1
|
Dos S Silva P, Butenko Y, Kra G, Malitsky S, Itkin M, Levin Y, Moallem U, Zachut M. Omega-3 fatty acids supplementation from late pregnancy to early lactation attenuates the endocannabinoid system and immune proteome in preovulatory follicles and endometrium of Holstein dairy cows. J Dairy Sci 2025:S0022-0302(25)00003-7. [PMID: 39824496 DOI: 10.3168/jds.2024-25409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/18/2024] [Indexed: 01/20/2025]
Abstract
Activation of the endocannabinoid system (ECS) elicits negative effects on the reproductive system in mammals. Omega-3 (n-3) fatty acid (FA) supplementation lowers ECS activation and has anti-inflammatory effects. Thus, we hypothesized that supplementing cows with n-3 FA will downregulate components of the ECS and immune system in preovulatory follicles and in the endometrium. Twenty-four multiparous Holstein dairy cows were supplemented from d 256 of pregnancy to d 70 postpartum as follows: (i) control (CTL; n = 12) prepartum with 250 g/d/cow calcium salts of FA and postpartum at 1.6% of the diet (DM basis); (ii) FLX (n = 12) prepartum with 700 g/d/cow of extruded flaxseed supplement rich in α-linolenic acid (ALA, C18:3n-3), and postpartum at 6.4% of diet (DM basis) of the same supplement. Ovaries were monitored at 30 DIM, and following estrous cycle synchronization we aspirated the follicular fluids (FF) of follicles ≥7 mm, separated the granulosa cells (GC), and performed endometrium biopsies at 58 ± 5 DIM. The FF were analyzed for concentrations of estradiol (E2) and progesterone (P4), and E2-active follicles were declared when E2/P4 was >1. The FA and endocannabinoid (eCB) profiles were determined in plasma and in the reproductive tissues. Proteomic analyses and mRNA abundances were determined in GC and endometrium. Supplementation of n-3 FA increased the proportion of total n-3 FA and decreased the omega-6 (n-6) to n-3 FA ratio in plasma, FF and GC compared with CTL. In plasma and FF, n-3 FA supplementation decreased the proportion of the n-6 FA eCB precursor arachidonic acid (AA; C20:4n-6), and increased the abundance of the n-3 FA-derived eCB eicosapentaenoyl ethanolamide compared with CTL. In the endometrium, n-3 FA supplementation reduced the abundance of the n-6 FA-derived eCB 2-arachidonoylglycerol (2-AG) compared with CTL. Proteomic analysis of GC showed that n-3 FA supplementation increased the abundance of FA-binding-protein-5, which is involved in intracellular transport of eCB, as well as the abundances of the cytokine-receptor-like-factor-2 and glutathione-S-transferase-LANCL1, whereas it reduced the abundances of several complement proteins: complement factors I, D, H, complement components C7 chain and C8 β chain, and complement component 1 Q subcomponent-binding protein, mitochondrial (C1QBP). In addition, the abundance of superoxide-dismutase (SOD3) was lower in FLX GC than in CTL. In the endometrium, n-3 FA supplementation decreased the abundance of a few immune-related proteins. In the GC, n-3 FA supplementation reduced the relative mRNA abundances of type 1 and type 2 cannabinoids receptors compared with CTL. Across treatments, a positive correlation was found between the relative abundance in FF of the eCB anandamide with C7, C1QBP and SOD3 in GC; while FF 2-AG had a negative correlation with them. Overall, in line with our premise, dietary n-3 FA supplementation attenuated the levels of some eCB and reduced the expression of several proteins and genes related to the ECS and immune system in the preovulatory follicle and in the endometrium, which may be part of the etiology of the positive effects of n-3 FA on the reproductive system in dairy cows.
Collapse
Affiliation(s)
- P Dos S Silva
- Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel; Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Y Butenko
- Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - G Kra
- Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel; Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - S Malitsky
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - M Itkin
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Y Levin
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - U Moallem
- Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - M Zachut
- Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel.
| |
Collapse
|
2
|
Zachut M, Butenko Y, Dos Santos Silva P. International Symposium on Ruminant Physiology: The involvement of the endocannabinoid system in metabolic and inflammatory responses in dairy cows during negative energy balance. J Dairy Sci 2025:S0022-0302(25)00017-7. [PMID: 39824501 DOI: 10.3168/jds.2024-25772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/18/2024] [Indexed: 01/20/2025]
Abstract
The endocannabinoid system (ECS) is involved in the regulation of energy metabolism, immune function and reproduction in mammals. The ECS is consisted of the endocannabinoid (eCB) ligands, enzymes, and cannabinoid receptors. In mammals, the cannabinoid-1 receptor (CB1/CNR1) is expressed in the central nervous system and in peripheral tissues; and its activation increases anabolic processes. The cannabinoid-2 receptor (CB2/CNR2) is most highly expressed in immune cells, and its activation exerts mainly anti-inflammatory effects. Until recently, little was known about the involvement of the ECS in physiological responses in dairy cows. As peripartum dairy cows undergo vast changes in energy metabolism and immune function, processes that are regulated by the ECS, several studies characterized ECS components in transition cows. Concentrations of eCB in the adipose tissue were higher postpartum (PP), and levels of the eCB N-arachidonoylethanolamide (AEA) were increased PP compared with prepartum. Exogenous injections of AEA to transition cows may increase adipose deposition, but did not affect feed intake. In vitro models showed that bovine adipocyte metabolism was differentially affected by CB1 agonists and antagonists in nonlactating non-gestating compared with PP cows. Thus, the responses of the PP dairy cows to ECS modulations may be related to the physiological and reproductive stage of the cow. Currently, whole-body ECS activation via agonists is mostly not feasible in vivo in livestock. Alternatively, downregulation of ECS activation can be achieved by supplementation of omega-3 (n-3) fatty acids. Indeed, in vivo studies with transition cows supplemented with n-3 showed a moderate downregulation of ECS components in the blood, adipose and liver, improved systemic insulin sensitivity, but evidently reduced insulin sensitivity in the adipose tissue PP. The abundance of CB1 was lower in immune cells, and anti-inflammatory effects were found in PP cows supplemented with n-3; possibly associating ECS downregulation with immune function. The physiological impact of ECS activation is an exciting and complex area of research, that could influence the physiology of dairy cows during metabolic and inflammatory challenges. Dairy cows may be an experimental model for ECS modulations, with broader relevance to female mammals. More research is required on how selective ECS activation/downregulation in tissues could affect immune-metabolic function in dairy cows.
Collapse
Affiliation(s)
- Maya Zachut
- Department of Ruminant Science, Institute of Animal Sciences, ARO Volcani Institute, Israel.
| | - Yana Butenko
- Department of Ruminant Science, Institute of Animal Sciences, ARO Volcani Institute, Israel
| | - Priscila Dos Santos Silva
- Department of Ruminant Science, Institute of Animal Sciences, ARO Volcani Institute, Israel; Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
3
|
Llorca-Bofí V, Mur M, Font M, Palacios-Garrán R, Sellart M, del Agua-Martínez E, Bioque M, Arteaga-Henríquez G. Differences in total and differential white blood cell counts and in inflammatory parameters between psychiatric inpatients with and without recent consumption of cannabinoids, opioids, or cocaine: A retrospective single-center study. Brain Behav Immun Health 2024; 42:100898. [PMID: 39634076 PMCID: PMC11615885 DOI: 10.1016/j.bbih.2024.100898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 07/08/2024] [Accepted: 10/27/2024] [Indexed: 12/07/2024] Open
Abstract
Several drugs of abuse may exert their action by modulating the immune system. Despite this, individuals using substances of abuse are often excluded from immunopsychiatry studies. We conducted a retrospective, single-center study to examine differences in circulating immune/inflammatory parameters (i.e., total and differential white blood cell (WBC) counts, neutrophil-to-lymphocyte ratio, monocyte-to-lymphocyte (MLR) ratio, platelet-to-lymphocyte ratio, and C-reactive protein) between psychiatric inpatients with a positive urine test to cannabinoids, opioids, or cocaine, and those with negative toxicology. A total of 927 inpatients were included. Patients with positive toxicology (n = 208) had significantly higher WBC counts (P < 0.001, η 2p = 0.02), as well as increased neutrophils (P = 0.002, η 2p = 0.01), monocytes (P < 0.001, η 2p = 0.02), lymphocytes (P < 0.001, η 2p = 0.02), and eosinophils (P = 0.01, η 2p = 0.01) compared to those with negative toxicology (n = 719). The increase in neutrophil counts was particularly evident in patients who tested positive for cannabinoids (n = 168; P < 0.001, η 2p = 0.02). In contrast, eosinophil counts were particularly increased in the cocaine-positive subgroup (n = 27; P = 0.004, η 2p = 0.01). Patients with a positive urine test to opioids (n = 13) were characterized by a significantly lower MLR (P = 0.03, η 2p = 0.005). The type of psychiatric diagnosis moderated the differences in neutrophil counts between patients with a positive and negative toxicology to cannabinoids. Notably, significantly higher neutrophil counts were found only in patients diagnosed with a psychotic disorder (P < 0.001, η 2p = 0.03). Taken together, our findings suggest that drugs of abuse may differently impact the immune/inflammatory response system in individuals diagnosed with psychiatric conditions. Specifically, recent cannabinoids use may be associated with an acute activation of the inflammatory response system, particularly in individuals with a psychotic disorder, while cocaine and opioid use may be associated with eosinophilia and a decrease in the MLR, respectively, regardless of the primary psychiatric diagnosis.
Collapse
Affiliation(s)
- Vicent Llorca-Bofí
- Department of Psychiatry, Hospital Universitari Santa Maria, Lleida, Spain
- Department of Medicine, University of Barcelona, Barcelona Clínic Schizophrenia Unit (BCSU), Neuroscience Institute, Hospital Clínic de Barcelona, Barcelona, Spain
- Department of Medicine and Surgery, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), Spain
| | - Maria Mur
- Department of Psychiatry, Hospital Universitari Santa Maria, Lleida, Spain
- Department of Medicine and Surgery, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), Spain
| | - Maria Font
- Laboratory Department, Arnau de Vilanova University Hospital, Lleida, Spain
| | - Roberto Palacios-Garrán
- Department of Psychiatry, Hospital Universitari Santa Maria, Lleida, Spain
- Mental Health Unit, Hospital Universitario Jerez de la Frontera, University of Cádiz, Cádiz, Spain
| | - Maite Sellart
- Department of Psychiatry, Hospital Universitari Santa Maria, Lleida, Spain
| | | | - Miquel Bioque
- Barcelona Clínic Schizophrenia Unit (BCSU), Neuroscience Institute, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Department of Medicine, University of Barcelona, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
| | - Gara Arteaga-Henríquez
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- NCRR-National Center for Register-based Research, Aahrus University, Aahrus, Denmark
| |
Collapse
|
4
|
Huff HC, Kim JS, Ojha A, Sinha S, Das A. Real time changes in the expression of eicosanoid synthesizing enzymes during inflammation. Prostaglandins Other Lipid Mediat 2024; 174:106839. [PMID: 38679226 DOI: 10.1016/j.prostaglandins.2024.106839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Immune responses during inflammation involve complex, well-coordinated lipid signaling pathways. Eicosanoids are a class of lipid signaling molecules derived from polyunsaturated fatty acids such as arachidonic acid and constitute a major network that controls inflammation and its subsequent resolution. Arachidonic acid is metabolized by enzymes in three different pathways to form a variety of lipid metabolites that can be either pro- or anti-inflammatory. Therefore, an understanding of the time-dependent gene expression, lipid metabolite profiles and cytokine profiles during the initial inflammatory response is necessary, as it will allow for the design of time-dependent therapeutics. Herein, we investigate the multi-level regulation of this process. After stimulating RAW 264.7 cells, a mouse-derived macrophage cell line commonly used to examine inflammatory responses, we examine the gene expression of 44 relevant lipid metabolizing enzymes from the different eicosanoid synthesizing classes. We also measure the formation of lipid metabolites and production of cytokines at selected time points. Results reveal a dynamic relationship between the time-course of inflammation dependent gene expression of the three eicosanoid synthesizing enzymes.
Collapse
Affiliation(s)
- Hannah C Huff
- School of Chemistry and Biochemistry, College of Sciences. Georgia Institute of Technology, IBB, Parker H. Petit Institute for Bioengineering and Biosciences, Atlanta, GA 30332, USA
| | - Justin S Kim
- School of Chemistry and Biochemistry, College of Sciences. Georgia Institute of Technology, IBB, Parker H. Petit Institute for Bioengineering and Biosciences, Atlanta, GA 30332, USA
| | - Abhishek Ojha
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Saurabh Sinha
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Aditi Das
- School of Chemistry and Biochemistry, College of Sciences. Georgia Institute of Technology, IBB, Parker H. Petit Institute for Bioengineering and Biosciences, Atlanta, GA 30332, USA.
| |
Collapse
|
5
|
Abbattista R, Feinberg NG, Snodgrass IF, Newman JW, Dandekar AM. Unveiling the "hidden quality" of the walnut pellicle: a precious source of bioactive lipids. FRONTIERS IN PLANT SCIENCE 2024; 15:1395543. [PMID: 38957599 PMCID: PMC11217525 DOI: 10.3389/fpls.2024.1395543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/30/2024] [Indexed: 07/04/2024]
Abstract
Tree nut consumption has been widely associated with various health benefits, with walnuts, in particular, being linked with improved cardiovascular and neurological health. These benefits have been attributed to walnuts' vast array of phenolic antioxidants and abundant polyunsaturated fatty acids. However, recent studies have revealed unexpected clinical outcomes related to walnut consumption, which cannot be explained simply with the aforementioned molecular hallmarks. With the goal of discovering potential molecular sources of these unexplained clinical outcomes, an exploratory untargeted metabolomics analysis of the isolated walnut pellicle was conducted. This analysis revealed a myriad of unusual lipids, including oxylipins and endocannabinoids. These lipid classes, which are likely present in the pellicle to enhance the seeds' defenses due to their antimicrobial properties, also have known potent bioactivities as mammalian signaling molecules and homeostatic regulators. Given the potential value of this tissue for human health, with respect to its "bioactive" lipid fraction, we sought to quantify the amounts of these compounds in pellicle-enriched waste by-products of mechanized walnut processing in California. An impressive repertoire of these compounds was revealed in these matrices, and in notably significant concentrations. This discovery establishes these low-value agriculture wastes promising candidates for valorization and translation into high-value, health-promoting products; as these molecules represent a potential explanation for the unexpected clinical outcomes of walnut consumption. This "hidden quality" of the walnut pellicle may encourage further consumption of walnuts, and walnut industries may benefit from a revaluation of abundant pellicle-enriched waste streams, leading to increased sustainability and profitability through waste upcycling.
Collapse
Affiliation(s)
- Ramona Abbattista
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Noah G. Feinberg
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Isabel F. Snodgrass
- West Coast Metabolomics Center, Genome Center, University of California, Davis, Davis, CA, United States
| | - John W. Newman
- Western Human Nutrition Research Center, United States Department of Agriculture, Davis, CA, United States
- West Coast Metabolomics Center, Genome Center, University of California, Davis, Davis, CA, United States
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Abhaya M. Dandekar
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| |
Collapse
|
6
|
Soldevila-Domenech N, Fagundo B, Cuenca-Royo A, Forcano L, Gomis-González M, Boronat A, Pastor A, Castañer O, Zomeño MD, Goday A, Dierssen M, Baghizadeh Hosseini K, Ros E, Corella D, Martínez-González MÁ, Salas-Salvadó J, Fernández-Aranda F, Fitó M, de la Torre R. Relationship between sex, APOE genotype, endocannabinoids and cognitive change in older adults with metabolic syndrome during a 3-year Mediterranean diet intervention. Nutr J 2024; 23:61. [PMID: 38862960 PMCID: PMC11167771 DOI: 10.1186/s12937-024-00966-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND The Mediterranean diet (MedDiet) has demonstrated efficacy in preventing age-related cognitive decline and modulating plasma concentrations of endocannabinoids (eCBs) and N-acylethanolamines (NAEs, or eCB-like compounds), which are lipid mediators involved in multiple neurological disorders and metabolic processes. Hypothesizing that eCBs and NAEs will be biomarkers of a MedDiet intervention and will be related to the cognitive response, we investigated this relationship according to sex and apolipoprotein E (APOE) genotype, which may affect eCBs and cognitive performance. METHODS This was a prospective cohort study of 102 participants (53.9% women, 18.8% APOE-ɛ4 carriers, aged 65.6 ± 4.5 years) from the PREDIMED-Plus-Cognition substudy, who were recruited at the Hospital del Mar Research Institute (Barcelona). All of them presented metabolic syndrome plus overweight/obesity (inclusion criteria of the PREDIMED-Plus) and normal cognitive performance at baseline (inclusion criteria of this substudy). A comprehensive battery of neuropsychological tests was administered at baseline and after 1 and 3 years. Plasma concentrations of eCBs and NAEs, including 2-arachidonoylglycerol (2-AG), anandamide (AEA), oleoylethanolamide (OEA), palmitoylethanolamide (PEA), and N-docosahexaenoylethanolamine (DHEA), were also monitored. Baseline cognition, cognitive changes, and the association between eCBs/NAEs and cognition were evaluated according to gender (crude models), sex (adjusted models), and APOE genotype. RESULTS At baseline, men had better executive function and global cognition than women (the effect size of gender differences was - 0.49, p = 0.015; and - 0.42, p = 0.036); however, these differences became nonsignificant in models of sex differences. After 3 years of MedDiet intervention, participants exhibited modest improvements in memory and global cognition. However, greater memory changes were observed in men than in women (Cohen's d of 0.40 vs. 0.25; p = 0.017). In men and APOE-ε4 carriers, 2-AG concentrations were inversely associated with baseline cognition and cognitive changes, while in women, cognitive changes were positively linked to changes in DHEA and the DHEA/AEA ratio. In men, changes in the OEA/AEA and OEA/PEA ratios were positively associated with cognitive changes. CONCLUSIONS The MedDiet improved participants' cognitive performance but the effect size was small and negatively influenced by female sex. Changes in 2-AG, DHEA, the OEA/AEA, the OEA/PEA and the DHEA/AEA ratios were associated with cognitive changes in a sex- and APOE-dependent fashion. These results support the modulation of the endocannabinoid system as a potential therapeutic approach to prevent cognitive decline in at-risk populations. TRIAL REGISTRATION ISRCTN89898870.
Collapse
Grants
- FI_B2021/00104 Agència de Gestió d'Ajuts Universitaris i de Recerca
- PROMETEO/2017/017; Grant FEA/SEA 2017 for Primary Care Research Generalitat Valenciana
- PI13/00233, PI13/00728, PI13/01123, PI13/00462, PI16/00533, PI16/00366, PI16/01094, PI16/00501, PI17/01167, PI19/00017, PI19/00781, PI19/01032, PI19/00576 Instituto de Salud Carlos III
- PI13/00233, PI13/00728, PI13/01123, PI13/00462, PI16/00533, PI16/00366, PI16/01094, PI16/00501, PI17/01167, PI19/00017, PI19/00781, PI19/01032, PI19/00576 Instituto de Salud Carlos III
- PI13/00233, PI13/00728, PI13/01123, PI13/00462, PI16/00533, PI16/00366, PI16/01094, PI16/00501, PI17/01167, PI19/00017, PI19/00781, PI19/01032, PI19/00576 Instituto de Salud Carlos III
- Advanced Research Grant 2014-2019; agreement #340918 HORIZON EUROPE European Research Council
- SLT006/17/00246, SLT002/16/00045 and SLT006/17/00077 Departament de Salut, Generalitat de Catalunya
- SLT006/17/00246, SLT002/16/00045 and SLT006/17/00077 Departament de Salut, Generalitat de Catalunya
- SLT006/17/00246, SLT002/16/00045 and SLT006/17/00077 Departament de Salut, Generalitat de Catalunya
- 2013ACUP00194 'la Caixa' Foundation
- Eat2beNICE/ H2020-SFS-2016-2; Ref 728018; and PRIME/ H2020-SC1-BHC-2018-2020; Ref: 847879 H2020 European Institute of Innovation and Technology
- Eat2beNICE/ H2020-SFS-2016-2; Ref 728018; and PRIME/ H2020-SC1-BHC-2018-2020; Ref: 847879 H2020 European Institute of Innovation and Technology
- Eat2beNICE/ H2020-SFS-2016-2; Ref 728018; and PRIME/ H2020-SC1-BHC-2018-2020; Ref: 847879 H2020 European Institute of Innovation and Technology
- Eat2beNICE/ H2020-SFS-2016-2; Ref 728018; and PRIME/ H2020-SC1-BHC-2018-2020; Ref: 847879 H2020 European Institute of Innovation and Technology
- 2017 SGR 138 Generalitat de Catalunya
- ‘la Caixa’ Foundation
Collapse
Affiliation(s)
- Natalia Soldevila-Domenech
- Integrative Pharmacology and Systems Neurosciences Research Group, Neurosciences Research Program, Hospital del Mar Research Institute (HMRI), Barcelona, 08003, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, 08003, Spain
| | - Beatriz Fagundo
- Integrative Pharmacology and Systems Neurosciences Research Group, Neurosciences Research Program, Hospital del Mar Research Institute (HMRI), Barcelona, 08003, Spain
- Department of Physiotherapy, Fundació Universitària del Bages (FUB), Manresa, 08042, Spain
| | - Aida Cuenca-Royo
- Integrative Pharmacology and Systems Neurosciences Research Group, Neurosciences Research Program, Hospital del Mar Research Institute (HMRI), Barcelona, 08003, Spain
| | - Laura Forcano
- Integrative Pharmacology and Systems Neurosciences Research Group, Neurosciences Research Program, Hospital del Mar Research Institute (HMRI), Barcelona, 08003, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Maria Gomis-González
- Integrative Pharmacology and Systems Neurosciences Research Group, Neurosciences Research Program, Hospital del Mar Research Institute (HMRI), Barcelona, 08003, Spain
| | - Anna Boronat
- Integrative Pharmacology and Systems Neurosciences Research Group, Neurosciences Research Program, Hospital del Mar Research Institute (HMRI), Barcelona, 08003, Spain
| | - Antoni Pastor
- Integrative Pharmacology and Systems Neurosciences Research Group, Neurosciences Research Program, Hospital del Mar Research Institute (HMRI), Barcelona, 08003, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Olga Castañer
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Research Institute (HMRI), Barcelona, 08003, Spain
- Endocrinology Service, Hospital del Mar Research Institute (HMRI), Barcelona, 08003, Spain
| | - Maria Dolores Zomeño
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Research Institute (HMRI), Barcelona, 08003, Spain
- School of Health Sciences, Blanquerna-Ramon Llull University, Barcelona, 08022, Spain
| | - Albert Goday
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Research Institute (HMRI), Barcelona, 08003, Spain
- Endocrinology Service, Hospital del Mar Research Institute (HMRI), Barcelona, 08003, Spain
| | - Mara Dierssen
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, 08003, Spain
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, 08003, Spain
- CIBER de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Khashayar Baghizadeh Hosseini
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, 08003, Spain
- Cardiovascular risk, Nutrition and Aging, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clínic, Barcelona, 08036, Spain
| | - Emilio Ros
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, Valencia, 46010, Spain
| | - Dolores Corella
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain
| | - Miguel Ángel Martínez-González
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Navarra's Health Research Institute (IdiSNA), Pamplona, Spain
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Unitat de Nutrició Humana, Reus, Spain
| | - Jordi Salas-Salvadó
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Fernando Fernández-Aranda
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Clinical Psychology Unit, University Hospital of Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Barcelona, 08908, Spain
- Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Barcelona, 08908, Spain
| | - Montserrat Fitó
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Research Institute (HMRI), Barcelona, 08003, Spain
| | - Rafael de la Torre
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, 08003, Spain.
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, 28029, Spain.
- Neurosciences Research Program, Hospital del Mar Research Institute (HMRI), Dr Aiguader 88, Barcelona, 08003, Spain.
| |
Collapse
|
7
|
Kranrod J, Konkel A, Valencia R, Darwesh AM, Fischer R, Schunck WH, Seubert JM. Cardioprotective properties of OMT-28, a synthetic analog of omega-3 epoxyeicosanoids. J Biol Chem 2024; 300:107372. [PMID: 38754781 PMCID: PMC11214398 DOI: 10.1016/j.jbc.2024.107372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/12/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024] Open
Abstract
OMT-28 is a metabolically robust small molecule developed to mimic the structure and function of omega-3 epoxyeicosanoids. However, it remained unknown to what extent OMT-28 also shares the cardioprotective and anti-inflammatory properties of its natural counterparts. To address this question, we analyzed the ability of OMT-28 to ameliorate hypoxia/reoxygenation (HR)-injury and lipopolysaccharide (LPS)-induced endotoxemia in cultured cardiomyocytes. Moreover, we investigated the potential of OMT-28 to limit functional damage and inflammasome activation in isolated perfused mouse hearts subjected to ischemia/reperfusion (IR) injury. In the HR model, OMT-28 (1 μM) treatment largely preserved cell viability (about 75 versus 40% with the vehicle) and mitochondrial function as indicated by the maintenance of NAD+/NADH-, ADP/ATP-, and respiratory control ratios. Moreover, OMT-28 blocked the HR-induced production of mitochondrial reactive oxygen species. Pharmacological inhibition experiments suggested that Gαi, PI3K, PPARα, and Sirt1 are essential components of the OMT-28-mediated pro-survival pathway. Counteracting inflammatory injury of cardiomyocytes, OMT-28 (1 μM) reduced LPS-induced increases in TNFα protein (by about 85% versus vehicle) and NF-κB DNA binding (by about 70% versus vehicle). In the ex vivo model, OMT-28 improved post-IR myocardial function recovery to reach about 40% of the baseline value compared to less than 20% with the vehicle. Furthermore, OMT-28 (1 μM) limited IR-induced NLRP3 inflammasome activation similarly to a direct NLRP3 inhibitor (MCC950). Overall, this study demonstrates that OMT-28 possesses potent cardio-protective and anti-inflammatory properties supporting the hypothesis that extending the bioavailability of omega-3 epoxyeicosanoids may improve their prospects as therapeutic agents.
Collapse
Affiliation(s)
- Joshua Kranrod
- Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | | | - Robert Valencia
- Cardiovascular Research Institute, University of Alberta, Edmonton, Alberta, Canada; Faculty of Medicine and Dentistry, Department of Pharmacology, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ahmed M Darwesh
- Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | | | - John M Seubert
- Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Institute, University of Alberta, Edmonton, Alberta, Canada; Faculty of Medicine and Dentistry, Department of Pharmacology, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
8
|
Rojas-Solé C, Torres-Herrera B, Gelerstein-Claro S, Medina-Pérez D, Gómez-Venegas H, Alzolay-Sepúlveda J, Chichiarelli S, Saso L, Rodrigo R. Cellular Basis of Adjuvant Role of n-3 Polyunsaturated Fatty Acids in Cancer Therapy: Molecular Insights and Therapeutic Potential against Human Melanoma. APPLIED SCIENCES 2024; 14:4548. [DOI: 10.3390/app14114548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Human melanoma is a highly aggressive malignant tumor originating from epidermal melanocytes, characterized by intrinsic resistance to apoptosis and the reprogramming of proliferation and survival pathways during progression, leading to high morbidity and mortality rates. This malignancy displays a marked propensity for metastasis and often exhibits poor responsiveness to conventional therapies. Fatty acids, such as n-3 polyunsaturated fatty acids (PUFAs) docosahexaenoic and eicosapentaenoic acids, exert various physiological effects on melanoma, with increasing evidence highlighting the anti-tumorigenic, anti-inflammatory, and immunomodulatory properties. Additionally, n-3 PUFAs have demonstrated their ability to inhibit cancer metastatic dissemination. In the context of cancer treatment, n-3 PUFAs have been investigated in conjunction with chemotherapy as a potential strategy to mitigate severe chemotherapy-induced side effects, enhance treatment efficacy and improve safety profiles, while also enhancing the responsiveness of cancer cells to chemotherapy. Furthermore, dietary intake of n-3 PUFAs has been associated with numerous health benefits, including a decreased risk and improved prognosis in conditions such as heart disease, autoimmune disorders, depression and mood disorders, among others. However, the specific mechanisms underlying their anti-melanoma effects and outcomes remain controversial, particularly when comparing findings from in vivo or in vitro experimental studies to those from human trials. Thus, the objective of this review is to present data supporting the potential role of n-3 PUFA supplementation as a novel complementary approach in the treatment of malignant cancers such as melanoma.
Collapse
Affiliation(s)
- Catalina Rojas-Solé
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| | - Benjamín Torres-Herrera
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| | - Santiago Gelerstein-Claro
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| | - Diego Medina-Pérez
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| | - Haziel Gómez-Venegas
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| | - Javier Alzolay-Sepúlveda
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| | - Silvia Chichiarelli
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, 00185 Rome, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Faculty of Pharmacy and Medicine Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| |
Collapse
|
9
|
Czauderna M, Taubner T, Wojtak W. Comparative Study of Gas and Liquid Chromatography Methods for the Determination of Underivatised Neutral and Acidic Cannabinoids and Cholesterol. Molecules 2024; 29:2165. [PMID: 38792027 PMCID: PMC11124110 DOI: 10.3390/molecules29102165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
The aim of our study was to develop a gas chromatographic method coupled with mass spectrometry (GC-MS) for the determination of underivatised neutral (CBDs-N) and acidic (CBDs-A) cannabinoids (CBDs) and cholesterol (Chol). Emphasis was also placed on comparing our original GC-MS method with the currently developed C18-high-performance liquid chromatography with photodiode detection (C18-HPLC-DAD). A combination of a long GC column, shallow temperature column programme, and mass-spectrometry was employed to avoid issues arising from the overlap between CBDs and Chol and background fluctuations. The pre-column procedure for CBDs and Chol in egg yolks consisted of hexane extractions, whereas the pre-column procedure for CBDs in non-animal samples involved methanol and hexane extractions. CBDs-A underwent decarboxylation to CBDs during GC-MS analyses, and pre-column extraction of the processed sample with NaOH solution allowed for CBD-A removal. No losses of CBDs-N were observed in the samples extracted with NaOH solution. GC-MS analyses of the samples before and after extraction with NaOH solution enabled the quantification of CBDs-A and CBDs-N. CBDs-A did not undergo decarboxylation to CBDs-N during C18-HPLC-DAD runs. The use of the C18-HPLC-DAD method allowed simultaneous determination of CBDs-N and CBDs-A. In comparison to the C18-HPLC-DAD method, our GC-MS technique offered improved sensitivity, precision, specificity, and satisfactory separation of underivatised CBDs and Chol from biological materials of endogenous species, especially in hemp and hen egg yolk. The scientific novelty of the present study is the application of the GC-MS method for quantifying underivatised CBDs-A, CBDs-N, and Chol in the samples of interest.
Collapse
Affiliation(s)
- Marian Czauderna
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland;
| | - Tomáš Taubner
- Department of Nutrition Physiology and Animal Product Quality, Institute of Animal Science, CZ-104 00 Praha, Czech Republic;
| | - Wiktoria Wojtak
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland;
| |
Collapse
|
10
|
Liu J, Tan J, Tang B, Guo J. Unveiling the role of iPLA 2β in neurodegeneration: From molecular mechanisms to advanced therapies. Pharmacol Res 2024; 202:107114. [PMID: 38395207 DOI: 10.1016/j.phrs.2024.107114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Calcium-independent phospholipase A2β (iPLA2β), a member of the phospholipase A2 (PLA2s) superfamily, is encoded by the PLA2G6 gene. Mutations in the PLA2G6 gene have been identified as the primary cause of infantile neuroaxonal dystrophy (INAD) and, less commonly, as a contributor to Parkinson's disease (PD). Recent studies have revealed that iPLA2β deficiency leads to neuroinflammation, iron accumulation, mitochondrial dysfunction, lipid dysregulation, and other pathological changes, forming a complex pathogenic network. These discoveries shed light on potential mechanisms underlying PLA2G6-associated neurodegeneration (PLAN) and offer valuable insights for therapeutic development. This review provides a comprehensive analysis of the fundamental characteristics of iPLA2β, its association with neurodegeneration, the pathogenic mechanisms involved in PLAN, and potential targets for therapeutic intervention. It offers an overview of the latest advancements in this field, aiming to contribute to ongoing research endeavors and facilitate the development of effective therapies for PLAN.
Collapse
Affiliation(s)
- Jiabin Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jieqiong Tan
- Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
11
|
Seth I, Lim B, Cevik J, Gracias D, Chua M, Kenney PS, Rozen WM, Cuomo R. Impact of nutrition on skin wound healing and aesthetic outcomes: A comprehensive narrative review. JPRAS Open 2024; 39:291-302. [PMID: 38370002 PMCID: PMC10874171 DOI: 10.1016/j.jpra.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/17/2024] [Indexed: 02/20/2024] Open
Abstract
Background While current wound treatment strategies often focus on antimicrobials and topical agents, the role of nutrition in wound healing and aesthetic outcomes is crucial but frequently overlooked. This review assesses the impact of specific nutrients and preoperative nutritional status on surgical outcomes. Methods A comprehensive search was conducted in PubMed, Scopus, Web of Science, and the Cochrane Library, from the inception of the study to October 2023. The study focused on the influence of macronutrients and micronutrients on aesthetic outcomes, the optimization of preoperative nutritional status, and the association between nutritional status and postoperative complications. Inclusion criteria were English language peer-reviewed articles, systematic reviews, meta-analyses, and clinical trials related to the impact of nutrition on skin wound healing and aesthetic outcomes. Exclusion criteria included non-English publications, non-peer-reviewed articles, opinion pieces, and animal studies. Results Omega-3 fatty acids and specific amino acids were linked to enhanced wound-healing and immune function. Vitamins A, B, and C and zinc positively influenced healing stages, while vitamin E showed variable results. Polyphenolic compounds showed anti-inflammatory effects beneficial for recovery. Malnutrition was associated with increased postoperative complications and infections, whereas preoperative nutritional support correlated with reduced hospital stays and complications. Conclusion Personalized nutritional plans are essential in surgical care, particularly for enhanced recovery after surgery protocols. Despite the demonstrated benefits of certain nutrients, gaps in research, particularly regarding elements such as iron, necessitate further studies. Nutritional assessments and interventions are vital for optimal preoperative care, underscoring the need for more comprehensive guidelines and research in nutritional management for surgical patients.
Collapse
Affiliation(s)
- Ishith Seth
- Department of Plastic Surgery, Peninsula Health, Melbourne, Victoria 3199, Australia
- Central Clinical School at Monash University, The Alfred Centre, 99 Commercial Rd, Melbourne, Victoria 3004, Australia
| | - Bryan Lim
- Department of Plastic Surgery, Peninsula Health, Melbourne, Victoria 3199, Australia
- Central Clinical School at Monash University, The Alfred Centre, 99 Commercial Rd, Melbourne, Victoria 3004, Australia
| | - Jevan Cevik
- Department of Plastic Surgery, Peninsula Health, Melbourne, Victoria 3199, Australia
| | - Dylan Gracias
- Department of Plastic Surgery, Peninsula Health, Melbourne, Victoria 3199, Australia
| | - Marcel Chua
- Department of Plastic Surgery, Peninsula Health, Melbourne, Victoria 3199, Australia
- Central Clinical School at Monash University, The Alfred Centre, 99 Commercial Rd, Melbourne, Victoria 3004, Australia
| | - Peter Sinkjaer Kenney
- Department of Plastic Surgery, Odense University Hospital, J. B. Winsløwsvej 4, Odense 5000, Denmark
- Department of Plastic and Breast Surgery, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Warren M. Rozen
- Department of Plastic Surgery, Peninsula Health, Melbourne, Victoria 3199, Australia
- Central Clinical School at Monash University, The Alfred Centre, 99 Commercial Rd, Melbourne, Victoria 3004, Australia
| | - Roberto Cuomo
- Plastic Surgery Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena 53100, Italy
| |
Collapse
|
12
|
Jurado-Fasoli L, Sanchez-Delgado G, Di X, Yang W, Kohler I, Villarroya F, Aguilera CM, Hankemeier T, Ruiz JR, Martinez-Tellez B. Cold-induced changes in plasma signaling lipids are associated with a healthier cardiometabolic profile independently of brown adipose tissue. Cell Rep Med 2024; 5:101387. [PMID: 38262411 PMCID: PMC10897514 DOI: 10.1016/j.xcrm.2023.101387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/27/2023] [Accepted: 12/22/2023] [Indexed: 01/25/2024]
Abstract
Cold exposure activates brown adipose tissue (BAT) and potentially improves cardiometabolic health through the secretion of signaling lipids by BAT. Here, we show that 2 h of cold exposure in young adults increases the levels of omega-6 and omega-3 oxylipins, the endocannabinoids (eCBs) anandamide and docosahexaenoylethanolamine, and lysophospholipids containing polyunsaturated fatty acids. Contrarily, it decreases the levels of the eCBs 1-LG and 2-LG and 1-OG and 2-OG, lysophosphatidic acids, and lysophosphatidylethanolamines. Participants overweight or obese show smaller increases in omega-6 and omega-3 oxylipins levels compared to normal weight. We observe that only a small proportion (∼4% on average) of the cold-induced changes in the plasma signaling lipids are slightly correlated with BAT volume. However, cold-induced changes in omega-6 and omega-3 oxylipins are negatively correlated with adiposity, glucose homeostasis, lipid profile, and liver parameters. Lastly, a 24-week exercise-based randomized controlled trial does not modify plasma signaling lipid response to cold exposure.
Collapse
Affiliation(s)
- Lucas Jurado-Fasoli
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, Carretera de Alfacar s/n, 18071 Granada, Spain; Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Guillermo Sanchez-Delgado
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, Carretera de Alfacar s/n, 18071 Granada, Spain; Department of Medicine, Division of Endocrinology, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigación Biosanitaria, Ibs.Granada, Granada, Spain
| | - Xinyu Di
- Metabolomics and Analytics Center, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, the Netherlands
| | - Wei Yang
- Metabolomics and Analytics Center, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, the Netherlands
| | - Isabelle Kohler
- Vrije Universiteit Amsterdam, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Division of BioAnalytical Chemistry, Amsterdam, the Netherlands; Center for Analytical Sciences Amsterdam, Amsterdam, the Netherlands
| | - Francesc Villarroya
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine of the University of Barcelona, Barcelona, Spain
| | - Concepcion M Aguilera
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigación Biosanitaria, Ibs.Granada, Granada, Spain; Department of Biochemistry and Molecular Biology II, "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Centre (CIBM), University of Granada, 18016 Granada, Spain
| | - Thomas Hankemeier
- Metabolomics and Analytics Center, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, the Netherlands
| | - Jonatan R Ruiz
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, Carretera de Alfacar s/n, 18071 Granada, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigación Biosanitaria, Ibs.Granada, Granada, Spain.
| | - Borja Martinez-Tellez
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, Carretera de Alfacar s/n, 18071 Granada, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Department of Education, Faculty of Education Sciences and SPORT Research Group (CTS-1024), CERNEP Research Center, University of Almería, Almería, Spain.
| |
Collapse
|
13
|
Gao P, Cao Y, Ma L. Regulation of soluble epoxide hydrolase in renal-associated diseases: insights from potential mechanisms to clinical researches. Front Endocrinol (Lausanne) 2024; 15:1304547. [PMID: 38425758 PMCID: PMC10902052 DOI: 10.3389/fendo.2024.1304547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
In recent years, numerous experimental studies have underscored the pivotal role of soluble epoxide hydrolase (sEH) in renal diseases, demonstrating the reno-protective effects of sEH inhibitors. The nexus between sEH and renal-associated diseases has garnered escalating attention. This review endeavors to elucidate the potential molecular mechanisms of sEH in renal diseases and emphasize the critical role of sEH inhibitors as a prospective treatment modality. Initially, we expound upon the correlation between sEH and Epoxyeicosatrienoic acids (EETs) and also addressing the impact of sEH on other epoxy fatty acids, delineate prevalent EPHX2 single nucleotide polymorphisms (SNPs) associated with renal diseases, and delve into sEH-mediated potential mechanisms, encompassing oxidative stress, inflammation, ER stress, and autophagy. Subsequently, we delineate clinical research pertaining to sEH inhibition or co-inhibition of sEH with other inhibitors for the regulation of renal-associated diseases, covering conditions such as acute kidney injury, chronic kidney diseases, diabetic nephropathy, and hypertension-induced renal injury. Our objective is to validate the potential role of sEH inhibitors in the treatment of renal injuries. We contend that a comprehensive comprehension of the salient attributes of sEH, coupled with insights from clinical experiments, provides invaluable guidance for clinicians and presents promising therapeutic avenues for patients suffering from renal diseases.
Collapse
Affiliation(s)
| | - Yongtong Cao
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| | - Liang Ma
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
14
|
Huang K, Duan J, Wang R, Ying H, Feng Q, Zhu B, Yang C, Yang L. Landscape of gut microbiota and metabolites and their interaction in comorbid heart failure and depressive symptoms: a random forest analysis study. mSystems 2023; 8:e0051523. [PMID: 37882579 PMCID: PMC10734515 DOI: 10.1128/msystems.00515-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 08/02/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE There is increasing evidence that alterations in gut microbial composition and function are associated with cardiovascular or psychiatric disease. Therefore, it is meaningful to investigate the taxonomic and functional characterization of the microbiota in HF patients who also have depressive symptoms. In this cross-sectional study, Cloacibacillus and alpha-tocopherol were determined as new diagnostic markers. Furthermore, intestinal microecosystem disorders are closely linked to depressive symptoms in HF patients, providing a new reference viewpoint for understanding the gut-heart/brain axis.
Collapse
Affiliation(s)
- Kai Huang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jiahao Duan
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Ruting Wang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Hangfeng Ying
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Qinwen Feng
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Bin Zhu
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Chun Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ling Yang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
15
|
Ben-Mustapha Y, Ben-Fradj MK, Hadj-Taieb S, Serghini M, Ben Ahmed M, Boubaker J, Feki M. Altered mucosal and plasma polyunsaturated fatty acids, oxylipins, and endocannabinoids profiles in Crohn's disease. Prostaglandins Other Lipid Mediat 2023; 168:106741. [PMID: 37149256 DOI: 10.1016/j.prostaglandins.2023.106741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/13/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
Selected mucosal and plasma polyunsaturated fatty acids (PUFAs) and related oxylipins and endocannabinoids were determined in 28 Crohn's disease (CD) patients and 39 controls. Fasting blood and colonic biopsies were collected in all participants, during a disease flare for the patients. Thirty-two lipid mediators including PUFAs, oxylipins, and endocannabinoids were assessed by LC-MS/MS. The pattern of lipid mediators in CD patients is characterized by an increase in arachidonic acid-derived oxylipins and endocannabinoids and a decrease in n-3 PUFAs and related endocannabinoids. A model combining increased 6-epi-lipoxin A4 and 2-arachidonyl glycerol with decreased docoasapentaenoic acid in plasma fairly discriminates patients from controls and may represent a lipidomic signature for CD flare. The study findings suggest that lipid mediators are involved in CD pathophysiology and may serve as biomarkers for disease flare. Further research is required to confirm the role of these bioactive lipids and test their therapeutic potential in CD.
Collapse
Affiliation(s)
- Yamina Ben-Mustapha
- University of Tunis El Manar, Faculty of Medicine of Tunis, 1007 Tunis, Tunisia; University of Tunis El Manar, Faculty of Sciences of Tunis, 2092 Tunis, Tunisia; Rabta Hospital, Laboratory of Biochemistry & LR99ES11, 1007 Tunis, Tunisia
| | - Mohamed Kacem Ben-Fradj
- University of Tunis El Manar, Faculty of Medicine of Tunis, 1007 Tunis, Tunisia; Rabta Hospital, Laboratory of Biochemistry & LR99ES11, 1007 Tunis, Tunisia
| | - Sameh Hadj-Taieb
- University of Tunis El Manar, Faculty of Medicine of Tunis, 1007 Tunis, Tunisia; Rabta Hospital, Laboratory of Biochemistry & LR99ES11, 1007 Tunis, Tunisia
| | - Meriem Serghini
- University of Tunis El Manar, Faculty of Medicine of Tunis, 1007 Tunis, Tunisia; Rabta Hospital, Service of Gastroenterology A, 1007 Tunis, Tunisia
| | - Melika Ben Ahmed
- University of Tunis El Manar, Faculty of Medicine of Tunis, 1007 Tunis, Tunisia; Institute Pasteur of Tunis, Laboratory of Clinical Immunology, 1002, Tunis, Tunisia
| | - Jalel Boubaker
- University of Tunis El Manar, Faculty of Medicine of Tunis, 1007 Tunis, Tunisia; Rabta Hospital, Service of Gastroenterology A, 1007 Tunis, Tunisia
| | - Moncef Feki
- University of Tunis El Manar, Faculty of Medicine of Tunis, 1007 Tunis, Tunisia; Rabta Hospital, Laboratory of Biochemistry & LR99ES11, 1007 Tunis, Tunisia.
| |
Collapse
|
16
|
Glaser ST, Jayanetti K, Oubraim S, Hillowe A, Frank E, Jong J, Wang L, Wang H, Ojima I, Haj-Dahmane S, Kaczocha M. Fatty acid binding proteins are novel modulators of synaptic epoxyeicosatrienoic acid signaling in the brain. Sci Rep 2023; 13:15234. [PMID: 37709856 PMCID: PMC10502087 DOI: 10.1038/s41598-023-42504-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023] Open
Abstract
Fatty acid binding proteins (FABPs) govern intracellular lipid transport to cytosolic organelles and nuclear receptors. More recently, FABP5 has emerged as a key regulator of synaptic endocannabinoid signaling, suggesting that FABPs may broadly regulate the signaling of neuroactive lipids in the brain. Herein, we demonstrate that brain-expressed FABPs (FABP3, FABP5, and FABP7) interact with epoxyeicosatrienoic acids (EETs) and the peroxisome proliferator-activated receptor gamma agonist 15-deoxy-Δ12,14-Prostaglandin J2 (15d-PGJ2). Among these lipids, EETs displayed highest affinities for FABP3 and FABP5, and 11,12-EET was identified as the preferred FABP ligand. Similarly, 15d-PGJ2 interacted with FABP3 and FABP5 while binding to FABP7 was markedly lower. Molecular modeling revealed unique binding interactions of the ligands within the FABP binding pockets and highlighted major contributions of van der Waals clashes and acyl chain solvent exposure in dictating FABP affinity and specificity. Functional studies demonstrated that endogenous EETs gate the strength of CA1 hippocampal glutamate synapses and that this function was impaired following FABP inhibition. As such, the present study reveals that FABPs control EET-mediated synaptic gating, thereby expanding the functional roles of this protein family in regulating neuronal lipid signaling.
Collapse
Affiliation(s)
- Sherrye T Glaser
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
- Department of Biological Sciences, Kingsborough Community College, Brooklyn, NY, USA
| | - Kalani Jayanetti
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Saida Oubraim
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Andrew Hillowe
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Elena Frank
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Jason Jong
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Liqun Wang
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Hehe Wang
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Iwao Ojima
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, USA
| | - Samir Haj-Dahmane
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.
| | - Martin Kaczocha
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA.
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, USA.
- Stony Brook University Pain and Analgesia Research Center (SPARC), Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
17
|
Simard M, Tremblay A, Morin S, Rioux G, Flamand N, Pouliot R. N-eicosapentaenoyl-ethanolamine decreases the proliferation of psoriatic keratinocytes in a reconstructed psoriatic skin model. Sci Rep 2023; 13:12113. [PMID: 37495686 PMCID: PMC10371979 DOI: 10.1038/s41598-023-39185-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023] Open
Abstract
Psoriasis is an inflammatory skin disease that is characterized by keratinocyte hyperproliferation, abnormal epidermal differentiation and dysregulated lipid metabolism. Some lipid mediators of the N-acylethanolamines (NAEs) and monoacylglycerols (MAGs) can bind to cannabinoid (CB) receptors and are referred to as part of the endocannabinoidome. Their implication in psoriasis remains unknown. The aim of the present study was to characterize the endocannabinoid system and evaluate the effects of n-3-derived NAEs, namely N-eicosapentaenoyl-ethanolamine (EPEA), in psoriatic keratinocytes using a psoriatic skin model produced by tissue engineering, following the self-assembly method. Psoriatic skin substitutes had lower FAAH2 expression and higher MAGL, ABHD6 and ABHD12 expression compared with healthy skin substitutes. Treatments with alpha-linolenic acid (ALA) increased the levels of EPEA and 1/2-docosapentaenoyl-glycerol, showing that levels of n-3 polyunsaturated fatty acids modulate related NAE and MAG levels. Treatments of the psoriatic substitutes with 10 μM of EPEA for 7 days resulted in decreased epidermal thickness and number of Ki67 positive keratinocytes, both indicating decreased proliferation of psoriatic keratinocytes. EPEA effects on keratinocyte proliferation were inhibited by the CB1 receptor antagonist rimonabant. Exogenous EPEA also diminished some inflammatory features of psoriasis. In summary, n-3-derived NAEs can reduce the psoriatic phenotype of a reconstructed psoriatic skin model.
Collapse
Affiliation(s)
- Mélissa Simard
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, G1J 1A4, Canada
- Faculté de Pharmacie de l'Université Laval, Québec, QC, Canada
| | - Andréa Tremblay
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, G1J 1A4, Canada
- Faculté de Pharmacie de l'Université Laval, Québec, QC, Canada
| | - Sophie Morin
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, G1J 1A4, Canada
- Faculté de Pharmacie de l'Université Laval, Québec, QC, Canada
| | - Geneviève Rioux
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, G1J 1A4, Canada
- Faculté de Pharmacie de l'Université Laval, Québec, QC, Canada
| | - Nicolas Flamand
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de médecine, Université Laval, Québec, QC, G1V 4G5, Canada
- Canada Excellence Research Chair On the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, QC, G1V 0A6, Canada
| | - Roxane Pouliot
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, G1J 1A4, Canada.
- Faculté de Pharmacie de l'Université Laval, Québec, QC, Canada.
| |
Collapse
|
18
|
Haack M, Engert LC, Besedovsky L, Goldstein MR, Devine JK, Dang R, Olia K, Molina V, Bertisch SM, Sethna N, Simpson N. Alterations of pain pathways by experimental sleep disturbances in humans: central pain-inhibitory, cyclooxygenase, and endocannabinoid pathways. Sleep 2023; 46:zsad061. [PMID: 36881901 PMCID: PMC10262178 DOI: 10.1093/sleep/zsad061] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/20/2022] [Indexed: 03/09/2023] Open
Abstract
STUDY OBJECTIVES There is strong evidence that sleep disturbances are an independent risk factor for the development of chronic pain conditions. The mechanisms underlying this association, however, are still not well understood. We examined the effect of experimental sleep disturbances (ESDs) on three pathways involved in pain initiation/resolution: (1) the central pain-inhibitory pathway, (2) the cyclooxygenase (COX) pathway, and (3) the endocannabinoid (eCB) pathway. METHODS Twenty-four healthy participants (50% females) underwent two 19-day long in-laboratory protocols in randomized order: (1) an ESD protocol consisting of repeated nights of short and disrupted sleep with intermittent recovery sleep; and (2) a sleep control protocol consisting of nights with an 8-hour sleep opportunity. Pain inhibition (conditioned pain modulation, habituation to repeated pain), COX-2 expression at monocyte level (lipopolysaccharide [LPS]-stimulated and spontaneous), and eCBs (arachidonoylethanolamine, 2-arachidonoylglycerol, docosahexaenoylethanolamide [DHEA], eicosapentaenoylethanolamide, docosatetraenoylethanolamide) were measured every other day throughout the protocol. RESULTS The central pain-inhibitory pathway was compromised by sleep disturbances in females, but not in males (p < 0.05 condition × sex effect). The COX-2 pathway (LPS-stimulated) was activated by sleep disturbances (p < 0.05 condition effect), and this effect was exclusively driven by males (p < 0.05 condition × sex effect). With respect to the eCB pathway, DHEA was higher (p < 0.05 condition effect) in the sleep disturbance compared to the control condition, without sex-differential effects on any eCBs. CONCLUSIONS These findings suggest that central pain-inhibitory and COX mechanisms through which sleep disturbances may contribute to chronic pain risk are sex specific, implicating the need for sex-differential therapeutic targets to effectively reduce chronic pain associated with sleep disturbances in both sexes. CLINICAL TRIALS REGISTRATION NCT02484742: Pain Sensitization and Habituation in a Model of Experimentally-induced Insomnia Symptoms. https://clinicaltrials.gov/ct2/show/NCT02484742.
Collapse
Affiliation(s)
- Monika Haack
- Harvard Medical School, Boston, MA, USA
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Larissa C Engert
- Harvard Medical School, Boston, MA, USA
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Luciana Besedovsky
- Harvard Medical School, Boston, MA, USA
- Institute of Medical Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Jaime K Devine
- Institutes for Behavior Resources, Inc., Baltimore, MD, USA
| | - Rammy Dang
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Keeyon Olia
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Victoria Molina
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Suzanne M Bertisch
- Harvard Medical School, Boston, MA, USA
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Navil Sethna
- Harvard Medical School, Boston, MA, USA
- Department of Anesthesia and Perioperative Medicine, Children’s Hospital Boston, Boston, MA, USA
| | - Norah Simpson
- Stanford Sleep Heath & Insomnia Program, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
19
|
Richter FC, Friedrich M, Kampschulte N, Piletic K, Alsaleh G, Zummach R, Hecker J, Pohin M, Ilott N, Guschina I, Wideman SK, Johnson E, Borsa M, Hahn P, Morriseau C, Hammock BD, Schipper HS, Edwards CM, Zechner R, Siegmund B, Weidinger C, Schebb NH, Powrie F, Simon AK. Adipocyte autophagy limits gut inflammation by controlling oxylipin and IL-10. EMBO J 2023; 42:e112202. [PMID: 36795015 PMCID: PMC10015370 DOI: 10.15252/embj.2022112202] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 02/17/2023] Open
Abstract
Lipids play a major role in inflammatory diseases by altering inflammatory cell functions, either through their function as energy substrates or as lipid mediators such as oxylipins. Autophagy, a lysosomal degradation pathway that limits inflammation, is known to impact on lipid availability, however, whether this controls inflammation remains unexplored. We found that upon intestinal inflammation visceral adipocytes upregulate autophagy and that adipocyte-specific loss of the autophagy gene Atg7 exacerbates inflammation. While autophagy decreased lipolytic release of free fatty acids, loss of the major lipolytic enzyme Pnpla2/Atgl in adipocytes did not alter intestinal inflammation, ruling out free fatty acids as anti-inflammatory energy substrates. Instead, Atg7-deficient adipose tissues exhibited an oxylipin imbalance, driven through an NRF2-mediated upregulation of Ephx1. This shift reduced secretion of IL-10 from adipose tissues, which was dependent on the cytochrome P450-EPHX pathway, and lowered circulating levels of IL-10 to exacerbate intestinal inflammation. These results suggest an underappreciated fat-gut crosstalk through an autophagy-dependent regulation of anti-inflammatory oxylipins via the cytochrome P450-EPHX pathway, indicating a protective effect of adipose tissues for distant inflammation.
Collapse
Affiliation(s)
| | - Matthias Friedrich
- Kennedy Institute of RheumatologyUniversity of OxfordOxfordUK
- Translational Gastroenterology Unit, Nuffield Department of Medicine, John Radcliffe HospitalUniversity of OxfordOxfordUK
| | - Nadja Kampschulte
- Faculty of Mathematics and Natural SciencesUniversity of WuppertalWuppertalGermany
| | - Klara Piletic
- Kennedy Institute of RheumatologyUniversity of OxfordOxfordUK
| | - Ghada Alsaleh
- Kennedy Institute of RheumatologyUniversity of OxfordOxfordUK
| | | | - Julia Hecker
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin and Berlin Institute of HealthBerlinGermany
- Department of Gastroenterology, Infectious Diseases and RheumatologyCampus Benjamin FranklinBerlinGermany
| | - Mathilde Pohin
- Kennedy Institute of RheumatologyUniversity of OxfordOxfordUK
| | - Nicholas Ilott
- Kennedy Institute of RheumatologyUniversity of OxfordOxfordUK
| | | | - Sarah Karin Wideman
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe HospitalUniversity of OxfordOxfordUK
| | - Errin Johnson
- The Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Mariana Borsa
- Kennedy Institute of RheumatologyUniversity of OxfordOxfordUK
| | - Paula Hahn
- Kennedy Institute of RheumatologyUniversity of OxfordOxfordUK
| | - Christophe Morriseau
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer CenterUniversity of CaliforniaDavisCAUSA
| | - Bruce D Hammock
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer CenterUniversity of CaliforniaDavisCAUSA
| | - Henk Simon Schipper
- Kennedy Institute of RheumatologyUniversity of OxfordOxfordUK
- Center for Translational ImmunologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Claire M Edwards
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research CentreUniversity of OxfordOxfordUK
- Nuffield Department of Surgical Sciences, Botnar Research CentreUniversity of OxfordOxfordUK
| | - Rudolf Zechner
- Institute of Molecular BiosciencesUniversity of GrazGrazAustria
| | - Britta Siegmund
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin and Berlin Institute of HealthBerlinGermany
- Department of Gastroenterology, Infectious Diseases and RheumatologyCampus Benjamin FranklinBerlinGermany
| | - Carl Weidinger
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin and Berlin Institute of HealthBerlinGermany
- Department of Gastroenterology, Infectious Diseases and RheumatologyCampus Benjamin FranklinBerlinGermany
| | - Nils Helge Schebb
- Faculty of Mathematics and Natural SciencesUniversity of WuppertalWuppertalGermany
| | - Fiona Powrie
- Kennedy Institute of RheumatologyUniversity of OxfordOxfordUK
| | - Anna Katharina Simon
- Kennedy Institute of RheumatologyUniversity of OxfordOxfordUK
- Max Delbrück CenterBerlinGermany
| |
Collapse
|
20
|
Inhibition of Microglial GSK3β Activity Is Common to Different Kinds of Antidepressants: A Proposal for an In Vitro Screen to Detect Novel Antidepressant Principles. Biomedicines 2023; 11:biomedicines11030806. [PMID: 36979785 PMCID: PMC10045655 DOI: 10.3390/biomedicines11030806] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/17/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
Depression is a major public health concern. Unfortunately, the present antidepressants often are insufficiently effective, whilst the discovery of more effective antidepressants has been extremely sluggish. The objective of this review was to combine the literature on depression with the pharmacology of antidepressant compounds, in order to formulate a conceivable pathophysiological process, allowing proposals how to accelerate the discovery process. Risk factors for depression initiate an infection-like inflammation in the brain that involves activation microglial Toll-like receptors and glycogen synthase kinase-3β (GSK3β). GSK3β activity alters the balance between two competing transcription factors, the pro-inflammatory/pro-oxidative transcription factor NFκB and the neuroprotective, anti-inflammatory and anti-oxidative transcription factor NRF2. The antidepressant activity of tricyclic antidepressants is assumed to involve activation of GS-coupled microglial receptors, raising intracellular cAMP levels and activation of protein kinase A (PKA). PKA and similar kinases inhibit the enzyme activity of GSK3β. Experimental antidepressant principles, including cannabinoid receptor-2 activation, opioid μ receptor agonists, 5HT2 agonists, valproate, ketamine and electrical stimulation of the Vagus nerve, all activate microglial pathways that result in GSK3β-inhibition. An in vitro screen for NRF2-activation in microglial cells with TLR-activated GSK3β activity, might therefore lead to the detection of totally novel antidepressant principles with, hopefully, an improved therapeutic efficacy.
Collapse
|
21
|
Jannas-Vela S, Espinosa A, Candia AA, Flores-Opazo M, Peñailillo L, Valenzuela R. The Role of Omega-3 Polyunsaturated Fatty Acids and Their Lipid Mediators on Skeletal Muscle Regeneration: A Narrative Review. Nutrients 2023; 15:nu15040871. [PMID: 36839229 PMCID: PMC9965797 DOI: 10.3390/nu15040871] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Skeletal muscle is the largest tissue in the human body, comprising approximately 40% of body mass. After damage or injury, a healthy skeletal muscle is often fully regenerated; however, with aging and chronic diseases, the regeneration process is usually incomplete, resulting in the formation of fibrotic tissue, infiltration of intermuscular adipose tissue, and loss of muscle mass and strength, leading to a reduction in functional performance and quality of life. Accumulating evidence has shown that omega-3 (n-3) polyunsaturated fatty acids (PUFAs) and their lipid mediators (i.e., oxylipins and endocannabinoids) have the potential to enhance muscle regeneration by positively modulating the local and systemic inflammatory response to muscle injury. This review explores the process of muscle regeneration and how it is affected by acute and chronic inflammatory conditions, focusing on the potential role of n-3 PUFAs and their derivatives as positive modulators of skeletal muscle healing and regeneration.
Collapse
Affiliation(s)
- Sebastian Jannas-Vela
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua 2820000, Chile
| | - Alejandra Espinosa
- Escuela de Medicina, Campus San Felipe, Universidad de Valparaíso, San Felipe 2170000, Chile
| | - Alejandro A. Candia
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua 2820000, Chile
| | - Marcelo Flores-Opazo
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua 2820000, Chile
| | - Luis Peñailillo
- Exercise and Rehabilitation Sciences Institute, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, Las Condes, Santiago 7591538, Chile
| | - Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
- Correspondence:
| |
Collapse
|
22
|
Vitagliano T, Garieri P, Lascala L, Ferro Y, Doldo P, Pujia R, Pujia A, Montalcini T, Greco M, Mazza E. Preparing Patients for Cosmetic Surgery and Aesthetic Procedures: Ensuring an Optimal Nutritional Status for Successful Results. Nutrients 2023; 15:nu15020352. [PMID: 36678221 PMCID: PMC9867292 DOI: 10.3390/nu15020352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Aesthetic and cosmetic medical practices have attracted considerable consumer attention globally. However, possible complications vary and range from mild, self-resolving ecchymoses or edema to more persistent complications. The aim of this review is to identify the nutritional deficits or excesses associated with the major complications of reconstructive surgery, aesthetic surgery, and mini-invasive aesthetic procedures. An additional goal is to provide a bundle of actions for professionals working in the industry in order to reduce the risks of aesthetic procedures and improve the clinical outcomes. Granulomas, hypertrophic scars and keloids, seromas, infections and xerosis, hyperpigmentation, petechiae, livedo reticularis, slower wound healing, and other poor outcomes are frequently associated with nutritional deficiencies. Nutritional status can markedly affect wound healing and tissue repair following surgical interventions, as well as the outcomes of aesthetic and cosmetic medical practices. Professionals working in this industry, therefore, need to consider the nutritional aspects of their patients to obtain the best results.
Collapse
Affiliation(s)
- Tiziana Vitagliano
- Department of Clinical and Experimental Medicine, University Magna Grecia, 88100 Catanzaro, Italy
| | - Pietro Garieri
- Department of Plastic Surgery, Hand Surgery and Reconstructive Microsurgery, Ospedale San Gerardo, 20900 Monza, Italy
| | - Lidia Lascala
- Department of Clinical and Experimental Medicine, University Magna Grecia, 88100 Catanzaro, Italy
| | - Yvelise Ferro
- Department of Clinical and Experimental Medicine, University Magna Grecia, 88100 Catanzaro, Italy
| | - Patrizia Doldo
- Department of Clinical and Experimental Medicine, University Magna Grecia, 88100 Catanzaro, Italy
| | - Roberta Pujia
- Department of Medical and Surgical Science, University Magna Grecia, 88100 Catanzaro, Italy
| | - Arturo Pujia
- Department of Medical and Surgical Science, University Magna Grecia, 88100 Catanzaro, Italy
- Research Center for the Prevention and Treatment of Metabolic Diseases, University Magna Grecia, 88100 Catanzaro, Italy
| | - Tiziana Montalcini
- Department of Clinical and Experimental Medicine, University Magna Grecia, 88100 Catanzaro, Italy
- Research Center for the Prevention and Treatment of Metabolic Diseases, University Magna Grecia, 88100 Catanzaro, Italy
| | - Manfredi Greco
- Department of Clinical and Experimental Medicine, University Magna Grecia, 88100 Catanzaro, Italy
| | - Elisa Mazza
- Department of Medical and Surgical Science, University Magna Grecia, 88100 Catanzaro, Italy
| |
Collapse
|
23
|
Kim JS, Soto-Diaz K, Bingham TW, Steelman AJ, Das A. Role of omega-3 endocannabinoids in the modulation of T-cell activity in a multiple sclerosis experimental autoimmune encephalomyelitis (EAE) model. J Biol Chem 2023; 299:102886. [PMID: 36626985 PMCID: PMC9926309 DOI: 10.1016/j.jbc.2023.102886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023] Open
Abstract
Epidemiological studies show that omega-3 fatty acid consumption is associated with improved conditions in neurodegenerative diseases such as multiple sclerosis (MS). However, the mechanism of this association is not well understood. Emerging evidence suggests that parent molecules such as docosahexaenoic acid are converted into downstream metabolites that are capable of directly modulating immune responses. In vitro, we found that docosahexaenoyl ethanolamide (DHEA), another dietary component and its epoxide metabolite, reduced the polarization of naïve T-cells toward proinflammatory Th1 and Th17 phenotypes. Furthermore, we identified that DHEA and related endocannabinoids are changing during the disease progression in mice undergoing relapse-remitting experimental autoimmune encephalomyelitis (RR-EAE). In addition, daily administration of DHEA to mice delayed the onset of disease, the rate of relapse, and the severity of clinical scores at relapse in RR-EAE, an animal model of MS. Collectively, these data indicate that DHEA and their downstream metabolites reduce the disease severity in the RR-EAE model of MS and can be potential dietary adjuvants to existing MS therapeutics.
Collapse
Affiliation(s)
- Justin S. Kim
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA,Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Katiria Soto-Diaz
- Neuroscience Program, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Tanner W. Bingham
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Andrew J. Steelman
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA,Neuroscience Program, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA,Department of Bioengineering, Cancer Center at Illinois, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA,For correspondence: Aditi Das; Andrew J. Steelman
| | - Aditi Das
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA; Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
| |
Collapse
|
24
|
Snider NT, Hollenberg PF. Assay of Endocannabinoid Oxidation by Cytochrome P450. Methods Mol Biol 2023; 2576:317-327. [PMID: 36152199 DOI: 10.1007/978-1-0716-2728-0_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cytochrome P450 enzymes are a large family of heme-containing proteins that have important functions in the biotransformation of xenobiotics, including pharmacologic and environmental agents, as well as endogenously produced chemicals with broad structural and functional diversity. Anandamide and 2-arachidonoylglycerol (2-AG) are substrates for P450s expressed in multiple tissues, leading to the production of a diverse set of mono- and di-oxygenated metabolites. This chapter describes tools and methods that have been used to identify major endocannabinoid metabolizing P450s and their corresponding products using subcellular tissue fractions, cultured cells, and purified recombinant enzymes in a reconstituted system.
Collapse
Affiliation(s)
- Natasha T Snider
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Paul F Hollenberg
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
25
|
Estrada-Valencia R, de Lima ME, Colonnello A, Rangel-López E, Saraiva NR, de Ávila DS, Aschner M, Santamaría A. The Endocannabinoid System in Caenorhabditis elegans. Rev Physiol Biochem Pharmacol 2023; 184:1-31. [PMID: 34401955 PMCID: PMC8850531 DOI: 10.1007/112_2021_64] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The existence of a formal Endocannabinoid System in C. elegans has been questioned due to data showing the absence of typical cannabinoid receptors in the worm; however, the presence of a full metabolism for endocannabinoids, alternative ligands, and receptors for these agents and a considerable number of orthologous and homologous genes regulating physiological cannabinoid-like signals and responses - several of which are similar to those of mammals - demonstrates a well-structured and functional complex system in nematodes. In this review, we describe and compare similarities and differences between the Endocannabinoid System in mammals and nematodes, highlighting the basis for the integral study of this novel system in the worm.
Collapse
Affiliation(s)
| | - María Eduarda de Lima
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Aline Colonnello
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Edgar Rangel-López
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Nariani Rocha Saraiva
- Laboratório de Bioquímica e Toxicologia em Caenorhabditis elegans, UNIPAMPA, Uruguaiana, Brazil
| | - Daiana Silva de Ávila
- Laboratório de Bioquímica e Toxicologia em Caenorhabditis elegans, UNIPAMPA, Uruguaiana, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico.
| |
Collapse
|
26
|
Mock ED, Gagestein B, van der Stelt M. Anandamide and other N-acylethanolamines: A class of signaling lipids with therapeutic opportunities. Prog Lipid Res 2023; 89:101194. [PMID: 36150527 DOI: 10.1016/j.plipres.2022.101194] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 01/18/2023]
Abstract
N-acylethanolamines (NAEs), including N-palmitoylethanolamine (PEA), N-oleoylethanolamine (OEA), N-arachidonoylethanolamine (AEA, anandamide), N-docosahexaenoylethanolamine (DHEA, synaptamide) and their oxygenated metabolites are a lipid messenger family with numerous functions in health and disease, including inflammation, anxiety and energy metabolism. The NAEs exert their signaling role through activation of various G protein-coupled receptors (cannabinoid CB1 and CB2 receptors, GPR55, GPR110, GPR119), ion channels (TRPV1) and nuclear receptors (PPAR-α and PPAR-γ) in the brain and periphery. The biological role of the oxygenated NAEs, such as prostamides, hydroxylated anandamide and DHEA derivatives, are less studied. Evidence is accumulating that NAEs and their oxidative metabolites may be aberrantly regulated or are associated with disease severity in obesity, metabolic syndrome, cancer, neuroinflammation and liver cirrhosis. Here, we comprehensively review NAE biosynthesis and degradation, their metabolism by lipoxygenases, cyclooxygenases and cytochrome P450s and the biological functions of these signaling lipids. We discuss the latest findings and therapeutic potential of modulating endogenous NAE levels by inhibition of their degradation, which is currently under clinical evaluation for neuropsychiatric disorders. We also highlight NAE biosynthesis inhibition as an emerging topic with therapeutic opportunities in endocannabinoid and NAE signaling.
Collapse
Affiliation(s)
- Elliot D Mock
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Berend Gagestein
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, The Netherlands.
| |
Collapse
|
27
|
Gao S, Jiang Y, Chen Z, Zhao X, Gu J, Wu H, Liao Y, Sun H, Wang J, Chen W. Metabolic Reprogramming of Microglia in Sepsis-Associated Encephalopathy: Insights from Neuroinflammation. Curr Neuropharmacol 2023; 21:1992-2005. [PMID: 36529923 PMCID: PMC10514522 DOI: 10.2174/1570159x21666221216162606] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/29/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
Sepsis-associated encephalopathy (SAE) is a diffuse brain dysfunction caused by sepsis that manifests as a range of brain dysfunctions from delirium to coma. It is a relatively common complication of sepsis associated with poor patient prognosis and mortality. The pathogenesis of SAE involves neuroinflammatory responses, neurotransmitter dysfunction, blood-brain barrier (BBB) disruption, abnormal blood flow regulation, etc. Neuroinflammation caused by hyperactivation of microglia is considered to be a key factor in disease development, which can cause a series of chain reactions, including BBB disruption and oxidative stress. Metabolic reprogramming has been found to play a central role in microglial activation and executive functions. In this review, we describe the pivotal role of energy metabolism in microglial activation and functional execution and demonstrate that the regulation of microglial metabolic reprogramming might be crucial in the development of clinical therapeutics for neuroinflammatory diseases like SAE.
Collapse
Affiliation(s)
- Shenjia Gao
- Department of Anesthesiology, Cancer Center, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Yi Jiang
- Department of Anesthesiology, Cancer Center, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Zhaoyuan Chen
- Department of Anesthesiology, Cancer Center, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Xiaoqiang Zhao
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China
| | - Jiahui Gu
- Department of Anesthesiology, Cancer Center, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Han Wu
- Department of Anesthesiology, Cancer Center, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Yun Liao
- Shanghai Medical College of Fudan University, Shanghai, China
| | - Hao Sun
- Department of Anesthesiology, Cancer Center, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Jun Wang
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Wankun Chen
- Department of Anesthesiology, Cancer Center, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
- Fudan Zhangjiang Institute, Shanghai, 201203, China
| |
Collapse
|
28
|
Eccles JA, Baldwin WS. Detoxification Cytochrome P450s (CYPs) in Families 1-3 Produce Functional Oxylipins from Polyunsaturated Fatty Acids. Cells 2022; 12:82. [PMID: 36611876 PMCID: PMC9818454 DOI: 10.3390/cells12010082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
This manuscript reviews the CYP-mediated production of oxylipins and the current known function of these diverse set of oxylipins with emphasis on the detoxification CYPs in families 1-3. Our knowledge of oxylipin function has greatly increased over the past 3-7 years with new theories on stability and function. This includes a significant amount of new information on oxylipins produced from linoleic acid (LA) and the omega-3 PUFA-derived oxylipins such as α-linolenic acid (ALA), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA). However, there is still a lack of knowledge regarding the primary CYP responsible for producing specific oxylipins, and a lack of mechanistic insight for some clinical associations between outcomes and oxylipin levels. In addition, the role of CYPs in the production of oxylipins as signaling molecules for obesity, energy utilization, and development have increased greatly with potential interactions between diet, endocrinology, and pharmacology/toxicology due to nuclear receptor mediated CYP induction, CYP inhibition, and receptor interactions/crosstalk. The potential for diet-diet and diet-drug/chemical interactions is high given that these promiscuous CYPs metabolize a plethora of different endogenous and exogenous chemicals.
Collapse
Affiliation(s)
| | - William S. Baldwin
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
29
|
Torres-Mendoza BMG, Ortiz GG, Sánchez-Romero L, Delgado-Lara DLC, García Martínez MT, Mireles-Ramírez MA, Cruz Serrano JA, Pacheco Moisés FP. Dietary fish oil increases catalase activity in patients with probable Alzheimer's disease. NUTR HOSP 2022; 39:1364-1368. [PMID: 36327127 DOI: 10.20960/nh.04153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
Background: Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the presence of neuritic plaques and neurofibrillary tangles that finally result in synaptic and neuronal loss. Oxidative stress accompanies pathological changes in AD. Objective: to assess the efficacy of dietary omega 3 polyunsaturated fatty acids supplementation on the levels of proteins oxidation, hydroperoxides and enzymatic activities of catalase and superoxide dismutase in AD patients. Methods: clinical, controlled, randomized, double-blind trial. Patients consumed fish oil or placebo for one year. Oxidative stress markers were assessed in plasma using spectrophotometric methods. Results: carbonyl groups in proteins and hydroperoxides in plasma have similar values in both treatment groups at the beginning of the study. At six and 12 months of treatment, these values decreased significantly in the fish oil group, while in the placebo group no changes were observed in both oxidative stress markers. Catalase activity increased significantly at six and twelve months after treatment in patients treated with fish oil. While the superoxide dismutase activity was not modified in both study groups. Conclusions: patients who consume omega 3 polyunsaturated fatty acids at a stable dose of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) show decreased oxidation of proteins and lipids in plasma. In addition, an increase in catalase activity was detected. Thus, the presented data warrants further studies evaluating the antioxidant effect of omega 3 polyunsaturated fatty acids.
Collapse
Affiliation(s)
- Blanca M G Torres-Mendoza
- Neurosciences Division. Centro de Investigación Biomédica de Occidente (CIBO). Instituto Mexicano del Seguro Social (IMSS)
| | - Genaro Gabriel Ortiz
- Neurosciences Division. Centro de Investigación Biomédica de Occidente (CIBO). Instituto Mexicano del Seguro Social (IMSS)
| | - Lorenzo Sánchez-Romero
- Neurosciences Division. Centro de Investigación Biomédica de Occidente (CIBO). Instituto Mexicano del Seguro Social (IMSS)
| | - Daniela L C Delgado-Lara
- Department of Philosophical and Methodological Disciplines and Molecular Biology in Medicine HC. Centro Universitario de Ciencias de la Salud. Universidad de Guadalajara
| | - María T García Martínez
- Laboratory of Biochemistry. Department of Chemistry. Centro Universitario de Ciencias Exactas e Ingeniería. Universidad de Guadalajara
| | - Mario-Alberto Mireles-Ramírez
- Department of Neurology. High Speciality Medical Unit. Centro de Investigación Biomédica de Occidente (CIBO). Instituto Mexicano del Seguro Social (IMSS)
| | | | - Fermín Paul Pacheco Moisés
- Laboratory of Biochemistry. Department of Chemistry. Centro Universitario de Ciencias Exactas e Ingeniería. Universidad de Guadalajara
| |
Collapse
|
30
|
Zhang Y, Gao L, Yao B, Huang S, Zhang Y, Liu J, Liu Z, Wang X. Role of epoxyeicosatrienoic acids in cardiovascular diseases and cardiotoxicity of drugs. Life Sci 2022; 310:121122. [DOI: 10.1016/j.lfs.2022.121122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022]
|
31
|
Pharmacological Aspects and Biological Effects of Cannabigerol and Its Synthetic Derivatives. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3336516. [PMID: 36397993 PMCID: PMC9666035 DOI: 10.1155/2022/3336516] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 07/28/2022] [Accepted: 08/05/2022] [Indexed: 11/09/2022]
Abstract
Cannabigerol (CBG) is a cannabinoid from the plant Cannabis sativa that lacks psychotomimetic effects. Its precursor is the acidic form, cannabigerolic acid (CBGA), which is, in turn, a biosynthetic precursor of the compounds cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC). CBGA decarboxylation leads to the formation of neutral cannabinoid CBG, through a chemical reaction catalyzed by heat. On the basis of the growing interest in CBG and with the aim of highlighting scientific information on this phytocannabinoid, we focused the content of this article on its pharmacokinetic and pharmacodynamic characteristics and on its principal pharmacological effects. CBG is metabolized in the liver by the enzyme CYP2J2 to produce hydroxyl and di-oxygenated products. CBG is considered a partial agonist at the CB1 receptor (R) and CB2R, as well as a regulator of endocannabinoid signaling. Potential pharmacological targets for CBG include transient receptor potential (TRP) channels, cyclooxygenase (COX-1 and COX-2) enzymes, cannabinoid, 5-HT1A, and alpha-2 receptors. Pre-clinical findings show that CBG reduces intraocular pressure, possesses antioxidant, anti-inflammatory, and anti-tumoral activities, and has anti-anxiety, neuroprotective, dermatological, and appetite-stimulating effects. Several findings suggest that research on CBG deserves to be deepened, as it could be used, alone or in association, for novel therapeutic approaches for several disorders.
Collapse
|
32
|
Ben Necib R, Manca C, Lacroix S, Martin C, Flamand N, Di Marzo V, Silvestri C. Hemp seed significantly modulates the endocannabinoidome and produces beneficial metabolic effects with improved intestinal barrier function and decreased inflammation in mice under a high-fat, high-sucrose diet as compared with linseed. Front Immunol 2022; 13:882455. [PMID: 36238310 PMCID: PMC9552265 DOI: 10.3389/fimmu.2022.882455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Omega-3 fatty acids support cardiometabolic health and reduce chronic low-grade inflammation. These fatty acids may impart their health benefits partly by modulating the endocannabinoidome and the gut microbiome, both of which are key regulators of metabolism and the inflammatory response. Whole hemp seeds (Cannabis sativa) are of exceptional nutritional value, being rich in omega-3 fatty acids. We assessed the effects of dietary substitution (equivalent to about 2 tablespoons of seeds a day for humans) of whole hemp seeds in comparison with whole linseeds in a diet-induced obesity mouse model and determined their effects on obesity and the gut microbiome-endocannabinoidome axis. We show that whole hemp seed substitution did not affect weigh gain, adiposity, or food intake, whereas linseed substitution did, in association with higher fasting glucose levels, greater insulin release during an oral glucose tolerance test, and higher levels of liver triglycerides than controls. Furthermore, hemp seed substitution mitigated diet-induced obesity-associated increases in intestinal permeability and circulating PAI-1 levels, while having no effects on markers of inflammation in epididymal adipose tissue, which were, however, increased in mice fed linseeds. Both hemp seeds and linseeds were able to modify the expression of several endocannabinoidome genes and markedly increased the levels of several omega-3 fatty acid–derived endocannabinoidome bioactive lipids with previously suggested anti-inflammatory actions in a tissue specific manner, despite the relatively low level of seed substitution. While neither diet markedly modified the gut microbiome, mice on the hemp seed diet had higher abundance of Clostridiaceae 1 and Rikenellaceae than mice fed linseed or control diet, respectively. Thus, hemp seed-containing foods might represent a source of healthy fats that are not likely to exacerbate the metabolic consequences of obesogenic diets while producing intestinal permeability protective effects and some anti-inflammatory actions.
Collapse
Affiliation(s)
- Rim Ben Necib
- Centre De Recherche De l’Institut Universitaire De Cardiologie Et De Pneumologie De Québec (IUCPQ), Quebec, QC, Canada
- Département De Médecine, Faculté de Médecine, Université Laval, Quebec, QC, Canada
- Institut Sur La Nutrition Et Les Aliments Fonctionnels (INAF), Quebec, QC, Canada
- Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Quebec, QC, Canada
| | - Claudia Manca
- Centre De Recherche De l’Institut Universitaire De Cardiologie Et De Pneumologie De Québec (IUCPQ), Quebec, QC, Canada
- Département De Médecine, Faculté de Médecine, Université Laval, Quebec, QC, Canada
- Institut Sur La Nutrition Et Les Aliments Fonctionnels (INAF), Quebec, QC, Canada
- Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Quebec, QC, Canada
| | - Sébastien Lacroix
- Institut Sur La Nutrition Et Les Aliments Fonctionnels (INAF), Quebec, QC, Canada
- Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Quebec, QC, Canada
| | - Cyril Martin
- Centre De Recherche De l’Institut Universitaire De Cardiologie Et De Pneumologie De Québec (IUCPQ), Quebec, QC, Canada
- Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Quebec, QC, Canada
| | - Nicolas Flamand
- Centre De Recherche De l’Institut Universitaire De Cardiologie Et De Pneumologie De Québec (IUCPQ), Quebec, QC, Canada
- Département De Médecine, Faculté de Médecine, Université Laval, Quebec, QC, Canada
- Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Quebec, QC, Canada
| | - Vincenzo Di Marzo
- Centre De Recherche De l’Institut Universitaire De Cardiologie Et De Pneumologie De Québec (IUCPQ), Quebec, QC, Canada
- Département De Médecine, Faculté de Médecine, Université Laval, Quebec, QC, Canada
- Institut Sur La Nutrition Et Les Aliments Fonctionnels (INAF), Quebec, QC, Canada
- Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Quebec, QC, Canada
- École de nutrition, Faculté Des Sciences De l’Agriculture Et De l’Alimentation (FSAA), Université Laval, Quebec, QC, Canada
- Centre Nutrition, Santé et Société (NUTRISS), Université Laval, Quebec, QC, Canada
| | - Cristoforo Silvestri
- Centre De Recherche De l’Institut Universitaire De Cardiologie Et De Pneumologie De Québec (IUCPQ), Quebec, QC, Canada
- Département De Médecine, Faculté de Médecine, Université Laval, Quebec, QC, Canada
- Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Quebec, QC, Canada
- Centre Nutrition, Santé et Société (NUTRISS), Université Laval, Quebec, QC, Canada
- *Correspondence: Cristoforo Silvestri,
| |
Collapse
|
33
|
Simard M, Archambault AS, Lavoie JPC, Dumais É, Di Marzo V, Flamand N. Biosynthesis and metabolism of endocannabinoids and their congeners from the monoacylglycerol andN-acyl-ethanolamine families. Biochem Pharmacol 2022; 205:115261. [PMID: 36152677 DOI: 10.1016/j.bcp.2022.115261] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/02/2022]
Abstract
The endocannabinoids 2-arachidonoyl-glycerol (2-AG) and N-arachidonoyl-ethanolamine (AEA) are eicosanoids implicated in numerous physiological processes like appetite, adipogenesis, inflammatory pain and inflammation. They mediate most of their physiological effect by activating the cannabinoid (CB) receptors 1 and 2. Other than directly binding to the CB receptors, 2-AG and AEA are also metabolized by most eicosanoid biosynthetic enzymes, yielding many metabolites that are part of the oxyendocannabinoidome. Some of these metabolites have been found in vivo, have the ability to modulate specific receptors and thus potentially influence physiological processes. In this review, we discuss the biosynthesis and metabolism of 2-AG and AEA, as well as their congeners from the monoacyl-glycerol and N-acyl-ethanolamine families, with a special focus on the metabolism by oxygenases involved in arachidonic acid metabolism. We highlight the knowledge gaps in our understanding of the regulation and roles the oxyendocannabinoidome mediators.
Collapse
Affiliation(s)
- Mélissa Simard
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département of médecine, Faculté de médecine, Université Laval, Québec City, QC G1V 4G5, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0A6, Canada
| | - Anne-Sophie Archambault
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département of médecine, Faculté de médecine, Université Laval, Québec City, QC G1V 4G5, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0A6, Canada; Present address: Department of Pathology and Laboratory Medicine, University of British Columbia / BC Children's Hospital Research Institute, Vancouver, British Colombia, Canada
| | - Jean-Philippe C Lavoie
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département of médecine, Faculté de médecine, Université Laval, Québec City, QC G1V 4G5, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0A6, Canada
| | - Élizabeth Dumais
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département of médecine, Faculté de médecine, Université Laval, Québec City, QC G1V 4G5, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0A6, Canada
| | - Vincenzo Di Marzo
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département of médecine, Faculté de médecine, Université Laval, Québec City, QC G1V 4G5, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0A6, Canada; Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale Delle Ricerche (CNR), 80078 Pozzuoli, Italy; Institut sur la Nutrition et les Aliments Fonctionnels, Centre NUTRISS, École de Nutrition, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec City, QC G1V 0A6, Canada; Joint International Unit between the Consiglio Nazionale delle Ricerche (Italy) and Université Laval (Canada) on Chemical and Biomolecular Research on the Microbiome and Its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu)
| | - Nicolas Flamand
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département of médecine, Faculté de médecine, Université Laval, Québec City, QC G1V 4G5, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0A6, Canada.
| |
Collapse
|
34
|
Fatty Acid-Derived N-acylethanolamines Dietary Supplementation Attenuates Neuroinflammation and Cognitive Impairment in LPS Murine Model. Nutrients 2022; 14:nu14183879. [PMID: 36145255 PMCID: PMC9504857 DOI: 10.3390/nu14183879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Neuroinflammation plays a critical role in the pathogenesis of most neurological and neurodegenerative diseases and therefore represents a potential therapeutic target. In this regard, accelerating the resolution process in chronic neuroinflammation may be an effective strategy to deal with the cognitive consequences of neuropathology and generalized inflammatory processes. N-acylethanolamine (NAE) derivatives of fatty acids, being highly active lipid mediators, possess pro-resolving activity in inflammatory processes and are promising agents for the suppression of neuroinflammation and its consequences. This paper is devoted to a study of the effects played by dietary supplement (DS), containing a composition of fatty acid-derived NAEs, obtained from squid Berryteuthis magister, on the hippocampal neuroinflammatory and memory processes. By detecting the production of pro-inflammatory cytokines and glial markers, a pronounced anti-inflammatory activity of DS was demonstrated both in vitro and in vivo. DS administration reversed the LPS-induced reduction in hippocampal neurogenesis and memory deterioration. LC-MS analysis revealed an increase in the production of a range of NAEs with well-documented anti-inflammatory activity in response to the administered lipid composition. To conclude, we found that tested DS suppresses the neuroinflammatory response by reducing glial activation, positively regulates neural progenitor proliferation, and attenuates hippocampal-dependent memory impairment.
Collapse
|
35
|
Nolan JM, Power R, Howard AN, Bergin P, Roche W, Prado-Cabrero A, Pope G, Cooke J, Power T, Mulcahy R. Supplementation With Carotenoids, Omega-3 Fatty Acids, and Vitamin E Has a Positive Effect on the Symptoms and Progression of Alzheimer’s Disease. J Alzheimers Dis 2022; 90:233-249. [DOI: 10.3233/jad-220556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Preliminary work by our center has reported behavior and functional benefits in patients with Alzheimer’s disease (AD) following targeted micronutritional supplementation. Objective: To build on the existing exploratory research and investigate the impact of these micronutrients on the natural progression of AD in a randomized controlled trial. Methods: Patients with mild-moderate AD consumed daily 1 g fish oil (of which 500 mg DHA, 150 mg EPA), 22 mg carotenoids (10 mg lutein, 10 mg meso-zeaxanthin, 2 mg zeaxanthin), and 15 mg vitamin E or placebo for 12 months in a double-blind, placebo-controlled, randomized clinical trial. Carotenoids, ω-3FAs, and vitamin E were quantified in blood. Carotenoids were also measured in skin. AD severity was measured using the mini-mental state examination and dementia severity rating scale tools. Behavior, mood, and memory were measured using an informant-based questionnaire. Results: Following 12 months of supplementation, the active group (n = 50) compared to the placebo group (n = 27), demonstrated statistically significant improvements in skin carotenoid measurements, blood carotenoids, ω-3FAs, and vitamin E concentrations (p < 0.05, for all). The active group also performed better in objective measures of AD severity (i.e., memory and mood), with a statistically significant difference reported in the clinical collateral for memory (p < 0.001). Conclusion: Exponential increases in the prevalence of AD and its relentless progressive nature is driving the need for interventions that help to ameliorate symptoms and improve quality of life in AD patients. Given the positive outcomes demonstrated in this trial, this combined micronutrient dietary supplement should be considered in the overall management of AD.
Collapse
Affiliation(s)
- John M. Nolan
- Nutrition Research Centre Ireland, School of Health Sciences, South East Technological University, West Campus, Waterford, Ireland
| | - Rebecca Power
- Nutrition Research Centre Ireland, School of Health Sciences, South East Technological University, West Campus, Waterford, Ireland
| | | | - Paula Bergin
- Nutrition Research Centre Ireland, School of Health Sciences, South East Technological University, West Campus, Waterford, Ireland
| | - Warren Roche
- Nutrition Research Centre Ireland, School of Health Sciences, South East Technological University, West Campus, Waterford, Ireland
| | - Alfonso Prado-Cabrero
- Nutrition Research Centre Ireland, School of Health Sciences, South East Technological University, West Campus, Waterford, Ireland
| | - George Pope
- Age-Related Care Unit, Health Service Executive, University Hospital Waterford, Dunmore Road, Waterford, Ireland
| | - John Cooke
- Age-Related Care Unit, Health Service Executive, University Hospital Waterford, Dunmore Road, Waterford, Ireland
| | - Tommy Power
- Nutrition Research Centre Ireland, School of Health Sciences, South East Technological University, West Campus, Waterford, Ireland
| | - Ríona Mulcahy
- Nutrition Research Centre Ireland, School of Health Sciences, South East Technological University, West Campus, Waterford, Ireland
- Age-Related Care Unit, Health Service Executive, University Hospital Waterford, Dunmore Road, Waterford, Ireland
- Royal College of Surgeons in Ireland, Saint Peter’s, Dublin, Ireland
| |
Collapse
|
36
|
Noureddine N, Hartling I, Wawrzyniak P, Srikanthan P, Lou PH, Lucchinetti E, Krämer SD, Rogler G, Zaugg M, Hersberger M. Lipid emulsion rich in n-3 polyunsaturated fatty acids elicits a pro-resolution lipid mediator profile in mouse tissues and in human immune cells. Am J Clin Nutr 2022; 116:786-797. [PMID: 35849016 DOI: 10.1093/ajcn/nqac131] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/07/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Lipid emulsions are a key component of total parenteral nutrition (TPN) and are administered to patients who are unable to ingest their daily required calories orally. Lipid emulsions rich with n-6 (ω-6) PUFAs are known to cause parenteral nutrition-associated liver disease and have inflammatory side effects, whereas n-3 PUFA-rich emulsions have favourable clinical outcomes. OBJECTIVES The present study used targeted lipid mediator analysis to investigate the metabolism of a n-3 PUFA-rich lipid emulsion and a n-6 PUFA-rich lipid emulsion in a mouse model of TPN and in primary human monocyte-derived macrophages (MDMs) and CD4+ T cells. RESULTS Mice given n-3 PUFA-based TPN for 7 d had a less proinflammatory lipid mediator profile compared with those receiving n-6 PUFA-based TPN. This was characterized by higher concentrations of specialized pro-resolving mediators (SPMs) and endocannabinoids, including resolvin D (RvD) 1, maresin (MaR) 1, MaR2, protectin D1 (PD1), protectin DX (PDX), and the endocannabinoids eicosapentaenoyl ethanolamide (EPEA) and docosahexaenoyl ethanolamide (DHEA) in the liver and RvD1, 17R-RvD1, RvD2, RvD3, RvD5, MaR1, MaR2, PD1, PDX, and EPEA and DHEA in the spleen. The spleen was identified as a source of high lipid mediator and SPM formation as lipid mediator concentrations were on average 25-fold higher than in the liver. Additionally, n-3 PUFA-treated primary human MDMs produced RvD5 and the endocannabinoids EPEA and DHEA, which was associated with an increased IL-10 secretion. In contrast, primary human CD4+ T cells showed only an increase in SPM precursors and an increase in the endocannabinoids EPEA and DHEA, which was associated with reduced cytokine expression. CONCLUSIONS This demonstrates that lipid mediators, particularly SPMs and endocannabinoids from spleen, could play a key role in facilitating the favorable clinical outcomes associated with the use of n-3 PUFA-rich lipid emulsions in TPN.
Collapse
Affiliation(s)
- Nazek Noureddine
- Division of Clinical Chemistry and Biochemistry, Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.,Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Ivan Hartling
- Division of Clinical Chemistry and Biochemistry, Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.,Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Paulina Wawrzyniak
- Division of Clinical Chemistry and Biochemistry, Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Pakeerathan Srikanthan
- Division of Clinical Chemistry and Biochemistry, Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Phing-How Lou
- Department of Anesthesiology and Pain Medicine and Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Eliana Lucchinetti
- Department of Anesthesiology and Pain Medicine and Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Stefanie D Krämer
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Michael Zaugg
- Department of Anesthesiology and Pain Medicine and Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada.,Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Martin Hersberger
- Division of Clinical Chemistry and Biochemistry, Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.,Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
37
|
Zhou L, Xiong JY, Chai YQ, Huang L, Tang ZY, Zhang XF, Liu B, Zhang JT. Possible antidepressant mechanisms of omega-3 polyunsaturated fatty acids acting on the central nervous system. Front Psychiatry 2022; 13:933704. [PMID: 36117650 PMCID: PMC9473681 DOI: 10.3389/fpsyt.2022.933704] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Omega-3 polyunsaturated fatty acids (PUFAs) can play important roles in maintaining mental health and resistance to stress, and omega-3 PUFAs supplementation can display beneficial effects on both the prevention and treatment of depressive disorders. Although the underlying mechanisms are still unclear, accumulated evidence indicates that omega-3 PUFAs can exhibit pleiotropic effects on the neural structure and function. Thus, they play fundamental roles in brain activities involved in the mood regulation. Since depressive symptoms have been assumed to be of central origin, this review aims to summarize the recently published studies to identify the potential neurobiological mechanisms underlying the anti-depressant effects of omega-3 PUFAs. These include that of (1) anti-neuroinflammatory; (2) hypothalamus-pituitary-adrenal (HPA) axis; (3) anti-oxidative stress; (4) anti-neurodegeneration; (5) neuroplasticity and synaptic plasticity; and (6) modulation of neurotransmitter systems. Despite many lines of evidence have hinted that these mechanisms may co-exist and work in concert to produce anti-depressive effects, the potentially multiple sites of action of omega-3 PUFAs need to be fully established. We also discussed the limitations of current studies and suggest future directions for preclinical and translational research in this field.
Collapse
Affiliation(s)
- Lie Zhou
- Yangtze University Health Science Center, Jingzhou, China
- Mental Health Institute of Yangtze University, Jingzhou, China
| | - Jia-Yao Xiong
- Yangtze University Health Science Center, Jingzhou, China
| | - Yu-Qian Chai
- Yangtze University Health Science Center, Jingzhou, China
| | - Lu Huang
- Yangtze University Health Science Center, Jingzhou, China
- Mental Health Institute of Yangtze University, Jingzhou, China
| | - Zi-Yang Tang
- Yangtze University Health Science Center, Jingzhou, China
- Mental Health Institute of Yangtze University, Jingzhou, China
- Jingzhou Mental Health Center, Jingzhou, China
| | - Xin-Feng Zhang
- Mental Health Institute of Yangtze University, Jingzhou, China
- Jingzhou Mental Health Center, Jingzhou, China
| | - Bo Liu
- Mental Health Institute of Yangtze University, Jingzhou, China
- Jingzhou Mental Health Center, Jingzhou, China
| | - Jun-Tao Zhang
- Yangtze University Health Science Center, Jingzhou, China
- Mental Health Institute of Yangtze University, Jingzhou, China
| |
Collapse
|
38
|
Simard M, Morin S, Ridha Z, Pouliot R. Current knowledge of the implication of lipid mediators in psoriasis. Front Immunol 2022; 13:961107. [PMID: 36091036 PMCID: PMC9459139 DOI: 10.3389/fimmu.2022.961107] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
The skin is an organ involved in several biological processes essential to the proper functioning of the organism. One of these essential biological functions of the skin is its barrier function, mediated notably by the lipids of the stratum corneum, and which prevents both penetration from external aggression, and transepidermal water loss. Bioactive lipid mediators derived from polyunsaturated fatty acids (PUFAs) constitute a complex bioactive lipid network greatly involved in skin homeostasis. Bioactive lipid mediators derived from n-3 and n-6 PUFAs have well-documented anti- and pro-inflammatory properties and are recognized as playing numerous and complex roles in the behavior of diverse skin diseases, including psoriasis. Psoriasis is an inflammatory autoimmune disease with many comorbidities and is associated with enhanced levels of pro-inflammatory lipid mediators. Studies have shown that a high intake of n-3 PUFAs can influence the development and progression of psoriasis, mainly by reducing the severity and frequency of psoriatic plaques. Herein, we provide an overview of the differential effects of n-3 and n-6 PUFA lipid mediators, including prostanoids, hydroxy-fatty acids, leukotrienes, specialized pro-resolving mediators, N-acylethanolamines, monoacylglycerols and endocannabinoids. This review summarizes current findings on lipid mediators playing a role in the skin and their potential as therapeutic targets for psoriatic patients.
Collapse
Affiliation(s)
- Mélissa Simard
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/Laboratoire d’Organogénèse EXpérimentale (LOEX), Axe Médecine Régénératrice, Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec, Québec, QC, Canada
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
| | - Sophie Morin
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/Laboratoire d’Organogénèse EXpérimentale (LOEX), Axe Médecine Régénératrice, Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec, Québec, QC, Canada
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
| | - Zainab Ridha
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/Laboratoire d’Organogénèse EXpérimentale (LOEX), Axe Médecine Régénératrice, Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec, Québec, QC, Canada
| | - Roxane Pouliot
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/Laboratoire d’Organogénèse EXpérimentale (LOEX), Axe Médecine Régénératrice, Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec, Québec, QC, Canada
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
- *Correspondence: Roxane Pouliot,
| |
Collapse
|
39
|
de Bus IA, America AHP, de Ruijter NCA, Lam M, van de Sande JW, Poland M, Witkamp RF, Zuilhof H, Balvers MGJ, Albada B. PUFA-Derived N-Acylethanolamide Probes Identify Peroxiredoxins and Small GTPases as Molecular Targets in LPS-Stimulated RAW264.7 Macrophages. ACS Chem Biol 2022; 17:2054-2064. [PMID: 35867905 PMCID: PMC9396616 DOI: 10.1021/acschembio.1c00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We studied the mechanistic and biological origins of anti-inflammatory poly-unsaturated fatty acid-derived N-acylethanolamines using synthetic bifunctional chemical probes of docosahexaenoyl ethanolamide (DHEA) and arachidonoyl ethanolamide (AEA) in RAW264.7 macrophages stimulated with 1.0 μg mL-1 lipopolysaccharide. Using a photoreactive diazirine, probes were covalently attached to their target proteins, which were further studied by introducing a fluorescent probe or biotin-based affinity purification. Fluorescence confocal microscopy showed DHEA and AEA probes localized in cytosol, specifically in structures that point toward the endoplasmic reticulum and in membrane vesicles. Affinity purification followed by proteomic analysis revealed peroxiredoxin-1 (Prdx1) as the most significant binding interactor of both DHEA and AEA probes. In addition, Prdx4, endosomal related proteins, small GTPase signaling proteins, and prostaglandin synthase 2 (Ptgs2, also known as cyclooxygenase 2 or COX-2) were identified. Lastly, confocal fluorescence microscopy revealed the colocalization of Ptgs2 and Rac1 with DHEA and AEA probes. These data identified new molecular targets suggesting that DHEA and AEA may be involved in reactive oxidation species regulation, cell migration, cytoskeletal remodeling, and endosomal trafficking and support endocytosis as an uptake mechanism.
Collapse
Affiliation(s)
- Ian-Arris de Bus
- Division of Human Nutrition and Health, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.,Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Antoine H P America
- Wageningen Plant Research, Business Unit Bioscience, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Norbert C A de Ruijter
- Laboratory of Cell Biology, Wageningen Light Microscopy Centre, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Milena Lam
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Jasper W van de Sande
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Mieke Poland
- Division of Human Nutrition and Health, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Renger F Witkamp
- Division of Human Nutrition and Health, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.,School of Pharmaceutical Sciences and Technology, Tianjin University, 92 Weijin Road, 300072 Tianjin, People's Republic of China.,Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Michiel G J Balvers
- Division of Human Nutrition and Health, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Bauke Albada
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
40
|
Liu T, Dogan I, Rothe M, Kunz JV, Knauf F, Gollasch M, Luft FC, Gollasch B. Hemodialysis and biotransformation of erythrocyte epoxy fatty acids in peripheral tissue. Prostaglandins Leukot Essent Fatty Acids 2022; 181:102453. [PMID: 35633593 DOI: 10.1016/j.plefa.2022.102453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/05/2022] [Accepted: 05/19/2022] [Indexed: 11/28/2022]
Abstract
Cardiovascular disease is the leading cause of mortality in patients with renal failure. Red blood cells (RBCs) are potential reservoirs for epoxy fatty acids (oxylipins) that regulate cardiovascular function. Hemoglobin exhibits pseudo-lipoxygenase activity in vitro. We previously assessed the impact of single hemodialysis (HD) treatment on RBC epoxy fatty acids status in circulating arterial blood and found that eicosanoids in oxygenated RBCs could be particularly vulnerable in chronic kidney disease and hemodialysis. The purpose of the present study was to evaluate the differences of RBC epoxy fatty acids profiles in arterial and venous blood in vivo (AV differences) from patients treated by HD treatment. We collected arterial and venous blood samples in upper limbs from 12 end-stage renal disease (ESRD) patients (age 72±12 years) before and after HD treatment. We measured oxylipins derived from cytochrome P450 (CYP) monooxygenase and lipoxygenase (LOX)/CYP ω/(ω-1)-hydroxylase pathways in RBCs by LC-MS/MS tandem mass spectrometry. Our data demonstrate arteriovenous differences in LOX pathway metabolites in RBCs after dialysis, including numerous hydroxyeicosatetraenoic acids (HETEs), hydroxydocosahexaenoic acids (HDHAs) and hydroxyeicosapentaenoic acids (HEPEs). We detected more pronounced changes in free metabolites in RBCs after HD, as compared with the total RBC compartment. Hemodialysis treatment did not affect the majority of CYP and CYP ω/(ω-1)-hydroxylase products in RBCs. Our data indicate that erythro-metabolites of the LOX pathway are influenced by renal-replacement therapies, which could have deleterious effects in the circulation.
Collapse
Affiliation(s)
- Tong Liu
- Experimental and Clinical Research Center (ECRC), a joint institution of the Charité Medical Faculty and Max Delbrück Center (MDC) for Molecular Medicine, Berlin 13125, Germany
| | - Inci Dogan
- LIPIDOMIX GmbH, Robert-Rössle-Str. 10, Berlin 13125, Germany
| | - Michael Rothe
- LIPIDOMIX GmbH, Robert-Rössle-Str. 10, Berlin 13125, Germany
| | - Julius V Kunz
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin 13353
| | - Felix Knauf
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin 13353
| | - Maik Gollasch
- Department of Internal Medicine and Geriatrics, University Medicine Greifswald, Greifswald 17475, Germany
| | - Friedrich C Luft
- Experimental and Clinical Research Center (ECRC), a joint institution of the Charité Medical Faculty and Max Delbrück Center (MDC) for Molecular Medicine, Berlin 13125, Germany
| | - Benjamin Gollasch
- Experimental and Clinical Research Center (ECRC), a joint institution of the Charité Medical Faculty and Max Delbrück Center (MDC) for Molecular Medicine, Berlin 13125, Germany; Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin 13353; HELIOS Klinikum Berlin-Buch, Schwanebecker Chaussee 50, Berlin 13125, Germany.
| |
Collapse
|
41
|
Kytikova OY, Denisenko YK, Novgorodtseva TP, Bocharova NV, Kovalenko IS. [Fatty acid epoxides in the regulation of the inflammation]. BIOMEDITSINSKAIA KHIMIIA 2022; 68:177-189. [PMID: 35717582 DOI: 10.18097/pbmc20226803177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cyclooxygenase and lipoxygenase derived lipid metabolites of polyunsaturated fatty acids (PUFAs), as well as their role in the inflammation, have been studied quite thoroughly. However, cytochrome P450 derived lipid mediators, as well as their participation in the regulation of the inflammation, need deeper understanding. In recent years, it has become known that PUFAs are oxidized by cytochrome P450 epoxygenases to epoxy fatty acids, which act as the extremely powerful lipid mediators involved in resolving inflammation. Recent studies have shown that the anti-inflammatory mechanisms of ω-3 PUFAs are also mediated by their conversion to the endocannabinoid epoxides. Thus, it is clear that a number of therapeutically relevant functions of PUFAs are due to their conversion to PUFA epoxides. However, with the participation of cytochrome P450 epoxygenases, not only PUFA epoxides, but also other metabolites are formed. They are further are converted by epoxide hydrolases into pro-inflammatory dihydroxy fatty acids and anti-inflammatory dihydroxyeicosatrienoic acids. The study of the role of PUFA epoxides in the regulation of the inflammation and pharmacological modeling of the activity of epoxide hydrolases are the promising strategies for the treatment of the inflammatory diseases. This review systematizes the current literature data of the fatty acid epoxides, in particular, the endocannabinoid epoxides. Their role in the regulation of inflammation is discussed.
Collapse
Affiliation(s)
- O Y Kytikova
- Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration - Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok, Russia
| | - Y K Denisenko
- Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration - Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok, Russia
| | - T P Novgorodtseva
- Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration - Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok, Russia
| | - N V Bocharova
- Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration - Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok, Russia
| | - I S Kovalenko
- Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration - Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok, Russia
| |
Collapse
|
42
|
Molecular and Signaling Mechanisms for Docosahexaenoic Acid-Derived Neurodevelopment and Neuroprotection. Int J Mol Sci 2022; 23:ijms23094635. [PMID: 35563025 PMCID: PMC9100376 DOI: 10.3390/ijms23094635] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 02/01/2023] Open
Abstract
The neurodevelopmental and neuroprotective actions of docosahexaenoic acid (DHA) are mediated by mechanisms involving membrane- and metabolite-related signal transduction. A key characteristic in the membrane-mediated action of DHA results from the stimulated synthesis of neuronal phosphatidylserine (PS). The resulting DHA-PS-rich membrane domains facilitate the translocation and activation of kinases such as Raf-1, protein kinase C (PKC), and Akt. The activation of these signaling pathways promotes neuronal development and survival. DHA is also metabolized in neural tissues to bioactive mediators. Neuroprotectin D1, a docosatriene synthesized by the lipoxygenase activity, has an anti-inflammatory property, and elovanoids formed from DHA elongation products exhibit antioxidant effects in the retina. Synaptamide, an endocannabinoid-like lipid mediator synthesized from DHA in the brain, promotes neurogenesis and synaptogenesis and exerts anti-inflammatory effects. It binds to the GAIN domain of the GPR110 (ADGRF1) receptor, triggers the cAMP/protein kinase A (PKA) signaling pathway, and activates the cAMP-response element binding protein (CREB). The DHA status in the brain influences not only the PS-dependent signal transduction but also the metabolite formation and expression of pre- and post-synaptic proteins that are downstream of the CREB and affect neurotransmission. The combined actions of these processes contribute to the neurodevelopmental and neuroprotective effects of DHA.
Collapse
|
43
|
Kim JS, Arango AS, Shah S, Arnold WR, Tajkhorshid E, Das A. Anthracycline derivatives inhibit cardiac CYP2J2. J Inorg Biochem 2022; 229:111722. [PMID: 35078036 PMCID: PMC8860876 DOI: 10.1016/j.jinorgbio.2022.111722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 11/20/2022]
Abstract
Anthracycline chemotherapeutics are highly effective, but their clinical usefulness is hampered by adverse side effects such as cardiotoxicity. Cytochrome P450 2J2 (CYP2J2) is a cytochrome P450 epoxygenase in human cardiomyocytes that converts arachidonic acid (AA) to cardioprotective epoxyeicosatrienoic acid (EET) regioisomers. Herein, we performed biochemical studies to understand the interaction of anthracycline derivatives (daunorubicin, doxorubicin, epirubicin, idarubicin, 5-iminodaunorubicin, zorubicin, valrubicin, and aclarubicin) with CYP2J2. We utilized fluorescence polarization (FP) to assess whether anthracyclines bind to CYP2J2. We found that aclarubicin bound the strongest to CYP2J2 despite it having large bulky groups. We determined that ebastine competitively inhibits anthracycline binding, suggesting that ebastine and anthracyclines may share the same binding site. Molecular dynamics and ensemble docking revealed electrostatic interactions between the anthracyclines and CYP2J2, contributing to binding stability. In particular, the glycosamine groups in anthracyclines are stabilized by binding to glutamate and aspartate residues in CYP2J2 forming salt bridge interactions. Furthermore, we used iterative ensemble docking schemes to gauge anthracycline influence on EET regioisomer production and anthracycline inhibition on AA metabolism. This was followed by experimental validation of CYP2J2-mediated metabolism of anthracycline derivatives using liquid chromatography tandem mass spectrometry fragmentation analysis and inhibition of CYP2J2-mediated AA metabolism by these derivatives. Taken together, we use both experimental and theoretical methodologies to unveil the interactions of anthracycline derivatives with CYP2J2. These studies will help identify alternative mechanisms of how anthracycline cardiotoxicity may be mediated through the inhibition of cardiac P450, which will aid in the design of new anthracycline derivatives with lower toxicity.
Collapse
Affiliation(s)
- Justin S Kim
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Andres S Arango
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America; Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Swapnil Shah
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America
| | - William R Arnold
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Emad Tajkhorshid
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America; Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America; Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Aditi Das
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America; Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America; Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America; Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America.
| |
Collapse
|
44
|
Feng L, Tian X, Yao D, Yu Z, Huo X, Tian Z, Ning J, Cui J, James TD, Ma X. A practical strategy to develop isoform-selective near-infrared fluorescent probes for human cytochrome P450 enzymes. Acta Pharm Sin B 2022; 12:1976-1986. [PMID: 35847500 PMCID: PMC9279627 DOI: 10.1016/j.apsb.2021.11.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/20/2021] [Accepted: 11/16/2021] [Indexed: 01/08/2023] Open
Abstract
Currently, the development of selective fluorescent probes toward targeted enzymes is still a great challenge, due to the existence of numerous isoenzymes that share similar catalytic capacity. Herein, a double-filtering strategy was established to effectively develop isoenzyme-specific fluorescent probe(s) for cytochrome P450 (CYP) which are key enzymes involving in metabolism of endogenous substances and drugs. In the first-stage of our filtering approach, near-infrared (NIR) fluorophores with alkoxyl group were prepared for the screening of CYP-activated fluorescent substrates using a CYPs-dependent incubation system. In the second stage of our filtering approach, these candidates were further screened using reverse protein-ligand docking to effectively determine CYP isoenzyme-specific probe(s). Using our double-filtering approach, probes S9 and S10 were successfully developed for the real-time and selective detection of CYP2C9 and CYP2J2, respectively, to facilitate high-throughput screening and assessment of CYP2C9-mediated clinical drug interaction risks and CYP2J2-associated disease diagnosis. These observations suggest that our strategy could be used to develop the isoform-specific probes for CYPs.
Collapse
Key Words
- Biomarker analysis
- CYP, cytochrome P450
- Cytochrome P450
- DDI, drug–drug interactions
- DNZ, danazol
- Drug–drug interactions
- Enzyme activity bioimaging
- FVT, fluvastatin
- Fluorescent probe
- HLM, human liver microsome
- ICT, intramolecular charge transfer
- LC‒MS/MS, liquid chromatography‒tandem mass spectrometry
- MCN, miconazole
- MD, molecular dynamics
- MM-GBSA, binding free energy calculation
- NADPH, nicotinamide-adenine dinucleotide phosphate
- NIR, near-infrared
- PT, prothrombin time
- RLX, raloxifene
- RMSD, root-mean square deviation
- SCN, sulconazole
- SPN, sulfaphenazole
- WAR, warfarin
Collapse
Affiliation(s)
- Lei Feng
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China
- College of Pharmacy, the National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, Dalian Medical University, Dalian 116044, China
| | - Xiangge Tian
- College of Pharmacy, the National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, Dalian Medical University, Dalian 116044, China
| | - Dahong Yao
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518060, China
| | - Zhenlong Yu
- College of Pharmacy, the National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, Dalian Medical University, Dalian 116044, China
| | - Xiaokui Huo
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China
- College of Pharmacy, the National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, Dalian Medical University, Dalian 116044, China
| | - Zhenhao Tian
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Jing Ning
- College of Pharmacy, the National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, Dalian Medical University, Dalian 116044, China
| | - Jingnan Cui
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Tony D. James
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Xiaochi Ma
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China
- College of Pharmacy, the National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
45
|
Kocherlakota C, Nagaraju B, Arjun N, Srinath A, Kothapalli KSD, Brenna JT. Inhalation of nebulized omega-3 fatty acids mitigate LPS-induced acute lung inflammation in rats: Implications for treatment of COPD and COVID-19. Prostaglandins Leukot Essent Fatty Acids 2022; 179:102426. [PMID: 35381532 PMCID: PMC8964507 DOI: 10.1016/j.plefa.2022.102426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 01/08/2023]
Abstract
Many current treatment options for lung inflammation and thrombosis come with unwanted side effects. The natural omega-3 fatty acids (O3FA) are generally anti-inflammatory and antithrombotic. O3FA are always administered orally and occasionally by intravenous (IV) infusion. The main goal of this study is to determine if O3FA administered by inhalation of a nebulized formulation mitigates LPS-induced acute lung inflammation in male Wistar rats. Inflammation was triggered by intraperitoneal injection of LPS once a day for 14 days. One hour post-injection, rats received nebulized treatments consisting of egg lecithin emulsified O3, Budesonide and Montelukast, and blends of O3 and Melatonin or Montelukast or Cannabidiol; O3 was in the form of free fatty acids for all groups except one group with ethyl esters. Lung histology and cytokines were determined in n = 3 rats per group at day 8 and day 15. All groups had alveolar histiocytosis severity scores half or less than that of the disease control (Cd) treated with LPS and saline only inhalation. IL-6, TNF-α, TGF-β, and IL-10 were attenuated in all O3FA groups. IL-1β was attenuated in most but not all O3 groups. O3 administered as ethyl ester was overall most effective in mitigating LPS effects. No evidence of lipid pneumonia or other chronic distress was observed. These preclinical data suggest that O3FA formulations should be further investigated as treatments in lung inflammation and thrombosis related lung disorders, including asthma, chronic obstructive pulmonary disease, lung cancer and acute respiratory distress such as COVID-19.
Collapse
Affiliation(s)
| | - Banda Nagaraju
- Leiutis Pharmaceuticals LLP, Plot No. 23, TIE 1st Phase, Balanagar, Hyderabad, Telangana 500037, India
| | - Narala Arjun
- Leiutis Pharmaceuticals LLP, Plot No. 23, TIE 1st Phase, Balanagar, Hyderabad, Telangana 500037, India
| | - Akula Srinath
- Leiutis Pharmaceuticals LLP, Plot No. 23, TIE 1st Phase, Balanagar, Hyderabad, Telangana 500037, India
| | - Kumar S D Kothapalli
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX 78723, United States.
| | - J Thomas Brenna
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX 78723, United States.
| |
Collapse
|
46
|
Sun J, Zhang W. Supplementation with dietary omega-3 PUFA mitigates fetal brain inflammation and mitochondrial damage caused by high doses of sodium nitrite in maternal rats. PLoS One 2022; 17:e0266084. [PMID: 35324981 PMCID: PMC8947126 DOI: 10.1371/journal.pone.0266084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/13/2022] [Indexed: 11/29/2022] Open
Abstract
Objective Food safety and nutrition during pregnancy are important concerns related to fetal brain development. In the present study, we aimed to explore the effects of omega-3 polyunsaturated fatty acids (PUFA ω-3) on exogenous sodium nitrite intervention-induced fetal brain injury in pregnant rats. Methods During pregnancy, rats were exposed to water containing sodium nitrite (0.05%, 0.15%, and 0.25%) to establish a fetal rat brain injury model. Inflammatory factors and oxidative stress levels were detected using enzyme-linked immunosorbent assay (ELISA) or flow cytometry. Subsequently, animals were divided into three groups: control, model, and 4% PUFA ω-3. Pregnancy outcomes were measured and recorded. Hematoxylin-eosin (H&E) staining and immunohistochemistry (IHC) were utilized to observe brain injury. ELISA, quantitative real-time PCR (qRT-PCR), western blot, flow cytometry, and transmission electron microscopy (TEM) were adopted to measure the levels of inflammatory factors, the NRF1/HMOX1 signaling pathway, and mitochondrial and oxidative stress damage. Results With the increase of sodium nitrite concentration, the inflammatory factors and oxidative stress levels increased. Therefore, the high dose group was set as the model group for the following experiments. After PUFA ω-3 treatment, the fetal survival ratio, average body weight, and brain weight were elevated. The cells in the PUFA ω-3 group were more closely arranged and more round than the model. PUFA ω-3 treatment relieved inflammatory factors, oxidative stress levels, and mitochondria damage while increasing the indicators related to brain injury and NRF1/HMOX1 levels. Conclusions Sodium nitrite exposure during pregnancy could cause brain damage in fetal rats. PUFA ω-3 might help alleviate brain inflammation, oxidative stress, and mitochondrial damage, possibly through the NRF1/HMOX1 signaling pathway. In conclusion, appropriately reducing sodium nitrite exposure and increasing PUFA omega-3 intake during pregnancy may benefit fetal brain development. These findings could further our understanding of nutrition and health during pregnancy.
Collapse
Affiliation(s)
- Jingchi Sun
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Weishe Zhang
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Engineering Research Center of Early Life Development and Disease Prevention, Changsha, Hunan, China
- * E-mail:
| |
Collapse
|
47
|
Sroczyńska K, Totoń-Żurańska J, Czepiel J, Zając-Grabiec A, Jurczyszyn A, Wołkow P, Librowski T, Gdula-Argasińska J. Therapeutic role of eicosapentaenoic and arachidonic acid in benzo(a) pyrene-induced toxicity in HUVEC endothelial cells. Life Sci 2022; 293:120345. [DOI: 10.1016/j.lfs.2022.120345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/09/2022] [Accepted: 01/16/2022] [Indexed: 12/31/2022]
|
48
|
Durán AM, Beeson WL, Firek A, Cordero-MacIntyre Z, De León M. Dietary Omega-3 Polyunsaturated Fatty-Acid Supplementation Upregulates Protective Cellular Pathways in Patients with Type 2 Diabetes Exhibiting Improvement in Painful Diabetic Neuropathy. Nutrients 2022; 14:nu14040761. [PMID: 35215418 PMCID: PMC8876723 DOI: 10.3390/nu14040761] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Background: Omega-3 polyunsaturated fatty acids (PUFAs) have been proposed to improve chronic neuroinflammatory diseases in peripheral and central nervous systems. For instance, docosahexaenoic acid (DHA) protects nerve cells from noxious stimuli in vitro and in vivo. Recent reports link PUFA supplementation to improving painful diabetic neuropathy (pDN) symptoms, but cellular mechanisms responsible for this therapeutic effect are not well understood. The objective of this study is to identify distinct cellular pathways elicited by dietary omega-3 PUFA supplementation in patients with type 2 diabetes mellitus (T2DM) affected by pDN. Methods: Forty volunteers diagnosed with type 2 diabetes were enrolled in the “En Balance-PLUS” diabetes education study. The volunteers participated in weekly lifestyle/nutrition education and daily supplementation with 1000 mg DHA and 200 mg eicosapentaenoic acid. The Short-Form McGill Pain Questionnaire validated clinical determination of baseline and post-intervention pain complaints. Laboratory and untargeted metabolomics analyses were conducted using blood plasma collected at baseline and after three months of participation in the dietary regimen. The metabolomics data were analyzed using random forest, hierarchical clustering, ingenuity pathway analysis, and metabolic pathway mapping. Results: The data show that metabolites involved in oxidative stress and glutathione production shifted significantly to a more anti-inflammatory state post supplementation. Example of these metabolites include cystathionine (+90%), S-methylmethionine (+9%), glycine cysteine-glutathione disulfide (+157%) cysteinylglycine (+19%), glutamate (−11%), glycine (+11%), and arginine (+13.4%). In addition, the levels of phospholipids associated with improved membrane fluidity such as linoleoyl-docosahexaenoyl-glycerol (18:2/22:6) (+253%) were significantly increased. Ingenuity pathway analysis suggested several key bio functions associated with omega-3 PUFA supplementation such as formation of reactive oxygen species (p = 4.38 × 10−4, z-score = −1.96), peroxidation of lipids (p = 2.24 × 10−5, z-score = −1.944), Ca2+ transport (p = 1.55 × 10−4, z-score = −1.969), excitation of neurons (p = 1.07 ×10−4, z-score = −1.091), and concentration of glutathione (p = 3.06 × 10−4, z-score = 1.974). Conclusion: The reduction of pro-inflammatory and oxidative stress pathways following dietary omega-3 PUFA supplementation is consistent with the promising role of these fatty acids in reducing adverse symptoms associated with neuroinflammatory diseases and painful neuropathy.
Collapse
Affiliation(s)
- Alfonso M. Durán
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (A.M.D.); (W.L.B.); (Z.C.-M.)
| | - W. Lawrence Beeson
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (A.M.D.); (W.L.B.); (Z.C.-M.)
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA 92350, USA
| | - Anthony Firek
- Comparative Effectiveness and Clinical Outcomes Research Center, Riverside University Health System Medical Center, Moreno Valley, CA 92555, USA;
| | - Zaida Cordero-MacIntyre
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (A.M.D.); (W.L.B.); (Z.C.-M.)
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA 92350, USA
| | - Marino De León
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (A.M.D.); (W.L.B.); (Z.C.-M.)
- Correspondence: ; Tel.: +1-909-558-9474
| |
Collapse
|
49
|
Wilt S, Kodani S, Valencia L, Hudson PK, Sanchez S, Quintana T, Morisseau C, Hammock BD, Kandasamy R, Pecic S. Further exploration of the structure-activity relationship of dual soluble epoxide hydrolase/fatty acid amide hydrolase inhibitors. Bioorg Med Chem 2021; 51:116507. [PMID: 34794001 DOI: 10.1016/j.bmc.2021.116507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 11/30/2022]
Abstract
Fatty acid amide hydrolase (FAAH) is a membrane protein that hydrolyzes endocannabinoids, and its inhibition produces analgesic and anti-inflammatory effects. The soluble epoxide hydrolase (sEH) hydrolyzes epoxyeicosatrienoic acids (EETs) to dihydroxyeicosatetraenoic acids. EETs have anti-inflammatory and inflammation resolving properties, thus inhibition of sEH consequently reduces inflammation. Concurrent inhibition of both enzymes may represent a novel approach in the treatment of chronic pain. Drugs with multiple targets can provide a superior therapeutic effect and a decrease in side effects compared to ligands with single targets. Previously, microwave-assisted methodologies were employed to synthesize libraries of benzothiazole analogs from which high affinity dual inhibitors (e.g. 3, sEH IC50 = 9.6 nM; FAAH IC50 = 7 nM) were identified. Here, our structure-activity relationship studies revealed that the 4-phenylthiazole moiety is well tolerated by both enzymes, producing excellent inhibition potencies in the low nanomolar range (e.g. 6o, sEH IC50 = 2.5 nM; FAAH IC50 = 9.8 nM). Docking experiments show that the new class of dual inhibitors bind within the catalytic sites of both enzymes. Prediction of several pharmacokinetic/pharmacodynamic properties suggest that these new dual inhibitors are good candidates for further in vivo evaluation. Finally, dual inhibitor 3 was tested in the Formalin Test, a rat model of acute inflammatory pain. The data indicate that 3 produces antinociception against the inflammatory phase of the Formalin Test in vivo and is metabolically stable following intraperitoneal administration in male rats. Further, antinociception produced by 3 is comparable to that of ketoprofen, a traditional nonsteroidal anti-inflammatory drug. The results presented here will help toward the long-term goal of developing novel non-opioid therapeutics for pain management.
Collapse
Affiliation(s)
- Stephanie Wilt
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA 92834, United States
| | - Sean Kodani
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, United States
| | - Leah Valencia
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA 92834, United States
| | - Paula K Hudson
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA 92834, United States
| | - Stephanie Sanchez
- Department of Psychology, California State University, East Bay, 25800 Carlos Bee Blvd. Science S229, Hayward, CA 94542, United States
| | - Taylor Quintana
- Department of Psychology, California State University, East Bay, 25800 Carlos Bee Blvd. Science S229, Hayward, CA 94542, United States
| | - Christophe Morisseau
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, United States
| | - Bruce D Hammock
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, United States
| | - Ram Kandasamy
- Department of Psychology, California State University, East Bay, 25800 Carlos Bee Blvd. Science S229, Hayward, CA 94542, United States.
| | - Stevan Pecic
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA 92834, United States.
| |
Collapse
|
50
|
de Melo Reis RA, Isaac AR, Freitas HR, de Almeida MM, Schuck PF, Ferreira GC, Andrade-da-Costa BLDS, Trevenzoli IH. Quality of Life and a Surveillant Endocannabinoid System. Front Neurosci 2021; 15:747229. [PMID: 34776851 PMCID: PMC8581450 DOI: 10.3389/fnins.2021.747229] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/01/2021] [Indexed: 12/11/2022] Open
Abstract
The endocannabinoid system (ECS) is an important brain modulatory network. ECS regulates brain homeostasis throughout development, from progenitor fate decision to neuro- and gliogenesis, synaptogenesis, brain plasticity and circuit repair, up to learning, memory, fear, protection, and death. It is a major player in the hypothalamic-peripheral system-adipose tissue in the regulation of food intake, energy storage, nutritional status, and adipose tissue mass, consequently affecting obesity. Loss of ECS control might affect mood disorders (anxiety, hyperactivity, psychosis, and depression), lead to drug abuse, and impact neurodegenerative (Alzheimer's, Parkinson, Huntington, Multiple, and Amyotrophic Lateral Sclerosis) and neurodevelopmental (autism spectrum) disorders. Practice of regular physical and/or mind-body mindfulness and meditative activities have been shown to modulate endocannabinoid (eCB) levels, in addition to other players as brain-derived neurotrophic factor (BDNF). ECS is involved in pain, inflammation, metabolic and cardiovascular dysfunctions, general immune responses (asthma, allergy, and arthritis) and tumor expansion, both/either in the brain and/or in the periphery. The reason for such a vast impact is the fact that arachidonic acid, a precursor of eCBs, is present in every membrane cell of the body and on demand eCBs synthesis is regulated by electrical activity and calcium shifts. Novel lipid (lipoxins and resolvins) or peptide (hemopressin) players of the ECS also operate as regulators of physiological allostasis. Indeed, the presence of cannabinoid receptors in intracellular organelles as mitochondria or lysosomes, or in nuclear targets as PPARγ might impact energy consumption, metabolism and cell death. To live a better life implies in a vigilant ECS, through healthy diet selection (based on a balanced omega-3 and -6 polyunsaturated fatty acids), weekly exercises and meditation therapy, all of which regulating eCBs levels, surrounded by a constructive social network. Cannabidiol, a diet supplement has been a major player with anti-inflammatory, anxiolytic, antidepressant, and antioxidant activities. Cognitive challenges and emotional intelligence might strengthen the ECS, which is built on a variety of synapses that modify human behavior. As therapeutically concerned, the ECS is essential for maintaining homeostasis and cannabinoids are promising tools to control innumerous targets.
Collapse
Affiliation(s)
- Ricardo Augusto de Melo Reis
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alinny Rosendo Isaac
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hércules Rezende Freitas
- Laboratory of Neuroenergetics and Inborn Errors of Metabolism, Institute of Medical Biochemistry Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana Macedo de Almeida
- Laboratory of Molecular Endocrinology, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia Fernanda Schuck
- Laboratory of Neuroenergetics and Inborn Errors of Metabolism, Institute of Medical Biochemistry Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gustavo Costa Ferreira
- Laboratory of Neuroenergetics and Inborn Errors of Metabolism, Institute of Medical Biochemistry Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Isis Hara Trevenzoli
- Laboratory of Molecular Endocrinology, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|