1
|
Moysidou E, Christodoulou M, Lioulios G, Stai S, Karamitsos T, Dimitroulas T, Fylaktou A, Stangou M. Lymphocytes Change Their Phenotype and Function in Systemic Lupus Erythematosus and Lupus Nephritis. Int J Mol Sci 2024; 25:10905. [PMID: 39456692 PMCID: PMC11508046 DOI: 10.3390/ijms252010905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease, characterized by considerable changes in peripheral lymphocyte structure and function, that plays a critical role in commencing and reviving the inflammatory and immune signaling pathways. In healthy individuals, B lymphocytes have a major role in guiding and directing defense mechanisms against pathogens. Certain changes in B lymphocyte phenotype, including alterations in surface and endosomal receptors, occur in the presence of SLE and lead to dysregulation of peripheral B lymphocyte subpopulations. Functional changes are characterized by loss of self-tolerance, intra- and extrafollicular activation, and increased cytokine and autoantibody production. T lymphocytes seem to have a supporting, rather than a leading, role in the disease pathogenesis. Substantial aberrations in peripheral T lymphocyte subsets are evident, and include a reduction of cytotoxic, regulatory, and advanced differentiated subtypes, together with an increase of activated and autoreactive forms and abnormalities in follicular T cells. Up-regulated subpopulations, such as central and effector memory T cells, produce pre-inflammatory cytokines, activate B lymphocytes, and stimulate cell signaling pathways. This review explores the pivotal roles of B and T lymphocytes in the pathogenesis of SLE and Lupus Nephritis, emphasizing the multifaceted mechanisms and interactions and their phenotypic and functional dysregulations.
Collapse
Affiliation(s)
- Eleni Moysidou
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Nephrology, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Michalis Christodoulou
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Nephrology, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Georgios Lioulios
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Nephrology, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Stamatia Stai
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Nephrology, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Theodoros Karamitsos
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Cardiology, AHEPA University Hospital, 54636 Thessaloniki, Greece
| | - Theodoros Dimitroulas
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 4th Department of Medicine, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Asimina Fylaktou
- Department of Immunology, National Histocompatibility Center, Hippokration General Hospital, 54642 Thessaloniki, Greece;
| | - Maria Stangou
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Nephrology, Hippokration General Hospital, 54642 Thessaloniki, Greece
| |
Collapse
|
2
|
Yolmo P, Rahimi S, Chenard S, Conseil G, Jenkins D, Sachdeva K, Emon I, Hamilton J, Xu M, Rangachari M, Michaud E, Mansure JJ, Kassouf W, Berman DM, Siemens DR, Koti M. Atypical B Cells Promote Cancer Progression and Poor Response to Bacillus Calmette-Guérin in Non-Muscle Invasive Bladder Cancer. Cancer Immunol Res 2024; 12:1320-1339. [PMID: 38916567 PMCID: PMC11443217 DOI: 10.1158/2326-6066.cir-23-1114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/03/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Poor response to Bacillus Calmette-Guérin (BCG) immunotherapy remains a major barrier in the management of patients with non-muscle invasive bladder cancer (NMIBC). Multiple factors are associated with poor outcomes, including biological aging and female sex. More recently, it has emerged that a B-cell-infiltrated pretreatment immune microenvironment of NMIBC tumors can influence the response to intravesically administered BCG. The mechanisms underlying the roles of B cells in NMIBC are poorly understood. Here, we show that B-cell-dominant tertiary lymphoid structures (TLSs), a hallmark feature of the chronic mucosal immune response, are abundant and located close to the epithelial compartment in pretreatment tumors from BCG non-responders. Digital spatial proteomic profiling of whole tumor sections from male and female patients with NMIBC who underwent treatment with intravesical BCG, revealed higher expression of immune exhaustion-associated proteins within the tumor-adjacent TLSs in both responders and non-responders. Chronic local inflammation, induced by the N-butyl-N-(4-hydroxybutyl) nitrosamine carcinogen, led to TLS formation with recruitment and differentiation of the immunosuppressive atypical B-cell (ABC) subset within the bladder microenvironment, predominantly in aging female mice compared to their male counterparts. Depletion of ABCs simultaneous to BCG treatment delayed cancer progression in female mice. Our findings provide evidence indicating a role for ABCs in BCG response and will inform future development of therapies targeting the B-cell-exhaustion axis.
Collapse
Affiliation(s)
- Priyanka Yolmo
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
- Sinclair Cancer Research Institute, Queen's University, Kingston, Canada
| | - Sadaf Rahimi
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
- Sinclair Cancer Research Institute, Queen's University, Kingston, Canada
| | - Stephen Chenard
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
- Sinclair Cancer Research Institute, Queen's University, Kingston, Canada
| | - Gwenaëlle Conseil
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
- Sinclair Cancer Research Institute, Queen's University, Kingston, Canada
| | - Danielle Jenkins
- Pathology and Molecular Medicine, Queen's University, Kingston, Canada
| | - Kartik Sachdeva
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
- Sinclair Cancer Research Institute, Queen's University, Kingston, Canada
| | - Isaac Emon
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
- Sinclair Cancer Research Institute, Queen's University, Kingston, Canada
| | - Jake Hamilton
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Minqi Xu
- Pathology and Molecular Medicine, Queen's University, Kingston, Canada
| | - Manu Rangachari
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Eva Michaud
- Division of Urology, Department of Surgery, McGill University Health Center, Montreal, Canada
| | - Jose J Mansure
- Division of Urology, Department of Surgery, McGill University Health Center, Montreal, Canada
| | - Wassim Kassouf
- Division of Urology, Department of Surgery, McGill University Health Center, Montreal, Canada
| | - David M Berman
- Sinclair Cancer Research Institute, Queen's University, Kingston, Canada
- Pathology and Molecular Medicine, Queen's University, Kingston, Canada
| | - David R Siemens
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
- Sinclair Cancer Research Institute, Queen's University, Kingston, Canada
- Department of Urology, Queen's University, Kingston, Canada
| | - Madhuri Koti
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
- Sinclair Cancer Research Institute, Queen's University, Kingston, Canada
- Department of Urology, Queen's University, Kingston, Canada
| |
Collapse
|
3
|
Jiang G, Zou Y, Zhao D, Yu J. Optimising vaccine immunogenicity in ageing populations: key strategies. THE LANCET. INFECTIOUS DISEASES 2024:S1473-3099(24)00497-3. [PMID: 39326424 DOI: 10.1016/s1473-3099(24)00497-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 09/28/2024]
Abstract
Vaccination has been shown to be the most effective means of preventing infectious diseases, although older people commonly have a suboptimal immune response to vaccines and thus impaired protection against subsequent adverse outcomes. This Review provides an overview of the existing mechanistic insights into compromised vaccine response for respiratory infectious diseases in older people, defined as aged 65 years and older, including immunosenescence, epigenetic regulation, trained immunity, and gut microbiota. We further summarise the latest proven or potential strategies to strengthen weakened immunogenicity. Insights from these analyses will be conducive to the development of the next generation of vaccines.
Collapse
Affiliation(s)
- Guangzhen Jiang
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, China; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yushu Zou
- Department of Biomedical Informatics, School of Basic Medical Sciences and State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Dongyu Zhao
- Department of Biomedical Informatics, School of Basic Medical Sciences and State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China.
| | - Jingyou Yu
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, China.
| |
Collapse
|
4
|
Wang S, Yang N, Zhang H. Metabolic dysregulation of lymphocytes in autoimmune diseases. Trends Endocrinol Metab 2024; 35:624-637. [PMID: 38355391 DOI: 10.1016/j.tem.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 02/16/2024]
Abstract
Lymphocytes are crucial for protective immunity against infection and cancers; however, immune dysregulation can lead to autoimmune diseases such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Metabolic adaptation controls lymphocyte fate; thus, metabolic reprogramming can contribute to the pathogenesis of autoimmune diseases. Here, we summarize recent advances on how metabolic reprogramming determines the autoreactive and proinflammatory nature of lymphocytes in SLE and RA, unraveling molecular mechanisms and providing therapeutic targets for human autoimmune diseases.
Collapse
Affiliation(s)
- Shuyi Wang
- Department of Rheumatology and Clinical Immunology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Niansheng Yang
- Department of Rheumatology and Clinical Immunology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Hui Zhang
- Department of Rheumatology and Clinical Immunology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Institute of Precision Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
5
|
Reyes-Huerta RF, Mandujano-López V, Velásquez-Ortiz MG, Alcalá-Carmona B, Ostos-Prado MJ, Reyna-Juárez Y, Meza-Sánchez DE, Juárez-Vega G, Mejía-Domínguez NR, Torres-Ruiz J, Gómez-Martín D, Maravillas-Montero JL. Novel B-cell subsets as potential biomarkers in idiopathic inflammatory myopathies: insights into disease pathogenesis and disease activity. J Leukoc Biol 2024; 116:84-94. [PMID: 38554062 DOI: 10.1093/jleuko/qiae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/01/2024] [Accepted: 03/19/2024] [Indexed: 04/01/2024] Open
Abstract
Idiopathic inflammatory myopathies are a heterogeneous group of rare autoimmune disorders characterized by progressive muscle weakness and the histopathologic findings of inflammatory infiltrates in muscle tissue. Although their pathogenesis remains indefinite, the association of autoantibodies with clinical manifestations and the evidence of high effectiveness of depleting therapies suggest that B cells could be implicated. Therefore, we explored the landscape of peripheral B cells in this disease by multiparametric flow cytometry, finding significant numerical decreases in memory and double-negative subsets, as well as an expansion of the naive compartment relative to healthy controls, that contribute to defining disease-associated B-cell subset signatures and correlating with different clinical features of patients. Additionally, we determined the potential value of these subsets as diagnostic biomarkers, thus positioning B cells as neglected key elements possibly participating in idiopathic inflammatory myopathy onset or development.
Collapse
Affiliation(s)
- Raúl F Reyes-Huerta
- B cell Immunology Laboratory, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica S/N, CU, Coyoacán, Mexico City 04510, Mexico
- Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Unidad de Posgrado, CU, Coyoacán, Mexico City 04510, Mexico
| | - Vladimir Mandujano-López
- B cell Immunology Laboratory, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica S/N, CU, Coyoacán, Mexico City 04510, Mexico
| | - Ma Guadalupe Velásquez-Ortiz
- B cell Immunology Laboratory, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica S/N, CU, Coyoacán, Mexico City 04510, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Unidad de Posgrado, CU, Coyoacán, Mexico City 04510, Mexico
| | - Beatriz Alcalá-Carmona
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - María J Ostos-Prado
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Yatzil Reyna-Juárez
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - David E Meza-Sánchez
- B cell Immunology Laboratory, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica S/N, CU, Coyoacán, Mexico City 04510, Mexico
- Red de Apoyo a la Investigación, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán y Universidad Nacional Autónoma de México, Vasco de Quiroga 15, Belisario Domínguez Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Guillermo Juárez-Vega
- Red de Apoyo a la Investigación, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán y Universidad Nacional Autónoma de México, Vasco de Quiroga 15, Belisario Domínguez Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Nancy R Mejía-Domínguez
- Red de Apoyo a la Investigación, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán y Universidad Nacional Autónoma de México, Vasco de Quiroga 15, Belisario Domínguez Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Jiram Torres-Ruiz
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Diana Gómez-Martín
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección XVI, Tlalpan, Mexico City 14080, Mexico
- Red de Apoyo a la Investigación, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán y Universidad Nacional Autónoma de México, Vasco de Quiroga 15, Belisario Domínguez Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - José L Maravillas-Montero
- B cell Immunology Laboratory, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica S/N, CU, Coyoacán, Mexico City 04510, Mexico
- Red de Apoyo a la Investigación, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán y Universidad Nacional Autónoma de México, Vasco de Quiroga 15, Belisario Domínguez Sección XVI, Tlalpan, Mexico City 14080, Mexico
| |
Collapse
|
6
|
Canderan G, Muehling LM, Kadl A, Ladd S, Bonham C, Cross CE, Lima SM, Yin X, Sturek JM, Wilson JM, Keshavarz B, Bryant N, Murphy DD, Cheon IS, McNamara CA, Sun J, Utz PJ, Dolatshahi S, Irish JM, Woodfolk JA. Distinct Type 1 Immune Networks Underlie the Severity of Restrictive Lung Disease after COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.587929. [PMID: 38617217 PMCID: PMC11014603 DOI: 10.1101/2024.04.03.587929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The variable etiology of persistent breathlessness after COVID-19 have confounded efforts to decipher the immunopathology of lung sequelae. Here, we analyzed hundreds of cellular and molecular features in the context of discrete pulmonary phenotypes to define the systemic immune landscape of post-COVID lung disease. Cluster analysis of lung physiology measures highlighted two phenotypes of restrictive lung disease that differed by their impaired diffusion and severity of fibrosis. Machine learning revealed marked CCR5+CD95+ CD8+ T-cell perturbations in mild-to-moderate lung disease, but attenuated T-cell responses hallmarked by elevated CXCL13 in more severe disease. Distinct sets of cells, mediators, and autoantibodies distinguished each restrictive phenotype, and differed from those of patients without significant lung involvement. These differences were reflected in divergent T-cell-based type 1 networks according to severity of lung disease. Our findings, which provide an immunological basis for active lung injury versus advanced disease after COVID-19, might offer new targets for treatment.
Collapse
|
7
|
Gao X, Shen Q, Roco JA, Dalton B, Frith K, Munier CML, Ballard FD, Wang K, Kelly HG, Nekrasov M, He JS, Jaeger R, Carreira P, Ellyard JI, Beattie L, Enders A, Cook MC, Zaunders JJ, Cockburn IA. Zeb2 drives the formation of CD11c + atypical B cells to sustain germinal centers that control persistent infection. Sci Immunol 2024; 9:eadj4748. [PMID: 38330097 DOI: 10.1126/sciimmunol.adj4748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
CD11c+ atypical B cells (ABCs) are an alternative memory B cell lineage associated with immunization, infection, and autoimmunity. However, the factors that drive the transcriptional program of ABCs have not been identified, and the function of this population remains incompletely understood. Here, we identified candidate transcription factors associated with the ABC population based on a human tonsillar B cell single-cell dataset. We identified CD11c+ B cells in mice with a similar transcriptomic signature to human ABCs, and using an optimized CRISPR-Cas9 knockdown screen, we observed that loss of zinc finger E-box binding homeobox 2 (Zeb2) impaired ABC formation. Furthermore, ZEB2 haplo-insufficient Mowat-Wilson syndrome (MWS) patients have decreased circulating ABCs in the blood. In Cd23Cre/+Zeb2fl/fl mice with impaired ABC formation, ABCs were dispensable for efficient humoral responses after Plasmodium sporozoite immunization but were required to control recrudescent blood-stage malaria. Immune phenotyping revealed that ABCs drive optimal T follicular helper (TFH) cell formation and germinal center (GC) responses and they reside at the red/white pulp border, likely permitting better access to pathogen antigens for presentation. Collectively, our study shows that ABC formation is dependent on Zeb2, and these cells can limit recrudescent infection by sustaining GC reactions.
Collapse
Affiliation(s)
- Xin Gao
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Qian Shen
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- Francis Crick Institute, London, UK
| | - Jonathan A Roco
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Becan Dalton
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Katie Frith
- Sydney Children's Hospital, Randwick, Australia
- School of Women's and Children's Health, UNSW Sydney, Sydney, Australia
| | | | - Fiona D Ballard
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Ke Wang
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Hannah G Kelly
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Maxim Nekrasov
- Australian Cancer Research Foundation Biomolecular Resource Facility, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Jin-Shu He
- ANU Centre for Therapeutic Discovery, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Rebecca Jaeger
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Patricia Carreira
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Julia I Ellyard
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Lynette Beattie
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Anselm Enders
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Matthew C Cook
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- Cambridge Institute for Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK
| | - John J Zaunders
- Centre for Applied Medical Research, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Ian A Cockburn
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| |
Collapse
|
8
|
He Y, Vinuesa CG. Germinal center versus extrafollicular responses in systemic autoimmunity: Who turns the blade on self? Adv Immunol 2024; 162:109-133. [PMID: 38866437 PMCID: PMC7616122 DOI: 10.1016/bs.ai.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Spontaneously formed germinal centers (GCs) have been reported in most mouse models of human autoimmune disease and autoimmune patients, and have long been considered a source of somatically-mutated and thus high affinity autoantibodies, but their role in autoimmunity is becoming increasingly controversial, particularly in the context of systemic autoimmune diseases like lupus. On the one hand, there is good evidence that some pathogenic lupus antibodies have acquired somatic mutations that increase affinity for self-antigens. On the other hand, recent studies that have genetically prevented GC formation, suggest that GCs are dispensable for systemic autoimmunity, pointing instead to pathogenic extrafollicular (EF) B-cell responses. Furthermore, several lines of evidence suggest germinal centers may in fact be somewhat protective in the context of autoimmunity. Here we review how some of the conflicting evidence arose, and current views on the role of GCs in autoimmunity, outlining mechanisms by which GC may eliminate self-reactivity. We also discuss recent advances in understanding extrafollicular B cell subsets that participate in autoimmunity.
Collapse
Affiliation(s)
- Yuke He
- China-Australia Centre for Personalised Immunology, Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Carola G Vinuesa
- China-Australia Centre for Personalised Immunology, Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China; Francis Crick Institute, London, United Kingdom.
| |
Collapse
|
9
|
Tang YY, Wang DC, Chen YY, Xu WD, Huang AF. Th1-related transcription factors and cytokines in systemic lupus erythematosus. Front Immunol 2023; 14:1305590. [PMID: 38164134 PMCID: PMC10757975 DOI: 10.3389/fimmu.2023.1305590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is an inflammatory disorder related to immunity dysfunction. The Th1 cell family including Th1 cells, transcription factor T-bet, and related cytokines IFNγ, TNFα, IL-2, IL-18, TGF-β, and IL-12 have been widely discussed in autoimmunity, such as SLE. In this review, we will comprehensively discuss the expression profile of the Th1 cell family in both SLE patients and animal models and clarify how the family members are involved in lupus development. Interestingly, T-bet-related age-associated B cells (ABCs) and low-dose IL-2 treatment in lupus were emergently discussed as well. Collection of the evidence will better understand the roles of the Th1 cell family in lupus pathogenesis, especially targeting IL-2 in lupus.
Collapse
Affiliation(s)
- Yang-Yang Tang
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Da-Cheng Wang
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - You-Yue Chen
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Wang-Dong Xu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
10
|
Fahlquist-Hagert C, Wittenborn TR, Terczyńska-Dyla E, Kastberg KS, Yang E, Rallistan AN, Markett QR, Winther G, Fonager S, Voss LF, Pedersen MK, van Campen N, Ferapontov A, Jensen L, Huang J, Nieland JD, van der Poel CE, Palmfeldt J, Carroll MC, Utz PJ, Luo Y, Lin L, Degn SE. Antigen presentation by B cells enables epitope spreading across an MHC barrier. Nat Commun 2023; 14:6941. [PMID: 37907556 PMCID: PMC10618542 DOI: 10.1038/s41467-023-42541-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 10/13/2023] [Indexed: 11/02/2023] Open
Abstract
Circumstantial evidence suggests that B cells may instruct T cells to break tolerance. Here, to test this hypothesis, we used a murine model in which a single B cell clone precipitates an autoreactive response resembling systemic lupus erythematosus (SLE). The initiating clone did not need to enter germinal centers to precipitate epitope spreading. Rather, it localized to extrafollicular splenic bridging channels early in the response. Autoantibody produced by the initiating clone was not sufficient to drive the autoreactive response. Subsequent epitope spreading depended on antigen presentation and was compartmentalized by major histocompatibility complex (MHC). B cells carrying two MHC haplotypes could bridge the MHC barrier between B cells that did not share MHC. Thus, B cells directly relay autoreactivity between two separate compartments of MHC-restricted T cells, leading to inclusion of distinct B cell populations in germinal centers. Our findings demonstrate that B cells initiate and propagate the autoimmune response.
Collapse
Affiliation(s)
- Cecilia Fahlquist-Hagert
- Laboratory for Lymphocyte Biology, Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Thomas R Wittenborn
- Laboratory for Lymphocyte Biology, Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Ewa Terczyńska-Dyla
- Laboratory for Lymphocyte Biology, Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | | | - Emily Yang
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA, USA
| | - Alysa Nicole Rallistan
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA, USA
| | - Quinton Raymond Markett
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA, USA
| | - Gudrun Winther
- Laboratory for Lymphocyte Biology, Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Sofie Fonager
- Laboratory for Lymphocyte Biology, Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Lasse F Voss
- Laboratory for Lymphocyte Biology, Department of Biomedicine, Aarhus University, Aarhus C, Denmark
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Mathias K Pedersen
- Laboratory for Lymphocyte Biology, Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Nina van Campen
- Laboratory for Lymphocyte Biology, Department of Biomedicine, Aarhus University, Aarhus C, Denmark
- Department of Biomedical Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alexey Ferapontov
- Laboratory for Lymphocyte Biology, Department of Biomedicine, Aarhus University, Aarhus C, Denmark
- CellPAT Center for Cellular Signal Patterns, iNANO, Aarhus University, Aarhus C, Denmark
| | - Lisbeth Jensen
- Laboratory for Lymphocyte Biology, Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Jinrong Huang
- DREAM Laboratory for Applied Genome Technologies, Department of Biomedicine, Aarhus University, Aarhus C, Denmark
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Shenzhen, China
| | - John D Nieland
- Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Gistrup, Denmark
| | - Cees E van der Poel
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Dragonfly Therapeutics, Waltham, MA, USA
| | - Johan Palmfeldt
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Michael C Carroll
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Paul J Utz
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA, USA
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Yonglun Luo
- DREAM Laboratory for Applied Genome Technologies, Department of Biomedicine, Aarhus University, Aarhus C, Denmark
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Shenzhen, China
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus N, Denmark
| | - Lin Lin
- DREAM Laboratory for Applied Genome Technologies, Department of Biomedicine, Aarhus University, Aarhus C, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus N, Denmark
| | - Søren E Degn
- Laboratory for Lymphocyte Biology, Department of Biomedicine, Aarhus University, Aarhus C, Denmark.
- CellPAT Center for Cellular Signal Patterns, iNANO, Aarhus University, Aarhus C, Denmark.
| |
Collapse
|
11
|
Khan S, Chakraborty M, Wu F, Chen N, Wang T, Chan YT, Sayad A, Vásquez JDS, Kotlyar M, Nguyen K, Huang Y, Alibhai FJ, Woo M, Li RK, Husain M, Jurisica I, Gehring AJ, Ohashi PS, Furman D, Tsai S, Winer S, Winer DA. B Cells Promote T Cell Immunosenescence and Mammalian Aging Parameters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.556363. [PMID: 38529494 PMCID: PMC10962733 DOI: 10.1101/2023.09.12.556363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
A dysregulated adaptive immune system is a key feature of aging, and is associated with age-related chronic diseases and mortality. Most notably, aging is linked to a loss in the diversity of the T cell repertoire and expansion of activated inflammatory age-related T cell subsets, though the main drivers of these processes are largely unknown. Here, we find that T cell aging is directly influenced by B cells. Using multiple models of B cell manipulation and single-cell omics, we find B cells to be a major cell type that is largely responsible for the age-related reduction of naive T cells, their associated differentiation towards pathogenic immunosenescent T cell subsets, and for the clonal restriction of their T cell receptor (TCR). Accordingly, we find that these pathogenic shifts can be therapeutically targeted via CD20 monoclonal antibody treatment. Mechanistically, we uncover a new role for insulin receptor signaling in influencing age-related B cell pathogenicity that in turn induces T cell dysfunction and a decline in healthspan parameters. These results establish B cells as a pivotal force contributing to age-associated adaptive immune dysfunction and healthspan outcomes, and suggest new modalities to manage aging and related multi-morbidity.
Collapse
Affiliation(s)
- Saad Khan
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON M5G 1L7, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Mainak Chakraborty
- Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON M5G 1L7, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Fei Wu
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Nan Chen
- Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON M5G 1L7, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, ON M5G 2C4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON M5S 1A8, Canada
| | - Tao Wang
- Department of Physiology, University of Toronto, ON M5S 1A8, Canada
- Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON M5G 1L7, Canada
- Ted Rogers Centre for Heart Research, Toronto, ON, M5G 1X8, Canada
| | - Yi Tao Chan
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON M5G 1L7, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Azin Sayad
- Princess Margaret Cancer Centre, University Health Network, ON M5G 2C1, Canada
| | - Juan Diego Sánchez Vásquez
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON M5G 1L7, Canada
| | - Max Kotlyar
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, Toronto, ON M5T 0S8, Canada
| | - Khiem Nguyen
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Yingxiang Huang
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Faisal J. Alibhai
- Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON M5G 1L7, Canada
| | - Minna Woo
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON M5G 1L7, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, ON M5G 2C4, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, University Health Network, University of Toronto, ON M5G 1L7, Canada
| | - Ren-Ke Li
- Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON M5G 1L7, Canada
- Division of Cardiac Surgery, University Health Network, University of Toronto, ON M5G IL7, Canada
| | - Mansoor Husain
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON M5S 1A8, Canada
- Department of Physiology, University of Toronto, ON M5S 1A8, Canada
- Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON M5G 1L7, Canada
- Ted Rogers Centre for Heart Research, Toronto, ON, M5G 1X8, Canada
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, Toronto, ON M5T 0S8, Canada
- Departments of Medical Biophysics and Computer Science, and Faculty of Dentistry, University of Toronto, ON M5S 2E4, Canada
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Adam J. Gehring
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Toronto Center for Liver Disease & Schwartz Reisman Liver Research Centre, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Pamela S. Ohashi
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Princess Margaret Cancer Centre, University Health Network, ON M5G 2C1, Canada
| | - David Furman
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Sue Tsai
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2RS, Canada
| | - Shawn Winer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON M5S 1A8, Canada
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Daniel A. Winer
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON M5G 1L7, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, ON M5G 2C4, Canada
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON M5S 1A8, Canada
| |
Collapse
|
12
|
Ramirez De Oleo I, Kim V, Atisha-Fregoso Y, Shih AJ, Lee K, Diamond B, Kim SJ. Phenotypic and functional characteristics of murine CD11c+ B cells which is suppressed by metformin. Front Immunol 2023; 14:1241531. [PMID: 37744368 PMCID: PMC10512061 DOI: 10.3389/fimmu.2023.1241531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Since the description of age-associated or autoimmune-associated B cells (ABCs), there has been a growing interest in the role of these cells in autoimmunity. ABCs are differently defined depending on the research group and are heterogenous subsets. Here, we sought to characterize ABCs in Sle1/2/3 triple congenic (TC) mice, which is a well accepted mouse model of lupus. Compared to follicular (FO) B cells, ABCs have many distinct functional properties, including antigen presentation. They express key costimulatory molecules for T cell activation and a distinct profile of cytokines. Moreover, they exhibit an increased capacity for antigen uptake. ABCs were also compared with germinal center (GC) B cells, which are antigen activated B cell population. There are several phenotypic similarities between ABCs and GC B cells, but GC B cells do not produce proinflammatory cytokines or take up antigen. While T cell proliferation and activation is induced by both FO B and ABCs in an antigen-dependent manner, ABCs induce stronger T cell receptor signaling in naïve CD4+ T cells and preferentially induce differentiation of T follicular helper (Tfh) cells. We found that ABCs exhibit a distinct transcriptomic profile which is focused on metabolism, cytokine signaling and antigen uptake and processing. ABCs exhibit an increase in both glycolysis and oxidative phosphorylation compared to FO B cells. Treatment of ABCs with metformin suppresses antigen presentation by decreasing antigen uptake, resulting in decreased Tfh differentiation. Taken together, these findings define a fundamental connection between metabolism and function within ABCs.
Collapse
Affiliation(s)
- Ivan Ramirez De Oleo
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Vera Kim
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Yemil Atisha-Fregoso
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Andrew J. Shih
- Center for Genomics and Human Genetics, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Kyungwoo Lee
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Department of Biology at Hofstra University, Hempstead, NY, United States
| | - Betty Diamond
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra University/Northwell, Hempstead, NY, United States
| | - Sun Jung Kim
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra University/Northwell, Hempstead, NY, United States
| |
Collapse
|
13
|
Steuten J, Bos AV, Kuijper LH, Claireaux M, Olijhoek W, Elias G, Duurland MC, Jorritsma T, Marsman C, Paul AGA, Garcia Vallejo JJ, van Gils MJ, Wieske L, Kuijpers TW, Eftimov F, van Ham SM, Ten Brinke A. Distinct dynamics of antigen-specific induction and differentiation of different CD11c +Tbet + B-cell subsets. J Allergy Clin Immunol 2023; 152:689-699.e6. [PMID: 36858158 DOI: 10.1016/j.jaci.2023.02.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 03/03/2023]
Abstract
BACKGROUND CD11c+Tbet+ B cells are enriched in autoimmunity and chronic infections and also expand on immune challenge in healthy individuals. CD11c+Tbet+ B cells remain an enigmatic B-cell population because of their intrinsic heterogeneity. OBJECTIVES We investigated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigen-specific development and differentiation properties of 3 separate CD11c+ B-cell subsets-age-associated B cells (ABCs), double-negative 2 (DN2) B cells, and activated naive B cells-and compared them to their canonical CD11c- counterparts. METHODS Dynamics of the response of the 3 CD11c+ B-cell subsets were assessed at SARS-CoV-2 vaccination in healthy donors by spectral flow cytometry. Distinct CD11c+ B-cell subsets were functionally characterized by optimized in vitro cultures. RESULTS In contrast to a durable expansion of antigen-specific CD11c- memory B cells over time, both ABCs and DN2 cells were strongly expanded shortly after second vaccination and subsequently contracted. Functional characterization of antibody-secreting cell differentiation dynamics revealed that CD11c+Tbet+ B cells were primed for antibody-secreting cell differentiation compared to relevant canonical CD11c- counterparts. CONCLUSION Overall, CD11c+Tbet+ B cells encompass heterogeneous subpopulations, of which primarily ABCs as well as DN2 B cells respond early to immune challenge and display a pre-antibody-secreting cell phenotype.
Collapse
Affiliation(s)
- Juulke Steuten
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Amélie V Bos
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Lisan H Kuijper
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Mathieu Claireaux
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands; Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Wouter Olijhoek
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands; Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - George Elias
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Mariel C Duurland
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Tineke Jorritsma
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Casper Marsman
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Juan J Garcia Vallejo
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection & Immunity and Cancer Center Amsterdam, Amsterdam University Medical Centers, Free University of Amsterdam, Amsterdam, The Netherlands
| | - Marit J van Gils
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands; Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Luuk Wieske
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, The Netherlands; Department of Clinical Neurophysiology, St Antonius Hospital, Nieuwegein, The Netherlands
| | - Taco W Kuijpers
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Filip Eftimov
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - S Marieke van Ham
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Anja Ten Brinke
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Ferreira IATM, Lee CYC, Foster WS, Abdullahi A, Dratva LM, Tuong ZK, Stewart BJ, Ferdinand JR, Guillaume SM, Potts MOP, Perera M, Krishna BA, Peñalver A, Cabantous M, Kemp SA, Ceron-Gutierrez L, Ebrahimi S, Lyons P, Smith KGC, Bradley J, Collier DA, McCoy LE, van der Klaauw A, Thaventhiran JED, Farooqi IS, Teichmann SA, MacAry PA, Doffinger R, Wills MR, Linterman MA, Clatworthy MR, Gupta RK. Atypical B cells and impaired SARS-CoV-2 neutralization following heterologous vaccination in the elderly. Cell Rep 2023; 42:112991. [PMID: 37590132 DOI: 10.1016/j.celrep.2023.112991] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 05/15/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023] Open
Abstract
Suboptimal responses to a primary vaccination course have been reported in the elderly, but there is little information regarding the impact of age on responses to booster third doses. Here, we show that individuals 70 years or older (median age 73, range 70-75) who received a primary two-dose schedule with AZD1222 and booster third dose with mRNA vaccine achieve significantly lower neutralizing antibody responses against SARS-CoV-2 spike pseudotyped virus compared with those younger than 70 (median age 66, range 54-69) at 1 month post booster. Impaired neutralization potency and breadth post third dose in the elderly is associated with circulating "atypical" spike-specific B cells expressing CD11c and FCRL5. However, when considering individuals who received three doses of mRNA vaccine, we did not observe differences in neutralization or enrichment in atypical B cells. This work highlights the finding that AdV and mRNA COVID-19 vaccine formats differentially instruct the memory B cell response.
Collapse
Affiliation(s)
- Isabella A T M Ferreira
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Colin Y C Lee
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK; Cellular Genetics, Wellcome Sanger Institute, Cambridge, UK
| | - William S Foster
- Immunology Programme, Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Adam Abdullahi
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Lisa M Dratva
- Cellular Genetics, Wellcome Sanger Institute, Cambridge, UK
| | - Zewen Kelvin Tuong
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK; Cellular Genetics, Wellcome Sanger Institute, Cambridge, UK
| | - Benjamin J Stewart
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK; Cellular Genetics, Wellcome Sanger Institute, Cambridge, UK
| | - John R Ferdinand
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
| | - Stephane M Guillaume
- Immunology Programme, Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Martin O P Potts
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Marianne Perera
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Benjamin A Krishna
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Ana Peñalver
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
| | - Mia Cabantous
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
| | - Steven A Kemp
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Lourdes Ceron-Gutierrez
- Department of Clinical Biochemistry and Immunology, Cambridge University Hospital NHS Trust, Cambridge, UK
| | - Soraya Ebrahimi
- Department of Clinical Biochemistry and Immunology, Cambridge University Hospital NHS Trust, Cambridge, UK
| | - Paul Lyons
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Kenneth G C Smith
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - John Bradley
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Dami A Collier
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | | | - Agatha van der Klaauw
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-Medical Research Council (MRC) Institute of Metabolic Science, Cambridge, UK
| | | | - I Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-Medical Research Council (MRC) Institute of Metabolic Science, Cambridge, UK
| | | | - Paul A MacAry
- National University of Singapore, Singapore, Singapore
| | - Rainer Doffinger
- Department of Clinical Biochemistry and Immunology, Cambridge University Hospital NHS Trust, Cambridge, UK
| | - Mark R Wills
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Michelle A Linterman
- Immunology Programme, Babraham Institute, Babraham Research Campus, Cambridge, UK.
| | - Menna R Clatworthy
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK; Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK; Cellular Genetics, Wellcome Sanger Institute, Cambridge, UK.
| | - Ravindra K Gupta
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
15
|
Álvarez Gómez JA, Salazar-Camarena DC, Román-Fernández IV, Ortiz-Lazareno PC, Cruz A, Muñoz-Valle JF, Marín-Rosales M, Espinoza-García N, Sagrero-Fabela N, Palafox-Sánchez CA. BAFF system expression in double negative 2, activated naïve and activated memory B cells in systemic lupus erythematosus. Front Immunol 2023; 14:1235937. [PMID: 37675114 PMCID: PMC10478082 DOI: 10.3389/fimmu.2023.1235937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/28/2023] [Indexed: 09/08/2023] Open
Abstract
Introduction B cell activating factor (BAFF) has an important role in normal B cell development. The aberrant expression of BAFF is related with the autoimmune diseases development like Systemic Lupus Erythematosus (SLE) for promoting self-reactive B cells survival. BAFF functions are exerted through its receptors BAFF-R (BR3), transmembrane activator calcium modulator and cyclophilin ligand interactor (TACI) and B cell maturation antigen (BCMA) that are reported to have differential expression on B cells in SLE. Recently, atypical B cells that express CD11c have been associated with SLE because they are prone to develop into antibody-secreting cells, however the relationship with BAFF remains unclear. This study aims to analyze the BAFF system expression on CXCR5- CD11c+ atypical B cell subsets double negative 2 (DN2), activated naïve (aNAV), switched memory (SWM) and unswitched memory (USM) B cells. Methods Forty-five SLE patients and 15 healthy subjects (HS) were included. Flow cytometry was used to evaluate the expression of the receptors in the B cell subpopulations. Enzyme-linked immunosorbent assay (ELISA) was performed to quantify the soluble levels of BAFF (sBAFF) and IL-21. Results We found increased frequency of CXCR5- CD11c+ atypical B cell subpopulations DN2, aNAV, SWM and USM B cells in SLE patients compared to HS. SLE patients had increased expression of membrane BAFF (mBAFF) and BCMA receptor in classic B cell subsets (DN, NAV, SWM and USM). Also, the CXCR5+ CD11c- DN1, resting naïve (rNAV), SWM and USM B cell subsets showed higher mBAFF expression in SLE. CXCR5- CD11c+ atypical B cell subpopulations DN2, SWM and USM B cells showed strong correlations with the expression of BAFF receptors. The atypical B cells DN2 in SLE showed significant decreased expression of TACI, which correlated with higher IL-21 levels. Also, lower expression of TACI in atypical B cell DN2 was associated with high disease activity. Discussion These results suggest a participation of the BAFF system in CXCR5- CD11c+ atypical B cell subsets in SLE patients. Decreased TACI expression on atypical B cells DN2 correlated with high disease activity in SLE patients supporting the immunoregulatory role of TACI in autoimmunity.
Collapse
Affiliation(s)
- Jhonatan Antonio Álvarez Gómez
- Doctorado en Ciencias en Biología Molecular en Medicina (DCBMM), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Diana Celeste Salazar-Camarena
- Grupo de Inmunología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Ilce Valeria Román-Fernández
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Pablo César Ortiz-Lazareno
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, Mexico
| | - Alvaro Cruz
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - José Francisco Muñoz-Valle
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Miguel Marín-Rosales
- Grupo de Inmunología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
- Hospital General de Occidente, Secretaría de Salud Jalisco, Guadalajara, Jalisco, Mexico
| | - Noemí Espinoza-García
- Doctorado en Ciencias en Biología Molecular en Medicina (DCBMM), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Nefertari Sagrero-Fabela
- Doctorado en Ciencias Biomédicas (DCB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Claudia Azucena Palafox-Sánchez
- Grupo de Inmunología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| |
Collapse
|
16
|
Yam-Puc JC, Hosseini Z, Horner EC, Gerber PP, Beristain-Covarrubias N, Hughes R, Lulla A, Rust M, Boston R, Ali M, Fischer K, Simmons-Rosello E, O'Reilly M, Robson H, Booth LH, Kahanawita L, Correa-Noguera A, Favara D, Ceron-Gutierrez L, Keller B, Craxton A, Anderson GSF, Sun XM, Elmer A, Saunders C, Bermperi A, Jose S, Kingston N, Mulroney TE, Piñon LPG, Chapman MA, Grigoriadou S, MacFarlane M, Willis AE, Patil KR, Spencer S, Staples E, Warnatz K, Buckland MS, Hollfelder F, Hyvönen M, Döffinger R, Parkinson C, Lear S, Matheson NJ, Thaventhiran JED. Age-associated B cells predict impaired humoral immunity after COVID-19 vaccination in patients receiving immune checkpoint blockade. Nat Commun 2023; 14:3292. [PMID: 37369658 PMCID: PMC10299999 DOI: 10.1038/s41467-023-38810-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 05/17/2023] [Indexed: 06/29/2023] Open
Abstract
Age-associated B cells (ABC) accumulate with age and in individuals with different immunological disorders, including cancer patients treated with immune checkpoint blockade and those with inborn errors of immunity. Here, we investigate whether ABCs from different conditions are similar and how they impact the longitudinal level of the COVID-19 vaccine response. Single-cell RNA sequencing indicates that ABCs with distinct aetiologies have common transcriptional profiles and can be categorised according to their expression of immune genes, such as the autoimmune regulator (AIRE). Furthermore, higher baseline ABC frequency correlates with decreased levels of antigen-specific memory B cells and reduced neutralising capacity against SARS-CoV-2. ABCs express high levels of the inhibitory FcγRIIB receptor and are distinctive in their ability to bind immune complexes, which could contribute to diminish vaccine responses either directly, or indirectly via enhanced clearance of immune complexed-antigen. Expansion of ABCs may, therefore, serve as a biomarker identifying individuals at risk of suboptimal responses to vaccination.
Collapse
Affiliation(s)
- Juan Carlos Yam-Puc
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK.
| | - Zhaleh Hosseini
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | - Emily C Horner
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | - Pehuén Pereyra Gerber
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | | - Robert Hughes
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | - Aleksei Lulla
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Maria Rust
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | - Rebecca Boston
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | - Magda Ali
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | - Katrin Fischer
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Edward Simmons-Rosello
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | - Martin O'Reilly
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | - Harry Robson
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | - Lucy H Booth
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | - Lakmini Kahanawita
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | - Andrea Correa-Noguera
- Department of Oncology, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK
| | - David Favara
- Department of Oncology, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK
| | - Lourdes Ceron-Gutierrez
- Department of Clinical Immunology, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK
| | - Baerbel Keller
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andrew Craxton
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | - Georgina S F Anderson
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | - Xiao-Ming Sun
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | - Anne Elmer
- NIHR Cambridge Clinical Research Facility, Cambridge, UK
| | | | - Areti Bermperi
- NIHR Cambridge Clinical Research Facility, Cambridge, UK
| | - Sherly Jose
- NIHR Cambridge Clinical Research Facility, Cambridge, UK
| | - Nathalie Kingston
- NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Thomas E Mulroney
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | - Lucia P G Piñon
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | - Michael A Chapman
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | | | - Marion MacFarlane
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | - Anne E Willis
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | - Kiran R Patil
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | - Sarah Spencer
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | - Emily Staples
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
- Department of Clinical Immunology, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | - Matthew S Buckland
- Department of Clinical Immunology, Barts Health, London, UK
- UCL GOSH Institute of Child Health Division of Infection and Immunity, Section of Cellular and Molecular Immunology, London, UK
| | | | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Rainer Döffinger
- Department of Clinical Immunology, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK
| | - Christine Parkinson
- Department of Oncology, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK
| | - Sara Lear
- Department of Clinical Immunology, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK
| | - Nicholas J Matheson
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
- NHS Blood and Transplant, Cambridge, UK
| | - James E D Thaventhiran
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK.
- Department of Clinical Immunology, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK.
| |
Collapse
|
17
|
Mohan C, Zhang T, Putterman C. Pathogenic cellular and molecular mediators in lupus nephritis. Nat Rev Nephrol 2023:10.1038/s41581-023-00722-z. [PMID: 37225921 DOI: 10.1038/s41581-023-00722-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2023] [Indexed: 05/26/2023]
Abstract
Kidney involvement in patients with systemic lupus erythematosus - lupus nephritis (LN) - is one of the most important and common clinical manifestations of this disease and occurs in 40-60% of patients. Current treatment regimens achieve a complete kidney response in only a minority of affected individuals, and 10-15% of patients with LN develop kidney failure, with its attendant morbidity and considerable prognostic implications. Moreover, the medications most often used to treat LN - corticosteroids in combination with immunosuppressive or cytotoxic drugs - are associated with substantial side effects. Advances in proteomics, flow cytometry and RNA sequencing have led to important new insights into immune cells, molecules and mechanistic pathways that are instrumental in the pathogenesis of LN. These insights, together with a renewed focus on the study of human LN kidney tissue, suggest new therapeutic targets that are already being tested in lupus animal models and early-phase clinical trials and, as such, are hoped to eventually lead to meaningful improvements in the care of patients with systemic lupus erythematosus-associated kidney disease.
Collapse
Affiliation(s)
- Chandra Mohan
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA.
| | - Ting Zhang
- Division of Rheumatology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chaim Putterman
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.
- Division of Rheumatology and Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
18
|
Liu Q, Deng Y, Liu X, Zheng Y, Li Q, Cai G, Feng Z, Chen X. Transcriptomic analysis of B cells suggests that CD70 and LY9 may be novel features in patients with systemic lupus erythematosus. Heliyon 2023; 9:e15684. [PMID: 37144201 PMCID: PMC10151360 DOI: 10.1016/j.heliyon.2023.e15684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/06/2023] Open
Abstract
Dysfunction of B-cell subsets is critical in the development of systemic lupus erythematosus (SLE). There is a great diversity of B-lineage cells, and their features and functions in SLE need to be clarified. In this study, we analyzed single-cell RNA sequencing (scRNA-seq) data from peripheral blood mononuclear cells (PBMCs) and bulk transcriptomic data of isolated B-cell subsets from patients with SLE and healthy controls (HCs). We preformed scRNA-seq analysis focused on the diversity of B-cell subsets and identified a subset of antigen-presenting B cells in SLE patients that highly expressed ITGAX. A list of marker genes of each B-cell subset in patients with SLE was also identified. Comparison of bulk transcriptomic data of isolated B-cell subpopulations between SLE patients and HCs revealed the upregulated differentially expressed genes (DEGs) for each B-cell subpopulation in SLE. Common genes identified using these two methods were considered to be upregulated marker genes of B cells in SLE. The scRNA-seq data of SLE patients and HCs revealed that CD70 and LY9 were overexpressed in B cells vs. other cell types from SLE patients, and this pattern was validated by RT‒qPCR. Because CD70 is the cellular ligand of CD27, previous studies on CD70 have focused mainly on T cells from SLE patients. LY9 appears to have different functions in mice and humans: its expression is decreased in lupus-prone mice but is increased in T cells and some B-cell subpopulations in SLE patients. Here, we describe the overexpression of two costimulatory molecules, CD70 and LY9, which may be a novel feature of B cells in SLE patients.
Collapse
Affiliation(s)
- Qun Liu
- School of Medicine, Nankai University, Tianjin, 300071, China
- Department of Nephrology, The First Medical Center, Chinese PLA General Hospital, Medical School of Chinese PLA, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, 100853, China
- Haihe Laboratory of Cell Ecosystem, Tianjin, 300020, China
| | - Yiyao Deng
- Department of Nephrology, Guizhou Provincial People's Hospital, 83, Zhongshan Road, Nanming District, Guiyang, 550002, Guizhou, China
| | - Xiaomin Liu
- Department of Nephrology, The First Medical Center, Chinese PLA General Hospital, Medical School of Chinese PLA, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, 100853, China
- Haihe Laboratory of Cell Ecosystem, Tianjin, 300020, China
| | - Ying Zheng
- Department of Nephrology, The First Medical Center, Chinese PLA General Hospital, Medical School of Chinese PLA, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, 100853, China
- Haihe Laboratory of Cell Ecosystem, Tianjin, 300020, China
| | - Qinggang Li
- Department of Nephrology, The First Medical Center, Chinese PLA General Hospital, Medical School of Chinese PLA, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, 100853, China
- Haihe Laboratory of Cell Ecosystem, Tianjin, 300020, China
| | - Guangyan Cai
- Department of Nephrology, The First Medical Center, Chinese PLA General Hospital, Medical School of Chinese PLA, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, 100853, China
| | - Zhe Feng
- Department of Nephrology, The First Medical Center, Chinese PLA General Hospital, Medical School of Chinese PLA, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, 100853, China
- Corresponding author.
| | - Xiangmei Chen
- School of Medicine, Nankai University, Tianjin, 300071, China
- Department of Nephrology, The First Medical Center, Chinese PLA General Hospital, Medical School of Chinese PLA, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, 100853, China
- Haihe Laboratory of Cell Ecosystem, Tianjin, 300020, China
- Corresponding author.
| |
Collapse
|
19
|
Wang G, Sun Y, Jiang Y, Li S, Liu Y, Yuan Y, Nie H. CXCR3 deficiency decreases autoantibody production by inhibiting aberrant activated T follicular helper cells and B cells in lupus mice. Mol Immunol 2023; 156:39-47. [PMID: 36889185 DOI: 10.1016/j.molimm.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/26/2023] [Accepted: 02/16/2023] [Indexed: 03/08/2023]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by a high level of autoantibody production. T follicular helper (Tfh) cells and B cells participate in the development of SLE. Several studies have shown that CXCR3+ cells are increased in SLE patients. However, the mechanism through which CXCR3 influences lupus development remains unclear. In this study, we established lupus models to determine the role of CXCR3 in lupus pathogenesis. The concentration of autoantibodies was detected using the enzyme-linked immunosorbent assay (ELISA), and the percentages of Tfh cells and B cells were measured using flow cytometry. RNA sequencing (RNA-seq) was performed to detect the differentially expressed genes in CD4+ T cells from wild-type (WT) and CXCR3 knock-out (KO) lupus mice. Migration of CD4+ T cells in spleen section was assessed using immunofluorescence. CD4+ T cell function in helping B cells produce antibodies was determined using a co-culture experiment and supernatant IgG ELISA. Lupus mice were treated with a CXCR3 antagonist to confirm the therapeutic effects. We found that the expression of CXCR3 was increased in CD4+ T cells from lupus mice. CXCR3 deficiency reduced autoantibody production with decreased proportions of Tfh cells, germinal center (GC) B cells, and plasma cells. Expression of Tfh-related genes was downregulated in CD4+ T cells from CXCR3 KO lupus mice. Migration to B cell follicles and T-helper function of CD4+ T cells were reduced in CXCR3 KO lupus mice. CXCR3 antagonist AMG487 decreased the level of serum anti-dsDNA IgG in lupus mice. We clarify that CXCR3 may play an important role in autoantibody production by increasing the percentages of aberrant activated Tfh cells and B cells and promoting the migration and T-helper function of CD4+ T cells in lupus mice. Thus, CXCR3 may be a potential target for lupus therapy.
Collapse
Affiliation(s)
- Guojue Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Sun
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongshuai Jiang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengzhe Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunhui Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanyang Yuan
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hong Nie
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
20
|
Abboud G, Choi SC, Zhang X, Park YP, Kanda N, Zeumer-Spataro L, Terrell M, Teng X, Nündel K, Shlomchik MJ, Morel L. Glucose Requirement of Antigen-Specific Autoreactive B Cells and CD4+ T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:377-388. [PMID: 36602759 PMCID: PMC9898175 DOI: 10.4049/jimmunol.2200325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023]
Abstract
The activation of lymphocytes in patients with lupus and in mouse models of the disease is coupled with an increased cellular metabolism in which glucose plays a major role. The pharmacological inhibition of glycolysis with 2-deoxy-d-glucose (2DG) reversed the expansion of follicular helper CD4+ T cells and germinal center B cells in lupus-prone mice, as well as the production of autoantibodies. The response of foreign Ags was however not affected by 2DG in these mice, suggesting that B and CD4+ T cell activation by autoantigens is uniquely sensitive to glycolysis. In this study, we tested this hypothesis with monoclonal B cells and CD4+ T cells specific for lupus-relevant autoantigens. AM14 Vκ8R (AM14) transgenic B cells are activated by IgG2a/chromatin immune complexes and they can receive cognate help from chromatin-specific 13C2 CD4+ T cells. We showed that activation of AM14 B cells by their cognate Ag PL2-3 induced glycolysis, and that the inhibition of glycolysis reduced their activation and differentiation into Ab-forming cells, in the absence or presence of T cell help. The dependency of autoreactive B cells on glycolysis is in sharp contrast with the previously reported dependency of 4-hydroxy-3-nitrophenyl acetyl-specific B cells on fatty acid oxidation. Contrary to AM14 B cells, the activation and differentiation of 13C2 T cells into follicular helper CD4+ T cells was not altered by 2DG, which differs from polyclonal CD4+ T cells from lupus-prone mice. These results further define the role of glycolysis in the production of lupus autoantibodies and demonstrate the need to evaluate the metabolic requirements of Ag-specific B and T cells.
Collapse
Affiliation(s)
- Georges Abboud
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Seung-Chul Choi
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Xiaojuan Zhang
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Yuk Pheel Park
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Nathalie Kanda
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Leilani Zeumer-Spataro
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Morgan Terrell
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Xiangyu Teng
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Kirsten Nündel
- Department of Medicine, Division of Rheumatology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Mark J. Shlomchik
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
21
|
Li ZY, Cai ML, Qin Y, Chen Z. Age/autoimmunity-associated B cells in inflammatory arthritis: An emerging therapeutic target. Front Immunol 2023; 14:1103307. [PMID: 36817481 PMCID: PMC9933781 DOI: 10.3389/fimmu.2023.1103307] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/10/2023] [Indexed: 01/25/2023] Open
Abstract
Age/autoimmunity-associated B cells (ABCs) are a novel B cell subpopulation with a unique transcriptional signature and cell surface phenotype. They are not sensitive to BCR but rely on TLR7 or TLR9 in the context of T cell-derived cytokines for the differentiation. It has been established that aberrant expansion of ABCs is linked to the pathogenesis of systemic autoimmune diseases such as systemic lupus erythematosus. Recently, we and other groups have shown that increased ABCs is associated with rheumatoid arthritis (RA) disease activity and have demonstrated their pathogenic role in RA, indicating that targeting specific B cell subsets is a promising strategy for the treatment of inflammatory arthritis. In this review, we summarize the current knowledge of ABCs, focusing on their emerging role in the pathogenesis of inflammatory arthritis. A deep understanding of the biology of ABCs in the context of inflammatory settings in vivo will ultimately contribute to the development of novel targeted therapies for the treatment of inflammatory arthritis.
Collapse
Affiliation(s)
- Zhen-Yu Li
- Department of Rheumatology and Immunology, the First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ming-Long Cai
- Department of Rheumatology and Immunology, the First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yi Qin
- Department of Rheumatology and Immunology, the First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhu Chen
- Department of Rheumatology and Immunology, the First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
22
|
Punnanitinont A, Kasperek EM, Kiripolsky J, Zhu C, Miecznikowski JC, Kramer JM. TLR7 agonism accelerates disease in a mouse model of primary Sjögren's syndrome and drives expansion of T-bet + B cells. Front Immunol 2022; 13:1034336. [PMID: 36591307 PMCID: PMC9799719 DOI: 10.3389/fimmu.2022.1034336] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Primary Sjögren's syndrome (pSS) is a systemic autoimmune disease characterized by chronic inflammation of exocrine tissue, resulting in loss of tears and saliva. Patients also experience many extra-glandular disease manifestations. Treatment for pSS is palliative, and there are currently no treatments available that target disease etiology. Previous studies in our lab demonstrated that MyD88 is crucial for pSS pathogenesis in the NOD.B10Sn-H2b (NOD.B10) pSS mouse model, although the way in which MyD88-dependent pathways become activated in disease remains unknown. Based on its importance in other autoimmune diseases, we hypothesized that TLR7 activation accelerates pSS pathogenesis. We administered the TLR7 agonist Imiquimod (Imq) or sham treatment to pre-disease NOD.B10 females for 6 weeks. Parallel experiments were performed in age and sex-matched C57BL/10 controls. Imq-treated pSS animals exhibited cervical lymphadenopathy, splenomegaly, and expansion of TLR7-expressing B cells. Robust lymphocytic infiltration of exocrine tissues, kidney and lung was observed in pSS mice following treatment with Imq. TLR7 agonism also induced salivary hypofunction in pSS mice, which is a hallmark of disease. Anti-nuclear autoantibodies, including Ro (SSA) and La (SSB) were increased in pSS mice following Imq administration. Cervical lymph nodes from Imq-treated NOD.B10 animals demonstrated an increase in the percentage of activated/memory CD4+ T cells. Finally, T-bet+ B cells were expanded in the spleens of Imq-treated pSS mice. Thus, activation of TLR7 accelerates local and systemic disease and promotes expansion of T-bet-expressing B cells in pSS.
Collapse
Affiliation(s)
- Achamaporn Punnanitinont
- Department of Oral Biology, School of Dental Medicine, The University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Eileen M. Kasperek
- Department of Oral Biology, School of Dental Medicine, The University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Jeremy Kiripolsky
- Department of Oral Biology, School of Dental Medicine, The University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Chengsong Zhu
- Department of Immunology, Microarray & Immune Phenotyping Core Facility, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jeffrey C. Miecznikowski
- Department of Biostatistics, School of Public Health and Health Professions, The University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Jill M. Kramer
- Department of Oral Biology, School of Dental Medicine, The University at Buffalo, State University of New York, Buffalo, NY, United States,*Correspondence: Jill M. Kramer,
| |
Collapse
|
23
|
Jasim SA, Mahdi RS, Bokov DO, Najm MAA, Sobirova GN, Bafoyeva ZO, Taifi A, Alkadir OKA, Mustafa YF, Mirzaei R, Karampoor S. The deciphering of the immune cells and marker signature in COVID-19 pathogenesis: An update. J Med Virol 2022; 94:5128-5148. [PMID: 35835586 PMCID: PMC9350195 DOI: 10.1002/jmv.28000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/28/2022] [Accepted: 07/13/2022] [Indexed: 12/15/2022]
Abstract
The precise interaction between the immune system and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical in deciphering the pathogenesis of coronavirus disease 2019 (COVID-19) and is also vital for developing novel therapeutic tools, including monoclonal antibodies, antivirals drugs, and vaccines. Viral infections need innate and adaptive immune reactions since the various immune components, such as neutrophils, macrophages, CD4+ T, CD8+ T, and B lymphocytes, play different roles in various infections. Consequently, the characterization of innate and adaptive immune reactions toward SARS-CoV-2 is crucial for defining the pathogenicity of COVID-19. In this study, we explain what is currently understood concerning the conventional immune reactions to SARS-CoV-2 infection to shed light on the protective and pathogenic role of immune response in this case. Also, in particular, we investigate the in-depth roles of other immune mediators, including neutrophil elastase, serum amyloid A, and syndecan, in the immunopathogenesis of COVID-19.
Collapse
Affiliation(s)
| | - Roaa Salih Mahdi
- Department of Pathology, College of MedicineUniversity of BabylonHillaIraq
| | - Dmitry Olegovich Bokov
- Institute of PharmacySechenov First Moscow State Medical UniversityMoscowRussian Federation,Laboratory of Food ChemistryFederal Research Center of Nutrition, Biotechnology and Food SafetyMoscowRussian Federation
| | - Mazin A. A. Najm
- Pharmaceutical Chemistry Department, College of PharmacyAl‐Ayen UniversityThi‐QarIraq
| | - Guzal N. Sobirova
- Department of Rehabilitation, Folk Medicine and Physical EducationTashkent Medical AcademyTashkentUzbekistan
| | - Zarnigor O. Bafoyeva
- Department of Rehabilitation, Folk Medicine and Physical EducationTashkent Medical AcademyTashkentUzbekistan
| | | | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of PharmacyUniversity of MosulMosulIraq
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research CenterPasteur Institute of IranTehranIran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research CenterIran University of Medical SciencesTehranIran
| |
Collapse
|
24
|
Leffler J, Trend S, Hart PH, French MA. Epstein-Barr virus infection, B-cell dysfunction and other risk factors converge in gut-associated lymphoid tissue to drive the immunopathogenesis of multiple sclerosis: a hypothesis. Clin Transl Immunology 2022; 11:e1418. [PMID: 36325491 PMCID: PMC9621333 DOI: 10.1002/cti2.1418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/10/2022] Open
Abstract
Multiple sclerosis is associated with Epstein-Barr virus (EBV) infection, B-cell dysfunction, gut dysbiosis, and environmental and genetic risk factors, including female sex. A disease model incorporating all these factors remains elusive. Here, we hypothesise that EBV-infected memory B cells (MBCs) migrate to gut-associated lymphoid tissue (GALT) through EBV-induced expression of LPAM-1, where they are subsequently activated by gut microbes and/or their products resulting in EBV reactivation and compartmentalised anti-EBV immune responses. These responses involve marginal zone (MZ) B cells that activate CD4+ T-cell responses, via HLA-DRB1, which promote downstream B-cell differentiation towards CD11c+/T-bet+ MBCs, as well as conventional MBCs. Intrinsic expression of low-affinity B-cell receptors (BCRs) by MZ B cells and CD11c+/T-bet+ MBCs promotes polyreactive BCR/antibody responses against EBV proteins (e.g. EBNA-1) that cross-react with central nervous system (CNS) autoantigens (e.g. GlialCAM). EBV protein/autoantigen-specific CD11c+/T-bet+ MBCs migrate to the meningeal immune system and CNS, facilitated by their expression of CXCR3, and induce cytotoxic CD8+ T-cell responses against CNS autoantigens amplified by BAFF, released from EBV-infected MBCs. An increased abundance of circulating IgA+ MBCs, observed in MS patients, might also reflect GALT-derived immune responses, including disease-enhancing IgA antibody responses against EBV and gut microbiota-specific regulatory IgA+ plasma cells. Female sex increases MZ B-cell and CD11c+/T-bet+ MBC activity while environmental risk factors affect gut dysbiosis. Thus, EBV infection, B-cell dysfunction and other risk factors converge in GALT to generate aberrant B-cell responses that drive pathogenic T-cell responses in the CNS.
Collapse
Affiliation(s)
- Jonatan Leffler
- Telethon Kids InstituteUniversity of Western AustraliaPerthWAAustralia
| | - Stephanie Trend
- Telethon Kids InstituteUniversity of Western AustraliaPerthWAAustralia,Perron Institute for Neurological and Translational ScienceUniversity of Western AustraliaPerthWAAustralia
| | - Prue H Hart
- Telethon Kids InstituteUniversity of Western AustraliaPerthWAAustralia
| | - Martyn A French
- School of Biomedical SciencesUniversity of Western AustraliaPerthWAAustralia,Immunology DivisionPathWest Laboratory MedicinePerthWAAustralia
| |
Collapse
|
25
|
Zhong S, Li Q, Wen C, Li Y, Zhou Y, Jin Z, Ye G, Zhao Y, Hou J, Li Y, Tang L. Interferon α facilitates anti-HBV cellular immune response in a B cell-dependent manner. Antiviral Res 2022; 207:105420. [PMID: 36165866 DOI: 10.1016/j.antiviral.2022.105420] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Dissecting the underlying mechanism of T cells remodeling mediated by interferon α (IFN-α) is indispensable for achieving an optimum therapeutic response in chronic hepatitis B (CHB) patients. However, little is known about B cells in this process. This study aims to elucidate the roles of B cells in IFN-α-mediated anti-hepatitis B virus (HBV) cellular immunity. METHOD The effects of B cells on IFN-α-mediated T cell response were investigated in B cell-deficient mouse model with HBV and IFN-α plasmid hydrodynamic injection. Single-cell RNA sequencing was performed to dissect the crosstalk among B cell and T cell subsets and the underlying molecule and pathway signatures on longitudinal blood samples from IFN-α-treated CHB patients. RESULTS B cell depletion impaired the functional T cell subsets, including HBV-specific CD8+ T cells, and engendered a delayed HBV clearance. IFN-α treatment boosted the response of HBV-specific CD8+ T cells, whereas such effects disappeared in B cell-deficient mice. The underlying mechanisms were associated with IFN-α-reinforced connections of B cells toward T cells as mediated by the antigen presentation and costimulatory functions in B cells. CONCLUSION IFN-α orchestrates protective HBV-specific cellular immunity in a B cell-dependent manner.
Collapse
Affiliation(s)
- Shihong Zhong
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiong Li
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chunhua Wen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yifan Li
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Zhou
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zihan Jin
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guofu Ye
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanda Zhao
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jinlin Hou
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Yongyin Li
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Libo Tang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
26
|
Liu S, Miao JJ, Zhou X, Sun Q, Mao XM. High levels of thyroid hormones promote recurrence of Graves' disease via overexpression of B-cell-activating factor. J Clin Lab Anal 2022; 36:e24701. [PMID: 36097969 PMCID: PMC9550970 DOI: 10.1002/jcla.24701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 11/19/2022] Open
Abstract
Background Elevated thyroid hormone (TH) levels have been suggested to be associated with the pathological progression of Graves' disease (GD). However, direct evidence from clinical studies remains unclear. Methods Peripheral blood samples were collected from patients with or without the recurrence of Graves' hyperthyroidism (GH) and healthy donors. Thyroid tissue samples were obtained from patients with benign thyroid nodules. To assess the differentiation of autoreactive B cells, the expression of B‐cell‐activating factor (BAFF) and the proportion of CD11c+/–IgG+/− subsets of B cells stimulated by high levels of triiodothyronine (T3) in vivo and in vitro were examined by ELISA, flow cytometry, western blotting, and qRT‐PCR. Results Serum BAFF levels in patients with GD were significantly and positively correlated with FT3, FT4, and TRAb levels. Furthermore, the ratio of abnormally differentiated CD11c+ autoreactive B cells positively correlated with BAFF and TRAb. High levels of triiodothyronine (T3) induced BAFF overexpression in thyroid follicular cells and mononuclear cells of the normal thyroid in vitro, thereby promoting the differentiation of CD11c+IgG+ autoreactive secretory B cells (ASCs). However, the precise knockdown of BAFF expression significantly inhibited the abnormal differentiation of ASCs. Conclusion The pathological progression of GD was prolonged and exacerbated by autoimmune positive feedback modulation caused by high TH levels. BAFF could be considered a potential target for localized thyroid immunosuppressive treatment of Graves' hyperthyroidism recurrence.
Collapse
Affiliation(s)
- Shu Liu
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jing-Jing Miao
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiao Zhou
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qi Sun
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiao-Ming Mao
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
27
|
Chen Z, Flores Castro D, Gupta S, Phalke S, Manni M, Rivera-Correa J, Jessberger R, Zaghouani H, Giannopoulou E, Pannellini T, Pernis AB. Interleukin-13 Receptor α1-Mediated Signaling Regulates Age-Associated/Autoimmune B Cell Expansion and Lupus Pathogenesis. Arthritis Rheumatol 2022; 74:1544-1555. [PMID: 35438841 PMCID: PMC9427689 DOI: 10.1002/art.42146] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/11/2022] [Accepted: 04/12/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Age-associated/autoimmune B cells (ABCs) are an emerging B cell subset with aberrant expansion in systemic lupus erythematosus. ABC generation and differentiation exhibit marked sexual dimorphism, and Toll-like receptor 7 (TLR-7) engagement is a key contributor to these sex differences. ABC generation is also controlled by interleukin-21 (IL-21) and its interplay with interferon-γ and IL-4. This study was undertaken to investigate whether IL-13 receptor α1 (IL-13Rα1), an X-linked receptor that transmits IL-4/IL-13 signals, regulates ABCs and lupus pathogenesis. METHODS Mice lacking DEF-6 and switch-associated protein 70 (double-knockout [DKO]), which preferentially develop lupus in females, were crossed with IL-13Rα1-knockout mice. IL-13Rα1-knockout male mice were also crossed with Y chromosome autoimmune accelerator (Yaa) DKO mice, which overexpress TLR-7 and develop severe disease. ABCs were assessed using flow cytometry and RNA-Seq. Lupus pathogenesis was evaluated using serologic and histologic analyses. RESULTS ABCs expressed higher levels of IL-13Rα1 than follicular B cells. The absence of IL-13Rα1 in either DKO female mice or Yaa DKO male mice decreased the accumulation of ABCs, the differentiation of ABCs into plasmablasts, and autoantibody production. Lack of IL-13Rα1 also prolonged survival and delayed the development of tissue inflammation. IL-13Rα1 deficiency diminished in vitro generation of ABCs, an effect that, surprisingly, could be observed in response to IL-21 alone. RNA-Seq revealed that ABCs lacking IL-13Rα1 down-regulated some histologic characteristics of B cells but up-regulated myeloid markers and proinflammatory mediators. CONCLUSION Our findings indicate a novel role for IL-13Rα1 in controlling ABC generation and differentiation, suggesting that IL-13Rα1 contributes to these effects by regulating a subset of IL-21-mediated signaling events. These results also suggest that X-linked genes besides TLR7 participate in the regulation of ABCs in lupus.
Collapse
Affiliation(s)
- Zhu Chen
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY, USA
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, China
| | - Danny Flores Castro
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY, USA
| | - Sanjay Gupta
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY, USA
| | - Swati Phalke
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY, USA
| | - Michela Manni
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY, USA
| | - Juan Rivera-Correa
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY, USA
| | - Rolf Jessberger
- Institute of Physiological Chemistry, Medical Faculty, Technische Universitat, Dresden, Germany
| | - Habib Zaghouani
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO
- Department of Neurology, University of Missouri School of Medicine, Columbia, MO
- Department of Child Health, University of Missouri School of Medicine, Columbia, MO
| | - Evgenia Giannopoulou
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
- Biological Sciences Department, New York City College of Technology, City University of New York, Brooklyn, NY, USA
| | - Tania Pannellini
- Research Division and Precision Medicine Laboratory, Hospital for Special Surgery, New York, NY, USA
| | - Alessandra B. Pernis
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
28
|
Gao X, Cockburn IA. The development and function of CD11c+ atypical B cells - insights from single cell analysis. Front Immunol 2022; 13:979060. [PMID: 36072594 PMCID: PMC9441955 DOI: 10.3389/fimmu.2022.979060] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
CD11c+ T-bet+ atypical B cells (ABCs) have been identified in the context of vaccination, acute and chronic infections and autoimmune disease. However, the origins and functions of ABCs remain elusive. A major obstacle in the study of ABCs, and human MBCs more generally, has been the use of different phenotypic markers in different contexts to identify what appear to be phenotypically similar cells. Advances in single-cell RNA sequencing (scRNA-seq) technology have allowed researchers to accurately identify ABCs in different immune contexts such as diseases and tissues. Notably, recent studies utilizing single cell techniques have demonstrated ABCs are a highly conserved memory B cell lineage. This analysis has also revealed that ABCs are more abundant in ostensibly healthy donors than previously thought. Nonetheless, the normal function of these cells remains elusive. In this review, we will focus on scRNA-seq studies to discuss recent advances in our understanding about the development and functions of ABCs.
Collapse
|
29
|
Qin Y, Cai ML, Jin HZ, Huang W, Zhu C, Bozec A, Huang J, Chen Z. Age-associated B cells contribute to the pathogenesis of rheumatoid arthritis by inducing activation of fibroblast-like synoviocytes via TNF-α-mediated ERK1/2 and JAK-STAT1 pathways. Ann Rheum Dis 2022; 81:1504-1514. [PMID: 35760450 DOI: 10.1136/ard-2022-222605] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/17/2022] [Indexed: 12/28/2022]
Abstract
OBJECTIVES Age-associated B cells (ABCs) are a recently identified B cell subset, whose expansion has been increasingly linked to the pathogenesis of autoimmune disorders. This study aimed to investigate whether ABCs are involved in the pathogenesis and underlying mechanisms of rheumatoid arthritis (RA). METHODS ABCs were assessed in collagen-induced arthritis (CIA) mice and patients with RA using flow cytometry. Transcriptomic features of RA ABCs were explored using RNA-seq. Primary fibroblast-like synoviocytes (FLS) derived from the synovial tissue of patients with RA were cocultured with ABCs or ABCs-conditioned medium (ABCsCM). IL-6, MMP-1, MMP-3 and MMP-13 levels in the coculture supernatant were detected by ELISA. Signalling pathways related to ABCs-induced FLS activation were examined using western blotting. RESULTS Increased ABCs levels in the blood, spleen and inflammatory joints of CIA mice were observed. Notably, ABCs were elevated in the blood, synovial fluid and synovial tissue of patients with RA and positively correlated with disease activity. RNA-seq revealed upregulated chemotaxis-related genes in RA ABCs compared with those in naive and memory B cells. Coculture of FLS with RA ABCs or ABCsCM led to an active phenotype of FLS, with increased production of IL-6, MMP-1, MMP-3 and MMP-13. Mechanistically, ABCsCM-derived TNF-α promoted the upregulation of interferon-stimulated genes in FLS, with elevated phosphorylation of ERK1/2 and STAT1. Furthermore, blockage of ERK1/2 and Janus Kinase (JAK)-STAT1 pathways inhibited the activation of FLS induced by ABCsCM. CONCLUSIONS Our results suggest that ABCs contribute to the pathogenesis of RA by inducing the activation of FLS via TNF-α-mediated ERK1/2 and JAK-STAT1 pathways.
Collapse
Affiliation(s)
- Yi Qin
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ming-Long Cai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hui-Zhi Jin
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Huang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chen Zhu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Aline Bozec
- Department of Internal Medicine III, Institute for Clinical Immunology University of Erlangen-Nuremberg, Erlangen, Germany
| | - Jingang Huang
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhu Chen
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
30
|
Courey-Ghaouzi AD, Kleberg L, Sundling C. Alternative B Cell Differentiation During Infection and Inflammation. Front Immunol 2022; 13:908034. [PMID: 35812395 PMCID: PMC9263372 DOI: 10.3389/fimmu.2022.908034] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/30/2022] [Indexed: 01/02/2023] Open
Abstract
Long-term protective immunity to infectious disease depends on cell-mediated and humoral immune responses. Induction of a strong humoral response relies on efficient B cell activation and differentiation to long-lived plasma cells and memory B cells. For many viral or bacterial infections, a single encounter is sufficient to induce such responses. In malaria, the induction of long-term immunity can take years of pathogen exposure to develop, if it occurs at all. This repeated pathogen exposure and suboptimal immune response coincide with the expansion of a subset of B cells, often termed atypical memory B cells. This subset is present at low levels in healthy individuals as well but it is observed to expand in an inflammatory context during acute and chronic infection, autoimmune diseases or certain immunodeficiencies. Therefore, it has been proposed that this subset is exhausted, dysfunctional, or potentially autoreactive, but its actual role has remained elusive. Recent reports have provided new information regarding both heterogeneity and expansion of these cells, in addition to indications on their potential role during normal immune responses to infection or vaccination. These new insights encourage us to rethink how and why they are generated and better understand their role in our complex immune system. In this review, we will focus on recent advances in our understanding of these enigmatic cells and highlight the remaining gaps that need to be filled.
Collapse
Affiliation(s)
- Alan-Dine Courey-Ghaouzi
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Linn Kleberg
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Christopher Sundling
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- *Correspondence: Christopher Sundling,
| |
Collapse
|
31
|
Jia X, Bene J, Balázs N, Szabó K, Berta G, Herczeg R, Gyenesei A, Balogh P. Age-Associated B Cell Features of the Murine High-Grade B Cell Lymphoma Bc.DLFL1 and Its Extranodal Expansion in Abdominal Adipose Tissues. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2866-2876. [PMID: 35867673 DOI: 10.4049/jimmunol.2100956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 04/16/2022] [Indexed: 11/19/2022]
Abstract
Diffuse large B cell lymphoma comprises a heterogeneous group of B cell-derived tumors, with different degrees of aggressiveness, as defined by their cellular origin and tissue microenvironment. Using the spontaneous Bc.DLFL1 lymphoma originating from a BALB/c mouse as a diffuse large B cell lymphoma model, in this study we demonstrate that the lymphoma cells display surface phenotype, IgH V-region somatic mutations, transcription factor characteristics and in vivo location to splenic extrafollicular regions of age-associated B cells (ABCs), corresponding to T-bet+ and Blimp-1+/CD138- plasmablasts derivation. The expansion of lymphoma cells within lymphoid tissues took place in a close arrangement with CD11c+ dendritic cells, whereas the extranodal infiltration occurred selectively in the mesentery and omentum containing resident gp38/podoplanin+ fibroblastic reticular cells. Antagonizing BAFF-R activity by mBR3-Fc soluble receptor fusion protein led to a significant delay of disease progression. The extranodal expansion of Bc.DLFL1 lymphoma within the omental and mesenteric adipose tissues was coupled with a significant change of the tissue cytokine landscape, including both shared alterations and tissue-specific variations. Our findings indicate that while Bc.DLFL1 cells of ABC origin retain the positioning pattern within lymphoid tissues of their physiological counterpart, they also expand in non-lymphoid tissues in a BAFF-dependent manner, where they may alter the adipose tissue microenvironment to support their extranodal growth.
Collapse
Affiliation(s)
- Xinkai Jia
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs, Pécs, Hungary
- Lymphoid Organogenesis Research Group, Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Judit Bene
- Department of Medical Genetics, Clinical Center, University of Pécs, Pécs, Hungary
| | - Noémi Balázs
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs, Pécs, Hungary
| | - Katalin Szabó
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs, Pécs, Hungary
| | - Gergely Berta
- Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, University of Pécs, Pécs, Hungary; and
| | - Róbert Herczeg
- Bioinformatics Research Group, Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Attila Gyenesei
- Bioinformatics Research Group, Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Péter Balogh
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs, Pécs, Hungary;
- Lymphoid Organogenesis Research Group, Szentágothai Research Center, University of Pécs, Pécs, Hungary
| |
Collapse
|
32
|
Phalke S, Rivera-Correa J, Jenkins D, Flores Castro D, Giannopoulou E, Pernis AB. Molecular mechanisms controlling age-associated B cells in autoimmunity. Immunol Rev 2022; 307:79-100. [PMID: 35102602 DOI: 10.1111/imr.13068] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/11/2022]
Abstract
Age-associated B cells (ABCs) have emerged as critical components of immune responses. Their inappropriate expansion and differentiation have increasingly been linked to the pathogenesis of autoimmune disorders, aging-associated diseases, and infections. ABCs exhibit a distinctive phenotype and, in addition to classical B cell markers, often express the transcription factor T-bet and myeloid markers like CD11c; hence, these cells are also commonly known as CD11c+ T-bet+ B cells. Formation of ABCs is promoted by distinctive combinations of innate and adaptive signals. In addition to producing antibodies, these cells display antigen-presenting and proinflammatory capabilities. It is becoming increasingly appreciated that the ABC compartment exhibits a high degree of heterogeneity, plasticity, and sex-specific regulation and that ABCs can differentiate into effector progeny via several routes particularly in autoimmune settings. In this review, we will discuss the initial insights that have been obtained on the molecular machinery that controls ABCs and we will highlight some of the unique aspects of this control system that may enable ABCs to fulfill their distinctive role in immune responses. Given the expanding array of autoimmune disorders and pathophysiological settings in which ABCs are being implicated, a deeper understanding of this machinery could have important and broad therapeutic implications for the successful, albeit daunting, task of targeting these cells.
Collapse
Affiliation(s)
- Swati Phalke
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Juan Rivera-Correa
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Daniel Jenkins
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Danny Flores Castro
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Evgenia Giannopoulou
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York, USA
- Biological Sciences Department, New York City College of Technology, City University of New York, Brooklyn, New York, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Alessandra B Pernis
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- Immunology & Microbial Pathogenesis, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
33
|
Age-associated B cells indicate disease activity in rheumatoid arthritis. Cell Immunol 2022; 377:104533. [DOI: 10.1016/j.cellimm.2022.104533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/08/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022]
|
34
|
Minguet S, Nyström A, Kiritsi D, Rizzi M. Inborn errors of immunity and immunodeficiencies: antibody-mediated pathology and autoimmunity as a consequence of impaired immune reactions. Eur J Immunol 2022; 52:1396-1405. [PMID: 35443081 DOI: 10.1002/eji.202149529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 11/08/2022]
Abstract
B cell tolerance to self-antigen is an active process that requires the temporal and spatial integration of signals of defined intensity. In common variable immune deficiency disorders (CVID), CTLA-4 deficiency, autoimmune lymphoproliferative syndrome (ALPS), or in collagen VII deficiency, genetic defects in molecules regulating development, activation, maturation and extracellular matrix composition alter the generation of B cells, resulting in immunodeficiency. Paradoxically, at the same time, the defective immune processes favor autoantibody production and immunopathology through impaired establishment of tolerance. The development of systemic autoimmunity in the framework of defective BCR signaling is relatively unusual in genetic mouse models. In sharp contrast, such reduced signaling in humans is clearly linked to pathological autoimmunity. The molecular mechanisms by which tolerance is broken in these settings are only starting to be explored resulting in novel therapeutic interventions. For instance, in CTLA-4 deficiency, homeostasis can be restored by CTLA-4 Ig treatment. Following this example, the identification of the molecular targets causing the reduced signals and their restoration is a visionary way to reestablish tolerance and develop novel therapeutic avenues for immunopathologies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Susana Minguet
- Faculty of Biology, Albert-Ludwigs-University, of, Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University, of, Freiburg, Freiburg, Germany.,Center of Chronic Immunodeficiency CCI, University, Clinics, and, Medical, Faculty, Freiburg, Germany.,Freiburg Institute for Advanced Studies (FRIAS), University, of, Freiburg
| | - Alexander Nyström
- Freiburg Institute for Advanced Studies (FRIAS), University, of, Freiburg.,Department of Dermatology, Medical Faculty, Medical, Center, -, University, of, Freiburg, Freiburg, Germany
| | - Dimitra Kiritsi
- Department of Dermatology, Medical Faculty, Medical, Center, -, University, of, Freiburg, Freiburg, Germany
| | - Marta Rizzi
- Signalling Research Centres BIOSS and CIBSS, University, of, Freiburg, Freiburg, Germany.,Center of Chronic Immunodeficiency CCI, University, Clinics, and, Medical, Faculty, Freiburg, Germany.,Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University, of, Freiburg, Freiburg, Germany
| |
Collapse
|
35
|
Ruggiero A, Pascucci GR, Cotugno N, Domínguez-Rodríguez S, Rinaldi S, Tagarro A, Rojo P, Foster C, Bamford A, De Rossi A, Nastouli E, Klein N, Morrocchi E, Fatou B, Smolen KK, Ozonoff A, Di Pastena M, Luzuriaga K, Steen H, Giaquinto C, Goulder P, Rossi P, Levy O, Pahwa S, Palma P. Determinants of B-Cell Compartment Hyperactivation in European Adolescents Living With Perinatally Acquired HIV-1 After Over 10 Years of Suppressive Therapy. Front Immunol 2022; 13:860418. [PMID: 35432380 PMCID: PMC9009387 DOI: 10.3389/fimmu.2022.860418] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/03/2022] [Indexed: 01/07/2023] Open
Abstract
Background Despite a successful antiretroviral therapy (ART), adolescents living with perinatally acquired HIV (PHIV) experience signs of B-cell hyperactivation with expansion of 'namely' atypical B-cell phenotypes, including double negative (CD27-IgD-) and termed age associated (ABCs) B-cells (T-bet+CD11c+), which may result in reduced cell functionality, including loss of vaccine-induced immunological memory and higher risk of developing B-cells associated tumors. In this context, perinatally HIV infected children (PHIV) deserve particular attention, given their life-long exposure to chronic immune activation. Methods We studied 40 PHIV who started treatment by the 2nd year of life and maintained virological suppression for 13.5 years, with 5/40 patients experiencing transient elevation of the HIV-1 load in the plasma (Spike). We applied a multi-disciplinary approach including immunological B and T cell phenotype, plasma proteomics analysis, and serum level of anti-measles antibodies as functional correlates of vaccine-induced immunity. Results Phenotypic signs of B cell hyperactivation were elevated in subjects starting ART later (%DN T-bet+CD11c+ p=0.03; %AM T-bet+CD11c+ p=0.02) and were associated with detectable cell-associated HIV-1 RNA (%AM T-bet+CD11c+ p=0.0003) and transient elevation of the plasma viral load (spike). Furthermore, B-cell hyperactivation appeared to be present in individuals with higher frequency of exhausted T-cells, in particular: %CD4 TIGIT+ were associated with %DN (p=0.008), %DN T-bet+CD11c+ (p=0.0002) and %AM T-bet+CD11c+ (p=0.002) and %CD4 PD-1 were associated with %DN (p=0.048), %DN T-bet+CD11c+ (p=0.039) and %AM T-bet+CD11c+ (p=0.006). The proteomic analysis revealed that subjects with expansion of these atypical B-cells and exhausted T-cells had enrichment of proteins involved in immune inflammation and complement activation pathways. Furthermore, we observed that higher levels of ABCs were associated a reduced capacity to maintain vaccine-induced antibody immunity against measles (%B-cells CD19+CD10- T-bet+, p=0.035). Conclusion We identified that the levels of hyperactivated B cell subsets were strongly affected by time of ART start and associated with clinical, viral, cellular and plasma soluble markers. Furthermore, the expansion of ABCs also had a direct impact on the capacity to develop antibodies response following routine vaccination.
Collapse
Affiliation(s)
- Alessandra Ruggiero
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Giuseppe Rubens Pascucci
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Chair of Pediatrics Department of Systems Medicine, University of Rome ‘‘Tor Vergata’’, Rome, Italy
| | - Nicola Cotugno
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Chair of Pediatrics Department of Systems Medicine, University of Rome ‘‘Tor Vergata’’, Rome, Italy
| | - Sara Domínguez-Rodríguez
- Pediatric Research and Clinical Trials Unit (UPIC), Instituto de Investigación Sanitaria Hospital 12 de Octubre (IMAS12), Madrid, Spain
- Fundación para la Investigación Biomédica del Hospital 12 de Octubre, RITIP (Traslational Research Network in Pediatric Infectious Diseases), Madrid, Spain
| | - Stefano Rinaldi
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Alfredo Tagarro
- Pediatric Research and Clinical Trials Unit (UPIC), Instituto de Investigación Sanitaria Hospital 12 de Octubre (IMAS12), Madrid, Spain
- Fundación para la Investigación Biomédica del Hospital 12 de Octubre, RITIP (Traslational Research Network in Pediatric Infectious Diseases), Madrid, Spain
- Department of Pediatrics, Infanta Sofía University Hospital. Infanta Sofia University Hospital and Henares University Hospital Foundation for Biomedical Research and Innovation (FIIB HUIS HHEN), San Sebastián de los Reyes, Madrid, Spain
- Universidad Europea, Madrid, Spain
| | - Pablo Rojo
- Pediatric Research and Clinical Trials Unit (UPIC), Instituto de Investigación Sanitaria Hospital 12 de Octubre (IMAS12), Madrid, Spain
- Fundación para la Investigación Biomédica del Hospital 12 de Octubre, RITIP (Traslational Research Network in Pediatric Infectious Diseases), Madrid, Spain
| | - Caroline Foster
- Department of Pediatric Infectious Diseases, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Alasdair Bamford
- MRC Clinical Trials Unit at UCL, London, United Kingdom
- Great Ormond Street Hospital for Children NHS Trust, London, United Kingdom
- University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Anita De Rossi
- Department of Oncology, Surgery and Gastroenterology, University of Padova, Padova, Italy
- Istituto Oncologico Veneto (IOV)- IRCCS, Padova, Italy
| | - Eleni Nastouli
- Great Ormond Street Hospital for Children NHS Trust, London, United Kingdom
| | - Nigel Klein
- Infection, Immunity & Inflammation Department, UCL GOS Institute of Child Health, London, United Kingdom
| | - Elena Morrocchi
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Benoit Fatou
- Precision Vaccines Program, Boston Children Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Department of Pathology, Boston Children’s Hospital, Boston, MA, United States
| | - Kinga K. Smolen
- Precision Vaccines Program, Boston Children Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Al Ozonoff
- Precision Vaccines Program, Boston Children Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Michela Di Pastena
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- UOSD Unit of Clinical Psychology – Dept. of Neuroscience and Neurorehabilitation, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Katherine Luzuriaga
- Program in Molecular Medicine, Umass Chan Medical School, Worcester, MA, United States
| | - Hanno Steen
- Precision Vaccines Program, Boston Children Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Department of Pathology, Boston Children’s Hospital, Boston, MA, United States
| | - Carlo Giaquinto
- Department of Mother and Child Health, University of Padova, Padova, Italy
| | - Philip Goulder
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Paolo Rossi
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Chair of Pediatrics Department of Systems Medicine, University of Rome ‘‘Tor Vergata’’, Rome, Italy
| | - Ofer Levy
- Precision Vaccines Program, Boston Children Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Savita Pahwa
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Paolo Palma
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Chair of Pediatrics Department of Systems Medicine, University of Rome ‘‘Tor Vergata’’, Rome, Italy
| |
Collapse
|
36
|
Cao Y, Zhao X, You R, Zhang Y, Qu C, Huang Y, Yu Y, Gong Y, Cong T, Zhao E, Zhang L, Gao Y, Zhang J. CD11c+ B Cells Participate in the Pathogenesis of Graves’ Disease by Secreting Thyroid Autoantibodies and Cytokines. Front Immunol 2022; 13:836347. [PMID: 35386700 PMCID: PMC8977450 DOI: 10.3389/fimmu.2022.836347] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/25/2022] [Indexed: 12/14/2022] Open
Abstract
Graves’ disease (GD) is a common autoimmune disorder with an elevation in pathogenic autoantibodies, specifically anti-thyrotropin receptor antibodies (TRAbs), which are secreted by autoreactive B cells. To date, there has been little research on self-reactive B cells in GD. In the current study, we reported that a unique B-cell subset, CD11c+ B cells, was expanded in the peripheral blood (PB) of GD patients, as detected by flow cytometry. The frequency of CD11c+ B cells was positively correlated with serum TRAb levels. The flow cytometry data showed that CD11c expression was higher in a variety of B-cell subsets and that CD11c+ B cells presented a distinct immunophenotype compared to paired CD11c- B cells. Immunohistochemical and immunofluorescence staining indicated the presence of CD11c+CD19+ B cells in lymphocyte infiltration areas of the GD thyroid. Flow cytometric analysis of PB and fine-needle aspiration (FNA) samples showed that compared to PB CD11c+ B cells, CD11c+ B cells in the thyroid accumulated and further differentiated. We found that CD11c+ B cells from the PB of GD patients were induced to differentiate into autoreactive antibody-secreting cells (ASCs) capable of secreting TRAbs in vitro. Luminex liquid suspension chip detection data showed that CD11c+ B cells also secreted a variety of cytokines, including proinflammatory cytokines, anti-inflammatory cytokines, and chemokines, which might play roles in regulating the local inflammatory response and infiltration of lymphocytes in the thyroid. In addition, we performed a chemotaxis assay in a Transwell chamber to verify that CD11c+ B cells were recruited by thyroid follicular cells (TFCs) via the CXCR3-CXCL10 axis. In conclusion, our study determined that CD11c+ B cells were involved in the pathogenesis of GD in multiple ways and might represent a promising immunotherapeutic target in the future.
Collapse
Affiliation(s)
- Yedi Cao
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Xue Zhao
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Ran You
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Yang Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Chenxue Qu
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Youyuan Huang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Yang Yu
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Yan Gong
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Tiechuan Cong
- Department of Otolaryngology-Head and Neck Surgery, Beijing, China
| | - Enmin Zhao
- Department of Otolaryngology-Head and Neck Surgery, Beijing, China
| | - Lanbo Zhang
- Breast Disease Center, Peking University First Hospital, Beijing, China
| | - Ying Gao
- Department of Endocrinology, Peking University First Hospital, Beijing, China
- *Correspondence: Ying Gao,
| | - Junqing Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| |
Collapse
|
37
|
Zhu Y, Tang X, Xu Y, Wu S, Liu W, Geng L, Ma X, Tsao BP, Feng X, Sun L. RNASE2 Mediates Age-Associated B Cell Expansion Through Monocyte Derived IL-10 in Patients With Systemic Lupus Erythematosus. Front Immunol 2022; 13:752189. [PMID: 35265065 PMCID: PMC8899663 DOI: 10.3389/fimmu.2022.752189] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 02/02/2022] [Indexed: 12/16/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is characterized by the production of pathogenic autoantibodies. Ribonuclease A family member 2 (RNase2) is known to have antiviral activity and immunomodulatory function. Although RNASE2 level has been reported to be elevated in SLE patients based on mRNA microarray detection, its pathologic mechanism remains unclear. Here, we confirmed that RNASE2 was highly expressed in PBMCs from SLE patients and associated with the proportion of CD11c+T-bet+ B cells, a class of autoreactive B cells also known as age-associated B cells (ABCs). We showed that reduction of RNASE2 expression by small interfering RNA led to the decrease of ABCs in vitro, accompanied by total IgG and IL-10 reduction. In addition, we demonstrated that both RNASE2 and IL-10 in peripheral blood of lupus patients were mainly derived from monocytes. RNASE2 silencing in monocytes down-regulated IL-10 production and consequently reduced ABCs numbers in monocyte-B cell co-cultures, which could be restored by the addition of recombinant IL-10. Based on above findings, we concluded that RNASE2 might induce the production of ABCs via IL-10 secreted from monocytes, thus contributing to the pathogenesis of SLE.
Collapse
Affiliation(s)
- Yantong Zhu
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaojun Tang
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yang Xu
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Si Wu
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Weilin Liu
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Linyu Geng
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaolei Ma
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Betty P Tsao
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Xuebing Feng
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
38
|
Diao L, Li M, Tao J, Xu X, Wang Y, Hu Y. Therapeutic effects of cationic liposomes on lupus-prone MRL/lpr mice are mediated via inhibition of TLR4-triggered B-cell activation. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 40:102491. [PMID: 34781040 DOI: 10.1016/j.nano.2021.102491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 07/21/2021] [Accepted: 10/23/2021] [Indexed: 10/19/2022]
Abstract
We previously reported that co-delivery of dihydroartemisinin and high mobility group box 1 (HMGB1) siRNAs, using cell penetrating peptide (TAT)-modified cationic liposomes (TAT-CLs-DHA/siRNA), resulted in promising activity for the treatment of inflammatory disease through TLR4 signaling pathway. In the current study, we further investigated the therapeutic effects of TAT-CLs-DHA/siRNA on lupus-prone MRL/lpr mice and explored its effects on B cell responses. In vitro, we found that TAT-CLs-DHA/siRNA suppressed the proliferation and activation of B cells through the TLR4 signaling pathway. Following parenteral administration every 4 days, TAT-CLs-DHA/siRNA significantly reduced proteinuria, glomerulonephritis, serum anti-dsDNA antibody and secretion of interleukin (IL)-6, IL-10, IL-17 and IL-21. Moreover, Western blotting showed that TAT-CLs-DHA/siRNA modulated the B-cell intrinsic pathway by downregulating expression of HMGB1, TLR4, MyD88 and NF-κB. This co-delivery system thus represents a promising treatment option for lupus nephritis, and also highlights a novel target of lupus treatment through B cell TLR4 signal pathway.
Collapse
Affiliation(s)
- Lu Diao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; College of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, Zhejiang, China
| | - Ming Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; College of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, Zhejiang, China
| | - Jin Tao
- College of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, Zhejiang, China
| | - Xiaojun Xu
- College of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, Zhejiang, China
| | - Yiqi Wang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ying Hu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; College of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, Zhejiang, China.
| |
Collapse
|
39
|
Hong H, Alduraibi F, Ponder D, Duck WL, Morrow CD, Foote JB, Schoeb TR, Fatima H, Elson CO, Hsu HC, Mountz JD. Host genetics but not commensal microbiota determines the initial development of systemic autoimmune disease in BXD2 mice. Arthritis Rheumatol 2021; 74:634-640. [PMID: 34725967 DOI: 10.1002/art.42008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 08/31/2021] [Accepted: 10/19/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To determine the extent of gut microbiome in influencing systemic autoimmunity, we generated germ-free (GF) BXD2 lupus mice, which otherwise develop spontaneous germinal centers (GCs) and high titers of serum autoantibodies. METHODS The GF status was confirmed by gut bacterial culture. The autoimmune phenotypes in 6- and 12-mo-old gnotobiotic GF BXD2 mice and specific pathogen-free (SPF) BXD2 mice were compared. Serum levels of autoantibody were measured using ELISA. Histologic sections of kidney and joints were evaluated. Flow cytometry was used to analyze GC and age-associated B cells (ABCs). CD4+ T cells were analyzed for PD-1+ ICOS+ activated T cells, follicular T-regulatory cells (Tfr, Foxp3+ CD25+ PD-1+ CXCR5+ ), and PMA/ionomycin stimulated IL-17A+ or interferon-gamma (IFN-&ip.gamma;)+ PD-1+ ICOS+ T cells. RESULTS At 6-mo of age, the GF status did not affect splenomegaly, GC B cells, ABCs or serum autoantibodies except for IgG anti-histone. GF BXD2 mice exhibited a significantly higher percent of Tfr cells, compared to the SPF counterpart. At 12-mo-old, however, there were significantly diminished IgG autoantibodies and a lower percent of GC B cells and ABCs in GF BXD2 mice. Following stimulation, PD-1+ ICOS+ CD4 T cells expressed significantly lower IL-17A but not IFN-&ip.gamma; in GF BXD2 mice, compared to SPF mice. Both SPF and GF BXD2 mice developed equivalent renal and joint disease with no significant differences in severity. CONCLUSION Our results suggest a model in which genetics play a dominant role in determining the initial development of autoimmunity. In contrast, gut microbiomes may regulate the persistence of certain aspects of systemic autoimmunity.
Collapse
Affiliation(s)
- Huixian Hong
- Division of Clinical Immunology and Rheumatology, Department of Medicine, the University of Alabama at Birmingham.,Department of Cell, Developmental, and Integrative Biology, the University of Alabama at Birmingham
| | - Fatima Alduraibi
- Division of Clinical Immunology and Rheumatology, Department of Medicine, the University of Alabama at Birmingham
| | - David Ponder
- Division of Clinical Immunology and Rheumatology, Department of Medicine, the University of Alabama at Birmingham
| | - Wayne L Duck
- Division of Gastroenterology and Hepatology, Department of Medicine, the University of Alabama at Birmingham
| | - Casey D Morrow
- Department of Cell, Developmental, and Integrative Biology, the University of Alabama at Birmingham
| | - Jeremy B Foote
- Department of Microbiology, the University of Alabama at Birmingham
| | - Trenton R Schoeb
- Department of Genetics, Animal Resources Program, the University of Alabama at Birmingham
| | - Huma Fatima
- Department of Pathology, the University of Alabama at Birmingham
| | - Charles O Elson
- Division of Gastroenterology and Hepatology, Department of Medicine, the University of Alabama at Birmingham
| | - Hui-Chen Hsu
- Division of Clinical Immunology and Rheumatology, Department of Medicine, the University of Alabama at Birmingham
| | - John D Mountz
- Division of Clinical Immunology and Rheumatology, Department of Medicine, the University of Alabama at Birmingham.,Birmingham VA Medical center
| |
Collapse
|
40
|
Carsetti R, Terreri S, Conti MG, Fernandez Salinas A, Corrente F, Capponi C, Albano C, Piano Mortari E. Comprehensive phenotyping of human peripheral blood B lymphocytes in healthy conditions. Cytometry A 2021; 101:131-139. [PMID: 34664397 PMCID: PMC9546334 DOI: 10.1002/cyto.a.24507] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022]
Abstract
The B cell compartment provides innate and adaptive immune defenses against pathogens. Different B cell subsets, reflecting the maturation stages of B cells, have noninterchangeable functions and roles in innate and adaptive immune responses. In this review, we provide an overview of the B cell subsets present in peripheral blood of healthy individuals. A specific gating strategy is also described to clearly and univocally identify B cell subsets based on the their phenotypic traits by flow cytometric analysis.
Collapse
Affiliation(s)
- Rita Carsetti
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sara Terreri
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria Giulia Conti
- Department of Maternal and Child Health, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy.,Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Ane Fernandez Salinas
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Francesco Corrente
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Claudia Capponi
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Christian Albano
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Eva Piano Mortari
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
41
|
Martínez-Blanco Á, Domínguez-Pantoja M, Botía-Sánchez M, Pérez-Cabrera S, Bello-Iglesias N, Carrillo-Rodríguez P, Martin-Morales N, Lario-Simón A, Pérez-Sánchez-Cañete MM, Montosa-Hidalgo L, Guerrero-Fernández S, Longobardo-Polanco VM, Redondo-Sánchez S, Cornet-Gomez A, Torres-Sáez M, Fernández-Ibáñez A, Terrón-Camero L, Andrés-León E, O'Valle F, Merino R, Zubiaur M, Sancho J. CD38 Deficiency Ameliorates Chronic Graft- Versus-Host Disease Murine Lupus via a B-Cell-Dependent Mechanism. Front Immunol 2021; 12:713697. [PMID: 34504495 PMCID: PMC8421681 DOI: 10.3389/fimmu.2021.713697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/30/2021] [Indexed: 11/22/2022] Open
Abstract
The absence of the mouse cell surface receptor CD38 in Cd38−/− mice suggests that this receptor acts as a positive regulator of inflammatory and autoimmune responses. Here, we report that, in the context of the chronic graft-versus-host disease (cGVHD) lupus inducible model, the transfer of B6.C-H2bm12/KhEg(bm12) spleen cells into co-isogenic Cd38−/− B6 mice causes milder lupus-like autoimmunity with lower levels of anti-ssDNA autoantibodies than the transfer of bm12 spleen cells into WT B6 mice. In addition, significantly lower percentages of Tfh cells, as well as GC B cells, plasma cells, and T-bet+CD11chi B cells, were observed in Cd38−/− mice than in WT mice, while the expansion of Treg cells and Tfr cells was normal, suggesting that the ability of Cd38−/− B cells to respond to allogeneic help from bm12 CD4+ T cells is greatly diminished. The frequencies of T-bet+CD11chi B cells, which are considered the precursors of the autoantibody-secreting cells, correlate with anti-ssDNA autoantibody serum levels, IL-27, and sCD40L. Proteomics profiling of the spleens from WT cGVHD mice reflects a STAT1-driven type I IFN signature, which is absent in Cd38−/− cGVHD mice. Kidney, spleen, and liver inflammation was mild and resolved faster in Cd38−/− cGVHD mice than in WT cGVHD mice. We conclude that CD38 in B cells functions as a modulator receptor that controls autoimmune responses.
Collapse
Affiliation(s)
- África Martínez-Blanco
- Department of Cellular Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Marilú Domínguez-Pantoja
- Department of Cellular Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - María Botía-Sánchez
- Department of Cellular Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Sonia Pérez-Cabrera
- Department of Cellular Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Nerea Bello-Iglesias
- Department of Cellular Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Paula Carrillo-Rodríguez
- Department of Cellular Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | | | | | | | | | | | | | | | - Alberto Cornet-Gomez
- Department of Cellular Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - María Torres-Sáez
- Department of Cellular Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | | | | | | | - Francisco O'Valle
- Department of Pathology, Faculty of Medicine, University of Granada (UGR), Granada, Spain
| | - Ramón Merino
- Department of Molecular and Cellular Signalling, Instituto de Biomedicina y de Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas-Universidad de Cantabria (CSIC-UC), Santander, Spain
| | - Mercedes Zubiaur
- Department of Cellular Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Jaime Sancho
- Department of Cellular Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| |
Collapse
|
42
|
Dörner T, Szelinski F, Lino AC, Lipsky PE. Therapeutic implications of the anergic/postactivated status of B cells in systemic lupus erythematosus. RMD Open 2021; 6:rmdopen-2020-001258. [PMID: 32675278 PMCID: PMC7425190 DOI: 10.1136/rmdopen-2020-001258] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/28/2020] [Accepted: 06/12/2020] [Indexed: 12/19/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is characterised by numerous abnormalities in B lineage cells, including increased CD27++ plasmablasts/plasma cells, atypical CD27-IgD- B cells with increased CD95, spleen tyrosine kinase (Syk)++, CXCR5- and CXCR5+ subsets and anergic CD11c+Tbet+ age-associated B cells. Most findings, together with preclinical lupus models, support the concept of B cell hyperactivity in SLE. However, it remains largely unknown whether these specific B cell subsets have pathogenic consequences and whether they provide relevant therapeutic targets. Recent findings indicate a global distortion of B cell functional capability, in which the entire repertoire of naïve and memory B cells in SLE exhibits an anergic or postactivated (APA) functional phenotype. The APA status of SLE B cells has some similarities to the functional derangement of lupus T cells. APA B cells are characterised by reduced global cytokine production, diminished B cell receptor (BCR) signalling with decreased Syk and Bruton's tyrosine kinase phosphorylation related to repeated in vivo BCR stimulation as well as hyporesponsiveness to toll-like receptor 9 engagement, but intact CD40 signalling. This APA status was related to constitutive co-localisation of CD22 linked to phosphatase SHP-1 and increased overall protein phosphatase activities. Notably, CD40 co-stimulation could revert this APA status and restore BCR signalling, downregulate protein tyrosine phosphatase transcription and promote B cell proliferation and differentiation. The APA status and their potential rescue by bystander help conveyed through CD40 stimulation not only provides insights into possible mechanisms of escape of autoreactive clones from negative selection but also into novel ways to target B cells therapeutically.
Collapse
Affiliation(s)
| | | | - Andreia C Lino
- Department of Rheumatology and Clinical Immunology, Charité University Hospital, Berlin, Germany.,German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Peter E Lipsky
- RILITE Research Institute, Charlottesville, Virginia, USA
| |
Collapse
|
43
|
Mouat IC, Morse ZJ, Shanina I, Brown KL, Horwitz MS. Latent gammaherpesvirus exacerbates arthritis through modification of age-associated B cells. eLife 2021; 10:e67024. [PMID: 34080972 PMCID: PMC8337075 DOI: 10.7554/elife.67024] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/31/2021] [Indexed: 12/16/2022] Open
Abstract
Epstein-Barr virus (EBV) infection is associated with rheumatoid arthritis (RA) in adults, though the nature of the relationship remains unknown. Herein, we have examined the contribution of viral infection to the severity of arthritis in mice. We have provided the first evidence that latent gammaherpesvirus infection enhances clinical arthritis, modeling EBV's role in RA. Mice latently infected with a murine analog of EBV, gammaherpesvirus 68 (γHV68), develop more severe collagen-induced arthritis and a Th1-skewed immune profile reminiscent of human disease. We demonstrate that disease enhancement requires viral latency and is not due to active virus stimulation of the immune response. Age-associated B cells (ABCs) are associated with several human autoimmune diseases, including arthritis, though their contribution to disease is not well understood. Using ABC knockout mice, we have provided the first evidence that ABCs are mechanistically required for viral enhancement of disease, thereby establishing that ABCs are impacted by latent gammaherpesvirus infection and provoke arthritis.
Collapse
Affiliation(s)
- Isobel C Mouat
- Department of Microbiology and Immunology, The University of British ColumbiaVancouverCanada
| | - Zachary J Morse
- Department of Microbiology and Immunology, The University of British ColumbiaVancouverCanada
| | - Iryna Shanina
- Department of Microbiology and Immunology, The University of British ColumbiaVancouverCanada
| | - Kelly L Brown
- Department of Pediatrics, Division of Rheumatology, and British Columbia Children's Hospital Research Institute, The University of British ColumbiaVancouverCanada
| | - Marc S Horwitz
- Department of Microbiology and Immunology, The University of British ColumbiaVancouverCanada
| |
Collapse
|
44
|
Liang K, He J, Wei Y, Zeng Q, Gong D, Qin J, Ding H, Chen Z, Zhou P, Niu P, Chen Q, Ding C, Lu L, Chen XX, Li Z, Shen N, Yu D, Deng J. Sustained low-dose interleukin-2 therapy alleviates pathogenic humoral immunity via elevating the Tfr/Tfh ratio in lupus. Clin Transl Immunology 2021; 10:e1293. [PMID: 34094549 PMCID: PMC8169300 DOI: 10.1002/cti2.1293] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 04/20/2021] [Accepted: 05/09/2021] [Indexed: 12/14/2022] Open
Abstract
Objectives Low‐dose interleukin‐2 (IL‐2) has shown promising clinical benefits in the treatment of systemic lupus erythematosus (SLE), but how this therapy alleviates pathogenic humoral immunity remains not well understood. The dilemma is that IL‐2 can suppress both follicular helper and regulatory T (Tfh and Tfr) cells, which counteract each other in regulating autoantibody production. Methods Female NZB/W F1 mice received recombinant human IL‐2 (3 × 104 IU/dose) in three treatment regimens: (1) short, daily for 7 days; (2) medium, daily for 14 days, and (3) long, every second day for 28 days. Tfh (Foxp3−CXCR5+Bcl6+), Tfr (Foxp3+CXCR5+Bcl6+), germinal centre (GC, B220+GL‐7+Fas+) and antibody‐secreting cell (ASC, B220−CD138+TACI+) were analysed by flow cytometry. Serum anti‐dsDNA level was determined by ELISA. Kidney pathology was evaluated by H&E and immunofluorescence staining. Circulating Tfh and Tfr cells in SLE patients treated with low‐dose IL‐2 from a previous clinical trial (NCT02084238) was analysed. Results Low‐dose IL‐2 treatment consistently increased Tfr/Tfh ratio in mice and SLE patients, because of a stronger suppression on Tfh cells than Tfr cells. Three treatment regimens revealed distinct immunological features. Tfh suppression was observed in all regimens, but Tfr suppression and GC reduction were recorded in just medium and long regimens. Only the long treatment regimen resulted in inhibited ASC differentiation in spleen, which was accompanied by reduced anti‐dsDNA titres and ameliorated kidney pathology. Conclusion Low‐dose IL‐2 therapy increases the Tfr/Tfh ratio, and a less frequent and prolonged treatment can alleviate pathogenic humoral immunity and improve renal function.
Collapse
Affiliation(s)
- Kaili Liang
- China-Australia Centre for Personalized Immunology Renji Hospital Shanghai Jiao Tong University School of Medicine (SJTUSM) Shanghai China
| | - Jing He
- Department of Rheumatology and Immunology Peking University People's Hospital Beijing China
| | - Yunbo Wei
- Laboratory of Immunology for Environment and Health School of Pharmaceutical Sciences Qilu University of Technology (Shandong Academy of Sciences) Jinan China
| | - Qunxiong Zeng
- China-Australia Centre for Personalized Immunology Renji Hospital Shanghai Jiao Tong University School of Medicine (SJTUSM) Shanghai China
| | - Dongcheng Gong
- China-Australia Centre for Personalized Immunology Renji Hospital Shanghai Jiao Tong University School of Medicine (SJTUSM) Shanghai China
| | - Jiahuan Qin
- China-Australia Centre for Personalized Immunology Renji Hospital Shanghai Jiao Tong University School of Medicine (SJTUSM) Shanghai China
| | - Huihua Ding
- Shanghai Institute of Rheumatology Renji Hospital Shanghai Jiao Tong University School of Medicine (SJTUSM) Shanghai China.,Department of Rheumatology Renji Hospital Shanghai Jiao Tong University School of Medicine (SJTUSM) Shanghai China
| | - Zhian Chen
- Faculty of Medicine The University of Queensland Diamantina Institute The University of Queensland Brisbane QLD Australia
| | - Ping Zhou
- Shanghai Institute of Rheumatology Renji Hospital Shanghai Jiao Tong University School of Medicine (SJTUSM) Shanghai China
| | - Peng Niu
- Shanghai Institute of Rheumatology Renji Hospital Shanghai Jiao Tong University School of Medicine (SJTUSM) Shanghai China
| | - Qian Chen
- Department of Ophthalmology Shanghai General Hospital (Shanghai First People's Hospital) School of Medicine Shanghai Jiao Tong University Shanghai China
| | - Chenguang Ding
- Department of Kidney Transplantation Nephropathy Hospital the First Affiliated Hospital of Xi'an Jiaotong University Xi'an China
| | - Liangjing Lu
- Department of Rheumatology Renji Hospital Shanghai Jiao Tong University School of Medicine (SJTUSM) Shanghai China
| | - Xiao-Xiang Chen
- Department of Rheumatology Renji Hospital Shanghai Jiao Tong University School of Medicine (SJTUSM) Shanghai China
| | - Zhanguo Li
- Department of Rheumatology and Immunology Peking University People's Hospital Beijing China
| | - Nan Shen
- China-Australia Centre for Personalized Immunology Renji Hospital Shanghai Jiao Tong University School of Medicine (SJTUSM) Shanghai China.,Shanghai Institute of Rheumatology Renji Hospital Shanghai Jiao Tong University School of Medicine (SJTUSM) Shanghai China.,Department of Rheumatology Renji Hospital Shanghai Jiao Tong University School of Medicine (SJTUSM) Shanghai China.,State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute Renji Hospital Shanghai Jiao Tong University School of Medicine (SJTUSM) Shanghai China
| | - Di Yu
- China-Australia Centre for Personalized Immunology Renji Hospital Shanghai Jiao Tong University School of Medicine (SJTUSM) Shanghai China.,Laboratory of Immunology for Environment and Health School of Pharmaceutical Sciences Qilu University of Technology (Shandong Academy of Sciences) Jinan China.,Faculty of Medicine The University of Queensland Diamantina Institute The University of Queensland Brisbane QLD Australia
| | - Jun Deng
- China-Australia Centre for Personalized Immunology Renji Hospital Shanghai Jiao Tong University School of Medicine (SJTUSM) Shanghai China.,State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute Renji Hospital Shanghai Jiao Tong University School of Medicine (SJTUSM) Shanghai China
| |
Collapse
|
45
|
Maul RW, Catalina MD, Kumar V, Bachali P, Grammer AC, Wang S, Yang W, Hasni S, Ettinger R, Lipsky PE, Gearhart PJ. Transcriptome and IgH Repertoire Analyses Show That CD11c hi B Cells Are a Distinct Population With Similarity to B Cells Arising in Autoimmunity and Infection. Front Immunol 2021; 12:649458. [PMID: 33815408 PMCID: PMC8017342 DOI: 10.3389/fimmu.2021.649458] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/24/2021] [Indexed: 01/14/2023] Open
Abstract
A distinct B cell population marked by elevated CD11c expression is found in patients with systemic lupus erythematosus (SLE). Cells with a similar phenotype have been described during chronic infection, but variable gating strategies and nomenclature have led to uncertainty of their relationship to each other. We isolated CD11chi cells from peripheral blood and characterized them using transcriptome and IgH repertoire analyses. Gene expression data revealed the CD11chi IgD+ and IgD- subsets were highly similar to each other, but distinct from naive, memory, and plasma cell subsets. Although CD11chi B cells were enriched in some germinal center (GC) transcripts and expressed numerous negative regulators of B cell receptor (BCR) activation, they were distinct from GC B cells. Gene expression patterns from SLE CD11chi B cells were shared with other human diseases, but not with mouse age-associated B cells. IgH V-gene sequencing analysis showed IgD+ and IgD- CD11chi B cells had somatic hypermutation and were clonally related to each other and to conventional memory and plasma cells. However, the IgH repertoires expressed by the different subsets suggested that defects in negative selection during GC transit could contribute to autoimmunity. The results portray a pervasive B cell population that accumulates during autoimmunity and chronic infection and is refractory to BCR signaling.
Collapse
Affiliation(s)
- Robert W Maul
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Michelle D Catalina
- AMPEL BioSolutions LLC, Charlottesville, VA, United States.,RILITE Foundation, Charlottesville, VA, United States
| | - Varsha Kumar
- Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Prathyusha Bachali
- AMPEL BioSolutions LLC, Charlottesville, VA, United States.,RILITE Foundation, Charlottesville, VA, United States
| | - Amrie C Grammer
- AMPEL BioSolutions LLC, Charlottesville, VA, United States.,RILITE Foundation, Charlottesville, VA, United States
| | - Shu Wang
- Viela Bio, Gaithersburg, MD, United States
| | - William Yang
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Sarfaraz Hasni
- Lupus Clinical Research Program, Office of the Clinical Director, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, United States
| | | | - Peter E Lipsky
- AMPEL BioSolutions LLC, Charlottesville, VA, United States.,RILITE Foundation, Charlottesville, VA, United States
| | - Patricia J Gearhart
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
46
|
Lawlor N, Nehar-Belaid D, Grassmann JD, Stoeckius M, Smibert P, Stitzel ML, Pascual V, Banchereau J, Williams A, Ucar D. Single Cell Analysis of Blood Mononuclear Cells Stimulated Through Either LPS or Anti-CD3 and Anti-CD28. Front Immunol 2021; 12:636720. [PMID: 33815388 PMCID: PMC8010670 DOI: 10.3389/fimmu.2021.636720] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/22/2021] [Indexed: 12/16/2022] Open
Abstract
Immune cell activation assays have been widely used for immune monitoring and for understanding disease mechanisms. However, these assays are typically limited in scope. A holistic study of circulating immune cell responses to different activators is lacking. Here we developed a cost-effective high-throughput multiplexed single-cell RNA-seq combined with epitope tagging (CITE-seq) to determine how classic activators of T cells (anti-CD3 coupled with anti-CD28) or monocytes (LPS) alter the cell composition and transcriptional profiles of peripheral blood mononuclear cells (PBMCs) from healthy human donors. Anti-CD3/CD28 treatment activated all classes of lymphocytes either directly (T cells) or indirectly (B and NK cells) but reduced monocyte numbers. Activated T and NK cells expressed senescence and effector molecules, whereas activated B cells transcriptionally resembled autoimmune disease- or age-associated B cells (e.g., CD11c, T-bet). In contrast, LPS specifically targeted monocytes and induced two main states: early activation characterized by the expression of chemoattractants and a later pro-inflammatory state characterized by expression of effector molecules. These data provide a foundation for future immune activation studies with single cell technologies (https://czi-pbmc-cite-seq.jax.org/).
Collapse
Affiliation(s)
- Nathan Lawlor
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | | | | | | | | | - Michael L. Stitzel
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
- Institute of Systems Genomics, University of Connecticut, Farmington, CT, United States
- Department of Genetics and Genome Sciences, University of Connecticut, Farmington, CT, United States
| | - Virginia Pascual
- Ronay Menschel Professor of Pediatrics, Drukier Institute, Weill Cornell Medicine, New York, NY, United States
| | - Jacques Banchereau
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | - Adam Williams
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
- Institute of Systems Genomics, University of Connecticut, Farmington, CT, United States
- Department of Genetics and Genome Sciences, University of Connecticut, Farmington, CT, United States
| | - Duygu Ucar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
- Institute of Systems Genomics, University of Connecticut, Farmington, CT, United States
- Department of Genetics and Genome Sciences, University of Connecticut, Farmington, CT, United States
| |
Collapse
|
47
|
Hasan A, Al-Ozairi E, Al-Baqsumi Z, Ahmad R, Al-Mulla F. Cellular and Humoral Immune Responses in Covid-19 and Immunotherapeutic Approaches. Immunotargets Ther 2021; 10:63-85. [PMID: 33728277 PMCID: PMC7955763 DOI: 10.2147/itt.s280706] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/22/2020] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (Covid-19), caused by the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), can range in severity from asymptomatic to severe/critical disease. SARS-CoV-2 uses angiotensin-converting enzyme 2 to infect cells leading to a strong inflammatory response, which is most profound in patients who progress to severe Covid-19. Recent studies have begun to unravel some of the differences in the innate and adaptive immune response to SARS-CoV-2 in patients with different degrees of disease severity. These studies have attributed the severe form of Covid-19 to a dysfunctional innate immune response, such as a delayed and/or deficient type I interferon response, coupled with an exaggerated and/or a dysfunctional adaptive immunity. Differences in T-cell (including CD4+ T-cells, CD8+ T-cells, T follicular helper cells, γδ-T-cells, and regulatory T-cells) and B-cell (transitional cells, double-negative 2 cells, antibody-secreting cells) responses have been identified in patients with severe disease compared to mild cases. Moreover, differences in the kinetic/titer of neutralizing antibody responses have been described in severe disease, which may be confounded by antibody-dependent enhancement. Importantly, the presence of preexisting autoantibodies against type I interferon has been described as a major cause of severe/critical disease. Additionally, priorVaccine and multiple vaccine exposure, trained innate immunity, cross-reactive immunity, and serological immune imprinting may all contribute towards disease severity and outcome. Several therapeutic and preventative approaches have been under intense investigations; these include vaccines (three of which have passed Phase 3 clinical trials), therapeutic antibodies, and immunosuppressants.
Collapse
Affiliation(s)
- Amal Hasan
- Department of Immunology and Microbiology, Research Division, Dasman Diabetes Institute, Dasman, Kuwait City, Kuwait
| | - Ebaa Al-Ozairi
- Clinical Research Unit, Medical Division, Dasman Diabetes Institute, Dasman, Kuwait City, Kuwait
- Department of Medicine, Faculty of Medicine, Jabriya, Kuwait City, Kuwait
| | - Zahraa Al-Baqsumi
- Department of Immunology and Microbiology, Research Division, Dasman Diabetes Institute, Dasman, Kuwait City, Kuwait
| | - Rasheed Ahmad
- Department of Immunology and Microbiology, Research Division, Dasman Diabetes Institute, Dasman, Kuwait City, Kuwait
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Functional Genomics, Research Division, Dasman Diabetes Institute, Dasman, Kuwait City, Kuwait
| |
Collapse
|
48
|
Bacalao MA, Satterthwaite AB. Recent Advances in Lupus B Cell Biology: PI3K, IFNγ, and Chromatin. Front Immunol 2021; 11:615673. [PMID: 33519824 PMCID: PMC7841329 DOI: 10.3389/fimmu.2020.615673] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/26/2020] [Indexed: 12/18/2022] Open
Abstract
In the autoimmune disease Systemic Lupus Erythematosus (SLE), autoantibodies are formed that promote inflammation and tissue damage. There has been significant interest in understanding the B cell derangements involved in SLE pathogenesis. The past few years have been particularly fruitful in three domains: the role of PI3K signaling in loss of B cell tolerance, the role of IFNγ signaling in the development of autoimmunity, and the characterization of changes in chromatin accessibility in SLE B cells. The PI3K pathway coordinates various downstream signaling molecules involved in B cell development and activation. It is governed by the phosphatases PTEN and SHIP-1. Murine models lacking either of these phosphatases in B cells develop autoimmune disease and exhibit defects in B cell tolerance. Limited studies of human SLE B cells demonstrate reduced expression of PTEN or increased signaling events downstream of PI3K in some patients. IFNγ has long been known to be elevated in both SLE patients and mouse models of lupus. New data suggests that IFNγR expression on B cells is required to develop autoreactive germinal centers (GC) and autoantibodies in murine lupus. Furthermore, IFNγ promotes increased transcription of BCL6, IL-6 and T-bet in B cells, which also promote GC and autoantibody formation. IFNγ also induces epigenetic changes in human B cells. SLE B cells demonstrate significant epigenetic reprogramming, including enhanced chromatin accessibility at transcription factor motifs involved in B cell activation and plasma cell (PC) differentiation as well as alterations in DNA methylation and histone modifications. Histone deacetylase inhibitors limit disease development in murine lupus models, at least in part via their ability to prevent B cell class switching and differentiation into plasma cells. This review will discuss relevant discoveries of the past several years pertaining to these areas of SLE B cell biology.
Collapse
Affiliation(s)
- Maria A. Bacalao
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Anne B. Satterthwaite
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW Aberrations in the innate and in the adaptive arms of the immune system play both important roles in the initiation and progression of systemic lupus erythematosus (SLE). The aim of this study was to provide an update on the most recent findings on the cellular pathogenesis of SLE. Our overview focused particularly on results obtained over the last 18 months. RECENT FINDINGS Recent observations have provided an improved understanding of the importance of low-density granulocytes, a highly proinflammatory subset of neutrophils. We also highlighted in this work recent descriptions of the various cellular sources associated with the interferon signature. In addition, novel contributions have also developed our understanding of the potential importance of extrafollicular T-B-cell interactions in SLE pathogenesis. Finally, the role of recently described B and T-cell subsets, that is, atypical memory B cells, T-peripheral helper cells, and Th10 T cells, were also reviewed. SUMMARY Recent findings in the cellular pathogenesis of SLE give a deeper comprehension of previously described mechanisms which drive SLE pathogenesis and shed light on novel players in immune dysregulation that could help to identify potential therapeutic targets.
Collapse
|
50
|
Woodruff MC, Ramonell RP, Nguyen DC, Cashman KS, Saini AS, Haddad NS, Ley AM, Kyu S, Howell JC, Ozturk T, Lee S, Suryadevara N, Case JB, Bugrovsky R, Chen W, Estrada J, Morrison-Porter A, Derrico A, Anam FA, Sharma M, Wu HM, Le SN, Jenks SA, Tipton CM, Staitieh B, Daiss JL, Ghosn E, Diamond MS, Carnahan RH, Crowe JE, Hu WT, Lee FEH, Sanz I. Extrafollicular B cell responses correlate with neutralizing antibodies and morbidity in COVID-19. Nat Immunol 2020; 21:1506-1516. [PMID: 33028979 PMCID: PMC7739702 DOI: 10.1038/s41590-020-00814-z] [Citation(s) in RCA: 487] [Impact Index Per Article: 121.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/16/2020] [Indexed: 12/15/2022]
Abstract
A wide spectrum of clinical manifestations has become a hallmark of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) COVID-19 pandemic, although the immunological underpinnings of diverse disease outcomes remain to be defined. We performed detailed characterization of B cell responses through high-dimensional flow cytometry to reveal substantial heterogeneity in both effector and immature populations. More notably, critically ill patients displayed hallmarks of extrafollicular B cell activation and shared B cell repertoire features previously described in autoimmune settings. Extrafollicular activation correlated strongly with large antibody-secreting cell expansion and early production of high concentrations of SARS-CoV-2-specific neutralizing antibodies. Yet, these patients had severe disease with elevated inflammatory biomarkers, multiorgan failure and death. Overall, these findings strongly suggest a pathogenic role for immune activation in subsets of patients with COVID-19. Our study provides further evidence that targeted immunomodulatory therapy may be beneficial in specific patient subpopulations and can be informed by careful immune profiling.
Collapse
Affiliation(s)
- Matthew C Woodruff
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Richard P Ramonell
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Doan C Nguyen
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Kevin S Cashman
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Ankur Singh Saini
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Natalie S Haddad
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
- MicroB-plex, Atlanta, GA, USA
| | - Ariel M Ley
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Shuya Kyu
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
| | | | - Tugba Ozturk
- Department of Neurology, Emory University, Atlanta, GA, USA
| | - Saeyun Lee
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
| | | | - James Brett Case
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Regina Bugrovsky
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Weirong Chen
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Jacob Estrada
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Andrea Morrison-Porter
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Andrew Derrico
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Fabliha A Anam
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Monika Sharma
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Henry M Wu
- Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, GA, USA
| | - Sang N Le
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Scott A Jenks
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Christopher M Tipton
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Bashar Staitieh
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
| | | | - Eliver Ghosn
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Robert H Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - William T Hu
- Department of Neurology, Emory University, Atlanta, GA, USA
| | - F Eun-Hyung Lee
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA.
| | - Ignacio Sanz
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA.
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA.
| |
Collapse
|