1
|
Burr SD, Chen Y, Hartley CP, Zhao X, Liu J. Replacement of saturated fatty acids with linoleic acid in western diet attenuates atherosclerosis in a mouse model with inducible ablation of hepatic LDL receptor. Sci Rep 2023; 13:16832. [PMID: 37803087 PMCID: PMC10558454 DOI: 10.1038/s41598-023-44030-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023] Open
Abstract
Dietary saturate fatty acids (SFAs) have been consistently linked to atherosclerosis and obesity, both of which are characterized by chronic inflammation and impaired lipid metabolism. In comparison, the effects of linoleic acid (LA), the predominant polyunsaturated fatty acid in the Western diet, seem to diverge. Data from human studies suggest a positive association between high dietary intake of LA and the improvement of cardiovascular risk. However, excessive LA intake has been implicated in the development of obesity. Concerns have also been raised on the potential pro-inflammatory properties of LA metabolites. Herein, by utilizing a mouse model with liver-specific Ldlr knockdown, we directly determined the effects of replacing SFAs with LA in a Western diet on the development of obesity and atherosclerosis. Specifically, mice treated with a Ldlr ASO were placed on a Western diet containing either SFA-rich butter (WD-B) or LA-rich corn oil (WD-CO) for 12 weeks. Despite of showing no changes in body weight gain or adiposity, mice on WD-CO exhibited significantly less atherosclerotic lesions compared to those on WD-B diet. Reduced lesion formation in the WD-CO-fed mice corresponded with a reduction of plasma triglyceride and cholesterol content, especially in VLDL and LDL, and ApoB protein levels. Although it increased expression of proinflammatory cytokines TNF-α and IL-6 in the liver, WD-CO did not appear to affect hepatic injury or damage when compared to WD-B. Collectively, our results indicate that replacing SFAs with LA in a Western diet could reduce the development of atherosclerosis independently of obesity.
Collapse
Affiliation(s)
- Stephanie D Burr
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic in Rochester, Guggenheim Building 14-11A, 222 3Rd Avenue SW, Rochester, MN, 55905, USA
| | - Yongbin Chen
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Christopher P Hartley
- Department of Laboratory Medicine and Pathology, Mayo Clinic in Rochester, Rochester, MN, 55905, USA
| | - Xianda Zhao
- Department of Laboratory Medicine and Pathology, Mayo Clinic in Rochester, Rochester, MN, 55905, USA
| | - Jun Liu
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA.
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic in Rochester, Guggenheim Building 14-11A, 222 3Rd Avenue SW, Rochester, MN, 55905, USA.
| |
Collapse
|
2
|
Yang Z, Yang K, Zhang X, Yang Q, Zhang Y, Gao J, Qu H, Shi J. Dietary Saturated, Monounsaturated, or Polyunsaturated Fatty Acids and Estimated 10-Year Risk of a First Hard Cardiovascular Event. Am J Med 2023; 136:796-803.e2. [PMID: 37088345 DOI: 10.1016/j.amjmed.2023.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/25/2023]
Abstract
BACKGROUND The effects of dietary saturated, monounsaturated, or polyunsaturated fatty acids on the risk of cardiovascular events remain controversial. METHODS This cross-sectional study was performed in 4211 patients, aged 40 to 79 years, from the National Health and Nutrition Examination Survey between 1999 and 2018. The independent variables were saturated fatty acids, monounsaturated fatty acids, and polyunsaturated fatty acids. The dependent variable was the 10-year risk of a first hard atherosclerotic cardiovascular event. The other variables were considered as the potential confounding factors. Multivariate linear regression models and smooth curve fittings were used to evaluate the association between saturated fatty acids, polyunsaturated fatty acids, or monounsaturated fatty acids and the 10-year risk. RESULTS There was no association between dietary saturated fatty acids and 10-year risk after adjusting for all the potential confounding factors; 10-year risk decreased by 0.022% each 1-g increase in monounsaturated fatty acids intake from 0 to 153.772 g, and 0.025% each 1-g increase in polyunsaturated fatty acids intake from 0 to 98.323 g, respectively. Moreover, subgroup analysis showed that monounsaturated fatty acids and polyunsaturated fatty acids were both negatively correlated to 10-year risk in nondiabetes and non-high-low-density lipoprotein patients; monounsaturated fatty acids were also negatively associated with 10-year risk in hypertensive patients. CONCLUSIONS There was no association between dietary saturated fatty acids and 10-year risk. Increased dietary intake of monounsaturated fatty acids or polyunsaturated fatty acids decreased 10-year risk, particularly in nondiabetes, non-high-low density lipoprotein patients.
Collapse
Affiliation(s)
- Zhen Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing; Cardiovascular Department, Peking University Traditional Chinese Medicine Clinical Medical School (Xiyuan), Beijing, China; Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China
| | - Kuo Yang
- School of Computer and Information Technology, Beijing Jiaotong University, China
| | | | - Qiaoning Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing; National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China; NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, Beijing, China
| | - Ying Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing; National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Jie Gao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing; National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Hua Qu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing; National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China; NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, Beijing, China.
| | - Junhe Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing; National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China; NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Sreekumar PG, Su F, Spee C, Araujo E, Nusinowitz S, Reddy ST, Kannan R. Oxidative Stress and Lipid Accumulation Augments Cell Death in LDLR-Deficient RPE Cells and Ldlr-/- Mice. Cells 2022; 12:43. [PMID: 36611838 PMCID: PMC9818299 DOI: 10.3390/cells12010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/14/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Lipid peroxidation from oxidative stress is considered a major contributor to age-related macular degeneration (AMD). The retina is abundant with circulating low-density lipoproteins (LDL), which are taken up by LDL receptor (LDLR) in the RPE and Müller cells. The purpose of this study is to investigate the role of LDLR in the NaIO3-induced model of dry AMD. Confluent primary human RPE (hRPE) and LDLR-silenced ARPE-19 cells were stressed with 150 µM tert-butyl hydroperoxide (tBH) and caspase 3/7 activation was determined. WT and Ldlr-/- mice were administered NaIO3 (20 mg/kg) intravenously. On day 7, fundus imaging, OCT, ERG, and retinal thickness were measured. Histology, TUNEL, cleaved caspase 3 and lipid accumulation were assessed. Treatment of hRPE with tBH markedly decreased LDLR expression. Caspase 3/7 activation was significantly increased in LDLR-silenced ARPE-19 cells treated with tBH. In Ldlr-/- mice, NaIO3 administration resulted in significant (a) retinal thinning, (b) compromised photoreceptor function, (c) increased percentage of cleaved caspase 3 positive and apoptotic cells, and (d) increased lipid droplet accumulation in the RPE, Bruch membrane, choroid, and sclera, compared to WT mice. Our findings imply that LDLR loss leads to lipid accumulation and impaired retinal function, which may contribute to the development of AMD.
Collapse
Affiliation(s)
| | - Feng Su
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | | - Eduardo Araujo
- Jules Stein Eye Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Steven Nusinowitz
- Jules Stein Eye Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Srinivasa T Reddy
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Ram Kannan
- Doheny Eye Institute, Pasadena, CA 91103, USA
- Jules Stein Eye Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
4
|
Ferroptosis: the potential value target in atherosclerosis. Cell Death Dis 2021; 12:782. [PMID: 34376636 PMCID: PMC8355346 DOI: 10.1038/s41419-021-04054-3] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/08/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022]
Abstract
In advanced atherosclerosis (AS), defective function-induced cell death leads to the formation of the characteristic necrotic core and vulnerable plaque. The forms and mechanisms of cell death in AS have recently been elucidated. Among them, ferroptosis, an iron-dependent form of necrosis that is characterized by oxidative damage to phospholipids, promotes AS by accelerating endothelial dysfunction in lipid peroxidation. Moreover, disordered intracellular iron causes damage to macrophages, vascular smooth muscle cells (VSMCs), vascular endothelial cells (VECs), and affects many risk factors or pathologic processes of AS such as disturbances in lipid peroxidation, oxidative stress, inflammation, and dyslipidemia. However, the mechanisms through which ferroptosis initiates the development and progression of AS have not been established. This review explains the possible correlations between AS and ferroptosis, and provides a reliable theoretical basis for future studies on its mechanism.
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW Non-coding RNAs (ncRNAs) including microRNAs (miRNAs) and circular RNAs (circRNAs) are pivotal regulators of mRNA and protein expression that critically contribute to cardiovascular pathophysiology. Although little is known about the origin and function of such ncRNAs, they have been suggested as promising biomarkers with powerful therapeutic value in cardiovascular disease (CVD). In this review, we summarize the most recent findings on ncRNAs biology and their implication on cholesterol homeostasis and lipoprotein metabolism that highlight novel therapeutic avenues for treating dyslipidemia and atherosclerosis. RECENT FINDINGS Clinical and experimental studies have elucidated the underlying effects that specific miRNAs impose both directly and indirectly regulating circulating high-density lipoprotein (HDL), low-density lipoprotein (LDL), and very low-density lipoprotein (VLDL) metabolism and cardiovascular risk. Some of these relevant miRNAs include miR-148a, miR-128-1, miR-483, miR-520d, miR-224, miR-30c, miR-122, miR-33, miR-144, and miR-34. circRNAs are known to participate in a variety of physiological and pathological processes due to their abundance in tissues and their stage-specific expression activation. Recent studies have proven that circRNAs may be considered targets of CVD as well. Some of these cirRNAs are circ-0092317, circ_0003546, circ_0028198, and cirFASN that have been suggested to be strongly involved in lipoprotein metabolism; however, their relevance in CVD is still unknown. MicroRNA and cirRNAs have been proposed as powerful therapeutic targets for treating cardiometabolic disorders including atherosclerosis. Here, we discuss the recent findings in the field of lipid and lipoprotein metabolism underscoring the novel mechanisms by which some of these ncRNAs influence lipoprotein metabolism and CVD.
Collapse
|
6
|
Delgado-Alarcón JM, Hernández Morante JJ, Aviles FV, Albaladejo-Otón MD, Morillas-Ruíz JM. Effect of the Fat Eaten at Breakfast on Lipid Metabolism: A Crossover Trial in Women with Cardiovascular Risk. Nutrients 2020; 12:nu12061695. [PMID: 32517188 PMCID: PMC7352537 DOI: 10.3390/nu12061695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 11/03/2022] Open
Abstract
Recent studies point out that not only the daily intake of energy and nutrients but the time of day when they are ingested notably regulates lipid metabolism and cardiovascular risk (CVR). Therefore, the aim of the study was to assess if the type of fat ingested at breakfast can modify lipid metabolism in women with CVR. A randomized, crossover clinical trial was performed. Sixty volunteers were randomly assigned to a (A) polyunsaturated fatty acid (PUFA)-rich breakfast, (B) saturated fatty acid (SFA)-rich breakfast, or (C) monounsaturated fatty acid (MUFA)-rich breakfast. Plasma lipoprotein and apolipoprotein subfractions were determined. Our data showed that the PUFA-rich breakfast decreased lipoprotein (a) (Lp(a)), very low-density lipoproteins (VLDL), and intermediate-density lipoproteins (IDL), and increased high-density lipoproteins (HDL). A similar trend was observed for the MUFA-rich breakfast, whereas the SFA-rich breakfast, although it decreased VLDL, also increased IDL and reduced HDL. The PUFA-rich breakfast also decreased β-lipoproteins and apolipoprotein-B. In summary, varying the type of fat eaten at breakfast is enough to significantly modify the lipid metabolism of women with CVR, which can be of great relevance to establish new therapeutic strategies for the treatment of these subjects.
Collapse
Affiliation(s)
| | - Juan José Hernández Morante
- Eating Disorder Research Unit., Catholic University of Murcia, 30107 Murcia, Spain
- Correspondence: (J.J.H.M.); (J.M.M.-R.)
| | - Francisco V. Aviles
- Service of Biochemistry, Hospital Universitario Virgen de la Arrixaca, 30120 Murcia, Spain;
| | | | - Juana M. Morillas-Ruíz
- Food Technology and Nutrition Department, Catholic University of Murcia, 30107 Murcia, Spain
- Correspondence: (J.J.H.M.); (J.M.M.-R.)
| |
Collapse
|
7
|
Garcia Caraballo SC, Comhair TM, Dejong CHC, Lamers WH, Koehler SE. Dietary treatment of fatty liver: High dietary protein content has an antisteatotic and antiobesogenic effect in mice. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1789-1804. [PMID: 28457799 DOI: 10.1016/j.bbadis.2017.04.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 04/19/2017] [Accepted: 04/25/2017] [Indexed: 12/11/2022]
Abstract
Few studies have assessed the effect of changing ratios of dietary macronutrients on fat accumulation in adipose tissue and organs such as the liver in a 3×n(n≥3) factorial design. We investigated the effects of 7 diets from a single manufacturer containing 11-58en% protein (casein), 0-81en% carbohydrates (CHO; sucrose, maltrodextrin-10 and corn starch), and 8-42en% fat (triheptanoin, olive oil or cocoa butter) in C57BL/6J mice, a good model for diet-induced obesity and fatty liver. The diets were fed for 3weeks to wild-type and hyperlipidemic male and female mice. Caloric intake was mainly determined by dietary fat. Body weight, liver lipid and cholesterol content, NFκB activation, and fat-pad size decreased only in mice fed a high-protein diet. A high dietary protein:CHO ratio reduced plasma FGF21 concentration, and increased liver PCK1 protein content and plasma triglyceride concentration. The dietary protein:CHO ratio determined hepatic expression of Pck1 and Ppargc1a in males, and Fgf21 in females, whereas the dietary CHO:fat ratio determined that of Fasn, Acaca1, and Scd1 in females. Hepatic glycogen content was determined by all three dietary components. Both hepatic PCK1 and plasma FGF21 correlated strongly and inversely with hepatic TG content, suggesting a key role for PCK1 and increased gluconeogenesis in resolving steatosis with a high-protein diet, with FGF21 expression reflecting declining cell stress. We propose that a diet containing ~35en% protein, 5-10en% fat, and 55-60en% carbohydrate will prevent fatty liver in mice without inducing side effects.
Collapse
Affiliation(s)
- Sonia C Garcia Caraballo
- Department of Anatomy & Embryology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Tine M Comhair
- Department of Anatomy & Embryology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands; Nutrigenomics Consortium, Top Institute Food and Nutrition, Wageningen, The Netherlands
| | - Cornelis H C Dejong
- Department of General Surgery, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands; Nutrigenomics Consortium, Top Institute Food and Nutrition, Wageningen, The Netherlands
| | - Wouter H Lamers
- Department of Anatomy & Embryology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands; Nutrigenomics Consortium, Top Institute Food and Nutrition, Wageningen, The Netherlands; Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - S Eleonore Koehler
- Department of Anatomy & Embryology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
8
|
The Impact of Macronutrients on Retinal Microvasculature among Singapore Pregnant Women during the Mid-Late Gestation. PLoS One 2016; 11:e0160704. [PMID: 27508392 PMCID: PMC4979959 DOI: 10.1371/journal.pone.0160704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 07/22/2016] [Indexed: 01/11/2023] Open
Abstract
Background Imbalanced macronutrient intakes can induce impairment of endothelial and vascular function, and further lead to metabolic and cardiovascular disease. However, little is known about the influence of such diets on endothelial and vascular dysfunction in pregnant women, even though high-fat diet is a known risk for pregnancy complications such as gestational diabetes and pre-eclampsia. Objective We aimed to assess the association between maternal macronutrient intakes (protein, fat and carbohydrates), dietary quality and retinal microvascular changes in a multi-ethnic Asian mother-offspring cohort. Methods Pregnant women (n = 614) with singleton pregnancies were recruited during their first trimester from June 2009 to Sep 2010. Maternal diet quality and macronutrient intakes, expressed as a percentage of total energy during pregnancy, were ascertained using 24 hr recalls and 3 d food diaries at 26–28 weeks gestation. Retinal examination was completed at the same clinic visit. Dietary quality was assessed and scored using the Health Eating Index in Asian Pregnant women (HEI-AP), while macronutrients intakes ware expressed as percentages of total energy and further log transformed for analysis. Associations were examined cross-sectionally by substitution models with the use of multiple linear regression. Results In adjusted model, each 20 points decrease in HEI-AP score was associated with a significant increase of 1.70 μm (p<0.05) in retinal venular calibre. Each 0.1 log increase in percentage of total fat intake was associated with a significant increment of 1.84 μm (p<0.05) in retinal venular caliber. Additionally, each 0.1 log increase in percentage of mono-unsaturated fat intake was associated with an increment of 1.84 μm (p<0.01) in retinal venular caliber. Conclusions In this cross-sectional study, we found that women with higher fat and lower protein intakes, and lower diet quality tended to have wider retinal venular caliber, which is suggestive of suboptimal microvasculature.
Collapse
|
9
|
Williams J, Ensor C, Gardner S, Smith R, Lodder R. BSN723T Prevents Atherosclerosis and Weight Gain in ApoE Knockout Mice Fed a Western Diet. WEBMEDCENTRAL 2015; 6:WMC005034. [PMID: 27683620 PMCID: PMC5036941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
OBJECTIVE This study tests the hypothesis that BSN723T can prevent the development of hyperlipidemia and atherosclerosis in ApoE-/- knockout mice fed a Western (high fat, high cholesterol, and high sucrose) diet. BSN723T is a combination drug therapy consisting of D-tagatose and dihydromyricetin (BSN723). BACKGROUND D-tagatose has an antihyperglycemic effect in animal and human studies and shows promise as a treatment for type 2 diabetes and obesity. Many claims regarding BSN723's pharmacological activities have been made including anti-cancer, anti-diabetic, anti-hypertensive, anti-inflammatory, and anti-atherosclerotic effects. To our knowledge this is the first study that combines D-tagatose and BSN723 for the treatment of hyperlipidemia and the prevention of atherosclerosis. METHODS ApoE-deficient mice were randomized into five groups with equivalent mean body weights. The mice were given the following diets for 8 weeks: Group 1 - Standard diet; Group 2 - Western diet; Group 3 - Western diet formulated with D-tagatose; Group 4 - Western diet formulated with BSN723; Group 5 - Western diet formulated with BSN723T. Mice were measured for weight gain, tissue and organ weights, total serum cholesterol and triglycerides and formation of atherosclerosis. RESULTS The addition of D-tagatose, either alone or in combination with BSN723, prevented the increase in adipose tissue and weight gain brought on by the Western diet. Both D-tagatose and BSN723 alone reduced total cholesterol and the formation of atherosclerosis in the aorta compared to mice on the Western diet. Addition of BSN723 to D-tagatose (BSN723T) did not increase efficacy in prevention of increases in cholesterol or atherosclerosis compared to D-tagatose alone. CONCLUSION Addition of either D-tagatose or BSN723 alone to a Western diet prevented weight gain, increases in total serum cholesterol and triglycerides, and the formation of atherosclerosis. However, there was no additive or synergistic effect on the measured parameters with the combination BSN723T treatment.
Collapse
Affiliation(s)
- Jarrod Williams
- University of Kentucky, Department of Pharmaceutical Sciences - United States of America
| | - Charles Ensor
- University of Kentucky, Department of Pharmaceutical Sciences - United States of America
| | | | - Rebecca Smith
- University of Kentucky, Department of Pharmaceutical Sciences - United States of America
| | - Robert Lodder
- Pharmaceutical Sciences, BPC223 Biopharmaceutical Complex, 40536 - United States of America
| |
Collapse
|
10
|
|
11
|
Triolein and trilinolein ameliorate oxidized low-density lipoprotein-induced oxidative stress in endothelial cells. Lipids 2014; 49:495-504. [PMID: 24604600 DOI: 10.1007/s11745-014-3889-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 02/11/2014] [Indexed: 01/06/2023]
Abstract
Uptake of oxidized low-density lipoprotein by endothelial cells is a critical step for the initiation of atherosclerosis. Triacylglycerol uptake in these cells is understood to be a part of the process. The present investigation, comparison among the effects of simple acylglycerol, including tristearin, triolein, and trilinolein, upon oxidized low-density lipoprotein -induced oxidative stress was undertaken. Results indicated that trilinolein (78 % ± 0.02) and triolein (90 % ± 0.01) increased cell viability of endothelial cells exposed to oxidized low-density lipoprotein, whereas tristearin decreased the cell viability (55 % ± 0.03) (P < 0.05). Oxidized low-density lipoprotein treatment significantly increased apoptosis (23 %), compared to cells simultaneously exposed to trilinolein (19 %) or triolein (16 %), where apoptosis was reduced (P < 0.05). On the other hand, exposure to tristearin further increased oxidized low-density lipoprotein -induced cell apoptosis (34 %). Treatment with trilinolein or triolein on oxidized low-density lipoprotein -stimulated endothelial cells inhibited the expression of ICAM-1 and E-selectin mRNA. Moreover, both trilinolein and triolein demonstrated a strong antioxidant response to oxidative stress caused by oxidized low-density lipoprotein. Taken together, the results indicate trilinolein and triolein possess anti-inflammatory properties, which are mediated via the antioxidant defense system.
Collapse
|
12
|
In comparison with palm oil, dietary nut supplementation delays the progression of atherosclerotic lesions in female apoE-deficient mice. Br J Nutr 2012; 109:202-9. [PMID: 23302442 DOI: 10.1017/s000711451200092x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Epidemiological studies have demonstrated the benefits of nut consumption on cardiovascular risk factors and CHD, attributed to their fatty acid profile, rich in unsaturated fatty acids, and also to other nutrients. The effect of nuts on atherosclerotic lesions was studied in female and male apoE-knockout mice fed a diet supplemented with 3 % (w/w) mixed nuts (mix: almonds, hazelnuts and walnuts in a proportion of 0.25:0·25:0.50, respectively), and compared with mice receiving an isoenergetic diet of similar fat content provided as palm oil. After 12 weeks, plasma lipid parameters and aortic lesions were measured. Males receiving nuts had lower plasma cholesterol than the palm oil group, and both sex groups had lower plasma non-HDL-cholesterol and lower content of reactive oxygen species in LDL than mice receiving the palm oil diet, the latter decrease being more pronounced in females than in males. Females consuming the nut diet showed a smaller aortic lesion area than those consuming palm oil, whereas no differences were observed in males. In females, hepatic paraoxonase 2 (Pon2) mRNA increased, and no change was observed in prenylcysteine oxidase 1 (Pcyox1) expression after the consumption of the nut-containing diet. In addition, aortic atherosclerotic lesions correlated directly with total plasma cholesterol and inversely with hepatic Pon2 expression. The results suggest that the beneficial effect of nut intake in female apoE-deficient mice may be attributed to reduced non-HDL-cholesterol levels and enhanced PON2 antioxidant activity.
Collapse
|
13
|
Minatti J, Wazlawik E, Hort MA, Zaleski FL, Ribeiro-do-Valle RM, Maraschin M, da Silva EL. Green tea extract reverses endothelial dysfunction and reduces atherosclerosis progression in homozygous knockout low-density lipoprotein receptor mice. Nutr Res 2012; 32:684-93. [PMID: 23084641 DOI: 10.1016/j.nutres.2012.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Revised: 07/31/2012] [Accepted: 08/03/2012] [Indexed: 11/28/2022]
Abstract
The aim of this study was to evaluate the effects of green tea extract (GTE) administration on vascular reactivity and atherosclerosis progression in low-density lipoprotein receptor knockout mice. We hypothesized that GTE intake may ameliorate atherosclerosis by improving endothelial dysfunction. Animals (n = 12 per group) were fed a hypercholesterolemic diet and received either water or GTE at a dose of 50, 100, or 300 mg/kg once a day by gavage (100 μL/10 g weight). After 4 weeks, atherosclerosis extension and vascular reactivity were evaluated in the aorta, and the levels of lipids, monocyte chemotactic protein-1 (MCP-1), and tumor necrosis factor α were measured in the plasma. Administration of GTE at a dose of 50 mg/kg significantly decreased the area of atherosclerotic lesions by 35%, improved the vascular reactivity in the isolated thoracic aorta, and lowered the plasma levels of both MCP-1 and triglycerides. Delivery of 100 mg/kg of GTE only promoted vasocontraction and vasorelaxation (P < .05), whereas a dose of 300 mg/kg was ineffective. Maximum contraction and relaxation negatively correlated with the lesion area (r = -0.755 and -0.767, respectively), whereas the plasma levels of MCP-1 and triglycerides positively correlated with plaque size (r = 0.549 and 0.421, respectively). In summary, our results supported the hypothesis that administration of GTE at low doses may contribute to a decrease in atherosclerosis progression by reversing endothelial dysfunction.
Collapse
Affiliation(s)
- Jaqueline Minatti
- Department of Nutrition, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | | | | | | | | | | | | |
Collapse
|
14
|
Plummer EM, Thomas D, Destito G, Shriver LP, Manchester M. Interaction of cowpea mosaic virus nanoparticles with surface vimentin and inflammatory cells in atherosclerotic lesions. Nanomedicine (Lond) 2012; 7:877-88. [PMID: 22394183 DOI: 10.2217/nnm.11.185] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIMS Detection of atherosclerosis has generally been limited to the late stages of development, after cardiovascular symptoms present or a clinical event occurs. One possibility for early detection is the use of functionalized nanoparticles. The aim of this study was the early imaging of atherosclerosis using nanoparticles with a natural affinity for inflammatory cells in the lesion. MATERIALS & METHODS We investigated uptake of cowpea mosaic virus by macrophages and foam cells in vitro and correlated this with vimentin expression. We also examined the ability of cowpea mosaic virus to interact with atherosclerotic lesions in a murine model of atherosclerosis. RESULTS & CONCLUSION We found that uptake of cowpea mosaic virus is increased in areas of atherosclerotic lesion. This correlated with increased surface vimentin in the lesion compared with nonlesion vasculature. In conclusion, cowpea mosaic virus and its vimentin-binding region holds potential for use as a targeting ligand for early atherosclerotic lesions, and as a probe for detecting upregulation of surface vimentin during inflammation.
Collapse
Affiliation(s)
- Emily M Plummer
- University of California, San Diego, Skaggs School of Pharmacy, La Jolla, CA 92093-0749, USA
| | | | | | | | | |
Collapse
|
15
|
Bassett CMC, McCullough RS, Edel AL, Patenaude A, LaVallee RK, Pierce GN. The α-linolenic acid content of flaxseed can prevent the atherogenic effects of dietary trans fat. Am J Physiol Heart Circ Physiol 2011; 301:H2220-6. [DOI: 10.1152/ajpheart.00958.2010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dietary intake of industrially hydrogenated trans fatty acids (TFA) has been associated with coronary heart disease. Dietary flaxseed can inhibit atherosclerosis induced by dietary cholesterol. The aim of this study was to determine whether supplementing the diet with flaxseed could protect against atherosclerosis induced by a diet enriched in TFA. Low-density lipoprotein receptor-deficient (LDLr−/−) mice were fed 1 of 14 experimental diets for 14 wk containing one of two fat sources [regular (pork/soy) or trans fat] at two concentrations (4 or 8%) and supplemented with or without dietary cholesterol (2%), whole ground flaxseed, or one of the components of flaxseed [α-linolenic acid (ALA), defatted fiber, or lignan]. Adding flaxseed to the diet partially mitigated the rise in circulating cholesterol levels induced by the cholesterol-enriched diet. Atherosclerosis was stimulated by TFA and/or cholesterol. Including milled flaxseed to an atherogenic diet significantly reduced atherosclerosis compared with the groups that consumed cholesterol and/or TFA. ALA was the only component within flaxseed that could inhibit the atherogenic action of cholesterol and/or TFA on its own. Dietary flaxseed protects against atherosclerotic development induced by TFA and cholesterol feeding through its content of ALA.
Collapse
Affiliation(s)
- Chantal M. C. Bassett
- Canadian Centre for Agri-Food Research in Health and Medicine and the Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Department of Physiology, Faculties of Medicine and Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Richelle S. McCullough
- Canadian Centre for Agri-Food Research in Health and Medicine and the Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Department of Physiology, Faculties of Medicine and Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Andrea L. Edel
- Canadian Centre for Agri-Food Research in Health and Medicine and the Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Department of Physiology, Faculties of Medicine and Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Amanda Patenaude
- Canadian Centre for Agri-Food Research in Health and Medicine and the Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Department of Physiology, Faculties of Medicine and Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Renee K. LaVallee
- Canadian Centre for Agri-Food Research in Health and Medicine and the Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Department of Physiology, Faculties of Medicine and Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Grant N. Pierce
- Canadian Centre for Agri-Food Research in Health and Medicine and the Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Department of Physiology, Faculties of Medicine and Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
16
|
Pezeshkian M, Rashidi MR, Varmazyar M, Hanaee J, Darbin A, Nouri M. Influence of a high cholesterol regime on epicardial and subcutaneous adipose tissue fatty acids profile in rabbits. Metab Syndr Relat Disord 2011; 9:403-9. [PMID: 21612505 DOI: 10.1089/met.2011.0008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND We have shown that the fatty acid profile of epicardial adipose tissue (EAT) in patients with obstructed coronary vessels is different from that of the subcutaneous adipose tissue (SAT). The diversity and amount of fatty acids in the adipose tissue can be affected by the component of the lipids in diet. As a result, this study investigated the influence of a high cholesterol regime on EAT and subcutaneous adipose tissue fatty acids profile in rabbits. METHODS Sixteen New Zealand white rabbits were randomly divided into two equal groups. The control group received a normal standard diet, whereas the test group was fed with the high cholesterol regime for 2 months. At the end of this period, the rabbits were anesthetized, 1-5 mg of EAT and SAT were removed, and their fatty acids content was determined. RESULTS The high cholesterol regime caused a significant increase in low-density lipoprotein (LDL) and triglycerides levels and a marked decrease in high-density lipoprotein (HDL) concentration. After 2 months, in the EAT, fatty acids 16:0 and 18:1t and saturated fatty acid (SFA) showed a significant increase (P<0.05), whereas, fatty acids 12:0, 18:1, 18:2, and 18:3, monounsaturated fatty acid (MUFA), polyunsaturated fatty acid (PUFA), ω3, and ω6 had a significant decrease (P<0.05). In SAT, fatty acids 18:3, 20:4, 22:6, MUFA, and ω3 decreased and PUFA, SFA, and ω6 significantly increased (P<0.05). CONCLUSION Consumption of a high cholesterol regime for 2 months resulted in a significant increase in atherogenic fatty acids and a decrease in antiatherogenic ones in the EAT. EAT is very sensitive to lipid changes of the regime comparing to SAT.
Collapse
Affiliation(s)
- Masood Pezeshkian
- Cardiovascular Research Center, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | | | | | |
Collapse
|
17
|
Dietary lipid-dependent regulation of de novo lipogenesis and lipid partitioning by ketogenic essential amino acids in mice. Nutr Diabetes 2011; 1:e5. [PMID: 23154504 PMCID: PMC3302132 DOI: 10.1038/nutd.2011.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: We have previously reported that dietary ketogenic amino acids (KAAs) modulate hepatic de novo lipogenesis (DNL) and prevent hepatic steatosis in mice. However, the dependence of the metabolic phenotypes generated by KAA on the type of dietary lipid source remains unclear. Objective: The aim of this study was to assess the effect of KAA combined with different dietary lipid sources on hepatic DNL and tissue lipid partitioning in mice. Design: We compared three different KAA-supplemented diets, in which a portion of the dietary protein was replaced by five major essential amino acids (Leu, Ile, Val, Lys and Thr) in high-fat diets based on palm oil (PO), high-oleic safflower oil (FO) or soy oil (SO). To compare the effects of these diets in C57B6 mice, the differential regulation of DNL and dietary lipid partitioning due to KAA was assessed using stable isotopic flux analysis. Results: The different dietary oils showed strikingly different patterns of lipid partitioning and accumulation in tissues. High-PO diets increased both hepatic and adipose triglycerides (TG), whereas high-FO and high-SO diets increased hepatic and adipose TG, respectively. Stable isotopic flux analysis revealed high rates of hepatic DNL in high-PO and high-FO diets, whereas it was reduced in the high-SO diet. KAA supplementation in high-PO and high-FO diets reduced hepatic TG by reducing the DNL of palmitate and the accumulation of dietary oleate. However, KAA supplementation in the high-SO diet failed to reduce hepatic DNL and TG. Interestingly, KAA reduced SO-induced accumulation of hepatic linoleate and enhanced SO-induced accumulation of dietary oleate. Conclusions: Overall, the reduction of hepatic TG by KAA is dependent on dietary lipid sources and occurs through the modulation of DNL and altered partitioning of dietary lipids. The current results provide further insight into the underlying mechanisms of hepatic lipid reduction by amino acids.
Collapse
|
18
|
Zhu-qin Z, Hou-zao C, Rui-feng Y, Ran Z, Yu-yan J, Yang X, De-pei L, Chih-chuan L. Regulation of acyl-coenzyme A: cholesterol acyltransferase 2 expression by saturated fatty acids. CHINESE MEDICAL SCIENCES JOURNAL = CHUNG-KUO I HSUEH K'O HSUEH TSA CHIH 2010; 25:222-7. [PMID: 21232182 DOI: 10.1016/s1001-9294(11)60006-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To verify the regulation of acyl-coenzyme A:cholesterol acyltransferase 2 (ACAT 2), which is associated with cholesterol metabolism, by saturated fatty acids (SFAs). METHODS Palmitic acid (PA), the most abundant saturated fatty acid in plasma, and oleic acid (OA), a widely distributed unsaturated fatty acid, were used to treat hepatic cells HepG2, HuH7, and mouse primary hepatocytes. In addition, PA at different concentrations and PA treatment at different durations were applied in HepG2 cells. In in vivo experiment, three-month male C57/BL6 mice were fed with control diet and SFA diet containing hydrogenated coconut oil rich of SFAs. The mRNA level of ACAT2 in those hepatic cells and the mouse livers was detected with real-time polymerase chain reaction (PCR). RESULTS In the three types of hepatic cells treated with PA, that SFA induced significant increase of ACAT2 expression (Pü0.01), whereas treatment with OA showed no significant effect. That effect of PA was noticed gradually rising along with the increase of PA concentration and the extension of PA treatment duration (both Pü0.05). SFA diet feeding in mice resulted in a short-term and transient increase of ACAT2 expression in vivo, with a peak level appearing in the mice fed with SFA diet for two days (Pü0.05). CONCLUSION SFA may regulate ACAT2 expression in human and mouse hepatic cells and in mouse livers.
Collapse
Affiliation(s)
- Zhang Zhu-qin
- Institute of Basic Medical Science, Chinese Academy of Medical Sciences, Beijing 100005, China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Siri-Tarino PW, Sun Q, Hu FB, Krauss RM. Saturated fatty acids and risk of coronary heart disease: modulation by replacement nutrients. Curr Atheroscler Rep 2010; 12:384-90. [PMID: 20711693 PMCID: PMC2943062 DOI: 10.1007/s11883-010-0131-6] [Citation(s) in RCA: 219] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite the well-established observation that substitution of saturated fats for carbohydrates or unsaturated fats increases low-density lipoprotein (LDL) cholesterol in humans and animal models, the relationship of saturated fat intake to risk for atherosclerotic cardiovascular disease in humans remains controversial. A critical question is what macronutrient should be used to replace saturated fat. Substituting polyunsaturated fat for saturated fat reduces LDL cholesterol and the total cholesterol to high-density lipoprotein cholesterol ratio. However, replacement of saturated fat by carbohydrates, particularly refined carbohydrates and added sugars, increases levels of triglyceride and small LDL particles and reduces high-density lipoprotein cholesterol, effects that are of particular concern in the context of the increased prevalence of obesity and insulin resistance. Epidemiologic studies and randomized clinical trials have provided consistent evidence that replacing saturated fat with polyunsaturated fat, but not carbohydrates, is beneficial for coronary heart disease. Therefore, dietary recommendations should emphasize substitution of polyunsaturated fat and minimally processed grains for saturated fat.
Collapse
Affiliation(s)
- Patty W. Siri-Tarino
- Atherosclerosis Research, Children’s Hospital Oakland Research Institute, 5700 Martin Luther King Junior Way, Oakland, CA 94609 USA
| | - Qi Sun
- Channing Laboratory, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115 USA
| | - Frank B. Hu
- Departments of Nutrition and Epidemiology, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA USA
| | - Ronald M. Krauss
- Atherosclerosis Research, Children’s Hospital Oakland Research Institute, 5700 Martin Luther King Junior Way, Oakland, CA 94609 USA
| |
Collapse
|
20
|
Catanozi S, Rocha J, Passarelli M, Chiquito F, Quintão E, Nakandakare E. Pitfalls in the assessment of murine atherosclerosis. Braz J Med Biol Res 2009; 42:471-5. [DOI: 10.1590/s0100-879x2009000600001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Accepted: 03/11/2009] [Indexed: 11/22/2022] Open
|
21
|
Hughes BG, Hekimi S. Mclk1+/- mice are not resistant to the development of atherosclerosis. Lipids Health Dis 2009; 8:16. [PMID: 19416523 PMCID: PMC2683836 DOI: 10.1186/1476-511x-8-16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 05/05/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mice with a single copy of Mclk1 (a.k.a. Coq7), a gene that encodes a mitochondrial enzyme required for the biosynthesis of ubiquinone and other functions, live longer than wild-type mice. The prolonged survival implies a decreased mortality from age-dependent lethal pathologies. Atherosclerosis is one of the main age-dependent pathologies in humans and can be modeled in mice that lack Apolipoprotein E (ApoE-/-) or mice that lack the Low Density Lipoprotein Receptor (LDLr-/-) in addition to being fed an atherosclerosis-inducing diet. We sought to determine if Mclk1 heterozygosity protects against atherosclerosis and dyslipidemia in these models. RESULTS We found that Mclk1 heterozygosity did not protect against dyslipidemia, oxidative stress, or atherosclerosis in young (6 or 10 months) or older (18 months) mice. Furthermore, the absence of ApoE suppressed the lifespan-promoting effects of Mclk1 heterozygosity. CONCLUSION These findings indicate that although Mclk1 heterozygosity can extend lifespan of mice, it does not necessarily protect against atherosclerosis. Moreover, in the presence of hyperlipidemia and chronic inflammation, Mclk1 heterozygosity is incapable of extending lifespan.
Collapse
Affiliation(s)
- Bryan G Hughes
- Department of Biology, McGill University, Montreal H3A 1B1, Canada
| | - Siegfried Hekimi
- Department of Biology, McGill University, Montreal H3A 1B1, Canada
| |
Collapse
|
22
|
Guillén N, Acín S, Navarro MA, Carlos Surra J, Arnal C, Manuel Lou-Bonafonte J, Muniesa P, Victoria Martínez-Gracia M, Osada J. Knowledge of the Biological Actions of Extra Virgin Olive Oil Gained From Mice Lacking Apolipoprotein E. ACTA ACUST UNITED AC 2009; 62:294-304. [DOI: 10.1016/s1885-5857(09)71560-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Guillén N, Acín S, Navarro MÁ, Carlos Surra J, Arnal C, Manuel Lou-Bonafonte J, Muniesa P, Victoria Martínez-Gracia M, Osada J. Conocimiento de la acción biológica del aceite de oliva virgen extra mediante el uso del ratón carente de la apolipoproteína E. Rev Esp Cardiol 2009. [DOI: 10.1016/s0300-8932(09)70374-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Police SB, Harris JC, Lodder RA, Cassis LA. Effect of diets containing sucrose vs. D-tagatose in hypercholesterolemic mice. Obesity (Silver Spring) 2009; 17:269-75. [PMID: 19008872 PMCID: PMC2866161 DOI: 10.1038/oby.2008.508] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Effects of functional sweeteners on the development of the metabolic syndrome and atherosclerosis are unknown. The objective was to compare the effect of dietary carbohydrate in the form of sucrose (SUCR) to D-tagatose (TAG; an isomer of fructose currently used as a low-calorie sweetener) on body weight, blood cholesterol concentrations, hyperglycemia, and atherosclerosis in low-density lipoprotein receptor deficient (LDLr(-/-)) mice. LDLr(-/-) male and female mice were fed either standard murine diet or a diet enriched with TAG or SUCR as carbohydrate sources for 16 weeks. TAG and SUCR diets contained equivalent amounts (g/kg) of protein, fat, and carbohydrate. We measured food intake, body weight, adipocyte diameter, serum cholesterol and lipoprotein concentrations, and aortic atherosclerosis. Macrophage immunostaining and collagen content were examined in aortic root lesions. CONTROL and TAG-fed mice exhibited similar energy intake, body weights and blood glucose and insulin concentrations, but SUCR-fed mice exhibited increased energy intake and became obese and hyperglycemic. Adipocyte diameter increased in female SUCR-fed mice compared to TAG and CONTROL. Male and female SUCR-fed mice had increased serum cholesterol and triglyceride concentrations compared to TAG and CONTROL. Atherosclerosis was increased in SUCR-fed mice of both genders compared to TAG and CONTROL. Lesions from SUCR-fed mice exhibited pronounced macrophage immunostaining and reductions in collagen content compared to TAG and CONTROL mice. These results demonstrate that in comparison to sucrose, equivalent substitution of TAG as dietary carbohydrate does not result in the same extent of obesity, hyperglycemia, hyperlipidemia, and atherosclerosis.
Collapse
Affiliation(s)
- Sara B. Police
- Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - J. Clay Harris
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Robert A. Lodder
- Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Lisa A. Cassis
- Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
25
|
White adipose tissue as endocrine organ and its role in obesity. Arch Med Res 2008; 39:715-28. [PMID: 18996284 DOI: 10.1016/j.arcmed.2008.09.005] [Citation(s) in RCA: 277] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 09/19/2008] [Indexed: 02/08/2023]
Abstract
Due to the public health problem represented by obesity, the study of adipose tissue, particularly of the adipocyte, is central to the understanding of metabolic abnormalities associated with the development of obesity. The concept of adipocyte as endocrine and functional cell is not totally understood and can be currently defined as the capacity of the adipocyte to sense, manage, and send signals to maintain energy equilibrium in the body. Adipocyte functionality is lost during obesity and has been related to adipocyte hypertrophy, disequilibrium between lipogenesis and lipolysis, impaired transcriptional regulation of the key factors that control adipogenesis, and lack of sensitivity to external signals, as well as a failure in the signal transduction process. Thus, dysfunctional adipocytes contribute to abnormal utilization of fatty acids causing lipotoxicity in non-adipose tissue such as liver, pancreas and heart, among others. To understand the metabolism of the adipocyte it is necessary to have an overview of the developmental process of new adipocytes, regulation of adipogenesis, lipogenesis and lipolysis, endocrine function of adipocytes and metabolic consequences of its dysfunction. Finally, the key role of adipose tissue is shown by studies in transgenic animals or in animal models of diet-induced obesity that indicate the contribution of adipose tissue during the development of metabolic syndrome. Thus, understanding of the molecular process that occurs in the adipocyte will provide new tools for the treatment of metabolic abnormalities during obesity.
Collapse
|
26
|
Degirolamo C, Shelness GS, Rudel LL. LDL cholesteryl oleate as a predictor for atherosclerosis: evidence from human and animal studies on dietary fat. J Lipid Res 2008; 50 Suppl:S434-9. [PMID: 19029117 DOI: 10.1194/jlr.r800076-jlr200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This review focuses on the relationships among dietary fat type, plasma and liver lipid, and lipoprotein metabolism and atherosclerosis. Dietary polyunsaturated fatty acids are beneficial for the prevention of coronary artery atherosclerosis. By contrast, dietary monounsaturated fatty acids appear to alter hepatic lipoprotein metabolism, promote cholesteryl oleate accumulation, and confer atherogenic properties to lipoproteins as shown in data from experimental animal studies. Polyunsaturated fat appears to provide atheroprotection, at least in part, because it limits the accumulation of cholesteryl oleate in favor of cholesteryl linoleate in plasma lipoproteins.
Collapse
Affiliation(s)
- Chiara Degirolamo
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem NC 27157, USA
| | | | | |
Collapse
|
27
|
Jia X, Chen Y, Zidichouski J, Zhang J, Sun C, Wang Y. Co-administration of berberine and plant stanols synergistically reduces plasma cholesterol in rats. Atherosclerosis 2008; 201:101-7. [DOI: 10.1016/j.atherosclerosis.2008.03.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2007] [Revised: 03/07/2008] [Accepted: 03/07/2008] [Indexed: 10/22/2022]
|
28
|
Stein O, Dabach Y, Ben-Naim M, Halperin G, Stein Y. Effects of oleic acid and macrophage recruitment on cholesterol efflux in cell culture and in vivo. Nutr Metab Cardiovasc Dis 2008; 18:596-601. [PMID: 18060750 DOI: 10.1016/j.numecd.2007.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 05/22/2007] [Accepted: 06/19/2007] [Indexed: 02/01/2023]
Abstract
BACKGROUND AND AIM Monounsaturated fatty acids in diets are beneficial for the plasma lipoprotein profile, but studies in cell culture point out that they may also be detrimental by inhibiting cholesterol efflux to apo AI. METHODS AND RESULTS In the present study we used mouse peritoneal macrophages, loaded with cholesterol and upregulated by cyclic AMP or by LXR/RXR ligands and compared the effect of oleic acid on cholesterol efflux to 3 different acceptors. Inhibition of cholesterol efflux by oleic acid ranged from 10 to 25% with HDL or 2.5% mouse serum, while efflux to phosphatidyl choline vesicles was not affected. Previously we reported that the LXR ligand, TO901317, retarded cholesterol removal in vivo from a modified LDL depot in muscle. This could have resulted from inhibition by unsaturated fatty acids or from reduction in macrophage recruitment due to the anti-inflammatory action of LXR. CONCLUSIONS Our current findings, of retardation of cholesterol clearance from the depot in the presence of low macrophage recruitment, support the latter possibility.
Collapse
Affiliation(s)
- Olga Stein
- Department of Experimental Medicine and Cancer Research, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | | | | | |
Collapse
|
29
|
Brown JM, Shelness GS, Rudel LL. Monounsaturated fatty acids and atherosclerosis: opposing views from epidemiology and experimental animal models. Curr Atheroscler Rep 2007; 9:494-500. [PMID: 18377790 DOI: 10.1007/s11883-007-0066-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A substantial body of epidemiologic data has shed light on the potential protective effects of the Mediterranean diet against atherosclerosis in humans. Many believe the reason the Mediterranean diet is atheroprotective is the elevated consumption of olive oil, an oil poor in saturated fatty acids (SFA) and highly enriched in monounsaturated fatty acids (MUFA). Based on human feeding studies, the American Heart Association and the US Food and Drug Administration have advocated for the consumption of MUFA as a more healthy replacement for SFA. However, using experimental animal models in which extent of atherosclerosis can be directly measured following dietary intervention, it has been demonstrated that MUFA-enriched diets are not atheroprotective when compared with SFA-enriched diets. Hence, the current body of experimental evidence refutes the idea that MUFAs per se are atheroprotective; therefore much additional work is needed to determine which aspects of the Mediterranean diet are indeed heart healthy.
Collapse
Affiliation(s)
- J Mark Brown
- Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1040, USA
| | | | | |
Collapse
|
30
|
Coenen KR, Hasty AH. Obesity potentiates development of fatty liver and insulin resistance, but not atherosclerosis, in high-fat diet-fed agouti LDLR-deficient mice. Am J Physiol Endocrinol Metab 2007; 293:E492-9. [PMID: 17566116 DOI: 10.1152/ajpendo.00171.2007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Obesity is increasing at an alarming rate, and its related disorders are placing a considerable strain on our healthcare system. Although they are not always coincident, obesity is often accompanied by hyperlipidemia. Both obesity and hyperlipidemia are independently associated with atherosclerosis, nonalcoholic fatty liver disease (NAFLD), and insulin resistance (IR). Thus, we sought to determine the relative contributions of obesity and hyperlipidemia to these associated pathologies. Obese agouti (A(y)/a) mice and their littermate controls (a/a) were placed on an LDL receptor (LDLR)(-/-) background. At 4 mo of age, mice were either maintained on chow diet (CD) or placed on Western diet (WD) for 12 wk. These genetic and dietary manipulations yielded four experimental groups: 1) lean, a/a;LDLR(-/-)CD; 2) genetic-induced obesity (GIO), A(y)/a;LDLR(-/-)CD; 3) diet-induced obesity (DIO), a/a;LDLR(-/-)WD; and 4) genetic- plus diet-induced obesity (GIO/DIO), A(y)/a;LDLR(-/-)WD. Lipoprotein profiles revealed increased VLDL and LDL particles in WD-fed mice compared with CD-fed controls. The hyperlipidemia present in this mouse model was the result of both increased hepatic triglyceride production and delayed lipoprotein clearance from the plasma. Both WD-fed groups exhibited similar levels of atherosclerotic lesion area, with increased obesity in the GIO/DIO group having no impact on atherogenesis. However, the severe obesity in the GIO/DIO group did aggravate NAFLD and IR. These findings suggest that, although obesity and hyperlipidemia exert individual pathological effects, the combination of the two has the potential to exert an additive effect on NAFLD and IR but not atherosclerosis in this mouse model.
Collapse
Affiliation(s)
- Kimberly R Coenen
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee 37232-0615, USA
| | | |
Collapse
|
31
|
Sirtori CR, Anderson JW, Arnoldi A. Nutritional and nutraceutical considerations for dyslipidemia. ACTA ACUST UNITED AC 2007. [DOI: 10.2217/17460875.2.3.313] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
32
|
Bell TA, Kelley K, Wilson MD, Sawyer JK, Rudel LL. Dietary fat-induced alterations in atherosclerosis are abolished by ACAT2-deficiency in ApoB100 only, LDLr-/- mice. Arterioscler Thromb Vasc Biol 2007; 27:1396-402. [PMID: 17431188 DOI: 10.1161/atvbaha.107.142802] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES The enzyme acyl-coenzymeA (CoA):cholesterol O-acyltransferase 2 (ACAT2) in the liver synthesizes cholesteryl esters (CE) from cholesterol and fatty acyl-CoA, which get incorporated into apoB-containing lipoproteins that are secreted into the bloodstream. Dietary fatty acid composition influences the amount and fatty acid composition of CE within apoB-containing lipoproteins. We hypothesized that when ACAT2 activity is removed by gene deletion, hepatic CE synthesis and secretion would be minimal and, as a result, dietary fat-related differences in atherosclerosis would be eliminated. METHODS AND RESULTS Groups of female apoB100 only, LDLr-/- mice with and without ACAT2 were fed diets enriched in either omega-3 or omega-6 polyunsaturated fat, saturated fat, and cis or trans monounsaturated fat. After 20 weeks on diet, mice fed diets enriched in monounsaturated or saturated fat exhibited significantly higher amounts of plasma cholesterol, larger LDL particles enriched in monounsaturated CE, and more atherosclerosis than mice fed polyunsaturated fat. The dietary fat-induced shifts in plasma cholesterol, LDL size, LDL CE composition, and atherosclerosis were not observed in ACAT2-/- mice. Regardless of the diet fed, the ACAT2-/- mice were protected from atherosclerosis. CONCLUSIONS The results indicate that in apoB100 only, LDLr-/- mice, ACAT2 plays an essential role in facilitating dietary fat type-specific atherosclerosis through its various effects on plasma lipoprotein concentration and composition.
Collapse
Affiliation(s)
- Thomas A Bell
- Wake Forest University School of Medicine, Department of Pathology/Lipid Sciences, Medical Center Blvd, Winston-Salem, NC 27157, USA
| | | | | | | | | |
Collapse
|
33
|
Arbonés-Mainar JM, Navarro MA, Carnicer R, Guillén N, Surra JC, Acín S, Guzmán MA, Sarría AJ, Arnal C, Aguilera MP, Jiménez A, Beltrán G, Uceda M, Osada J. Accelerated atherosclerosis in apolipoprotein E-deficient mice fed Western diets containing palm oil compared with extra virgin olive oils: a role for small, dense high-density lipoproteins. Atherosclerosis 2006; 194:372-82. [PMID: 17141784 DOI: 10.1016/j.atherosclerosis.2006.11.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Revised: 11/03/2006] [Accepted: 11/08/2006] [Indexed: 02/05/2023]
Abstract
To test the hypothesis that extra virgin olive oils from different cultivars added to Western diets might behave differently than palm oil in the development of atherosclerosis, apoE-deficient mice were fed diets containing different cultivars of olive oil for 10 weeks. Female mice were assigned randomly to one of the following five groups: (1-4) fed chow diets supplemented with 0.15% (w/w) cholesterol and 20% (w/w) extra virgin olive oil from the Arbequina, Picual, Cornicabra, or Empeltre cultivars, and (5) fed a chow diet supplemented with 0.15% cholesterol and 20% palm oil. Compared to diets containing palm oil, a Western diet supplemented with one of several varieties of extra virgin olive oil decreased atherosclerosis lesions, reduced plaque size, and decreased macrophage recruitment. Unexpectedly, total plasma paraoxonase activity, apoA-I, plasma triglycerides, and cholesterol played minor roles in the regulation of differential aortic lesion development. Extra virgin olive oil induced a cholesterol-poor, apoA-IV-enriched lipoparticle that has enhanced arylesterase and antioxidant activities, which is closely associated with reductions in atherosclerotic lesions. Given the anti-atherogenic properties of extra virgin olive oil evident in animal models fed a Western diet, clinical trials are needed to establish whether these oils are a safe and effective means of treating atherosclerosis.
Collapse
Affiliation(s)
- José M Arbonés-Mainar
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Universidad de Zaragoza, Miguel Servet, 177, E-50013 Zaragoza, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
YANG LIFENG, SIRIAMORNPUN SIRITHON, LI DUO. POLYUNSATURATED FATTY ACID CONTENT OF EDIBLE INSECTS IN THAILAND. ACTA ACUST UNITED AC 2006. [DOI: 10.1111/j.1745-4522.2006.00051.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Brevik A, Veierød MB, Drevon CA, Andersen LF. Evaluation of the odd fatty acids 15:0 and 17:0 in serum and adipose tissue as markers of intake of milk and dairy fat. Eur J Clin Nutr 2006; 59:1417-22. [PMID: 16118654 DOI: 10.1038/sj.ejcn.1602256] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND There is a need for biomarkers of dietary saturated fatty acids, because several diseases have been related to intake of these fatty acids. OBJECTIVE To examine the relation between intake of dairy fat and the proportion of pentadecanoic (15:0) and heptadecanoic (17:0) acid in serum and adipose tissue. DESIGN Healthy men aged 21-55 y provided serum (n = 110) and adipose tissue samples (n = 107) and completed both 14 days weighed records (WR) and a 180-item food frequency questionnaire (FFQ). The proportions of 15:0 and 17:0 acid in serum and adipose tissue as measured by gas liquid chromatography were evaluated as biomarkers for fat intake from dairy products using Pearsons correlation coefficient and the method of triads. RESULTS The strongest correlation coefficients were observed between total intake of dairy fat estimated from WR and relative content of 15:0 in adipose tissue (0.52, 95% CI: 0.37, 0.65) and total serum (0.43, 95% CI 0.26, 0.57). A consistent inverse association was observed between the intake of milk fat and relative serum content of 17:0. The validity coefficients observed for the intake of dairy fat estimated from weighed records, the 180-item FFQ and by the relative content of 15:0 in serum and adipose tissue were 0.94 (95% CI: 0.68, 1.00), 0.50 (95% CI: 0.29, 0.67), 0.49 (95% CI: 0.32, 0.67) and 0.56 (95% CI: 0.28, 0.82), respectively. CONCLUSION Relative content of 15:0 in serum and adipose tissue may be a useful biomarker for the intake of total dairy fat, whereas FFQs and WRs may provide better estimates of the intake of fat from milk.
Collapse
Affiliation(s)
- A Brevik
- Department of Nutrition, Institute of Basic Medical Sciences, School of Medicine, University of Oslo, Blindern, Norway.
| | | | | | | |
Collapse
|
36
|
Sato M, Shibata K, Nomura R, Kawamoto D, Nagamine R, Imaizumi K. Linoleic acid-rich fats reduce atherosclerosis development beyond its oxidative and inflammatory stress-increasing effect in apolipoprotein E-deficient mice in comparison with saturated fatty acid-rich fats. Br J Nutr 2006; 94:896-901. [PMID: 16351765 DOI: 10.1079/bjn20051409] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The relative benefit of replacing saturated fatty acid with linoleic acids is still being debated because a linoleic acid-enriched diet increases oxidative and inflammatory stresses, although it is associated with a reduction in serum cholesterol levels. The present study was conducted to evaluate the effect of dietary supplementation of linoleic acid-rich (HL) fat, compared with a saturated fatty acid-rich (SF) fat on atherosclerotic lesion areas, serum and liver cholesterol levels, oxidative stress (urinary isoprostanes and serum malondialdehayde) and inflammatory stress (expression of aortic monocyte chemoattractant protein-1; MCP-1) in apo E-deficient mice. Male and female apo E-deficient mice (8 weeks old; seven to eight per group) were fed an AIN-76-based diet containing SF fat (50 g palm oil and 50 g lard/kg) or HL fat (100 g high-linoleic safflower-seed oil/kg) for 9 weeks. Compared with the SF diet, the HL diet lowered atherosclerosis (P<0.05). It reduced serum total cholesterol levels (P<0.05), increased HDL-cholesterol levels (P<0.05) and lowered liver esterified cholesterol levels (P<0.01). The HL diet-fed mice showed increased expression of MCP-1 mRNA (P<0.05), serum levels of malondialdehayde (P<0.05) and urinary excretion of 2,3-dinor-5,6-dihydro-8-iso-prostaglandin F2alpha; P<0.05). These results suggest that having biomarkers in vivo for oxidative stress and inflammatory status of endothelial cells does not necessarily indicate predisposition to an increased lesion area in the aortic root in apo E-deficient mice fed an HL or SF diet.
Collapse
Affiliation(s)
- Masao Sato
- Laboratory of Nutrition Chemistry, Division of Bioresource and Bioenvironmental Sciences, Graduate School, Kyushu University, Fukuoka 812-8581, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Lipid-enriched diets are often used to induce or accelerate the rate of atherosclerotic lesion development in murine models of atherosclerosis. It appears that the induction of persistent hypercholesterolemia to levels > or approximately to 300 mg/dL is required for the development of experimental atherosclerosis in the mouse. A variety of different diets have been used that vary in the level of cholesterol, the level and type of fatty acid, and the absence or presence of cholate. Each of these components as well as the protein source has been shown to influence lipoprotein level and/or atherosclerosis, with dietary cholesterol being the major proatherogenic component. In some instances the effects of these components on the expression of hepatic genes relevant to lipid homeostasis has been observed. An appreciation of the effect of the differences in diet composition on these processes is important to compare results from different atherosclerosis studies, so the composition of the diets used should always be reported or referenced. Cholate should not be used unless its effects are being specifically investigated.
Collapse
Affiliation(s)
- Godfrey S Getz
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA.
| | | |
Collapse
|
38
|
Reardon CA, Blachowicz L, Gupta G, Lukens J, Nissenbaum M, Getz GS. Site-specific influence of polyunsaturated fatty acids on atherosclerosis in immune incompetent LDL receptor deficient mice. Atherosclerosis 2005; 187:325-31. [PMID: 16280127 DOI: 10.1016/j.atherosclerosis.2005.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Revised: 10/03/2005] [Accepted: 10/04/2005] [Indexed: 11/16/2022]
Abstract
Polyunsaturated fatty acids (PUFA) are thought to influence plasma lipid levels, atherosclerosis, and the immune system. In this study, we fed male LDL receptor deficient (LDLR(-/-)) mice and immune incompetent LDLR(-/-) RAG2(-/-) mice diets containing predominantly saturated fats (milk fat) or PUFA (safflower oil) to determine if the response to diet was influenced by immune status. Relative to milk fat diet, plasma lipid and VLDL levels in both the LDLR(-/-) and LDLR(-/-) RAG2(-/-) mice fed safflower oil diet were lower, suggesting that the primary effect of PUFA on plasma lipids was not due to its inhibition of the immune system. Neither diet nor immune status influenced hepatic triglyceride production and post-heparin lipase activity, suggesting that the differences in triglyceride levels are due to differences in rates of catabolism of triglyceride-rich lipoproteins. While both diets promoted atherogenesis, both aortic root and innominate artery atherosclerosis in LDLR(-/-) mice was less in safflower oil fed animals. In contrast, a site-specific effect of PUFA was observed in the immune incompetent LDLR(-/-) RAG2(-/-). In these mice, aortic root atherosclerosis, but not innominate artery atherosclerosis, was less in PUFA fed animal. These results suggest that PUFA and the immune system may influence innominate artery atherosclerosis by some overlapping mechanisms.
Collapse
Affiliation(s)
- Catherine A Reardon
- Department of Pathology, University of Chicago, MC 1089, 5841 S. Maryland Avenue, Chicago, IL 60637, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Graham TL, Mookherjee C, Suckling KE, Palmer CNA, Patel L. The PPARdelta agonist GW0742X reduces atherosclerosis in LDLR(-/-) mice. Atherosclerosis 2005; 181:29-37. [PMID: 15939051 DOI: 10.1016/j.atherosclerosis.2004.12.028] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Revised: 11/19/2004] [Accepted: 12/03/2004] [Indexed: 01/22/2023]
Abstract
Several lines of evidence suggest a biological role for peroxisome proliferator-activated receptor (PPARdelta) in the pathogenesis of atherosclerosis. Administration of synthetic PPARdelta agonists to obese rhesus monkeys elevates serum high-density lipoprotein (HDL) cholesterol as a result of increased reverse cholesterol transport whilst in vitro studies have suggested a role for PPARdelta in lipid uptake into macrophages. Recent studies have found that PPARdelta depletion from macrophages in LDL receptor (LDLR(-/-)) mice decreases lesion area via modulation of the inflammatory status of the macrophage, an effect also seen on pharmacological activation of PPARdelta in vitro. We demonstrate here that the PPARdelta agonist, GW0742X has potent anti-atherogenic activity in the LDLR(-/-) mouse, decreasing lesion area by up to 50%. Administration of GW0742X had no effect on total cholesterol, HDL or LDL cholesterol and modest effects on very low-density lipoprotein (VLDL). Treatment with GW0742X resulted in decreased expression of monocyte chemoattractant protein 1 (MCP-1) and intracellular adhesion moleculae 1 (ICAM-1) in the aortae of treated mice. In addition, GW0742X decreased tumour necrosis factor-alpha (TNFalpha) expression in peritoneal macrophages, aortae and adipose tissue in comparison with control animals. Changes in gene expression were reflected in decreased plasma levels of MCP-1. These observations support an atheroprotective effect of PPARdelta agonists in vivo.
Collapse
Affiliation(s)
- Tracey L Graham
- Biomedical Research Centre, Ninewells Hospital and Medical School, University of Dundee, Scotland, UK
| | | | | | | | | |
Collapse
|
40
|
Acín S, Navarro MA, Carnicer R, Arbonés-Mainar JM, Guzmán MA, Arnal C, Beltrán G, Uceda M, Maeda N, Osada J. Dietary cholesterol suppresses the ability of olive oil to delay the development of atherosclerotic lesions in apolipoprotein E knockout mice. Atherosclerosis 2005; 182:17-28. [PMID: 16115471 DOI: 10.1016/j.atherosclerosis.2005.01.050] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2004] [Revised: 01/21/2005] [Accepted: 01/27/2005] [Indexed: 11/30/2022]
Abstract
To test the hypothesis that cholesterol might suppress the beneficial effect of olive oil in atherosclerosis, we fed apoE KO mice diets containing extra virgin olive oil, either with or without cholesterol, for 10 weeks and assessed the development of atherosclerosis. Within each sex, mice were assigned randomly to one of the following four experimental groups: (1) a standard chow diet, (2) a chow diet supplemented with 0.1% cholesterol (w/w) cholesterol, (3) a chow diet enriched with 20% (w/w) extra virgin olive oil and (4) a chow diet containing 0.1% cholesterol and 20% extra virgin olive oil. On the standard chow diet, average plasma cholesterol levels were higher in males than in females. Olive oil- and cholesterol-enriched diets, separately or in combination, induced hypercholesterolemia in both sexes, and abolished the difference between the sexes in plasma cholesterol levels. The addition of cholesterol to chow or olive oil diets decreased apolipoprotein A-I significantly in females and serum paraoxonase activities in males. The latter activity was higher in females than in males. In both sexes, the size of aortic atherosclerotic lesions was similar in olive oil- and chow-fed animals and smaller than in cholesterol-supplemented groups. Size of aortic lesions were positively correlated with circulating paraoxonase activity, particularly in males, and the relationship remained after adjusting for apolipoprotein A-I and HDL cholesterol levels. Our results demonstrate that the nutritional regulation of paraoxonase is an important determinant of atherosclerotic lesions dependent on sex. They also suggest that the mere inclusion of olive oil in Western diets is insufficient and the adoption of Mediterranean diet would be more effective in retarding the development of atherosclerotic lesions.
Collapse
Affiliation(s)
- Sergio Acín
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Stollenwerk MM, Lindholm MW, Pörn-Ares MI, Larsson A, Nilsson J, Ares MPS. Very low-density lipoprotein induces interleukin-1β expression in macrophages. Biochem Biophys Res Commun 2005; 335:603-8. [PMID: 16087165 DOI: 10.1016/j.bbrc.2005.07.123] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Accepted: 07/23/2005] [Indexed: 11/21/2022]
Abstract
Elevated plasma level of very low-density lipoprotein (VLDL) is a risk factor for coronary heart disease. We investigated the effect of VLDL on expression of the pro-inflammatory cytokine interleukin-1beta (IL-1beta) in human peripheral blood monocyte-derived macrophages. IL-1beta mRNA and protein expression was analysed by PCR and ELISA, respectively. Caspase activation was assessed by immunoblotting. Apart from potentiating lipopolysaccharide-induced secretion of IL-1beta, VLDL alone induced secretion of IL-1beta from human monocyte-derived macrophages. This effect was suppressed by an inhibitor of caspase-1, the protease which cleaves pro-IL-1beta. VLDL treatment activated caspase-1, as indicated by increased levels of the caspase-1 p20 subunit. Furthermore, VLDL increased IL-1beta mRNA expression, which was associated with activation of transcription factor AP-1. Inhibition of caspase-1 did not influence IL-1beta mRNA expression. In conclusion, VLDL induces IL-1beta mRNA expression, caspase-1 activation, and IL-1beta release from macrophages, suggesting that VLDL can promote inflammation in atherosclerotic lesions.
Collapse
|
42
|
Zampolli A, Bysted A, Leth T, Mortensen A, De Caterina R, Falk E. Contrasting effect of fish oil supplementation on the development of atherosclerosis in murine models. Atherosclerosis 2005; 184:78-85. [PMID: 15946668 DOI: 10.1016/j.atherosclerosis.2005.04.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2004] [Revised: 04/06/2005] [Accepted: 04/27/2005] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Increased fish oil intake is associated with protection against coronary heart disease and sudden death, while effects on atherosclerosis are controversial. We explored the effects of supplementing fish oil (rich in n-3 polyunsaturated fatty acids, PUFA) or corn oil (rich in n-6 PUFA) in two different models of atherosclerosis. METHODS AND RESULTS Sixty-three low density lipoprotein receptor-deficient (LDLR(-/-)) mice and sixty-nine apolipoprotein E-deficient (apoE(-/-)) mice were fed diets without supplementations or supplemented with either 1% fish oil or 1% corn oil. In apoE(-/-) mice, neither fish oil nor corn oil had any major impact on plasma lipids or atherosclerosis. In LDLR(-/-) mice, conversely, the fish oil and the corn oil group had lower levels of LDL-cholesterol and triglycerides and had lesser atherosclerosis in the aortic root and in the entire aorta (p < 0.01 versus unsupplemented group). Atherosclerosis was significantly less in the fish oil group compared with the corn oil group when evaluated en face in the aortic arch (area positive to lipid staining: 32% with fish oil versus 38% with corn oil; 48% with unsupplemented diet). CONCLUSIONS n-3 and n-6 PUFA supplementation retarded the development of atherosclerosis in LDLR(-/-) mice, with a stronger effect seen with n-3 PUFA. There was an important strain-dependence of the effect, with no protection against atherosclerosis in apoE(-/-) mice.
Collapse
Affiliation(s)
- Antonella Zampolli
- Department of Cardiology, Institute of Experimental and Clinical Research, Skejby University Hospital, Aarhus, Denmark
| | | | | | | | | | | |
Collapse
|
43
|
Lee RG, Shah R, Sawyer JK, Hamilton RL, Parks JS, Rudel LL. ACAT2 contributes cholesteryl esters to newly secreted VLDL, whereas LCAT adds cholesteryl ester to LDL in mice. J Lipid Res 2005; 46:1205-12. [PMID: 15805543 DOI: 10.1194/jlr.m500018-jlr200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The relative contributions of ACAT2 and LCAT to the cholesteryl ester (CE) content of VLDL and LDL were measured. ACAT2 deficiency led to a significant decrease in the percentage of CE (37.2 +/- 2.1% vs. 3.9 +/- 0.8%) in plasma VLDL, with a concomitant increase in the percentage of triglyceride (33.0 +/- 3.2% vs. 66.7 +/- 2.5%). Interestingly, the absence of ACAT2 had no apparent effect on the percentage CE in LDL, whereas LCAT deficiency significantly decreased the CE percentage (38.6 +/- 4.0% vs. 54.6 +/- 1.9%) and significantly increased the phospholipid percentage (11.2 +/- 0.9% vs. 19.3 +/- 0.1%) of LDL. When both LCAT and ACAT2 were deficient, VLDL composition was similar to VLDL of the ACAT2-deficient mouse, whereas LDL was depleted in core lipids and enriched in surface lipids, appearing discoidal when observed by electron microscopy. We conclude that ACAT2 is important in the synthesis of VLDL CE, whereas LCAT is important in remodeling VLDL to LDL. Liver perfusions were performed, and perfusate apolipoprotein B accumulation rates in ACAT2-deficient mice were not significantly different from those of controls; perfusate VLDL CE decreased from 8.0 +/- 0.8% in controls to 0 +/- 0.7% in ACAT2-deficient mice. In conclusion, our data establish that ACAT2 provides core CE of newly secreted VLDL, whereas LCAT adds CE during LDL particle formation.
Collapse
Affiliation(s)
- Richard G Lee
- Arteriosclerosis Research Program, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | | | | | | | | | |
Collapse
|
44
|
Schreyer SA, Lystig TC, Vick CM, LeBoeuf RC. Mice deficient in apolipoprotein E but not LDL receptors are resistant to accelerated atherosclerosis associated with obesity. Atherosclerosis 2004; 171:49-55. [PMID: 14642405 DOI: 10.1016/j.atherosclerosis.2003.07.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aims of this study were to determine whether mice induced to become obese also exhibited accelerated atherosclerosis, and to determine whether obesity itself or dyslipidemia associated with obesity enhanced atherosclerosis. Wild-type (C57BL/6) mice and mice deficient for the low density lipoprotein receptor (LDLR-/-) or apolipoprotein E (apoE-/-) were fed a low fat, rodent chow diet or a high fat, high sucrose (diabetogenic) diet to induce obesity. As compared with wild-type mice, diabetogenic diet-fed LDLR-/- mice became more obese and developed severe dyslipidemia. Consequently, atherosclerotic lesions were increased in the LDLR-/- mice 3.7-fold over chow fed values. ApoE-/- mice showed weight gain profiles similar to those observed for wild-type mice. However, no differences in plasma lipid levels, lipoprotein profiles or atherosclerotic lesion areas were observed between chow-fed and diabetogenic diet-fed apoE-/- mice. These data demonstrate that lipid storage and partitioning as mediated by the low density lipoproteins (LDL) receptor or apoE-/- have profound and opposing consequences for dyslipidemia and atherosclerosis susceptibility associated with obesity.
Collapse
MESH Headings
- Animals
- Apolipoproteins B/drug effects
- Apolipoproteins B/metabolism
- Apolipoproteins E/blood
- Apolipoproteins E/deficiency
- Apolipoproteins E/drug effects
- Biomarkers/blood
- Body Weight/drug effects
- Chromatography, High Pressure Liquid
- Coronary Artery Disease/immunology
- Coronary Artery Disease/metabolism
- Dietary Fats/administration & dosage
- Dietary Fats/adverse effects
- Disease Models, Animal
- Disease Susceptibility
- Hyperlipidemias/etiology
- Hyperlipidemias/metabolism
- Immunity, Innate
- Lipoproteins, HDL/drug effects
- Lipoproteins, HDL/metabolism
- Lipoproteins, LDL/drug effects
- Lipoproteins, LDL/metabolism
- Lipoproteins, VLDL/drug effects
- Lipoproteins, VLDL/metabolism
- Magnetic Resonance Spectroscopy
- Male
- Mice
- Mice, Inbred C57BL
- Models, Cardiovascular
- Obesity/immunology
- Obesity/metabolism
- Predictive Value of Tests
- Receptors, LDL/blood
- Receptors, LDL/deficiency
- Receptors, LDL/drug effects
- Statistics as Topic
- Triglycerides/metabolism
Collapse
Affiliation(s)
- Sandra A Schreyer
- Department of Cell Biology and Biochemistry, AstraZeneca, Mölndal, Sweden
| | | | | | | |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW A growing body of data suggests that in addition to LDL-cholesterol concentrations, compositional properties of LDL, including size and fatty acid composition, are important in determining the relative degree of atherogenicity. This review examines current research in this field to evaluate which properties of LDL may most directly influence the risk of coronary heart disease. RECENT FINDINGS The presence of small dense LDL has been correlated with an increased risk of coronary heart disease, but this has not been shown to be fully independent of related factors such as elevated plasma triacylglycerol concentrations. An increased susceptibility of small dense LDL to in-vitro oxidation has also been demonstrated, but its importance to coronary heart disease risk has not been established. Other studies have found that the presence of enlarged LDL, modified (oleate enriched) fatty acyl composition of LDL, and higher numbers of LDL particles in plasma also are endpoints associated with an increased risk of coronary heart disease. SUMMARY LDL size may indicate a metabolic condition associated with increased CHD risk as opposed to the direct promotion of atherosclerosis by specific particle types of LDL. In most claims of detrimental effects of small dense LDL, neither LDL particle concentrations nor the fatty acid composition of the particles were established, both factors being important in contributing to the atherogenic potential of LDL. The predisposition to premature coronary heart disease cannot currently be objectively assigned to any one type of LDL particle.
Collapse
Affiliation(s)
- Aaron T Lada
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | |
Collapse
|
46
|
Zabalawi M, Bhat S, Loughlin T, Thomas MJ, Alexander E, Cline M, Bullock B, Willingham M, Sorci-Thomas MG. Induction of fatal inflammation in LDL receptor and ApoA-I double-knockout mice fed dietary fat and cholesterol. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:1201-13. [PMID: 12937162 PMCID: PMC1868257 DOI: 10.1016/s0002-9440(10)63480-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Atherogenic response to dietary fat and cholesterol challenge was evaluated in mice lacking both the LDL receptor (LDLr(-/-)) and apoA-I (apoA-I(-/-)) gene, LDLr(-/-)/apoA-I(-/-) or double-knockout mice. Gender- and age-matched LDLr(-/-)/apoA-I(-/-) mice were fed a diet consisting of 0.1% cholesterol and 10% palm oil for 16 weeks and compared to LDLr(-/-) mice or single-knockout mice. The LDLr(-/-) mice showed a 6- to 7-fold increase in total plasma cholesterol (TPC) compared to their chow-fed mice counterparts, while LDLr(-/-)/apoA-I(-/-) mice showed only a 2- to 3-fold increase in TPC compared to their chow-fed controls. This differential response to the atherogenic diet was unanticipated, since chow-fed LDLr(-/-) and LDLr(-/-)/apoA-I(-/-) mice began the study with similar LDL levels and differed primarily in their HDL concentration. The 6-fold diet-induced increase in TPC observed in the LDLr(-/-) mice occurred mainly in VLDL/LDL and not in HDL. Mid-study plasma samples taken after 8 weeks of diet feeding showed that LDLr(-/-) mice had TPC concentrations approximately 60% of their 16-week level, while the LDLr(-/-)/apoA-I(-/-) mice had reached 100% of their 16-week TPC concentration after only 8 weeks of diet. Male LDLr(-/-) mice showed similar aortic cholesterol levels to male LDLr(-/-)/apoA-I(-/-) mice despite a 4-fold higher VLDL/LDL concentration in the LDLr(-/-) mice. A direct comparison of the severity of aortic atherosclerosis between female LDLr(-/-) and LDLr(-/-)/apoA-I(-/-) mice was compromised due to the loss of female LDLr(-/-)/apoA-I(-/-) mice between 10 and 14 weeks into the study. Diet-fed female and, with time, male LDLr(-/-)/apoA-I(-/-) mice suffered from severe ulcerated cutaneous xanthomatosis. This condition, combined with a complete depletion of adrenal cholesterol, manifested in fatal wasting of the affected mice. In conclusion, LDLr(-/-) and LDLr(-/-)/apoA-I(-/-) mice showed dramatic TPC differences in response to dietary fat and cholesterol challenge, while despite these differences both genotypes accumulated similar levels of aortic cholesterol.
Collapse
Affiliation(s)
- Manal Zabalawi
- Department of Pathology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Ares MPS. Atherosclerosis: cell biology and lipoproteins. Curr Opin Lipidol 2003; 14:393-6. [PMID: 12865738 DOI: 10.1097/00041433-200308000-00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
48
|
Chawla A, Lee CH, Barak Y, He W, Rosenfeld J, Liao D, Han J, Kang H, Evans RM. PPARdelta is a very low-density lipoprotein sensor in macrophages. Proc Natl Acad Sci U S A 2003; 100:1268-73. [PMID: 12540828 PMCID: PMC298762 DOI: 10.1073/pnas.0337331100] [Citation(s) in RCA: 226] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Although triglyceride-rich particles, such as very low-density lipoprotein (VLDL), contribute significantly to human atherogenesis, the molecular basis for lipoprotein-driven pathogenicity is poorly understood. We demonstrate that in macrophages, VLDL functions as a transcriptional regulator via the activation of the nuclear receptor peroxisome proliferator-activated receptor delta. The signaling components of native VLDL are its triglycerides, whose activity is enhanced by lipoprotein lipase. Generation of peroxisome proliferator-activated receptor delta null macrophages verifies the absolute requirement of this transcription factor in mediating the VLDL response. Thus, our data reveal a pathway through which dietary triglycerides and VLDL can directly regulate gene expression in atherosclerotic lesions.
Collapse
Affiliation(s)
- Ajay Chawla
- The Salk Institute for Biological Studies, Howard Hughes Medical Institute, La Jolla, CA 90237, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Kritchevsky D, Tepper SA, Wright S, Czarnecki SK, Wilson TA, Nicolosi RJ. Cholesterol vehicle in experimental atherosclerosis 24: avocado oil. J Am Coll Nutr 2003; 22:52-5. [PMID: 12569114 DOI: 10.1080/07315724.2003.10719275] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE To determine atherogenicity of avocado oil relative to saturated (coconut oil), monounsaturated (olive oil) and polyunsaturated (corn oil) fats. METHODS New Zealand White rabbits were fed a semipurified diet containing 0.2% cholesterol and 14% fat for 90 days. They were then necropsied and severity of atherosclerosis was determined visually. RESULTS Coconut oil was the most atherogenic fat. Corn oil was only slightly less atherogenic than either olive or avocado oils. Percentage of serum HDL cholesterol was highest in the rabbits fed the two monounsaturated fats. CONCLUSION Avocado oil is of the same order of atherogenicity as corn oil and olive oil.
Collapse
|
50
|
Lada AT, Rudel LL. Dietary monounsaturated versus polyunsaturated fatty acids: which is really better for protection from coronary heart disease? Curr Opin Lipidol 2003; 14:41-6. [PMID: 12544660 DOI: 10.1097/00041433-200302000-00008] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW The purpose is to evaluate recent findings concerning dietary fats and the risk of coronary heart disease. Monounsaturated fatty acids are often regarded as healthy, and many have recommended their consumption instead of saturated fatty acids and polyunsaturated fatty acids. Support for the benefits of monounsaturated fatty acids comes largely from epidemiological data, but they have not been an isolated, single variable in such studies. Beneficial effects on the plasma lipid profile and LDL oxidation rates have also been identified. More recent findings have questioned the impact of suspected beneficial effects on coronary heart disease, indicating that studies with more conclusive endpoints are needed. RECENT FINDINGS Human dietary studies often produce conflicting results regarding the effects of monounsaturated and polyunsaturated fatty acids on the plasma lipid profile. Monounsaturated and polyunsaturated fatty acids both appear to reduce total and LDL-cholesterol compared with saturated fatty acids; however, the effect on HDL is less clear. Lowered HDL levels in response to low-fat or polyunsaturated fatty acid diets and the decreased protection from oxidation of polyunsaturated fatty acid-enriched LDL may not indicate increased coronary heart disease risk. Several lines of evidence also suggest that polyunsaturated fatty acids may protect against atherosclerosis. SUMMARY Recommendations to substitute monounsaturated fatty acids for polyunsaturated fatty acids or a low-fat carbohydrate diet seem premature without more research into the effects on the development of atherosclerosis. Current opinions favoring monounsaturated fatty acids are based on epidemiological data and risk factor analysis, but are questioned by the demonstrated detrimental effects on atherosclerosis in animal models.
Collapse
Affiliation(s)
- Aaron T Lada
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | |
Collapse
|