-associated metabolic changes are the focus of efforts to identify new therapies. Stress-activated protein kinases (SAPK), including cJun N-terminal kinases (JNKs) and p38, are required for cellular responses to metabolic stress and therefore might contribute to the pathogenesis of obesity. Tissue-specific knockout models support a cell-type-specific role for JNK isoforms, in particular JNK1, highlighting its importance in cell homeostasis and organ crosstalk. However, more efforts are needed to elucidate the specific roles of other JNK isoforms and p38 family members in metabolism and obesity. This review provides an overview of the role of SAPKs in the regulation of metabolism.
Collapse
Affiliation(s)
- Elisa Manieri
- Myocardial Pathophysiology AreaFundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, CNIC, C/Melchor Fernandez Almagro, 2, 28029 Madrid, SpainDepartment of Immunology and OncologyCentro Nacional de Biotecnología/CSIC, Campus de Cantoblanco, Madrid, Spain Myocardial Pathophysiology AreaFundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, CNIC, C/Melchor Fernandez Almagro, 2, 28029 Madrid, SpainDepartment of Immunology and OncologyCentro Nacional de Biotecnología/CSIC, Campus de Cantoblanco, Madrid, Spain
| | - Guadalupe Sabio
- Myocardial Pathophysiology AreaFundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, CNIC, C/Melchor Fernandez Almagro, 2, 28029 Madrid, SpainDepartment of Immunology and OncologyCentro Nacional de Biotecnología/CSIC, Campus de Cantoblanco, Madrid, Spain
| |
Collapse
|
25
|
Abstract
The c-Jun N-terminal kinases (JNKs) are serine/threonine kinases implicated in the pathogenesis of various diseases. Recent advances in the development of novel inhibitors of JNKs will be reviewed. Significant progress in the design of JNK inhibitors displaying selectivity versus other kinases has been achieved within the past 4 years. However, the development of isoform selective JNK inhibitors is still an open task.
Collapse
Affiliation(s)
- Pierre Koch
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen , Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | | | | |
Collapse
|
26
|
Ebelt ND, Cantrell MA, Van Den Berg CL. c-Jun N-Terminal Kinases Mediate a Wide Range of Targets in the Metastatic Cascade. Genes Cancer 2014; 4:378-87. [PMID: 24349635 DOI: 10.1177/1947601913485413] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Disseminated cancer cells rely on intricate interactions among diverse cell types in the tumor-associated stroma, vasculature, and immune system for survival and growth. Ubiquitous expression of c-Jun N-terminal kinase (jnk) genes in various cell types permits their control of metastasis. In early stages of metastasis, JNKs affect tumor-associated inflammation and angiogenesis as well as tumor cell migration and intravasation. Within the tumor stroma, JNKs are essential for the release of growth factors that promote epithelial-to-mesenchymal transition (EMT) in tumor cells. JNK3, the least ubiquitous isoform, facilitates angiogenesis by increasing endothelial cell migration. Importantly, JNK expression in tumor cells integrates stromal signals to promote tumor cell invasion. However, JNK isoforms differentially regulate migration toward the endothelial barrier. Once tumor cells enter the bloodstream, JNKs increase circulating tumor cell (CTC) survival and homing to tissues. By promoting fibrosis, JNKs improve CTC attachment to the endothelium. Once anchored, JNKs stimulate EMT to facilitate tumor cell extravasation and enhance the secretion of endothelial barrier disrupters. Tumor cells attract barrier-disrupting macrophages by JNK-dependent transcription of macrophage chemoattractant molecules. In the secondary tissue, JNKs are instrumental in the premetastatic niche and stimulate tumor cell proliferation. JNK expression in cancer cells stimulates tissue-remodeling macrophages to improve tumor colonization. However, in T-cells, JNKs alter cytokine production that increases tumor surveillance and inhibits the recruitment of tissue-remodeling macrophages. Therapeutically targeting JNKs for metastatic disease is attractive considering their promotion of metastasis; however, specific JNK tools are needed to determine their definitive actions within the context of the entire metastatic cascade.
Collapse
Affiliation(s)
- Nancy D Ebelt
- Institute of Cellular & Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Michael A Cantrell
- Institute of Cellular & Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Carla L Van Den Berg
- Institute of Cellular & Molecular Biology, The University of Texas at Austin, Austin, TX, USA ; Division of Pharmacology & Toxicology, Dell Pediatric Research Institute, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
27
|
Abstract
JNK is involved in a broad range of physiological processes. Several inflammatory and neurodegenerative diseases, such as multiple sclerosis, Alzheimer's and Parkinson's disease have been linked with the dysregulated JNK pathway. Research on disease models using the relevant knockout mice has highlighted the importance of specific JNK isoformsin-particular disorders and has stimulated further efforts in the drug-discovery area. However, most of the experimental evidence for the efficacy of JNK inhibition in animal models is from studies using JNK inhibitors, which are not isoform selective. Some of the more recent compounds exhibit good oral bioavailability, CNS penetration and selectivity against the rest of the kinome. Efforts to design isoform-selective inhibitors have produced a number of examples with various selectivity profiles. This article presents recent progress in this area and comment on the role of isoform selectivity for efficacy.
Collapse
|
28
|
Santiago JA, Scherzer CR, Potashkin JA. Specific splice variants are associated with Parkinson's disease. Mov Disord 2013; 28:1724-7. [PMID: 24108702 DOI: 10.1002/mds.25635] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 05/14/2013] [Accepted: 07/14/2013] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Diagnosis of Parkinson's disease (PD) currently relies on assessment of motor symptoms. Recently, sensitive, specific, and readily available splice variant-specific biomarkers were identified in peripheral blood from participants in the Diagnostic and Prognostic Biomarkers in Parkinson Disease study. METHODS Here we test for an association between candidate splice variant biomarkers and PD in blood of an independent population of cases and controls nested in the Harvard NeuroDiscovery Center Biomarker Study. RESULTS Expression of 7 out of 13 candidate biomarkers was dysregulated in whole cellular blood of patients with PD. CONCLUSIONS These results support the view that differential expression of a subset of splice-variant markers in blood is associated with PD. Further evaluation in untreated, de novo patients and at-risk subjects is warranted.
Collapse
Affiliation(s)
- Jose A Santiago
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | | | | | | |
Collapse
|
29
|
Choi Y, Hur CG, Park T. Induction of olfaction and cancer-related genes in mice fed a high-fat diet as assessed through the mode-of-action by network identification analysis. PLoS One 2013; 8:e56610. [PMID: 23555558 PMCID: PMC3608641 DOI: 10.1371/journal.pone.0056610] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 01/15/2013] [Indexed: 12/20/2022] Open
Abstract
The pathophysiological mechanisms underlying the development of obesity and metabolic diseases are not well understood. To gain more insight into the genetic mediators associated with the onset and progression of diet-induced obesity and metabolic diseases, we studied the molecular changes in response to a high-fat diet (HFD) by using a mode-of-action by network identification (MNI) analysis. Oligo DNA microarray analysis was performed on visceral and subcutaneous adipose tissues and muscles of male C57BL/6N mice fed a normal diet or HFD for 2, 4, 8, and 12 weeks. Each of these data was queried against the MNI algorithm, and the lists of top 5 highly ranked genes and gene ontology (GO)-annotated pathways that were significantly overrepresented among the 100 highest ranked genes at each time point in the 3 different tissues of mice fed the HFD were considered in the present study. The 40 highest ranked genes identified by MNI analysis at each time point in the different tissues of mice with diet-induced obesity were subjected to clustering based on their temporal patterns. On the basis of the above-mentioned results, we investigated the sequential induction of distinct olfactory receptors and the stimulation of cancer-related genes during the development of obesity in both adipose tissues and muscles. The top 5 genes recognized using the MNI analysis at each time point and gene cluster identified based on their temporal patterns in the peripheral tissues of mice provided novel and often surprising insights into the potential genetic mediators for obesity progression.
Collapse
Affiliation(s)
- Youngshim Choi
- Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, Korea
| | - Cheol-Goo Hur
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Taesun Park
- Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, Korea
- * E-mail:
| |
Collapse
|
30
|
Astermark J, Donfield SM, Gomperts ED, Schwarz J, Menius ED, Pavlova A, Oldenburg J, Kessing B, DiMichele DM, Shapiro AD, Winkler CA, Berntorp E. The polygenic nature of inhibitors in hemophilia A: results from the Hemophilia Inhibitor Genetics Study (HIGS) Combined Cohort. Blood 2013; 121:1446-54. [PMID: 23223434 PMCID: PMC3578958 DOI: 10.1182/blood-2012-06-434803] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 11/21/2012] [Indexed: 12/28/2022] Open
Abstract
Studies of determinants of development of inhibitory Abs to factor VIII in people with hemophilia A indicate a complex process involving multiple factors. The Hemophilia Inhibitor Genetics Study (HIGS) Combined Cohort was formed to extend our understanding of the genetic background of risk. The study group contains 833 subjects from 3 independent cohorts: brother pairs and singletons with and without a history of inhibitors, as well as 104 brother pairs discordant for inhibitor status. Using an Illumina iSelect platform, 13 331 single-nucleotide polymorphisms from 1081 genes, primarily immune response and immune modifier genes, were typed. Each cohort was analyzed separately with results combined using a meta-analytic technique. After adjustment for potential confounders, 53 single-nucleotide polymorphisms were found to be significant predictors of inhibitor status using the criteria of odds ratios in the same direction in all cohorts or allowing for a 20% interval around an odds ratio = 1 in 1 of the 3 and significant in at least 2. Of the 53 markers, 13 had meta P < .001. Eight of the 53 were significant predictors among the discordant pairs. Results support the complexity of the immune response and encourage further research with the goal of understanding the pathways involved.
Collapse
Affiliation(s)
- Jan Astermark
- Centre for Thrombosis and Haemostasis, Lund University, Skåne University Hospital, Malmö, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Yang L, Huang P, Li F, Zhao L, Zhang Y, Li S, Gan Z, Lin A, Li W, Liu Y. c-Jun amino-terminal kinase-1 mediates glucose-responsive upregulation of the RNA editing enzyme ADAR2 in pancreatic beta-cells. PLoS One 2012; 7:e48611. [PMID: 23139803 PMCID: PMC3490865 DOI: 10.1371/journal.pone.0048611] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 09/27/2012] [Indexed: 11/18/2022] Open
Abstract
A-to-I RNA editing catalyzed by the two main members of the adenosine deaminase acting on RNA (ADAR) family, ADAR1 and ADAR2, represents a RNA-based recoding mechanism implicated in a variety of cellular processes. Previously we have demonstrated that the expression of ADAR2 in pancreatic islet β-cells is responsive to the metabolic cues and ADAR2 deficiency affects regulated cellular exocytosis. To investigate the molecular mechanism by which ADAR2 is metabolically regulated, we found that in cultured β-cells and primary islets, the stress-activated protein kinase JNK1 mediates the upregulation of ADAR2 in response to changes of the nutritional state. In parallel with glucose induction of ADAR2 expression, JNK phosphorylation was concurrently increased in insulin-secreting INS-1 β-cells. Pharmacological inhibition of JNKs or siRNA knockdown of the expression of JNK1 prominently suppressed glucose-augmented ADAR2 expression, resulting in decreased efficiency of ADAR2 auto-editing. Consistently, the mRNA expression of Adar2 was selectively reduced in the islets from JNK1 null mice in comparison with that of wild-type littermates or JNK2 null mice, and ablation of JNK1 diminished high-fat diet-induced Adar2 expression in the islets from JNK1 null mice. Furthermore, promoter analysis of the mouse Adar2 gene identified a glucose-responsive region and revealed the transcription factor c-Jun as a driver of Adar2 transcription. Taken together, these results demonstrate that JNK1 serves as a crucial component in mediating glucose-responsive upregulation of ADAR2 expression in pancreatic β-cells. Thus, the JNK1 pathway may be functionally linked to the nutrient-sensing actions of ADAR2-mediated RNA editing in professional secretory cells.
Collapse
Affiliation(s)
- Liu Yang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ping Huang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Feng Li
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Liyun Zhao
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yongliang Zhang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shoufeng Li
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhenji Gan
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Anning Lin
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wenjun Li
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yong Liu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
32
|
Nakaniwa T, Fukada H, Inoue T, Gouda M, Nakai R, Kirii Y, Adachi M, Tamada T, Segawa SI, Kuroki R, Tada T, Kinoshita T. Seven cysteine-deficient mutants depict the interplay between thermal and chemical stabilities of individual cysteine residues in mitogen-activated protein kinase c-Jun N-terminal kinase 1. Biochemistry 2012; 51:8410-21. [PMID: 23020677 DOI: 10.1021/bi300918w] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Intracellular proteins can have free cysteines that may contribute to their structure, function, and stability; however, free cysteines can lead to chemical instabilities in solution because of oxidation-driven aggregation. The MAP kinase, c-Jun N-terminal kinase 1 (JNK1), possesses seven free cysteines and is an important drug target for autoimmune diseases, cancers, and apoptosis-related diseases. To characterize the role of cysteine residues in the structure, function, and stability of JNK1, we prepared and evaluated wild-type JNK1 and seven cysteine-deficient JNK1 proteins. The nonreduced sodium dodecyl sulfate-polyacrylamide gel electrophoresis experiments showed that the chemical stability of JNK1 increased as the number of cysteines decreased. The contribution of each cysteine residue to biological function and thermal stability was highly susceptible to the environment surrounding the particular cysteine mutation. The mutations of solvent-exposed cysteine to serine did not influence biological function and increased the thermal stability. The mutation of the accessible cysteine involved in the hydrophobic pocket did not affect biological function, although a moderate thermal destabilization was observed. Cysteines in the loosely assembled hydrophobic environment moderately contributed to thermal stability, and the mutations of these cysteines had a negligible effect on enzyme activity. The other cysteines are involved in the tightly filled hydrophobic core, and mutation of these residues was found to correlate with thermal stability and enzyme activity. These findings about the role of cysteine residues should allow us to obtain a stable JNK1 and thus promote the discovery of potent JNK1 inhibitors.
Collapse
Affiliation(s)
- Tetsuko Nakaniwa
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Winchester CL, Ohzeki H, Vouyiouklis DA, Thompson R, Penninger JM, Yamagami K, Norrie JD, Hunter R, Pratt JA, Morris BJ. Converging evidence that sequence variations in the novel candidate gene MAP2K7 (MKK7) are functionally associated with schizophrenia. Hum Mol Genet 2012; 21:4910-21. [DOI: 10.1093/hmg/dds331] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
34
|
Shi H, Yan X, Ruan L, Xu X. A novel JNK from Litopenaeus vannamei involved in white spot syndrome virus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 37:421-428. [PMID: 22430647 DOI: 10.1016/j.dci.2012.03.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 03/01/2012] [Accepted: 03/06/2012] [Indexed: 05/31/2023]
Abstract
The c-Jun N-terminal kinase (JNK), a member of MAP kinases, is a serine/threonine-specific protein kinase which responds to extracellular stimuli and regulate various cellular activities. It is well documented in innate immune responses and reported to be involved in various viral infections of mammals. In present study, we cloned JNK homolog in a crustacean, Litopenaeus vannamei (designated as LvJNK) and studied its role in white spot syndrome virus (WSSV) infection. Sequence analysis displayed that LvJNK shared high similarity with other members of the JNK subfamily, including the conserved TPY motif and serine/threonine protein kinase (S_TKc) domain. Western blot analysis showed that the activation of LvJNK took place in WSSV infection. LvJnk silencing mediated by specific dsRNA in shrimps could significantly inhibit the proliferation of the virus. Moreover, inhibition of shrimp JNK signaling pathway by specific inhibitor resulted in the reduction of WSSV replication and the delay of WSSV gene transcription. These results indicate for the first time that shrimp JNK is activated in response to WSSV infection and WSSV could benefit from JNK activation. It may facilitate our understanding of the molecular mechanism of virus infection and provided a potential target for preventing the WSSV infection.
Collapse
Affiliation(s)
- Hong Shi
- School of Life Science, Xiamen University, Xiamen 361005, PR China
| | | | | | | |
Collapse
|
35
|
Abdelli S, Bonny C. JNK3 maintains expression of the insulin receptor substrate 2 (IRS2) in insulin-secreting cells: functional consequences for insulin signaling. PLoS One 2012; 7:e35997. [PMID: 22563476 PMCID: PMC3341388 DOI: 10.1371/journal.pone.0035997] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 03/26/2012] [Indexed: 12/20/2022] Open
Abstract
We have recently shown that silencing of the brain/islet specific c-Jun N-terminal Kinase3 (JNK3) isoform enhances both basal and cytokine-induced beta-cell apoptosis, whereas silencing of JNK1 or JNK2 has opposite effects. While it is known that JNK1 or JNK2 may promote apoptosis by inhibiting the activity of the pro-survival Akt pathway, the effect of JNK3 on Akt has not been documented. This study aims to determine the involvement of individual JNKs and specifically JNK3 in the regulation of the Akt signaling pathway in insulin-secreting cells. JNK3 silencing strongly decreases Insulin Receptor Substrate 2 (IRS2) protein expression, and blocks Akt2 but not Akt1 activation by insulin, while the silencing of JNK1 or JNK2 activates both Akt1 and Akt2. Concomitantly, the silencing of JNK1 or JNK2, but not of JNK3, potently phosphorylates the glycogen synthase kinase3 (GSK3β). JNK3 silencing also decreases the activity of the transcription factor Forkhead BoxO3A (FoxO3A) that is known to control IRS2 expression, in addition to increasing c-Jun levels that are known to inhibit insulin gene expression. In conclusion, we propose that JNK1/2 on one hand and JNK3 on the other hand, have opposite effects on insulin-signaling in insulin-secreting cells; JNK3 protects beta-cells from apoptosis and dysfunction mainly through maintenance of a normal IRS2 to Akt2 signaling pathway. It seems that JNK3 mediates its effects mainly at the transcriptional level, while JNK1 or JNK2 appear to mediate their pro-apoptotic effect in the cytoplasm.
Collapse
Affiliation(s)
- Saida Abdelli
- Service of Medical Genetics, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Christophe Bonny
- Service of Medical Genetics, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
36
|
Kim DH, Lee JC, Kim S, Oh SH, Lee MK, Kim KW, Lee MS. Inhibition of autoimmune diabetes by TLR2 tolerance. THE JOURNAL OF IMMUNOLOGY 2011; 187:5211-20. [PMID: 21998452 DOI: 10.4049/jimmunol.1001388] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We have reported that apoptotic β cells undergoing secondary necrosis, called "late apoptotic (LA) β cells," stimulated APCs and induced diabetogenic T cell priming through TLR2, which might be one of the initial events in autoimmune diabetes. Indeed, diabetogenic T cell priming and the development of autoimmune diabetes were significantly inhibited in TLR2-null NOD mice, suggesting the possibility that TLR2 blockade could be used to inhibit autoimmune diabetes. Because prolonged TLR stimulation can induce TLR tolerance, we investigated whether repeated TLR2 administration affects responses to LA β cells and inhibits autoimmune diabetes in NOD mice by inducing TLR2 tolerance. Treatment of primary peritoneal macrophages with a TLR2 agonist, Pam3CSK(4), suppressed cytokine release in response to LA insulinoma cells or further TLR2 stimulation. The expression of signal transducer IRAK-1 and -4 proteins was decreased by repeated TLR2 stimulation, whereas expression of IRAK-M, an inhibitory signal transducer, was enhanced. Chronic Pam3CSK(4) administration inhibited the development of diabetes in NOD mice. Diabetogenic T cell priming by dendritic cells and upregulation of costimulatory molecules on dendritic cells by in vitro stimulation were attenuated by Pam3CSK(4) administration in vivo. Pam3CSK(4) inhibited diabetes after adoptive transfer of diabetogenic T cells or recurrence of diabetes after islet transplantation by pre-existing sensitized T cells. These results showed that TLR2 tolerance can be achieved by prolonged treatment with TLR2 agonists, which could inhibit priming of naive T cells, as well as the activity of sensitized T cells. TLR2 modulation could be used as a novel therapeutic modality against autoimmune diabetes.
Collapse
Affiliation(s)
- Do-Hoon Kim
- Department of Medicine, Samsung Medical Center, Seoul 135-710, Korea
| | | | | | | | | | | | | |
Collapse
|
37
|
Tarantino G, Caputi A. JNKs, insulin resistance and inflammation: A possible link between NAFLD and coronary artery disease. World J Gastroenterol 2011; 17:3785-94. [PMID: 21987620 PMCID: PMC3181439 DOI: 10.3748/wjg.v17.i33.3785] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 02/19/2011] [Accepted: 02/26/2011] [Indexed: 02/06/2023] Open
Abstract
The incidence of obesity has dramatically increased in recent years. Consequently, obesity and associated disorders such as nonalcoholic fatty liver disease constitute a serious problem. Therefore, the contribution of adipose tissue to metabolic homeostasis has become a focus of interest. In this review, we discuss the latest discoveries that support the role of lipids in nonalcoholic fatty liver disease. We describe the common mechanisms (c-Jun amino-terminal kinases, endoplasmic reticulum stress, unfolded protein response, ceramide, low-grade chronic inflammation) by which lipids and their derivatives impair insulin responsiveness and contribute to inflammatory liver and promote plaque instability in the arterial wall. Presenting the molecular mechanism of lipid activation of pro-inflammatory pathways, we attempt to find a link between nonalcoholic fatty liver disease, metabolic syndrome and cardiovascular diseases. Describing the common mechanisms by which lipid derivatives, through modulation of macrophage function, promote plaque instability in the arterial wall, impair insulin responsiveness and contribute to inflammatory liver and discussing the molecular mechanism of lipid activation of pro-inflammatory pathways, the key roles played by the proliferator-activated receptor and liver X receptor α, nuclear receptors-lipid sensors that link lipid metabolism and inflammation, should be emphasized. Further studies are warranted of anti-inflammatory drugs such as aspirin, anti-interleukin-6 receptors, immune-modulators (calcineurin inhibitors), substances enhancing the expression of heat shock proteins (which protect cells from endoplasmic reticulum stress-induced apoptosis), and anti- c-Jun amino-terminal kinases in well-designed trials to try to minimize the high impact of these illnesses, and the different expressions of the diseases, on the whole population.
Collapse
|
38
|
Abstract
The stress-activated c-Jun amino-terminal kinase (JNK) plays a pivotal role in metabolic conditions such as obesity, insulin resistance, and type 2 diabetes. Intricate tissue-specific tweaking of JNK activity in preclinical models of metabolic diseases reveals a complex interplay among local and systemic effects on carbohydrate and lipid metabolism. Synthesis of these entangled effects illustrates that for JNK inhibitors to have therapeutic impact, they must function in multiple cell types to modulate JNK activity.
Collapse
Affiliation(s)
- Sara N Vallerie
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | | |
Collapse
|
39
|
CHOP deletion does not impact the development of diabetes but suppresses the early production of insulin autoantibody in the NOD mouse. Apoptosis 2011; 16:438-48. [DOI: 10.1007/s10495-011-0576-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
40
|
Cheon H, Cho JM, Kim S, Baek SH, Lee MK, Kim KW, Yu SW, Solinas G, Kim SS, Lee MS. Role of JNK activation in pancreatic beta-cell death by streptozotocin. Mol Cell Endocrinol 2010; 321:131-7. [PMID: 20176078 DOI: 10.1016/j.mce.2010.02.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 01/14/2010] [Accepted: 02/12/2010] [Indexed: 01/18/2023]
Abstract
c-Jun N-terminal kinase (JNK) is activated by cellular stress and plays critical roles in diverse types of cell death. However, role of JNK in beta-cell injury is obscure. We investigated the role for JNK in streptozotocin (STZ)-induced beta-cell death. STZ induced JNK activation in insulinoma or islet cells. JNK inhibitors attenuated insulinoma or islet cell death by STZ. STZ-induced JNK activation was decreased by PARP inhibitors, suggesting that JNK activation is downstream of PARP-1. Phosphatase inhibitors induced activation of JNK and abrogated the suppression of STZ-induced JNK activation by PARP inhibitors, suggesting that the inhibition of phosphatases is involved in the activation of JNK by STZ. STZ induced production of reactive oxygen species (ROS) as potential inhibitors of phosphatases, which was suppressed by PARP inhibitors. PARP-1 siRNA attenuated insulinoma cell death and JNK activation after STZ treatment, which was reversed by MKP (MAP kinase phosphatase)-1 siRNA. These results suggest that JNK is activated by STZ downstream of PARP-1 through inactivation of phosphatases such as MKP, which plays important roles in STZ-induced beta-cell death.
Collapse
Affiliation(s)
- Hwanju Cheon
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Bogoyevitch MA, Ngoei KR, Zhao TT, Yeap YY, Ng DC. c-Jun N-terminal kinase (JNK) signaling: Recent advances and challenges. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:463-75. [DOI: 10.1016/j.bbapap.2009.11.002] [Citation(s) in RCA: 231] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 10/30/2009] [Accepted: 11/02/2009] [Indexed: 11/28/2022]
|
42
|
Kosters A, White DD, Sun H, Thevananther S, Karpen SJ. Redundant roles for cJun-N-terminal kinase 1 and 2 in interleukin-1beta-mediated reduction and modification of murine hepatic nuclear retinoid X receptor alpha. J Hepatol 2009; 51:898-908. [PMID: 19767119 PMCID: PMC2818213 DOI: 10.1016/j.jhep.2009.06.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 05/29/2009] [Accepted: 06/23/2009] [Indexed: 01/28/2023]
Abstract
BACKGROUND/AIMS Retinoid X receptor alpha (RXRalpha), the heterodimeric partner for multiple nuclear receptors (NRs), was shown to be an essential target for inflammation-induced cJun-N-terminal kinase (JNK) signaling in vitro. This study aimed to explore the role of hepatic JNK signaling and its effects on nuclear RXRalpha levels downstream of interleukin-1beta (IL-1beta) in vivo. METHODS Effects of IL-1beta on hepatic NR-dependent gene expression, nuclear RXRalpha levels, and roles for individual JNK isoforms were studied in wild-type, Jnk1(-/-), and Jnk2(-/-) mice and in primary hepatocytes of each genotype. RESULTS IL-1beta administration showed a time-dependent reduction in expression of the hepatic NR-dependent genes Ntcp, Cyp7a1, Cyp8b1, Abcg5, Mrp2, and Mrp3. IL-1beta treatment for 1h activated JNK and resulted in both post-translational modification and reduction of nuclear RXRalpha. In wild-type primary hepatocytes, IL-1beta modified and reduced nuclear RXRalpha levels time dependently, which was prevented by chemical inhibition of JNK as well as by inhibition of proteasomal degradation. Individual absence of either JNK1 or JNK2 did not significantly influence the reduction or modification of hepatic nuclear RXRalpha by IL-1beta both in vivo and in primary hepatocytes. CONCLUSIONS Functional redundancy exists for JNK1 and JNK2 in IL-1beta-mediated alterations of hepatic nuclear RXRalpha levels, stressing the importance of this pathway in mediating the hepatic response to inflammation.
Collapse
Affiliation(s)
- Astrid Kosters
- Texas Children's Liver Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
43
|
Abstract
Activation of immune cells to mediate an immune response is often triggered by potential 'danger' or 'stress' stimuli that the organism receives. Within the mitogen-activated protein kinases (MAPKs) family, the stress-activated protein kinase (SAPK) group was defined as group of kinases that activated by stimuli that cause cell stress. In the immune cells, SAPKs are activated by antigen receptors (B- or T-cell receptors), Toll-like receptors, cytokine receptors, and physical-chemical changes in the environment among other stimuli. The SAPKs are established to be important mediators of intracellular signaling during adaptive and innate immune responses. Here we summarize what is currently known about the role of two sub-groups of SAPKs - c-Jun NH(2)-terminal kinase and p38 MAPK-in the function of specific components of the immune system and the overall contribution to the immune response.
Collapse
Affiliation(s)
- Mercedes Rincón
- Immunology Program, Department of Medicine, University of Vermont, Burlington, VT 05405, USA.
| | | |
Collapse
|
44
|
Varona-Santos JL, Pileggi A, Molano RD, Sanabria NY, Ijaz A, Atsushi M, Ichii H, Pastori RL, Inverardi L, Ricordi C, Fornoni A. c-Jun N-terminal kinase 1 is deleterious to the function and survival of murine pancreatic islets. Diabetologia 2008; 51:2271-80. [PMID: 18853132 DOI: 10.1007/s00125-008-1169-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 09/02/2008] [Indexed: 12/26/2022]
Abstract
AIMS/HYPOTHESIS Inhibition of c-jun N-terminal kinase (JNK) favours pancreatic islet function and survival. Since two JNK isoforms are present in the pancreas (JNK1 and JNK2), we addressed their specific roles in experimental islet transplantation. METHODS C57BL/6J (wild-type [WT]), Jnk1 (also known as Mapk8)(-/-) and Jnk2 (also known as Mapk9)(-/-) mice were used as donor/recipients in a syngeneic islet transplantation model. Islet cell composition, function, viability, production of cytokines and of vascular endothelial growth factor (VEGF) were also studied in vitro. RESULTS Jnk1 ( -/- ) islets secreted more insulin in response to glucose and were more resistant to cytokine-induced cell death compared with WT and Jnk2 (-/-) islets (p < 0.01). Cytokines reduced VEGF production in WT and Jnk2 (-/-) but not Jnk1 ( -/- ) islets; VEGF blockade restored Jnk1 ( -/- ) islet susceptibility to cytokine-induced cell death. Transplantation of Jnk1 ( -/- ) or WT islets into WT recipients made diabetic had similar outcomes. However, Jnk1 ( -/- ) recipients of WT islets had shorter time to diabetes reversal (17 vs 55 days in WT, p = 0.033), while none of the Jnk2 (-/-) recipients had diabetes reversal (0% vs 71% in WT, p = 0.0003). Co-culture of WT islets with macrophages from each strain revealed a discordant cytokine production. CONCLUSIONS/INTERPRETATION We have shown a deleterious effect of JNK2 deficiency on islet graft outcome, most likely related to JNK1 activation, suggesting that specific JNK1 blockade may be superior to general JNK inhibition, particularly when administered to transplant recipients.
Collapse
Affiliation(s)
- J L Varona-Santos
- Diabetes Research Institute, University of Miami Miller School of Medicine, 1450 NW 10th Avenue, Miami, FL 33136, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
c-Jun N-Terminal Kinase 2
Deficiency Protects Against Hypercholesterolemia-Induced Endothelial Dysfunction and Oxidative Stress. Circulation 2008; 118:2073-80. [DOI: 10.1161/circulationaha.108.765032] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Background—
Hypercholesterolemia-induced endothelial dysfunction due to excessive production of reactive oxygen species is a major trigger of atherogenesis. The c-Jun-N-terminal kinases (JNKs) are activated by oxidative stress and play a key role in atherogenesis and inflammation. We investigated whether
JNK2
deletion protects from hypercholesterolemia-induced endothelial dysfunction and oxidative stress.
Methods and Results—
Male
JNK2
knockout (
JNK2
−/−
) and wild-type (WT) mice (8 weeks old) were fed either a high-cholesterol diet (HCD; 1.25% total cholesterol) or a normal diet for 14 weeks. Aortic lysates of WT mice fed a HCD showed an increase in JNK phosphorylation compared with WT mice fed a normal diet (
P
<0.05). Endothelium-dependent relaxations to acetylcholine were impaired in WT HCD mice (
P
<0.05 versus WT normal diet). In contrast,
JNK2
−/−
HCD mice did not exhibit endothelial dysfunction (96±5% maximal relaxation in response to acetylcholine;
P
<0.05 versus WT HCD). Endothelium-independent relaxations were identical in all groups. A hypercholesterolemia-induced decrease in nitric oxide (NO) release of endothelial cells was found in WT but not in
JNK2
−/−
mice. In parallel, endothelial NO synthase expression was upregulated only in
JNK2
−/−
HCD animals, whereas the expression of antioxidant defense systems such as extracellular superoxide dismutase and manganese superoxide dismutase was decreased in WT but not in
JNK2
−/−
HCD mice. In contrast to
JNK2
−/−
mice, WT HCD displayed an increase in O
2
−
and ONOO
−
concentrations as well as nitrotyrosine staining and peroxidation.
Conclusions—
JNK2
plays a critical role as a mediator of hypercholesterolemia-induced endothelial dysfunction and oxidative stress. Thus,
JNK2
may provide a novel target for prevention of vascular disease and atherosclerosis.
Collapse
|
46
|
The Crystal Structure of JNK2 Reveals Conformational Flexibility in the MAP Kinase Insert and Indicates Its Involvement in the Regulation of Catalytic Activity. J Mol Biol 2008; 383:885-93. [DOI: 10.1016/j.jmb.2008.08.086] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 08/15/2008] [Accepted: 08/24/2008] [Indexed: 12/28/2022]
|
47
|
Leibowitz G, Cerasi E, Ketzinel-Gilad M. The role of mTOR in the adaptation and failure of beta-cells in type 2 diabetes. Diabetes Obes Metab 2008; 10 Suppl 4:157-69. [PMID: 18834443 DOI: 10.1111/j.1463-1326.2008.00952.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mammalian target of rapamycin (mTOR) is an important nutrient sensor that plays a critical role in cellular metabolism, growth, proliferation and apoptosis and in the cellular response to oxidative stress. In addition, mTOR-raptor complex, also called mammalian target of rapamycin complex 1 (mTORC1), generates an inhibitory feedback loop on insulin receptor substrate proteins. It was suggested that nutrient overload leads to insulin/insulin-like growth factor 1 resistance in peripheral insulin-responsive tissues and in the beta-cells through sustained activation of mTORC1. In this review, we summarize the literature on the regulation and function of mTOR, its role in the organism's response to nutrients and its potential impact on lifespan, insulin resistance and the metabolic adaptation to hyperglycaemia in type 2 diabetes. We also propose a hypothesis based on data in the literature as well as data generated in our laboratory, which assigns a central positive role to mTOR in the maintenance of beta-cell function and mass in the diabetic environment.
Collapse
Affiliation(s)
- G Leibowitz
- Endocrinology and Metabolism Service, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| | | | | |
Collapse
|
48
|
Akerfeldt MC, Howes J, Chan JY, Stevens VA, Boubenna N, McGuire HM, King C, Biden TJ, Laybutt DR. Cytokine-induced beta-cell death is independent of endoplasmic reticulum stress signaling. Diabetes 2008; 57:3034-44. [PMID: 18591394 PMCID: PMC2570400 DOI: 10.2337/db07-1802] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Cytokines contribute to beta-cell destruction in type 1 diabetes. Endoplasmic reticulum (ER) stress-mediated apoptosis has been proposed as a mechanism for beta-cell death. We tested whether ER stress was necessary for cytokine-induced beta-cell death and also whether ER stress gene activation was present in beta-cells of the NOD mouse model of type 1 diabetes. RESEARCH DESIGN AND METHODS INS-1 beta-cells or rat islets were treated with the chemical chaperone phenyl butyric acid (PBA) and exposed or not to interleukin (IL)-1beta and gamma-interferon (IFN-gamma). Small interfering RNA (siRNA) was used to silence C/EBP homologous protein (CHOP) expression in INS-1 beta-cells. Additionally, the role of ER stress in lipid-induced cell death was assessed. RESULTS Cytokines and palmitate triggered ER stress in beta-cells as evidenced by increased phosphorylation of PKR-like ER kinase (PERK), eukaryotic initiation factor (EIF)2alpha, and Jun NH(2)-terminal kinase (JNK) and increased expression of activating transcription factor (ATF)4 and CHOP. PBA treatment attenuated ER stress, but JNK phosphorylation was reduced only in response to palmitate, not in response to cytokines. PBA had no effect on cytokine-induced cell death but was associated with protection against palmitate-induced cell death. Similarly, siRNA-mediated reduction in CHOP expression protected against palmitate- but not against cytokine-induced cell death. In NOD islets, mRNA levels of several ER stress genes were reduced (ATF4, BiP [binding protein], GRP94 [glucose regulated protein 94], p58, and XBP-1 [X-box binding protein 1] splicing) or unchanged (CHOP and Edem1 [ER degradation enhancer, mannosidase alpha-like 1]). CONCLUSIONS While both cytokines and palmitate can induce ER stress, our results suggest that, in contrast to lipoapoptosis, the PERK-ATF4-CHOP ER stress-signaling pathway is not necessary for cytokine-induced beta-cell death.
Collapse
Affiliation(s)
- Mia C Akerfeldt
- Diabetes and Obesity Research Program, Garvan Institute of Medical Research, St. Vincent's Hospital, Sydney, New South Wales, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Inhibition of C-jun N-terminal kinase improves insulin sensitivity but worsens albuminuria in experimental diabetes. Kidney Int 2008; 75:381-8. [PMID: 18971923 DOI: 10.1038/ki.2008.559] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
C-jun N-terminal kinase (JNK) regulates both the development of insulin resistance and inflammation. Podocytes of the widely used db/db mouse model of diabetic nephropathy lose their ability to respond to insulin as albuminuria develops, in comparison to control db/+ mice. Here we tested whether JNK inhibition or its gene deletion would prevent albuminuria in experimental diabetes. Phosphorylated/total JNK was significantly increased in vivo in glomeruli of db/db compared to db/+ mice. Treatment of podocytes isolated from these two strains of mice with tumor necrosis factor-alpha caused greater phosphorylation of JNK in those obtained from diabetic animals. When db/db mice were treated with a cell-permeable TAT-JNK inhibitor peptide, their insulin sensitivity and glycemia significantly improved compared to controls. We induced diabetes in JNK1 knockout mice with streptozotocin and found that they had significantly better insulin sensitivity compared to diabetic wild-type or JNK2 knockout mice. Albuminuria was, however, worse in all mice treated with the JNK inhibitor and in diabetic JNK2 knockout mice compared to controls. Nephrin expression was also reduced in JNK inhibitor-treated mice compared to controls. A similar degree of mesangial expansion was found in all diabetic mice. Our study shows that targeting JNK to improve systemic insulin sensitivity does not necessarily prevent diabetic nephropathy.
Collapse
|
50
|
Rozo AV, Vijayvargia R, Weiss HR, Ruan H. Silencing Jnk1 and Jnk2 accelerates basal lipolysis and promotes fatty acid re-esterification in mouse adipocytes. Diabetologia 2008; 51:1493-504. [PMID: 18528680 DOI: 10.1007/s00125-008-1036-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Accepted: 04/05/2008] [Indexed: 01/04/2023]
Abstract
AIMS/HYPOTHESIS Elevated plasma levels of NEFA impair insulin action. Given the positive linear correlation between NEFA released by adipocytes and plasma NEFA levels, identification of mechanisms controlling adipocyte lipolysis and NEFA release could provide a guide to new therapies for insulin resistance and type 2 diabetes. METHODS Short hairpin RNA-mediated gene ablation was used to determine the functions of c-Jun N-terminal kinase (JNK)1 and JNK2 in adipocytes. RESULTS Combined JNK1/JNK2 deficiency drastically increased basal glycerol release, whereas individual JNK1- or JNK2-deficiency had no effect, indicating that JNK1/JNK2-deficiency enhances basal lipolysis, whereas the alternate subtype compensates for a single JNK subtype deficiency in the regulation of basal lipolysis. The profoundly increased glycerol release associated with JNK1/JNK2-deficiency was not accompanied by a concomitant increase in NEFA release over time. In addition, JNK1-deficiency, but not JNK2-deficiency, drastically decreased NEFA release as compared with that in JNK-intact cells, a result of increased NEFA re-esterification. In microarray, quantitative RT-PCR and western blotting, JNK1-, JNK2- and JNK1/JNK2-deficiencies selectively upregulated many genes involved in NEFA management, without affecting the expression of genes involved in insulin signalling. Assays using reporter genes driven by peroxisome proliferator-activated receptor gamma (PPAR-gamma)-responsive promoters indicate distinct roles for JNK1 and JNK2 in regulating the transcriptional effects of PPAR-gamma. CONCLUSIONS/INTERPRETATION While JNK1 and JNK2 have shared roles in the regulation of basal lipolysis, JNK1 has a more profound role in supporting baseline NEFA release. Inhibition of JNK1 activity in adipocytes has potential therapeutic uses for management of elevated circulating NEFA levels at the onset of insulin resistance.
Collapse
Affiliation(s)
- A V Rozo
- Department of Physiology and Biophysics, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, 683 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|